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ABSTRACT 

 

Stylistic Control of Ocean Water Simulations. (December 2008) 

Christopher Wayne Root, B.S., University of Minnesota 

Chair of Advisory Committee: Dr. Donald House 

 

 This thesis presents a new method for controlling the look of an ocean water 

simulation for the purpose of creating cartoon-styled fluid animations. Two popular 

techniques to simulate fluid, a statistical height field method via the Fast Fourier 

Transform and the Stable Fluid method for dynamic effects, are connected smoothly via 

a blend domain, thus allowing a height field to drive a physical simulation. In addition, 

the height field can be stylized by utilizing a keyframing technique on wave amplitudes 

defined in the Fourier domain, allowing for creative control of the fluid’s surface. Such 

stylized height fields therefore can be simulated to exhibit natural fluid motion as well as 

to produce dynamic effects such as breaking waves that were previously unattainable in 

common fluid pipelines. 
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NOMENCLATURE 

 

CLSVOF Combined Level Set and Volume-of-Fluid 

FFT Fast Fourier Transform 

MAC Marker-and-Cell 

NURBS Non-Uniform Rational B-Spline 

PLS Particle Level Set 

VOF Volume-of-Fluid 

 



v 

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

NOMENCLATURE..................................................................................................  iv 

TABLE OF CONTENTS ..........................................................................................  v 

LIST OF FIGURES...................................................................................................  vii 

1 INTRODUCTION...............................................................................................  1 

2 PRIOR WORK....................................................................................................  3 

3 METHODOLOGY..............................................................................................  6 

  3.1 Wave Generation..................................................................................  7 

   3.1.1 Wave Amplitudes ........................................................................  8 

   3.1.2 Dispersion....................................................................................  10 

   3.1.3 User-Determined Heights............................................................  11 

   3.1.4 Keyframe Control........................................................................  12 

  3.2 Dynamic Fluid......................................................................................  14 

   3.2.1 Stable Fluid Method ....................................................................  15 

   3.2.2 Tracking the Fluid Surface ..........................................................  18 

   3.2.3 Particle Level Set Method ...........................................................  21 

  3.3 Blending of the Statistical and Physical Domains ...............................  23 

   3.3.1 Height Field-to-Level Set Conversion and Initialization ............  23 

   3.3.2 Velocity Extraction from a Height Field.....................................  24 

   3.3.3 Stable Fluid Modifications ..........................................................  27 

  3.4 Rendering .............................................................................................  29

   3.4.1 Edge Drawings ............................................................................  30 

   3.4.2 Reflection Elements ....................................................................  30 

4 RESULTS............................................................................................................  32 

  4.1 Wave Generation..................................................................................  32 

  4.2 Dynamic Fluid......................................................................................  35 

  4.3 Blending of the Statistical and Physical Domains ...............................  36 

  4.4 Rendering .............................................................................................  40 



vi 

              Page 

5 CONCLUSIONS AND FUTURE WORK .........................................................  42 

  5.1 Conclusions ..........................................................................................  42 

  5.2 Future Work .........................................................................................  43 

   5.2.1 Limitation Improvements ............................................................  43 

   5.2.2 Future Research...........................................................................  45 

REFERENCES..........................................................................................................  47 

VITA .........................................................................................................................  51 



vii 

LIST OF FIGURES 

 

FIGURE                                                                                                                        Page 

 1 Simulation Domains...................................................................................  6 

 

 2 Height Field Image Comparison ................................................................  10 

 

 3 Ocean Surface Keyframes I........................................................................  13 

 

 4  Ocean Surface Keyframes II ......................................................................  14 

 

 5 3D MAC Grid Cell .....................................................................................  16 

 

 6 Comparison of a 2D CLSVOF and PLS Grid ............................................  20 

 7 Cartoon Render ..........................................................................................  31

 8 Realistic Ocean Surface .............................................................................  33 

 9 Lost Detail due to Inadequate Sampling ....................................................  33 

 10 Sample Number Comparison .....................................................................  35 

 11 Dynamic Fluid Results ...............................................................................  36 

 12 Level Set-only Simulation Results .............................................................  38 

 13 PLS Simulation Results..............................................................................  39 

 14 Comparison between the Level Set-only and  

  PLS Simulations in the Different Domains................................................  39 

 15 Cartoon-rendered Simulation Results ........................................................  41 

 



1 

 

1 INTRODUCTION 

 

 Fluid effects have been widely used in animated films for decades. Classic 

Disney films such as Alice in Wonderland, Pinocchio, & Fantasia used fluid effects 

because “[they] had become an integral part of the film, contributing drama and 

excitement and mood, as well as the vital element of making everything so believable” 

[17]. Because of this importance, specialized animators were employed solely to create 

natural effects like fog, dust, and fluid. Realistic fluid, however, turned out to be terribly 

difficult for them to animate. As Frank Thomas, one of Walt Disney’s original team of 

animators known as the “Nine Old Men,” put it, “The combination of transparency, 

elasticity, weight, mobility, and consistency … made it impossible to handle [water] 

realistically” [17]. Therefore stylizing the fluid, while maintaining believability, became 

much more crucial than achieving natural realism. 

 Today, much of the effects animation traditionally drawn by hand is controlled 

by computer simulations thanks in large part to a spate of recent computer graphics 

research. However, much of this research strives for realism. Little exploration has been 

done to stylize the look of a 3D simulation, specifically that of water. Even modern 

animated films with fluid elements like Pixar’s Finding Nemo, which are arguably 

influenced by their classic 2D counterparts, use very realistic water. 

 This thesis proposes to use common simulation techniques to render stylized 

____________ 
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fluid inspired by classic Disney films. Stylization is primarily obtained by using a  

keyframing technique on wave amplitudes defined in the frequency domain which are 

subsequently converted into a height field. This allows one to create stylized surfaces 

that exhibit believable fluid motion. 

However, such a height field cannot be used alone if dynamic effects like 

breaking waves are intended. In fact, there has yet to be found an all-encompassing 

simulation technique that will practically handle all fluid dynamics from open water to 

breaking waves. This problem is addressed by incorporating a unique blend domain 

allowing a height field to drive a physical simulation to produce dynamic effects 

practically in a modern animation production environment. 
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2 PRIOR WORK 

 

 Computational fluid dynamics has been an actively studied area of research for 

centuries. In fact, many fluid techniques employed by modern-day computer graphics 

pipelines are derived directly from very early studies. Fournier and Reeves’ [9] work for 

example, which is considered one of the first to develop a fluid model for computer 

graphics, is based on the Gerstner model [11] developed in 1802 which determines that 

the motion of an individual particle of water due to a wave follows a circular or elliptical 

orbit. The Fournier/Reeves' model generates the surface of the water using a 

displacement approach that exhibits this type of motion, and can also be affected by 

natural phenomena such as wind, gravity, and depth. 

 Statistical models based on empirical observation of the ocean tend to be used 

more often for fully-developed seas. Such models, initially developed by Matsin, et al. 

[22] and further examined by Tessendorf [30], use analytical spectral data to create a 

wave height representation of the ocean surface in the Fourier domain. Height fields are 

easily generated via Fast Fourier Transforms and have produced very realistic effects in 

films such as Titanic, Waterworld, and The Perfect Storm. 

 However, both the Gerstner and statistical models of fluid surfaces are unable to 

handle complex fluid flow such as breaking waves. For such dynamic effects, techniques 

based on the full Navier-Stokes equations for fluid flow are employed. Foster and 

Metaxas [8] utilized the marker and cell (MAC) method of Harlow and Welch [14] to 

solve these equations in an eulerian-discretized framework suitable for computer 
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graphics. Stam [28] later introduced an unconditionally stable semi-lagrangian method to 

solve the momentum conservation step of the equations allowing for much larger time 

intervals in the simulation. This technique can also be easily adapted to advect any kind 

of smooth quantity in a velocity field, again with the benefit of it never reaching 

instability. 

 To track the fluid's surface, Foster and Metaxas [8] primarily used marker 

particles. However, generating a smooth realistic fluid surface from particles alone is 

very difficult. Mihalef, et al. [25] coupled a level set implicit surface with a volume-of-

fluid technique which stores the fluid volume in any given cell to track the surface. This 

technique is very successful at preserving the overall volume of the fluid, but suffers 

from numerical error that results in unwanted “blobbies”. Foster and Fedkiw [7] 

introduced a hybrid fluid volume model that combines a level set with marker particles 

to help correct numerical dissipation due to advecting the surface in the velocity field. 

Enright et al. [5] extended this hybrid approach by placing marker particles on both sides 

of the fluid surface thereby further correcting the dissipation. They also provided a 

means to define valid velocities in the air which the particles can effectively use. This 

Particle Level Set Method results in a smooth surface that can capture fine fluid detail. A 

byproduct of using these marker particles is that they can be used to generate other fluid 

effects such as bubbles (Greenwood & House [12], Cleary et al. [2]), spray (Guendelman 

et al. [13], Kim et al. [19]), and foam (Kim et al. [18]). 

 Controlling the behavior of fluid flow is an increasing area of study, and yet very 

challenging. Some recent work has been quite successful at controlling the behavior of 
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smoke, such as Treuille et al. [31], Fattal and Lischinski [6], and McNamara et al. [23].  

The latter makes use of an efficient gradient-calculating technique known as the adjoint 

method which can be used to control level-set fluids in addition to smoke. However, 

thanks to a level set fluid's many discontinuities, control is much more difficult due to an 

increased inaccuracy of the gradient. Mihalef, et al. [25] generated some nice controlled 

breaking wave simulations using a slice method. Each slice is represented by a 2D wave 

profile simulation that can be used to direct the final look of a 3D wave. However, such 

an approach is limited to a wave break only and is not easily extended to other areas of 

the fluid. It is also limited by the directability of the 2D profile simulations, therefore a 

cartoon-style wave may not be possible if such a look cannot be achieved in 2D. 
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3 METHODOLOGY 

 

In order to create a stylized fluid simulation with natural dynamic effects, our 

method relies on an organization of the simulation domain into three spatial domains as 

shown in Figure 1. They are the: 

 

1. Statistical Domain:  maintains a user-controlled height field 

2. Physical Domain: solves the Navier-Stokes equations for a physically  

accurate fluid simulation 

3. Blend Domain: performs blending techniques for a smooth transition from 

the statistical to physical domains 

 

 

 

 

 

 

Fig. 1. Simulation Domains. 



7 

 

This section will continue as follows: first, methods to generate and control waves in 

the statistical domain are discussed. Second, we describe means by which the Navier-

Stokes equations are solved in the physical domain, followed by a discussion of how 

blending between the two is performed in the blend domain. Finally we present methods 

by which the fluid can be rendered in a stylized manner. 

 

3.1 Wave Generation 

Given the challenge of creating directable cartoon-like ocean simulations, efforts 

were focused on creating waves that could be controlled by the artist, yet exhibited 

natural fluid motion. Two approaches of generating waves were examined: the Gerstner 

model [9] and the statistical height field model [30]. After careful analysis, the statistical 

model deemed more appropriate for three key reasons: 

 

1. The fluid will always exhibit natural motion due to a wave dispersion relation 

that is independent of its surface height. 

2. Only one degree of control is needed: the wave amplitudes, thus making it very 

straight forward for a user to generate and control a height field. By contrast, the 

Gerstner model requires a wave vector, amplitude, frequency, and phase for each 

wave. All of these but the amplitudes are predetermined in the statistical model 

thanks to mathematical properties present after a height field is decomposed into 

a sum of sine and cosine waves via the FFT. 

3. Due to a property of the Fourier transform, the resulting height field will be 
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totally periodic allowing for a very direct way to initialize both the fluid surface 

and velocities in the neighboring domains. 

 

We based our statistical model on that described by Tessendorf in [30]. His method is 

derived from empirical observations of ocean water which found that waves exhibit nice 

spectral properties that can be defined in the Fourier, or frequency, domain. A Fourier-

based representation of a wind-driven height field in open water is therefore defined as: 

 

 
�( , ) ( , ) exp( )h t h t i= ⋅∑

k

x k k x  (3.1) 

 

where x  is a horizontal positon, t  is time, k is a wave vector defining a phase and 

direction of a wave, and �( , )h tk  are the complex, time-dependent amplitudes. This sum 

can be rapidly computed at discrete, evenly-spaced points using an FFT.  

 

3.1.1 Wave Amplitudes 

For a realistic height field, wave amplitudes are generated according to 

oceanographic statistical observations which show them to be nearly independent, 

gaussian fluctuations with a spatial spectrum defined by: 

 

 
�

2
*

( ) ( , )
h

P h t=k k  (3.2) 
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for some spectral model �
*

( , )h tk . For example, a useful model commonly used for 

realistic wave generation in open, wind-driven water is the Phillips Spectrum: 

 

 

2
2

4

exp( 1 ( ) ) ˆ ˆ( )
h

kL
P A w

k

−
= ⋅k k  (3.3) 

 

where k  is the wavenumber, or magnitude of the wave vector, 2= /L V g  is the largest 

possible wave from a continuous wind with speed V , g is the gravitational constant, 

normally 29.8 /m sec , and ŵ  is the wind direction. 

Of course other spectral functions can be used to achieve desired effects. For 

instance, to get only waves that travel in the direction of the wind, the Phillips Spectrum 

can be modified like so: 

 

 

2
2

4

exp( 1 ( ) ) ˆ ˆ( ) max( ,0)
h

kL
P A w

k

−
= ⋅k k  (3.4) 

 

A comparison of these two spectral functions can be seen in Figure 2. 

After a spectral function has been defined, the fourier wave amplitudes at time 

0t =  can be generated as follows: 

 

 
�

0

1
( ) ( ) ( )

2
r i h

h i Pξ ξ= +k k  (3.5) 
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where 
r

ξ  and 
i

ξ  are guassian random numbers with a mean of 0 and a standard 

deviation of 1.  

 

3.1.2 Dispersion 

Water waves have a well known relationship between their frequencies and the 

magnitude of their wave vectors. This relationship in deep water where the ocean floor 

can be ignored is: 

 

 
2 ( )k gkω =  (3.6) 

 

where g  is the gravity constant, and k  is the wave number. This is commonly known as 

 

 

 

    

Fig. 2. Height Field Image Comparison. Height field images of eqns. (3.3) and (3.4) 

respectively using a 512x512 domain. Notice in the second image that much detail is lost 

and that the remaining waves face the direction of the right-blowing wind. 
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the dispersion relation. There are other similar dispersion relation equations that have 

been developed for shallow water and for detailed fluids where surface tension is a 

factor, but for the purposes of this thesis it can be safely assumed that the above 

dispersion function will suffice. 

 With a dispersion relationship defined, the Fourier amplitudes at time t are: 

 

 

� � { }
� { }

0

*

0

( , ) ( ) exp ( )

( )exp ( )

h t h i k t

h i k t

ω

ω

=

+ − −

k k

k
 (3.7) 

 

This form preserves the complex conjugation property needed for the FFT to be applied 

and allows waves to propagate in multiple directions. 

 

3.1.3 User-Determined Heights 

After establishing initial conditions for the physical size of the statistical domain, 

the number of discrete samples to use, and a wind speed and direction, a height field can 

be built which the user can use as a template to model their own height field. Modeling 

can be performed on any standard 3D surface used to represent the height field, but for 

the purpose of this thesis NURBS curves and surfaces [26] worked well due to their 

smooth surface representation (good for cartoon-like fluid) and reasonable local control. 

An initial NURBS surface with a specified number of control points is created by using a 

least-squares method available via an open-source nurbs++ library [20] to approximate 

the height field. The user can then model the NURBS surface to represent a height field 

of their choice. 
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 Once modeling is complete, wave amplitudes can be extracted in a partially 

inverse way to the procedure described in sub-section 3.1.1. The NURBS surface will be 

sampled at specific equidistant points as determined by initial sampling conditions. 

These sampled heights are then converted into a Fourier representation using the FFT. 

By enforcing a restriction that this transformation is always applied at time 0t = , the 

resulting Fourier coefficients will be �( ,0)h k or in other words: 

 

 
� � �

*

0 0( ,0) ( ) ( )h h h= + −k k k  (3.8) 

 

Half of the initial height amplitudes 0 ( )h k� will be defined using (3.5). However, thanks 

to the complex conjugation property, the other half are simply: 

 

 
� � �

*

0 0( ) ( ,0) ( )h h h− = −k k k  (3.9) 

 

3.1.4 Keyframe Control 

A height field can be keyframed at any point in time using this approach. After 

an initial NURBS surface has been created, the user can playback its resulting motion, 

and if at any point they wish to change its look, they can do so by modifying the surface 

and adding a new wave amplitude keyframe. These keyframed amplitudes will be 

generated in the same way as described in 3.1.3 and the resulting height field will be a 

result of interpolating them in the Fourier domain. An example of the keyframe control 

that can be applied to fluid surfaces in our method is shown in Figures 3 and 4. 
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Fig. 3. Ocean Surface Keyframes I. The surfaces marked as a keyframe are user-defined. The 

others are interpolated surfaces at a frame halfway between successive keyframes. 
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Fig. 4. Ocean Surface Keyframes II. Same as Fig. 3, but from a different camera angle. 

 

 

 

 

3.2 Dynamic Fluid 

To solve the dynamically changing fluid in the physical domain of the simul-

ation, the commonly used “stable fluid” method introduced by Stam [28] was employed. 

This method describes an unconditionally stable solver for the incompressible Navier-

Stokes equations: 
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21

( )
t

p v
ρ

= − ⋅ ∇ − ∇ + ∇ +u u u u f  (3.10) 

 0∇⋅ =u  (3.11) 

 

Equation (3.10), the momentum equation, determines the acceleration of a fluid with 

velocities u , pressures p , density ρ , viscosity v , and external forces f . Equation 

(3.11) is the incompressibility condition which constrains the fluid’s volume to stay 

constant. 

 

3.2.1 Stable Fluid Method 

Equation (3.10) can be solved numerically by splitting the equation up into its 

component parts and solving each part separately in turn [1]. Splitting the momentum 

equation (3.10) for an inviscid fluid results in 3 intermediate equations: 

 

1. 0
u

u u
t

∂
+ ∇ ⋅ =

∂

�
� �

  (advection)     (3.12) 

2. 0
u

g
t

∂
− =

∂

�
��

   (external forces)    (3.13) 

3. 
1

0
u

p
t ρ

∂
+ ∇ =

∂

�

 such that 0u∇⋅ =
�

(pressure/incompressibility) (3.14) 
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Due to the fact that water has very little viscosity and that our numerical solution for the 

above equations inherently introduces error that can be reinterpreted as such, the 

viscosity term can be dropped. 

 To efficiently solve these split equations for purposes of computer graphics, the 

entire simulation domain is discretized by a MAC grid as shown in Figure 5 [1]. The 

velocities u
�

 are defined at the wall centers of the cell and any other constant or 

advectable quantities such as pressure p are defined at the center of the cell. This grid 

structure is used to provide an accurate central difference for calculating spatial 

derivatives in the split equations. 

 

 

 

 

Fig. 5. 3D MAC Grid Cell. Used to discretize the simulation domain. 
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The equations are then solved as follows. First, to preserve momentum, we 

advect the divergence-free velocity field 0
W  that is a result of solving the Navier-Stokes 

equations in the previous time step. Advection is carried out using Stam’s semi-

Lagrangian technique which finds a new velocity at each grid sample point by 

integrating backwards in time as if a particle was advected in the velocity field and 

ended up at the sample point in question. Our method makes use of an accurate 4
th

 order 

Runga-Kutta integration scheme to trace the velocity sample backwards in time and 

results in an intermediate velocity field 1
W . The advection equation (3.12) could be 

solved alternatively by using an accurate central difference for the spatial derivative and 

a high-order integration scheme for the time derivative, but it will eventually become 

unstable regardless of the time step used. A small time step would only delay the 

inevitable instability. However, Stam’s semi-Lagrangian technique is unconditionally 

stable for any time step, which makes it a very desirable method for our purposes. 

 We then apply any outside forces, like gravity and wind, to the intermediate 

velocity field 1
W  by using a 1

st
 order Forward Euler integration scheme for the time 

derivative in eq. (3.13). In other words: 

 

 
2 1

t= + ∆W W f  (3.15) 

 

 Finally we solve for pressures and incompressibility in eq. (3.14) again using 

Forward Euler: 

 
3 2 1

t p
ρ

= − ∆ ∇W W  (3.16) 
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By enforcing the incompressibility contstraint, eq. (3.16) can be re-written as: 

 

 
3 2 21

0t p
ρ

∇ ⋅ = ∇ ⋅ − ∆ ∇ =W W  (3.17) 

 

This produces a large system of equations for pressure p  that can be solved using a bi-

conjugate gradient method. 

 

 In summary, the Navier-Stokes equations for incompressible fluid flow is solved 

at each time step by doing the following: 

 

 

0

1 0

2 1

2 2

1
2

( , )

1

1

n

n

u

advect t

t

p t

u t p

ρ

ρ

+

=

= −∆

= + ∆
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= − ∆ ∇

W

W W

W W f

W

W

�

�

 (3.18) 

  

 

3.2.2 Tracking the Fluid Surface 

Determining the location of the surface of the fluid is not only important to 

account for fluid/air boundaries in the stable fluid method, but it’s also vitally important 

for rendering. For the purposes of this thesis, two approaches to track the fluid interface 
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were studied, the Coupled Level Set and Volume-of-Fluid (CLSVOF) method 

introduced by Sussman and Puckett [29], and the Particle Level Set (PLS) method by 

Enright et al. [5]. Both techniques make use of an implicit surface (known as a level set) 

which is defined by a signed distance function φ  where negative φ  values are found 

inside the surface, positive values are outside, and the surface boundary is at 0φ = . The 

level set is advantageous because of inherent merging properties of an implicit surface 

and the ease by which it can be advected in a surrounding velocity field. 

The level set advection equation is: 

 

 0u
t

φ
φ

∂
+ ∇ ⋅ =

∂

�

 (3.19) 

 

Notice that this equation takes on the same form as the velocity advection equation 

(3.12) in the stable fluid method. Therefore it can also be solved using a semi-

Lagrangian technique utilizing unconditional stability. However, level sets suffer from 

numerical dissipation due to the interpolated averaging needed as a result of discretizing 

on an eulerian MAC grid. Such dissipation results in loss of interesting fluid flow and 

volume loss. 

One way to reduce this error is by maintaining the signed distance propery for 

the level set: 

 

 1φ∇ =  (3.20) 
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Maintaining such a property significantly increases the accuracy whenever spatial 

differentiation is needed. Of course, as a level set is advected, the signed distance 

property won’t hold, so it is maintained by performing a Fast Marching Method as 

described by Sethian [27] after advection. However, maintaining the signed distance 

property won’t correct dissipation. It will only help improve advection accuracy. 

Therefore level sets have been coupled with other techniques to improve interface 

capturing as the level set moves.  We chose to make use of the PLS method [5] over the 

CLSVOF method [29] because special consideration needs to be taken when advecting 

the VOF function since it is not a smooth-varying function as shown in Figure 6.  

 

 

 

 

 

 

            

Fig. 6. Comparison of a 2D CLSVOF and PLS Grid. Notice that the VOF function F is 

not a smooth-varying function in the first image. 
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3.2.3 Particle Level Set Method 

The PLS method implemented is based on the techniques described in [4]. It is a 

“thickened” hybrid approach to tracking the interface of an implicit level set. It makes 

use of marker particles randomly placed on both sides of the interface to help correct 

numerical dissipation, thus preserving detailed fluid flow and volume. Both positive and 

negative particles are placed within some small distance about the surface and given a 

radius determined by the following: 

 

 

              ( )

( )       ( )

              ( )

pmax p max

p pp p min p max

pmin p min

r if s x r

r s x if r s x r

r if s x r

φ

φ φ

φ

 >
  

= ≤ ≤ 
 

<  

�

� �

�
 (3.21) 

 

where 
p

s  is the sign of the particle, ( )pxφ
�

 is the value of the level set function at the 

particle’s position, and 
min

r and 
max

r are the minimum and maximum particle radii. 

Typical values used for these radii are 0.1 and 0.5 times the size of a grid cell. 

 After the level set has been advected, particles are transported in the velocity 

field by using a 4
th

 order Runga-Kutta integration scheme. Their new positions are then 

used to correct the level set. If a positive particle is found to have moved across the surf- 

ace a distance more than its radius, it is labeled as having escaped, indicating that the 

level set may need correcting, likewise for negative particles. Correction is done by 

applying a simple spherical level set function to each particle as defined by: 
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 ( ) ( )pp p px s r x xφ = − −
� � �

 (3.22) 

 

When grouped together closely, these individual particle level set functions will overlap, 

defining a better location for the fluid surface. Escaped negative particles are used to 

rebuild 0φ ≤  region and likewise escaped positive particles rebuild the 0φ > region by 

using local minima and maxima respectively: 

 

 min ( , )p
p E

φ φ φ
−

− −
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=  (3.23) 

 max( , )
+

p
p E

φ φ φ
+

+

∀ ∈
=  (3.24) 

 

Finally, the level set is reconstructed by merging the rebuilt positive and negative 

regions according to the following condition: 

 

 

     

     

if

if

φ φ φ
φ

φ φ φ

+ + −

− + −

 ≤ 
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>  
 (3.25) 

 

After merging these regions, the level set is re-initialized to a signed distance function 

using the Fast Marching Method [27] following which error correction is again 

performed since the level set could have moved slightly. Finally, the particles’ radii are 

readjusted using eq. (3.21). 

 During the simulation, particle densities may be such that some areas about the 

interface may not have enough particles for accurate reconstruction. Therefore particles 
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will need to be periodically re-seeded to maintain proper densities. This can be 

determined by a user-defined value, but experimentation has shown that reseeding the 

particles every 20 frames was sufficient [4]. 

 

3.3 Blending of the Statistical and Physical Domains 

Now that we have methods to provide user control of a height field and an 

accurate physical fluid solver, techniques to combine the two domains were explored 

with the idea that the height field could drive a physical simulation for added dynamic 

effects. This was accomplished by means of a blend domain inside which velocities 

extracted from the height field were merged with divergence-free velocities resulting 

from our stable fluid solver.  

This sub-section will proceed as follows: first a way to convert the height field 

into a level set and initialization of the level set in the blend and physical domains are 

described. Second, we detail a method by which velocities can be extracted from a 

height field in the statistical domain. Finally, minor modifications to the stable fluid 

method are discussed and the algorithm for simulating the entire fluid is summarized.  

 

3.3.1 Height Field-to-Level Set Conversion and Initialization 

One very useful property of the height field generated via the FFT is that it is 

totally periodic. This is very convenient for it provides a way to initialize a level set in 

both the blend and physical domains regardless of their size since the level set can be 

duplicated until the domains are filled.  
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In the statistical domain, height values will be defined at discrete, evenly spaced 

sample points after performing an inverse FFT on a set of keyframe-interpolated wave 

amplitudes. These height values are used to generate a surface - a NURBS surface in our 

case. A NURBS surface can be built to accurately fit these sample height points via a 

global interpolation method provided by the nurbs++ library [20].  

Now that a surface is defined in the statistical domain, we convert it to a level set 

so that we can easily initialize a surface in the blend and physical domains. We 

accomplish this by first initializing the φ  level set values in MAC grid cells closest to 

the NURBS surface. Once these initial values are found, they can be used to fill in the 

rest of the level set field using a Fast Marching Method [27]. 

Close cells are determined by first projecting the grid sample points onto the 

NURBS surface. If the distance from the sample point to the resulting projection point is 

less than the size of a grid cell, it is considered a close cell. One might assume that we 

could just use this distance to initialize φ  here too. However, this would not be accurate 

and could result in unwanted artifacts. Instead, we find the true closest distance to the 

NURBS surface by doing a localized search about the projected point. This helps to limit 

finding the closest point to a patch of the NURBS surface whose size will be 

proportional to the size of a grid cell. 

 

3.3.2 Velocity Extraction from a Height Field 

 As an early test to determine how the height field could drive a physical 

simulation, only extracted pressures based on depth were used. However, it turned out 
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that pressures alone would only push the fluid from high areas of pressure to low areas 

which resulted in fluid that would just “flop in place”. This was undesirable because it 

wouldn't match the momentum of the incoming fluid flow from the height field. Instead, 

velocities were needed. It turns out that supplying a velocity field would be 

advantageous for a couple other reasons as well: 

 

1. The velocities allow us to determine accurate pressures for the statistical domain 

by solving for pressure in eq. (3.14). These pressures can subsequently be used to 

provide an accurate pressure gradient in the blend domain. 

2. The velocities can be used as the primary blending attribute in the blend domain, 

so there is be no need to try merging separate level sets from each domain. Only 

a single level set would be required that represented all the domains allowing for 

a desirable smooth surface. 

 

A method to extrapolate velocities was determined by initially making the observation 

that level sets are advected in a velocity field according to the following equation: 

 

 0u
t

φ
φ

∂
+ ∇ ⋅ =

∂

�

 (3.26) 

 

Expanding this equation into three dimensions yields: 

 

 0u v w
t x y z

φ φ φ φ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 (3.27) 
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By taking a simple Forward Euler step for the time derivative and a 2
nd

 order accurate 

central difference for the spatial derivatives, we have: 
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+ + + =
∆ ∆ ∆ ∆

 (3.28) 

 

Of course, more accurate finite difference approaches could be used, but for the purpose 

of generating cartoon-looking fluid, this equation suffices. Additionally, this equation is 

convenient for it avoids the need to solve a large system of equations. 

 Note in eq. (3.28) that a level set from the statistical domain is needed at the 

current time n  and at time 1n +  for an appropriate time derivative. This is not difficult 

for us to do since the FFT height field representation is temporally independent. In fact, 

other than at time 0, only the level set at time 1n +  will need to be generated per time 

step since we can reuse the level set from the previous iteration. 

 Now that we have level sets defined at time n and at time 1n + , we have all that’s 

needed to compute the derivatives. However, we still need a method to solve for the 

velocity components u , v , and w . We could do something similar to eq. (3.14) in the 

stable fluid method and generate a large system of equations given the incompressibility 

condition, but this would be a very expensive operation and wouldn't necessarily give 

pleasing velocities. Instead, the v  component of the velocity can be solved directly since 

we have a temporally changing height field: 
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( , 1) ( , )h h n h n

v
dt t

∂ + −
= =

∆

x x
 (3.29) 

 

Note that we already have the heights defined at time n and 1n + , so this is very straight 

forward to solve. 

 Since we are not concerned with physically accurate velocities, the other velocity 

components u and w  can be set arbitrarily as long as they, combined with v , accurately 

satisfy the level set advection equation (3.27). All we need is a velocity field that will 

advect the level set to match that from the statistical domain. To keep things somewhat 

consistent we arbitrarily chose the :x z  ratio of the surface normal of the sample point in 

question as a second equation to help solve for u and w . 

 However, this approach doesn’t solve for the velocities everywhere in the 

discretized environment. It only determines the velocities at the surface. To extrapolate 

the surface velocities into the air, the velocity extrapolation technique described in the 

PLS method [5] is used. Velocities inside the fluid are defined by simply decreasing the 

surface velocity exponentially with depth as was done by Yuksel, et al. [32]. 

 

3.3.3 Stable Fluid Modifications 

Now that we have reasonable velocities defined in the statistical domain, we can 

proceed to solve the stable fluid method for both the blend and physical domains at the 

same time, but first, a couple initialization steps are required: initializing velocities in 

both domains and solving the pressures in the statistical domain for an accurate pressure 

gradient. 
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Velocities in the blend and physical domains are defined by periodically 

repeating the extracted velocities from the statistical domain in the exact same way the 

level sets are initialized. Pressures in the statistical domain, on the other hand, are found 

by using the extracted velocities as input for eq. (3.14) and solving for pressure. Now we 

can proceed to solve the Navier-Stokes equations in the usual manner except that we will 

use these pressures when computing the pressure gradient where the blend domain meets 

the statistical domain. This requires a slight modification when setting up the system of 

linear equations used to solve for pressure in eq. (3.14). 

Finally, we linearly blend the extracted velocities from the statistical domain 

with the divergence-free velocity field found by solving the Navier-Stokes equations in 

the blend domain and subsequently update the level set. This allows for a relatively 

smooth transition between the statistical and physical domains and provides a way for a 

height field to drive a physical simulation. 

In summary, here’s our simulation routine that’s run at every time step to solve 

the Navier-Stokes equations and blend the domains: 
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3.4 Rendering 

There are numerous ways to do non-photorealistic renderings of 3D objects from 

toon/cell shaders to painterly renderings [24]. In order to achieve a classic Disney style 

look such as that from Alice in Wonderland [10], I paid close attention to the color 

palette and element movement on the water. Two primary concepts were developed to 

achieve certain elemental looks: edge line drawings and toon-like reflections. 
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3.4.1 Edge Drawings 

In order to draw edges, an edge-detection method was needed. This is done by a 

post process that uses a Sobel gradient filter on a depth image created at render time. 

These Sobel filters in both the x  and y directions are: 

 

 

1 0 1

2 0 2

1 0 1

x
Sobel

+ − 
 = + − 
 + − 

      and    

1 2 1

0 0 0

1 2 1

y
Sobel

+ + + 
 =  
 − − − 

 

 

Together, these filters provide a gradient vector in the direction of largest increasing 

depth.  

When the length of the gradient vector at a pixel exceeds a user-defined 

threshold, an edge is determined and will be colored a user-specified color. Otherwise 

the pixel will be set to be fully transparent for easy compositing. To reduce aliasing 

artifacts, the Sobel filters were extended to be 7x7 filters, allowing for thicker edges that 

are blurred by a small Gaussian filter. 

 

3.4.2 Reflection Elements 

Upon careful examination of the Alice in Wonderland “Through the Keyhole in a 

Bottle” sequence [10], some stylized elements are present on the surface of the fluid that 

mimic realistic phenomena. One such element appears to be a stylized reflection of the 

stormy sky which appears to be only present on the front side of the wave face. As a 

preliminary way of achieving the same effect, a simple expression based on the normal 
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and velocity at a certain point was established. A camera-facing normal with a positive 

v  velocity greater than some threshold resulted in a toony reflection located on the front 

side of a wave. An example of a cartoon render achieved can be seen in Figure 7. 

 

 

 

 

Fig. 7. Cartoon Render.
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4 RESULTS 

 

The methodology described was implemented with mixed results. In order to 

clearly describe the results, this section will continue by discussing each of the primary 

methodology objectives in turn starting with wave generation, followed by results from 

our stable fluid solver, continuing with the blend domain and its effectiveness, and 

concluding with rendering. 

 

4.1 Wave Generation 

It was determined after careful examination that using a statistical approach to 

generate waves via an FFT representation was ideal to solve the problem of creating 

waves that could be stylistically controlled. The statistical model proved to be a useful 

means by which a user could model a fluid surface and still exhibit believable motion. In 

fact, the method would also allow for keyframe control of realistic fluids if the user so 

chose leaving them with total creative freedom. A realistic render of a fluid surface using 

our height field method can be seen in Figure 8. Additionally, the FFT-based approach 

turned out to be quite useful as it allowed for real-time, or near real-time (depending on 

sample size) wave animations providing the user with quick feedback. 
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Fig. 8. Realistic Ocean Surface. Rendered using a 512x512 statistical domain. 

 

 

 

Fig. 9. Lost Detail due to Inadequate Sampling. 
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Modeling of the fluid surface was provided by traditional NURBS modeling 

techniques which turned out to be quite useful for the purpose of cartoon-like fluid, 

which in many cases is very smooth and rounded. In fact, due to the simplicity of 

converting a height field into a Fourier-domain representation, any traditional 3D surface 

representation could be used (polygons, sub-division surfaces, etc.) as long as they can 

be easily sampled at discrete points. 

Using the FFT-based approach came with its restrictions, however, the biggest of 

which is its unintuitiveness. For example, in order to correctly apply an FFT to a 

modeled surface, it needs to be sampled at discrete, evenly-spaced points, and the 

number of samples must be a power of 2. If a user modeled a fluid surface with fine 

detail that wasn’t appropriately sampled, that detail would be lost as is shown in Figure 

9. Of course, the user could increase the number of samples to capture the detail, but that 

might come at a cost because it needs to be understood that each sample represents a 

wave of a particular wavelength in the Fourier domain. For instance, if a surface is 

sampled by an 8x8 uniform grid, its transformation into the frequency domain will result 

in 64 different waves. If a 64x64 uniform grid is used, 4096 different waves will be 

generated. Figure 10 shows how the addition of samples creates new, higher frequency 

waves. The final number of waves can be controlled somewhat by providing custom 

spectral functions. For instance, using equation (3.4) will eliminate any waves that face 

against the wind, but providing spectral functions is certainly not an intuitive way to 

control the final look of a fluid. 
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Fig. 10. Sample Number Comparison. The top row uses an 8x8 grid of uniform samples. 

The bottom row is 64x64. Notice how much more detail is added by simply increasing 

the number of samples. 

 

 

 

4.2 Dynamic Fluid 

To solve the 3D Navier-Stokes equations, we employed the Stable Fluid method 

introduced by Stam [28]. To track the evolution of the fluid surface, the PLS method by 

Enright, et al. [4] was used. Both methods are quite successful at providing a means to 

simulate and render realistic fluid and are common in modern production environments. 

Our implementation of them was equally successful as can be seen in Figure 11 and in 

the supplemental material stablefluid.mov (available for download).  

However, these methods provide challenges particularly for large-scale 

simulations because of their CPU, memory, and disk-space requirements. For instance, 

using our implementation to simulate a drop of water falling into a pool as seen in Figure 
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11 took approximately 1.5 minutes per frame to simulate on a 2 GHz Athlon processor 

and used 500 MB of RAM using a 50x50x100 resolute MAC grid - all this for a 

relatively simple simulation. More complex simulations would require even more 

resources. There does exist in the research literature a handful of different optimization 

techniques such as those described in [21], [15], and [16], but they weren’t utilized in 

our implementation as achieving optimal simulation speed was outside the scope of this 

thesis. 

 

 

 

       

       

Fig. 11. Dynamic Fluid Results. Example of a ball of water dropping into a pool using 

the Stable Fluid and PLS methods. 

 

 

  

4.3 Blending of the Statistical and Physical Domains 

The results of the blend domain in our simulation were mixed primarily due to 

the velocity extraction technique. The method was successful at providing a way to 
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smoothly blend between a height field and a physically-solved fluid surface allowing for 

the height field to drive dynamic effects such as breaking waves on a beach, but 

noticeable bump artifacts were present due to two primary factors: 

 

1. The x:z ratio of the level set gradient used to help solve for the u & w 

components of the velocity wasn’t always stable. For instance, as the z 

component of the gradient approaches 0, the ratio becomes exponentially larger, 

resulting in potentially extreme velocity components. 

2. The linearly interpolated blend of the velocities from the statistical and physical 

domains doesn’t necessarily result in a smooth velocity field. Smooth velocities 

are necessary for an unconditionally smooth fluid surface after advection. 

 

The unsmooth velocity field only intensified the artifacts in a PLS simulation 

since particles used to correct the level set could be several grid cells away from the 

surface where the velocities aren’t as well defined. By removing the particle correction 

step, the fluid surface was much smoother, but artifacts were still noticeable. Frames 

from a level set-only and a PLS simulation can be seen in Figures 12 and 13 respectively 

along with a single frame comparison of the two in Figure 14. The supplemental material 

blendcomparison.mov (available for download) compares the fully simulated fluid from 

both techniques as well. 

The size of the blend domain also had an impact on the effectiveness of the blend 

particularly for reflected waves off a wall or beach. Due to the linearly interpolated 
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velocities, these reflection waves disappear as they approach the statistical domain. This 

is much more noticeable to the naked eye when the blend domain is small in size. With a 

larger domain, it looks rather natural. In fact, experiments verified that a blend domain at 

least the same size as the statistical domain was reasonable. 

Of course, using a blend domain that’s at least the same size and resolution as the 

statistical domain results in a much larger total simulation area, drastically increasing the 

amount of resources needed. On a 60x60x180 resolution simulation domain, it took 

approximately 3.5 minutes a frame to simulate on a 3GHz athlon processor and used 

approximately 1GB of memory, not to mention that caching the entire level set on disk 

in ASCII format for future rendering took approximately 100MB of disk space. This 

could be made much more efficient by employing several optimization techniques, but 

that is left for future work. 

 

 

 

 

       

       

Fig. 12. Level Set-only Simulation Results. 
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Fig. 13. PLS Simulation Results. Uses the same initial conditions as Figure 12. 

 

 

Fig. 14. Comparison between the Level Set-only and PLS Simulations in the Different 

Domains. The top row is the level-set only simulation and the bottom is the PLS. 
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4.4 Rendering 

Since the fluid is represented by a fully-renderable implicit surface, any number 

of rendering techniques could be used from the photoreal to non-photoreal. It all depends 

on the intended look, and our level set is fully capable of providing a surface 

representation that can be used in an infinite number of ways. 

As an experiment to create a stylized fluid, we modeled, simulated, and rendered 

a fluid in a manner influenced by the “Through the Keyhole in a Bottle” sequence from 

Alice in Wonderland [10]. The level set was rendered using a flat-shading technique 

without lighting and made use of a depth map to produce some subtle depth-of-field 

effects. The depth map was additionally used to create edge lines in a post process that 

used a traditional edge-finding image filter. Results of our cartoon simulation can be 

seen in Figure 15 and in the supplemental material cartoonfluid.mov (available for 

download). 
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Fig. 15. Cartoon-rendered Simulation Results. 
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5 CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

In order to provide a mechanism to create stylized, yet believable fluids that 

make use of common fluid simulation techniques, this thesis successfully employed a 

new simulation technique that combines the commonly used FFT-based height field 

approach for fully developed seas and the Stable Fluid method for dynamic effects via a 

blend domain. Stylization is primarily achieved by keyframing wave amplitudes defined 

and animated in the Fourier domain that are derived from a modeled fluid surface. By 

linearly interpolating velocities extracted from this animated surface with velocities 

resulting from solving the 3D Navier-Stokes equations in a blend domain, the stylized 

surface can additionally drive dynamics such as breaking waves while still maintaining 

cohesiveness. 

Although applying keyframes on frequency-based wave amplitudes might be 

somewhat limiting and unintuitive to a novice user, it is an effective way by which the 

look of a fluid surface can be stylized and yet exhibit natural fluid motion. Additionally, 

despite its artifacts, the current implementation of the blend domain has proven to be an 

interesting way for a height field to drive a dynamic simulation, carrying with it potential 

for future research. 

By applying both techniques and making use of a non-photorealistic level-set 

rendering algorithm, it has been shown that stylizing fluids in a cartoon manner is 

certainly possible. In fact, due to the relative simplicity of combining the common 
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simulation techniques used, such a methodology could easily be incorporated into 

modern production fluid pipelines. 

 

5.2 Future Work 

This thesis carries with it a lot of interesting future work, both in improving its 

limitations and in new research. This sub-section will proceed by discussing a few ideas 

for each. 

 

5.2.1 Limitation Improvements 

Limitations introduced by using the FFT-based height field approach could be 

improved by using an alternate method to solve the discrete fourier transform such as an 

NDFT (nonequidistant discrete fourier transform) method described by [3]. This would 

be slower, but it could potentially allow the placement of discrete sample points 

anywhere on the modeled fluid surface to capture detail that might have been lost with 

evenly distributed samples. It would also be interesting to see how each discrete sample 

would then be interpreted in the frequency domain. In other words, could a user control 

the total number of waves used to build and animate the surface? 

Another limitation of the FFT-based approach is that it results in a very smooth 

height field which is even further smoothed by fitting it with a NURBS surface. If a 

peaked surface is the intended look, this approach wouldn’t work. Our method could be 

extended to include peaked surfaces by employing an additional FFT-based 

displacement vector field as described in [30], but such a peaked surface might still be 
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difficult to capture in an inherently smooth level set. Nevertheless, it might be 

worthwhile exploring whether this displacement vector field can be used as a 

displacement map on the level set instead. 

Of course our approach can be used for realistic water too, although some 

additional limitations would need to be overcome in this case. For instance, for a really 

detailed fluid surface, the number of samples used in the height field would need to be 

quite large, e.g. 2048x2048 samples = 4,194,304 total waves. To preserve that kind of 

detail in a level set would require a very fine grid and therefore be very expensive. 

Instead, one might be able to use only the large wave vectors from those samples and 

preserve the small waves in a displacement map to be applied to the level set. This way 

the large waves can still be used to drive the physical simulation, and the fine detail can 

be preserved using a sequence of displacement maps.  

Our Stable Fluid and Particle Level Set methods can be optimized by making use 

of several efficiency techniques such as octree data structures [21], minimizing the level 

set to only be defined and advected near the surface using Run-Length Encoded grids 

[15], and using tall grid cells inside the fluid where not as much detail is necessarily 

needed [16]. Implementing such techniques would drastically reduce the complexity and 

resources needed for our method. Additionally, effects like spray, mist, foam, and 

bubbles can also be created by making use of the escaped particles from the PLS 

method. 
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5.2.2 Future Research 

Future research might include finding ways to reduce the artifacts in the blend 

domain. There potentially exists a few different ways to do this. One might be to apply a 

smoothing operator on the level set to smooth out any high-frequency noise, but this 

might result in the loss of desired detail. Another possibility might be to find better ways 

to extract the velocities from the height field. One such way would be to somehow find 

the true direction of propagation of the fluid surface at any point. This would result in 

better velocities for the u and w components rather than arbitrarily picking them. 

Additionally, applying some kind of “smooth” restriction to the velocities might need to 

be explored as well to reduce artifacts altogether. 

Alternatively, rather than trying to blend velocities in the blend domain, future 

research might explore blending two level sets instead: the statistical domain level set 

and the level set resulting from a PLS advection in the physical domain. Since level sets 

are implicit functions, blending of the two could be easily done. In fact, such an 

approach might allow for wave reflections to flow from the physical domain into the 

statistical domain therefore providing a potential way to generate a height field from a 

physical simulation. 

Our technique could be utilized in other interesting fluid applications as well 

such as a boat or object floating in a large body of water. The majority of the water could 

be animated and rendered using a user-controlled height field technique, but the fluid 

directly surrounding the floating/colliding object could be physically simulated and then 

blended with the height field. This might drastically reduce the size of the physical 
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domain that might have otherwise been necessary resulting in much faster simulations 

that use far less resources. Moreover, such a concept leads to the idea of a dynamically 

changing simulation domain. For instance, if an object is thrown into a body of water, 

the area directly surrounding the object at impact could be converted into a dynamic 

simulation and blended with the rest of the fluid without the need of an unnecessarily 

large physical simulation domain. 



47 

 

REFERENCES 

 

[1] R. Bridson and M. Müller-Fischer, “Fluid Simulation: SIGGRAPH 2007 Course 

Notes,” ACM SIGGRAPH 2007 Courses, course 31, pp. 1-81, 2007. 

[2] P.W. Cleary, S.H. Pyo, M. Prakash and B.K. Koo, “Bubbling and Frothing 

Liquids,” ACM Trans. Graphics, vol. 26, no. 3, article no. 97, July 2007. 

[3] A. Dutt and V. Rokhlin, “Fast Fourier Transforms for Nonequispaced Data,” SIAM 

J. Scientific Computing, vol.14, no.6, pp.1368-1393, Nov. 1993. 

[4] D. Enright, R. Fedkiw, J. Ferziger and I. Mitchell, “A Hybrid Particle Level Set 

Method for Improved Interface Capturing,” J. Computational Physics, vol. 183,   

no. 1, pp 83-116, Nov. 2002. 

[5] D. Enright, S. Marschner and R. Fedkiw, “Animation and Rendering of Complex 

Water Surfaces,” ACM Trans. Graphics, vol. 21, no. 3, pp. 736-744, July 2002. 

[6] R. Fattal and D. Lischinski, “Target-driven Smoke Animation,” ACM Trans. 

Graphics, vol. 23, no. 3, pp. 441-448, Aug. 2004. 

[7] N. Foster and R. Fedkiw, “Practical Animation of Liquids,” Proc. ACM 

SIGGRAPH ’01, pp. 23-30, 2001. 

[8] N. Foster and D. Metaxas, “Realistic Animation of Liquids,” Graphical Models and 

Image Processing, vol. 58, no. 5, pp. 471-483, Sept. 1996. 

[9] A. Fournier and W.T. Reeves, “A Simple Model of Ocean Waves,” Proc. ACM 

SIGGRAPH ‘86, pp. 75-84, 1986. 



48 

 

[10] C. Geronimi, W. Jackson and H. Luske Directors, Alice in Wonderland, DVD, 

Burbank, C.A.: Walt Disney Productions, 1951. 

[11] F.J. Gerstner, Theory of Waves, Berkeley: Univ. of California, Inst. Engineering 

Research, 1952. 

[12] S.T. Greenwood and D.H. House, “Better with Bubbles: Enhancing the Visual 

Realism of Simulated Fluid,” Proc. 2004 ACM SIGGRAPH/Eurographics Symp. 

Computer Animation, pp. 287-296, 2004. 

[13] E. Guendelman, A. Selle, F. Losasso and R. Fedkiw, “Coupling Water and Smoke 

to Thin Deformable and Rigid Shells,” ACM Trans. Graphics, vol. 24, no. 3,        

pp. 973-981, July 2005. 

[14] F. Harlow and J. Welch, “Numerical Calculation of Time-Dependent Viscous 

Incompressible Flow of Fluid with a Free Surface,” The Physics of Fluids, vol. 8, 

pp. 2182-2189, 1965. 

[15] B. Houston, M. Wiebe and C. Batty, “RLE Sparse Level Sets,” ACM SIGGRAPH 

2004 Sketches, p. 137, 2004. 

[16] G. Irving, E. Guendelman, F. Losasso and R. Fedkiw, “Efficient Simulation of 

Large Bodies of Water by Coupling Two and Three Dimensional Techniques,” 

ACM Trans. Graphics, vol. 25, no. 3, pp. 805-811, July 2006. 

[17] O. Johnston and F. Thomas, The Illusion of Life: Disney Animation, p. 257. New 

York: Walt Disney Productions, 1981. 



49 

 

[18] B. Kim, Y. Liu, I. Llamas, X. Jiao and J. Rossignac, “Simulation of Bubbles in 

Foam with the Volume Control Method,” ACM Trans. Graphics, vol. 26, no. 3, 

article no. 98, July 2007.  

[19] J. Kim, D. Cha, B. Chang, B. Koo and I. Ihm, “Practical Animation of Turbulent 

Splashing Water,” Proc. 2006 ACM SIGGRAPH/Eurographics Symp. Computer 

Animation, pp 335-344, 2006 

[20] P. Lavoie, “The NURBS++ Package,” May 2002; http://libnurbs.sourceforge.net/ 

index.shtml. 

[21] F. Losasso, F. Gibou and R. Fedkiw, “Simulating Water and Smoke with an Octree 

Data Structure,” ACM Trans. Graphics, vol. 23, no. 3, pp. 457-462, Aug. 2004. 

[22] G.A. Matsin, P.A. Watterberg and J.F. Mareda, “Fourier Synthesis of Ocean 

Scenes,” IEEE Computer Graphics and Applications, vol. 7, no. 3, pp. 16-23, Mar. 

1987. 

[23] A. McNamara, A. Treuille, Z. Popovic and J. Stam, “Fluid Control Using the 

Adjoint Method,” ACM Trans. Graphics, vol. 23, no. 3, pp. 449-456, Aug. 2004. 

[24] B.J. Meier, “Painterly Rendering for Animation,” Proc. SIGGRAPH ’96, pp. 477-

484, 1996. 

[25] V. Mihalef, D. Metaxas and M. Sussman, “Animation and Control of Breaking 

Waves,” Proc. 2004 ACM SIGGRAPH/Eurographics Symp. Computer Animation, 

pp. 315-324, 2004. 

[26] L. Piegl and W. Tiller, The NURBS Book, London: Springer-Verlag, 1995. 



50 

 

[27] J.A. Sethian, “Fast Marching Methods,” SIAM Review, vol. 41, no. 2, pp. 199-235, 

1999. 

[28] J. Stam, “Stable Fluids,” Proc. SIGGRAPH ’99, pp. 121-128, 1999. 

[29] M. Sussman and E.G. Puckett, “A Coupled Level Set and Volume-of-Fluid Method 

for Computing 3D and Axisymmetric Incompressible Two-Phase Flows,” J. 

Computational Physics, vol. 162, no. 2, pp. 301-337, Aug. 2000. 

[30] J. Tessendorf, “Simulating Ocean Water,” ACM SIGGRAPH 2004 Courses, course 

31, 2004. 

[31] A. Treuille, A. McNamara, Z. Popovic and J. Stam, “Keyframe Control of Smoke 

Simulations,” ACM Trans. Graphics, vol. 22, no. 3, pp. 716-723, July 2003. 

[32] C. Yuksel, D.H. House and J. Keyser, “Wave Particles,” ACM Trans. Graphics, 

vol. 26, no. 3, article no. 99, July 2007. 



51 

 

VITA 

 

Name: Christopher Wayne Root 

Address: Industrial, Light, & Magic 

 P.O. Box 29919,  

 San Francisco, CA 94129 

 

Email Address: cwr@viz.tamu.edu 

 

Education: B.S., Computer Science, University of Minnesota (Twin Cities),  

 2002 

 

Employment: Software Engineer/Consultant, Syntegra, USA, 2002-2003 

 Technical Director Intern, Pixar Animation Studios, 2004 

 Teaching/Research Assistant, Texas A&M University, 2005-2006 

 Assistant Technical Director, Industrial Light & Magic, 2006-present 

 

 


