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Nacional de Colombia.

It was also supported by the scholarship ’Beca de estudiante sobresaliente de posgrado’ funded by

Universidad Nacional de Colombia.





vii

Abstract
Electroencephalogram(EEG)-based neuroimaging is a widely used technique that allows to non

invasively explore brain activity. One of the most prominent advantages of using EEG measures

to analyze brain activity is its low cost and outstanding temporal resolution. However, spatial

measurement points (electrodes) are relatively low -a couple hundreds in the best case-, while the

discretized brain activity generators -termed current dipoles or sources- are several thousands. This

leads to a heavily ill-posed mathematical problem commonly known as the EEG inverse problem.

To solve such problems, additional information must be a-priori assumed in order to obtain an

unique and optimal solution. In the present work, several approaches to improve the accuracy

and interpretability of the inverse problem solution are proposed, using physiologically motivated

assumptions. Firstly, a method including a realistic time varying autoregressive model is pro-

posed, aiming to explicitly constraining temporal evolution of brain activity. Secondly, another

methodology is proposed to relax the brain activity stationarity assumption that is usually made in

state-of-art algorithms, this is done by assuming a physiologically motivated time-varying a-priori

covariance matrix. Finally, a novel method constraining the solution to a sparse representation in

the space-time-frequency domain is introduced. The proposed methods are compared with classic

and state-of-art techniques in a simulated environment, and afterwards, are validated using real

world data. In general, the contributed approaches are efficient and competitive compared to

state-of-art brain mapping methods. Keywords: EEG, inverse problem, brain mapping.

Resumen
El mapeo cerebral basado en señales de electroencefalograf́ıa (EEG), es una técnica muy usada para

explorar la actividad cerebral de forma no invasiva. Una de las ventajas que provee la utilización

de señales EEG para analizar la actividad cerebral es su bajo costo y su sobresaliente resolución

temporal. Sin embargo la cantidad de puntos de medición (electrodos) es extremadamente baja

comparada con la cantidad de puntos discretizados dentro del cerebro sobre los cuales se debe

realizar la estimación de la actividad. Esto conlleva a un problema mal condicionado comúnmente

conocido como el problema inverso de EEG. Para resolver este tipo de problemas, información

apriori debe ser supuesta para aśı obtener una solución única y óptima. En el presente trabajo

investigativo, se proponen distintas aproximaciones a la solución del problema con el objetivo de

mejorar la precisión e interpretabilidad de las estimaciones de actividad cerebral. En primer lugar

se propone un método que incluye un modelo auto-regresivo, no lineal, realista y variante en el

tiempo para restringir las dinámicas temporales de la solución a dicho modelo. En segundo lugar, se

propone un algoritmo que permite relajar la suposición de estacionariedad que comúnmente se hace

en este tipo de problemas, esto se logra a través de la creación de una matriz de covarianza variante

en el tiempo que permite adaptarse a los cambios espacio temporales de la dinámica cerebral. Por

último se propone un algoritmo en el cual se representa la actividad cerebral a traves de un

conjunto de funciones espacio-temporales las cuales son construidas teniendo en cuenta el contexto

fisiológico del problema. Los métodos propuestos son comparados tanto con técnicas clásicas como

con métodos del estado del arte usando señales simuladas, y finalmente son validados usando datos

EEG reales. En general, los métodos propuestos son eficientes y competitivos en comparación a

los métodos usados como referencia. Keywords: EEG, problema inverso, mapeo cerebral.
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1. Preliminaries

1.1. Introduction

The study of the human brain is of great interest because its complete understanding may lead

to effective treatment of several brain diseases, and to the full understanding of human cognitive

processes [1]. The main goal is to identify areas of the brain related to certain pathologies or

cognitive processes (information extraction in the spatial domain) and also to identify dynamics

that rule the activation of brain areas, explaining how they relate with each other and how the

brain works as a whole.

However, one of the most limiting issues regarding the study of the brain is information sensing and

extraction. Several techniques have been developed to non-invasively extract information about

brain functions. Some of these techniques are: functional Magnetic Resonance Imaging (fMRI),

functional Near-Infrared Spectroscopy (fNIRS), Positron Emission Tomography (PET), among

others. Most of these techniques offer a great spatial resolution, allowing to precisely identify

active areas related to certain brain states [30]. Nevertheless, such methods are expensive and,

typically, do not offer good temporal resolution, which hinders analysis of brain dynamics and

derived physiological interpretations.

On the other hand, Magnetoencephalography (MEG) and Electroencephalography (EEG) are

methods that can also be used to study the brain. These techniques are well known for their

high temporal resolution [19]. Between MEG and EEG, the latter is more widely used due to its

considerably lower cost compared to all the aforementioned methods. EEG analysis have been

mainly used to study brain dynamics by identifying and analyzing neural rhythms, Evoked Po-

tential Responses (ERP), epileptic spikes, among others. Nevertheless, EEG recordings also have

spatial information because they are usually measured over the entire head surface, and conse-

quently, has also been used as neuroimaging technique. However, the measurement points are

relatively low -a couple hundreds at best-, while the discretized brain activity generators -current

dipoles or sources- are several thousands. This leads to a heavily ill-posed mathematical problem

because the available information is much lower than the information to be inferred [12]. This

problem is typically known as the EEG inverse problem or EEG-based neuroimaging.

To solve such problem, additional information must be a-priori assumed in order to get an unique

and optimal solution [12]. Classic approaches such as Minimum Norm Estimates (MNE) and

LOw REsolution TomogrAphy (LORETA) [22] encourage the simplest (MNE) and/or spatially

smoothest (LORETA) solutions. However, these assumptions barely contain specific information

about the problem at hand, not to mention information that could be potentially extracted from

available EEG recordings. In this regard, sLORETA [21] uses an initial estimation to obtain

an smoother, more focal reconstruction in a second estimation stage; another example is the
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use of a Linearly-Constrained Minimum Variance (LCMV) beamformer [32] to map sensor-level

information to the source level, and then use estimated information to improve the solution [15].

In a probabilistic context, all the methods mentioned above include the a priori information in the

form of covariance matrices. Consequently, such methods have been generalized under a frame-

work the defines a set of a-priori covariance matrices -termed priors hereafter-, and then, from this

extended and potentially redundant set, the most relevant components are selected, linearly com-

bined and further included in a final estimation stage. This is the main idea behind three iterative

Bayesian schemes called Greedy Search (GS), Automatic Relevance Determination (ARD), and

Multiple Sparse Priors (MSP) [9]. This approach has been further modified in the Sparse Basis

Field Expansion (S-FLEX) algorithm [14] to include the aforementioned spatial constraints in a

single-step optimization task. In S-FLEX -as in GS, ARD and MSP-, the prior set corresponds

to a dictionary of locally smooth spatial basis functions representing potentially active areas of

the brain. The representation of brain activity through such basis functions allows to obtain a

spatially coherent solution (solutions that are sparse and locally smooth in the spatial domain).

On the other hand, prior information can also be included in the form of temporal constraints

describing the temporal dynamics of neural activity. In this regard, from a general point of view,

two approaches have been presented: The first one deals with the inclusion of autoregressive (AR)

models to explicitly constraint estimated brain activity time series. The most naive approach

-it can be seen as the time-domain equivalent of LORETA- is to model brain activity through a

random walk model [27, 28], thereby, encouraging the smoothest time series. A more elaborate

approach was introduced in [10] and further analyzed in [3], here, a second order linear model

explicitly holding temporal resonance is used. In contrast, the second approach to include a-priori

information in the time domain is to automatically identify the main dynamics of available data

and use such components as implicit constraints. For example, in [24,25] the temporal components

are identified through a SVD decomposition of the temporal covariance matrix of the data and the

solution is found using only the most relevant time-domain components. Furthermore, it has been

shown that time-frequency representations provide insightful information about dynamics of neural

processes. Consequently, using main features of time-frequency representations may significantly

improve the solution. Examples of the latter approach can be found in [7, 11, 20, 31].

The present research work is outlined as follows: The remaining pages of the current chapter deal

with the mathematical description of classic and state of the art brain mapping methods. Also,

the general and specific objectives of the present work are stated. Furthermore, in chapter 2 we

discuss the first proposed method, which is an Iterative Regularization algorithm -termed IRA-

that allows to include time-varying linear and non linear AR models as time-domain prior infor-

mation aiming to explicitly describe the dynamics ruling neural activity. Additionally, we present

the experimental setup used to simulate the EEG recordings used throughout the manuscript to

assess and compare the performance of considered methods. Also, we compare the effects of ex-

plicit versus implicit inclusion of temporal information in the EEG inverse solution framework.

Moreover, in chapter 3, we describe a novel methodology to include time-varying a-priori infor-

mation into a standard Bayesian estimation framework. This approach -termed DOBERMAN-

allows to relax the assumption of brain activity stationarity while using physiologically motivated

spatial a priori information. Finally, in chapter 4, we present a new method that allows to recon-
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struct non-stationary activity from space-time-frequency dictionaries using an objective function

that encourages spatial coherence and sparsity in the time-frequency domain, thus, representing

physiologically plausible assumptions about neural activity.

1.2. Objectives

Based on the aforementioned techniques and their corresponding open issues, we develop the

current research work around one general objective which is further expanded into three specific

objectives, as follows:

1.2.1. General Objective

To develop a framework that improves the accuracy and interpretability of the EEG inverse problem

solution by using physiologically motivated constraints. Such physiologically motivated constraints

should be related with the complex spatio-temporal dynamics inherent to the studied problem.

1.2.2. Specific Objectives

• To develop a method that includes a non-linear time varying model to explicitly constrain

the time series of the inverse problem solution. The time varying model corresponds to a

state of the art model used to describe realistic time series of cortico-thalamic activity.

• To propose a methodology that provides a time varying a priori covariance matrix, aiming

to dynamically constrain the spatial distribution of the brain mapping solution, relaxing the

stationarity assumption usually found in state of the art methods. To this end a reduced

dictionary of spatial basis functions is used to describe brain areas potentially related to

different mental states.

• To develop a brain mapping method that provides a solution encoded in a joint space-

time-frequency domain through a predefined sparse set of spatial and time-frequency basis

functions. To this end, we use the formulation of two state of the art methods and then

perform the joint estimation of the weighting coefficients of the spatial and time-frequency

basis functions.

1.3. EEG forward and inverse problem formulation

To represent the electromagnetic field measured by EEG, We assume the following linear model [1,

12]:

Y = LJ + ǫ, (1-1)

where Y ⊂RNc×Nt is the EEG data measured by Nc sensors at Nt time samples, J⊂R3Nd×Nt is

the activity of Nd current dipoles uniformly distributed on the cortical surface with unconstrained
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orientation, and L⊂RNc×3Nd (termed lead field matrix ) is a gain matrix representing the relation-

ship between current dipoles and EEG data. Also, we assume that Y is affected by a zero mean

Gaussian noise ǫ ⊂ RNc×Nt with covariance cov(ǫ) = Qǫ = INc ⊂ RNc×Nc , where I is an identity

matrix.

Within a Bayesian framework, the EEG inverse problem may be formulated as a Maximum A

Posteriori -MAP- estimation procedure by finding the most probable estimation Ĵ with regards to

measured EEG data and a priori considerations, that is, as the argument maximizing the following

posterior estimation problem: argmax
J

{p (Y |J) p (J)} , where p(Y |J) is the conditional posterior

probability of J given the measurements Y and p(J) is the prior distribution of J . Moreover,

assuming the posterior density to have a Gaussian distribution, the estimation of J leads to the

following minimization problem [12]:

argmin
J

{||Y − LJ ||2F + λΘ (J)} (1-2)

where ‖ · ‖F denotes the Frobenius-norm, λ ⊂ R+ is a tuning or regularization parameter, and

Θ (J) ⊂ R+ is an energy function associated with p(J) and corresponds to the so called prior.

1.4. Selection of prior information in the spatial domain

If the prior is assumed to be Gaussian, i.e., when Θ (J) represents a Gaussian distribution with

zero mean and covariance matrix Q; estimation of brain activity Ĵ can be computed as function

f(Q,Y ): Ĵ = QL⊤(Qǫ + LQL⊤)−1Y . Since prior Q is a parameter that heavily affects the

solution, its selection is an issue of great interest.

Non-informed approaches Particularly, the simplest approach for selecting Q is to define it as

Q = I3Nd
, which corresponds to MNE [23]. A more elaborated approach -LORETA [22]- defines

Q=(∆T∆)−1, being ∆ ⊂ R3Nd×3Nd the spatial Laplacian operator, which encourages smoothness

in the spatial domain. Yet, both plain estimators do not reflect significant physiological properties

of the problem at hand and consequently are termed non-informed approaches.

Informed approaches Instead, there are also the informed estimators, that explicitly extract

information provided by available EEG signals. For example, sLORETA [21] and Linear Con-

strained Minimum Variance Beamformer (LCMV) [15] perform a two stage estimation process in

which the second estimation is computed using a covariance matrix calculated in the first stage

using available EEG measurements.

Multiple Sparse Priors (MSP)

To make more flexible the definition of Q, both informed and non-informed estimation approaches

can be gathered under a generalized framework, as discussed in [9, 33], where the matrix Q is

expressed in terms of a linear combination of a fixed, but known set of components contained in
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(a) Small (b) Medium (c) Large

Figure 1-1.: Example of spatial patches, with different sizes, used in ARD/GS/MSP and

S-FLEX. Each column of Φs corresponds to a single cortical patch.

the columns of a given matrix Φs ⊂ R3Nd×Ns as follows:

Q =
∑

i∈Ns

hi Diag (Φs(·, i)) (1-3)

where Diag (Φs(·, i))⊂R3Nd×3Nd is a diagonal matrix formed by the ith column of Φs and holding

a given prior component; hi ⊂R is a weighting hyperparameter, which is commonly calculated

based on the EEG data covariance [33].

Given that brain activity is expected to happen in sparse and locally smooth brain areas (referred

as spatial coherence), the set Φs can be extended by defining each column of Φs as a potentially

active cortex area (termed cortical or spatial patch), as illustrated in Figure 1-1.

The use of an extended set Φs that is formed by a set of cortical patches is the main idea behind

Automatic Relevance Determination (ARD), Greedy Search (GS), and by extension the Multiple

Sparse Priors (MSP), presented in [9] and explored to a greater extent in [5, 33]. In all of these

algorithms, the estimation problem is further constrained by assuming that a small set of spatial

patches is enough to explain observed data, i.e., there is an sparsity assumption in the estimation

of the coefficient set {hi} which is achieved by assuming that such parameters follow the Laplacian

distribution.

Sparse Basis Field Expansion (S-FLEX)

Furthermore, spatial sparsity can also be formulated within a single step optimization task. For

example, prior information of J can be assumed to behave according to the Laplace distribution

with zero mean and identity matrix covariance. This assumption is equivalent to fix Θ (J) = ||J ||1,

where || · ||1 is the ℓ1-norm. Consequently, the optimization problem in Eq. (1-2) is redefined as

(a.k.a. the LASSO problem [29]):

argmin
J

{||Y − LJ ||2F + λ||J ||1} (1-4)



6 1 Preliminaries

However, formulation in Eq. (1-4) usually leads to unstable and scattered active sources that may

not be physiologically plausible, as discussed in [12, 14]. To address this issue, the Sparse Basis

Field Expansion (S-FLEX) algorithm is developed in [14], where current dipoles are redefined as

a linear combination of locally smooth spatial basis functions spread over the brain:

J = ΦsCs (1-5)

where matrixCs ⊂ RNs×Nt contains the weighting coefficients that are assumed to have a Laplacian

prior distribution. According to the aforementioned representation, and to obtain spatially sparse

solutions, the following objective function is derived:

argmin
Cs

{||Y − LΦsCs||
2
F + λ||Cs||1,2} (1-6)

where the notation || · ||1,2 stands for the ℓ1,2-norm that is the ℓ1-norm grouping each vector dipole

component under the ℓ2-norm to avoid orientation bias [14].

Once the matrix Cs has been estimated, then neural activity is recovered by using Eq. (1-5).

Furthermore, temporal inconsistencies produced by instantaneous S-FLEX solution that assumes

EEG observations as independent at each time sample, temporal coherence (smooth time series)

may be improved by accepting activation of the same brain areas during the entire EEG segment.

Bearing this in mind, Eq. (1-6) is rewritten to group each dipole time series under the ℓ1,2-norm,

considering that brain activity remains stationary for the whole analyzed time window, as usually

assumed by brain mapping methods [11,12]. However, it is commonly accepted that brain activity

has non–stationary nature. Therefore, stationarity assumption may hinder brain mapping accuracy

1.5. Selection of prior information in the time domain

In general, the use of the MAP estimator -in the way we have studied it so far- allows to obtain an

static solution, i.e., each time sample is treated as an independent solution, thus it does not include

temporal dynamics that an EEG recording could offer to improve brain mapping accuracy. In this

regard, time domain information can be included explicitly or implicitly, depending on whether

an explicit dynamical model is used to describe time-domain properties of neural activity, or on

the contrary, a set of automatically identified dynamics are used to constraint the solution. In the

remainder of this section We will explore both approaches.

1.5.1. State space modeling

The formulation of the model written in Eq. (1-1) can be augmented to a state space model to

explicitly constrain the temporal evolution of the neuronal activity through a predefined state

transition model, as follows

jk =fl(jk−1, . . . , jk−n,w) + ηk, (1-7a)

yk =Ljk + ǫk, (1-7b)

where ηk ⊂ RNd×1 is the normally distributed process noise, i.e., ηk ∼ N (0,Q), w ∈ RNp×1 holds

Np parameters of function fl, and jk ∈ R
Nd×1 and yk ∈ R

Nc×1 are vectors containing brain activity
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and EEG measurements at time instant k, respectively.

Early approaches define state transition model fl as a random walk model [27, 28] -encouraging

smoothness in the temporal domain-, e.g., jk = I3Nd
jk−1, where I3Nd

⊂ R3Nd×3Nd . More recent

approaches describe the temporal evolution of neural activity as a second order linear model that

allows to describe brain activity resonance [3,10]: jk = (a1INd
+b1∆)jk−1+a2INd

jk−2. In either way

the task remains as the estimation of hidden states jk which can be carried out using for example,

the Kalman filter. However, it has been suggested that such approaches are too simple to describe

the complex dynamics that brain activity can present during different mental states [3, 34].

1.5.2. Data driven temporal components identification

Given the complexity of brain activity dynamics, we are also interested in exploring how main

temporal features of available EEG measures can be used to implicitly constrain time-domain

components found in the brain activity estimation.

Main temporal components

In [24, 25], the authors propose that the temporal information contained in Ĵ corresponds only

to the first Nq main temporal components of available data Y . This is achieved by projecting

input data Y into the first Nq eigenvectors of the temporal covariance matrix that is obtained

from the SVD decomposition V SV T=Y TY , where V ⊂ RNt×Nt is a matrix where each column

corresponds to the right singular vectors (temporal components) of Y , and S⊂RNt×Nt is a matrix

holding the corresponding eigenvalues in the main diagonal. Then, the solution is calculated using

as observation set the projection Y V . Then, the resulting estimation is projected back to the

original space, i.e., Ĵ = ĴpV
T, where Ĵp is the estimated activity in the projected space.

Time-frequency representation

Since brain activity should be assumed as non-stationary, time–frequency representations of neu-

ral activity has been proposed before to investigate dynamic properties of the EEG data during

transient physiological episodes. For example in [7,20], raw data is represented with a set of time-

frequency atoms, and then the estimation is carried out using such representation as available

observations. Consequently, brain activity reconstruction is constrained to a set of time-frequency

atoms selected according to the information contained in available EEG data.

Time-Frequency Mixed Norms Estimate The aforementioned time-frequency approaches may

be modified to include time-domain constraints not at the sensor level -as described so far-, but

instead, directly at the source level. To address this issue, Time Frequency Mixed Norm Estimates

(TF-MxNE) algorithm is presented in [11]. Here, time-frequency domain priors are considered

using several predefined time-frequency atoms encoding non-stationary dynamics. Thus, brain

activity J is now redefined in terms of a predefined time-frequency dictionary:

J=CtΦt, (1-8)
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where Φt⊂CNf×Nt holds a set of Nf time-frequency basis functions, and Ct⊂CNd×Nf is the coef-

ficient set to be estimated. To maintain the sparse row structure in the coefficients (to guarantee

that only a few sources are active during the entire analysis interval), while simultaneously promot-

ing sparsity of the time-frequency decompositions (only a few basis functions are used to explain

brain activity), the following composite prior formed by the sum of ℓ1,2 and ℓ1-norms is used:

Θ (Ct) = λs‖Ct‖1,2 + λt‖Ct‖1, where λs ⊂ R+ and λt ⊂ R+ are the regularization parameters rul-

ing spatial and temporal sparsity, respectively. Consequently, the objective function in Eq. (1-2)

is modified to include the aforementioned priors as follows [11]:

argmin
Ct

{||Y − LCtΦt||
2
F + λs||Ct||1,2 + λt||Ct||1} (1-9)

Although, time-frequency sparsity provides robustness to noise because low energy atoms (com-

monly related to noise) are trimmed to zero, placing in Eq. (1-9) the ℓ1,2-norm prior directly on

the dipoles may lead to scattered and spatially unstable solutions that are inherent to the ℓ1-norm

estimator.



2. Time-varying state space models in an

iterative regularization framework - IRA

2.1. Introduction

To improve brain mapping accuracy, spatial and temporal dynamics inherent to neural processes

should be considered within the inverse problem solution framework [26]. Specifically, temporal

dynamics can be included in the form of a dynamic estimation model that constrains the solution to

some predefined geometric or physiological restrictions. Particularly in [27,28], the time domain of

the solution is constrained to a temporal random walk model, i.e., maximum temporal smoothness,

however, this model is not physiologically meaningful. Since a physiologically motivated model

would allow an adequate description of the system dynamics, it increases information provided

by the inverse solution. To this end, an improvement in the description of the source dynamics

is accomplished grounded on the telegrapher’s equation, explicitly holding temporal resonance, as

proposed in [2,10]. Under this framework, however, the dynamic estimation model is restricted to

be linear. Instead, we propose the use of Dynamic Neural Fields (DNF) approximating non-linear

dynamic models, which may improve brain mapping accuracy since these non-linear models are

more realistic and allow a better representation of neural dynamics [6, 17, 18]. In this chapter,

we propose the estimation of brain activity using a state space model that includes time-varying

DNF-models to describe brain activity. Under this framework, the time-varying parameters of

the DNF-model are calculated iteratively at each time sample without significantly increasing the

computational burden. The proposed method is validated using real EEG data containing ictal

and interictal events for four different epilepsy patients.

2.2. Materials and Methods

2.2.1. Brain Activity Description using Autoregressive Models

We will consider dynamic systems described by the following equation system:

wk = g (wk−1) + ǫk (2-1a)

jk = fl (jk−1, . . . , jk−m,wk) + ηk (2-1b)

yk = Ljk + εk (2-1c)

where g is a linear vectorial function of first order that models the dynamics of wk ⊂ RNp×1 (the

Np time varying parameters of function fl), and ǫk ∈ R
p×1 represents the noise in the model of
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the Np time varying parameters. Specifically, Eq. (2-1c) is the discrete time measure, Eq. (2-1b)

describes state evolution, and Eq. (2-1a) is the parameter evolution.

In Eq. (2-1b), the current density dynamics can be modeled by using DNF incorporating corti-

cothalamic connectivity and thalamic nonlinearity [6, 18]:
(

1

γ2
a

∂2

∂t2
+

2

γa

∂

∂t
+ 1− r2a∇

2

)
j (r, t) = q (ρ) (2-2)

where γa ∈ R is the mean decay rate, ra ∈ R is the mean range of axons a, and q(r) = qmax/(1 +

exp((−ρ(r) − θ)/σ)), with q(r) being the rth element of vector q ∈ R3Nd×1, that is the mean

firing rate of excitatory and inhibitory neurons. Vector q is nonlinearly related to mean potentials

ρ ∈ R3Nd×1, being θ ∈ R+ the mean firing threshold, σ ∈ R+ its standard deviation, and qmax ∈ R+

the maximum firing rate.

Furthermore, the following is a discretized version of the continuous time model in Eq. (2-2) [6]:

f (jk−1, . . . , jk−2) = A1jk−1 +A2j
2
k−1 +A3j

3
k−1 +A4jk−2 +A5jk−τ , (2-3)

where A1 = a1I3Nd
+ b1∆, A2 = a2I3Nd

, A3 = a3I3Nd
, A4 = a4I3Nd

, and A5 = a5I3Nd
, where

∆ ∈ R3Nd×3Nd is the spatial Laplacian matrix holding all spatial interactions among sources, and

τ is a delayed feedback.

2.2.2. An iterative regularization algorithm

As a concrete solution of the dynamic inverse problem, estimation of both neural activity jk, and

discrete non-linear parameters wk, can be formulated from Eqs. (2-1c), (2-1b), and (2-1a) as the

following optimization task:

argmin
jk,wk

{
‖P (yk −Ljk)‖

2
2 + λ

∥∥∥R
(
jk − f

(
ĵk−1, · · · , ĵk−m,wk

))∥∥∥
2

2
+ γ ‖H (wk − g (ŵk−1))‖

2
2

}

(2-4)

where the state estimation ĵk−i is carried out at the (k − i)-th step, ŵk−1 is the parameter also

estimated at the (k − 1)-th step, λ ∈ R+ and γ ∈ R+ are the regularization parameters ruling

minimization of each functional term, and P ∈ R
Nc×Nc , R ∈ R

3Nd×3Nd , and H ∈ R
p×p represent

weighting matrices that are related to the noise covariance matrices of the measure set yk, state jk,

and parameter wk, respectively. Also, the following equivalent representation of the norm || · ||22 is

considered: ‖P (a− b)‖22 = (a− b)T P TP (a− b). Consequently, the aforementioned relationship

between weighting covariance matrices are redefined in the following form: The covariance matrix

of the scalp measures, Qǫ =
(
P TP

)−1
, with Qǫ ∈ RNc×Nc , the state covariance, Q =

(
RTR

)−1
/λ,

with Q ∈ R3Nd×3Nd , and the parameter noise covariance Γ =
(
HTH

)−1
/γ, with Γ ∈ Rp×p. So,

defining the objective function of Eq. 2-4 as the functional Ψ (jk,wk, λ, γ), it may be rewritten in

the form:

Ψ (jk,wk,Λ,Γ) = (yk − Ljk)
T
Q−1

ǫ (yk −Ljk) (2-5)

+
(
jk − f

(
ĵk−1, . . . , ĵk−m,wk

))T

Q−1
(
jk − f

(
ĵk−1, . . . , ĵk−m,wk

))

+ (wk − g (ŵk−1))
T Γ−1 (wk − g (ŵk−1))
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The above multivariate optimization task is solved by iteratively optimizing one variable at a

time, while remaining variables are kept fixed. Consequently, given a known state estimation ĵk,

estimation of the model parameters ŵk can be obtained by minimizing Eq. (2-5) with respect to

wk, that is:

ŵk = argmin
wk

{
Ψ
(
ĵk,wk,Λ,Γ

)}
(2-6)

After replacing jk with ĵk in Eq. (2-5), the minimization task in Eq. (2-6) is accomplished by

calculating the Jacobian with respect to wk, which is determined as follows:

∇wk
Φ
(
ĵk,wk,Q,Γ

)
=2

(
GT

kQ
−1Gk + Γ−1

)
wk (2-7)

− 2GT

kQ
−1ĵk − 2Γ−1g (ŵk−1)

where Gk = ∂f/∂wk, with Gk ∈ R3Nd×p.

Hence, once equaling Eq. (2-7) to 0, estimation ŵk is reached:

ŵk =
(
GT

kQ
−1Gk + Γ−1

)−1
(
GT

kQ
−1ĵk + Γ−1g (ŵk−1)

)

Likewise, provided the known parameter set ŵk, and Jacobian with respect to jk expressed as:

∇jkΦ (jk, ŵk,Q,Γ) =2
(
LTQ−1

ǫ L +Q−1
)
jk (2-8)

− 2LTQ−1yk − 2Q−1f
(
ĵk−1, . . . , ĵk−m, ŵk

)
,

estimation of the current density vector ĵk is also performed by minimizing functional in Eq. (2-5)

with respect to jk. So, we get the following estimation ĵk :

ĵk =
(
I3Nd

−QLT
(
LQLT +Qǫ

)−1
L
)(

QLTQǫ
−1yk + f

(
ĵk−1, . . . , ĵk−m, ŵk

))
(2-9)

Overall, the dual iterative estimation of ŵk and ĵk requires only some inverse calculations of sizes

Np ×Np and Nc ×Nc, respectively, making this method suitable for practical implementation.

2.3. Experimental Setup

In the present section we describe the simulations and general setup of the experiments utilized to

assess the performance of the analyzed methods throughout the present research work.

2.3.1. Simulated EEG data generation

The most common approach to assess the EEG inverse solution is the use of simulated EEG

recordings where brain activity is known, so that estimation quality can be objectively validated.

In this work, activity is simulated for one, three, and five active dipoles with random location and

orientation. Since in the present work most of real data used to validate the considered methods

corresponds to time-locked data (as for example ERP), simulated data sets are generated using the
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(a) One active source (b) Three active sources (c) Five active sources

Figure 2-1.: Examples of the time series used in the simulations for different number of active

dipoles.

same trial-based model. Figure 2-1 shows examples of generated time series for different number

of active dipoles used in the experiments. Similarly to the activity used in the simulations in [11],

each time series of the active dipoles is generated using real Morlet wavelets with a length of 1.5 s,

sampled at 120Hz, and holding the following parameters:

– Random central frequency with a mean of 9Hz and standard deviation of 2Hz, sampled from

a Gaussian distribution.

– Random time shift generated by normal distribution with standard deviation of 0.05 s and

mean value that is selected depending on the number of active sources as follows: 0.75 s for

one active source; 0.375 s, 0.75 s, and 1.25 s for three active sources; 0.25 s, 0.5 s, 0.75 s, 1 s,

and 1.25 s for five active sources.

To get more realistic simulations, we consider both biological and measurement noises for each trial.

The former noise stands for neural activity being not related to the ERP under consideration, i.e.,

background brain activity, whereas the latter component represents together environmental and

acquisition noise. As typically assumed for biological systems, we model the biological noise as

having the power spectral density inversely proportional to the frequency (also referred to as flicker

or pink noise). Specifically, we add pink noise to 1000 randomly selected dipoles for each trial,

and the amplitude of these spurious sources is set as −5 dB Signal-to-Noise Ratio (SNR) at the

source level. Therefore, each trial is computed by first multiplying the simulated brain activity

with the fixed lead field matrix and then adding measurement noise as to get an SNR of 0 dB

at the sensor level. Since ERPs are derived by averaging EEG to time-locked stimulus events,

yielding a SNR proportional to the number of averaged trials, we select the number of trials as

5, 20, 50, 100, and 250, to calculate mapping accuracy at the following SNR values: −5, 0, 7, 12,

and 14 dB, respectively. As a result, 50 runs are carried out to obtain statistically significant results

for each combination of number of trials and number of active dipoles.

In turn, the head model used to generate the lead field matrix comprises 4000 dipoles placed only

on the tessellated cortex surface. In some studies, dipoles have been assumed to be perpendicular

to the cortex surface since main EEG data generators are the pyramidal cortical neurons, whose
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(a) Relation between number of trials and SNR

for three different noise levels at source space.

(b) Cortical manifold and electrodes used

in the simulations and real data analysis.

Figure 2-2.: Details of the model used in the simulation of EEG data.

dendritic trunks are locally oriented in parallel and pointing perpendicularly to the cortical sur-

face [1]. However, if a reliable head model of a concrete studied subject is not available (that is,

when using atlases), this assumption cannot be trusted. Therefore, given that we use an atlas in

the present study, a dipole set with unknown values of amplitude and orientation is considered,

yielding a total of 12000 unknowns per time instant: 3 variables per dipole that represent activity

strength in each one of the three dimensional directions.

Furthermore, the simulated brain activity is measured by 59 electrodes placed according to the

international 10-20 system. The visual representation of the cortex and sensor locations can be

seen in Figure 2-2.

2.3.2. Depth bias compensation

Since it is difficult for EEG recordings to detect deep neural generators, the reconstructions are

typically biased towards reconstructing superficial sources. Therefore, the so called ”depth bias

compensation” procedure should be carried out to avoid such bias. In Appendix A, we have studied

different methods serving this purpose. Although, throughout the present work we have used the

following depth compensation procedure, presented in [11].

Specifically, for the ith column of L, i.e., L(·, i), the normalization term is calculated as follows

Ω(i, i) =

√
(||Lx(·, i)||22 + ||Ly(·, i)||22 + ||Lz(·, i)||22)

ζ
(2-10)

where 0 < ζ < 1 is a parameter that determines how strong the depth compensation is. When

ζ = 0, there is no depth bias compensation, on the other hand, ζ = 1 leads to full compensation.

For the present work, this parameters was empirically fixed as ζ = 0.6.

2.3.3. Reconstruction performance measures

All the algorithms considered in this work are compared in terms of reconstruction accuracy.

Specifically, to assess spatial quality of achieved activity reconstruction, the following positive

semidefinite measures are used:
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– Earth-Movers Distance, me⊂R+, that measures dissimilarity between two activity distribu-

tion, in other words, the cost of transforming the reconstructed activity into the true activity.

It is defined as follows:

me = de

{
Je, Ĵe

}

where Je ⊂ R3Nd×1 is the energy of simulated activity averaged across time and Ĵe is its

corresponding estimation. The lower the value of me, the better the achieved reconstruction.

– Spatial Accuracy Index, ma⊂R+, that shows algorithm precision of location prediction of

the true activity local maxima of reconstructed brain activity. Therefore, the higher the

value of ma, the better the achieved reconstruction. This measure is computed as ma =

Ntp/(Ntp + Nfp) and requires each reconstruction dipole representing a local maximum to

be labeled as either True Positive tp or False Positive fp. To this end, we label each local

maxima of the reconstruction as tp if the geodesic distance to a given simulated local maxima

is less than some search-size. Specifically, we fix that size as 5 cm. Otherwise, a given local

maxima of the reconstruction is labeled as fp.

On the other hand, temporal reconstruction quality is assessed using Maximum correlation, mc⊂

R
+, that is dipole-wise computed between the time series of the reconstructed activity and the

simulated active dipoles. The mean over all estimated maximum correlation values is reported. In

this case, the higher the value of mc, the better the achieved reconstruction.

2.3.4. Implementation details of IRA

As dynamic constraints in the inverse problem solution, based on the DNF model presented in [6,17]

(Eq. (2-3)), we consider the following two approaches:

– Linear model that does not consider the delayed state as consequence of the introduced

extra-cortical loop nor non-linear terms, i.e., a2 = a3 = 0:

fl (jk−1, jk−2w) = A1jk−1 +A4jk−2, (2-11)

with Np = 3 and wT =
[
a1 b1 a4

]
. Hereafter, this approach is termed IRA3.

– Non-linear model that includes the non linear terms of Eq. (2-3), but it ignores the extra-

cortical neural feedback (higher order lag):

fl (jk−1, jk−2,w) = A1jk−1 +A2j
2
k−1 +A3j

3
k−1 +A4jk−2, (2-12)

In this case wT =
[
a1 b1 a2 a3 a4

]
, i.e., Np = 5. Hereafter, this approach is termed

IRA5.

Another aspect to be considered is the appropriate choice of the hyper-parameter values, λ and

γ. Specifically, estimation of covariance matrices Q and Qǫ strongly depends on the fixed reg-

ularization parameters. To this end, several methods can be used, including L-curve, General
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(a) me for one active source. (b) me for three active sources. (c) me for five active sources.

(d) ma for one active source. (e) ma for three active sources. (f) ma for five active sources.

Figure 2-3.: Spatial quality of the reconstructions obtained with:

�LORp �KAL �IRA3 �IRA5.

Cross-Validation (GCV), and the Akaike’s Bayesian Information Criterion, as described in [10,12].

Here, we calculate hyper-parameter values using the following minimization function [12]:

argmin
λ,γ

||Ljk(λ, γ)− yk||2

trace(INc
−LT (λ))2

where T (λ) is the inverse operator defined as T (λ) = QLT
(
LQLT +Qǫ

)−1
.

2.4. Results of simulated EEG data

To assess the performance of IRA, it is compared against a Kalman filter estimation as studied

in [10] and the LORp estimator. The latter correspond to a LORETA estimation but using only

the principal components of the EEG data covariance -as explained in chapter 1.5.2-. This is to

analyze the differences between explicit and implicit inclusion of temporal constraint in the EEG

inverse problem.

Figure 2-3 shows the estimated spatial quality measures. According to me (top row), the perfor-

mance of the four methods is relatively constant for different number of active sources, being the

Kalman filter the method with the worst performance. For LORp, me is inversely proportional

to the number of trials, i.e., SNR. This is because for low SNR, the main components identified

actually correspond to noise, and not to simulated neural activity. On the other hand, Kalman

and IRA estimations are much more robust to noise, however, for high SNR, LORp has a better

performance than the other considered methods.

Regarding ma, despite its greater dispersion, LORp performance is considerably better than the

other methods. This means that the localization error achieved with Kalman and IRA is very

high. Additionally, once again it can be seen that noise is a critical parameter for LORp since for

low SNR it continues showing bad performance.

Regarding the temporal reconstruction quality mc, shown in Figure 2-4, IRA3 and IRA5 perform

better than the other methods for several active sources (three and five), performing with a very
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(a) mc for one active source. (b) mc for three active sources. (c) mc for five active sources.

Figure 2-4.: Maximum correlation achieved with each estimator.

�LORp �KAL �IRA3 �IRA5.

low dispersion of the results. For a single active source, the performance of IRA3 and IRA5 is

equivalent to the performance of LORp. Finally, in each considered scenario, the performance of

Kalman was significantly lower compared to the other considered methods.

2.5. Real EEG data

2.5.1. Database

To validate IRA Performance, two real EEG datasets are used:

• The first set is a segment extracted from a long EEG recording from a male subject (PERNC)

in awake resting state, aged 24 years and diagnosed with focal epilepsy in the right frontal

lobe. The EEG recording was collected during routine clinical practice at Instituto de Epilep-

sia y Parkinson del Eje Cafetero, Pereira, Colombia. The EEG signals were recorded using

34 Electrodes placed according to the 10-20 system and sampled at 1 kHz. The digitalized

signal was subsampled at 200Hz. The segment analyzed has a length of 1 s and contains

the beginning of an ictal event marked by the epileptologist at t = 0 s. The recording begins

at t = −0.5 s

• The second dataset used was presented at [35] and is freely available online1. The original

data set contains EEG recordings of 23 cases of severe epilepsy diagnosed and operated

for intractable epilepsy. Since the real datasets are used in the present work to validate

IRA, we utilized EEG registers of only three of the subjects to keep the scope of the work

narrow enough, namely, the code names of the studied subjects are: GILPAU, NOWJON,

and FRAANN. The segment analyzed has a total length of 6 seconds: 2 seconds before the

ictal event (t = 0 s) and 4 seconds after it.

The segments were preprocessed using a band pass filter between 0.5Hz and 25Hz. Moreover,

given how similar the results attained by IRA3 (linear state transition model) and IRA5 (non-

linear state transition model) are in the simulated dataset, we also study if such similarity holds

also for real data.

In this regard, we compared the solutions obtained for the real datasets -both Pereira dataset and

EEG.PL- and obtained that the solutions are virtually the same (about 97 − 98% of correlation

1The second dataset can be downloaded at http://eeg.pl/epi.

http://eeg.pl/epi
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(a) Pereira dataset. Subject: PERNC. Diagnosis:

Epiloptogenic focus on the right frontal lobe.

(b) eeg.pl dataset. Subject: GILPAU. Diagnosis:

Cortical dysplasia in left frontal lobe.

(c) eeg.pl dataset. Subject: NOWJON. Diagnosis:

Mesial temporal lobe epilepsy.

(d) eeg.pl dataset. Subject: FRAANN. Diagnosis:

Ganglioglioma within right hippocampus.

Figure 2-5.: Brain mapping achieved for real data, and corresponding EEG dataset.

both in time and space domains) which confirms the hypothesis about the resemblance of the

results obtained for the simulated datasets. Consequently, only IRA5 results are reported from this

point onwards, because the non-linear terms may provide more information about the underlying

processes.

2.5.2. Results

Figure 2-5 shows the real EEG segments considered in the present study and the averaged activity

obtained with IRA52.

Regarding the results obtained for PERNC, IRA5 succesfully localize the epileptogenic focus in

the right temporal lobe, although some spurious activity appeared in the right temporal lobe and

in the left temporal lobe, probably related with the head model and residual noise in the EEG

signals.

2Average is taken from t = −2 s to t = 0 s
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Furthermore, mapping achieved for NOWJON localized the pathological tissue in the left temporal

lobe, which is the area removed during the surgical treatment. Traces of activity are also present

in the right temporal lobe.

Mapping obtained for subject FRAANN shows activity mainly in the right temporal and frontal

lobes. Such reconstruction agrees with the description made by the epileptologist: ”EEG - interictal

- showed some repetitive synchronous spiking within right fronto-temporal region”.

Finally, for GILPAU the reconstruction was not as accurate as in the other methods. In this case,

activity appears all over the brain, except in the occipital lobes, the highest spatial peak of activity

is located in the right temporal lobe even when the focus was diagnosed in the left frontal lobe.

Moreover 2-6 shows the DNF parameters corresponding to the brain mappings obtained for real

data. One of the main objectives of the proposed method was to identify different states (in this

case pathological/non-pathological) by analyzing the model parameters. In some cases, specifically

for GILPAU and PERNC, the linear parameters (a1, b1 and a4) show a change in the convergence

rate just in the time instant marked as the begin of the ictal event (t = 0). However, for NOWJON

and FRAANN, this is not evident enough and strong conclusions cannot be made. Furthermore,

it would be expected that non linear parameters a2 and a3 would provide a deeper understanding

of the underlying process. However, such parameters are the ones that contribute the less to the

model (virtually zero for the whole EEG segment). Also, even if such parameters are zoomed in,

there are no specific and/or conclusive behavior(central and right columns of Figure 2-6).

2.6. Discussion

The proposed IRA method deals with the inclusion of information about the neural activity gen-

eration model but also taking into account the dynamics of the model themselves. One of the

aspects that requires important consideration is the selection of the model that describes the neu-

ral activity. Naive approaches have been taken in the past, for example by selecting random walk

models [27], or second order linear models [3, 10]. However, such models may not suffice to fully

describe complex dynamics found in EEG recordings.

To study the impact of the brain activity dynamic model in the EEG inverse problem solution, two

versions a DNF-based model are used to provide the solver with dynamic constraints compatible

with the problem at hand. The two versions correspond to a linear and a non-linear approximation

of the original DNF-model. This allows to test the hypothesis of whether the inclusion of non linear

terms improves the final reconstruction and considerably contributes to the identification of the

neural-activity generation model.

Results show that the differences between the linear and non-linear model is not significant. How-

ever, the inclusion of a time-varying model to describe changes in the brain dynamics improves

reconstruction accuracy in both temporal and spatial domains, at least compared with the time-

invariant model considered in the Kalman Filter solution used in [3, 10].

Furthermore, given that it is unlikely that all mental states and brain dynamics can be simple

enough to be described by a single non-linear model (as George Box once said ”all models are

wrong, but some are useful”), we compared the proposed approach with a standard method -

LORETA- using only Nq main temporal components of the data to constrain the estimation in the
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(a) NC all-parameters. (b) PERNC non linear parameters. (c) NC cubic parameter.

(d) GILPAU all-parameters. (e) GILPAU non linear parameters. (f) GILPAU cubic parameter.

(g) NOWJON all-parameters. (h) NOWJON non linear parame-

ters.

(i) NOWJON cubic parameter.

(j) FRAANN all-parameters. (k) FRAANN non linear parame-

ters.

(l) FRAANN cubic parameter.

Figure 2-6.: Parameters computed for each of the studied subjects. Left most columns shows all

the parameters, while the column in the middle and the right most column show,

respectively, only non linear and cubic parameters for the sake of clarity.

−a1 · · ·b1 − ·−a2 − −a3 − −a4.
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time-domain, (see LORp in Chapter 1.5.2). In this regard, the results show that using automat-

ically identified temporal components -LORp- yields better performance measures than explicitly

constraining the solution through a state space model, using either static (Kalman) or time-variant

linear/non-linear (IRA3 and IRA5) approximations of the DNF-based model. Nevertheless, such

results only hold for signals with high SNR.

An other aspect that is important to analyze is the temporal evolution of the DNF-based model

parameters. One of the main purposes of IRA -besides improving the reconstruction quality- is to

dynamically model the neural activity generators and identify its different states. This topic should

be directly assessed in real data since simulated data does not offer sufficient interpretability to

provide a conclusion. The temporal evolution of the model parameters during the analysis of the

real EEG segments allows to infer that IRA identifies changes of the activity generators, at least to

distinguish pathological from non-pathological states related with epilepsy. Both linear and non-

linear model do not show any differences in the results attained in this regard. Which means that

the non-linear terms do not truly help to model brain dynamics and raises another reason to believe

that constraining the temporal components of the reconstruction through implicit structures -as

done in LORp- is more appropriate than fixing a deterministic structure -as in Kalman, IRA3 and

IRA5-.

2.7. Summary

An Iterative Regularization Algorithm -IRA- has been proposed to improve the accuracy of brain

activity reconstruction through a time-varying state space model to explicitly constrain the dynam-

ics of neural activity. IRA has been compared to another state-space based framework proposed

in [10] and further studied in [3]. Results show that there is an improvement with respect to

this state space-based method. However, compared to implicit data driven temporal constrained

methods (LORp), IRA does not perform better. The second objective of IRA was to use the esti-

mated model hyperparameters to identify and describe changes in the dynamics of neural activity

generators. IRA succeeded in the identification and modeling of pathological and non-pathological

epilepsy-related events in some patients, although a strong conclusion cannot be claimed in this

regard. In general IRA has regular reconstruction accuracy and the estimate DNF-model param-

eters does not provide a strong insight about the brain activity generation model. However, the

latter topic should be further explored with different real data.



3. Dynamic spatial constraints for

non-stationary brain activity

reconstruction - DOBERMAN

3.1. Introduction

One of the physiologically fostered assumptions typically made in the solution of the EEG inverse

problem is that brain activity can be represented through a small/sparse set of spatial basis func-

tions (termed spatial blobs or patches), that is, the constrained solution is a linear combination of

some predefined spatial patches. The following patch-based approaches are the most representa-

tive in the state of the art: Automatic Relevance Determination (ARD) , Greedy Search (GS) [8],

Multiple Sparse Priors (MSP) [9], Sparse Basis Field Expansion (S-FLEX) [14]. Yet, such methods

assume that the active brain areas remain the same throughout the entire solution interval [11].

This assumption is far from being totally realistic in many practical scenarios, where brain activity

has strong spatio-temporal dynamics and may be non-stationary [11, 17].

The proposal presented in this chapter assumes that brain activity can be represented by a set of

small and locally smooth spatial patches, but relaxing the assumption about the stationarity of the

problem by using time-varying prior knowledge -introduced as a time varying a-priori covariance

matrix-. Specifically, our method is comprised of the following two stages: i) computation of a

locally smooth spatial dictionary where each element represents brain areas potentially generating

a set of pre-identified dynamics, ii) Linear combination of the spatial dictionary elements, which

is modeled as a time-varying process. Obtained results on simulated and real EEG databases

show that the proposed method improves the quality of brain activity reconstruction and provides

important interpretability of the solution through the estimated time varying components of the

solution.

3.2. Materials and Methods

3.2.1. Time varying priors in a Bayesian estimation framework

Though ARD, GS, MSP and S-FLEX provide a well-structured spatially sparse solution -which

is a physiologically meaningful feature-, their estimator completely ignores temporal EEG data

information and rather they assume that activity of certain brain areas remain active during the

whole analysis interval. To improve estimation quality of the solution, we develop the Dynamically

cOnstrained BRain MAppiNg approach, termed DOBERMAN, that makes the following assump-
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tions about the stochastic model of neural activity: i) It occurs over a small number of localized

brain regions, as assumed in ARD, GS, MSP and S-FLEX, and ii) it presents non-stationary tem-

poral dynamics that can be measurable in the second statistical moment (variance). Therefore,

we obtain an adaptive prior, Q, that encodes temporal changes of neural activity, while keeping

spatial coherence by also using a spatial dictionary Φs. The developed approach splits the solution

into the following two stages:

3.2.2. Time and spatial dynamics computation

First, Nq main temporal components are extracted from original input data by using the first

Nq eigenvectors of the temporal covariance matrix that is obtained from its SVD decomposition

V SV T=Y TY , where V ⊂ RNt×Nt is a matrix for which each column corresponds to the right

singular vectors (temporal components) of Y , and S⊂RNt×Nt is a matrix holding in the main

diagonal its corresponding eigenvalues.

Afterwards, a reduced spatial dictionary, Φ∗
s, is selected from the original set Φs by estimating

activity generated by the temporal decomposition explained above. Each element of the reduced

spatial set is calculated using the S-FLEX method, that is, {Φ∗
s(·, i) = S− FLEX

(
Φs,Y V(·,i)

)
:

∀i ∈ Nq}, where V(·,i) holds the i-th main temporal EEG data component. However, each ith

element must hold just one well defined spatially coherent generator. So, to avoid elements in Φ∗
s

holding several cortical patches, a k -means clustering algorithm is applied to properly determine

each generator as independent elements of the new dictionary. As a result, we obtained a reduced

spatial dictionary of size Nr ≥ Nq.

3.2.3. Computation of time varying hyperparameters

Given the i-th element of Φ∗
s, its corresponding hyperparameter at time instant k, hk

i , is recursively

calculated using the EEG covariance computed at a fixed time window centered at time instant k.

Namely, to estimate the temporal hyperparameter dynamics, a random walk model is considered,

within the following state space framework:

hk
i =hk−1

i + µk
i , ∀i ∈ Nr (3-1a)

vec
(
cov

(
Y k

))
=vec

(
LQkLT

)
+ γk (3-1b)

where vec (·) is the argument vectorization, cov
(
Y k

)
is the covariance of the window Y , centered

at time instant k, both µk and γk ⊂ R
N2

c×1 are measures of noise that are assumed to be normally

distributed with scaled identity covariance matrices, and the time varying prior covariance matrix

Qk is defined as Qk =
∑

i∈Nr
hk
iΦ

∗
s(·, i).

To estimate the hidden states in Eq. (3-1a) and (3-1b), the model can be rewritten by applying the

relationship between the Kronecker product (represented as ⊗) and the vec (·) operator as follows:

hk =hk−1 + µk (3-2a)

vec
(
cov

(
Y k

))
=L⊗ Lvec

(
Qk

)
+ γk (3-2b)
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Under this formulation, the hidden states hk are estimated using a standard Kalman filter. Then,

we carry out the final mapping using the temporal signatures determined at the beginning of the

whole process using Ĵp = QpL
⊤(Qǫ +LQpL

⊤)−1Yp

where Yp = Y V and Qp =
∑

i∈Nr
hiV Di ⊂ R3Nd×3Nd, where hi is the time series of the i-th

hyperparameter. This means that the reconstruction is obtained by projecting the original data

and the time-varying hyperparameters into the main temporal components V . Lastly, the final

reconstruction is projected back onto the original space, that is, Ĵ = ĴpV
T.

Figure 3-1 shows the schematic representation of DOBERMAN, including brain activity simulation

with different number of active dipoles, temporal decomposition, clustering stage and estimation

of time varying hyperparameters.

Reduced Dictionary Reduced dictionary

after clustering

Hyperparameters

Figure 3-1.: Illustrative example of DOBERMAN.

3.3. Experimental Setup

DOBERMAN is compared with a baseline method (LORp), and with two additional methods that

have in common the use of a predefined set of spatial basis functions to describe brain activity,

namely, S-FLEX and GS.

3.3.1. Implementation details of DOBERMAN

The parameters used in DOBERMAN are selected as follows:

– Temporal decomposition: The Nq temporal components to be used are selected to get, at

least, 90% of the estimated raw data variance.

– Clustering stage: The standard k -means algorithm is applied on the dipoles with non-zero

activity. Each (i, j) element of the affinity matrix K used in the k -means algorithm is

computed using an exponential kernel, wi,j = exp (−dg{xi,xj}
2/σ2), where σ is fixed to

5 cm and dg{xi,xj} stands for the spatial geodesic distance between the dipoles located

respectively at coordinates xi and xj. Moreover, the number of clusters to be found is the

number of eigenvalues of the affinity matrix that explain at least the 90% of the variance.
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– State space model of the hyperparameter vector h: The window used to compute the co-

variance of matrix Yk is centered at time instant k and its length is set as Nc to get a full

rank matrix. Additionally, Both covariances of noise processes, µ and γ, are set as identity

matrices.

– Spatial dictionary, Φs, is built in the form of Gaussian functions that are placed at every

discrete dipole:

Φs(i, j) = exp{−dg{x(i),x(j)}
2/σ2},

where Φs(i, j) ⊂ R+ is the value of the i-th element of the dictionary at jth dipole,

dg{x(i),x(j)} ⊂ R+ is the geodesic distance along the cortical surface between i-th and

j-th dipole, σ ⊂ R+ is the width of every used Gaussian function. The σ is to be selected

to get solutions having adequate spatial resolution (i.e., narrow functions), but at the same

time, as to promote local smoothness (i.e., wide functions). In the concrete case, this value

is heuristically fixed as σ = 1 cm. It is worth noting that such spatial dictionary was also

used in S-FLEX and GS.

3.4. Results of simulated EEG data

Figure 3-2 shows estimated measures of spatial quality estimated for the considered mapping

methods. Regarding me -top row-, for a single active source, S-FLEX outperforms the other

methods resulting also in low dispersion of the results. However, for several active sources, the

performance of S-FLEX remains constant but DOBERMAN significantly improves, maintaining

its low dispersion. Regarding GS, it has a good performance, although it is significantly worse

than S-FLEX and DOBERMAN. Lastly, LORp is the method with the worse performance and

bigger dispersion, and also, it is the method that is more sensitive to noise.

In terms of the spatial accuracy index ma, DOBERMAN has the best performance among all

considered methods when several sources are active, specially for high SNR. Nevertheless, for a

single active source, S-FLEX and GS achieved the best performance, although the dispersion of

the results is considerably higher than the other methods. For a single source, DOBERMAN has

a considerably low performance, even worse that LORp in some cases. Also, under this measure,

LORp has a similar performance compared to the other methods under high SNR, however, for

low SNR, its performance is heavily hindered.

According to the temporal reconstruction quality shown in Figure 3-3, DOBERMAN has the

worst performance under every considered condition, mainly when several sources are active in

the simulation. Under this measure, there does not exist a method with outstanding performance.

However, the methods based on spatial dictionaries have the steadiest performance -reflected with

the low dispersion in the mc values obtained-, while LORp -the only method not using spatial

dictionary- has a significantly higher dispersion.
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(a) One active source. (b) Three active sources. (c) Five active sources.

Earth-mover’s distance, me

(d) One active source. (e) Three active sources. (f) Five active sources.

Spatial accuracy index, ma

Figure 3-2.: Spatial quality of reconstruction achieved by:

�LORp �S-FLEX �GS �DOBERMAN.

(a) one active source. (b) three active sources. (c) five active sources.

Figure 3-3.: Temporal quality of reconstruction for:

�LORp �S-FLEX �GS �DOBERMAN.
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3.5. Real EEG data

3.5.1. Database

Real EEG data used to validate the DOBERMAN algorithm is a standard auditory odd-ball

experiment presented in [16]. Although, the data collection holds 12 subjects, we just consider

10, which are all healthy, with normal hearing, non-smokers, aging in the range of 21 to 34. All

subjects were asked to count a target stimuli while ignoring a non-target one in the context of

an online spelling task. The stimuli, which last 100ms, are separated from each other in 225ms.

In average, 450 trials for non-target stimuli and 120 trials for target stimuli were available per

subject. EEG signals were recorded monopolarly using 63 wet electrodes placed at symmetrical

positions according to the international 10 − 20 system. Channels were referenced to the nose.

The hardware sampling rate was 1 kHz and the signal was further sub-sampled at 200Hz. As

preprocessing stage, the data was band-pass filtered between 0.4 and 25Hz.

3.5.2. Results

Figures 3-4 and 3-5 show some examples of reconstructed responses to target and non-target

stimuli, respectively, estimated for one subject. Both Figures also display the estimated scalp maps

based on the measured EEG data, the time series of the averaged trials as well as the reduced

spatial dictionaries used to perform the reconstruction, and the corresponding hyperparameters.

Although it may be hard to draw a strong conclusion from the estimated scalp map, yet achieved

reconstruction shows activity located on the area right above the lateral sulcus at 150ms after the

beginning of the stimulus time, as seen in Figure 3-4. This activity is linked to the N180 ERP.

On the other hand, for the target stimuli response shown in Figure 3-5, auditory cortex remains

active as well as other sources now appearing in the frontal lobe that is one of the brain areas

associated with conscious processing of stimuli.

Furthermore, regarding the analysis of the spatial dictionary used to perform the reconstruction,

Figure 3-4 shows that for non target stimuli the two auditory cortices are spatially distinguished

an represented separately into a couple of different dictionary elements. Also, the hyperparameter

time series related to auditory cortex dictionary elements holds some periodical peaks every 225ms

that is actually the interval between stimuli. Thus, we may infer that the DOBERMAN algorithm

allows identifying the dynamics associated with the stimulus response (in this case, the N180 ERP).

In case of the target stimuli, obtained reconstruction shows that the most significant dictionary

elements are not only related to the auditory cortex, but also to the frontal lobe. In this instance,

the estimated time series h brings just a single peak at approximately 150ms and then another

at 300ms ; both maximum points may be correlated the N150 and P300 ERP, respectively.

Figure 3-6 (top row) shows the averaged brain activity computed for all subjects that took part

of the experiment. The localization of the auditory cortex is noisy because of the anatomical

differences among subjects, as well as the localization of the electrodes of the scalp may have differ

between each experiment. The average achieved for non-target stimuli shows strong activity in the

area surrounding the auditory cortex, namely, the lateral sulcus and the superior temporal gyri.

On the other hand, for target stimuli, the energy of the activity in the auditory cortex remains
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(a) Brain activity reconstruction. Top: Time

series of the averaged trials. Left: Scalp maps

computed for the averaged trials. Middle and

right: Different views of the reconstruction

achieved at two different time instant indicated

with two vertical lines in the top plot.

(b) Most significant elements of the spatial dic-

tionary and hyperparemters for the complete

dictionary.

Figure 3-4.: Brain activity reconstruction attained for non-target stimuli response of subject 6

and the corresponding spatial dictionary used in the reconstruction.

(a) Brain activity reconstruction. Top: Time

series of the averaged trials. Left: Scalp maps

computed for the averaged trials. Middle and

right: Different views of the reconstruction

achieved at two different time instant indicated

with two vertical lines in the top plot.

(b) Most significant elements of the spatial dic-

tionary and hyperparemters for the complete

dictionary.

Figure 3-5.: Brain activity reconstruction attained for target stimuli response of subject 6 and

the corresponding spatial dictionary used in the reconstruction.
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(a) Average for non-target stimuli. (b) Average for target stimuli.

(c) T-test scores.

Figure 3-6.: Average of mapping across subjects for target and non-target stimuli, with the

corresponding T-test score for each dipole to compare differences between active

brain areas during target and non-target stimuli

but decreases, and several sources appear spread over the cortex, mainly the frontal and parietal

lobe.

Lastly, to make clear the differences among brain areas activated by either target or non-target

stimuli, we carry out the t-student test on each discrete dipole. So, as displayed in 3-6 (bottom),

provided statistical test reaffirms those findings achieved above by visual inspection, i.e., one of

the statistical groups stands for activity surrounding the auditory cortex (colored in red), although

this is only evident in the right hemisphere.

3.6. Discussion

The proposed method -DOBERMAN- addresses the reconstruction of non-stationary brain activ-

ity by introducing a set of spatio-temporal constraints within the standard Bayesian framework.

To this end, we initially carry out a plain temporal decomposition of input EEG data to produce

the dictionary encoding existing spatial dynamics. Then, we introduce a set of time varying hyper-

parameters dynamically weighting spatial patches that provides the spatio-temporal constraints to

be used in the inverse problem solution.

One of the critical stages in the proposed method is the identification of the main temporal dy-

namics of the data. In the proposed approach we carry out this task with an SVD decomposition.

It has been shown that for high SNR, this approach is appropriate, however, if the SNR decreases,

the performance of DOBERMAN is expected to worsen due to the high sensibility of the SVD

with respect to the energy of the noise, i.e., for low SNR, the components identified as relevant

may correspond to noise. The SVD decomposition was used to due its relative simplicity and

affordable computational burden. In the analyzed scenarios, this decomposition was enough to

identify the main dynamics present both in simulated and real data. However, if we expect that

the most complex dynamics of the EEG data may not be fully identified with this naive approach
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-or if available data is too noisy-, the proposed method is transparent to the decomposition used

to identify the critical temporal components of brain activity dynamics. In this regard, for exam-

ple, a time frequency decomposition could be utilized. However, exploration of such diversity of

potential techniques is out of the scope of the present work.

Regarding the spatial basis functions to constraint the spatial distribution of reconstructed activity,

unlike the baseline methods S-FLEX and GS where certain active areas are encouraged to appear

in the solution during the entire time window of analysis, our contribution lies on the fact that

these spatial constraints are expressed dynamically in time. As a result, our algorithm includes

in the solution all concrete activated brain areas depending on the dynamics captured by the

estimated main temporal components. However, to ensure that each specific area corresponds to an

individual, focal structure,the clustering stage must be also included since the computed temporal

signature set may hold information about different clusters of activity. In the concrete case, the

k -means clustering algorithm is applied to determine properly each generator as an independent

element of the new dictionary. This proved to be one of the sensitive stages of DOBERMAN.

Specifically, the number of clusters and the bandwidth of the Gaussian kernel should be carefully

tuned, otherwise, spurious sources may begin to appear if too many clusters are assumed or if the

bandwidth of the kernel is too narrow.

To assess the EEG inverse solution, validation of the proposed DOBERMAN algorithm is firstly

carried out on simulated data. As a result, quality measures estimated activity allows inferring

that the DOBERMAN algorithm mainly outperforms LORp and GS. Furthermore, with respect to

S-FLEX, DOBERMAN is slightly superior in some scenarios, although, a strong conclusion cannot

be drawn in this regard.

Regarding the results of DOBERMAN in the real ERP data showed that the proposed method is

capable of correctly reconstructing realistic brain activity. Moreover, one of the main advantages

is that the hyperparameters weighting each element of the reduced spatial dictionary are highly

interpretable and may provided a greater insight about the spatial dynamics of the data. Specifi-

cally, for ERP data, the peaks corresponding to the activation of different brain areas can be easily

seen, and are associated with each of the stages of the perception stream.

3.7. Summary

In this chapter, we presented a novel method -termed DOBERMAN- which allows to relax the

stationarity assumption in the solution of the EEG inverse problem. This is achieved by including

in the standard Bayesian solution framework a time varying a priori covariance matrix of the brain

activity. Furthermore, to ensure that the solution has a physiologically meaningful distribution,

the proposed time varying covariance matrix is assumed to be composed of a set of well defined

spatial basis functions. Furthermore, to decrease the computational burden of the algorithm, only

a small set of spatial basis functions is used, such basis functions are the result of brain mappings

corresponding to the main dynamics identified through an SVD. In this regard, it has been shown

that for specific values of SNR, the SVD decomposition is not robust enough. Finally, for real data

it has been shown that the weighting hyperparameters computed for each element of the spatial

dictionary are highly interpretable and may be easily related to different brain states, depending
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on the studied neurological phenomenon.



4. Reconstruction of non stationary activity

using space-time-frequency dictionaries -

STOUT

4.1. Introduction

As stated throughout the present work, brain activity may be non-stationary for sufficiently long

EEG measures. Besides that, it has been shown the importance of obtaining a spatially coherent

solution which can be achieved by representing brain activity through a set of locally smooth spatial

basis functions. Two state of the art methods separately address such physiologically meaningful

constraints. Namely, Sparse Basis Field Expansion (S-FLEX) [14] regards with the representation

of brain activity using a set of focally sparse spatial basis functions (spatial coherence), while

Time-Frequency Mixed Norm Estimate (TF-MxNE) [11] addresses the non stationarity issue by

representing brain activity through a set of time-frequency basis functions. Inspired by TF-MxNE

and S-FLEX, we introduce a novel method to obtain a solution that handles spatial coherence -as

S-FLEX- and sparse time-frequency representations of the solution -as TF-MXNE-.

In the approach proposed in the present chapter we assume that brain activity may be represented

by a joint-linear combination of physiologically plausible spatial and temporal basis functions, fos-

tering brain activity reconstruction with spatial coherence but also considering the non stationarity

and complex dynamics that may be found in EEG recordings.

4.2. Materials and Methods

As stated before, the non-stationary nature of brain activity poses a major challenge to robust brain

mapping. Furthermore, algorithms that place spatial sparsity constraints directly in the source

space may lead to unstable and scattered solutions. To cope with both issues, we introduce the

Spatio-TempOral Unifying Tomography (STOUT), which supplies a generalized solution handling

jointly spatial-coherence and time-frequency sparsity. For this purpose, as proposed in [11], prior

information about brain activity J may be written as a combination of both time and spatial

dynamics in the form:

Θ (J) = Θs (J) + Θt (J) (4-1)

where Θs (J) and Θt (J) are the energy functions associated with specific spatial and temporal

dynamics, respectively.
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Although there are several approaches that yield sparse solutions in either time or space domains,

we based our method (STOUT) on SFLEX and TF-MxNE algorithms since both approaches are

based on physiologically motivated priors, expanding the current density into spatial or temporal

sparse basis fields, respectively. Consequently, we propose to represent brain activity J as a

single linear combination of basis functions holding joint spatio-temporal EEG data dynamics.

Particularly, based on introduced sparse basis fields S-FLEX and TF-MxNE, we express brain

activity in terms of the following joint space-time-frequency dictionaries:

J = ΦsCΦt, (4-2)

where C ⊂ C
Ns×Nt is the matrix holding the coefficients of the proposed linear combination.

Furthermore, as done in TF-NxNE, the Laplacian priors should be placed in C to encourage time-

freqency sparsity and spatially coherent solutions, i.e, Θ (C) = λs||C||1,2 + λt||C||1. Accordingly,

based on assumptions shown in Eq. (4-1) and (4-2), the present formulation leads to the following

optimization problem:

argmin
C

{||Y − LΦsCΦt||
2
F + λs||C||1,2 + λt||C||1} (4-3)

As a result of selecting a small subset of the spatial and time frequency dictionaries Φs and

Φt -which is achieved with the ℓ1 and ℓ1,2 norms-, the STOUT technique fosters brain activity

reconstruction represented through coherent and physiologically meaningful spatio-temporal sparse

basis fields.

As regards optimization of the objective function shown in Eq. (4-3), the mathematical formulation

is equivalent to one given in Eq. (1-9) for the TF-MxNE method. In other words, provided

the following linear transformation, L′ = LΦs, of the TF-MxNE lead field matrix, convexity of

problem in Eq. (4-3) supplies also the existence of optimal solutions. Thus, the optimizer used in

the TF-MxNE algorithm may also be used in our approach. Namely, we use the Fast Shrinkage

Thresholding Algorithm (FISTA) [4]. The resulting optimization procedure can be seen in the

algorithm 1 that relies on the given (ℓ1,2 + ℓ1)-norm proximity operator defined as follows [11]:

proxℓ1+ℓ1,2
(X) =

X(i,j)

|X(i,j)|

{
|X(i,j)| − λt

}
+


1−

λs√∑
∀i∈Nf

{
|X(i,j)| − λt

}2

+




where operator {·}+ yields the maximum value between the argument and 0, X(i,j) is the value

corresponding to the i-th row and j-th column of the buffer matrixX = λsΦsL
T(Y −LΦsCΦH

t )Φt,

with X⊂RNd×Nf , that is the proximity operator argument, being | · | is the absolute argument,

and ΦH
t is the Hermitian transpose of Φt.

4.3. Experimental setup

4.3.1. Implementation details of STOUT

To achieve optimal brain activity reconstruction, two main issues are to be considered during

implementation of the STOUT mapping algorithm: parameter tuning and construction of the
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Algorithm 1 Used FISTA algorithm to optimize the STOUT method

Require: Z = 0, all-zero matrix Z ⊂ C
Ns×Nf

Ensure: X = λSΦSL
T(Y −LΦsCΦH

t )Φt,

Ensure: τ = 1

while ||Z −Z0||F > tolerance do

Z0 ⇐ Z

Z ⇐ proxℓ1+ℓ1,2
(C +X)

τ0 ⇐ τ

τ ⇐ 1 +
√

1 + 4τ20 /2

C ⇐ Z +Z0(τ0 − 1)/τ

end while

STOUT

Reconstruction

Figure 4-1.: Illustrative example of STOUT.
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space and time–frequency dictionaries. In the first case, given that the ground truth is available for

the simulated EEG, we tune the values of both regularization parameters, λt and λs, in accordance

to the proposed residual norm criterion that we define as follows:

γ = ||Y −LJ ||2F/||Y ||2F ,

The regularization parameters are iteratively calculated to get reconstructions with the residual

norm closest to the ideal one in each run. Specifically, the regularization parameters are initialized

to obtain an all-zero reconstruction for each simulation, then at each iteration the parameters are

decreased by a factor of 0.7 until the ideal residual norm is reached. The same procedure is used

for the three considered methods S-FLEX, TF-MxNE and STOUT.

About the sparse basis fields needed in Eq. (4-3), they are constructed as follows

– Spatial dictionary, Φs, is built in the form of Gaussian functions that are placed at every

discrete dipole:

Φs(i, j) = exp{−dg{x(i),x(j)}
2/σ2},

where Φs(i, j) ⊂ R+ is the value of the i-th element of the dictionary at jth dipole,

dg{x(i),x(j)} ⊂ R
+ is the geodesic distance along the cortical surface between i-th and

j-th dipole, σ ⊂ R+ is the width of every used Gaussian function. The σ is to be selected

to get solutions having adequate spatial resolution (i.e., narrow functions), but at the same

time, as to promote local smoothness (i.e., wide functions). In the concrete case, this value

is heuristically fixed as σ = 1 cm.

– Time-frequency dictionary, Φt, is built using as the basis function the Short Time Fourier

Transform (STFT) having frequency resolution of 1.2Hz, time shift length of 10 samples,

and using a Gaussian window.

4.4. Results of simulated EEG data

To illustrate the temporal and spatial structure encouraged by STOUT, we carried out a sim-

plified estimation experiment using a randomly generated lead field matrix modeling 20 virtual

electrodes and 50 virtual dipoles. Figure 4-2 shows amplitude and sparsity pattern obtained for

several methods. LORETA reconstruction yielded an irrelevant sparsity pattern and a noisy and

blurry reconstruction. Furthermore, ℓ1 norm estimation achieved scattered spatial sparsity, and

the temporal structure does not correspond to the simulated activity. On the other hand, S-

FLEX achieved well structured spatial patterns due to the spatial basis functions, although, since

temporal dynamics are not taken into account, the time-frequency pattern is poorly recovered.

Furthermore, TF-MxNE achieves a good temporal pattern although the spatial structure does not

correspond to the simulation (scattered sources). Finally, STOUT achieved the best reconstruc-

tion: it preserves spatial and temporal patterns of the simulated activity which is encouraged by

the space-time-frequency dictionaries.
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(a) Simulation. (b) LORETA. (c) ℓ1 estimation.

(d) S-FLEX. (e) TF-MxNE. (f) STOUT.

Figure 4-2.: Time-space representation of the amplitude and sparsity patterns of reconstruction

achieved for several baseline methods and STOUT.

(a) One active source. (b) Three active sources. (c) Five active sources.

Earth Mover’s distance, me

(d) One active source. (e) Three active sources. (f) Five active sources.

Spatial accuracy index, ma

Figure 4-3.: Assessed spatial quality of brain mapping for :

�S-FLEX �TF-MxNE �STOUT
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(a) One active source. (b) Three active sources. (c) Five active sources.

Figure 4-4.: Average of the maximum correlation computed for each estimator.

�S-FLEX �TF-MxNE �STOUT

Top row of Figure 4-3 shows me computed for each simulation scenario. According to this measure,

the method with the best performance is S-FLEX, followed by TF-MxNE and then STOUT. There

are not significant changes in the performance of the considered method for different SNR values.

Furthermore, besides having the worst performance, STOUT has the highest dispersion, although,

in general, its performance is similar to TF-MxNE.

Moreover, bottom row of Figure 4-3 shows ma computed for simulated data. For a single active

source, S-FLEX and STOUT have a clear advantage with respect to TF-MxNE. Furthermore, the

dispersion of S-FLEX is highly affected by noise. Furthermore, for three and five active sources, the

performance of the three methods are almost equivalent, although S-FLEX has a slight advantage

with respect to STOUT and TF-MxNE.

As regards the temporal component of the reconstruction, Figure 4-4 depicts attained mc. Puz-

zling, under every considered scenario, S-FLEX has the best performance, followed by STOUT,

and then TF-MxNE which has the worst performance according to mc. For different number of

sources, the behavior is the same, although for five active sources, S-FLEX is slightly more sensitive

to noise than TF-MxNE and STOUT.

4.5. Real EEG Data

4.5.1. Database

STOUT was tested on real-world data in order to localize neural sources of auditory and visual

evoked potentials. In this regard, fifteen healthy subjects participated in an ERP study which was

designed to compare the evoked potentials from two sensory modalities in the context of a brain-

computer interface. Subjects alternately perceived sequences of either auditory (condition A) or

visual (condition V) stimuli. This data was recorded within a different study, which is precisely

described in [?]. In both conditions A and V, the stimuli had a duration of 130ms while the time

delay between the onsets of two consecutive stimuli was 200ms.

In each trial, six physically different stimuli were repetitively presented in a balanced and pseu-

dorandom order. This design resulted in a sequence of 36 stimuli per trial. During each trial

the subject had the task to allocate attention to a predefined stimulus (target) and to count its

occurrences, while neglecting the remaining five stimuli (non-targets). The study was designed

such that condition A and V only differed in the type of stimulus presentation such that the ERP

responses for the two sensory modalities can be compared for each subject. For condition V, six
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(a) Condition V, Subject 13. (b) Condition A, Subject 2.

Figure 4-5.: Non-Target stimuli response of two subjects.

visual stimuli differing in color and shape were presented in the center of a 19” screen. For condi-

tion A, six naturally recorded auditory stimuli (i.e. spoken syllables recorded from several voices)

differing in pitch and spatial direction were presented on headphones. For each condition, there

were 24 trials resulting in a total number of 144 target stimuli and 720 non-target stimuli per

subject.

EEG data was recorded with 63 electrodes, symmetrically placed at the standard positions of the

international 10 − 20 system. For off-line analysis, the EEG data was downsampled to 100Hz,

band-pass filtered between 0.4 and 23Hz and epoched around each stimulus presentation (from

150ms before stimulus onset to 800ms after stimulus onset). EEG epochs which contained eye-

and muscle artifacts were removed. The Event Related Potential (ERP) for the targets and non-

targets were then computed by averaging over the remaining epochs for each condition and subject.

STOUT was then applied to find the neuronal sources which generate the ERP.

4.5.2. Results

Figures 4-7.a and 4-7.b show two examples of reconstructions achieved for non-target visual and

auditory stimuli, respectively. In both cases, STOUT identified the areas associated with presented

stimuli, i.e., activation of the area right above the temporal lobe for auditory stimuli and activation

of the occipital lobe for visual stimuli.

Furthermore, Figures 4-6 shows the reconstruction provided by STOUT for target auditory and

visual stimuli. Similar to non-target stimuli responses shown in Figure 4-7, the areas corresponding

to auditory and visual primary cortices are also activated. However, significant activity appears

in the frontal lobes, and may be related to conscious stimuli processing, as expected for target

stimuli,

Figures 4-7.a and 4-7.b show the average across all subjects of the non-target visual and auditory

stimuli reconstruction. Once again, it is shown that STOUT reconstructed activity in the areas

associated with the primary visual and auditory cortices. However, for some specific subjects some

spurious sources appeared on areas of the brain non-related with the studied phenomenon.

Average reconstructions attained for target visual and auditory stimuli responses are shown in
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(a) Condition V, Subject 12. (b) Condition A, Subject 9.

Figure 4-6.: Example of reconstruction achieved for both conditions, for Target stimuli. The first

red vertical line corresponds to the first scalp map and corresponding

reconstruction, while the second red vertical line corresponds to the scalp maps and

reconstruction shown in the bottom of each subfigure.

(a) Condition V. (b) Condition A.

Figure 4-7.: Average of the reconstruction across all subjects for non-target stimuli, for both

conditions.
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(a) Condition V. (b) Condition A.

Figure 4-8.: Average of the reconstruction across all subjects for target stimuli, for both

conditions.

(a) Condition V NT vs Condition A NT (b) Condition V NT vs Condition V T

(c) Condition A NT vs Condition A T

Figure 4-9.: T-test scores to compare the active areas of the brain for both conditions, for Target

and Non-target stimuli. NT: NonTarget. T:Target.

Figures 4-8.a and 4-8.b, respectively. In this case, the results are not as conclusive as for non-

target responses. The averages show activity spread almost all over the cortex. Nevertheless,

activity right above the temporal lobe and on the occipital lobe remains for auditory and visual

stimuli, respectively. There is also significant activity in the frontal lobes, which, as stated before,

is associated with conscious perception and is expected for target stimuli processing.

Figure 4-9.a shows the t-scores obtained by the t-student test when comparing brain responses

to non-target visual vs non-target auditory stimuli. Results show that the first statistical group

corresponds to the occipital lobes -associated with visual stimuli responses- while the other group

corresponds mainly to part of the primary auditory cortex, although it is also associated with the

frontal lobe.

Furthermore, t-scores were also calculated to compare responses obtained for target and non-target

stimuli, for both conditions. Figure 4-9.b shows the results for condition V, here it can be clearly

seen that one of the statistical groups are the frontal lobes, however, the occipital lobes (visual

cortex) do not have a significant score. On the other hand, Figure 4-9.c shows the results for

auditory stimuli, as for condition V, one of the statistical groups are the frontal lobes (although

with some spurious sources in the occipital area), while the other group is the area surrounding

the primary auditory cortex.
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4.6. Discussion

We introduced STOUT as a method to constraint brain activity estimation in the temporal domain

through a set of sparse data-driven temporal dynamics, while keeping spatial coherence. Here,

spatial coherence means that activity is found in smooth focal areas. The proposed approach

is inspired by two different methods including the features encouraged by STOUT: S-FLEX for

spatial consistency and coherence, and TF-MxNE to model temporal dynamics of neural activity

using data-driven time-frequency constraints.

In the comparative study carried out to analyze the effects of the considered temporal and spatial

constraints in reconstruction quality, S-FLEX, TF-MxNE and STOUT were compared. Although,

there was not a significant difference between the performance of the three considered methods, TF-

MxNE had to lowest performance, next to STOUT. In general, S-FLEX had the best performance

in every considered scenario. Although we did not arrived to a strong conclusion in this regard,

this results may be caused by an incorrectly tunning of the regularization parameters (the ratio

between spatial and temporal regularization parameters is empirically set), also, the existence of

simulated biological noise may hinder the suitability of the residual norm as tunning criterion.

As stated above, one of the most important aspects to consider is the tunning of spatial and

temporal constraints used by STOUT. Properties of the spatial domain concerns the construction of

the spatial basis functions dictionary; in this regard, a balance should be kept between a dictionary

that provides a smooth solution -wide blobs- and a dictionary that allows to reconstruct focal

sources -narrow blobs-. In the temporal domain, the parameters are those that control STFT

resolution, or more generally speaking, the time frequency structure of the temporal dictionary.

The balance between time and frequency resolutions should be carefully analyzed (a standard

consideration in any time-frequency analysis), but more importantly, it must be taken into account

that the time-frequency representation detail should be fine enough to discriminate close dynamics,

but not so fine that it leads to computationally infeasible problems due memory and time resources

needed to solve the iterative optimization stage. As a final remark in this regard, the parameters of

the dictionary used for reconstructions performed in the present work were empirically balanced.

The experiments for real data provided a deeper insight into the performance and behavior of

STOUT. Encouraged spatial coherence allowed to focally identify the generators of the responses

to target and non target stimuli. On the other hand, the de-noising effect of encouraged time-

frequency sparsity allowed to obtain a good performance for experiments where only a few number

of trials were available, namely, responses to target stimuli. This is important since, normally, the

number of target stimuli responses available is significantly lower than the number of non-target

responses in this type of experiments.

As stated before, the computational cost of STOUT can be problematic if one -or both- dictionaries

are big enough. This may a be drawback, since STOUT’s precision is limited by computational

resources available. To address this issue, as a future work, the use of a data-driven dictionary

reduction should be carried out as preprocessing stage to lower the computational cost but without

sacrificing reconstruction accuracy.
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4.7. Summary

In the present chapter, we have introduced the Spatio-TempOral Unifying Tomography (STOUT),

which allows to represent brain activity through a sparse set spatial and time-frequency basis func-

tions, attending to the physiologically motivated assumptions of spatially coherence and complex

temporal dynamics. Although, results obtained for simulations suggested that STOUT is not more

accurate than the reference methods -S-FLEX and TF-MxNE-, its performance is competent. Be-

sides it is also suitable for real data, specifically reconstruction of ERP. However, some critical

issues should be addressed to improve its performance. First, the tunning of the regularization

parameters heavily affects the solution, therefore, it is quite probable that the use of heuristically

tunned parameters may hinder the performance of STOUT.



5. Conclusions and Future Work

5.1. General Conclusions and Main Contributions

Development of an iterative algorithm to estimate neural activity and its generation model

- IRA

In chapter 2, we have developed a novel method to dynamically constrain the time-domain dynam-

ics of brain activity estimation through a realistic non linear time-varying state space model. The

use of such model improves the brain mapping accuracy compared to a state of the art method

introduced in [3, 10], where a linear static model is used. However, compared to a method where

the time-domain dynamics are implicitly modeled (LORp), several comments should be made re-

garding the proposed method: Robustness to noise provided by IRA and potential interpretability

of the non linear model parameters also implies a lack of flexibility of the algorithm, i.e., the

model used in the state transition equation may not properly describe brain dynamics of a given

phenomenon, therefore, IRA requires a considerable analysis overhead to assess the suitability of a

given model with respect to the studied phenomenon. Furthermore, the convergence of the model

parameters is also a critical and problematic issue, probably because of the large amount of hidden

parameters that should be estimated (activity in each dipole and parameters of the model) from

the same set of available data, however this should be studied in more depth. From this chapter

we have concluded that the automatic identification of brain dynamics -as in LORp- is a more

feasible approach to include time domain a priori information in the EEG inverse problem than an

explicit state space model, nevertheless IRA had a performance at least comparable to the baseline

methods.

Design of a Bayesian estimation framework using time-varying a priori information -

DOBERMAN

The dynamically constrained framework presented in chapter 3 showed that the assumption of

spatial non-stationarity and sparsity, as expected in brain activity, improves the spatial accuracy

of brain activity estimation. Furthermore, the analysis carried out for real data showed that the

time-varying hyperparameters may provide a deep insight about the underlying neural processes

and relations between spatially coherent areas of the brain. Nevertheless, the use of the SVD to

identify the main time-domain dynamics is less robust to noise than other approaches -as IRA- and

may not be completely suitable to identify the most complex dynamics found in EEG recordings.

Therefore, different decomposition models should be studied to provide robustness to noise and

also identify more complex dynamics that may be potentially useful for the spatial dictionary used

to construct the time-varying a priori covariance matrix.
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Design of mapping algorithm representing brain activity through predefined sparse sets of

space-time-frequency dictionaries - STOUT

Finally, we have introduced a novel method that allows to represent brain activity through a

sparse set of space and time-frequency basis functions, in chapter 4. The contribution -termed

STOUT- is inspired by two state of the art approaches, namely S-FLEX and TF-MxNE. Although

the assessed performance for simulated scenarios showed that STOUT did not improve brain

mapping accuracy, results obtained for real data proved that the proposed method is suitable

for reconstructing Evoked Response Potentials, and yields physiologically meaningful solutions:

spatially coherent activity and smooth time series. Nevertheless, one of the drawbacks related with

STOUT is the tuning of the regularization parameters. Although, the residual norm criterion helps

to get close to an optimal regularization, the ratio between the spatial and temporal regularization

parameters was heuristically tuned. With this approach, STOUT and TF-MxNE (the methods

with two regularization terms) may be under-regularized given that the regularization energy is

split between two functionals. Finally, the construction of spatial and temporal dictionaries with

different structures as the considered in the present study should be also addressed as future work.

5.2. Future Work

Besides the method-specific analyzes proposed above as future work, more general topics should

also be taken with special consideration:

Identification of main dynamics in EEG recordings

In general, the automatic identification of time-domain dynamics carried out in this thesis was

achieved using the Singular Value Decomposition -in the case of DOBERMAN-, or the Short Time

Fourier Transform -in the case of STOUT-. However, there should be a deep analysis regarding

different methods to extract the dynamics of the EEG signals, e.g., separation of stationary and non

stationary components. Such techniques could provide more accurate solutions under strong non-

stationarity conditions or when the studied phenomenon posses complex time-domain dynamics

not identifiable by the considered techniques.

Interpretability of the EEG inverse problem solution

Typically, EEG-based brain mapping solutions provide valuable information about active areas

of the brain (spatial information). One of the contributions of this work was to analyze how

the temporal information provided by EEG signals could be used to improve the inverse solution

accuracy. Bearing this in mind, as future work, brain connectivity studies should be carried out

using the techniques proposed in this thesis, because the obtained results contain not only spatial

information, but also they may provide information about how specific brain areas interact with

each other with outstanding temporal resolution.



A. Appendix: Depth compensation analysis

Since it is difficult for EEG recordings to detect deep neural generators, brain mappings are

typically biased towards reconstructing superficial sources. Typically, to cope with this issue, a

preprocessing stage known as ”depth bias compensation” is carried out. The goal is to allow

reconstruction of deep sources even when their activation is unlikely.

In the present section we study two options which, in general, represent the available methods

to carry out the aforementioned preprocessing stage, and determine which one should be utilized

according to the lead field data used in this thesis.

A.1. Depth compensation based on the lead field matrix norm

Usually, the columns of the lead field matrix L may be normalized with respect to their ℓ2 norm.

However, as stated in [11], for the EEG inverse problem this may not be the optimal approach since

it tends to over compensate the depth of the sources, i.e., solutions are susceptible of reconstructing

the deepest sources even when such sources do not explain measured activity. In [11], it has been

proposed to use a similar approach (normalization of the columns of L) but with a parameter that

allows to control how strong the depth compensation is.

Specifically, for the ith column of L, i.e., L(·, i), the normalization term is calculated as follows

Ω(i, i) =

√
(||Lx(·, i)||22 + ||Ly(·, i)||22 + ||Lz(·, i)||22)

ζ
(A-1)

where Ω ⊂ R
3Nd×3Nd is the normalization matrix, and 0 < ζ < 1 is a parameter that determines

how strong the depth compensation is. When ζ = 0, there is no depth bias compensation, on the

other hand, ζ = 1 leads to full compensation. For the present work, it was empirically fixed as

ζ = 0.6.

A.2. Depth compensation based on pre-estimated variance

On the other hand, in [13] it has been shown that the depth compensation can be carried out using

a pre-estimation of the variance of the sources. Specifically, this compensation method is based

on the sLORETA algorithm presented in [21]. In this regard, the estimate variance is computed

as Υ̂ = LT(LLT)−1L. Then the depth compensation matrix is defined as

Ω =




W1 . . . 0
...

. . .
...

0 . . . WNd


 (A-2)
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Figure A-1.: Earth mover’s distance achieved for different depth compensation methods.

where Wi ⊂ R3×3 is the ith block element of Ω and corresponds to the matrix square root of the

ith block element of Υ̂ [14].

A.3. Results

To assess the performance of the two depth compensation methods considered, we simulated a

single active source and 100 trials, following the same guidelines described in section 2.3.1 and

used as brain mapping method the Sparse Basis Field Expansion (S-FLEX) [14] algorithm.

Figure A-1 shows the Earth mover’s distance obtained for the aforementioned simulations. It

can be seen that the inclusion of a depth compensation stage improves the accuracy of the recon-

struction. Furthermore, the performance attained with sLORETA-based and L-norm based depth

compensation does not show significant differences.

A.4. Conclusions

Although the results obtained do not offer enough evidence to state a sound conclusion, for the

specific lead field matrix used in the present work, the sLORETA-based depth bias compensation

tends to overcompensate depth sources. Given that for our brain model, the source are located

only in the cortical manifold, such strong compensation could hinder the performance of any of

the considered methods. Consequently, throughout this work, we have decided to use the depth

compensation based on the norm of the lead field matrix columns. However, it should be stated that

the depth compensation method used in a particular study should be carefully selected depending

on the specific brain model used.



B. Appendix: Academic Discussion

This thesis has lead to three works presented in international conferences and one national sym-

posium. Furthermore, two manuscripts have been sent to peer-reviewed journals.

• J.S. Castaño-Candamil, J.D. Martinez-Vargas, C.G. Castellanos-Dominguez. Dynamically

Constrained Mapping of Non-Stationary Brain Activity. Journal: NeuroImage. 2014. (Under

review)

• J.S. Castaño-Candamil, E. Giraldo-Suarez, C.D. Acosta-Medina,C.G. Castellanos-Dominguez.

Neural Activity Estimation from EEG using an Iterative Dynamic Inverse Problem Solution.

Journal Cognitive Computation. 2013. (Under review).

• J.V. Hurtado Rincon, J.S. Castaño-Candamil, C.G. Castellanos-Dominguez. Inclusion of

temporal constraints in the EEG inverse problem: A comparative study, XVIII Symposium

of Image, Signal Processing, and Artificial Vision (STSIVA), 2013

• E. Giraldo-Suarez, J.S. Castaño-Candamil, C.G. Castellanos-Dominguez. A Weighted Dy-

namic Inverse Problem for Electroencephalographic Current Density Reconstruction. 6th

International IEEE EMBS Conference on Neural Engineering. 2013.

• J.S. Castaño-Candamil, J.D. Martinez-Vargas, C.G. Castellanos-Dominguez. Bayesian Es-

timation of Neural Activity for Nonstationary Sources using Time Frequency-based Priors.

6th International IEEE EMBS Conference on Neural Engineering. 2013.
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