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Title in English

A Computational Solution for the Software Refactoring Problem: From a Formalism
Toward an Optimization Approach

Abstract: Software Refactoring consists in reconstructing the code design of an object-
oriented system without affecting the external functionality. Common refactoring tasks,
in the initial steps, detect the source code components to be affected and recommend
accurate Refactoring Operations to be applied to those components (an estimation
problem). In this document, the author defines, develops and evaluates an Artificial
Refactoring Hybrid Adaptive Technique (ArHaT) to estimate refactorings as a combi-
natorial model. The author investigated whether Refactoring Impact Prediction yields
sets of artificial refactoring operations before implementing them into the code. ArHaT
estimates the sets of Refactoring Operations according to some predefined weight values
of the quality metrics. The weight values or coefficients capture the developer error-prone
knowledge of the code in the objective function. The author conducted several fitness
performance evaluations in two open software systems and organized them as a set of
experiments. The goal of the experiments is to minimize a ratio between impacted
quality metrics and actual quality metrics. Hill-Climbing, Simulated Annealing, and
Hybrid Adaptive Evolutionary Algorithm assembled feasible refactorings, yet the latter
accomplished the best performance. This research establishes the fundamentals of the
automation of the refactoring problem and contributes to reducing the gap between the
software defect prediction and the software refactoring.

Keywords: Evolutionary Computation , Refactoring, Evolutionary Algorithm, Software
Engineering
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Introduction

At the 2012 International Conference on Software Engineering (ICSE 2012), industrial
software practitioners discussed the state of the art in data mining and software engineer-
ing [21]; panelists stated that “prediction is all well and good, but what about decision
making?” Ergo, practitioners are more interested in the interpretation that follows data
mining, rather than just about the mining process. For instance, the interpretation of
software defect data is a time-consuming and expensive task. B. Murphy (from Microsoft,
UK) states that the high cost of interpretation implies that there is never sufficient time
to review all software defect data or every model generated by data miners [4]. Generating
actionable recommendations (to automatically modify the code) from software defect data
is an open research problem.

Professors Menzies 1 and Marcus 2 proposed a REcommenDation for REducing Soft-
ware defectS (REDRESS). REDRESS is a solution to generate actionable recommen-
dations from software defect data that provides developers with decision support when
changing software to make it less error-prone (a probability of finding errors/defects in
the code). The specific goal is to offer software engineers “actionable refactoring recom-
mendations” that shall change the software properties related to error-proneness.

REDRESS is based on producing new technology that shall transform defect predic-
tion and software change practices. The solution is composed of two automatically recom-
mendation techniques: REDRESS1 that recommends how software properties should be
changed to reduce error-proneness (currently REDRESS1 is proposed, but not developed)
and REDRESS2 that recommends a set of refactorings that achieves the property changes
recommended by REDRESS1. The first technique tells the developer what software prop-
erties need to change, while the second technique tells the developer how to change the
software.

Basically, REDRESS2 is the study of automatic techniques for generating or con-
structing refactoring. Providing refactoring recommendations is a widespread practice
that assists developers in ameliorating the maintainability and readability of their code
[8]. However, constructing massive refactoring recommendations is an arduous task for
maintenance groups [19, 18]. Researchers reported considerable approaches that focus on
combinatorial techniques to solve the construction of refactoring recommendations [17].

1Professor Menzies has extensive experience in defect prediction
https://scholar.google.com/citations?user=7htTUTgmLtUC

2Professor Marcus has expertise on refactoring recommendation tools
https://scholar.google.com/citations?user=ZZiaPdYAAAAJ

VIII



INTRODUCTION IX

This document introduces an implementation for the second component of REDRESS
original research.

Refactoring is the process of modifying unstructured code from an object-oriented
software by improving the system quality without altering its external behavior [8, 37].
The research community has made advances related to automated detection of bad smells
and refactorings, although the detection remains complex [17].

Current research in software maintenance improves the determination of refactoring
solutions by considering some design features [28], semantic coherence of the refactoring
[39], and recorded code changes [42] in different software approaches. Even though, ignores
the defect information, hence those approaches do not help developers to decide how to
change the code to make such code less error-prone. For instance, Mkaouer et al.[26] pro-
pose a robust multi-objective approach for dealing with refactoring configuration. Three
objectives are intended to maximize: the quality improvements, the severity of bad de-
signs and the importance of the affected classes. In addition, Ouni et al. [41] introduce a
multi-objective optimization based on the use of development history for the automation
of refactoring process. Besides, Seng et al. [50] present a primitive form of single objective
solution, a search-based approach for reconditioning the class structure of a system. The
core of the proposed model is refactoring simulations and violations of design patterns.
Likewise, there are approaches based on genetic programming, as proposed by Jensen &
Cheng [11], that use design patterns and software engineering metrics in order to generate
sets of refactorings.

Approaches that suggest refactoring operations must be very clear on how those refac-
torings were generated. Any software researcher ought to reproduce proposed approaches
on the same analyzed data sets and expect the same reported results. Besides, each ap-
proach must give a sound, concise and justified answer to the following questions: Why do
researchers use combinatorial optimization? Which are the variables of the model? Which
are the parameters or the constraints? How are the refactorings built and performed? Do
the reported optimization models explain the automatized refactoring steps?

Unfortunately, current research [24, 26, 25, 25, 43, 38, 41, 39, 42] proposes informal op-
timization models for the refactoring problem, making the experiments difficult to compare
and reproduce. The implementation and execution of refactorings, which are described in
reported models, are ambiguous; for instance, Ouni et al ’s “DefectCorrection” algorithm
did not clarify how the refactoring sequences were computed on the code to assemble final
recommendations [40].

Using a mathematical approximation to the refactoring problem, software researchers
can reproduce and report combinatorial optimization approaches in a standardized man-
ner. A formalization development for finding refactorings is a proper hypothesis about
modeling techniques for building artificial refactorings. The formalism allows researchers
to tackle the software refactoring problem in a new way. For example, a researcher might
introduce a model that can estimate the effect of proposed refactoring sequences before
these sequences are implemented on the code. Rather than starting from scratch, the re-
search community would substantially benefit if adopting a mathematical representation
of the refactoring problem.

In this document, I introduce an approach to estimate refactorings that impacts the
quality metrics before any change on the source code. Artificial Refactoring GENeration
(ARGen) tells developers how to change the software, but it does not tell what software
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properties need to change. This research hypothesized that techniques based on evolution-
ary computation constitute appropriate approaches for building artificial refactorings. The
proposed approach solves this problem by using a math model and then generating mas-
sive artificial refactorings with combinatorial optimization. One of the research purposes
is to compare baseline combinatorial algorithms (Hill Climbing and Simulated Annealing)
performance to an evolutionary algorithm. The behavior of fitness values, during fewer
and larger evaluations, were investigated on two different open systems (written in Java).

Besides, software quality metrics allow this research to guide the construction of refac-
toring operations. Such metrics do not suggest any refactoring opportunities by them-
selves; however, the metrics aid fitness function in recommending a suitable sequence
of refactorings. Refactoring parameters (e.g. methods, classes or attributes) and some
weights/metric coefficients (for ensuring the decrease of the error-proneness) are the in-
puts for the fitness function. Moreover, the refactoring fitness constraints take into account
the object-oriented style guidelines.

Artificial Refactoring GENeration (ARGen) allows researchers to approach software
refactoring in a new way: estimating the effect of proposed changes before such changes
are implemented and assessing a large number of alternative changes. The research work
presented in this document is expected to contribute to the decision making process within
software companies and to produce high quality code by reducing error-proneness 3.

In summary, our research contributes to both theory and practice in Software Engineer
as follows:

• a definition, a development, and an evaluation of a technique that estimates a set of
refactoring operations, which achieve parametric software properties recommended
by developers or any other approaches;

• a mathematical definition to the refactoring problem;

• a combinatorial problem for the refactoring generation definition;

• a computational complexity classification for the refactoring problem;

• a refactoring combinatorial solution through a Hybrid Adaptive Evolutionary Algo-
rithm (HaEa);

• an empirical study that evaluate the performance of the refactoring problem between
baseline algorithms (Hill Climbing and Simulated Annealing) and HaEa;

• a time complexity analysis of the approaches:

• a paper that describes a computational solution for the software refactoring problem
4 and;

• a paper that generalizes the theory to estimate artificial software refactorings 5.

The remainder of this document is organized into six chapters: Chapter 1 is a repro-
ducibility analysis of reported studies of automatic refactorings. Chapter 2 is a mathe-
matical formalism for dealing with refactoring concepts used in Chapter 3. Chapter 3 is

3Regarding the impact on the research community and industry, all the artifacts of the project are
available for any researcher or developer who needs to perform refactoring analysis: https://github.com/
anonypeople/argen

4A Computational Solution for the Software Refactoring Problem: From a Formalism Toward an Op-
timization Approach

5Theory and Combinatorial Models to Estimate Artificial Software Refactoring Operations with Impact
Metric Prediction

https://github.com/anonypeople/argen
https://github.com/anonypeople/argen
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an explanation of using combinatorial optimization for the software refactoring. Chapter
4 & 5 is the implementation and evaluation of the proposed approach. Chapter 6 is an
evolutionary computation proposal for the Artificial Refactoring Generation. Chapter 7
is a complete discussion of the results. General conclusions is the last chapter. Therefore,
this documents presents two parts: Model Refactoring Definition (chapter 2; chapter 3)
and Model Refactoring Implementation and Evaluation (chapter 4).



CHAPTER 1

A Reproducibility Analysis of The Refactoring

Optimization Models

Refactoring is one of the most common solutions developers adopt to improve software
quality by changing vulnerable code while preserving software’s functionality [8]. Devel-
opers, based on their experience, usually perform refactoring operations to reduce “error-
proneness” in an organized fashion.

The experimental component in software maintenance research should be reproducible
in order to assess introduced approaches. Some studies have reported with such charac-
teristic, allowing other researchers to generate verified analysis.

The aim of this chapter is to make a reproducibility analysis about the most relevant
research in automatic generation of refactorings. Therefore, this chapter covers the search
techniques, applied to the refactoring problem, reproducible for tasks that require further
analysis (e.g. proposing new techniques for automating the software refactoring).

The search strategy, which was employed in this analysis, is composed of the identifica-
tion of databases and the exclusion and inclusion criteria. Scopus, IEEE, Science Direct,
Springer and ACM were used because such databases are the most relevant for software
engineering. Exclusion criteria includes: i) papers that do not describe an optimization
model for solving the refactoring problem; ii) different languages than English; and iii)
any abstract, technical report, doctoral symposium, patents or conference review. Inclu-
sion criteria includes any paper or study that applies optimization approaches to solve the
software refactoring problem.

The previous strategy helped to configure the State-Of-The-Art of the refactoring
optimization models. From that State-Of-The-Art, Mens & Tourwe’s survey analysis was
used for generate a conceptual map (Figure 1.1). The map not only introduces major topics
in software refactoring, but also shows three aspects: in red “Unclear State-Of-The-Art”,
in blue “Analyzed topics”, and in green “Contributions” in this research work. In addition,
“Analyzed topics” includes the definition of refactoring, the software refactoring activities
(specially those which are implemented in automatic approaches), software metrics as a
formalism, and some object oriented guidelines for preserved program behaviour.

The map is divided into four areas. The first area (Figure 1.1 - 1) is the refactoring
definition embedded into the restructuring definition; refactoring is the term employed

1
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when restructuring software in the context of object-oriented development. The second
area (Figure 1.1 - 2) is the context perspective or other software fields that show inter-
est about software refactoring. Software evolution and re-engineering are the main fields
that support refactoring. Even though, the motivation of making a software restructuring
comes from requirements more than bad code smells -software requirement field has shown
interest in software refactoring [1]. The third area (Figure 1.1 - 3) is software refactoring
activities; there are six activities that must be done when performing a software refac-
toring (from detection of source code components to synchronization of the source code
modifications with other artifacts). A full automatic approach must consider such six
activities altogether. The fourth area (Figure 1.1 - 4) describes techniques and formalism
for treating the refactoring problem. The techniques include concepts about refactoring
representation and mechanism for automatic implementations.

Figure 1.1. Refactoring Conceptual Map

1.1 Software Refactoring Background

Software deteriorates during its life-cycle because of continuous changes performed by
developers; the software drifts away from its original design and becomes more difficult
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and costly to maintain. Those changes often introduce faults and lead to software decay
over time. When dealing with a specific piece of software, an instrument or tool is required
to notify developers how the software must be changed to reduce its defects [10, 5]. State-
of-the-art defect predictors estimate the error-proneness of a code component (packages,
classes or methods). However, defect predictors’ capacity to inform how to change code
component properties to make such code less error-prone, is still questionable [46, 20].

The software refactoring is a process composed of certain activities introduced in figure
1.1 third area. Figure 1.2 shows the order in which the activities should be executed [17, 19,
18]. The first activity is the detection of source code components. Any automatic approach
should identify which are the classes, methods or packages that should be refactored. The
second activity is the recommendation of correct refactoring operation to be applied on
these code components. Any automatic approach should suggest which are the refactoring
operations that ought to be applied on the identified components in the previous stage.
The third activity is assessment and assurance of the preservation of external behavior.
Any automatic approach should preserve the functionality of the system after applying
the refactoring (which conditions should be taken into account when dealing with an
specific refactoring?). The fourth activity is the implementation of the refactoring. Any
automatic approach should implement the sequence of refactorings or the recommendation
on the code. The fifth activity is the assessment of the internal quality of source code.
After applying the refactoring, the automatic approach should ensure the quality of the
code. The sixth activity is the synchronization of the source code modification with
other artifacts. Any automatic approach should preserve the traceability and consistency
between the artifacts of the same software. Therefore, the State-Of-The-Art approaches
are meant to automatize these activities.

Figure 1.2. The Software Refactoring Process

The refactoring problem is a set of steps that represents how a refactoring is performed
by developers. The problem is represented as a Cycle in figure 1.3. The first stage is when
the software deteriorates during its life-cycle. The second stage is when developers per-
form changes on the code to preserve functionality (e.g. any modification for maintaining
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the external functionality when implementing requirements). The third stage is when de-
velopers introduce undesired faults when performing the previous changes. Then, in the
fourth stage, the software decays even more. The solution for that decay 1 is to implement
proper refactoring sequences, in the fifth stage, according to the expertise of developers.
In the last stage, the code changes and might reduce the error-proneness.

Figure 1.3. The Refactoring Problem

1.1.1 Search-Based Approaches

These types of approaches are represented by a cluster of researches that have signifi-
cantly contributed to the refactoring problem and generated collaborations among them.
Approaches are compared to other reported search-based solutions, manual refactoring
detection and non-heuristic tools (e.g. JDeodorant[52]).

In order to preserve class level refactoring, Seng et al. [50] propose an evolutionary
algorithm for optimizing class structure in an open source system. The value of several
quality metrics and the number of violations of object-oriented design guidelines support
the workflow to produce refactorings. However, if only considers only one refactoring op-
eration (move method) and a restricted number of classes, the search space is significantly
reduced.

Harman et al. [10] introduce a search-based refactoring approach based on pareto
optimality by extending the initial idea of Seng et al [50]. They use one refactoring (move
method) and two metrics (coupling between objects and standard deviation of methods per
class) for determining a sequence of refactoring. The procedure for applying the sequence
to the system is unclear (as well as the importance of choosing those metrics).

1Different from other techniques such as re-modularization, modernization, or architecture re-design.
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Ouni et al. [40, 43] suggest using development history to assemble refactoring solu-
tions in similar context. NSGA-II is used for minimizing the number of bad smells and
maximizing the semantic coherence and the development history use. Such approach finds
refactoring solutions composed of sequences of refactoring operations where the order of
the operations is taken into account. Vector representation of candidate solution is used
for preserving pre and post conditions. Crossover and mutation are the only genetic op-
erators implemented for NSGA-II approximation. Furthermore, authors test a chemical
reaction optimization approach to find solutions of refactorings that maximize the number
of fixed riskiest code smells[38] and use genetic programming to generate rules that detect
defects when minimizing software effort.

Mksover et al. [24] orient their research to the high dimensional problem [25] in refac-
toring determination. Their extensive research in multi-objective optimization, includes
the following features: quality improvements (number of fixed code smells), severity of
code smells and importance of the classes that contain bad smells (leading to lack of ro-
bustness) [26]. Moreover, they propose a tool that accepts developer feedback and adapts
to suggest refactoring operations [25]. Even though, any computational execution of refac-
toring needs not only exhaustive code validations, but also a deep knowledge of the system
under analysis; thus, increasing computational time complexity.

Figure 1.4. State-of-the-art Approaches

1.2 A Discussion of Search-Based Techniques

Search-based approaches share the same framework described in figure 1.5 [17]. The first
box depicts the inputs, the search techniques and the outputs concepts; the inputs could
be a representation of an artifact (e.g. a graph or a metaphor) or the artifact itself (e.g.
source code). A search technique could be any optimization algorithm (e.g hill climbing,
ant colony or NSGA-II) that has an individual and fitness definition. Furthermore, the
search technique receives a refactoring (e.g. Fowler’s Catalog), some metrics (e.g. number
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of methods, cyclomatic complexity or coupling) and additional parameters (e.g. develop-
ment history, semantic information or bad code smell information). Finally, the solution
set is generally a sequence of refactorings, which are the solutions or refactoring recom-
mendations for a system. However, none of the search-based approaches has shown any
concrete example of those sequences or vectors.

The second box, in figure 1.5, depicts five important topics when performing a study
design and evaluation of search-based approaches: solution, behaviour preservation, search
technique, refactorings and metrics. Each topic contains subtopics that one can easily
identify in the conceptual map, like “the techniques used for behavior presentation are
Opdyke’s functions, Cinneide’s functions or domain specific”. The red color indicates that
the behavior preservation topic is unclear in the existing state of the art. The reason for
unclear states are detailed in the reproducibility analysis (subsection 1.2.1).

Figure 1.5. Search-Based Conceptual Map

Regardless of the efforts to present a model for generating refactoring recommenda-
tions, the published search-based models have weak consensus on how to represent a
refactoring. Experiments with such models are hard to reproduce and information for
configuring them is usually omitted. Besides, when comparing with previous approaches,
results are biased due to hard reproducibility of reported data as evidenced in Ouni et al ’s.
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research [41]. The problem of hard reproducibility of empirical studies in software main-
tenance is well described by Bogdan et al.[7]; Bogdan et al explain that the researchers’
interpretation of applying approaches from original authors could have a significant impact
on the results when original authors take for granted their assumptions in “well known”
techniques (e.g. NSGA-II, Vector Space Model, Genetic Algorithm).

Some researches are oriented to fix somehow the occurrence of code smells [26, 43].
Two recent studies [1, 51] rebut the idea of including code smell resolutions in determining
refactoring operations, yet these studies suggest the incorporation of the code changes in
the refactoring problem as evidenced in the development history research of Ouni et al.

According to a study of Silva et al.[51], a manual refactoring is often applied than
any automated refactoring approach; the most frequent reason to manual application is
“lack of trust” (developers argue that they do not trust automated support for complex
refactorings). Additionally, the refactoring process is highly motivated by changes in
the requirements (new features or bug fix requests) and slightly motivated by code smell
resolution. Hence, the analysis of error-proneness is relevant for identifying refactoring
opportunities.

Figure 1.6 states the gaps found in the State-Of-The-Art. Search-based techniques
present four gaps: 1) weak consensus on how to represent a refactoring, 2) hard repro-
ducibility of the experiments, 3) omitted parametric information and 4) oriented to fix the
occurrence of code smells without harnessing error-proneness information.

Figure 1.6. State-of-the-art Gaps

1.2.1 The reproducibility analysis

This analysis was performed and traced in a seven dimension conceptual matrix. Each
dimension is defined by the following characteristics: optimization technique, objective(s),
type of solution, evaluation method, analyzed systems, supported refactoring and be-
haviour preservation.

The “optimization technique” dimension describes the used approach and the ap-
proach’s implementation.
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In the “objective(s)” dimension, the idea was to identify which fitness functions were
employed, numerate each fitness function and identify if the function is maximizing or
minimizing. The most important part is to identify where in the fitness function the
refactoring is executed.

The “type of solution” dimension describes how the configuration of the final solution
is represented (general description). If an evolutionary algorithm is considered, then the
solution is the representation of the individual. This dimension embodies a general idea
of how the refactoring looks.

In the “evaluation method” dimension, the study design is exposed and analyzed. This
dimension contributes to understand how the approaches are tested and to what extent
are biased (qualitative assessment).

In the “analyzed systems” dimension, used open software are listed. Besides, the “sup-
ported refactoring” dimension lists the refactoring operations used from Fowler’s Catalog
[8] (or other refactoring classification). For researchers, it is important to know what
systems are evaluated and which refactorings are used because the reproducibility highly
depends on both dimensions.

The last dimension is “behavior preservation”. The description of how the State-Of-
The-Art approaches approximate to preservation of the system functionality is one of the
most relevant activities. Basically, non-reproducible approach occurs when such approach
does not fulfill the purpose of a refactoring (e.g. changes without affecting functionality).
Therefore, approaches are non-reproducible whether such approaches do not describe how
to guarantee/assess behaviour preservation.
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The goal of the analysis is to assign one qualification to each analyzed approach ac-
cording to reproducibility characteristics (or dimensions). Each dimension adds one point
to the specific approach qualification when the description is unclear: zero points indi-
cates that the approach is easy to reproduce; one or two points that the approach is
moderately hard to reproduce; three or more than three points that the approach is
hard to reproduce. Furthermore, whether the behavior preservation dimension is un-
clear, the approach is hard to reproduce (no matter how many points have been added);
a major characteristic of Software Refactoring is the ability to preserve the functionality
in an inspected system. Besides, the issue is not related to refactoring representation,
but how authors use that representation to perform the automatic process and to obtain
the reported results (it is not clear how pre/post conditions of behavior preservation are
implemented inside the approach).

From table 1.1, it is implied that there is no evidence of a real refactoring outcome in
any of the approaches. How does a real refactoring outcome look? How is the sequence
of refactoring used to implement a manual software refactoring? Search-based techniques
reported so far fail in clearly explaining how to reproduce such techniques. Besides, none
of the papers reported algorithm analysis convergence -except for one (Seng, et al. [50]).

Actually, the paper published by Seng, et al.[50] is the only one that could be re-
produced assuming several parameters -taking into account that the used optimization
technique is not described in the paper as well. Nevertheless, the idea is clear when re-
searchers need to tune the remaining parameters. Consequently, Seng et al.’s approach is
a milestone in this context and this document is an improvement from that approach.

1.3 Toward a new paradigm

The research community has contributed to automatic detection of bad smells and refac-
torings, but the problem remains complex [17]. Existing research work consider several
design features [25], semantic coherence [39] or recorded code changes [42] to determine
refactoring solutions. However, researchers ignore the defect information which helps de-
velopers to decide how to change the code to make it less error-prone.

The milestones of refactoring automatic generation and analysis are depicted in figure
1.7. A timeline is introduced for localizing major contributions in the field. The timeline is
based on Mariani & Vergilio’s review paper [17] and further interpretations for organizing
the milestones. It is clear that Opdyke [37] introduced the term in 1992 and Fowler [8]
built the catalog for the refactorings. The first years, from 1992 to 2004, software research
community adopted some formalism. Since 2006, with the research of Seng & Stammel
[50], the search-based approaches has started a new line of research for software refactoring:
evolutionary techniques with convergence analysis.
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As evidenced throughout this section, there are some gaps between defect prediction
theory (error-proneness) [20] and Software Refactoring (to provide developers with decision
support when changing software to make such software less error-prone). In addition,
research community has not currently reported reviews in software refactoring field that
include reproducibility analysis of the proposed approaches.

1.3.1 Proposed Approach

This document presents a solution for the Software Refactoring Problem, defined as the
artificial generation of refactoring sequences thorough a systematic formal approach: Ar-
tificial Refactoring GENeration (ARGen). Moreover, this document contributes
to both software theoretical study (represented by the model refactoring definition) and
software empirical study (represented by model refactoring implementation and evalua-
tion).

Figure 1.8 depicts the proposed approach (ARGen) and unifies the mathematical ap-
proximation and the combinatorial modeling for generating the refactoring sets. Besides,
the approach includes six relevant aspects: 1) expected quality attributes, 2) mathematical
approximation, 3) tuning, 4) search-technique or combinatorial model, 5) recommendation
sets, and 6) outcome serialization. Each aspect is described as follows:

Figure 1.8. Artificial Refactoring GENeration (Approach Overview)

Expected Quality Attributes. The objective function is highly dependent of the pa-
rameters that represent the software properties (e.g coupling or cohesion). Therefore,
the input should embody specific values that represent high level recommendations
such as increase cohesion by 20% or reduce depth of inheritance by 1 for class C.

Mathematical approximation. The formalism introduced in ahead chapters is a stan-
dardization for dealing with the refactoring construction. It includes concepts from
“set theory” (representation of parameters) and “theory of computation” (represen-
tation of refactorings).



CHAPTER 1. A REPRODUCIBILITY ANALYSIS OF THE REFACTORING OPTIMIZATION MODELS 13

Tuning. The objective function has some associated weights that can be used for intro-
ducing developer’s specific information. The objective function was developed in
Scala to enhance concurrency.

Search-technique. Hill Climbing and Simulated Annealing are the combinatorial algo-
rithms for assessing this approach. It includes the repair functions based on object-
oriented guidelines for behavior preservation.

Recommendation sets. The recommendation sets are the solutions of the major tech-
nique. They are composed of refactoring sequences that contain refactoring opera-
tions with their associated parameters.

Outcome serialization. The technique serialized the recommendations sets into a JSON
format for an easy representation. The developer could inspect the JSON file in order
to apply the recommendations in any order.



CHAPTER 2

A Mathematical Approximation to Software

Refactoring

Figure 2.1 depicts, in step two, a formalism to treat object-oriented software for the refac-
toring problem. The formalism includes theory of computation concepts and set theory
representations. The object-oriented elements such as classes, fields (attributes) or meth-
ods are defined as sets by means of Kleene star operation. Likely, refactoring relations
and parameters are represented as Cartesian products.

Figure 2.1. Artificial Refactoring GENeration (Approach Overview): Model Refactoring Defini-
tion

This chapter introduces an object-oriented programming and a software refac-
toring formalism to establish the mathematical concepts when dealing with the refactor-
ing construction as a combinatorial problem. Therefore, it is the first part of the Model
Refactoring Definition.

14
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2.1 Why does one propose a mathematical approximation?

The advantages of using a mathematical approximation are related to the reproducibility
analysis in previous chapter. Search-based approaches lack proper representation for com-
binatorial problems by making their approaches hard to reproduce and understand. Be-
sides, a formalism for refactoring is appropriated whether the research community wants
to extend any technique or introduce other formalism (e.g. using a hyper-heuristic or
memetic algorithm for the software refactoring problem).

Figure 2.2 depicts a high level explanation of all relevant concepts to take into account
when dealing with refactoring recommendations: 1) composition of parameters, which
include a combination of a class, field and/or method that are going to be altered, 2)
improvement of software design, which is the final goal of the recommendations, 3) rep-
resentation of refactoring operations, which are the set of refactoring operations that are
going to modify the software, 4) impact quality of software metrics, which are quality
representation of the source code that are going to be altered due to sequence of refac-
torings, and 5) reduction of error-proneness, which is a desired behavior that expresses a
probability of failure or error bias of the system.

This document links the refactoring formalism with the combinatorial optimization.
Classes, methods, fields, metrics, refactoring operations and metric predictions should be
properly represented for being included in a combinatorial framework. The idea behind
of using a mathematical representation is to include terms like parameters composition,
software quality metrics, refactoring sets, error-proneness and design improvement.
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2.2 An Object-Oriented Programming Formalism

Object-oriented programming (OOP) is a software development style, organized around
objects, which can be used in paradigms, like imperative, functional or logic programming
[33]. Purpose of OOP is to reach high modularity through a reduction of complexity
in large scale systems. An object is defined as a run-time entity composed of: 1) a state
represented by a set of internal objects named attributes and 2) a set of subroutines named
methods [44].

Figure 2.3. Class Definition: an abstract and UML representation.

Definition 1. System Under Analysis (SUA) definition. SUA is an information system
or program composed of classes, methods, and attributes, where objects instantiate classes
and communicate with each other through messages.

Definition 2. Class definition. A class, prototype or template is a set of similar objects
including collections of similar attributes and methods Figure 2.3. In fact, classes are the
programming-time counterparts of objects [44]. Assume a single class cα is a Cartesian
product represented by:

cα = identifier ×Attribute(s)×Method(s) (2.1)

cα = str × str∗ × str∗ (2.2)

where str∗ is a Kleene on str string abstraction or chain. A set of classes is a power
set of cα:

C ⊆ ℘(cα) (2.3)

|C| = k where k is the total number of System Under Analysis (SUA) classes and
c = {cα ∈ C|1 6 α 6 k}.
Definition 3. Method Definition. Methods are subroutines which define the set of valid
messages the object may accept. Methods are represented by Kleene star. Set:

M = str∗ =
⋃
n=0

(str)n (2.4)

Method property: ∀α among 1 6 α 6 k states |M | = βα is finite. So M ⊆ N and
M(cα) = Mα.
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Definition 4. Attribute Definition. Attributes (or fields) are sets of internal objects that
represent a state. Attributes are represented by Kleene star. Set:

A = str∗ =
⋃
n=0

(str)n (2.5)

Attribute property: ∀α among 1 6 α 6 k states |A| = γα is finite. So A ⊆ N and
A(cα) = Aα.

2.3 Software Refactoring Formalism

Refactoring is the process of modifying vulnerable code from an object-oriented software,
by improving the system quality without altering its external behavior [8, 37]

Definition 5. Refactoring Definition. The refactoring process consists in re-constructing
the code design of a SUA without affecting the behavior functionality [8].

Table 2.1. Fowler’s Catalog Refactoring Operations Used

Refactoring Operation Abbreviation Category

Extract Method EM Composing Method
Inline Method IM Composing Method
Replace Method w. Method Obj RMMO Composing Method
Pull Up Field PUF Dealing w. Generalization
Pull Up Method PUM Dealing w. Generalization
Push Down Field PDF Dealing w. Generalization
Push Down Method PDM Dealing w. Generalization
Replace Delegation w. Inheritance RDI Dealing w. Generalization
Replace Inheritance w. Delegation RID Dealing w. Generalization
Extract Class EC Moving Features
Move Field MF Moving Features
Move Method MM Moving Features

A refactoring is a function Rδ : Ω −→ (Code Modification) where δ represents a specific
refactoring operation (see used operations in Table 2.1) and Ω = cs × As ×Ms × ct is a
Cartesian product parameter, where cs is the source class, ct is the target class, As are the
attributes of the source class and, Ms the methods of the source class.

Refactoring properties are: 1) a solution set of all the possibilities of refactorings func-
tions with refactoring parameters, coined as R(Ω), so RI ∈ R(Ω), is a specific solution or
Refactoring Instance, 2) a refactoring recommendation Si is a set of Refactoring Instances
RI and a subset of R(Ω).

Software metrics measure the degree of possession of specific properties in the systems
[31]. Eleven quality metrics (see Table 2.2) were considered for our model, based on
previous reports [5].

Definition 6. Code Quality Metric Definition. A quality metric is a function ηj : cα −→
R. Each class cα of the SUA has a set of metric values:
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Table 2.2. Quality Metrics Used

Metric Name Coupling

RFC Response for a Class Coupling
CBO Coupling Between Objects Coupling
DAC Data Abstraction Coupling Coupling
MPC Message Passing Coupling Coupling
LOC Lines of Code Size
NOM Number of Methods Size
CYCLO Cyclomatic Complexity Complexity
LCOM2 Lack of Cohesion of Methods2 Cohesion
LCOM5 Lack of Cohesion of Methods5 Cohesion
NOC Number of Children Inheritance
DIT Depth of Inheritance Inheritance

Hα = {η1(cα), η2(cα), . . . , ηJ(cα)} (2.6)

where J is the total number of metrics and Hα ∈ RJ .

Refactoring Impact PrEdiction (RIPE) is an approach that predicts the impact of 12
refactoring operations on 11 code metrics [5]. RIPE implements 89 impact prediction
functions that show developers the variation of code metrics before the application of a
refactoring operation. We utilized prediction function because a solution set of refactoring
recommendation is too expensive to perform in a SUA (it may require several resources
that could exceed the budget of a project), yet an estimation of the refactoring on the
metrics could be calculated. For instance:

LOCp(cs) = LOCb(cs)− LOC(mk) (2.7)

LOCp(ct) = LOCb(ct) + LOC(mk) (2.8)

Where LOCp is the predicted lines of codes, LOCb is the lines of codes before the
prediction, cs is a source class, ct is a target class, and mk is an specific method k from the
source class. For each Refactoring Operation rδ and quality metric ηj there is a prediction
function Predictionδ,j(cα), which estimates the impact of the refactoring on the metric of
a class (iff the refactoring affects the metric):

Predictionδ,j(cα) = η̃δ,j(cα) (2.9)

The previous equation is a formalization we proposed to link RIPE with our definitions.

Definition 7. Impacted Code Quality Metric Definition. An impacted quality metric is
a function η̃δ,j : cα −→ R. Each class c̃α, impacted by a refactoring operation rδ of the
SUA, has a set of metric values:

H̃α = {η̃(δ,1)(cα), η̃(δ,2)(cα), . . . , η̃(δ,J)(cα)} (2.10)

where J is the total number of metrics and H̃α ∈ RJ .



CHAPTER 3

The Artificial Refactoring Generation as a

Combinatorial Estimation Problem

Figure 3.1 represents, in steps three and four, a modelling to the software refactoring
problem as a combinatorial estimation model. ARGen recommends how to reconstruct
the code based on eleven different quality metrics (see Table 2.2) that can be adjusted
according to the experience of the developers. Therefore, it is the second part of the Model
Refactoring Definition.

Figure 3.1. Artificial Refactoring GENeration (Approach Overview): Model Refactoring Defini-
tion

The purpose of the technique is to estimate several recommended refactoring opera-
tions that fulfill the proposed parametric objective function. The recommendations are
composed of twelve different refactoring operations (see Table 2.1). ARGen considers all
possible combinations of refactoring operations for a given object-oriented system, which
implies operating in a large solution space. Therefore, whichever algorithm used would
require high computation resources.

20
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The refactoring generation is a “combinatorial problem”. The solution represents a set
of refactoring operations, instead of a sequence of refactoring operations. Each refactoring
operation is independent from the others in the same set. Therefore, one refactoring
operation does not affect another refactoring operation.

The ARGen does not guarantee that obtained refactoring solutions might reduce the
error-proneness of an inspected piece of code. Although, ARGen is able to explore the
search space in actionable areas, if and only if, the developers/researchers tune the ob-
jective function accordingly. The software developers can adjust the fitness parameters
according to their experience with the source code analyzed.

3.1 Characterization of the Search Space

Figure 3.2 shows the search space of the Artificial Refactoring Generation composed of
four parts.

Figure 3.2. Refactoring Problem Search Space. The abbreviations of refactorings can be con-
sulted in Table 2.1

The first part of the graphic is an overview of the search space. It includes two relevant
regions: feasible and actionable. A feasible region is all the refactoring solutions that
fulfill the defined constraints of the proposed objective function. The actionable region
is where solutions reduces the error-proneness.

The size of the search space depends upon the number of classes, attributes and meth-
ods of the inspected system: increased by the expression (C2 ∗ A ∗M)r where C is the
number of classes1, A the number of attributes in the selected source class, M the number
of methods in the selected source class and r the number of refactoring operations in a
sequence (e.g. a system with 10 classes, 10 attributes and 10 methods would have a size
of 10,000 whether the sequence is composed of one refactoring). A huge space is analyzed;
however, the idea is to inspect a specific piece of code. The document demonstrates that
the classes involved in the optimization affect the time complexity.

1 C2 represents that each class serves as source and target in whichever suggested refactoring.
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It is assumed that the search space is not convex (see Figure 3.2) because such space
is discrete; nobody can guarantee, only with the provided refactoring discrete points, that
whichever two point in the search space are connected through a line that is contained
inside the same space. The third part presents a refactoring solution point that would
be a sequence of refactoring operations from the Fowler’s Catalog. This specific solution
point is amplified in the fourth part where a source class (src), a target class (tgt), a field
from the source class (fld) and a method from the source class (mtd) are included within
each refactoring operation.

3.2 Objective Function

Figure 3.3 explains the proposed objective function for ARGen at a high level. To un-
derstand the function, the explanation is divided into six topics: candidate solution set,
objective function representation, bias, code quality additive impacted metric, code quality
additive metric and bias quality system ratio.

Figure 3.3. High Level Objective Function

The first topic is the “candidate solution set”. The candidate solution set is any point
of the search space and the input of the second topic (objective function); it contains the
suggested refactoring operations to be assessed. The proposed model sets the objective
function for minimizing.

The third topic is the “bias” which represents a simple ratio. The idea of the ratio
is to compare the predicted system to the actual system (the fourth and fifth topics
respectively). The predicted system is the computation of the “code quality additive
impacted metric”, which is a normalized prediction of the system after applying suggested



CHAPTER 3. THE ARTIFICIAL REFACTORING GENERATION AS ACOMBINATORIAL ESTIMATION PROBLEM23

refactorings for a specific metric. The actual system is the computation of the “code
quality additive metric”, which is a regular normalized measurement for a specific metric.

Lastly, the sixth topic is the “bias quality system ratio”, which is the formal represen-
tation of the objective function. Whether the “bias” includes more than one metric, then
the ratio is a general quality representation of the system.

3.2.1 Code Quality Metrics Simplification

The use of quality metrics is not only oriented to identify refactoring opportunities, but
to support the configuration of refactoring solutions that fulfill the initial setting. Then
according to desire software properties, the technique computes the adequate refactorings.

Definition 8. Code Quality Additive Metric. The elements of the refactoring solution set
are independent among them. That indicates, one refactoring is taken isolated from others
in the same solution set.

SUMH(j ∈ J) =
k∑

α=1

(ηj(cα)) (3.1)

Then, this formula can be calculated for describing a general value on one specific
metric for the SUA processed.

The parameter Φj of the impacted sum function SUM
H̃

(Φj) is composed of a metric
j ∈ J and the solution set Si.

Φj = (j ∈ J, Si) = (j, {RI1, RI2, ..., RIi, ..., RIT })

where T is the total number of Refactoring Instances in Si.

Definition 9. Code Quality Additive Impacted Metric.

SUM
H̃

(Φj) =

|Si|∑
i=1

|c∈Ωi|∑
α=1

max
1≤j≤H̃α ((η̃δ,j(cα))) (3.2)

This formula can be calculated for describing a general estimated value on one specific
metric for the SUA processed according to a solution set.

3.2.2 The Bias Quality System Ratio

The Bias Quality System Ratio BQR is introduced here as a general quality metric that
measures the bias ratio between the quality of the SUA and the predicted quality of the
impacted classes according to a refactoring recommendation Si.

BQR(Φj) =
SUM

H̃
(Φj)

SUMH(j)
(3.3)

The objective function is an adaptable optimization function which can be changed via
user feedback or include user-defined goals. The metric measures the difference between
predicted quality metrics and real quality metrics. Minimizing the metric indicates that
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whether the predicted quality metric is less than the real metric, then the quality of the
specific code ameliorates.

Definition 10. The objective function is a parametric optimization function that includes
developer-defined goals represented in a normalized version of BQR. We use min-max
normalization to put the metrics in a positive scale:

ObjectiveFunction(Φ) =

J∑
j=1

(
wj

SUM
H̃

(Φj)−min(SUM
H̃

(Φj))

max(SUM
H̃

(Φj))−min(SUM
H̃

(Φj))

)
J∑
j=1

(
wj

SUMH(ηj)−min(SUMH(ηj))

max(SUMH(ηj))−min(SUMH(ηj))

) (3.4)

Where the weights are a number between w ∈ {−1, 1}.

When the numerator is less than the denominator (proper function), the predicted
system improves their quality metrics. Whether the objective function is an improper
fraction, the predicted system is worse than the actual.

The weights (and their sign) are the channel where developers can convey their point-
of-view for obtaining meaningful suggestions of classes to be refactored [1].

The input of the objective function is a set Φ of refactoring recommendations. The
output is a value that represents the estimation of the metrics after applying all the
refactorings operations in Φ. The prediction formulas of quality metrics are helpful in
bringing forward objective function(s). Besides, the objective function does not ensure
refactoring opportunities in the code system [1], but an estimation of how the refactoring
is impacted by the change of a quality metric [5].

3.2.3 The Overlap Problem

This subsection explains a common problem when performing bias computations. The
overlap problem occurs when two different solution points impacted the same class. Which
metrics should the object function select whether two solution points alter the same class?

Consider the following example, two different refactoring operations impact the LOC
(lines of code) of the same class. One possible scenario is that both first and second
refactorings reduce the LOC, second scenario is that both first and second refactorings
augment the LOC, third scenario is when the first refactoring reduces and the second
augments. The last scenario is when the first augments and second reduces. Because of
the refactoring operation independence, the quality metrics among classes are not related.
Trying to approximate with a mean value would be wrong because anybody can ensure
how the final metrics are represented, the mean is a highly sensible statistic. However, the
maximum value of a quality metric is a much more stable outcome.

Figure 3.4 represents the mechanism for selecting the metrics. The best representation
of a system after refactoring is with the maximum value of an impacted metric due to the
refactoring independence nature.
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Figure 3.4. Refactoring Overlap Predicted Values

3.3 Computational Complexity Classification

The set SubsetSum is a NP-complete problem that consists in a set of pairs: a finite
sequence ~B = {B1, B2, ..., Bn} ∈ Nn, and a target number v ∈ N such that ( ~B, v) ∈
SubsetSum iff ∃c = {c1, c2, . . . , cn} ∈ 0, 1n such that

∑n
i=1 ciBi = v. In other words, the

sum of some sub set of numbers of ~B is equals to v.

For example, given a finite set of numbers B = {113, 45, 87, 32, 67, 12, 56} and v =
156, one should find a sub set of B|〈B, v〉 ∈ SubsetSum. Each number Bn represents a
refactoring RIn and the instance c = {0, 1, 0, 1, 1, 1, 0} represents the set C that activate
or deactivate a RIn refactoring.

Si = RI2(c2) +RI4(c4) +RI5(c5) +RI6(c6) iff C is a solution of SubsetSum.

Estimating a refactoring sequence with ARGen is a combinatorial problem (NP-
Complete) since the search space is discrete and the subset sum problem can be reduced
to the refactoring estimation problem. Φ is the refactoring set applied to a SUA, each
element into Φ is an impacted metric value [5]. Therefore, Φ is the set of values and one
wants to search a subset of Φ that fulfills the summation in the objective function.

3.4 Refactoring Constraints

This section introduces a catalog of constraints that depends of the refactoring operation
structure and the general object-oriented guidelines. Table 3.1 shows all the constraints
and the refactorings that apply the constraint. Nine constraints were identified for the
behavior preservation:

Empty Methods. This constraint occurs when assessing a refactoring on a solution that
does not define an specific method. “Empty Methods” applies for all refactoring that
involves method movement or modification.
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MM Constructor. This constraint occurs when a “Move Method” refactoring tries to
modify a constructor in a class. The approach should not alter any constructor
because of behavior preservation.

Empty Fields. This constraint occurs when assessing a refactoring on a solution that
does not define an specific field. “Empty Fields” applies for all refactorings that
involves field movement or modification.

SRCSubClassTGT. This constraint verifies that a source class is a subclass of a target
class. The violation of this rule matters to refactorings that involve movement of
methods among hierarchy related classes.

SRCSupClassTGT. This constraint verifies that a source class is a superclass of a target
class. The violation of this rule matters to refactorings that involve movement of
methods among hierarchy related classes.

Confirm Delegation. This constraint verifies that a delegation exists between source
and target class.

Override Method. This constraint occurs when assessing a refactoring on a solution
where at least one of its methods is overridden.

Hierarchy Verification. This constraint searches for any hierarchy relationship between
the source and target classes. For instance, when parents and children are the same
selected class as target and source.

Methods of SRC. This constraint verifies that the method belongs to the source class.

Table 3.1. Catalog of Refactoring Constraints For Behavior Preservation

Constraint/Refactoring MF PUF PDF EM IM MM PDM PUM RMMO RDI RID EC

Empty Methods x x x x x x x
MM Constructor x x x x x x x
Empty Fields x x x x
SRCSubClassTGT x x x
SRCSupClassTGT x x
Confirm Delegation x
Override Method x x x x x x x x
Hierarchy Verification x x x x
Methods of SRC Class x

3.4.1 Refactoring Constraint Examples

Figure 3.5 shows a class abstract representation without methods, except for the con-
structor. Because the constructor should often be stable and nothing should modify it,
the class does not have methods for performing refactorings that involve methods as pa-
rameters. However, this class owns two fields, then one can apply any field refactoring
operation(PUF, PDF or MF).

Figure 3.6 shows a typical configuration of a solution after applying any mutation,
genetic operator, or new generation. Consider a class C1 a subclass of C2. Whether one
tries to apply a “Pull Up Field” on a solution where C1 is the source and C2 the target,
then the operation violates the constraint SRCSubClassTGT. In “Pull Up Field”, the
source class must be a subclass of the target.
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Figure 3.5. Refactoring Constraint Class Without Methods

3.5 Refactoring Generating & Repair Functions

The generating and repair functions are based on the previous catalog of constraints and
grouped by the refactoring operation. Figure 3.7, for instance, represents a violation
of a PUF refactoring with its possible repair. The repair consisted of a succession of
steps systematically performed: first, looking for a different target (another class from
the system); second, looking for a different source whether the previous step does not
work and; third, generating a new refactoring from scratch (calling a generating function)
whether the first and second steps do not work. In Figure 3.7, the repair function applies
the first step and replaces C2 with C3 which is a superclass of C2. Now, the solution is
feasible and the PUF could be applied successfully.

3.5.1 Generating Functions

The refactoring generating functions are the mechanism for assembling a refactoring set
solution. It contains the steps for configuring each refactoring operation from scratch and
adapts independently to a specific search technique. The following description embodies
all the systematic steps for generating a refactoring.

PUM (1) Includes breakpoint2 equal to the size of the system. (2) Search for tgt ran-
domly. (3) Get the child classes of tgt. A child class is a src. (4) Pick up one child
class randomly. (5) Extracting methods from the child class. (6) Pick up a method
randomly. (7) Verification that the method is not a constructor. (8) Verification
that the method is going to override a parent. (9) Verification that the method is
going to be overridden by children. (10) Count an iteration. The program continues

2The breakpoint in the whole section refers to a limit of iterations when searching for parameters
(classes, methods or fields).
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Figure 3.6. Refactoring Constraint Pull Up Field

whether the number of the count is less than the breakpoint. Otherwise, the loop is
broken. (11) Feasible verification. Whether the created ref is not feasible, then the
program starts in the step number 1. Otherwise it continues returning a refactoring
object.

PUF (1) Includes breakpoint equal to the size of the system. (2) Search for tgt randomly.
(3) Whether the tgt has no children, then the refactor is not feasible and restart from
step 2 . (4) Pick up a random src from the children classes detected. (5) Whether
the src class has no fields, then the refactor is not feasible and restart from step 2.
(6) Pick up a random fld from the selected src class. (7) Identifying other src classes
that contain the same fld.

PDF (1) Includes breakpoint equal to the size of the system. (2) A src class is picked up
randomly. (3) From the src of step 2 a fld is extracted randomly. Whether fld does
not exist, then another src is selected. Whether the breakpoint is overpassed, then
the refactoring is not feasible. (4) According to the src, all childs are identified. At
least one of the children are added to tgt. Whether no children are identified, then
the refactoring is not feasible. (5) A tgt is selected according to the src. Whether
the tgt does not exist, the refactoring is not feasible and restart in step 2.

PDM (1) Includes breakpoint equal to the size of the system. Generates a random src.
(2) Pick Up a method from src. (3) Verify that the mtd do not override any parent or
children. Otherwise, the refactoring would be not feasible and starts again from step
2. (4) Verify that the method is not a constructor. Otherwise, the refactoring would
be not feasible and starts again from step 2. (5) Whether the counter is greater than
the breakpoint value inside the src do-while, then the refactoring is not feasible due
to sufficient times. (6) Identify all children classes from src and select a tgt.

EM (1) Only Feasible Refactorings (2) Select one src randomly. (3) Select one mtd from
the src. Whether the src has no methods, then the process starts from step 2. (4)
Verify that mtd is not constructor or overrides any parents or children. Otherwise,
the process start from step 2.
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Figure 3.7. Refactoring Repair Pull Up Field

IM (1) Only Feasible Refactorings. (2) Select one src randomly. (3) Select one mtd from
the src. Whether the src has no methods, then the process starts again (step 2). (4)
Verify that the selected method is not a constructor or overrides parent or children.

MF (1) Only feasible refactorings. (2) Select one src randomly. (3) Select one fld from
the src. Whether the src has no fields, the the process starts again (step 2). (4)
Select one target class randomly.

MM (1) Only feasible refactorings. (2) Select one src randomly. (3) Select one method
from the selected source class. Whether the src has no methods, then the process
starts again from step 2. (4) Verify that the selected method is not a constructor.
If so, the process starts again from step 2. (5) Select a target class randomly. (6)
Verify that the method does not override any parent or children and verify that there
is no hierarchy conflicts.

RDI (1) Includes breakpoint equal to the size of the system. (2) Select a source and a
target class. (3) Verify that the source and target are not the same class. Otherwise
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the process restart in step 2. (4) Verify that the source and the target are not
hierarchy related. Otherwise the process restart in step 2. (5) The refactoring is not
feasible whether the counter exceeds the breakpoint.

RID (1) Includes breakpoint equal to the size of the system. (2) Select a target class. (3)
Verify that the source and the target are hierarchy related. Otherwise the process
restart in step 2. (4) The refactoring is not feasible whether the counter exceeds the
breakpoint.

RMMO (1) Only feasible refactorings. (2) Select one source class randomly. (3) Pick
up a method from source class. If there are no methods, then the refactoring is not
feasible and restarts in step 2. (4) Verify that the method is not a constructor or
overrides any parent or children. Otherwise, the refactoring would not be feasible
and process restarts in step 2. (5) Generate the new target class.

EX (1) Only feasible refactorings. (2) Generate a source class randomly. (3) Pick up a
method from the source class. If there are no methods or the selected method is a
constructors or overrides any parent or child, then the process restarts in step 2. (4)
Pick up a field from the source class. If there are no fields, then the process restarts
in step 2. (5) Create a new target class.

3.5.2 Repair Functions

The repair functions are the other mechanism for verifying the consistency of a generated
or modified (e.g. by a genetic operator) solution set and for correcting those solutions that
violates any restriction. The repair functions should be less complex than a generation
function of refactorings. The following description embodies all the systematic steps for
repairing a refactoring.

PUM (1) Includes a local breakpoint equal to children of the tgt. (2) A tgt is extracted
from the refactoring to be repaired. If the tgt is null, empty or a new class, then it
is replaced with a class from the metaphor. (3) Get the children from tgt. If getting
the children is null or empty, then the refactoring is not feasible. (4) Pick up one
child (src). (5) Get a method (mtd) from the source class (src). (6) Verify that the
method is not a constructor. Otherwise, the feasibility is false and start from step
4. (7) Identify other src classes that contain the method from step 4. (8) Whether
the counter is greater than the breakpoint value, then the loop is broken and the
repair is left to a complete new generation from scratch. Otherwise, the repair is
completed.

PUF (1) Includes a local breakpoint equal to the children of the tgt. (2) A tgt is extracted
from the refactoring to be repaired. Whether the tgt is null, empty or a new class,
then it is replaced with a class from the metaphor. (3) Get the children from tgt. If
getting the children is null or empty, then the refactoring is not feasible. (4) Pick up
one child (src) randomly. (5) Whether the src has no fields, then the refactoring is
not feasible and restart in the step 3. (6) Pick up one field (fld) from the source class
from step 4. (7) Identify other source classes with the same field. (8) If the counter
is greater than the breakpoint value, then the loop is broken and the repair is left
to complete a new generation from scratch. Otherwise, the repair is completed.

PDF (1) Extract src from parameters. Whether the src is null, then the system picks up
one randomly. (2) Select a fld from the src class. If there is no fld, the refactoring is
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not feasible and the repair is left to the generation. (3) Identifying all the children
of the src class. If there are no children, then the refactoring is not feasible. (4) Pick
up a tgt from the children list.

PDM (1) Extract src class from the given refactoring. Whether the src does not exist,
then the repair function selects a src randomly. (2) Pick up a method from the src
class. If there are no methods, then the refactoring is not feasible and require a new
generation. (3) Verify whether the method overrides parents or children. If so, then
the refactoring is not feasible. (4) Verify whether the method is not a constructor.
If so, then the refactoring is not feasible. (5) Retrieve children classes from src.

EM (1) Extract src from the given refactoring. Whether the src does not exist, the
process selects one randomly. (2) Get the methods from the src class. If there are no
methods, then the refactoring is not feasible and generate from scratch. (3) Verify
that the selected method is not a constructor or overrides any parent or children.

IM (1) Extract the source class from the given refactoring. Whether no src is provided,
then the process selects one class randomly. (2) Get the methods from the source
class. If there are no methods, then the refactoring is not feasible and requires to
be generated from scratch. (3) Verify that the selected mtd is not a constructor or
overrides any parent or children.

MF (1) Extract the source class from the refactoring. If there is no source class, the
process selects one randomly. (2) Select one field from the src. If there are no fields,
then the refactoring is not feasible and requires to be generated from scratch. (3)
Extract the target class from the refactoring. If there is no tgt, then the process
selects one randomly.

MM (1) Extract the source class from the refactoring. If there is no source class, the
process selects one randomly. (2) Select one method from the source class. If there
are no methods, then the refactoring is not feasible and required to be generated
from scratch. Verify that the method is not a constructor. Otherwise, the refactoring
is not feasible. (3) Extract the target class from the refactoring. If there is no target
class, the process selects one randomly. (4) Verify that there is no hierarchy conflicts
or that the method does not overrides any parent or child.

RDI (1) Extract the source class from the refactoring. If there is no source class, the
process selects one randomly. (2) Extract the target class from the refactoring. If
there is no target class, the process selects one randomly. (3) Verify that the source
class and the target class are not the same. Otherwise the refactoring is not feasible
and requires to be generated from scratch. (4) Verify that the source and the target
are not hierarchy related. Otherwise the refactoring is not feasible and requires to
be generated from scratch.

RID (1) Extract the source class from the refactoring. If there is no source class, the
process selects one randomly. (2) Extract the target class from the refactoring. If
there is no target class, the process selects one randomly. (3) Verify that the source
class and the target class are not the same. Otherwise the refactoring is not feasible
and requires to be generated from scratch. (4) Verify that the source and the target
are hierarchy related. Otherwise the refactoring is not feasible and requires to be
generated from scratch.

RMMO (1) Extract the source class from the refactoring. If there is no source class, the
process selects one randomly. (2) Pick up a method from the source class. If there
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are no methods, then the refactoring is not feasible and requires to be generated from
scratch. (3) Verify that the method is not a constructor or overrides the parents or
children. (4) Create a new target class.

EX (1) Extract the source class from the refactoring. If there is no source class, the
process selects one randomly. (2) Pick up a method from the source class. If there
are no methods or the selected method is a constructor or overrides any parent or
child, then the refactoring is not feasible and requires to be generated from scratch.
(3) Pick up a field from the source class. If there are no fields, then the refactoring
is not feasible and requires to be generated from scratch. (4) Create a new target
class.



CHAPTER 4

Approach Implementation

This chapter introduces the design of computational techniques to solve the software refac-
toring problem.

Figure 4.1. Artificial Refactoring GENeration (Approach Overview): Model Implementation

Figure 4.1 depicts, in step four, the techniques to obtain artificial refactorings. In this
research, ARGen is the baseline for proposing any construction of refactorings focused
on combinatorial optimization techniques. In this case, the search techniques are Hill
Climbing (HB) and Simulated Annealing (SA). Furthermore, the approach requires the
definition of specific refactoring data structures (lists, sets, maps and metaphors) and a
clear definition of the objective function based on the application deployment.

33
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4.1 Refactoring Data Structures

Figure A.2 describes the refactoring data structures used in this approach. This work
proposes special data structures due to the complexity of the manipulation of refactoring
parameters. The description is divided into three parts.

Refactoring Data Structure Outside Fitness (objective function). Each refac-
toring operation is the individual or solution representation of the approach. An object
represents the refactoring operation outside the fitness function. “RefactoringOperation”
is the class for a candidate solution. The class contains the parameters as HashMap struc-
tures, the refactoring types as special object “RefactoringType”, some sub-refactoring (in
case of composed refactorings) as a List of “RefactoringOperations”, the feasibility of the
operation as a Boolean and the penalty value as a double vector whether a penalty func-
tion is defined. Some getter and setter functions are available for consulting the fields.
This object was developed in Java and the migration process transforms the object into a
Scala immutable structure.

Refactoring Data Structure Inside Fitness (objective function). Three data
structures are used for keeping the information related to the objective function. RefMet-
ric, ClassMap and Metric are all maps structures that represents the estimated refactoring
recommendations. The individual representation is a Java Object with name “Refactoring-
Operation” The data structures for controlling the computations are in Scala environment.

Source Code Metaphor. The source code metaphor is one of the most impor-
tant structures throughout the entire program. It keeps the information of the analyzed
systems. The metaphor is composed of five important objects: a “TypeDeclaration”, a
“HierarchyBuilder”, the system path, the system name and a refactoring cache.

On the one hand, the “TypeDeclaration” object is the representation of all classes
from a specific analyzed system. This object contains five lists: all system classes, only
classes with inheritance, only classes with fields, only classes without inheritance and only
classes with methods. On the other hand, “HierarchyBuilder” is a general representation
of the system after being processed by RIPE [5] with an XML parser. The most important
methods are depicted in Figure A.2. Both structures support the generating and repair
functions in their computations.

The refactoring cache is a cache from Google Guava library. The fitness functions use
the cache when retrieving information about metrics that have already been predicted.

4.2 Refactoring Fitness (objective function)

Figure 4.2 depicts the six steps when executing the objective function. Because of the use
of Scala language, the program used Future objects for concurrency and high performance,
and the flat function for easily converting data structures.

Step 1: Penalty Computation. If the approach considers a penalty, the fitness computes
an accumulated penalty for each refactoring operation in the solution. Penalties are vectors
and the final penalty is a mean value of those vectors.

Step 2: Metric Prediction. The first step consists in mapping composed refactorings
into primitive forms (Extract Method = Move Method + Move Field) when predicting
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metrics. The second step is when the technique chooses two possibilities to obtain pre-
diction values: from RIPE [5] (“memorization”) or Cache (“recalling”). Whether the
memorization is active, then RIPE predicts the values and the results are migrated to
an immutable list, which the program concurrently saves in a database. Otherwise, the
predicted values are retrieved from the cache 1.

Step 3: Traversable. This step consist in processing Future[ List[ RefMetric ] ]

and converting such List into List[

RefMetric ]. Therefore, the program computes each refactoring operation independently
(distinct threads).

Step 4: get System Under Analysis. This step implements the function getSUA. That
function is a set of related recursive functions that flattens the data structure RefMetric

into ClassMap by systematically visiting each register (from the refactoring to the metric).

Step 5: Metric Map-Reduce. In this step, the fitness awaits for each refactoring op-
eration (future structures disappears). Actual metrics from the SUA are calculated by
using the HierarchyBuilder. Lastly, the program implements a map-reduce by using
additions to obtain the “code quality additive impacted metric” and the “code quality
additive metric”.

Step 6: Mathematical Model. The last step calculates the ratio between the actual
system and the predicted one. When computing the ratio, the fitness may use a defined
penalty.

1The fitness functions use the cache when retrieving information about metrics that have already been
predicted.
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CHAPTER 5

Approach Evaluation

In this section, the experiments outcomes were organized according to the proposed study
design (Figure 5.1: steps 5 and 6). This section shows data related to baseline search
techniques (Hill Climbing and Simulated Annealing) with proper statistical analysis. Al-
though, the preliminary experiment includes a Shapiro-Will test that took into account
the Hybrid Adaptive Evolutionary Algorithm (HaEa) for further comparative analysis
(chapter 6).

Figure 5.1. Artificial Refactoring GENeration (Approach Overview): Model Evaluation

37
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5.1 A study to validate performance and time complexity
of the proposed approach

5.1.1 Context

The experiments used three open software systems for analysis: Commons Codec v.1.10
(123 number of classes), Acra v.4.6.0 (59 number of classes) and JFreeChart v.1.0.9. (558
number of classes) These systems were chosen because any researcher could access their
source code and subsequent versions (useful for future validation experiments).

Therefore, two datasets were configured according to the expected test. The first
dataset contains all the source classes from Commons Codec and the second dataset all the
source classes of Acra. Additionally, this document presents six datasets from JFreeChart
classes. These datasets were used in time complexity analysis. The classes inside each
dataset are hierarchy related, that is the reason why each dataset has different number of
classes.

A preliminary experiment and a formal experiment were performed. The prelimi-
nary experiment evaluated the do-ability and the course of the study. The formal ex-
periment validated which model configuration was obtaining the best performance. Two
sub-experiments were proposed on small and large fitness evaluations.

Both the specification of the combinatorial model and the experiments were con-
structed and performed within nine months. The necessary intervals between experiments
constituted a feedback of the general procedure in each step and spent between two and
four weeks before starting new tests.

All the experiments were deployed in cloud services with virtual environments. Thirty
machine instances were used with [4-7] Gb of RAM and 2 cores. The generated records
were kept in a relational database and the refactoring recommendations outputs were
saved in plain text traces and JSON format (Figure A.1).

5.1.2 Procedure Overview

The goal of the study is to evaluate the performance of the approach in generating artificial
refactoring recommendations. Based on previous reports of automated refactoring [50, 26],
this document proposes the following experiments:

5.1.2.1 Preliminary Experiment: Do-ability

The goal of this experiment is to assess the baseline algorithms and the consistency of
the solutions. The preliminary experiment was executed with 10,000 iterations for each
algorithm proposed, but machines had been still processing after seven weeks. It was
decided to adjust the settings and re-deploy the architecture solution in order to carry
out a new experiment. Furthermore, a Shapiro-Wilk test was performed on the data to
determine if the data follow a normal distribution.
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5.1.2.2 Formal Experiment: Assess the refactoring formalism and the com-
binatorial model

Each dataset generated a sample of fitnesses. The fitnesses were organized sequentially
one by one. The existing position with the previous one was compared by keeping the
least value in each evaluation (steady state). As all the experiments were run 30 times, the
author organized the results in a matrix where each row represented the evaluation and
the column represented each experiment (of the 30). For each row, the median, the median
deviation, maximum and minimum values were calculated. Several plots depict previous
values to determine the behavior of the fitness of each algorithm during evaluations. The
author configured in R all the algorithms for the statistical test.

• Experiment I. Algorithm’s Performance by validating which approach is getting the
best fitness behavior results.

• Experiment II. Time Complexity of the recommendations by assessing the relation-
ship between the number of classes and the time.

5.1.3 Algorithm’s Performance Evaluation

The proposed approach is executed by using two baseline optimization algorithms for two
open software systems: Commons Codec v.1.10 and Acra v.4.6.0. The following research
question limits the study:

RQ1: What is the technique’s performance in generating feasible recommendations
on source code?

To answer RQ1; first, the source code datasets are organized according to heritage
and design relationships; and second, the test performance includes the Hill Climbing and
Simulated Annealing algorithms for convergence analysis.

This experiment was performed on two datasets with different settings configurations
depicted in Table 5.1. The purpose of this experiment determined which algorithm config-
uration presented the best fitness performance. The datasets were processed by baseline
and evolutionary algorithms with the combinatorial model proposed [12]. The evaluation
context presents the following points:

• The experiments were run 30 times and the results organized in a matrix: each row
represented a fitness evaluation and each column an experiment.

• The author calculated the median, the median deviation, maximum and minimum
values for each row.

• The results of these analyses were presented as value a ± b[c] format which repre-
sents a maximum median performance a with median deviation b through c fitness
evaluations.

1. Algorithm Performance

What is the technique’s performance in generating feasible recommendations on
source code?



CHAPTER 5. APPROACH EVALUATION 40

Table 5.1. Formal Experiment Settings for Algorithm’s Performance

Sub-experiment System
Opt.
Algorithm

Genetic Operators Iterations
Population
Size

Refactoring
Size

Sub-experiment I: this sub-experiment is oriented to
convergence of the algorithms performance with less evaluations.

Commons
Codec

SA Mutation
1000 1 7
2000 1 7

HC Mutation
1000 1 7
2000 1 7

Sub-experiment II: this sub-experiment is oriented to
convergence of the algorithms performance with large evaluations.

Acra

SA Mutation
10000 1 7
60000 1 7

HC Mutation
10000 1 7
60000 1 7

5.1.4 Time Complexity Evaluation

The time complexity of the proposed approach is analyzed. The JFreeChart system
datasets are used for performing a complete evaluation of Hill Climbing. The following
reasearch question limits the study:

RQ2: How is the relation between the variables n classes and t time?

To answer RQ2; first, the source code datasets were organized according to design
relationships and heritage; and second, the time analysis includes HC and SA techniques
for establishing the trend line between classes and time. The experiments were run 30
times and the results organize in a matrix: each row represented a time value and each
column an experiment.

2. Time Complexity

How is the relation between the variables n classes and t time?

5.2 Preliminary Experiment Results

For the preliminary experiments, the four proposed algorithms estimated artificial refac-
torings according to given constraints, but IO processes and repair functions took a lot
of time to execute. ACRA, JfreeChart and CCODEC took between two and four weeks
to complete an initial experiment with the same configuration as in formal experiments.
The outcome is formatted in JSON.

The Shapiro-Wilk test suggested that the data (fitness evaluations) had no normal
distribution in both systems ACRA and CCODEC. Table 5.2 presents the p− values for
each system and algorithm. All p− values are less than 0.05, then alternative hypothesis
is rejected.

Table 5.2. The Shapiro-Wilk Test for Preliminary Analysis

Algorithm/Dataset CCODEC[2000] ACRA[60000]

Hill Climbing 0.0049 0.0015
Simulated Annealing 0.0222 0.0157
HaEa 0.0144 0.0340



CHAPTER 5. APPROACH EVALUATION 41

5.3 Formal Experiment Results

For the formal experiments, this section provides two results that corresponds to the re-
search questions in study design. One result is oriented to provide data about baseline
algorithms’ performance, whereas the other is oriented to provide data about time com-
plexity of baseline search techniques (HC and SA).

5.3.1 Algorithm’s Performance

Presented in this subsection are the results of the performance of the four proposed algo-
rithms. This document introduces three major results of comparative evaluations.

This section is summarized in a blue box the general performance in the last evaluation
for each algorithm. This performance is formatted as a+/−b[c] where a indicates maximum
average with standard deviation of b reached by each algorithm using c fitness evaluations
in 30 independent runs. This document compared the fitness values for HC and SA in
three curves: best, median and worst.

ACRA Performance Results

• Hill Climbing: 0.97493 +/- 0.00865 [10000]

• Hill Climbing: 0.96815 +/- 0.00563 [60000]

• Simulated: 0.97167 +/- 0.00354 [10000]

• Simulated: 0.96819 +/- 0.00174 [60000]

CCODEC Performance Results

• Hill Climbing: 1.00902 +/- 0.00339 [2000]

• Simulated: 1.00621 +/- 0.00355 [2000]

5.3.1.1 Comparative Evaluations CCODEC[2000]

One thousand evaluations after initiation of the experiment, the three curves decrease with
a stabilized dispersion. However, neither of the two search techniques converged. By two
thousand evaluations, the curves still diverged (Figure 5.2), but the fitness value for the
Simulated Annealing technique was approximately 1.003 times lower in average than Hill
Climbing’s. For both algorithms, values were often greater than 1 and the worst curve
was stable.

5.3.1.2 Comparative Evaluations ACRA[10000]

Figure 5.3 shows fitness values for more than 2000 evaluations in a different system. Sim-
ulated Annealing was more likely to obtain lower values, the three curves are decreasing,
whereas the evaluations are getting higher. Five thousand evaluations after initiation
of the experiment, the Hill Climbing was becoming stable with constant dispersion. By
ten thousand evaluations, Simulated Annealing technique was approximately 1.003 times
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Figure 5.2. Two thousand evaluations in 30 independent runs for CCODEC: (a) Hill Climbing
and (b) Simulated Annealing.

lower in average than Hill Climbing’s. For both algorithms, the reached fitness values were
less than 1.
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Figure 5.3. Ten thousand evaluations in 30 independent runs for ACRA: (a) Hill Climbing and
(b) Simulated Annealing.

5.3.1.3 Comparative Large Evaluation ACRA[60000]

After 30000 fitness evaluations after initiation of the experiment, Simulated Annealing
and Hill Climbing did not converge yet (Figure 5.4). Even though, the Hill Climbing
was more likely to have higher dispersion and stable curves in best and worst values. By
60000 evaluations, however, the Simulated Annealing technique was converging in a mean
value of 0.96819 with an standard deviation of 0.00174. A contradictory result showed
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that the Hill Climbing was approximately 1.00004 times lower in average than Simulated
Annealing’s.
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Figure 5.4. Sixty thousand evaluations in 30 independent runs for ACRA: (a) Hill Climbing and
(b) Simulated Annealing.

5.3.2 Time Complexity

This subsection presents the time complexity results for the Hill Climbing technique in
JFreeChart datasets. Table B.1 shows the number of classes, the mean and standard
deviation for each set. The higher the numer of classes, the higher average time, in seconds,
it took the Hill Climbing and Simulated Annealing to complete 5,000 evaluations.

For Hill Climbing, the percent change increased approximately 287.75%, 251.47%,
654.23%, 421.47% and 504.41% from DAT01 to 22, 43, 48, 60 and 71 number of classes re-
spectively. For Simulated Annealing, the percent change increased approximately 251.37%,
209.47%, 729.96%, 431.35% and 515.92% from DAT01 to the remaining datasets. How-
ever, according to Table B.1, the number of classes did not affect the standard deviation
values.

Figure 5.5 depicts the mean time complexity for Hill Climbing. The data trended
toward an exponential pattern with the related equation y = 648.623e(0.025x). The
average time complexity for HC was exponential; by 22, 34, 48, 60 and 71 number of
classes, the mean time was approximately 3.88, 3.51, 7.54, 5.22 and 6.04 respectively
times higher than the mean time for 11 number of classes.

Figure 5.6 depicts the mean time complexity for Simulated Annealing. The data
trended toward an exponential pattern with the related equation y = 625.171e(0.026x).
The average time complexity for SA was exponential; by 22, 34, 48, 60 and 71 number
of classes, the mean time was approximately 3.51, 3.09, 8.30, 5.31 and 6.16 respectively
times higher than the mean time for 11 number of classes.
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Figure 5.5. Average Time Complexity Hill Climbing. In blue, the hill climbing data points. In
light blue, HC trendline with the exponential model. Y-axis is the time in seconds
and X-axis is the number of classes for JFreeChart System.

Figure 5.6. Average Time Complexity Simulated Annealing. In green, the simulated annealing
data points. In light green, SA trendline with the exponential model. Y-axis is the
time in seconds and X-axis is the number of classes for JFreeChart System.



CHAPTER 6

On the Use of a Hybrid Adaptive Technique

This document introduces an Artificial Refactoring Hybrid Adaptive Technique (ArHaT)
to estimate artificial refactoring operations. In this chapter, Evolutionary Algorithms
(EA) are an alternative solution for a proposed combinatorial optimization model. In this
case, the author used the Hybrid Adaptive Evolutionary Algorithm (HaEa) that evolves
the operator rates and the solutions at the same time [12]. Two versions of HaEa were
considered: invariable and variable chromosome. An invariable chromosome indicates that
the individual representation of the refactorings do not change because of the genetic op-
erators, this document refers to that algorithm as HaEa. Whereas, a variable chromosome
indicates that the individual allows modification in its size. The chromosome can vary be-
tween a minimum and maximum range of recommendations, this document refers to that
algorithm as HaEa Var. The best individual was keeping it after each iteration; therefore,
both algorithms showed a steady-state behavior.

6.1 A Hybrid Adaptive Evolutionary Algorithm for the
Refactoring Problem

The software refactoring problem was represented as a combinatorial problem. Thus, it
could be modeled with Evolutionary Algorithms (EAs). This section is an extension of the
proposed refactoring model in previous chapters. The research community has used EAs
successfully to solve several optimization problems; the performance of these techniques
depends on the selection of initial parameters. Picking up the initial parameters is a time
consuming task, that is the reason why this project used HaEa.

In HaEa, each individual is evolved independently from other individuals in the popu-
lation. In each generation, one genetic operator (such as crossover or mutation) is selected
(for each individual) according to dynamically learned operator rates that are encoded
into the individual. Whether the selected operator requires another individual for mating,
then this second individual is selected from the population with replacement. For instance,
the second individual can be a mate more than once. The offspring is compared against
the first parent according to the fitness value. HaEa replaces the parent, and the operator
rate is rewarded for improving the individual whether the fitness of the offspring is better

45
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than the parent. Whereas, the operator rate is penalized whether the individual does not
improve. The source code of this approach is available online 1.

The proposed Hybrid Adaptive approach used the defined repairing functions and six
different genetic operators (Figure 6.1) that were specially created for exploring in spaces
where the algorithm preserves the objected-oriented structure. The approach does not
need for encoding phenotype to genotype; the chromosome represented the refactoring
recommendation directly.

Figure 6.1. Proposed Genetic Operator for HaEa: from 1 to 3 are invariable chromosome oper-
ators and from 4 to 6 are variable chromosome operators

Figure 6.1 depicts six different operators. For further understanding of the operators,
please review refactoring individual configuration in chapter 4. The representation of the
chromosome is the same representation of the individual described before along with the
search space.

On the one side, HaEa with invariable (fixed) chromosome uses: (1) Refactoring
Operation Mutation that changes a complete refactoring operation label preserving its
internal parameters (src, tgt, fld and mtd); for instance, the operator changes into PUF
by following a probability distribution (Gaussian) whether the original gen is a RMMO;
(2) Refactoring Operation Class Transposition that interchanges the src with tgt
parameters inside a specific gen (the gen is selected by following a Gaussian distribution);
for example, in a RMMO gen the tgt is replaced with src, and the src is replaced with the
tgt; and (3) Refactoring Operation Crossover that crosses two refactoring operations
in a random position (Gaussian distribution) of the chromosomes, the result after the op-
erator is two chromosomes (offspring) with blended genetic information from two original
chromosomes (parents), the crossing includes all the internal parameters -indicates that
the genes are preserved.

On the other side, HaEa with variable chromosome uses: (4) Adding Refactoring
Operation that adds a specific number of refactorings to the individual; for instance,
the operator could add a tuned number of genes, in this case RMMO and PDF, when
the parent is composed of EC; (5) Deleting Refactoring Operation that deletes a
specific number of refactorings to the individual; for example, the operator could dispose
of a tuned number of genes, in this case RMMO and PDF, when the parent is composed
of three genes; and (6)Joining Refactoring that mixes two individuals into one; for

1 https://github.com/BIORIMP
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instance, when the parent are two chromosomes, one of the parent is broken into two
parts (the broken position is selected by following a Gaussian distribution) and afterwards
the other parent is introduced between, the joining includes all the internal parameters
-indicates that the genes are preserved.

6.2 Study Design

Hill Climbing and Simulated Annealing were compared against HaEa with an appropriate
statistical test that was concluded during the preliminary evaluation. The statistical test
consisted of applying the Wilcoxon test that compares the median of two samples thusly
this research defined a null (H0) and an alternative (H1) hypothesis. This Wilcoxon was
applied in intervals for sub-experiment I and sub-experiment II (see Table 6.1).

Table 6.1. Formal Experiment Settings

Sub experiment System
Opt.
Algorithm

Genetic
Operators

Iterations
Pop
Size

Ref
Size

Sub-experiment I:
This sub-experiment
is oriented to
convergence of the
algorithms performance
with fewer evaluations.

Commons
Codec

SA Mutation
1000 1 7
2000 1 7

HC Mutation
1000 1 7
2000 1 7

HaEa
Mutation,
crossover and
transposition.

50 20 7
50 20 7

HaEa-VAR
Join,
delete
and add genes.

50 20 [5-12]

Sub-experiment II: This
sub-experiment is
oriented to convergence
of the algorithms performance
with larger evaluations.

Acra

SA Mutation
10000 1 7
60000 1 7

HC Mutation
10000 1 7
60000 1 7

HaEa
Mutation,
crossover and
transposition.

420 20 7
1000 50 7

The null hypothesis H0 states that the median of Hill Climbing fitness 2 is the same as
HaEa’s. On the other hand, the alternative hypothesis (H1) constitutes that the median
of HaEa fitness is greater than the baseline algorithms’. The α value followed 0.05 level
of significance (95% of confidence interval). The Wilcoxon test is applied on alternative
hypothesis whether the null hypothesis is rejected. The p− value calculated is compared
to the alpha value. (H1) is rejected whether alpha is greater than p − value; therefore,
the median of HaEa is not greater than the baseline algorithms’. However, the statistical
evidence for rejecting (H1) is insufficient whether the p-value is greater than alpha. The
objective comprises the median of HaEa fitness in all the samples that are less than the
baselines’.

One could establish the objective function based on the Refactoring Impact Prediction
(RIPE) [5] because RIPE provides refactorings without implementing the actual changes.
Therefore, the model estimated the refactoring recommendations from the impacted (pre-
dicted) metric values.

2The fitness function used is the same objective function introduced in chapter 3 (definition 10).
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The preliminary experiments consolidated the perceived behavior of the proposed
model and also the time consumed per operation. Besides, those tests sufficiently in-
formed for redeploying the system.

Eventually, the proposed experiments were important for verifying and validating the
performance of the evolutionary algorithm and the candidate solution. Both experiments
aimed to demonstrate combinatorial optimization techniques.

6.3 Results and Discussion

6.3.1 Performance and Convergence Analysis

In exploratory analysis (Table 6.2) , the median values for Commons Codec for 1000 eval-
uations were lower than 2000 evaluations. Likewise, the median deviation in hill climbing
for Commons Codec for 1000 evaluations ±0.00323[1000] were higher than 2000 evalua-
tions ±0.00339[2000]. HaEa performance in 800 evaluations was 1.00549 ± 0.00586[800]
and HaEa with variable chromosome was 1.01588± 0.0027[800].

Table 6.2. Performance Exploratory Data Analysis

System Algorithm Median Deviation Evaluation

Acra

HC
0.97493 0.00865 10000
0.96815 0.00563 60000

SA
0.97167 0.00354 10000
0.96819 0.00174 60000

HaEa
0.96478 0.00483 10000

0.95493 0.00398 60000

Ccodec

HC
1.0063 0.00323 1000
1.00902 0.00339 2000

SA
0.98121 0.02482 1000

HeEa
1.00318 0.00665 1000

1.01015 0.0027 2000
HaEa Var 1.01588 0.0027 800

After one thousand evaluations (Figure 6.2) in Commons Codec System, HaEa ap-
proach demonstrated significantly lower fitness performance than Hill Climbing (p −
value = 0.1013) and Simulated Annealing (p-value = 0.9998). Then, there was not enough
statistical evidence for rejecting the alternative hypothesis. Baseline algorithms (a) and
(b) have better performance than evolutionary approach (c). Additionally, HaEa with
variable chromosome (d) has similar behavior as normal HaEa in 800 evaluations with
lower fitness performance than HC (p− value = 1.0000) and SA (p-value = 1). In (a) the
behavior of median and worst values was homogeneous, but the best values had a sub-
stantial decrease after 800 evaluations. In (b) the more evaluations were performed, the
higher median deviation. A constantly decreasing tendency was observed in best values for
(c) (0.98855[100], 0.97619[500], 0.97337[800], 0.96126[1000]), besides the median deviation
was slowly incremented (±0.00378[100], ±0.00573[500], ±0.00586[800], ±0.00665[1000]).
In (d) the worst, median, and best were constant.
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Figure 6.4 shows for three algorithms the largest evaluations attempted during the
experiment. Best fitness rates in (a) and (b) are relatively homogeneous during evaluations.
In (a) the median and worst values became stable after 3,000 evaluations, however, in
(b) median values are variable though all evaluations (0.97775± 0.00633[5000], 0.97386±
0.00631[7000], 0.97167±0.00354[10000]). The author observed that HaEa (c) obtained best
values starting from 6,000 evaluations for HC (p− value = 0.0350) and 3,000 evaluations
for SA (p-value = 0.0412). By 10,000 evaluations, HaEa values were significantly lower
than HC (p − value = 0.0002) and SA (p − value = 0.0001). Although, HaEa behavior
(c) in large evaluations was better in all sample points (Table 6.3 and Figure 6.5) with a
remarkable p-value = 0.00023.
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Figure 6.3. Algorithm Performance ACRA[10000]: (a) Hill Climbing, (b) Simulated Annealing
and (c) HaEa
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Our results exhibit that HaEa presents good performance in large evaluations. HC and
SA experience relative better results in few steps than HaEA, even though evolutionary
approach reaches the best values after certain evaluations.

Table 6.3. Performance Rates over Number of Evaluations for HC, SA and HaEa in Acra System

Performance (median fitness)

Evaluation Hill Climbing Simulated Annealing HaEa

10000 0.97589 0.97145 0.96543

20000 0.97529 0.9695 0.96133

40000 0.97077 0.9684 0.95623

50000 0.96862 0.9684 0.9557

60000 0.96815 0.96819 0.95493

p - value <= 0.000226249503 vs HeEa group.

(a) HaEa vs. Hill Climbing (b) HaEa vs. Simulated Annealing

Figure 6.5. P- Value Acra System Fitness Performance up to 60000 Evaluations.

The following plots Figure 6.6a and Figure 6.6b aim to compare all four algorithms.
In system ccodec, the best behavior corresponded to Simulated Annealing algorithm in
1000 evaluations, yet it presents highest variability. On the other hand, in system Acra,
HaEa had the best performance in 10000 and 60000 evaluations, whereas HC and SA did
not show the best results.

HaEa presents good performance in large evaluations is supported by box-plot analysis.
Ten thousand evaluations were executed on acra system, only HaEa experienced the best
median value. Likewise, after 6,000 evaluations, HaEa was still searching for fewer values.
Our second finding that Hill Climbing and Simulated Annealing induced better results
in few evaluations as in ccodec experiments with 1000 and 2000 evaluations respectively.
However, the tendency can not be fully analyzed with that range of steps. Graphics point
that median values are homogeneous, especially in HaEa with a variable chromosome.
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(a) Commons Codec System (b) Acra System

Figure 6.6. Comparative Box Plot: (I)ccodec 1000, (II)ccodec 2000, (III)acra 10000, (IV)acra
60000.

Previous studies have discovered some combinatorial representations of refactorings
[10, 14, 35, 50], but this document established a complete benchmark problem contrasting
baseline algorithms (HC and SA) versus HaEa with an extensive performance study.

In brief, our research exhibits that evolutionary algorithm experiences better results
in time than baseline approaches. Since ccodec system consumed merely up to 2000
evaluations, the author processed an extensive test in Acra for validating the minimization
of the median values. Yet, our mathematical model might be extended for including
penalization or complete configuration of hyper-parameters.

6.3.2 Time Complexity Analysis

Figure 6.7 depicts a comparison of the mean time complexity between baseline algo-
rithms (HC and SA) and HaEa search techniques for 30 independent experiments. The
algorithms data tended to show exponential patterns (HaEa with an equation model
y = 470.537e(0.024x)).

Five thousand fitness evaluations after initiation of the experiment, the average time
complexity for the Hill Climbing (Table 6.4) technique was 1.64 and 1.41 higher than
HaEa’s with 71 and 11 number of classes respectively. Whereas, the average time com-
plexity for the Simulated Annealing technique (Table B.2) was 1.75 and 1.48 higher than
HaEa’s with 71 and 11 number of classes respectively. Therefore, HaEa spent less time
than both HC (1.45 times in average) and SA (1.50 time in averge) in performing refactor-
ing recommendations. The baseline algorithms trend lines were higher than HaEa trend
line (blue line for HC and green for SA in Figure 6.7).

The percentage increase in HC and SA techniques from 11 classes to 71 was 504.41%
and 515.92% compared to 419.63% in HaEa’s. The result shows that each time the experi-
ment increased the number of the classes, baseline algorithms took more time in processing
classes for refactoring than HaEa. HaEa seems to be a better approach to estimate refac-
toring recommendations in less time.
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Figure 6.7. Average Time Complexity Hill Climbing vs Haea. In blue and green, the hill climb-
ing and simulated annealing trendline. In red, HaEa trendline with the exponen-
tial model. Y-axis is the time in seconds and X-axis is the number of classes for
JFreeChart System.

Table 6.4. Time Complexity Exploratory Analysis for HC vs HaEa

JFreeChart Dataset
Hill climbing HaEa

#Classes mean(sec) SD(sec) mean(sec) SD(sec)

DAT01 11 465.92 414.04 330.95 226.34
DAT02 22 1806.63 1322.17 1198.45 605.53
DAT03 34 1637.56 1579.98 1147.93 694.25
DAT04 48 3514.10 938.54 2781.87 980.02
DAT05 60 2430.10 1215.08 1667.78 595.10
DAT06 71 2816.08 1121.70 1719.71 775.82

The author found that Hybrid Evolutionary Approach has lower value results in large
iterations. Then, evolutionary algorithms seem to work better than baselines. Besides, the
main inconvenience of execution was latency. The author noticed significant differences
between IO processing from files to databases. Thus, it was decided to redeploy and test
with new parameters.



CHAPTER 7

Discussion

In this study, the author poses whether a systematic formal approach based on a formal-
ism and a combinatorial optimization model constitutes an appropriate solution for the
software refactoring problem. In this case, the software refactoring problem is defined
as the generation of artificial refactoring sequences without actual implementation. The
results show that a mathematical representation of an object-oriented system (a) appears
to define software refactoring concepts; a combinatorial optimization approach (b) models
the software refactoring problem; the author (c) designed the computational techniques
such as Hill Climbing, Simulated Annealing and HaEa to solve the software refactoring
problem by means of the proposed formalism and combinatorial model and (d) validated
those algorithms in terms of performance and time complexity.

The first finding that a formalism appears to define software refactoring concepts is
supported by the definitions introduced in chapter 3. The author found that by using a
mathematical approximation to the refactoring problem, the research community could
model and report a combinatorial optimization approach in a standardized manner. With
the proposed formalism, any researcher is able to reproduce the experiments and to extend
the combinatorial model.

The second finding that a combinatorial optimization approach models the software
refactoring problem is supported by chapter 4 where the author included a characterization
of the search space, a description of the objective (fitness) function, the refactoring con-
straints which support the behavior preservation through repair and generating functions
and computational complexity classification of the problem.

Furthermore, due to an unified mathematical approximation, this research supports to
improve combinatorial optimization models to solve the software refactoring problem. For
instance, Chaparro et al. [5] present RIPE (Refactoring Impact PrEdiction): an approach
for estimating the impact of refactoring operation on code quality metrics. The author’s
technique uses RIPE for creating the optimization model (the formulation of the fitness
function). All the prediction functions in RIPE are considered in the author’s model
when measuring the performance of each individual represented as a set of refactoring
operations.

The third finding that designed computational techniques such as HC, SA and HaEa
solve the software refactoring problem is supported by algorithm adaptations introduced
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in chapter 2 and chapter 6 like refactoring data structures, deployment of the fitness
function that embodies Java and Scala technologies, and definition of specific genetic
operators. Moreover, the following previous studies reported different forms of adapting
search-techniques into the refactoring generation:

Seng, et al. [50] propose an evolutionary algorithm for optimizing class structure in a
open source system in order to conserve class level refactoring. The expected outcome is a
refactoring produced by the value of several quality metrics and the number of violations
of object oriented design guidelines. Their study design considers only one refactoring
(move method) and restricted number of classes; thus, the search space is significantly
reduced. Whereas, ARGen explores all the possible search space for the given classes with
twelve different refactoring operations.

Harman, et al. [10] introduces a search-based refactoring approach based on pareto
optimality extending the initial idea of Seng, et al. They use one refactoring (move
method) and two metrics (coupling between objects and standard deviation of methods per
class) for determining a sequence of refactoring. The procedure for applying the sequence
to the system is unclear, as well as the importance of choosing those metrics. Our study is
different, the author, first, established the foundations to work with refactoring operations
in mathematical domain and, second, to evaluate a hybrid adaptive technique by focusing
on the assembly of the refactoring sets. The research fitness function covers eleven different
quality metrics grouped in a ratio.

Ouni, et al. [43] suggest using development history to assemble refactoring solutions
in similar context. They used NSGA-II for minimizing the number of bad smells and
maximizing the semantic coherence and the development history use. Their approach
finds refactoring solutions composed of a sequence of refactoring operations where the
order of the operations is taken into account. Authors uses a vector representation for
the candidate solution for preserving pre and post conditions. Crossover and mutation
are the only genetic operators implemented for NSGA-II approximation. Furthermore,
authors tested a chemical reaction optimization approach to find solutions of refactorings
that maximize the number of fixed riskiest code smells [38] and used genetic programming
for generating rules that detects defects when minimizing software effort. Unlike Ouni,
et al., the hybrid adaptive technique implemented six different genetic operators and a
solution set with independent refactoring operations. These operators can add or delete
refactoring operations dynamically. Moreover, the hybrid adaptive algorithm allowed an
adaptive tuning that reduces the error-fault in the experiments.

Mksover, et al. [24], oriented their research to the high dimensional problem [27] in
refactoring determination. They have done extensive research in multi-objective optimiza-
tion which includes features such as quality improvements (number of fixed code smells),
severity of code smells and importance of the classes that contain bad smells (leading to
lack of robustness) [26]. Moreover, they proposed a tool that receives developers feedback
and adapts for suggesting refactoring operations [25]. However, any computational execu-
tion of refactoring needs not only exhaustive code validations, but also a deep knowledge
of the system analyzed; thus, augmenting computational time complexity. This research
focused on estimating the quality metrics in favor of avoiding the refactoring operation
execution. The empirical experimentation is not clear about how large are the sequences
of refactorings, yet, HaEa uses both delete and add refactoring operators.

The last finding that the combinatorial techniques are validated in terms of perfor-
mance and time complexity is supported by the empirical experiments in chapter 5 and
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chapter 6. Answering RQ1, for dataset CCODEC, three defined curves (best, median and
worst) did not converge for HC and SA after 2,000 evaluations; nonetheless, for ACRA,
both algorithms converged in a mean value of 0.96819 with a standard deviation of 0.00174
after 60,000 fitness evaluations. Conversely, answering RQ2, the relation between a num-
ber of classes and time is exponential for both HC and SA. The evolutionary approach
was significantly better (p− value < 0.00023 vs HaEa) than the baseline techniques when
converging to lowest fitness values.

On the other hand, the three techniques (HC, SA and HaEa) exhibited an exponential
trend for the time complexity. The Hybrid Adaptive Evolutionary Algorithm outper-
formed baseline search techniques for n number of classes to be analyzed. The average
time complexity for HC and SA when n = 71 was 1.64 and 1.75 higher than HaEa’s.
Therefore, HaEa spent less time in performing refactoring recommendations.

Figure 7.1 summarizes the limitations and key assumptions. I summarize the limita-
tions of this research as below : our research did not develop a refactoring tool to implement
recommendations; ARGen does not assist developers in what software properties need to
change (e.g., reduce cyclomatic complexity by 10% and increase cohesion by 0.2 in class
C), but how to change the software (e.g., a Replace Method with Method Object is a
suggested refactoring operation for this source “src” and target “tgt” classes according to
some fixed weights in the objective function); the estimated sets of refactorings did not
exclusively represent actionable recommendations -actionable behavior depends upon de-
velopers’ criteria; nonetheless, the sets do represent feasible individuals that fulfill fitness
parameters and object oriented guidelines-; and, the empirical evaluations concentrated
on algorithm performance and refactoring structure coherence.

Bearing in mind previous findings, I conclude that regardless of reported empirical
studies [38, 26, 42, 23, 40, 24, 43], which exhibits precision and recall measures, the refac-
toring process highly depends on human factor that comprises specific domain knowledge
and expertise when designing reconstructions on the code. We, indeed, achieved to esti-
mate massive artificial refactorings, yet I cannot guarantee that none of those refactorings
were actionable. Actionability implies not only developers’ interest in quality metric but
also developers’ criteria (how to design a SUA) that should be extracted from their minds.
Consequently, search techniques or combinatorial analysis are insufficient approximations
to tackle the SRP because those techniques cannot acknowledge how the developer’s mind
is simulated, used, or mapped to produce the exact context (human design process) for
recommending refactorings.
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APPENDIX A

Extended Methodology

Figure A.1. Deployment
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APPENDIX B

Extended Results

Table B.1. Time Complexity Exploratory Analysis for Baseline Algorithms in Five Thousand
Evaluations

JFreeChart Dataset
Hill climbing Simulated Annealing

#Classes mean(sec) SD(sec) mean(sec) SD(sec)

DAT01 11 465.92 414.04 488.20 599.69
DAT02 22 1806.63 1322.17 1715.41 1405.44
DAT03 34 1637.56 1579.98 1510.84 1092.08
DAT04 48 3514.10 938.54 4051.86 1703.34
DAT05 60 2430.10 1215.08 2594.07 977.54
DAT06 71 2816.08 1121.70 3006.93 955.58

Table B.2. Time Complexity Exploratory Analysis for SA vs HaEa

JFreeChart Dataset
Simulated Annealing HaEa

#Classes mean(sec) SD(sec) mean(sec) SD(sec)

DAT01 11 488.20 599.69 330.95 226.34
DAT02 22 1715.41 1405.44 1198.45 605.53
DAT03 34 1510.84 1092.08 1147.93 694.25
DAT04 48 4051.86 1703.34 2781.87 980.02
DAT05 60 2594.07 977.54 1667.78 595.10
DAT06 71 3006.93 955.58 1719.71 775.82
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Conclusions

This document proposed a systematic formal approach to estimate artificial refactoring
recommendations based on quality metrics, baseline search techniques and evolutionary
optimization. Fitness values are a general representation of the quality impact of refac-
torings operations sets. In this research, the author did not consider bad-smells detection
or any kind of design information for generating the refactoring recommendations: no
semantic preservation or maintenance history of the software is included in the study.

The major contributions to the state of the art from this study are: a mathematical
approximation to the refactoring problem, this allows the research community to maintain
a formalism when dealing with refactoring automation; the generation of the refactorings as
a combinatorial problem, this allows software researchers to reproduce any optimization
algorithm; and, a design and validation of search techniques through a modeling and
empirical study that allow to explore the search space in an efficient manner. The results of
our research not only confirm good performance of evolutionary computational approaches
but also encloses an effective formalization of the refactoring problem.

Threats to validity include an experimentation for applying the refactorings manually.
The author did not measure the error-proneness impact on the code when applying the es-
timated refactorings and the actionability of those refactorings. In addition, the proposed
approach estimated a set of refactorings (not a sequence); thus, the refactoring operations
do not configure any sequence that allows an order in the refactorings implementation.
The estimated refactoring sets exhibit structural consistency, although error-proneness
measures are not taking into account for feasibility constraints.

Lastly, this research fulfills four major aspects:

1. The author defined a unified mathematical approximation for several software refac-
torings concepts by means of theory of computation and set theory.

2. By using the proposed formalization, the author achieved to model the problem of
software refactoring generation as a combinatorial approach.

3. The research presented a design for computational techniques that includes baseline
(Hill Climbing & Simulated Annealing) and evolutionary (HaEa) algorithms to solve
the software refactoring problem as a combinatorial model.

4. The research introduced an empirical study to validate the performance and time
complexity of the estimated artificial refactoring sets with previous designed search-
techniques.
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Take-home message

It is proposed a systematic formal approach to estimate artificial refactoring rec-
ommendations based on quality metrics and baseline search techniques. Our com-
putational solution not only confirms a convergence of baseline algorithms and an
exponential time complexity but also encloses an effective formalization of the SRP.
The thesis contributed to reducing the gap between the software defect prediction
and the software refactoring by establishing the fundamentals of the automation for
the refactoring process in a unified mathematical theory toward a proposed combi-
natorial optimization model, which is able to receive error-proneness information.
Our document propounded a definition, an implementation, and an evaluation of a
systematic approach that recommends a set of artificial refactoring operations.



Future Work

.1 Overview

Figure .3 depicts the future work of this research. Four major topics are important in
order to extend the proposed approach: (1) a technique that recommends for reducing the
error-proneness; (2) a tool or framework for developers; (3) solution sets that represent
actionable recommendations; and, evolutionary approaches or heuristics that improve the
results of the combinatorial model.

The author suggest to research on how the approach automatically adjusts the fitness
function weights in order to reduce the error-proneness (for a given SUA or code fragment).
That approach of error-proneness reduction might take into account the design of the
system, bad code smells or any other approach that has been already applied directly to
the construction of refactoring sequences.

Figure .3. Future Work

Four major topics are important in order to extend ARGen: 1) a technique that
recommends for reducing the error-proneness; 2) a tool or framework that developers can
easily manipulate; 3) other refactoring data structures that simplify the search (e.g., graph
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Figure .4. Archipelago Organization for Twelve Refactoring Operations

representation); and, 4) evolutionary approaches or heuristics that improve the results of
the proposed combinatorial model. I plan to research on how our approach automatically
adjusts the objective function weights to reduce the error-proneness (for a given SUA
or code fragment). Based on our reproducibility analysis, formalizations, and results; to
generate refactoring recommendations relies on human factor; therefore, since the Software
Refactoring Problem exhibits a human design process, I expect my model to be extended
using concepts from cognitive sciences and artificial life.

.2 What about the “Refactoring Consistency” ?

The refactoring operations are highly dependent of the context and developers’ experi-
ence. Therefore, for the generation of refactorings, nobody can establish a general rule or
absolute recommendation. Comparing refactoring approaches results depend on specific
settings and several design and quality objectives. That is the reason why accuracy does
not make sense between proposed refactorings and actual refactorings of an evaluated sys-
tem. Then, How does one evaluate the consistency of the reported approach?. Research
community needs an alternative form of measuring consistency of refactorings. The author
introduces some insights in this chapter.

The Refactoring Consistency is based on archipelago [55] study. The relations of each
refactorings proposed were converted into a directed graph (Figure .4) which shows the
hierarchy of implementation of each refactoring.

The author proposed a refactoring consistency metric. The Refactoring Consistency
Metric (RCM) is defined as:

RCM =
π

Π + λ
Λ + Θ

Where is the π number of nodes that actually could be manually implemented. Π is
the total number of vertexes in the solution graph. Λ is the number of design patterns
detected and λ is the number of design violations of those patterns. Θ is the number
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of possible structural violations against OOP style. The idea is to calculate the metric
according to archipelago graph order.

Refactoring Consistency Research Question

To what extent the refactoring consistency of proposed refactorings is preserved?
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