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ABSTRACT 

Simulation Results of an Inductively-Coupled RF Plasma Torch in Two and Three 

Dimensions for Producing a Metal Matrix Composite for Nuclear Fuel Cladding. 

(December 2008) 

Eddie Frank (Trey) Holik III, B.S., Angelo State University 

Chair of Advisory Committee: Dr. Peter M. McIntyre 

 

I propose to develop a new method for the synthesis of metal matrix composites 

(MMC) using aerosol reactants in a radio frequency (RF) plasma torch. An inductively-

coupled RF plasma torch (ICPT) may potentially be designed to maintain laminar flow 

and a radial temperature distribution. These two properties provide a method by which a 

succession of metal layers can be applied to the surface of SiC fibers.  In particular, the 

envisaged method provides a means to fully bond any desired metal to the surface of the 

SiC fibers, opening the possibility for MMCs in which the matrix metal is a high-

strength steel.   

A crucial first step in creating the MMC is to test the feasibility of constructing 

an ICPT with completely laminar flow in the plasma region. In this work, a 

magnetohydrodynamic (MHD) model is used along with a computational fluid dynamic 

(CFD) software package called FLUENT© to simulate an ICPT. To solve the 

electromagnetic equations and incorporate forces and resistive heating, several user-

defined functions (UDF) were written to add to the functionality of FLUENT©. Initially, 

an azimuthally-symmetric, two-dimensional model was created to set a test baseline for 

operating in FLUENT© and to verify the UDF. To incorporate coil angle and current 

leads, a fully three dimensional model UDF was written. Preliminary results confirm the 

functionality of the code. Additionally, the results reveal a non-mixing, laminar flow 

outer region for an axis-symmetric ICPT. 
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I. INTRODUCTION: CONCEPTUAL MMC DESIGN 

A. Design Introduction 

For the first time in 30 years plans are afoot to build new fission power plants in 

the United States. As of August 2008, there have been 17 approved new nuclear reactors 

with 8 more units to be approved by the end of the year [1]. It is timely to develop 

technology that could improve the safety, proliferation, and efficiency of new reactors. 

The mission of the Advanced Fuel Cycle Initiative (AFCI) is to “develop and 

demonstrate technologies that enable the transition to a stable, long-term, 

environmentally, economically, and politically acceptable advanced fuel cycle” [2]. In 

order to fulfill this mission, fuel separation procedures and Advanced Burner Reactor 

(ABR) technology need to be developed. In order for a burner reactor to ‘eat’ spent fuel 

from a pressurized water reactor (PWR) or a boiling water reactor (BWR), a high energy 

neutron spectrum (>0.1MeV), a high neutron flux (~ 158.0 10× cm-2s-1), and a high 

operating temperature (>550C) is required [3].  The cladding of the fuel rods (pins) must 

withstand these extreme conditions for extended amounts of time.  High Strength (HS) 

steels such as HT-9, ACO3, T91, and 316L are prone to stress corrosion cracking (SCC) 

and expansion/swelling from temperature and neutron flux gradients [4].  

A promising cladding material for advanced fuel cycles is a metal matrix 

composite (MMC) in which ceramic fibers are bonded within a high-strength steel 

matrix, much like fiberglass. MMCs offer considerable benefit as a material for the 

nuclear fuel cladding tubes required for next-generation fission power reactors that must 

operate at extremely high temperature and high neutron flux. The tensile strength of 

some ceramic fibers is four to five times higher than HS steel so that a MMC is much 

stronger than its bulk metal counterpart. Therefore MMCs are a promising route for 

strengthening fuel cladding and thus lengthening the allowable exposure time and 

increasing the neutron flux. However, current MMC technology lacks the ability to 

effectively bond traditional high-temperature alloys to ceramic strands.  

____________ 
This thesis follows the style of the Journal of Applied Physics. 
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Ceramic strands (silicon carbide, boron nitride, or graphite) only bond well with 

aluminum, magnesium, or titanium. Aluminum and magnesium have too low of a 

melting point and Ti readily reacts with O2 to create Ti2O3.  None of these cases offer 

potential for cladding applications. Ceramics do not bond directly with HS steel [5].  

In the design concept, a layer of Ti would first be applied [6].  Titanium reacts 

readily with the species on the fiber surface, producing excellent surficial bonding.  It 

also has a temperature expansion coefficient that is intermediate between the (small) 

expansion of ceramic fibers and the (large) expansion of metals that might be desired in 

the matrix.  A layer of the matrix metal would then be applied, so that the finished fiber 

has a surface that should bond readily to the desired matrix metal.  The coated strand 

could then be integrated with the desired matrix metal to form the MMC in final-shape 

using any of several metallurgical techniques.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Fluidizing Bed 
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B. Background 

The first piece of equipment in the conceptual design would be the Fluidizing 

Bed for creating the aerosols. Then the aerosols are heated through streamlines of a 

plasma torch and impinged upon a bare silicon carbide strand. The strand will need to be 

heated to ensure a good bond between the strand and the matrix metal [7]. This may 

potentially be done with the heat generated by the torch itself. The strand will be the 

precursor material for creating a MMC. 

A schematic diagram for creating the metal aerosols is shown in Figure 1. The 

magnet lab at Texas A&M University has the capability of sorting particles to sizes less 

than 10 microns by means of a virtual impactor [8, 9]. Metal powders are readily 

available from several sources and creating aerosols from powders is not uncommon. 

 

 

 
Figure 2: Schematic Diagram of Torch System 

 

 

 

A schematic diagram for coating the SiC strands is shown in Figure 2. The 

aerosols created by the Fluidization System in Figure 1 will be introduced as labeled in 

Figure 2. The aerosol temperature will be rise according to the total integrated heat of 
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each laminar. The metal aerosol will then impinge upon the strands that have been 

heated from the roller system so that the silicon carbide would be completely, uniformly, 

and effectively coated with the matrix metal.  

Perhaps the most crucial phase in this process is the characteristic temperature 

distribution and laminar flow of the plasma torch. If the two aerosols mix then we would 

destroy the effectiveness of the Ti adhesion layer. If the aerosols become too hot then 

they would evaporate. If the powder doesn’t melt then the metals won’t conform to the 

SiC surface. Without a well known temperature and velocity profile the concept will not 

work. 

C. Collaboration 

 The research at Texas A&M’s Magnet Lab currently includes designing and 

building a plasma torch system and a fluidization bed for creating non-equilibrium phase 

reactions. Another motivation for developing the equipment is carbon-doping 

magnesium diboride (MgB2), a type II superconductor.  When carbon is introduced as a 

substitutional impurity in the MgB2 lattice, it strains the lattice and thereby increases the 

upper critical magnetic field at which it remains superconducting. 

D. Conclusion 

 Using a plasma torch for producing a MMC has not been attempted before to the 

best of the writer’s knowledge. If the project is successful in producing a robust and 

refractory nuclear fuel cladding, it might be possible to increase the longevity of a single 

fuel rod. This increase in core exposure time would enable a more complete burn for the 

fuel and decrease the required turnover for replacing fuel rods. The proposed materials 

technology would potentially assist in designing an ABR that could close the fuel cycle. 



5  

 

 

II. MODELING PLASMA 

A. Plasma Modeling Introduction 

 Over the past 40 years plasma torch technology and interest has increased 

steadily. In the early seventies the bulk of the advancement was due to aerospace 

programs [10]. This increase was partly from a necessity to generate high temperatures 

to test reentry materials and for developing plasma propulsion systems. During the late 

seventies and early eighties there was a lull until 1984 when the number of thermal 

plasma technology patents tripled. This was caused by industry taking advantage of the 

seventies technology. Now using plasma torches and more specifically RF torches, has 

expanded in numerous applications. Some of the applications include powder 

spheroidization, plasma synthesis of ultra-fine nanostructure powder [11], and plasma 

deposition. Plasma deposition has several sub-categories including plasma sprays, 

plasma coatings for protection, and even plasma electrical circuitry deposition [12]. RF 

plasmas also treat waste materials by reclaiming useful material to recover added value 

and to deem hazardous materials as inert [10, 13]. All these process introduce the 

material into the exhaust plum of the plasma or on axis before the plasma. Our novel 

idea for using an RF plasma torch is to introduce the reactant directly into the plasma gas 

in the form of an aerosol.  

 The necessity of knowing the fluid dynamic flow and temperature profile of a 

plasma is critical to many applications. It’s near impossible to build a plasma torch 

system to precise specifications without having working knowledge of the input 

parameter space or how each physical dimension effects flow. With time and money 

constraints it is not feasible to build an RF torch by trial and error. Therefore, accurate 

modeling ability is needed. Models for fluid dynamics, forces, and fields of an RF 

plasma have been done with increasing precision and accuracy in the past 30 years 

thanks to the advent of modern computing power. Modeling RF plasma began with 

theoretical dissertations and 1-D modeling [14-16] and has progressed to complete 3-D 

models [17, 18].  
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There are several Computational Fluid Dynamics (CFD) software packages 

available that can be altered to model plasma including a modified SIMPLER 

algorithm [19], SIMPLEC algorithm [20, 21], and the 2/E/FIX algorithm [22, 23] to 

name a few. In the past 15 years it seems the modeling software of choice has been a 

commercial computational fluid dynamics (CFD) software called FLUENT© [17, 24-26]. 

FLUENT© offers a magneto-hydrodynamics (MHD) add-on module for calculating 

coupled fields, forces, and heating [27]. However, a separate license must be obtained 

and the MHD module can be bypassed by means of using another feature of FLUENT©. 

The platform by which FLUENT© was written enables one to write a User Defined 

Function (UDF) in c++ to add force and energy terms to the Navier-Stokes system of 

fluid dynamic equations. Additionally, one may also solve the field equations by means 

of initializing a User Defined Scalar (UDS) in FLUENT©. With this in mind FLUENT© 

was chosen to model/design the plasma torch. 

B. Argon Plasma Assumptions 

 The study of the effects fields play on conductive fluids is called 

magnetohydrodynamics (MHD). On the ionic level the equations governing charge, 

velocity, and field are difficult to solve and are futile in the macroscopic scale. Therefore 

our model must look at plasmas in a statistical mechanical manner. The resulting 

differential equations, when all of the minor effects are added, are quite involved and 

difficult to solve except with numerical modeling. In order to model plasma effectively a 

few simplifications must be made and justified. The following assumptions are made for 

this model of plasma: 

i. The plasma is in Local Thermodynamic Equilibrium (LTE). This assumption 

allows us to define a unique temperature to each region of the plasma. LTE is 

invalid in regions of steep temperature gradients and for low pressure plasmas 

where the collision interactions are weak. With few collisions, individual 

particles can be accelerated by external forces to uncharacteristically fast 

velocities until the distribution is non-Maxwellian. Empirically, for pressures 

above 300 torr this is a safe approximation [28]. Above such pressures, the 
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concentration of particles is high enough so that they share energy through a high 

collision rate or small mean free pass.  

ii. We assume that the plasma is azimuthally symmetric and the resulting fluid 

dynamic equations are two-dimensional ( , 0vθ θ =B ). 

iii. The coil impedance and self inductance and their effect on the power supply are 

collectively incorporated so that we can accurately set a known driving current in 

the coils.  

iv. The induced current in the coils from the plasma is neglected.  

v. We approximate the helixical shape of the copper pipe coils as 3 cylindrically 

symmetric, solid, and non-conducting rings. The non-conductivity property is a 

result of the previous 2 assumptions. This also ignores the axial component of 

coil current. 

vi. The plasma gas is pure argon at atmospheric pressure. 

vii. The plasma is modeled using a steady state time formulation.  

viii. The plasma is modeled as entirely viscid (non-turbulent or laminar) with a 

Reynolds number not exceeding 1200 (this number comes from results). The 

accepted Reynolds number for macroscopic turbulent flow to begin in a circular 

cross section pipe is anywhere from 1800 to 2000 to 2300 [29-31]. 

ix. Viscous dissipation in the energy equation is neglected because the flow is 

mostly laminar. 

x. Pressure work in the energy equation is dropped. The largest pressure increase is 

in the pre-plasma tube region and is less than a 0.2% gain. This would not 

significantly affect the total temperature of the plasma and can be safely 

neglected. 

xi. The plasma is considered optically thin (OTP). This implies that the plasma 

doesn’t absorb its own radiation. Therefore, a straight forward approach may be 

taken for temperature dependent radiation loss per unit volume. 

xii. The displacement current term associated with an oscillating electric field is 

neglected in Maxwell’s equations. 
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xiii. The plasma is quasi-neutral with no ambipolar diffusion contributions. In other 

words the number of ions and electrons are equal and they macroscopically move 

together. 

xiv. In representing the entrainment between argon gas and plasma, we have assumed 

a smoothly-varying temperature dependence.  

C. Electromagnetic Field Theory 

The high temperatures of an RF plasma come from the high field gradients driven by 

radio frequency currents in helixical coils. The coils and the plasma itself can be 

considered to be charge free if the power supply is grounded and the plasma has no 

ambipolar diffusion. With these initial conditions we write down Maxwell’s equations 

that will govern the fields. In SI units we have:  

 
0

ρ
ε

∇ =Ei  (1) 

 0∇ =Bi  (2) 

 
t

∂
∇× = −

∂
BE  (3) 

 0 0 0 0t
µ ε µ µ∂

∇× = + ≅
∂
EB J J  (4) 

where E  and B  are the time dependent electric and magnetic field, J  is the time 

dependent current density, 0µ  is the permeability of free space, 0ε  is permittivity of free 

space, and ρ  is the electric charge density. The last equality from equation (4) follows 

from negligible displacement currents from the plasma conditions. This is a suitable 

approximation for phenomena where the characteristic velocities are much slower than 

the speed of light. As a proof we can see that Faraday’s equation (3) gives us E Bl t∼  

where l and t are a characteristic length (diameter of plasma) and time (inverse 

frequency) respectively [32]. Now if v l t= is the characteristic velocity of the fluid and 

0 0 1c µ ε =  is the speed of light in vacuum then the displacement current contribution 

goes like the following for 3MHz and .05l ≈ m: 
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20 0

7
2

/ 10
/

t E t v
c B l c

µ ε
−

∂
∂ ⎛ ⎞

⎜ ⎟∇× ⎝ ⎠

E

B
∼ ∼ ∼ . (5) 

The contribution from the current is subsequently of order unity. Therefore any time 

variation of the electric field is too small to cause any high-velocity (on the order of the 

speed of light) charge distributions in the conducting plasma. So we can safely neglect 

the displacement current term. 

From (2) and the vector calculus identity ( ) 0∇ ∇× =Ai , we may say that 

 = ∇×B A  (6) 

where A  is the magnetic vector potential. Now the electric field has two sources. One 

contribution is from the charge density ρ  and the other from the varying magnetic field. 

We shall call them ρE and BE respectively. Then from equation (3) and equation (6) we 

may say that 

 
tρ

∂
= + = −

∂B
AE E E . (7) 

Then we have: 

 
0

ρ
ρ
ε

∇ =Ei  and  (8) 

 
t

∂
∇× = −

∂B
BE . (9) 

From conservation of charge we require that  

 
t
ρ∂

∇ = −
∂

Ji  (10) 

which is the current continuity equation used to determine charge density in plasma.  

Additionally, we may make use of another vector calculus identity: 

 ( )2∇×∇× = −∇ +∇ ∇A A Ai  (11) 
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and after inserting equation (6) into (4) and invoking the Coulomb gauge ( )0∇ =Ai , we 

have: 

 2
0µ−∇ =A J  (12) 

where the last equality follows from (7).  

 Now to proceed, we need to make a simplification to the equations based on the 

properties of the plasma. At the highest frequency at which we can operate (5MHz) we 

have an electromagnetic wavelength of ~60meters. This characteristic length is 1000 

times larger than the characteristic length of the plasma chamber. Therefore, the field 

can be approximately uniform over a macroscopic area so that a charge distribution 

could form. The mass of the electron is 80,000 times lighter than the plasma ions for 

argon. Therefore, the field gradients accelerate the electrons 80,000 times faster. 

However, as soon as the electrons move away from the ions, a localized field is created 

that slows the electrons and pulls the ions to comeback to charge and spatial equilibrium. 

We may describe a characteristic frequency by which the plasma would oscillate if in a 

field free region as: 

 
1

2 2

0
p

n q
m

σ σ

σ σ

ω
ε

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑  (13) 

where the sum over σ is over all of the different charge species [33]. Inserting numbers 

for argon at 104 Kelvin at 1atm and using the ideal gas law we get: 

 
1 22 2 2

13

0 00

4.8 10 secp e
p

p e

n en q n e
m mm

σ σ

σ σ

ω
ε εε

⎛ ⎞⎛ ⎞
= = + = ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ .  (14) 

This is much larger than the frequency at which the RF power supply operates at (3-5 

MHz.). Therefore, the electrons and ions have ample time to come to equilibrium during 

each cycle. This equates to the plasma having no ambipolar diffusion contributions 

(from the different speeds of the electrons and ions).  

Across the plasma there should not be any collections of charges so that the 

plasma obeys the quasi-neutrality property. These properties suppose that we may safely 
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state that the static charge distribution, ρ , is constant and zero. Therefore we may state 

the following: 

 0ρ =E . (15) 

Now we can assume an oscillatory solution with time dependence ( )cos tω ϕ+  

whereω is the angular frequency of the RF generator, t is time, and ϕ  is a location 

dependent phase shift. However, for simplification of calculation we use complex 

notation where the time dependence takes the form ( )i te ω ϕ+ . With this time dependence 

we can simplify our system of equations so that (7) for example becomes: 

 iω= −E A . (16) 

With this simplification, we can also neglect the phase shiftφ and absorb it by letting the 

vector potential and the fields be time independent and complex. Then we have: 

 
R I

R I

R I

i

i

i

= +

= +

= +

A A A

E B B

E E E

. (17) 

Now J  includes the current density from the RF power supply ( coilJ ) and from the 

induced currents in the plasma region and in the coils ( indJ ) from plasma-coil coupling. 

The conductivity of the plasma is a function of temperature which we will write asσ . 

Conductivity is defined as the inverse of resistivity. With this definition we may write 

the current in the plasma region as: 

 ind iσ ωσ= = = −J J E A . (18) 

Likewise in the coil region we have 

 coil drive coil coil
Self induced Plasma induced− −

= + +J J J J . (19) 

In these equations, driveJ is the current driven by the power supply voltage, coil
Self induced−

J is 

the induced current from the coil self-induction, and coil
Plasma induced−

J is the induced current 

from the mutual induction with the plasma.  



12  

 

 

We now invoke another assumption in modeling the plasma. To a first estimation 

the induced current in the coils and its effect on the plasma region is negligible. The 

validity of this statement is discussed and analyzed in appendix A. Theoretically, we 

must not neglect this contribution. Experimentally, we may simply adjust the power 

supply until the desired total current is reached. Therefore, for our modeling purposes, 

we will assume that we can accurately assign a total current to the coils. With this 

approximation the total current density in the coil region is: 

 2
ˆcoil

coil
I

a
θ

π
= =J J  (20) 

where coilI  is the current in the RF coils and a is the coil radius. Here we assume that the 

current is evenly distributed in the coil. This method is chosen for its simplicity and ease 

of computations constraints in fluent. The coil is actually a hollow copper pipe with 

chilled, high-resistivity water flowing through. In the plasma region this small deviation 

should have zero to no effect upon the fields in the plasma region. The discrepancies will 

mostly arise near the coils and away from the plasma. 

Also, for the magnetic scalar potential to have only one direction component, we 

are modeling the coils to be rings with cylindrical or azimuthal symmetry. This is 

probably the largest shortcoming in this model for plasma. However, for small angles of 

incline in the coils, this model should be accurate. In addition to the coil region, the 

current density in the walls and around the coils is zero because the conductivity of 

quartz and free space is miniscule.  

1. Magnetic Vector Potential Formulation 

Now recall that for a current distribution ( )rJ , we may evaluate the vector 

potential in cylindrical coordinates as: 

    ( ) ( ) ( )
( )

2
3 30 0

ˆ
0, ,0

4 4

coil i rr rr d r d r A
r r r r θ

θ ωσµ µ π
π π

′−′
′ ′= = =

′ ′− −∫∫∫ ∫∫∫
I AJ

A . (21) 
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Here we have an integral equation where an iterative approach could be taken similar to 

the successive born approximations in quantum scattering theory. With (21), it is straight 

forward to see that the magnetic vector potential will only have θ̂  direction.  

From (12), we may also write (21) as differential equation in cylindrical 

coordinates that can be programmed into FLUENT©: 

 
2

2 0
02 2 2

1 coil
A

A A A Ir A i A S
r r r z r a θ

θ θ θ
θ θ

µµ σω
π

∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = ∇ = − − = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (22) 

or separating it into its real and imaginary parts: 

 2 0
02 2 R

R coil
R I A

A IA A S
r a θ

θ
θ θ

µµ σω
π

∇ = − − = − and (23) 

 2
02 I

I
I R A

AA A S
r θ

θ
θ θµ σω∇ = + = − . (24) 

The 2

A
r
θ terms arise from the Laplacian in equation (12) operating on a vector and not a 

scalar. See Table I for which source terms are included in each specific region. 

In addition to solving the fluid dynamic governing equations, FLUENT© also has 

the capability to solve scalar potential equations like (23) and (24). The generalized 

scalar equation solved in FLUENT© is: 

 1, ,
k

k k
i k k

i i

u S k N
t x x φ

ρφ φρ φ
⎛ ⎞∂ ∂∂

+ −Γ = =⎜ ⎟∂ ∂ ∂⎝ ⎠
… . (25) 

In this equation kΓ and
k

Sφ are the diffusion coefficient and source term supplied by the 

user for each of the N scalar equations. To adapt this equation to solve for the magnetic 

scalar potential we simply initialize the program to ignore convective mass flux 

( )0ρ = and let the diffusion coefficient be unity. For the 2D axis-symmetric cylindrical 

coordinate case:  

 
2

2
2

1k k k
k A

i i

r S
x x r r r z θ

φ φ φφ
⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= ∇ = + = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

. (26) 
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With this equation, we define the source terms in each region as listed in Table I. With 

the terms programmed into FLUENT© via User Defined Functions, we are able to solve 

the magnetic scalar potential.  

 

 

Table I: Aθ Source Terms 
Plasma Regions Coil Regions Wall Regions 

0 2R

R
A I

AS A
rθ

θ
θµ σω= −  0

2 2R

coil R
A

I AS
a rθ

θµ
π

= −  2R

R
A

AS
rθ

θ= −  

0 2I

I
A R

AS A
rθ

θ
θµ σω= − −  2I

I
A

AS
rθ

θ= −  2I

I
A

AS
rθ

θ= −  

 

 

 

2. Boundary Conditions 

Next, we must define boundary conditions for the scalar potential. For an 

extended field, approach far from the plasma region, it is most simple to implement 

vanishing boundary conditions for the vector potential, such that 

 ( ) 0boundaryA r rθ = = . (27) 

This is the equivalent to using the infinite boundary condition at the walls. This 

artificially increases the magnetic field values near the walls. A better and more 

sophisticated approach was constructed by Bernardi et al. by implementing dipole 

boundary conditions for Aθ  [18]. This is equivalent to approximating the coil and plasma 

system as a single current loop at the center of the coils. The benefits from using this 

approximation will be analyzed with the results. We begin the progression with the 

vector potential for a current loop in the limiting case where the radius of the loop is 

much smaller than the observation point 2 2 2( )r z a+  [34]. This formula also is valid 

for 2 2 2r z a+ . 
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( )

2
0

3
2 2 2 24

Ia rA
a r z

θ
µ

=
+ +

 (28) 

In this equation, r is the cylindrical coordinate. However, we don’t know the value of the 

dipole vector for the plasma, namely a or I. In other words, we don’t know the 

contribution from the plasma region. We may bypass this requirement by setting the flux 

of Aθ through boundaries instead of setting the value. The flux through any boundary can 

be set by calculating the gradient dotted with the normal vector of the boundary: 

 2 2 2 2

1 3 3ˆ ˆ ˆˆr zA n A r z n
r r z r zθ θ

⎡ ⎤⎛ ⎞∇ = − −⎜ ⎟⎢ ⎥+ +⎝ ⎠⎣ ⎦
i i . (29) 

This equation assumes that the source is a dipole such that 2 0a → , I →∞ , and 2Ia  

remains constant and is the dipole momentum magnitude. The gradient was taken in 

cylindrical coordinates. For each boundary, the normal vector should be directed 

outward of the calculated region to have the correct sign. The right hand side of equation 

(29) is what is programmed as the flux boundary condition for the vector potential in 

FLUENT©.  

For this model, continuous boundary conditions for Aθ are used at material 

interfaces. From the cylindrical symmetry of the various quartz separation tubes we only 

have to be concerned with the tangential component of the electric field. Across any 

boundary with differing dielectric constants only the normal electric component is non-

continuous: 

 
( ) ( )
( ) ( )|| ||

r r

r r

ε ε> ⊥ > < ⊥ <

< >

=

=

E E

E E
. (30) 

Therefore, the electric field boundary condition is inherently obeyed. We also assume 

the magnetic permeability of all interfaces is continuous and equal in magnitude to the 

permeability of free space so that the components of magnetic field are continuous 

everywhere.  
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3. Field Calculation and Source Terms 

 From the real and imaginary parts of the magnetic scalar potential we are able to 

derive several source terms for the forces acting on the fluid and well as the resistive 

heating involved. From (6) and (16), we can write the complex electric and magnetic 

field components as the following: 

 E i Aθ θω= −  (31) 

 
( )1

z

r

B rA
r r

AB
z

θ

θ

∂
=

∂
∂

= −
∂

. (32) 

The Lorentz force acting on the plasma would take the following form: 

 1 ˆ ˆˆ ˆRe Re
2 2 z r r z

qv E B r E B z F r F z
vol vol θ θ

σ∗ ∗ ∗×
= = × = − = +

F B J B  (33) 

where the second equality comes from (18). The input format for source terms in 

FLUENT© is amount per volume. The leading ½ is an artifact of transferring from 

complex values of current and field to a real force. This arises from the time averaged 

value of ( )( ) ( )( ) 1i t i te eω φ ω φ∗+ + =  being twice that of ( )2 1cos 2tω φ+ =  which is the real 

component. In addition to the force we may also figure the power generated by the 

currents in the plasma. The resistive heating power or joule heating as coined in the 

literature is calculated as follows: 

 21 Re Re
2 2 2 joule

P VI E Q
vol vol θ

σ σ∗ ∗= = = = =E J E Ei i . (34) 

4. Removal of Singularity 

 For the magnetic vector potential equation (22), the value of Aθ must approach 

zero faster than 2r  (2nd order pole) to prevent divergence. In order to have high precision 

of Aθ near the axis, FLUENT© must keep and store in memory very small numbers. This 

added uncertainty destabilizes the convergence of the code. The singularity can be 

removed by making a simple transformation: 
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 |A A rAθ θ θ′⇒ . (35) 

With this transformation (22) becomes: 

 
2

2 0
02 2

1 2 coilA A A Ir A i A
r r r z r r a r

θ θ θ
θ θ

µµ σω
π

′ ′ ′∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞′ ′+ = ∇ = − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
. (36) 

Similarly this can be split into imaginary and real components similar to equations (23) 

and (24). From (36) we see that there is still a 1st order pole on the axis from the first 

term on the right hand side. However, azimuthal symmetry requires that the change 

in Aθ′ in the radial direction must be zero on the axis. A similar argument could be made 

for Aθ on the axis but we can’t show that it approaches zero faster than 2r . With the 

transformation, in each region we define the source terms in Table II. The difference in 

CPU time and convergence will be discussed with the results. 

 

 

 

Table II: Aθ′ Source Terms 
Plasma Regions Coil Regions Wall Regions 

0
2

R

R
A I

AS A
r rθ

θ
θµ σω ∂

= +
∂

 0
2

2
R

coil R
A

I AS
a r r rθ

θµ
π

∂
= +

∂
 2

R

R
A

AS
r rθ

θ∂
=

∂
 

0
2

I

I
A R

AS A
r rθ

θ
θµ σω ∂

= − +
∂

2
I

I
A

AS
r rθ

θ∂
=

∂
 2

I

I
A

AS
r rθ

θ∂
=

∂
 

 

 

5. Fluid Dynamic Theory 

The equations that are solved by FLUENT© are four-fold, coupled, linear, 

second-order, partial differential equations. The program allows us to input additional 

terms to the equations to give mass, force, and energy sources. The equations are in 

azimuthal cylindrical coordinates.  
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Mass Continuity Equation: 

 ( ) ( )1
r z mr v v S

t r r z
ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
 (37) 

 

Momentum Conservation Equations: 

 
( ) ( ) ( ) ( )1 1 1 22

3

1

z
z z z z r

z r
z

p vv r v v r v v r v
t r z r r z r z z

v vr F
r r r z

ρ ρ ρ µ

µ

∂ ∂ ∂ ∂ ∂ ⎡ ∂ ⎤⎛ ⎞+ + = − + − ∇⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∂ ⎡ ∂ ∂ ⎤⎛ ⎞+ + +⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

i
 (38) 

 

 
( ) ( ) ( ) ( )

( )2

1 1 1 22
3

1 22
3

r
r z r r r

z r r
r

p vv r v v r v v r v
t r z r r r r r r

v v vr v F
r z r z r r

ρ ρ ρ µ

µµ µ

∂ ∂ ∂ ∂ ∂ ⎡ ∂ ⎤⎛ ⎞+ + = − + − ∇⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∂ ⎡ ∂ ∂ ⎤⎛ ⎞+ + − + ∇ +⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

i

i
 (39) 

 

 Where ( )1z r r z
r

v v v vv rv
z r r z r r

∂ ∂ ∂ ∂
∇ = + + = +

∂ ∂ ∂ ∂
i  

 

Energy Conservation Equation: 

 ( ) ( ) t
joule radiate

p

kH vH H Q Q
t C
ρ ρ

⎛ ⎞∂
+∇ =∇ ∇ + −⎜ ⎟⎜ ⎟∂ ⎝ ⎠
i i  (40) 

 

For the preceding equations ρ is the mass density, rv and zv  is the radial and axial fluid 

velocity, mS is the mass source at the fluid inlet and outlet boundaries as defined by 

FLUENT©,µ is the viscosity, rF and zF are defined by (33), p is the static pressure, H is 

the enthalpy, tk is the thermal conductivity, pC is the specific heat capacity, jouleQ is 

defined by (34), and finally radiateQ is the radiation energy lost. For these calculations, the 

material properties of ρ ,µ , tk , and pC are all temperature dependent and calculated at a 
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constant pressure of 1 atmosphere. See appendix B for the material properties from the 

Sherbrooke group for argon from 300K to 13,200K [25]. The properties were modeled 

as piecewise continuous and not as a step function. However, Fluent doesn’t let a user 

defined function be used to define the specific heat for a material. The latent heat of 

fusion and vaporization gives a Dirac delta discontinuity for this property and is difficult 

to model. Therefore, a special subroutine must be used in the program to account for 

latent heat and cannot be modeled with specific heat.  

D. Electromagnetic Field Theory in 3 Dimensions 

To account for asymmetries in the coil and coil leads, we must ultimately 

develop a model to account for driving current in any direction.  We begin with 

Maxwell’s equations and keep the displacement current term: 

 
0

ρ
ε

∇ =Ei  (41) 

 0∇ =Bi  (42) 

 
t

∂
∇× = −

∂
BE  (43) 

 0 0 0t
µ ε µ∂

∇× = +
∂
EB J . (44) 

From (42) and the vector calculus identity ( ) 0∇ ∇× =Ai , we may again say that 

 = ∇×B A  (45) 

where A  is the magnetic vector potential. Now the electric field has two sources. One 

contribution is from the charge density ρ  and the other from the varying magnetic field. 

We shall call them ρE and BE respectively. Then we have: 

 ( )
0

ρ
ρ φ
ε

∇ = = ∇ −∇Ei i  (46) 

from the static charge whereφ is the usual electric scalar potential and   
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t

∂
∇× = −

∂B
BE  (47) 

from the magnetic field. Or if we use equation (45) we have that 

 
t

∂
= −

∂B
AE . (48) 

Then combining equations (48) and (46) we have the following 

 
t

φ ∂
= −∇ −

∂
AE  (49) 

for the total electric field. Additionally we may write the current density in the plasma 

region as the following: 

 σ=J E . (50) 

as an analog of Ohm’s law. Now with a collection or distribution of charge, we can no 

longer assume ambipolar diffusion and the quasi neutrality property as assumed in the 

axis symmetric case. From conservation of charge we require that  

 
t
ρ∂

∇ = −
∂

Ji  (51) 

which is the current continuity equation used to determine charge density in plasma. 

With this equation we may choose our gauge value for∇ Ai . We begin with the 

traditional relation for figuring the vector potential: 

 ( ) ( ) 30

4
r

r d r
r r

µ
π

′
′=

′−∫∫∫
J

A . (52) 

Then taking the divergence with respect to the unprimed variable we have: 

 ( ) ( ) 30 1
4

r r d r
r r

µ
π

⎛ ⎞
′ ′∇ = ∇⎜ ⎟⎜ ⎟′−⎝ ⎠∫∫∫A Ji i . (53) 

Now using the following two identities for divergence: 

 

( ) ( ) ( )

1 1 and

1

r r r r

r r
r

r r r r r r

⎛ ⎞ ⎛ ⎞
′∇ = −∇⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′− −⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞ ′ ′ ′∇

′ ′ ′∇ = ∇ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

J J
J

i
i i

 (54) 
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we may transform equation (53) into the following: 

 ( ) ( ) ( ) ( )3 30 0

4 4
r r r

r d r d r
r r r r r r

µ µ
π π

⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′∇ ∇
′ ′ ′∇ = − ∇ − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′− − −⎝ ⎠ ⎝ ⎠∫∫∫ ∫∫∫

J J J
A

i i
i i . (55) 

The last equality follows from integrating the first term by parts. If the integration is 

over all space we assume the current density is zero at infinity so that the first term is 

dropped. Then using equation (51) we have the following: 

 ( ) ( ) 30
0 04

r
r d r

t r r t
ρµ φµ ε

π
′∂ ∂′∇ = − = −

′∂ − ∂∫∫∫Ai  (56) 

where ( ) ( ) 3

0

1
4

r
r d r

r r
ρ

φ
πε

′
′=

′−∫∫∫ is the usual integral for the electric scalar potential. 

Now using vector identity (11) in equation (44) we have the following 

 ( )2
0 0 0t

µ ε µ∂
∇× = −∇ +∇ ∇ = +

∂
EB A A Ji . (57) 

If we use equation (49) for electric field and equation (56) for vector potential 

divergence we have the following vector equation to be solved: 

 
2

2 2
0 0 0 0 0 02t

µ µ ε µ µ ε ω∂
∇ = − + = − −

∂
AA J J A  (58) 

where J is the coil current given by equation (20) on page 12 and the induced plasma 

current given by equation (50). For the plasma region this simplifies to:  

 ( )2 2
0 0 0 0iµ σ φ ωµ σ µ ε ω∇ = ∇ + −A A . (59) 

For the regions outside the plasma and the coils the value of J is set to zero in equation 

(58). These three dimensional equations may be programmed into FLUENT© following 

the same approach as equations (22) through (26) on page 13. It will be split into six 

different equations for the real and imaginary parts of the x, y, and z components.  

 Now we must derive an equation for solving the scalar potential. From equation 

(41), we may simply plug in our electric field relation in the form of equation (49) and 

get the following result: 
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2

2 2
0 0 0 02

0 0t
ρ φ ρφ µ ε µ ε ω φ
ε ε

∂
∇ = − + = − −

∂
 (60) 

which is very similar to the equation for vector potential. Equation (58) and (60) are 

commonly referred to as the MHD wave equations [35]. In this equation, we don’t know 

what to use for the charge density as a function of position. However, we may find an 

expression for the charge density from the current continuity equation. Here we may 

write it using the phasor notation discussed with equation (16) on page 11 as the 

following: 

 iρ
ω

= ∇ Ji . (61) 

Since we know that the only region that can collect charge is the plasma region, we may 

then write the current asσE . When taking the divergence in equation (61) we must 

include the conductivity as a function of position so that 

 σ σ∇ = ∇ + ∇J E Ei i i . (62) 

Then with making use of relations (56) and (49) with some algebra we arrive at the 

following equation for the electric scalar potential: 

 
( ) ( )

( ) ( )

2 2
0 0 02 2 2

0

2
02 2 2

0

1

iφ µ ε ω φ ε ω σ φ ωσ σ
ε ω σ

σ σ φ ω ε σ
ε ω σ

⎡ ⎤∇ = − + ∇ ∇ − ∇⎣ ⎦+

⎡ ⎤+ − ∇ ∇ − ∇⎣ ⎦+

A

A

i i

i i
 (63) 

Outside the plasma region the conductivity is zero and thus the gradient is also zero.  

This equation will be split into a real and imaginary part just like the procedure in 

equations (22) through (26) on page 13.  

Now the scalar potential has a dependence on the vector potential and the 

gradient of conductivity. In terms of solving this equation, a large conductivity gradient 

from a large temperature differential will result in divergent values for electric scalar 

potential. Therefore, in FLUENT© we will converge the data without the scalar potential 

contribution and then add in its effects to joule heating and forces.  
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1. 3-D Singularities 

 In three dimensions for Cartesian coordinates there is no need to transform 

variables to remove a singularity. This will enable us to use higher under-relaxation 

factors (see equation (74)) so that the six vector potential terms will converge with fewer 

iterations. However, there are 3 times as many equations to solve for the vector potential. 

Therefore, each iteration will take proportionately longer.  

2. 3-D Boundary Conditions 

Next, we must define boundary conditions for the vector and scalar potentials. 

For an extended field, approach far from the plasma region, it is most simple to 

implement vanishing boundary conditions, such that 

 
( ) 0

( ) 0
boundary

boundary

r r

r rφ

= =

= =

A
. (64) 

This is the equivalent to using the infinite boundary condition at the walls. This 

artificially increases the gradient near the walls. It is possible to implement dipole 

boundary conditions on the walls as given in equation (29). However, results from the 

two dimensional case show no visible contributions to the plasma temperature and flow 

patterns by using dipole boundary conditions. The electromagnetic field is altered only 

slightly along the walls. Therefore, the boundary conditions given in equation (64) will 

be used along the boundaries for the 3-D simulation.  

For three dimensions, the electric boundary conditions for linear media are as 

follows: 

 ( )1 1 2 2 n̂ε ε σ− =E E i  (65) 

 ( )1 2 ˆ 0n− × =E E  (66) 

whereσ is the traditional symbol for sheet or surface electric charge andε is the material 

permittivity. In the axis symmetric case all of the material interfaces are parallel to the 

completely azimuthal electric field so that boundary conditions (65) are satisfied. If the 

current has an axial or radial component then theses boundary conditions become much 
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more complicated. The relative dielectric constant for quartz is somewhat low (3.8 to 5) 

so that the field lines shouldn’t be greatly altered. Therefore, for this simulation, they 

will be bypassed by modeling the relative permittivity as unity.  

The magnetic boundary conditions will have a larger effect and are as follows. 

 ( )1 2 ˆ 0n− =B B i  (67) 

 1 2

1 2

n̂
µ µ

⎛ ⎞
× − =⎜ ⎟
⎝ ⎠

B B K  (68) 

where K is the boundary sheet current andµ is the permeability of the material. The 

magnetic field is mostly axial and thus tangent to the material interfaces. Therefore, 

equation (68) will have a substantial effect on the field magnitude. The relative 

permeability of quartz (0.6) is less than unity so that field lines are pushed outside. The 

effects should be incorporated into the quartz wall boundary conditions for a more 

realistic model. However, most peer reviewed papers simply ignore theses magnetic 

boundary conditions [17-19, 24, 26]. For all subsequent simulations the inner wall 

boundary conditions should be included. To compare with other papers we also assume 

the magnetic permeability of all interfaces is continuous and equal in magnitude to the 

permeability of free space so that the components of magnetic field are continuous 

everywhere.  

3. 3-D Field Calculation and Source Terms 

From the real and imaginary parts of the electromagnetic scalar and vector 

potentials we are able to derive several source terms for the forces acting on the fluid 

and well as the resistive heating involved. The magnetic field is calculated from the curl 

of the vector potential and the electric field is calculated according to equation (49). 

The Lorentz force acting on the plasma would take the following form: 

 1 ˆ ˆ ˆRe
2 x y z

qv F x F y F z
vol

∗×
= = × = + +

BF J B . (69) 

The input format for source terms in FLUENT© is amount per volume. The leading ½ is 

an artifact of transferring from complex values of current and field to a real force as 
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discussed with equation (33). In addition to the force we may also figure the power 

generated by the currents in the plasma. The resistive heating power per volume or joule 

heating as coined in the literature is calculated as follows: 

 
21 Re Re

2 2 2 joule
P VI Q

vol vol
σ σ∗ ∗= = = = =E J E E Ei i  (70) 

4. 3-D Fluid Dynamic Theory 

The equations that are solved by FLUENT© are four-fold, coupled, linear, second-order, 

partial differential equations. The program allows us to input additional terms to the 

equations to give mass sources, add forces, and add energy. The equations are in 

azimuthal cylindrical coordinates. 

 

Mass Continuity Equation: 

 ( ) mv S
t
ρ ρ∂
+∇ =

∂
i  (71) 

 

Momentum Conservation Equation: 

 ( ) ( ) ( ) ( )T 2
3

v vv p v v v I
t
ρ ρ µ∂ ⎡ ⎤+∇ = −∇ +∇ ∇ +∇ − ∇ +⎢ ⎥∂ ⎣ ⎦

Fi i i  (72) 

 

Energy Conservation Equation: 

 ( ) ( ) t
joule radiate

p

kH vH H Q Q
t C
ρ ρ

⎛ ⎞∂
+∇ =∇ ∇ + −⎜ ⎟⎜ ⎟∂ ⎝ ⎠
i i  (73) 

 

For the preceding three equations ρ is the mass density, v is the fluid velocity, mS is the 

mass source at the fluid inlet and outlet boundaries as defined by FLUENT©,µ is the 

viscosity, F is defined by (72), p is the static pressure, H is the enthalpy, tk is the thermal 

conductivity, pC is the specific heat capacity, jouleQ is defined by (70), and finally radiateQ is 

the radiation energy lost. Tv∇ is the transpose of the vector gradient tensor v∇  and I is 
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the 3 dimensional unit tensor. All property data for Argon is listed in appendix B. The 

gradient of conductivity term in equation (63) requires the first directional derivative be 

continuous. Therefore a quadratic interpolation formula was used between data points 

for conductivity. For all other variables a simple linear fit was used between data points. 
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III. 2-D CODE VERIFICATION MODEL 

To test the effectiveness and repeatability for our code and model we attempted 

to reproduce modeling results from the Plasma Technology Research Center at the 

University of Sherbrooke [25]. A company associated with this group called Tekna 

Plasma Systems Inc. has designed several induction plasma torches and the Tekna PL-50 

was chosen for their model. Figure 3 shows the dimensions in millimeters of the plasma 

torch geometry.  

In the top half, the dark green regions are coils and the light green regions are 

quartz walls. The gray regions will be fluid flow modeling and the light gray region is 

where the plasma source terms will be implemented. The outer region is needed for 

manipulating FLUENT© to calculate the electromagnetic fields. The flow rates and the 

frequency are listed in Table III.  

The bottom half of Figure 3 is the grid produced in GAMBIT© which is a 

preprocessor program for FLUENT© [36]. In the plasma, fluid flow, and quartz tube we 

have a structured triangular grid with roughly 9 cells per square millimeter for 49,616 

total cells. In the coils and extended field region we have an unstructured triangular grid 

with 53,382 total cells. The Sherbrooke model has54 80 4320× =  quadrilateral cells in 

the fluid/quartz region and 7489 unstructured triangular cells in the extended field 

region. Having more cells for our model will help with convergence but will cost extra 

CPU time. A smaller grid size was chosen because of a small difference in grid.  

The Sherbrooke model does not include the Q3 flow pipe and quartz tube 

(from 0 to 3.7y =  and 0 to 50x =  in Figure 3). This region has a small characteristic 

length that allows a larger grid size to be used effectively if removed. The author elected 

to compare the different Q3 region models and thus has a larger number of cells in the 

plasma region.  
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Figure 3: Tekna PL-50 and Gambit Grid 
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Table III: Argon Plasma Input Data 

 

 

 

For Table III, the equivalent speed of argon through the corresponding geometric 

cross sections is converted from slpm (standard liters per minute) which is the format of 

the Sherbrooke model. The frequency of oscillation for the torch is 3MHz which implies 

the angular frequency is 71.885 10× radians per second. The maximum coil current is 161 

Amps. 

A. Methods of Code Convergence 

There are a few key elements that need special attention in order for the model to 

iterate and converge on the desired result. This includes correctly defining model 

schemes, setting effective control parameters, and finding efficient initial values and 

conditions for the field and fluid properties.  

1. Computer Licensing 

 Two licensed supercomputers were used at Texas A&M for Fluent© and Gambit© 

software programs. Another single-user license for Vector Fields© was used on a desktop 

machine at TAMU Magnet Laboratory for electromagnetic field verification.  

 The first supercomputer is a 32 processor IBM Regatta p690 called Agave. It is 

powered by IBM POWER4 processors that operate at 1.3GHz. The memory size is 

64GB. The cumulative CPU time was roughly 20 hours.  

 The second supercomputer named Hydra, is a 640-processor IBM Cluster system 

with 1.9HGz power5+ processors. The processors are split into nodes of 16 processors 

and 32GB of memory. The total CPU time was over 30 hours.  

Q1 Q2 Q3 Frequency

1slpm = 1.8357m/s 3slpm = 0.0468m/s 31slpm = 0.8938m/s 3MHz 
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2. Model Schemes and Control Parameters 

FLUENT© is a very powerful computational fluid dynamics (CFD) program that 

includes schemes for modeling compressible flows, turbulent flows, supersonic flows, 

heat and mass transfer, reactionary and multiphase flows, and everywhere in between. 

As stated with the assumptions, we will be modeling laminar, axis-symmetric, 2 

dimensional flow. The pressure based solver will be used because it has the best 

convergence for low-speed incompressible flow. Similarly, within the pressure based 

solver we will use the coupled approach that solves the momentum and continuity 

equations simultaneously rather than sequentially. This takes more memory, but the 

coupled solver converges quicker [37]. The iterative process that was taken to model the 

plasma can be depicted by Figure 4.  

The parallelograms and hexagons in Figure 4 are the respective input parameters 

and source terms for each step of the iteration. The sequence begins with iterating the 

vector potentials. The results from this first step are used as force source terms for 

iterating the fluid dynamic equations. The mass flux is calculated using the inlet 

boundary conditions Q1, Q2, and Q3 as source terms and iterating the mass continuity 

equation. The last equation before testing convergence is the energy or temperature 

equation. For a discussion of each UDF source term see appendix C. 

Each of the four fluid dynamic equations and the two vector potential equations 

can be exactly solved for the boundary conditions of each cell. This would include 

solving a system of over 600,000 equations and unknowns for the test model. The 

impracticality of solving such a system requires another method be used. Fluent works 

by method of finite difference. An initial value is chosen for each cell and for each 

variable (temperature, ,R IA Aθ θ , ,z rv v , and pressure). Then for each iteration, the program 

updates the cell variables based on the values of neighboring cell values and obeying the 

governing equation.  

 

 

 



31  

 

 

 

 

Figure 4: Flow Chart for the Coupled Pressure-Based Solver 
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A second-order upwind scheme was used for the test model that takes into 

account each neighboring cell and their neighbors. This scheme takes longer to converge 

and is slightly more unstable as opposed to a first-order scheme. However, it produces a 

more realistic and continuous fluid flow representation. From the non-linearity of the 

equation set being solved it is necessary to control the change of each variable for each 

iteration.  

If φ  is the variable in question and φ∇ is the amount of variable change to satisfy 

the instantaneous conditions then the updated value would be written as the following:  

 new oldφ φ α φ= + ∇  (74) 

whereα is called the under-relaxation factor. There are similar factors that control the 

coupling between the continuity equation and the momentum equations. By much 

tweaking, trial, and error, Table IV lists the under-relaxation factors and acceptable 

ranges for the test model. The pressure and momentum factors have to do with the 

coupling between mass and momentum. The density factor deals with updating 

momentum and density. The listed labels for vector potential use the same notation as in 

equation (35). Fluent suggests starting each under-relaxation factor anywhere between 

0.90 and unity. However, the strong coupling between Lorentz forces, Joule heating, and 

the vector potential gives a large numerical instability for convergence. Therefore each 

factor was greatly reduced.  

 

 
 
 

Table IV: Under-Relaxation Factors 
Variable Density Pressure Forces Energy Momentum Aθ  Aθ′  

Relax factor α  .35 .75 .35 .35 .75 .60 .80 

Relax range .15-.45 .50-.80 .15-.45 .10-.45 .50-.80 .50-.60 .65-.80
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3. Convergence 

 There are several steps in initialization and patching during the early iterations 

that were done in assisting convergence. The initial value for velocity was 0.5m/s in the 

axial direction and 0.0m/s in the radial direction in the fluid regions. The Sherbrooke 

group modeled the outside region as a fluid. To keep the flow at zero, they added source 

terms via UDF to keep the velocities zero and temperatures at 300K. For the test run, we 

are modeling the outside region as a solid. This saves precious computational time by 

removing the Navier-Stokes equations for the outside region and will give the same 

computational result in the plasma region. However, to keep the temperature near 300K 

in the outside region we added an artificial energy source term in the form of the 

following: 

 ( )5
310 300outside

WS T K
m

= − − . (75) 

The vector potential was initialized to zero everywhere. The temperature was set to 

300K everywhere except inside the plasma region where the temperature was set to 

9000K.  

The high initial temperature in the plasma region gave a large discontinuity 

initially and thus all the under-relaxation factors (except Aθ and Aθ′ ) had to be decreased 

to the low end of their range to prevent divergent iterations. However, a high 

temperature in the plasma region is required to initialize the imaginary component of the 

vector potential. The high temperature gives high electric conductivity to the plasma 

region. The conductivity of plasma is proportional to the only imaginary current source 

term. Therefore, with a high initial temperature the imaginary component of the vector 

potential would have a substantial initial source term value. For the first 1000 iterations 

an artificial source term was used in the plasma region of the form: 

 ( )4
, 310 9800Plasma Temporary

WS T K
m

= − − . (76) 

This also allowed the magnetic field magnitude to increase so that resistive heating could 

sustain the plasma. 
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Initially the current in the coils was modeled at 250 amps. This over estimation 

for current in the coils allowed the vector potential to sustain plasma quicker because of 

higher fields and greater joule heating. Once the plasma was self-sustaining, the current 

was reduced to the given value of 161 amps.  

4. Singularity Removal 

 As previously revealed with equations (35) and (36), the transformation rids 

ourselves with having a diverging 2nd order pole vector potential source term on the axis. 

However, the transformation gives us a pesky gradient term with each source term as 

revealed in the tables on pages 14 and 17. 

Two different UDF c++ codes were written for Aθ and Aθ′ . Both codes were used 

for the test model with identical results for temperature, field, and flow. The only 

difference is in convergence and speed. The code for using Aθ iterated 5% faster than the 

UDF for Aθ′ . I believe that for Aθ′ , the increased iteration time is from the source terms 

having both vector potential and gradient terms i.e. Aθ and Aθ∇ . The UDF source terms 

for Aθ only includes the vector potential. However, the difference in iteration time 

between the two forms is relatively small at a part in twenty. 

The benefit from removing the singularity outweighs the increased length of each 

iteration. With the singularity removed, the numerical stability of FLUENT©’s scalar 

potential solver is increased. In Table IV, we see the effects of this stability in that the 

maximum under-relaxation factor for Aθ′ is 0.2 higher than Aθ . This implies that with each 

iteration, the Aθ′ UDF is able to converge 20% more than Aθ . In the simplest case for one 

cell, ifα is the under-relaxation constant, N is the number of iterations and 610R −= is the 

residue then the governing equation for the amount of required iteration would be the 

following: 

 ( )1 .6, 16
.8, 9

N R N
N

α α
α

− = ⇒ = =

⇒ = =
. (77) 
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The small change in under-relaxation factor changes the number of required iterations 

drastically. In multi-cellular cases the same ratio generally holds. For example, for 200 

Amps with the test model, it took ~8,000 iterations to converge with a residue from 
5 610  to 10− − for Aθ′ . It took ~14,500 iterations to converge the same amount for Aθ . 

Therefore, with each subsequent model, the Aθ′ user defined function code will be used 

for stability and speed of convergence. However, to diminish confusion the Aθ notation 

will be used.  

5. Judging Convergence 

 The FLUENT© definition of Residue can be defined as a quantitative amount that 

the cell values violate the governing differential equations. After discretization into cells, 

the conservation equation for a general variableφ  at cell P is as follows: 

 P P nb nb
nb

a a bφ φ= +∑  (78) 

where Pa is the center coefficient, nba is the influence coefficients for neighboring cells, 

and b is a constant that represents sources. From this equation we may write the scaled 

residuals Rφ as the following: 

 all cells  

all cells  

nb nb P P
P nb

P P
P

a b a
R

aφ

φ φ

φ

+ −
=
∑ ∑

∑
. (79) 

 From this equation, we see that the residue represents the ratio of variable error to 

variable value. FLUENT© recommends that residue values be at most 310− for flow 

variables and 610− for energy. Table V gives the residues for the test model. 

 
 
 

Table V: Test Model Residues 
Mass 
Continuity 

Axial 
Momentum 

Radial 
Momentum 

Energy RA θ  IA θ  

61.5 10−×  112 10−×  111 10−×  119 10−×  144.5 10−×  133.2 10−×  
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The flow variable residues were converged after 40,000 iterations and the field 

variable residues, RA θ and IA θ , continued to decrease until 90,000 iterations. As an 

example of residue verification we may sum the mass flux at the inlet and outlet. The 

difference between the inlet and outlet mass flux for the test model was 122.49 10−× kg/s 

with the mass flow being 49.47*10− kg/s. This would produce an estimate for the mass 

continuity residue of
12

9
4

2.49 10 2.63 10
9.47 10

MassRφ

−
−

−

×
= = ×

×
. However, the absolute value in 

equation (79) assures that this value is an absolute minimum for the mass residue. None 

the less, the residues given in Table V should be more than adequate for verifying the 

convergence of the code.  

B. Results 

1. Temperature Discussion 

Figure 5, Figure 6, and Figure 7 give plasma results from the Sherbrooke model. 

The temperature distribution in Figure 5 and the temperature distribution on page 38 

appear to be very similar. The maximum temperature for the Sherbrooke and 2-D model 

was 9920K and 10002K respectively. The horizontal scale is increased by a doubling 

factor in all flow figures to see the features and match the figures of the Sherbrooke 

group. The maximum value for joule heating was 81.41 10× W/m3 for the Sherbrooke 

model in Figure 7 and 81.55 10×  W/m3 for the 2-D test model on page 38.  

The maximum temperatures coincide with less than a percent difference and the 

contour lines have the same shape. There are approximately 500 cells of the 44.3 10×  

fluid cells that have temperatures over 9900K in the test model. With the given mesh 

sizes, the Sherbrooke model would have 41 cells in the same region. Over 9950K, there 

would be only about 3 Sherbrooke cells in comparison to 40 cells in the test model. For 

Joule Heating, there are roughly 40 test model cells for amounts over 8 31.4 10  Watts/m×  

in comparison to only 3 for the Sherbrooke model. Cell variables are an average or an 

estimate over the volume or area of a cell. This could potentially explain why the mesh 
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size has such an effect over the maximum temperature and maximum joule heating for a 

set driving current.  

The two visual discrepancies seem to arise at the wall between the Q2 and Q3 

regions and the Q1 outlet. At the wall between Q2 and Q3, the test model seems to have 

conducted heat further toward the inlet than the Sherbrooke model. This can be 

explained by the test model using a different thermal conductivity and specific heat for 

the wall material compared to the Sherbrooke model. However, both models are 

modeling quartz for a wall material. 

 

 

 

              
Figure 5: Sherbrooke 

Temperature (K) 
Figure 6: Sherbrooke 

Stream Function (kg/s) 
Figure 7: Sherbrooke 
Joule Heating 3/W m  
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Both models are modeling quartz for a wall material. The thermal conductivity of 

quartz is less than 1/100th of most metals and twice that of argon at 104K. Therefore, the 

number of time-steps and/or iterations required for heat transport is increased compared 

to argon. Thus, the difference can be explained by several more iterations for the test 

model compared to the Sherbrooke model. 

 
 

 

             
Figure 8: 2-D Model 

Temperature (K)  
Figure 9: 2-D Model 
Stream Function kg/s  

Figure 10: 2-D Model 
Joule Heating 3/W m

 

 

 

At the Q1 outlet, the test model has a region where the temperature remains 

300K and the Sherbrooke model has the temperature immediately increasing. This 

corresponds to plasma being present at the Q1 interface for the Sherbrooke model and 

plasma beginning at some distance (~3mm) away for the test model. Argon is non-
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conductive at 300K and thus there should be no joule heating. The gas must be mixed or 

convectively heated to roughly 4000K for joule heating to be significant. For convection, 

the energy needed to heat the Q1 inlet gas to 4000K in 1 second is 62.8pC V T⋅ ⋅ ∆ ≈∫  

Joules. The maximum heat transferred by conduction for 1 second is .002Tk A
x
∆

⋅ ⋅ ≈  

Joules, where k is the thermal conductivity, A is the surface area, and x is the conduction 

length. Therefore, the argon at inlet Q1 is not heated by conduction but is heated by 

mixing or convection. The test model was able to render a laminar flow region near Q1 

and a mixing region about 3 millimeters from the inlet. With a larger cell size, the 

Sherbrooke model doesn’t predict this region but showed the mixing region immediately 

at the inlet. This effect is also seen in how the stream functions differ.  

2. Stream Function Discussion 

Figure 8, Figure 9, and Figure 10 give plasma results from the 2-D Test Model. 

The Stream Function is an isocontour of the total amount of gas flowing in kg/s from the 

center of the inlet to a radial distance. Figure 6 and the stream figure on page 38 both 

have 18 streamlines and have similar shape. However, the Sherbrooke model doesn’t 

render any streamlines from Q1. This may be from the location of the mixing region as 

discussed previously. However, this is unlikely because of what the location of the origin 

of each line of the Stream Function in FLUENT© represents. The Stream Function is 

formulated to combine information about the streamline flow of argon and conservation 

of mass. Each line represents a certain amount of argon at the inlet.  

The differences in the starting locations of each line implies either a different 

initial velocity condition or a difference in the GAMBIT© mesh or grid. A difference in 

initial velocity is viable through confusion in what the boundary condition should be at 

Q1, Q2, and Q3. Most meters measure volumetric flow. Therefore, using a set velocity 

over a cross sectional area is the most reproducible boundary condition.  

The Sherbrooke paper doesn’t specify what type of inlet is used whether constant 

mass or constant velocity. However, from a personal communication with Siwen 
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Xue [38],  we know the Sherbrooke model used constant mass. This test model along 

with a similar model by a group from Bologna, Italy [39] uses a constant velocity as the 

inlet boundary condition. Using slpm units implies constant volume and thus velocity. 

However, often using standard units implies constant mass at a standard temperature of 

293.15K and standard pressure of 1 atmosphere. From the ideal gas law we know that if 

volume and temperature is constant and pressure changes then the mass flow rate 

changes. This corresponds to the constant velocity case. We also know that if the mass 

flow rate and temperature is constant and pressure changes, then the velocity must 

change. This corresponds to the constant mass case. The two cases would be identical if 

the inlet temperature was at STP, but the models use 300K. Even then, the Stream 

Function would simply be scaled differently, but the origin of each streamline would be 

in the same location. In other words, because Q1, Q2, and Q3 is in the ratio 1, 3, 31 slpm 

respectively the starting location of each streamline should be in the same location 

regardless of constant mass or volume as the boundary condition. This follows from 

modeling the flow as incompressible. A compressible flow would not require the 

boundary conditions to be identical. The converged result with constant mass flow 

boundary condition gives identical results with. Therefore, this explanation is incorrect.  

The most likely explanation of the different starting locations for the streamlines 

is from the mesh sizing. A smaller cell size along the inlet boundary would allow the 

Stream Function to evenly disperse the streamlines. Thus, from the different cell sizes 

and dispersions the starting locations for the streamlines are not identical.  

3. Vector Potential Discussion 

The extrema for the Sherbrooke model vector potential was 41.07 10−× T m and 
75.87 10−− × T m for the real component and 51.44 10−− × T m for the imaginary 

component in Figure 11 and Figure 12. The 2-D Test model had 41.101 10−× T m and 
63.494 10−− × T m for the real and 51.477 10−− × T m for the imaginary in Figure 13 and 

Figure 14. 
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Figure 11: Sherbrooke Model RA θ   

(T m)  
Figure 12: Sherbrooke Model IA θ  

(T m)
 
 

 

For both the Sherbrooke and the test models, the boundary value of Aθ at all walls 

is set to zero.  Setting the potential to zero along the boundary is artificial to a small 

extent. The largest effect will be seen  closest to the coils. This boundary condition is 

applied at the Q1 boundary and therefore the largest deviation from reality should be at 

this boundary. Further analysis will be conducted with dipole boundary conditions.  

There is slight difference between the two vector potentials in extrema values. 

The test model value for max RAθ has a 3% higher value than the Sherbrooke model. The 

test model value for max IAθ  has a 2% larger absolute value than the Sherbrooke model. 
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Figure 13: 2-D Test Model RA θ   

(T m)  
Figure 14: 2-D Test Model IA θ  

(T m)  
 

 

 

Both the real and imaginary parts of the magnetic vector potential appear to be 

replicated between the Sherbrooke model and the test model. The real components have 

a negative value in the center of the plasma. This is expected because the magnetic field 

is completely shielded in the center of the plasma. More so, the field is in the opposite 

direction in the center of the plasma from the induced currents. However, there is slight 

difference between the two in extrema values. The test model value for max RAθ has a 

3% higher value than the Sherbrooke model. Additionally, test model value for max IAθ  

has a 2% larger absolute value than the Sherbrooke model. 

Joule heating is the direct cause for having a 1% higher maximum model 

temperature. The indirect cause could be from having a slightly different flow pattern 

near the Q1 inlet. This would be consistent with the temperature discussion of the 

mixing region near the Q1 inlet. Different flow patterns change the localized temperature 

which effects conductivity. The conductivity drives the vector potential. The magnitude 
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of the effects from the Q1 region will be much more visible by extending the modeling 

field in the dipole boundary condition (DPBC) model.   

C. Dipole Boundary Condition (DPBC) Model 

In the DPBC model, we have extended the flow field to include the pipe and wall 

carrying the central Q1 flow. We have also have defined magnetic dipole boundary 

conditions with the dipole momentum along the axis and located in the center of the 

middle current coil. The extrema for the real component of vector potential was 
41.105 10−× T m and 63.678 10−− × T m in Figure 15. The minimum value for the 

imaginary was 51.561 10−− × T m for the DPBC model in Figure 16. 

 

 

 

         
Figure 15: DPBC Model RA θ   

(T m) 
Figure 16: DPBC Model IA θ  

(T m)



44  

 

 

1. Effects from Modeling the Q1 Region 

Large effects are seen in the temperature distribution and the stream function 

with the DPBC model. Figure 17, Figure 18, and Figure 19 give plasma results for 

including the Q1 region. The boundary condition for fluid flow along a wall is that the 

velocity be zero. Solving Navier-Stokes equations gives parabolic flow velocity through 

a pipe with a maximum at the center [31]. Modeling the flow through a pipe creates a 

type of jet in comparison to modeling a uniform velocity distribution through the cross 

section. An additional cause of this jet effect is the increase in temperature in the pipe. 

In Figure 17, the temperature of argon from Q1 reaches roughly 4000K and over 

30m/s in the center of the Q1 pipe by the time it reaches the plasma region (in the test 

model and the Sherbrooke model this is 300K and a little over 1.8m/s for comparison).  

The increase in axial momentum at the inlet equates to modeling a higher axial 

velocity on-axis at the outlet. The effects of this can be seen in the highest temperature 

contours terminating on axis for the test model (Figure 8) and on the outlet for the DPBC 

model (Figure 17). Additionally, this implies that the bulk of the heat is lost through the 

outlet for the DPBC model and by radiative cooling for the test model. This can be seen 

in the integrated radiative heat loss values for the Sherbrooke, Test, and DPBC models 

in Table VI. The slower velocity in the test model allows the high temperature gas to 

cool substantially before exiting through the outlet boundary. In the DPBC model the 

gas doesn’t have this much time. Therefore we see over 23 times more radiative heat 

loss modeled with the test model in comparison to the DPBC model.  

 

Table VI: Total Power Values 
 Total Integrated Power Radiative Heat Loss 

Sherbrooke Model 5 kW N/A 

Test Model 4.996284 kW 1240.05 W 

DPBC Model 5.150548 kW  52.7729 W 
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Figure 17: DPBC 
Temperature (K)  

Figure 18: DPBC 
Stream Function (kg/s)  

Figure 19: DPBC 
Joule Heating 3/W m  

 

 

 

The higher velocity also explains the difference in peak temperature for the 

Sherbrooke, Test, and DPBC models (9920, 10002, and 9889 K respectively). Despite 

having more modeled integrated power, the DPBC model has a lower peak temperature 

because of higher velocity on axis. The maximum value for joule heating was increased 

slightly to 81.565 10× W/m3 in Figure 19. 

The DPBC effects are also seen in the stream function. For the test model, the 

streamline coming from Q1 goes up and over the turbulent region. This is from the argon 

momentum at Q1 being small and being absorbed into the turbulent clockwise flow 

surrounding the pipe. In Figure 18 for the DPBC model, the streamline coming from Q1 

goes straight through the plasma region on the axis. This type of flow is modeled by a 

few independent groups [23, 40]. 
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2. Effects from Modeling with Dipole Boundary Conditions 

The effects from adding dipole boundary conditions are not as significant as 

modeling the Q1 region. The extrema from the DPBC model are slightly of higher 

magnitude in comparison to the values from a vanishing boundary condition at the walls. 

This is expected because the vector potential no longer must conform to unnaturally 

vanishing boundary conditions for field. The higher field effects can be seen in the total 

integrated power values for the Sherbrooke, Test, and DPBC models. The dipole 

boundary condition produced 3% more modeled integrated power and 1% higher peak 

power.  

D. Concluding Remarks 

 The results from the test model are in close agreeance with the 2-D Sherbrooke 

model. The bulk of the differences arose from the test model having a slightly smaller 

mesh size and therefore more precise results. The largest difference was in the maximum 

values of joule heating. However, the total integrated power had less than a tenth of a 

percent difference. Under the given assumptions, the 2-D simulation code performed as 

expected in comparison to the Sherbrooke model. By adding dipole boundary conditions 

and modeling the flow and heat transfer near the Q1 inlet, we improved the realistic 

nature of the model simulation. Several of the properties changed but not drastically. The 

effects are most easily explained by higher flow momentum at the Q1 inlet.  

 The goal of modeling an inductively-coupled RF plasma was to see if non-

turbulent, laminar flow would occur in the entire plasma region. With the 2-D results, we 

may claim that the answer is yes. However, to simplify the model, we modeled an axis-

symmetric geometry and completely azimuthal driving current loops. The asymmetries 

associated with the actual copper driving coils have the largest effect on the flow 

characteristics in the plasma [17, 24, 41]. Therefore, a fully 3-D theory and model must 

be developed to attempt to design a laminar RF plasma torch.   
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IV. 3-D CODE VERIFICATION MODEL 

 In modeling an axis-symmetric geometry we have neglected the largest effects 

that would destroy the symmetry of laminar flow in the plasma exhaust plume. The 

asymmetries associated with the copper coil have the largest effect on the flow 

temperature, streamlines, and velocity. With three dimensional capability, we may 

potentially be able to design a torch to have completely laminar flow with little or no 

mixing.  

 

 

                     
Figure 20: Bologna Grid  Figure 21: 3-D Test Model Grid 
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We must first verify that the three dimensional code will give comparable results 

to the two dimensional code. Therefore, our code verification model will be a 3-D 

representation of our 2-D test model. At the University of Bologna in Italy, they have 

published a comparable model to our 3-D test model [17]. 

In Figure 20 and Figure 21 we have a mesh from the Bologna group and our test 

model grid. The meshes were produced in GAMBIT© which is a preprocessor program 

for FLUENT©. The Bologna Grid has 38.5 10× cells in the coil region, 510 cells in the 

extended electromagnetic field region, and 53.5 10× cells in the plasma region. The 3-D 

Test Grid has 34.0 10× cells in the coil region, 42.8 10× cells in the extended 

electromagnetic field region and 52.5 10× cells in the plasma region. As the two figures 

reveal, the test model as fewer cells in the walls. However, in the important plasma 

region, the cell size is quite comparable. 

The frequency of oscillation for the torch model is 3MHz. The input 

parameterization is the same as in the 2-D case as listed in the table on page 29. 

However, rather than setting the coil current, we will be setting the total integrated 

power dissipated to 5.00kW.  

A. Setting Power Dissipated Versus Current 

 There are two reasons to converge the model to a set power rather than a set 

current. First of all, the power supply applies a set voltage across the coils and not a set 

peak current. Second, the plasma parameters are directly dependent upon the power 

dissipated rather than the current.  

As discussed in Appendix A the plasma, the copper coils, and the power supply 

are all highly coupled together in terms of inductance or impedance. The total coil 

current is highly dependant upon this impedance. However, the power supply applies a 

set voltage to the coil. This is similar to setting the power applied to the coil plasma 

system. For a set resistance, power is proportional to voltage squared.   
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Table VII: Converged Results for Comparison 
Case 0I  

(A) 
Power  
(kW) 

T 
(K) 

RMax A θ  
(T m) 

IMin A θ  
(-T m) 

MaxJoule 
(W/m3) 

v  
(m/s) 

2-D Test 
Case 

161 4.996 10002 41.101 10−×  51.477 10−× 81.55 10×  17.21 

Coarse 
Set 0I  

161 1.969 9672 59.33 10−×  69.29 10−×  75.97 10×  9.24 

%Error 0% 60% 3% 15% 37% 61% 46%

Coarse 
Set Power 

196.6 5.000 9836 51.06 10−×  51.44 10−×  81.24 10×  16.77 

% Error 22% 0% 1.7% 4% 3% 20% 3%

Fine 
Set 0I  

161 3.284 9807 59.79 10−×  51.26 10−×  81.02 10×  13.94 

% Error 0% 34% 2% 11% 15% 34% 19%

Fine 
Set Power 

184.6 5.000 9998 51.104 10−× 51.46 10−×  81.44 10×  17.42 

% Error 15% 0% 0.04% 0.3% 1.2% 7% 1.2%

 

 

 

 As a rough preliminary test, a coarse 3-D grid with 42.1 10× total cells was 

constructed with the same geometry as the figure on page 28 and same parameters as the 

table on page 29. The fine case is the results from the 3-D test mesh from Figure 21. 

Table VII gives converged values for various flow variables for a set-current case and 

the set-power case. The percent error is with respect to the 2-D Test Model.   

The percent errors are smaller across the board when the power is set as opposed 

to the current. These results imply that some of the grid dependences on results are 

removed by simply setting the power rather than the current. 
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1. Mesh Dependence 

In this chart we also see a strong dependence on the mesh size. A good parameter 

to compare meshes is a characteristic length (l) given by: 

 
#

total Areal cell Area
cells

= =  (80) 

in the 2-D case and for the 3-D case we have the following: 

 ( )
1

1 3
3

#
total Volumel cell Volume

cells
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

. (81) 

Table VIII gives a summary of the characteristic mesh lengths for the 2-D Test model, 

the coarse 3-D mesh, and the 3-D Test Model. The data points only incorporate the 

plasma region.  

 
 
 

Table VIII: Characteristic Mesh Lengths 
Case Characteristic Length (m) 

2-D Test-Model Case 43.4 10−×  

3-D Test-Model Case 31.24 10−×  

3-D Coarse-Mesh Case 33.80 10−×  

 

 

 

There is a definite correlation between the characteristic length and most of the fluid 

variables listed in Table VII. See Appendix D for a graphical representation of Table VII 

and Table VIII.  

For the set-current cases, as the characteristic length decreases, the maximum 

values for flow and field increase strongly. However, for the set-power cases the 

correlation is much weaker. Therefore, by setting the power dissipated in the plasma 
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region we are more able to standardize and compare results between models and 

decrease the dependence on mesh size.  

 There are some converging issues that are special to setting the power dissipation 

rather than the current. In the governing electromagnetic equations, the current is treated 

as a constant. Therefore, if we change the current, then the energy equation and the 

vector potential equation must be close to converged before the current may be 

accurately changed again. In practice, this extra procedure doubles the number of 

iterations required before convergence. For equation (79), a converged value residue is 

considered to be 610− or less. Therefore, a converged total power value would be 0.005 

Watts/ m3 deviated from 5000 Watts/m3. 

The flow chart changes slightly for the 3-D solver. For setting the dissipated 

power, a User Defined Function was written. The UDF is run at the beginning of each 

iteration and decides if the energy and vector potential equations have converged enough 

to calculate the integrated power. After the total power is calculated, the result is used to 

adjust the amount that the current changes. The change is proportional to the difference 

between the target power and the calculated power as the following equation:  

 ( )new old target calculatedI I P Pβ= + −  (82) 
where β is the dissipation parameter. The dissipation parameter will adjust if the 

subsequent change in total power is too large or too small. A new flow chart of how the 

3-D UDF code works is given in Figure 22.  

B. Under-Relaxation Factors 

The under-relaxation factors defined in equation (74) are largely the same for the 

3-D test model. However, the under-relaxation factor for the 6 vector potential equations 

may be greatly increased. With no singularity involved, the values may be safely set to 

0.96 at initialization and increased to 0.99 after 1000 iterations. This drastically 

decreased the required number of iterations before the vector potential would converge 

as discussed with equation (77). Conversely, the scalar potential has a very complicated 
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source term in the plasma region. The gradient of the conductivity multiplied by the 

gradient of the scalar potential is very unstable.  

The under-relaxation parameter for the scalar potential must be smaller 

than 82 10−× so that the iterations don’t diverge. However, in the 3-D test case, the z-

component of vector potential and the scalar potential equations were neglected to only 

include what was modeled in the 2-D test case. However, since the current is still 

azimuthal and thus not axial electric field for current to collect. The inclusion of these 

equations would have no effect on the results. This was verified after the 3-D test case 

was converged.  

C. Judging Convergence 

 The residual values are comparable to the 2-D values listed in the table on page 

35. The one notable difference arises with the mass continuity residue. The value 

converged much more in the 3-D test case. The residues are summarized in Table IX. 

 

 

 

Table IX: 3-D Test Model Residues 
Mass 
Continuity 

Axial 
Momentum 

Radial 
Momentum 

Energy φ  
RA  IA  

112.0 10−×  82.5 10−×  81.0 10−×  82.5 10−×  41.2 10−×  102.5 10−×  91.0 10−×  

 

 

 

The residues for the real x and y components of vector potential had the same value and 

are listed collectively as RA . The same is true for radial momentum and the imaginary x 

and y components of vector potential. The residue for scalar potential was converged 

to 41.2 10−× . The scalar potential residue is larger because of the non-linearity of the 

source terms in equation (63) and the extremely small under-relaxation factor ( 82 10−× ). 
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 Figure 22: Flow Chart for the 3-D Coupled Pressure-Based Solver 
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The flow and vector potential variables were converged after roughly 20,000 

iterations. This is roughly half of the required number for the 2-D test model. The vector 

potential equations having more stability in Cartesian coordinates enabled this number to 

decrease. However, because the total number of cells was nearly tripled, the total CPU 

hours increased proportionately.  

D. Results 

1. Temperature Profiles 

The temperature profiles of the two comparable models are very similar. The 

only differences occur in the maximum value and the inverted areas at the Q1 region and 

the exit plume region. The two temperature color profiles in Figure 23 and Figure 24 are 

slightly different. The red, green and blue contour lines of the Bologna distribution are 

more contrasted than the 3-D test model.  

The maximum temperature of the Bologna model is 9922K and the maximum 

temperature of the 3-D test model is 9998K. The difference between the 2-D case and 

the Sherbrooke model has almost the same characteristic difference despite having 

almost identical temperature contour shape. The difference is small at less than a 

percent, but there most likely is some differing parameter that the author isn’t aware 

about that might be causing this systematic error. At this time the cause is unknown. The 

origin of this discrepancy (along with joule heating) should be found before any design 

or construction of a torch.  

Another difference between the two temperature profiles is the region of 

concavity of the highest contour line in the 3-D test model. The Bologna distribution 

doesn’t contain this feature both in the exit plume and at the Q1 region. The 3-D test 

model does contain the feature. In both 2-D cases the concave contour is included. 

Therefore, I am fairly confident that the 3-D model is correct in simulating a concave 

region of slightly lower temperature both in the exit plume and at the Q1 inlet. 
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Figure 23: 3-D Test Model 
Temperature Profiles (K)  

Figure 24: Bologna Temperature 
Profiles (K)  

 

 
 

2. Velocity Profiles 

The velocity profiles have very similar shape. Just like in the temperature 

profiles, the Bologna model has a well defined red, green and blue contour line in 

comparison to the 3-D test model. This difference causes there to appear a drastic 

difference in the velocity contours. However, the shape of the contour lines are quite 

similar.  

There is a slight difference in the maximum velocity with 17.42 m/s in the 3-D 

test model in Figure 25 and 16.64 m/s in the Bologna model in    Figure 26. The 

potential causes of this slight discrepancy are discussed with the swirl velocity and 

gravity subsections. However, the 2-D model at 17.21 m/s, has a maximum velocity that 

is very close to our 3-D model. 
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Figure 25: 3-D Test Model Velocity 

Profile (m/s)  
   Figure 26: Bologna Velocity Profile  

(m/s)
 

 

3. Joule Heating Profiles 

The joule heating profiles are quite comparable as in the temperature and 

velocity distributions. However, maximum values are once again different at 81.58 10×  

W/m3 in Figure 27 and 81.44 10×  W/m3 in Figure 28. The maximum joule heating in the 

Sherbrooke 2-D model and the 2-D test model was 81.41 10×  W/m3 and 81.55 10×  W/m3 

respectively. The differences are somewhat acceptable given that the total integrated 

joule heating or total power dissipated for each model is the same value at 5.00 kW.  
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Despite having correct shape, the top 4 contour levels aren’t visible in the 

Bologna model. The highest values of joule heating are found at locations not on the 

cross sectional slice chosen by the Bologna group. This implies that the output for joule 

heating of their model is asymmetric to a small degree. The maximum contour shown by 

the Bologna cross section appears to be 81.11 10×  W/m3. This is quite a large difference 

in comparison to the actual maximum joule heating value.  

 
 
 
 

         
Figure 27: Bologna Joule Heating 

Profile 3/W m  
Figure 28: 3-D Test Model Joule 

Heating Profile 3/W m   
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4. Swirl Velocity 

The 3-D test model had the same dimensions and symmetries as the 2-D model. 

Therefore, from it we can’t glean any new information about the amount of mixing in 

the plasma region as caused directly by asymmetries in the coil currents. In the 2-D axis 

symmetric model all tangential or swirling velocities were assumed null because there 

were no tangential forces. (Axial current, in addition to azimuthal current, is required for 

theoretical tangential Lorentz forces.) Therefore, in the 3-D analog of the 2-D test 

model, there should not have been any theoretical tangential forces to cause swirling. 

However, we were able to see some effects from removing the azimuthal restraint in the 

3-D test model. The 3-D model gave a maximum swirling velocity of 0.47 m/s near the 

Q1 outlet where the velocity magnitude is roughly quadruple that amount. In the outer 

sheath region the maximum swirl velocity is about 0.08 m/s and the velocity magnitude 

is 4 m/s. This area of the torch is of importance in designing the torch for laminar, non-

mixing flows. Theses numbers are quite small and shouldn’t directly destroy laminar 

flow.  

Now we must ask ourselves of the source of these swirling velocities that might 

destroy laminar flow. Without axial current the theoretical tangential swirl velocity 

should be zero. However, there is a negligible but non-zero amount of tangential force 

that is about 1/25th of the total force. These forces might arise from mesh effects. When 

modeling in 3-D the mesh isn’t quite perfectly cylindrical. Each cell face is planar and 

thus it’s impossible to make a perfect 3-D mesh with cylindrical symmetry. As the cells 

get smaller these aberrational effects should diminish. However, with a coarser mesh the 

swirl velocity is still around 0.5 m/s. Therefore, it appears that the origin of the swirl 

velocity isn’t directly from the mesh.  

These small swirl velocity artifacts may be arising from the cell order in the 

iterative process. FLUENT© doesn’t specify the cell order by which each iteration takes 

place. If the ordering is circular then we might have a remnant circling velocity. If the 

ordering is linear we might see a remnant linear velocity in the direction of the ordering. 

FLUENT© does allow the cell ordering to be altered to optimize memory usage. 
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However, we can’t specify how the reordering takes place so that artificial velocities are 

minimized. A completely converged result shouldn’t include any effects from the cell 

iteration ordering unless swirling velocities solve the fluid dynamical equations best.  

 Large swirling velocities may potentially result in mixing or turbulence in the 

plasma region. In future models we must be extremely careful to design the coils to 

minimize this component of flow. It’s difficult to give a graphical representation of the 

swirl velocity because the software doesn’t offer a streamline mass function in three 

dimensions. 

5. Gravity Inclusion 

The inclusion of the force of gravity may affect our results. Both the Sherbrooke 

and the Bologna groups did not mention that gravity was included in their simulation. 

For the 2-D and 3-D test models, gravity was not accounted for. The effects of its 

inclusion potentially could be seen in the velocity distribution. Any small change in the 

flow could certainly result with different maximum values in temperature and joule 

heating. Before future models are simulated, we must add gravity as a source term in the 

force equation to these models to verify its effects and once again compare results. 

Converged results of the 2-D test model with the inclusion of gravity show rather 

large effects. The maximum velocity changed from 17.21 m/s to 17.29 m/s in the plasma 

region. This may be explained by the cooler, denser gas near the walls squeezing the 

central core plasma. This squeezing has resulted in slightly larger velocities. The higher 

velocities decrease the time spent by the gas in the joule heating region and thus the 

temperature reduces from 10,002K to 9,979K. Additionally, the maximum joule heating 

amount decreased to 81.49 10×  W/m3 from 81.55 10×  W/m3. The maximum temperature 

and joule heating shifted closer to the Sherbrooke and Bologna model values while the 

velocity moved further away. Therefore, the results are inconclusive whether the neglect 

of gravity is the main culprit for differences between the 3-D test model and the Bologna 

model.   
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E. Concluding Remarks 

 The results of our 3-D test model have very close results in comparison to other 

comparable 3-D models. Additionally, the results are in excellent agreement with our 2-

D counterpart. The results of this 3-D test model have verified the validity of the written 

user defined function source terms as well as the initialization conditions set up in 

FLUENT© for 3 dimensions. The results of the 3-D test model should give confidence as 

to any subsequent results for different coil geometries. 

A few small discrepancies still remain between our models and the simulation 

results from the Sherbrooke group in Canada and the Bologna group in Italy. Our models 

have a maximum temperature that is roughly 80K larger. Our simulation has maximum 

velocities that are roughly 0.8 m/s faster vertically. One possible explanation is that they 

included gravity in their model. Another explanation for different results is the differing 

grids. As can be seen in the discussion of characteristic length in equation (80), the mesh 

has a significant effect on the flow and field variables. However, this effect should be 

minimized by setting the power rather than the current as discussed on page 49. 

Therefore, the mesh shouldn’t be a significant cause of flow and field differentials. 
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V. SUMMARY 

A. Modeling Conclusion 

The flow in the 3-D case remained laminar as was seen in the 2-D case. This 

gives promise that as we wisely add components to the simulation, we may be able to 

keep the same characteristic non-mixing flow. Therefore, as a next step, we need to 

create a mesh with helixical coils. In this model we will need to optimize the coil angle 

to prevent plasma mixing and keep the coils separated enough to prevent arcing.  

The next step would be to create a mesh with coil leads. The coil leads are the 

primary source of asymmetry for the plasma flow. Therefore, the most significant cause 

of mixing will be the addition of coil leads. The coil angle mostly causes tangential 

velocity in the plasma region but no mixing to a first approximation. The radial currents 

associated with the coil leads will cause direct turbulence and mixing in the plasma 

sheath.  

The design of the torch in this step may be the most important to constructing 

laminar flow. The final component to modeling the plasma will be to add particles. We 

will need to model the inertial forces associated with aerosols as well as the viscous 

forces. This step will be crucial in predicting exactly how much mixing will occur 

between aerosols. Even if the argon flow as designed and modeled is completely laminar 

and non-mixing, the aerosol particles may still mix due to the individual particle 

momentum through curves. A full analysis of Stokes number associated with the 

aerosols will need to be conducted. 

B. Further Research 

After modeling and designing the inductively-coupled plasma torch it will need 

to be constructed and characterized. The temperature profile may be analyzed by Atomic 

Emission Spectroscopy (AES) and the flow may be monitored by pulsed laser 

photography of aerosol flow. With this data we may adjust flow rates and power supply 

parameters to specifications that minimize turbulence and mixing. We must also design 
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and construct a roller system for coating the silicon carbide strands for use in a metal 

matrix composite fuel cladding.  
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APPENDIX A: INDUCED COIL CURRENT DISCUSSION 

The current density for three 6mm wires at 250Amps (750 Amps total) is 
62.2 10× Amps/meter2. The maximum induced current density in the plasma is roughly 

(from converged data from 250 Amps) from (18) is: 

 max maxmaxind ωσ= ≈J A Ai  61.3 10× Amps/meter2 (83) 

where the ½ factor is from time averaging (see explanation to (33)). However, if we 

integrate this value over the plasma region, then the total current would be: 

 945.4plasma indI d= =∫J Ai Amps. (84) 

Therefore the total current in the plasma region is roughly of the same order as the total 

current in the coils. Now in actuality, the induced currents themselves are going to 

induce currents in the conductive coils. However, because the direction of plasmaI is 

azimuthal and smoothly distributed, the currents in the plasma region can be considered 

to a fair approximation as a solenoid where the field outside is zero. Therefore the 

induced current in the coils will be an order of magnitude smaller than the 250 Amp coil 

driving current.  

We may to a first approximation, estimate the plasma as a single loop in the same 

plane as a coil loop. Proceeding we may theoretically calculate the contributions to the 

coil current. Writing the potential drops across the Kirchhoff coil loop we have the 

following: 

 ( ) ( ), , ( )coil coil c p plasma coil self coilI R M I L I V t
t t
∂ ∂

+ + =
∂ ∂

 (85) 

where the mutual inductance between the coil and the plasma loop is ,c pM , coilL is the self 

inductance of the coil, and coilR is the total resistance of one coil loop. The first term 

represents the voltage drop from the driving current through the coils. The second term 

is the voltage drop due to the mutual inductance between the plasma and the coils. The 

third term is the voltage drop from the coils self inductance. The self inductance of a thin 

wire loop at high frequency can be written as the following: 



67  

 

 

 80 1.04 10
4

coil
coil

aL µ −= ≈ × H (86) 

where acoil is the loop radius.  Ifδ is the skin depth for copper given by: 

 
0

2 .04δ
µ ωσ

= ≈ mm (Jackson 1999)  (87) 

then the resistance may be written from the cross sectional conduction skin as the 

following: 

 2
2

coil coil
coil

coil coil

length a aR
Area r r

π
σ σ π δ σ δ

= = =  (88) 

The mutual inductance between any 2 circuits may be written as the following: 

 2,1 1,2 1,2 2,1
1 2

1 1M M A d A d
I I

= = =∫ ∫l li i (Jackson 1999)  (89) 

where 1,2A is the vector potential of circuit 1 at circuit 2. Using the vector potential for a 

dipole in equation (28) we may solve the path integral to find that 

 
( )

2 2
80 1 2

1,2 3
2 2 2

1 2

1.02 10
2

r rM
r r

µ π −
⎛ ⎞
⎜ ⎟= ≈ ×⎜ ⎟⎜ ⎟+⎝ ⎠

H .  (90) 

Inductance in this case is largely geometrical and time independent (given the current 

distribution in the wire is frequency independent). Therefore the time derivatives in 

equation (85) may be replaced byω . Here we must be careful to differentiate between 

the self induced current ( ,self coilI ), the drive current ( coilI ), the induced current in the coil 

from the plasma ( COILindI ), and the induced current in the plasma ( indI ). Throughout this 

paper we assumed that coilI was 250 amperes. However, when we include the self 

inductance, the total current (in each coil) from the power supply and the self inductance 

is 250ampers or: 

 , 250coil self coilI I+ = amperes.  (91) 

There is an inherent minus sign absorbed in ,self coilI  because it opposes the driving current 

according to Lenz’s law. Assuming that plasmaI is small so that if ,coil self coilI I≈ , we may 



68  

 

 

estimate the contribution of the self inductance to the total current as the proportionality 

of the first over the last term in equation (85) as the following: 

 
( ) 0

,

4 0.025coil coil

coil
coil self coil

I R
rL I

t
ωσ δµ

= ≈
∂
∂

. (92) 

We may interpret this ratio as the fraction of coilI that contributes to the 250amps or: 

 .025 250coilI ≈ amperes.  (93) 

This implies that for 250 amps to be flowing through the coil, then the generator must 

supply a voltage for 104 coil amps if the self induced current is included. With this value 

for coilI , the contribution to the total voltage by the plasma-coil coupling may be written 

as a ratio of the mutual inductance term over the other two terms as the following: 
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 (94) 

where coilr =.003 is the radius of the copper pipe, .015,  .033coil plasmaa a= = , and the 

conductivity of copper is 659.6 10× Siemens per meter. The minus sign in the 

denominator is because the self induced and driving currents oppose each other. This 

value implies that the induced current in the coil from the plasma ( COILindI ) is roughly 

10% of the total current (250 amps). From Lenz’s law we know that the plasma will 

increase the current in the coils. 

 The above estimation doesn’t take several influences into account. The 

inductance of an actual helixical copper coil is quite different than for a closed current 

loop. Also, when modeling 3 separate current loops, each loop might have severely 

different inductances which would alter the current coupling. 

The difficulty in estimating the effects from mutual inductance from the plasma 

and the self inductance of the coil is obvious. With Vector Fields© (a powerful 

electromagnetic modeling software program) we modeled the plasma region as a slug of 
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metal with conductivity 2500 Siemens per meter. Using this conductivity as an estimate 

gives the closes fields and currents to that of modeling an argon plasma [26]. The results 

reveal that the actual effect for the induced coil current from the plasma is on the order 

of 16% and the self induced current in the coils is of the order of 42 10× amperes. The 

theoretical estimates above are roughly half these values. Vector Fields© also calculates 

a total coil inductance of 73.82 10−× H without a plasma. The same program models a 

total coil-plasma system mutual inductance of 73.3 10−× H with the plasma. These two 

numbers verify the theoretical trend of equations (86) and (90) with the self inductance 

larger than the mutual. However, these values are over 30 times larger than the 

theoretical values for single current loops. This arises because the numbers given from 

Vector Fields© incorporate the inductance of all three coils together (we would expect 

an 2N =9 factor). Regardless, if these two numbers replace the theoretical values 

of coilL and ,c pM  in equation (94), then we get the following result for the same equations: 
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. (95) 

 In actually modeling the plasma, we are most interested in the flow 

characteristics and temperature profile. These are definitely current and power supply 

dependent. However, with most RF power generators the frequency and current 

adjustments aren’t well defined and have simple gross adjustment. Therefore the coil 

current we use in our model will simply be seen as a starting point for adjusting the 

power supply output.  
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APPENDIX B: ARGON MATERIAL PROPERTIES 

The following table is a continuous list of the material properties of Argon at 

atmospheric pressure from 300K to 13,200K. The data was acquired by a personal 

communication with an author of the Sherbrooke paper [38]. The temperature step is 

100K and there are 130 data points for each property. The ordering and units are defined 

in Table X. The data was modeled as piecewise continuous. The data is graphically 

displayed in Figure 29. 

 
 

Table X: Data Ordering and Units 
1 
      

Viscosityµ  kg
m si

 

2 
      

Density ρ  
3

kg
m

 

3 
      

Thermal Conductivity tk  W
m Ki

 

4 
      

Specific Heat pC  J
kg Ki

 

5 
      

Electrical Conductivity σ  A
V mi

 

6 
      

Radiation energy loss rate radiateQ  
3

J
s mi

 

 
 
 
 

Table XI: Temperature Dependant Data for Argon at 1atm 

T(K) µ  ρ  tk  pC  σ  radiateQ  
300 1.90190E-5 1.62260E+0 1.67310E-2 5.17570E+2 3.07840E-8 0.00000E+0
400 2.47400E-5 1.21690E+0 2.10020E-2 5.17350E+2 3.07840E-8 0.00000E+0
500 3.42240E-5 9.73530E-1 2.67120E-2 5.20330E+2 3.07840E-8 0.00000E+0
600 3.92450E-5 8.11210E-1 3.06310E-2 5.20630E+2 2.56100E-8 0.00000E+0
700 4.48580E-5 6.95300E-1 3.50110E-2 5.20530E+2 3.75550E-8 0.00000E+0
800 4.97420E-5 6.08390E-1 3.82230E-2 5.20480E+2 3.79030E-8 0.00000E+0
900 5.39210E-5 5.40790E-1 4.17850E-2 5.20440E+2 3.91360E-8 0.00000E+0
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Table XI: Continued 
1000 5.76330E-5 4.86720E-1 4.49820E-2 5.20410E+2 3.92160E-8 0.00000E+0
1100 6.10760E-5 4.42480E-1 4.76690E-2 5.20390E+2 3.82000E-8 0.00000E+0
1200 6.43740E-5 4.05610E-1 5.02430E-2 5.20380E+2 3.66200E-8 0.00000E+0
1300 6.75980E-5 3.74410E-1 5.29600E-2 5.20370E+2 3.50180E-8 0.00000E+0
1400 7.07870E-5 3.47670E-1 5.52490E-2 5.20360E+2 3.38050E-8 0.00000E+0
1500 7.39600E-5 3.24500E-1 5.77250E-2 5.20360E+2 3.32720E-8 0.00000E+0
1600 7.71250E-5 3.04220E-1 6.01950E-2 5.20350E+2 3.36680E-8 0.00000E+0
1700 8.02840E-5 2.86330E-1 6.26610E-2 5.20350E+2 3.52690E-8 0.00000E+0
1800 8.34370E-5 2.70420E-1 6.51220E-2 5.20340E+2 3.84210E-8 0.00000E+0
1900 8.65820E-5 2.56190E-1 6.75760E-2 5.20340E+2 4.35190E-8 0.00000E+0
2000 8.97150E-5 2.43380E-1 7.00220E-2 5.20340E+2 5.07990E-8 0.00000E+0
2100 9.28340E-5 2.31790E-1 7.24560E-2 5.20340E+2 5.96870E-8 0.00000E+0
2200 9.59350E-5 2.21260E-1 7.48770E-2 5.20340E+2 6.77640E-8 0.00000E+0
2300 9.90170E-5 2.11640E-1 7.70820E-2 5.20330E+2 7.09740E-8 0.00000E+0
2400 1.02080E-4 2.02820E-1 7.91690E-2 5.20330E+2 6.70650E-8 0.00000E+0
2500 1.05110E-4 1.94710E-1 8.20380E-2 5.20330E+2 5.82430E-8 0.00000E+0
2600 1.08120E-4 1.87220E-1 8.43870E-2 5.20330E+2 1.89530E-8 0.00000E+0
2700 1.11100E-4 1.80290E-1 8.67140E-2 5.20330E+2 2.37470E-7 0.00000E+0
2800 1.14050E-4 1.73850E-1 8.76190E-2 5.20330E+2 2.30150E-6 0.00000E+0
2900 1.16980E-4 1.67860E-1 8.93010E-2 5.20330E+2 1.35770E-5 0.00000E+0
3000 1.19870E-4 1.62260E-1 9.25610E-2 5.20330E+2 4.69560E-5 0.00000E+0
3100 1.22740E-4 1.57030E-1 9.37980E-2 5.20330E+2 1.25460E-4 0.00000E+0
3200 1.25570E-4 1.52120E-1 9.60140E-2 5.20330E+2 2.99160E-4 0.00000E+0
3300 1.28370E-4 1.47510E-1 9.71210E-2 5.20330E+2 6.68070E-4 0.00000E+0
3400 1.31140E-4 1.43170E-1 9.87400E-2 5.20330E+2 1.42150E-3 0.00000E+0
3500 1.33890E-4 1.39080E-1 1.01160E-1 5.20330E+2 2.90350E-3 0.00000E+0
3600 1.36600E-4 1.35220E-1 1.02090E-1 5.20330E+2 5.71770E-3 0.00000E+0
3700 1.39280E-4 1.31570E-1 1.04040E-1 5.20330E+2 1.08880E-2 0.00000E+0
3800 1.41930E-4 1.28100E-1 1.07400E-1 5.20330E+2 2.00970E-2 0.00000E+0
3900 1.44550E-4 1.24820E-1 1.08950E-1 5.20330E+2 3.60350E-2 0.00000E+0
4000 1.47150E-4 1.21700E-1 1.11820E-1 5.20330E+2 6.28830E-2 0.00000E+0
4100 1.49720E-4 1.18730E-1 1.12190E-1 5.20330E+2 1.07000E-1 0.00000E+0
4200 1.52260E-4 1.15900E-1 1.15350E-1 5.20330E+2 1.77810E-1 0.00000E+0
4300 1.54770E-4 1.13210E-1 1.17200E-1 5.20330E+2 2.89000E-1 0.00000E+0
4400 1.57260E-4 1.10640E-1 1.18680E-1 5.20340E+2 4.60040E-1 0.00000E+0
4500 1.59720E-4 1.08180E-1 1.21400E-1 5.20340E+2 7.18320E-1 0.00000E+0
4600 1.62160E-4 1.05830E-1 1.22520E-1 5.20350E+2 1.10100E+0 0.00000E+0
4700 1.64580E-4 1.03580E-1 1.25530E-1 5.20360E+2 1.65870E+0 0.00000E+0
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Table XI: Continued 
4800 1.66970E-4 1.01420E-1 1.28180E-1 5.20380E+2 2.45840E+0 0.00000E+0
4900 1.69340E-4 9.93480E-2 1.29730E-1 5.20410E+2 3.58820E+0 0.00000E+0
5000 1.71690E-4 9.73610E-2 1.32030E-1 5.20450E+2 5.16150E+0 1.80000E-1
5100 1.74020E-4 9.54520E-2 1.35040E-1 5.20500E+2 7.06100E+0 2.38500E-1
5200 1.76320E-4 9.36170E-2 1.36930E-1 5.20570E+2 9.77310E+0 3.39200E-1
5300 1.78610E-4 9.18500E-2 1.38850E-1 5.20660E+2 1.33210E+1 5.13200E-1
5400 1.80880E-4 9.01490E-2 1.40290E-1 5.20790E+2 1.78830E+1 8.19500E-1
5500 1.83140E-4 8.85100E-2 1.43780E-1 5.20950E+2 2.36470E+1 1.37000E+0
5600 1.85370E-4 8.69300E-2 1.45820E-1 5.21160E+2 3.08050E+1 2.37600E+0
5700 1.87590E-4 8.54040E-2 1.47940E-1 5.21430E+2 3.95420E+1 4.24300E+0
5800 1.89790E-4 8.39320E-2 1.50150E-1 5.21780E+2 5.00280E+1 7.73800E+0
5900 1.91980E-4 8.25090E-2 1.52480E-1 5.22210E+2 6.24120E+1 1.42900E+1
6000 1.94150E-4 8.11330E-2 1.54940E-1 5.22760E+2 7.68210E+1 2.65000E+1
6100 1.96310E-4 7.98030E-2 1.57560E-1 5.23440E+2 9.33640E+1 4.29800E+1
6200 1.98450E-4 7.85150E-2 1.60370E-1 5.24270E+2 1.12140E+2 6.93900E+1
6300 2.00580E-4 7.72680E-2 1.63780E-1 5.25290E+2 1.33240E+2 1.11500E+2
6400 2.02700E-4 7.60590E-2 1.66630E-1 5.26520E+2 1.56790E+2 1.78400E+2
6500 2.04810E-4 7.48880E-2 1.71120E-1 5.28010E+2 1.82900E+2 2.83800E+2
6600 2.06900E-4 7.37520E-2 1.73880E-1 5.29800E+2 2.11740E+2 4.48800E+2
6700 2.08990E-4 7.26490E-2 1.77930E-1 5.31930E+2 2.43480E+2 7.05600E+2
6800 2.11060E-4 7.15780E-2 1.82290E-1 5.34450E+2 2.78310E+2 1.10200E+3
6900 2.13120E-4 7.05380E-2 1.86960E-1 5.37420E+2 3.16440E+2 1.71000E+3
7000 2.15170E-4 6.95270E-2 1.91970E-1 5.40910E+2 3.58080E+2 2.63400E+3
7100 2.17210E-4 6.85440E-2 1.97340E-1 5.44980E+2 4.03420E+2 4.00400E+3
7200 2.19250E-4 6.75870E-2 2.03080E-1 5.49710E+2 4.52610E+2 6.03900E+3
7300 2.21270E-4 6.66560E-2 2.09220E-1 5.55180E+2 5.05790E+2 9.04300E+3
7400 2.23280E-4 6.57490E-2 2.15780E-1 5.61480E+2 5.63040E+2 1.34400E+4
7500 2.25290E-4 6.48650E-2 2.22770E-1 5.68590E+2 6.24400E+2 1.98200E+4
7600 2.27290E-4 6.40030E-2 2.30250E-1 5.76780E+2 6.89840E+2 2.90200E+4
7700 2.29270E-4 6.31620E-2 2.38210E-1 5.85870E+2 7.59300E+2 4.21800E+4
7800 2.31250E-4 6.23420E-2 2.46740E-1 5.96540E+2 8.32640E+2 6.08400E+4
7900 2.33220E-4 6.15400E-2 2.55840E-1 6.08400E+2 9.09720E+2 8.71200E+4
8000 2.35180E-4 6.07570E-2 2.65520E-1 6.21330E+2 9.90340E+2 1.23800E+5
8100 2.37130E-4 5.99910E-2 2.75890E-1 6.36550E+2 1.07420E+3 1.74500E+5
8200 2.39060E-4 5.92410E-2 2.86950E-1 6.53190E+2 1.16120E+3 2.44100E+5
8300 2.40990E-4 5.85070E-2 2.98730E-1 6.71700E+2 1.25100E+3 3.38900E+5
8400 2.42900E-4 5.77880E-2 3.11370E-1 6.93150E+2 1.34330E+3 4.67300E+5
8500 2.44800E-4 5.70830E-2 3.24740E-1 7.15150E+2 1.43780E+3 6.39700E+5
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Table XI: Continued 
8600 2.46680E-4 5.63910E-2 3.38950E-1 7.40240E+2 1.53430E+3 8.69500E+5
8700 2.48550E-4 5.57110E-2 3.54030E-1 7.67840E+2 1.63260E+3 1.17400E+6
8800 2.50400E-4 5.50430E-2 3.70010E-1 7.98130E+2 1.73240E+3 1.57300E+6
8900 2.52220E-4 5.43870E-2 3.87100E-1 8.33590E+2 1.83360E+3 2.09500E+6
9000 2.54020E-4 5.37400E-2 4.04980E-1 8.67850E+2 1.93580E+3 2.77000E+6
9100 2.55790E-4 5.31030E-2 4.23850E-1 9.07330E+2 2.03900E+3 3.63800E+6
9200 2.57540E-4 5.24760E-2 4.43980E-1 9.53810E+2 2.14300E+3 4.74600E+6
9300 2.59240E-4 5.18560E-2 4.64890E-1 9.97240E+2 2.24760E+3 6.15100E+6
9400 2.60900E-4 5.12440E-2 4.87220E-1 1.05300E+3 2.35280E+3 7.92100E+6
9500 2.62520E-4 5.06390E-2 5.10250E-1 1.10270E+3 2.45840E+3 1.01400E+7
9600 2.64080E-4 5.00400E-2 5.34860E-1 1.16870E+3 2.56430E+3 1.28900E+7
9700 2.65590E-4 4.94470E-2 5.60060E-1 1.22540E+3 2.67050E+3 1.62900E+7
9800 2.67020E-4 4.88590E-2 5.87010E-1 1.30300E+3 2.77690E+3 2.04500E+7
9900 2.68380E-4 4.82760E-2 6.14430E-1 1.36710E+3 2.88340E+3 2.55300E+7

10000 2.69650E-4 4.76960E-2 6.43760E-1 1.45770E+3 2.99000E+3 3.16800E+7
10100 2.70830E-4 4.71200E-2 6.73410E-1 1.52940E+3 3.09660E+3 3.90800E+7
10200 2.71890E-4 4.65460E-2 7.05170E-1 1.63450E+3 3.20330E+3 4.79200E+7
10300 2.72840E-4 4.59750E-2 7.38210E-1 1.73330E+3 3.30990E+3 5.84400E+7
10400 2.73650E-4 4.54060E-2 7.71220E-1 1.81610E+3 3.41650E+3 7.08500E+7
10500 2.74310E-4 4.48380E-2 8.06680E-1 1.94690E+3 3.52310E+3 8.54300E+7
10600 2.74810E-4 4.42710E-2 8.43440E-1 2.06560E+3 3.62950E+3 1.02400E+8
10700 2.75140E-4 4.37040E-2 8.79710E-1 2.15910E+3 3.73590E+3 1.22200E+8
10800 2.75270E-4 4.31370E-2 9.18820E-1 2.31980E+3 3.84220E+3 1.45000E+8
10900 2.75190E-4 4.25700E-2 9.59190E-1 2.46030E+3 3.94840E+3 1.71100E+8
11000 2.74890E-4 4.20030E-2 1.00080E+0 2.60870E+3 4.05440E+3 2.00900E+8
11100 2.74350E-4 4.14340E-2 1.04110E+0 2.71320E+3 4.16030E+3 2.34700E+8
11200 2.73550E-4 4.08640E-2 1.08480E+0 2.92210E+3 4.26600E+3 2.72800E+8
11300 2.72480E-4 4.02930E-2 1.12970E+0 3.09410E+3 4.37160E+3 3.15500E+8
11400 2.71130E-4 3.97200E-2 1.17570E+0 3.27450E+3 4.47700E+3 3.63200E+8
11500 2.69470E-4 3.91450E-2 1.21930E+0 3.38540E+3 4.58220E+3 4.16200E+8
11600 2.67510E-4 3.85680E-2 1.26700E+0 3.65030E+3 4.68720E+3 4.74600E+8
11700 2.65240E-4 3.79900E-2 1.31560E+0 3.85480E+3 4.79200E+3 5.38800E+8
11800 2.62650E-4 3.74100E-2 1.36500E+0 4.06760E+3 4.89650E+3 6.08800E+8
11900 2.59730E-4 3.68280E-2 1.41510E+0 4.28840E+3 5.00080E+3 6.85000E+8
12000 2.56460E-4 3.62430E-2 1.46150E+0 4.39420E+3 5.10490E+3 7.67300E+8
12100 2.52890E-4 3.56580E-2 1.51250E+0 4.73920E+3 5.20860E+3 8.55900E+8
12200 2.49000E-4 3.50720E-2 1.56390E+0 4.98120E+3 5.31200E+3 9.50600E+8
12300 2.44800E-4 3.44850E-2 1.61550E+0 5.22980E+3 5.41500E+3 1.05200E+9
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Table XI: Continued 
12400 2.40300E-4 3.38970E-2 1.66730E+0 5.48410E+3 5.51760E+3 1.15900E+9
12500 2.35520E-4 3.33100E-2 1.71910E+0 5.74360E+3 5.61990E+3 1.27100E+9
12600 2.30480E-4 3.27230E-2 1.77070E+0 6.00730E+3 5.72160E+3 1.39000E+9
12700 2.25160E-4 3.21340E-2 1.81660E+0 6.06450E+3 5.82330E+3 1.51400E+9
12800 2.19660E-4 3.15490E-2 1.86710E+0 6.52520E+3 5.92420E+3 1.64300E+9
12900 2.13960E-4 3.09670E-2 1.91700E+0 6.79420E+3 6.02450E+3 1.77700E+9
13000 2.08110E-4 3.03870E-2 1.96590E+0 7.06250E+3 6.12430E+3 1.91400E+9
13100 2.02120E-4 2.98100E-2 2.01370E+0 7.32860E+3 6.22350E+3 2.05600E+9
13200 1.96030E-4 2.92380E-2 2.06010E+0 7.59070E+3 6.32200E+3 2.20100E+9
 
 
 
 
 
 

 
Figure 29: Argon Properties (Units in Table X) 
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APPENDIX C: SOURCE CODE 

The following tables list the different UDF codes written in C++ language. There 

are 28 different user defined functions in 2-D and 43 in the 3-D case. The 2-D and 3-D 

code is 783 and 700 lines respectively including commentary.  

 
 
 

Table XII: 2-D User Defined Functions 
 Name Type of UDF - Description 

1 On_Loading_UDS 
DEFINE_EXECUTE_ON_LOADING - Defines and gives 
names to the imaginary and real parts of the user-defined scalar 
functions 

2 On_Loading_UDM DEFINE_EXECUTE_ON_LOADING - Defines and gives 
names to eight user-defined memory variables 

3 Input_Data DEFINE_EXECUTE_ON_LOADING - Inputs data into 
memory for the argon properties listed in appendix B 

4 Get_Fields 
DEFINE_ON_DEMAND - Computes and stores the values of 
the real and imaginary components of magnetic field into 
memory variables for data processing 

5 Get_Force 
DEFINE_ON_DEMAND - Computes and stores the Lorentz 
force per unit volume from the magnetic fields into memory 
variables for data processing 

6 Get_Joule 
DEFINE_ON_DEMAND - Calculates the joule heating + 
radiative cooling per unit volume and stores into memory for 
data processing 

7 Get_Joule_Alone DEFINE_ON_DEMAND - Calculates the joule heating per unit 
volume and stores into memory for data processing 

8 Get_Sigma 
DEFINE_ON_DEMAND - Calculates the conductivity from 
Input_Data as a continuous function of temperature for data 
processing 

9 Argon_Density DEFINE_PROPERTY - This UDF Calculates the density from 
Input_Data as a continuous function of temperature for iteration 

10 Argon_TherCond 
DEFINE_PROPERTY - This UDF Calculates the thermal 
conductivity  from Input_Data as a continuous function of 
temperature for iteration 

11 Argon_Viscosity DEFINE_PROPERTY - This UDF Calculates the density from 
Input_Data as a continuous function of temperature for iteration 
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Table XII: Continued 

12 RPlasmaSource 
DEFINE_SOURCE - Calculates the source term defined 
as RA θ in the plasma region 

13 IPlasmaSource 
DEFINE_SOURCE - Calculates the source term defined as IA θ in 
the plasma region 

14 ROutsideSource 
DEFINE_SOURCE - Calculates the source term defined 
as RA θ in the walls and outside regions 

15 IOutsideSource 
DEFINE_SOURCE - Calculates the source term defined as IA θ in 
the walls and outside regions 

16 RCoilSource 
DEFINE_SOURCE - Calculates the source term defined 
as RA θ in the coil regions 

17 ICoilSource 
DEFINE_SOURCE - Calculates the source term defined as IA θ in 
the coil regions 

18 Joule_Heating 
DEFINE_SOURCE - Calculates the joule heating + radiative 
cooling per unit volume as a continuous function of temperature 
for iteration 

19 Outside_Energy DEFINE_SOURCE - Calculates the artificial regulating source 
to keep the outside region at 300K 

20 Plasma_Energy DEFINE_SOURCE - Calculates the artificial heating source to 
assist in initializing the magnetic field 

21 Axial_Source 
DEFINE_SOURCE - Calculates the axial component source 
term of Lorentz force per unit volume as a continuous function 
of temperature for iteration 

22 Radial_Source 
DEFINE_SOURCE - Calculates the radial component source 
term of Lorentz force per unit volume as a continuous function 
of temperature for iteration 

23 RtopDPBCflux DEFINE_PROFILE - This calculates the real component of the 
dipole boundary condition along the top wall 

24 ItopDPBCflux DEFINE_PROFILE - This calculates the imaginary component 
of the dipole boundary condition along the top wall 

25 RrightDPBCflux DEFINE_PROFILE - This calculates the real component of the 
dipole boundary condition along the right wall 

26 IrightDPBCflux DEFINE_PROFILE - This calculates the imaginary component 
of the dipole boundary condition along the right wall 

27 RleftDPBCflux DEFINE_PROFILE - This calculates the real component of the 
dipole boundary condition along the left wall 

28 IleftDPBCflux DEFINE_PROFILE - This calculates the imaginary component 
of the dipole boundary condition along the left wall 
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Table XIII: 3-D User Defined Functions 
 Name Type of UDF- Description 

1 Sigma DOUBLE_FUNCTION- Calculates a 2nd order continuous 
function for conductivity for the scalar potential source term 

2 On_Loading_UDS 
DEFINE_EXECUTE_ON_LOADING- Defines and gives 
names to the imaginary and real parts of the user-defined scalar 
functions 

3 On_Loading_UDM DEFINE_EXECUTE_ON_LOADING- Defines and gives 
names to eight user-defined memory variables 

4 Input_Data DEFINE_EXECUTE_ON_LOADING- Inputs data into memory 
for the argon properties listed in appendix B 

5 Get_Fields_Force 
DEFINE_ON_DEMAND- Computes and stores the values of 
the real and imaginary components of magnetic field and forces 
into memory variables for data processing 

6 Get_Joule 
DEFINE_ON_DEMAND- Calculates the joule heating + 
radiative cooling per unit volume and stores into memory for 
data processing 

7 Get_Joule_Alone DEFINE_ON_DEMAND- Calculates the joule heating per unit 
volume and stores into memory for data processing 

8 Test_Sigma DEFINE_ON_DEMAND- Calculates the conductivity from 
Input_Data to verify Input_Data 

9 Argon_Density DEFINE_PROPERTY- This UDF Calculates the density from 
Input_Data as a continuous function of temperature for iteration 

10 Argon_TherCond 
DEFINE_PROPERTY- This UDF Calculates the thermal 
conductivity from Input_Data as a continuous function of 
temperature for iteration 

11 Argon_Viscosity DEFINE_PROPERTY- This UDF Calculates the density from 
Input_Data as a continuous function of temperature for iteration 

12 Sigma_B_F 
DEFINE_ADJUST- At the beginning of each iteration the fields 
and forces are calculated once to global variables to reduce 
commands 

13 AdjustCurrent DEFINE_ADJUST- This UDF calculates if the current should be 
adjusted and adjusts the modeled current 

14 A_R_X_Coil DEFINE_SOURCE- Calculates the source term defined for the 
Real X Component of the vector potential in the coil region 

15 A_R_Y_Coil DEFINE_SOURCE- Calculates the source term defined for the 
Real Y Component of the vector potential in the coil region 

16 A_R_Z_Coil DEFINE_SOURCE- Calculates the source term defined for the 
Real Z Component of the vector potential in the coil region 
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Table XIII: Continued 

17 A_I_X_Coil DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary X Component of the vector potential in the coil region

18 A_I_Y_Coil DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary Y Component of the vector potential in the coil region

19 A_I_Z_Coil DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary Z Component of the vector potential in the coil region

20 A_R_X_Plasma DEFINE_SOURCE- Calculates the source term defined for the 
Real X Component of the vector potential in the plasma region 

21 A_R_Y_Plasma DEFINE_SOURCE- Calculates the source term defined for the 
Real Y Component of the vector potential in the plasma region 

22 A_R_Z_Plasma DEFINE_SOURCE- Calculates the source term defined for the 
Real Z Component of the vector potential in the plasma region 

23 A_I_X_Plasma 
DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary X Component of the vector potential in the plasma 
region 

24 A_I_Y_Plasma 
DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary Y Component of the vector potential in the plasma 
region 

25 A_I_Z_Plasma 
DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary Z Component of the vector potential in the plasma 
region 

26 A_R_X_Outside DEFINE_SOURCE- Calculates the source term defined for the 
Real X Component of the vector potential in the outside region 

27 A_R_Y_Outside DEFINE_SOURCE- Calculates the source term defined for the 
Real Y Component of the vector potential in the outside region 

28 A_R_Z_Outside DEFINE_SOURCE- Calculates the source term defined for the 
Real Z Component of the vector potential in the outside region 

29 A_I_X_Outside 
DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary X Component of the vector potential in the outside 
region 

30 A_I_Y_Outside 
DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary Y Component of the vector potential in the outside 
region 

31 A_I_Z_Outside 
DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary Z Component of the vector potential in the outside 
region 

32 Phi_R_Coil DEFINE_SOURCE- Calculates the source term defined for the 
Real Component of the scalar potential in the Coil region 
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Table XIII: Continued 

33 Phi_I_Coil DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary Component of the scalar potential in the Coil region 

34 Phi_R_Plasma DEFINE_SOURCE- Calculates the source term defined for the 
Real Component of the scalar potential in the plasma region 

35 Phi_I_Plasma 
DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary Component of the scalar potential in the plasma 
region 

36 Phi_R_Outside DEFINE_SOURCE- Calculates the source term defined for the 
Real Component of the scalar potential in the outside region 

37 Phi_I_Outside 
DEFINE_SOURCE- Calculates the source term defined for the 
Imaginary Component of the scalar potential in the outside 
region 

38 Joule_Heating 
DEFINE_SOURCE- Calculates the joule heating + radiative 
cooling per unit volume as a continuous function of temperature 
for iteration 

39 Outside_Energy DEFINE_SOURCE- Calculates the artificial regulating source to 
keep the outside region at 300K 

40 Plasma_Energy DEFINE_SOURCE- Calculates the artificial heating source to 
assist in initializing the magnetic field 

41 X_Source 
DEFINE_SOURCE- Calculates the X component source term of 
Lorentz force per unit volume as a continuous function of 
temperature for iteration 

42 Y_Source 
DEFINE_SOURCE- Calculates the Y component source term of 
Lorentz force per unit volume as a continuous function of 
temperature for iteration 

43 Z_Source 
DEFINE_SOURCE- Calculates the Z component source term of 
Lorentz force per unit volume as a continuous function of 
temperature for iteration 



80  

 

 

APPENDIX D: CHARACTERISTIC MESH LENGTHS 

The following two figures are simply a graphical representation of Table VII and 

Table VIII.  
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Figure 30: Flow Maxima verses Mesh Characteristic Length for Set Currents 



81  

 

 

 
Figure 31: Flow Maxima verses Mesh Characteristic Length for Set Power 
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