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• 22506 Desarrollo de un sistema automático de mapeo cerebral para el monitoreo

y tratamiento de enfermedades neurodegenerativas funded by UNIVERSIDAD NA-

CIONAL DE COLOMBIA.



8

Abstract
Structure segmentation is an important task in medical applications as it give a quantita-

tive knowledge of volume, shape or location of the structures in consideration, enabling the

understanding of several pathologies. Manually segmentation is considered the current gold

standard to obtain accurate segmentation. However, this process is time and resource con-

suming becoming impractical for large database studies. Recently, Multi-atlas based meth-

ods have been used to support automate brain structure segmentations. The advantage of

this methods relies on the capacity to provide spatial information while encoding anatomi-

cal variability by using a set of prelabeled atlases. However, the accuracy of segmentation

depends on the capability of each atlas to propagate the labels to the target image as well

as the employed methodology for fusing the label conflicts. In this sense, atlas selection and

label fusion become important directions to improve the performance of muti-atlas segmen-

tation. In the present work several approaches to enhance atlas selection and label fusion

are proposed. Firstly, a kernel based representation is proposed aiming to map the original

space domain in a low dimensional embedding space where latent groups in the data are

highlighted, and the intrinsic similarities are better reflected. Secondly, a supervised similar-

ity measure is proposed which take advantage of local similarities and supervised information

for linking similarity appearance with the segmentation performance. Finally, label fusion

is casting as non-local probabilistic atlas-based segmentation, where the strengths of patch

based and atlas-based approaches are combined to improve the segmentation accuracy. The

proposed approaches are compared with conventional state of the art techniques in segmen-

tation task. Attained results show the potential of the proposed approach to improve the

segmentation outperforming the conventional state of the art methods.

Keywords: Kernel-based representation, Embedding space, Supervised atlas selection, Prob-

abilistic atlas construction, Patch based method segmentation)
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Resumen
La segmentación de estructuras es muy importante en aplicaciones médicas ya que pro-

porciona un conocimiento cuantitativo del volumen, forma o posición de las estructuras en

consideración, lo cual permite el análisis y entendimiento de diferentes patoloǵıas. La técnica

estándar de segmentación es la proporcionada manualmente por un experto cĺınico. Sin em-

bargo este proceso es computacionalmente costoso dificultando el análisis en grandes bases

de datos. Recientemente, los métodos basados en Multi-atlas han sido usados para apoyar

las tareas de segmentación de imágenes cerebrales. La principal ventaja de estos métodos es

debido a que son capases de proporcionar información espacial a su vez que la variabilidad

anatómica es capturada mediante el uso de un conjunto de atlases etiquetados. Sin embargo

la precisión de la segmentación depende de la capacidad de cada atlas para propagar sus

etiquetas a la imagen objetivo, aśı como el método empleado para combinar las estimaciones

de cada atlas. Por esta razón, la selección de atlas y el método de combinación o fusión

de etiquetas, son dos importantes direcciones para mejorar el desempeño de los métodos

basados en Multi-atlas. En este trabajo se proponen diferentes enfoques con el fin de mejo-

rar la selección de atlases y la combinación de etiquetas. En primer lugar se propone un

método de representación de imágenes médicas basado en Kernels la cual permite mapear

el espacio original en un espacio embebido de baja dimensión donde se destacan los gru-

pos latentes en los datos y refleje las similitudes intŕınsecas. En segundo lugar, se propone

una medida similitud supervisada entre imágenes, esta usa medidas de similitudes locales e

información supervisada para correlacionar similitudes en apariencia con el desempeño en

la segmentación. Por último, el problema de combinación de etiquetas es enmarcado como

un método probabiĺıstico no local de segmentación, donde se combinan las fortalezas de

los métodos basados en parches y los métodos basados en atlas probabiĺısticos con el obje-

tivo de mejorar la precisión de la segmentación. Los métodos propuestos son comparados

con métodos convencionales del estado del arte en tareas de segmentación. Los resultados

obtenidos muestran el potencial de los enfoques propuestos para mejorar la segmentación ya

que superan los métodos convencionales.

Palabras Clave: Representación basada en Kernels, Espacio embebido, selección de atlas su-

pervisada, construcción de atlas probabiĺısticos, métodos de segmentación basados en atlas.
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1 Introduction

1.1 Motivation

Medical images are of vital importance in medical applications. These provide to the clin-

icians the visualization of patient anatomy in a non-invasive way, supporting the diagnosis

and treatment planning of several diseases. There are several techniques to obtain medical

images being computed tomography(CT) and Magnetic Resonance (MR) the most common

used modalities for 3D structural analysis. Depending on the application, each of them can

be used taking into account their advantages and disadvantages. CT provided high reso-

lution images and fast acquisition, however, this technique is based in ionizing radiation

that might be harmful to the tissues and cause diseases such as cancer and eye cataract.

Therefore, CT images are usually employed in emergency situations and other applications

as cancer detection, bone injuries, and intensity modulate radiotherapy planning which be-

came the state of the art method for the treatment of head-neck cancer. On the other hand,

MR scans provide images with high resolution without damage the tissues in the acquisi-

tion process. However, the acquisition takes more time than CT generating some imaging

artifacts. MR images has been widely used in detection and follow-up of the main brain

pathologies such as Alzheimer Schizophrenia and Parkinson, enabling to estimate anatom-

ical or functional structure changes [19]. Specifically in the sub-cortical structures as the

(Hypothalamus (HYPO), Amygdala (AMYG), Putamen (PUT), Caudate Nucleus (CAUD),

Thalamus(THAL), and Pallidum (PAL)). Image segmentation is one of the most important

tasks in the above mentioned applications, as it provide a quantitative knowledge of vol-

ume, shape or location of the structures of interest which is essential for the analysis and

understanding of pathologies, as well as allows find biomedical markers for neurological dis-

orders, helping to diagnose any disease or its planning treatment. The segmentation task

basically consists in assign a label to each voxel in the image according to a set of char-

acteristic, in such way that voxels with the same label belong to the same structure. The

current gold standard image segmentation is performed manually by expert clinicians which

become an impractical task for large studies given that is very time and resource consum-

ing. In addition, the quality in manual labeling depends on the performance of the expert

clinician. Therefore, the inter and intra-rater observer bias produced by the clinicians seg-

mentation hinders the statistical analysis of segmentations. For all these reasons, automatic
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segmentation methods have emerged as an alternative to manual segmentation, becoming

an important research area. The primary objective of this methods is obtaining robust and

accurate segmentation improving the reliability and repeatability on the segmentation while

the computational and human requirements are reduced. Nonetheless, this can be a difficult

task due to the presence of noise and artifacts which affect overall image quality, restrict-

ing their performance to specific applications. Particularly, segmentation of subcortical and

other structures within the deep brain are more complicated. This due mainly to the fol-

lowing issues: i) Surrounding structures can exhibit similar intensities. ii) Structures can

be composed of different tissues which exhibit inhomogeneities on the intensities. iii) There

are shape and size variations between the subjects. Hence, prior anatomical information is

crucial for guiding the segmentation. In the last years, template-based techniques have been

raised in an efficient manner to provide spatial information. These methods using one or a

set the labeled training images to model spatial distributions. Even these have become the

most successful path for obtaining accurate segmentation. There are still many limitations

which bias their performance.

1.2 State of the art

Segmentation of medical images has been performed on several ways by different methods.

Segmentation techniques vary according to the type of image information they used as well

as the prior knowledge about the problem and internal constraints of the segmented ge-

ometry [64]. Therefore, the performance depends on the application and the type of used

image[10]. Early segmentation methods were based on the direct modeling of the inten-

sity characteristics present on the images, proving be robust in the segmentation the brain

tissues such the white and gray matter. These methods assume that interested structures

or organs have distinctive quantifiable features such as the intensity or gradient magnitude

[54]. In this sense, voxels can be classified according to an established threshold or edge

based decision rule. Examples of this type of methods are the watersheds algorithms where

intensity and edge information are combined, or the Region Growing method[1] which in-

troduce a decision rule based on voxel connectivities. More sophisticated methods employ

pattern recognition techniques aiming to cluster and classify the voxels within the regions.

In this sense segmentation can be carried out in unsupervised or supervised way. Common

unsupervised approaches include fuzzy C-means [15],Data analysis techniques[17] and unsu-

pervised neural network [16] these algorithms alternate between segmenting the image and

characterizing the properties of each class on-line. On the other hand, supervised methods

such as Neuronal networks [2], support vector machine[79] and active appearance models[31]

require training samples for its initialization. Therefore, the accuracy on these methods is

sensitive to the initial set of training samples and the initial conditions. On the other hand,
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Statistical classifiers also are used for segmentation. These approaches are based on the

modeling of intensity distributions where the labels are estimated according to probability

values derived from the employed model. Generally, finite mixture models are used for inten-

sity modeling, several approaches include Gaussian mixture models, a parzen windows and

Markov random fields [88]. Although intensity-based segmentation methods have proven

to be successful for specific segmentation tasks such gray and withe matter classification.

Segmentation of sub-cortical structures requires from prior spatial information, due to the

low inter-structure contrast and lack of clearly defined edges between some brain structures

which bias the performance on the intensity-based methods. Hence,spatial functions termed

as atlas or templates have been proposed for modeling structure distribution. To this end

templates are provided as a set of shape, intensity and/or functional models. In this sense,

the objective of atlas-based segmentation is to transfer the prior information provided by an

atlas to the unlabeled target image. For the majority of the atlas-based methods an atlas is

defined as an image and its corresponding segmentation performed manually. Early meth-

ods use a single atlas chosen for being representative for an determined population, then,

labels are transferred from the atlas to the unlabeled images. For this purpose, the atlas is

registered (deformed) to the target image and the obtained transformation is used for map-

ping the structure labels from the atlas to the target space, this process is known as label

propagation [53]. In this sense, segmentation becomes a registration problem, consequently,

atlas based methods have driven their efforts on the development of new registration tech-

niques. Generally, a complete registration process needs a linear transformation for global

alignment, and the local deformations to deal with anatomical differences. Although, linear

alignment is enough for intra-subject medical applications [60], for the majority of medi-

cal applications that requires inter-subject analysis non-linear registrations is indispensable.

Several methods in the literature perform non-linear registration using mathematic trans-

formation as as B-spline curves, level set partial differential equations, or transformation

based on physical models as elasticity [14, 40, 55, 44, 34] , deformation vectors [27], fluid

mechanics [24], thermodynamics [35], optical flow [47]. Other approaches propose new cost

functions as second order mutual information or gradient mutual information. A complete

review of registration methods is presented on [46] where the importance of registration

accuracy on atlas-based segmentation methods is analyzed and conclude that symmetric

normalization(SyN) [13] algorithm perform the best. However, single-atlas based methods

assume that exact correspondence can be achieved between the atlas and the target image

after registration. Therefore, the performance on these methods is limited due to a single

atlas is insufficient to capture wide anatomical variations, doing the registration errors more

evident especially when the atlas is unrepresentative of the target image. To solve this prob-

lem more recent methods combined information of different subjects aiming to construct

probabilistic atlas [59]. To this end, all templates in the population are co-register to a com-

mon space where probabilistic models for each structure can be inferred. To segment a new

image this needs to be registered to the atlas space, then the segmentation can be estimated
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by an statistical framework. For instance, [52] incorporate probabilities for each tissues as

an energy term in a grap-cut segmentation framework. In [39] the volume is defined as a

Markov Random field(MRF) and the parameters are optimized using iterative conditional

models, then the segmentation is sequentially actualize until the optimum is found. [26, 45]

combine atlas probabilities with other image features such as voxel intensities or spatial

coordinates to train a classifier. The main advantage of probabilistic-atlas-based methods

is that only a single registration is required to segment a new image. However, find the

common space for the atlas can be difficult, especially if high anatomical variability exist on

the atlas set[64]. On the other hand, Multi-atlas approaches have proposed other alterna-

tive to deal with anatomical variability when multiples atlas are available. On this type of

methods, each atlas is registered with the target image and the individual propagations are

combined to obtain a final segmentation. In this way, the effects of the registration errors are

minimized while the anatomical variability is better modeled. This methods have prove be

robust for segmenting different structures such as the hippocampus, head and neck , prostate

and abdomen, becoming the baseline for obtaining accurate segmentation [10]. Multi-atlas

segmentation was first proposed by [63, 64] and adapted to medical applications in [47, 42].

The most straightforward strategy consist on register all the atlases to the target image and

assign to each voxel the label with the most agreement, this scheme is commonly known as

majority voting. However, there are a lot of more sophisticated methods on the state of the

art which employs techniques of computer vision and machine learning aiming to take full

advantage of the set of atlas. Nevertheless, Two issues constantly predominate on multi-

atlas segmentation, the first one refers to which and how many atlases are necessary in the

scheme. The second one concerns to how combine them in final segmentation to obtain the

highest accuracy. Consequently, state of the art methods mainly focusing their contribution

on i) Atlas selection, and ii) label fusion strategies.

Atlas selection is crucial in multi-atlas methods because not only can improve the segmenta-

tion accuracy but also reduce the computational cost. Given that label propagation requires

non-liner registration which is usually expensive, keep the lower number of atlas can signifi-

cantly improve the computational efficiency. On the other hand, if the most similar atlases

to the target image are selected, effects of unrepresentative atlases are avoided improving

the final segmentation. In the earliest work[63] just the most similar atlas from the dataset

was used for label propagation. However, in [4, 42] has been proved that using more atlases

improve the segmentation. Generally, selection is supported by an image similarity metric

such a mutual information cross correlation or means squares [6, 86, 3, 4] which are com-

puted on voxel-wise basis over the whole image or in structure basis as in [84] where mutual

information is used to measure similarities on determined regions. Successful of similarity

measures depends of some factors as was studied by [53, 3], for instance mean squares and

cross correlation provides accurate selection if the image intensities have been normalized,

meanwhile, mutual information does not require image normalization being more appropri-
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ate for multi-modal studies or when the images are obtained from different scanners. Also,

meta information such age have displayed reliable selection[4] however this information is

not always available. On the other hand, some authors propose to use information from the

registration process, such the deformation field (e.g) [29] propose to measure the amount

of deformation using the euclidean norm, meanwhile [61] use the the Jacobian determinant

or its harmonic energy [78]. However, use deformation information implies that deformable

registration has to be performed before selection, therefore, the computational cost is not

reduced. In this sense, similarity measures have an advantage as they can be computed in the

a common space. However, these are computed on the high dimensional image space, where

the intrinsic morphological properties may not be highlighted[20]. Hence, new methodolo-

gies have been introduced to project the images in a low dimensional space where intrinsic

similarities can be better reflected. Techniques as manifold learning [21] and locality pre-

serving projections [20] or principal component analysis [12] have been used in this regard.

On the other hand, selection can be driven as a clustering problem where off-line or on-line

clusters can be identified for the most similarity atlas. [57, 48] The main contribution of

these approaches is that clusters most representative from the target image can be used for

initializing a more refined selection, especially when a large databases is available. Other

approaches use information on the manual segmentation to guide the appropriate selection

as a learning problem[68]. In this sense, atlas are ranked based on the expected performance

for the final segmentation instead of high similarities, providing a more suitable selection

given that higher similarity not necessarily represent the most accurate segmentation. Nev-

ertheless, current learning methods are not generalized beyond of the training data [43].

Posterior to atlases selection, label propagations have to be combined to obtain a final seg-

mentation in a label fusion scheme. The simplest strategy known as majority voting has been

widely used in several approaches proving be robust [47, 42]. However, on this scheme, all

atlases have the same contribution on the final segmentation which can be undesirable due

to the presence of outliers. This drawback can be overcome by weighted voting, where the

atlases are weighted based on a performance or similarity criterion. In this regard, weights

can be computed according to intensity similarity measures between the atlases and the

target image as in atlas selection. Normalize mutual information was used in [5], also square

differences and normalize cross correlation were evaluate in [6, 23]. Other more sophisticated

strategies compute global weights based on shape differences [65] or solving a cost function

of minimal reconstruction error [21] where it is assumed that the target image intensities

are equal to the lineal combination of the atlas intensities. However, in the aforementioned

methods weights are computed globally, so local differences are not captured. As an al-

ternative, local weighting strategies propose to compute spatially varying weights for each

atlas. For this purpose, similarity measures can be assessed on a local neighborhood for

each voxel as in [6], they evaluate the performance of global and local weighting using Cross

correlation, Normalize mutual information, and square differences, and conclude that local
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weights perform the best. In [77, 76] optimal weights are computed by taking into account

the correlation of errors produced by different atlas. Also, local weighting can be derived

from a probabilistic models of the data e.g [67] employs a generative model in a voxel basis

which stands label fusion as a classification problem. Meanwhile, in [51] spatial structure

and appearance models are combined with a regularization term in a probabilistic frame-

work. In contrast, atlas weighting has also been introduced in an statistical context. The

well know approach Simultaneous Truth and Performance Level Estimation (STAPLE) iter-

atively estimate the performance for each atlas using the expectation maximization[80], this

methodology has been widely studied aiming to overcome some limitations in the original

method. Some variations incorporate prior probabilities [30], or intensity probability map

instead of natural labels [81], as well as, spatially varying performance parameters aiming to

account for spatial varying difficulty [8, 28], also, STAPLE was combined with atlas selec-

tion and intensity information (SIMPLE) [49]. However, the above mentioned label fusion

methods typically assume that the target image is a voxel-wise representation of multiples

atlases [11]. Therefore, the labels are estimated by direct correspondence from the inten-

sity and label information after non-linear registration. In consequence, these methods are

highly dependent on the accuracy of the employed registration method, which is challenging

mainly due to anatomical differences often exist. Recently, non-local patch based strategies

have been proposed to alleviate effects of registration errors. In these methods, images are

represented by local volumetric patches, then, relationships between these patches are used

to seek the label which have a perfect correspondence with each voxel in the target image.

In the label fusion step, each target voxel is labeled by using a set of candidate patches

which are extracted from a local neighborhood on the training dataset. There are two ways

to use the patch dictionary in label fusion. The first correspond to label a target patch

by weighting the contributions of all candidate patches. weighting can be estimated by a

intensity similarity criterion [33], or based on the reconstruction of the target patch, where

the target patch can be seen as an sparse linear combination from the patch dictionary.

[87, 71], one advantage of sparse reconstruction is that effects of the misleading patches are

minimized. However, reconstruction and similarity based approaches rely on the assumption

that patches with similar appearance could have the same anatomical label. Nonetheless,

patch similarity and label affinity among voxels may be unrelated especially when only the

central voxel in the patch is taken into account for segmentation[70]. On the other hand the

patch dictionary and their corresponding labels can be used to learn a classification function

[41]. However, all the patches in the dictionary, have the same contribution on the learning

procedure [69].
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1.3 Problem Statement

There are several issues that hinder automatic segmentation, these vary depending on the

application an can be more relevant for a determined modality or the kind of structure to

be segmented. Common artifact such noise streaks or motion artifacts are originated on the

acquisition process. Although, there are techniques to reduce their effects, these artifacts

affect the quality of the images, doing the identification of structures more complicated. On

the other hand, the major challenge for segmentation approaches is due to some structures

present similar intensity values. Particularly, in the subcortical ones there is low contrast

between structures and the borders are poorly defined, besides some structures are composed

by different tissue types and there are large anatomical variability for some structures such

the hippopotamus. In addition, segmentation of parotid glands or brain stem on CT images

has similar challenges. Parotid glands exhibit large variations in anatomy, meanwhile the

segmentation of brainstem is challenging due to surrounding structures have similar intensity.

For all above mentioned reasons, segmentation can not be accurately performed based on

intensity information. Hence, spatial information is required for guiding the segmentation.

multi-atlas strategies have been raised as an effective way to provide spatial information and

modeling the anatomical variability, becoming the state of the art on automatic segmenta-

tion. However, the successful of these schemes mainly dependent on atlas selection and label

fusion steps which are challenging mainly for the next issues.

• Generally, label fusion and atlas selection involve finding similarities or relationships

between images which have a high dimensional space. This fact affects not only the

computational efficiency on the algorithm but also assessing similarities in this high

dimensional space could yield undesirable results due to intrinsic similarities are not ac-

curately reflected in the high dimensional space [21]. Moreover, similarities are usually

assessed voxel-to-voxel, hence relationships that might exist among the measurements

on different voxels or regions are obviated. On the other hand, images can be projected

onto a low dimensional-manifold space [82, 20]. However, the choice of the manifold

function, as well as the manifold parameters is not generalized [36].

• The aim of selection is to find the atlases which provide the best propagate labels.

However, when a new target image is evaluated, any information about its segmenta-

tion is known. Hence, Comparison between atlases relies on the intensity appearance

similarities under the assumption that the most similar in appearance would provide

the best segmentation. However, as have been demonstrated in [68], there are not

always a correlation between similarity appearance and the performance to segment a

target image. On the other hand, incorporate previous knowledge about of inter-atlas

segmentation reliability usually lacks of generalization for extending to the target im-

age. Moreover, if the entire image is used to compute similarities or for constructing a
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manifold, pairwise affinity could be biased for undesirable regions.

• Label fusion strategies generally depend on accurate registration, as the labels are

voxelwise propagated from atlases to the target image, exact correspondence should be

achieved after registration. However, registration errors are often present in real world

applications limiting the performance of segmentation. Patch based methods minimize

registration errors due to do not rely on voxelwise correspondence. In these approaches

each voxel is represented by a volumetric patch and a set of non-local patches is searched

on the training atlas for label fusion. However, there are some issues that could affect

the performance of label fusion strategy. In general, patch-based methods assume

that patches with similar appearance have the same label. However, patch similarity

and label affinity may be unrelated, for instance, on the boundaries background and

structure patches share high appearance similarity, also, if surrounding structures have

similar intensity values, wrong labels could produce inaccurate results. In addition,

current methods treat each patch independently for label fusion, and labels are not

taken into account to measure their contribution. Finally, all regions in the image

have the same importance, therefore, the same search and fusion strategy is used for

all points on the image. However, labeling difficulty vary spatially and some regions

with high variability could need a better estimation.

1.4 Objectives

Based on the state of the art and their corresponding open issues, we develop the current

research work around one general objective which is further expanded into three specific

objectives, as follow:

1.4.1 General Objective

To develop a Multi-atlas segmentation framework capable of obtaining accurate segmentation

for several medical applications by improving selection and fusion stages on a multi-atlas

scheme.

1.4.2 Specific Objectives

• To propose a strategy for MRI representation in order to map images from a high-

dimensional space in a low dimensional space where the intrinsic morphological sim-
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ilarities can be better reflected, and the data distribution is highlighted, enabling to

find clusters which are representative of a determinate population.

• To develop a supervised similarity measure that incorporates label information and

local measurements aiming to learn the relationship between the local appearance

similarities and the segmentation performance. In this sense, the similarity measure

is used to select a set of atlas based on their expected performance to label a target

image.

• To develop a new strategy for label fusion capable of accounting for registration errors

and spatial labeling difficulty, while, intensity and label information are incorporated

in the fusion step. To this end, non-local patch searches are used in a probabilistic

atlas construction, and the label fusion is carried out by a Bayesian inference.

1.5 Contributions

Due to the capability to model anatomical variability Multi-atlas segmentation has become

one of the most successful strategies to obtain accurate segmentation. On this thesis, we

focus in improving atlas selection and label fusion which are the main components on multi-

atlas schemes. Special attention is put in perform atlas selection in a common space thus, not

only the best atlas are selected for label propagation, but the computational cost is reduced

significantly. On the other hand, an appropriate strategy for label fusion is mandatory to

obtain accurately segmentation. We focus especially on patch based method due to the

capability to deal with registration errors. Although, this methods are expensive in some

applications, this can be combined with atlas selection to reduce the computational cost.

The main contributions of this thesis are as follow.

• A new Kernel based MRI represetation is proposed in order to obtain a low-

dimensional space where pairwise similarities can be computed. The proposed ap-

proach, use an effective way to extract the main shape information based on inter-slice

similarities. Moreover, a low dimensional space is constructed enabling to identify de-

mographic clusters such the gender and age. In this sense, our proposal is suitable to

support MRI clustering which is helpful for pre-selection of images on large databases

allowing to construct patient specific atlases. On the other hand, the proposal provides

a powerful tool to compute pairwise image similarities in an embedding low dimen-

sional space where the intrinsic similarities can be better reflected, enabling to support

atlas selection in Multi-atlas schemes.

• Spatial similarities are introduced in a Supervised similarity measure aiming to
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relate the similarity appearance of the images with the performance to segmenta-

tion. While the traditional selection of atlas is based on similarity measures, has been

demonstrated that similarity appearance is not always correlated with the performance

of segmentation. Moreover, as measures are evaluated over the whole images local dif-

ferences in non-relevant regions can bias the measure. In this work, a supervised kernel

matrix is constructed from the labeled training atlases to learn appropriately the com-

bination of local similarities in such way that the resultant measure is related to the

segmentation performance.

• Muti-atlas label fusion is addressed as a probabilistic target patch atlas construc-

tion scheme. Where strengths of both probabilistic atlas and patch based segmenta-

tion methods are combined to obtain accurate segmentation. Thus, effects spatial

variability information are relaxed by patch local search in target atlas construction,

meanwhile, label fusion is carried out by a Bayesian framework which intuitively in-

corporate intensity and label information in the fusion step. In addition, the proposed

approach account for labeling task difficulty, enabling to refine the segmentation for

regions where is harder obtain reliable segmentation. To this end, the segmentation

is carried out by an iterative framework where segmentation for the confident regions

are used to driving the segmentation for those less confident. Also, Hierarchical fast

multipoint scheme is proposed to reduce the computational time where a few points

are used to obtain the whole image segmentation.



2 A Kernel-based Representation to

Support 3D MRI Unsupervised

Clustering and Atlas Selection

Multi-atlas methods provide an effective strategy to deal with anatomical variability by

using a set of manually labeled dataset. However, to obtain the final segmentation all

the atlases are registered to the query image, therefore, the computational burden increase

proportionally with the number of atlases on the database becoming impractical for large

datasets. Moreover, the existence of unrepresentative atlases on the dataset could bias the

segmentation [4]. Therefore, there is a need for selecting a smaller and more representative

subset of atlases from a large set. A simple way for selection is based on demographic image

information like demographic affinity[4]. In this way, the images could be clustered aiming

to build probabilistic atlases to represent a given population. Nevertheless, demographic-

based approaches assume that image distributions depend only on few considered grouping

categories (e.g age and gender). Moreover, accounting for all possible demographic groups

is a not tractable task. On the other hand, Atlas selection is usually based on intensity

measures. However, measures are assessed in the image domain where estimator convergence

can not be guaranteed on such high-dimensional spaces. As an alternative [18] use the mean

shift algorithm to find modes on the dataset. Thus, clustering results are provided by

means of multidimensional scaling. Nevertheless, the original image space is not shown to

be compact enough to guarantee the mean estimator to converge. Moreover, there is not

an interpretation of the resulting modes. This drawback can be overcome by introducing

a high dimensionality reduction stage aiming to work in more compact spaces. Thus, [36]

compares three manifold learning techniques for computing compact spaces where images are

compared. Comparison of a new query against the dataset is estimated as the accumulation

of the atlas-image-to-single-template and single-template-to-query image measures. This

aspect may lead to a suboptimal selection, given that the employed measure is not guaranteed

to match all distance properties. [50] Proses to reduce the number of features by grouping

voxels into anatomical regions through the alignment of labeled atlases. Then a classification

is performed using classical machine learning techniques. Nevertheless, all those approaches

require a previous alignment stage so being constrained to the computational burden issues.
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In this chapter, we propose to reduce the original feature space dimension using a kernel

based MRI representation. The proposed approach provides an effective way to encode inter-

slice similarities so that the main shape information is kept in a lower dimensional space.

Additionally, a spectral clustering technique is employed to build a low-dimensional space

where regular distances can be more accurately calculated, and the latent data structure

is highlighted. The proposed methodology is used in a clustering task aiming to identify

the demographic categories age and gender. In addition, pairwise similarities computed on

the embedding space are used to select a set of the most representative atlases to segment

an unlabeled target image. Finally, Multi-atlas segmentation is stated in a probabilistic

framework where a target-specific probabilistic atlas is generated for each unlabeled target

images using the selected set of atlases.

2.1 Materials And Methods

2.1.1 Image Similarity Measure

Let X = {Xn ∈ Ω : n = 1, . . . , N}, a dataset that holds N MR images. In order to encode

the affinity between a couple of images {Xn,Xm}, we introduce the following kernel function.

ζ(Xn,Xm) = 〈ϕ(Xn), ϕ(Xm)〉 (2-1)

where ϕ(·) maps from the original domain, Ω, into a Reproduced Kernel Hilbert Space

H. Notation 〈·, ·〉 stands for the inner product. Generally, it holds that |H| → ∞, so

that |Ω|≪|H| can be assumed. Nevertheless, there is no need for computing ϕ(·) directly.

Instead, the well-known kernel trick is employed for computing the elements of the matrix

Z∈RN×N encoding pair-wise image similarities. The matrix Z is estimated from the set X

and holding elements znm = ζ(Xn,Xm) with znm ∈ R
+.

2.1.2 Spectral clustering

Aiming to build a low dimensional space from the data, the set X is seen as a graph

G = {V,E} composed of a set of N vertices V = {vn ∈ N : n = 1, . . . , N} and a set of edges

E = {enm ∈ R
+ : n,m = 1, . . . , N} linking them, the goal of spectral clustering is to find

K disjoint subsets from V. In this regard, Z can be seen as the weighting edge matrix of

the undirected, fully connected graph G, where each entry represents the similarity between
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each image pair, enm = znm = ζ(Xn,Xm). Since the number of connected vertices in the

graph G corresponds to the eigenvalue multiplicity of the normalized Laplacian matrix of Z,

such a matrix is defined as [56]:

F = D−1/2ZD−1/2

where D ∈ R
N×N is a diagonal matrix, known as the degree matrix with elements dmm =∑N

n=1 zmn. Hence, a spectral decomposition of F is required. Specifically, if the K largest

eigenvectors of F are stacked as columns on a matrix Y ∈ R
N×k and each row is scaled

to have unit length, thus mapping the original data points into a unit hypersphere [38],

data modes can be inferred by simple clustering techniques while enhancing latent distri-

butions [74]. Aiming to minimize redundant information we use the principal components

analysis(PCA) that decomposes the laplacian matrix as: F =V ΛV ⊤, where Λ∈R
N×N is

a diagonal matrix containing the ranked in descending-order eigenvalues of F and matrix

V ∈R
N×N holds its column eigenvectors. In this sense, to represent Xn we use a vector

un∈R
p obtained as: un=

∑
m∈N znmṽm, where ṽm is the m-th column of V truncated to

the p most relevant components in terms of its corresponding eigenvalue.

2.1.3 Kernel Based Image Representation

In a 3D MR image, the original feature space corresponds to Ω=R
W×H×L. Therefore each

image can be arranged as an ordered slice set X = {Sk : k ∈ [1, L]}, being Sk = {xr : r=

(i, j, k)}, with Sk∈R
W×H the k-th (W ×H)-sized matrix slice.

Assuming smooth variations between adjacent slices on X, inter-slice relationship is en-

coded by the kernel function: γ(Sk,Sk′) = 〈ϕ(Sk), ϕ(Sk′)〉. Thus, the output symmetric

matrix G∈R
L×L with real-valued elements, gkk′=γ(Sk,Sk′), becomes the inter-slice kernel

(ISK) of X. Moreover, provided gkk′ = gk′k and gkk = 1, each image Xn can be represented

by the upper triangular ISK elements as a vector yn∈R
L(L−1)/2. Therefore, the image sim-

ilarity measure in Eq. (2-1) is represented as: ζ(Xn,Xm) = f(yn,ym), where f(·, ·) is the

introduced kernel function.

2.1.4 Bayesian medical image segmentation

As proposed in [7, 39], automatic labeling of medical images can be stated within a Bayesian

classification framework as estimation of a label set, L={lr∈[1, C]:r∈Ω}, from a given set

of measurements (or image), X={xr∈R
d}, where a single label, lr, is assigned to the r-th
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spatial element (or spel), depending on the d-dimensional measurement vector xr, where

C∈N is the total number of considered labels or classes, and Ω is the spel domain.

In the Bayesian framework, provided a given query image, the probability of having a label

set, P (L|X), the probability of occurring the image given the labeling, P (X|L), and the

label prior probability, P (L), are together related as:

P (L|X) ∝ P (X|L)P (L) (2-2)

In most of medical imaging applications, measurement vector distributions of different tis-

sues are overlapped. Consequently, the probabilities P (X|L) and P (L) (termed atlas

functions), can vary spatially, so that a set of Bayesian classifiers is applied along Ω,

where each one deals with independent small regions. Hence, the probability of obtain-

ing a label set given a query image is represented as P (L|X)=
∏

r∈Ω P (lr = c|xr), where

P (lr= c|xr)=P (xr|lr=c)P (lr)/P (xr) is the probability of obtaining the label c∈ [1, C] at

spel r and given the measurement xr, P (xr|lr = c) is the conditional probability of observing

the measurement xr at r given the label lr = c, P (lr) is the label prior probability, and

P (xr) is the evidence probability.

2.1.5 Learning model parameters

Since the N -image set is mostly heterogeneous, some objects can bias the segmentation

obtained over a given query image. Hence, we propose to enhance the above explained

approach by computing the atlas functions for a given subject from a subpopulation of the

entire dataset, which in turn depends on a new introduced pair-wise image similarity. Thus,

the segmentation task relies on the estimation of the atlas functions from a given sub-set of

M pre-labeled atlas images, X∗={Xm,Lm : 1, · · · ,M}, whit X∗ ⊂ X where the r-th spel of

the m-th image is assigned to the measurement vector xm
r and the class lmr . Hence, provided

X, the prior P (lr = c) and evidence P (xr), both the atlas functions can be computed as:

P (lr = c) = E{δ(lmr − c) : ∀m ∈ M} (2-3a)

P (xr) =
∑

c∈C
P (xr|lr = c)P (lr = c) (2-3b)

where δ(·) is the delta function and notation E{·} stands for the expectation operator.

In each class, xr is assumed to be normally distributed [39], x∼N(µc
r,Σ

c
r), where mean

µc
r∈R

d and covariance Σc
r∈R

d×d class parameters are estimated as:

µc
r = E{xm

r |l
m
r = c : ∀m ∈ M} (2-4a)

Σc
r = E{(xm

r − µc
r)(x

m
r − µc

r)
⊤|lmr = c : ∀m ∈ M}, (2-4b)
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2.2 Experimental setup

The proposal is used in two specific tasks, the first one correspond to clustering tasks aiming

to find demographic groups on the population. On the other hand, similarities computed in

the embedding space are use to select the most similar atlases in multi-atlas segmentation

scheme. In this sense the proposal is outline on three main stages necessary for both tasks

i) the image preprocessing stage is aimed to reference all images in the datasets to the same

intensity space and spatial framework, ii) the image representation stage is performed to

code the high-dimensional information of each image on a lower feature space, and iii) the

image embedding stage is employed to build up a new low dimensional space provided with

a better interpretability and where inferences can be carried out easily.

2.2.1 Preprocessing

Two preprocessing steps are performed for all images on the dataset. Firstly, each image

is registered to the MNI305 template by an affine transform so that the whole dataset is

referenced to Talairach space. [37], Due to the registering each volume is resampled to

197 × 233 × 189 size. Lastly, an intensity normalization procedure is performed by scaling

each voxel intensity, so that the mean intensity of the white matter is fixed to be 110. Both

preprocessing steps, normalization and registrering, are performed with the Freesurfer image

analysis suite, which is documented and freely available for download online 1.

2.2.2 Proposed Image Feature Extraction

We note the ISK of a given image as yn ∈R
L(L−1)/2. Hence, a new representation space

of order 104 is achieved, instead of the original image domain of order 106. Specifically, to

compute γkk′ of each image, we use the Gaussian kernel

γ (Sk,Sk′)=exp

(
−||Sk − Sk′ ||

2
F

(2σ2
κ)

)
(2-5)

where σκ ∈ R
+ is a scale parameter and notation ‖ · ‖F stands for the Frobenius norm.

Hence, two important issues have to be highlighted. Firstly ISK can be Computed Along

Three different axes(namely Axial, Sagittal and Coronal): Therefore, all axes are considered

for subsequent analysis. Secondly, σκ parameter has to be tuned. In the concrete case taken

into account that lim
σk→0

Var(G(σk)) = 0, lim
σk→∞

Var(G(σk)) = 0, and an appropriate σκ value

1http://surfer.nmr.mgh.harvard.edu/
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spans widely the values of G. The optimization of the scale parameter is performed by

maximizing the following element-wise matrix variance:

σ∗

κ = argmax
σ

{Var{γkk′(σ) : ∀k 6= k′}} , (2-6)

2.2.3 Kernel-based Image Similarity

Starting from the aforementioned representation approach, an embedding low dimensional

space is build by using the aforementioned explained spectral decomposition. Visualization

clustering and regression are performed over a new more compact space. For this specific

task, the common Gaussian kernel is employed:

ζ(Xn,Xm) = exp

(
−d(Xn,Xm)

2

2σ2
ζ

)
(2-7)

Where σζ ∈R
+ is the scale parameter and d(Xn,Xm) ∈ R

+ is the distance function between

the n-th and m-th images.

2.3 Kernel Based Representation for clustering task

2.3.1 Database

The IXI dataset is a brain imaging study, holding MR images from 575 normal subjects

which age between 20 and 80 years. Subjects are provided with T1, T2, PD, DTI and an-

giogram volumes. The image sequences were acquired with three different scanners (Philips

1.5T, Philips 3T and a GE 3T), anonymised and converted to NIFTI format. Additionally,

basic demographic information for each subject is included (age, gender, ethnicity, among

others). The whole dataset is freely available online 2.

Since the target of the current paper is related to atlas construction, only the T1 sequences of

N = 322 subjects (acquired with the GE 3T scanner) were taken into account. T1 sequences

are composed of 256×256×150-sized volumes with a voxel size of 0.9375×0.9375×1.2mm.

Thus, the considered subset is composed of 141 male, 175 female and 6 unknown subjects.

Figure 2-1 shows an example of the MR image for a given subject along three different views.

2http://www.brain-development.org/
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(a) Axial (b) Sagittal (c) Coronal

Figure 2-1: Volume sample from the IXI database. Subject 002

2.3.2 Parameters Tuning and Results

Proposed approach is compared against the conventional MR image similarity voxe-wise sum

of square differences on the task of clustering the demographic categories age and gender.

Obtained results are shown in terms of cluster distributions and centroid distances. In this

sense two image representation techniques are employed for comparison. The first one is a

baseline where each voxel on the image is used as a feature. While the second one corresponds

to the proposed approach where each image is represented by an ISK matrix, noted as G.

Given that, ISK analysis can be achieve on three different axes (namely Axial, Sagittal

and Coronal). Therefore, all axes are considered for analyses. Figure 2-2 shows Obtained

tuning curves for the scale parameter σκ in the three considered axes. Mean and standard

deviation are computed for a randomly selected subset of 30 MR images. Figure 2-3 shows

an example of the proposed image representation for a given MR image along the axial,

sagittal and coronal axes.
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Figure 2-2: Sigma tunning for Inter Slice Kernels along the three possible axes. Mean and

standard deviation are plotted.
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Figure 2-3: Inter Slice Kernel similarity for a given image. All axes are measured in mm.

From both aforementioned representation approaches, and embedding low dimensional spaces

is build by using the Gaussian kernel as in the equation 2-7 which encode pairwise image

correspondences. In this sense, a distance function in the equation is used for each repre-

sentation. For the baseline image representation approach, that distance correspond to the

voxel-wise image euclidean norm, defined as:

dVW (Xn,Xm) = ||vec(Xn)− vec(Xm)||2

while for the proposed representation, the distance is computed as the ISK matrix Frobenius

norm as follows:

dISK(Xn,Xm) = ||Gn −Gm||F

= ||yn − ym||F

Figure 2-4 shows obtained tuning curves for all considered image representation using the

criterion proposed on Equation (2-6).

Resulting kernels for considered representations are shown in Figure 2-5, where subjects are

sorted by gender and age values. Although all dataset information is encoded on matrices and

some small subsets can be identified, it is still hard to group subjects on categories as gender

and age. Therefore, a PCA-based projection space is computed from the laplacian of above

matrices. The four largest decomposition eigenvectors are shown in Figures 2-6 and 2-7.

Obtained projection allows to come up the following statements: i) The first and second

decomposition eigenvectors build a space able where the age is ”unfolded/unwraped”. ii)

The fourth decomposition eigenvector decodes the gender category more accurately than

remaining components.
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Figure 2-4: σζ tuning curve for considered image representations: (a) Voxel-Wise approach

and (b) Proposed ISK along the three possible axes.
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Figure 2-5: IXI dataset kernel matrices for both considered image representations. Each row

and column on the matrices corresponds to a given image. Images are ordered

by gender (firstly) and age (secondly). The color range is normalized between

the interval [0, 1]
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Figure 2-6: Scatter matrix for the four largest decomposition eigenvectors using the voxel-

wise approach. Upper scatters are grouped by age. Lower scatters are grouped

by gender.
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Figure 2-7: Scatter matrix for the four largest decomposition eigenvectors using the ISK

along the axial axis. Upper scatters are grouped by age. Lower scatters are

grouped by gender.

Aiming to prove the first of above statement, two subsequent analyses are performed on

the obtained representation space. Firstly, a quadratic regression is computed, so that the

trend along the second component is emphasized. Secondly, since the new representation
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enhances each cluster properties, making the natural groups easily detectable, a simple k -

means clustering algorithm is used to find, with less difficulties, the natural groups on the

new space. As expected, resulting regression (colored in red line) and clustering results

(Figure 2.8(a)) show a trend along the second axis. Besides, the cluster age distribution

is provided in Figure 2.8(b) showing age clustering, proving that the subject age tends to

increase along the computed trend curve.
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Figure 2-8: Trend estimation along the second decomposition axis results using the ISK axial

image representation.

Lastly, for proving the second statement, a cluster measure is employed to quantify the
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separability of male and female clusters. The measure is computed from the inter-cluster over

the intra-cluster variance, so that the larger the value, the farther the cluster distributions.

The test is carried out along each considered decomposition eigenvectors and over the four

dimensional representation space. Obtained separability measures (see Table 2-1) show a

larger separation through the fourth component for most of the ISK representations.

Approach 1st 2nd 3rd 4th All

Baseline 2.33 5.23 8.33 2.62 12.22

ISK Axial 2.74 2.25 2.06 14.66 15.98

ISK Sagittal 3.03 4.61 8.48 11.20 18.74

ISK Coronal 2.57 3.05 12.79 2.72 14.50

Table 2-1: Cluster separability measure for the first four components of considered repre-

sentation approaches.

2.4 Kernel-based Atlas Image Selection from the

Embedding Representation (KAISER)

The proposed methodology is tested on a manually labeled database to support brain tissue

segmentation. To this end, A kernel-based atlas Image selection computed in the embed-

ding representation space (termed KAISER) is used to construct target-specific probabilistic

functions which guide the brain tissue segmentation. The proposal is compared against the

probabilistic segmentation using the whole-population atlas and demographic population

atlas.

2.4.1 Database

The OASIS dataset is a brain imaging study, holding an MR image collection from 416

subjects, aged 18 to 96 years old, including diagnosed very mild dementia (70), mild dementia

(28), moderate dementia (2), and healthy (316) subjects. For each of them, three or four

T1-weighted MR scans obtained within a single imaging session are included (see a sample

subject in Fig. 2-9), from which a motion-corrected co-registered average image is obtained.

Additionally, each subject is provided with ground-truth segmented gray matter (GM), white

matter (WM) and cerebro-spinal fluid (CSF) structures. A fourth label (BG) is included

in the present study, aiming to model the background of images, as the regions with no

provided label.
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Figure 2-9: Sample subject of the OASIS dataset publicly available in

http://www.oasis-brains.org. Top row: Motion corrected MR image.

Bottom row: Provided structure segmentation. Left to right: Axial, Sagittal

and Coronal axes.

2.4.2 Parameters Tuning and Results

Aiming to perform atlas selection, The proposed feature extraction and embedding space

are computed. According to the obtained results on clustering task, ISK representation

is computed along the sagittal axis given that provide more separability on the clusters.

Figure 2-10 shows obtained tuning curves for the scale parameter σκ

Figure 2-10: Scale parameter vs. kernel element-wise variance for the sagittal ISK. Mean

and standard deviation values are plotted.

Starting from the sagittal ISK representation, the Gaussian kernel in the equation 2-7 is

used to encode image similarities in the low dimensional space. A scale of σζ = 9 is obtained

using the above proposed tuning procedure. The resulting kernel is depicted in Fig. 2.11(a),

where each row and column represents a given image on the dataset. Images are ordered by

gender (firstly) and age (secondly).

Therefore, the PCA-based projection space is computed from te laplacian of the kernel Z.

As seen in Fig. 2.11(b) showing the four largest decomposition eigenvectors, there exists

an inherent structure, hidden on the image distribution, that is hard to identify in the

original space domain (Ω), but easily identifiable in the proposed projected space. As a



2.4 Kernel-based Atlas Image Selection from the Embedding Representation (KAISER)25

result, patient-dependent atlases lead to more accurate segmentation results than the whole-

population atlas.

(a) Kernel matrix using the ISK features

−1 0 1−2 0 2−2 0 2 42 4 6 8 10

−1

0

1

−2

−1

0

1

2

−2

0

2

4
 

 

2

4

6

8

10

 

 
M
F

(b) Data projection along the first four

eigenvectors

Figure 2-11: Kernel matrix (top) and eigen-projection (bottom) representations for the

OASIS dataset.

Finally, the well-known L-curve criterion is used to tune the value p to truncate the number

of components employed on the projected representation v ∈ R
p. For such criterion, the

minimum distance to origin from a curve, composed by the normalized eigenvalues and the

percentage of components, has to be found. For the OASIS dataset, such distance is found

at the ninth component. Hence, subsequent analyses are performed with p = 9.

2.4.3 Tissue Labeling Performance

Taking into account the image similarity measure described in Section 2.1.1, we propose

four strategies for choosing the image subset used for computation of the atlas functions: i)

using the whole dataset on the Bayesian Classification Framework (FULL) [7], as a state-

of-the-art comparative baseline; ii) extracting Mk samples using the proposed Kernel-based

Atlas Image Selection from the Embedding Representation, termed KAISER; iii) randomly

choosing a subset of Mr images (RAND), as the comparative approach used in [4], withMr =

20 and 10 folds. iv) Selecting demographically affine images to the query image (DEMG),

using gender and age categories, as in [72].

For measuring segmentation quality of above described approaches, we assess agreement

between resulting segmentations and the labels provided for each dataset image. Namely,

we employ the Dice index: d= 2|A∩B|/(|A|+|B|), where A and B are respectively the
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provided and estimated regions of the compared tissue, and | · | stands for the number of

spels on a given region. Additionally, to prove the repeatability of the approaches, a leave-

one-out (LOO) cross-validation scheme is employed. Specifically for KAISER, the number

of neighbors Mk has to be tuned; this procedure is done by intensive searching of the largest

average-accuracy-over-standard-deviation ratio in the LOO scheme. Search is performed

over the interval Mk = [5, 21], as shown in Fig. 2-12, where the optimum value is found at

Mk = 13 neighbors.

Figure 2-12: Overall accuracy segmentation versus the number of selected closest neighbors

for the proposed KAISER. Errorbar is displayed for a LOO validation scheme.

Once tuned the number of neighbors, the Dice index and overall accuracy are computed

for the compared approaches in the LOO validation scheme. Mean and standard deviation

results, provided in Table 2-2, show that proposed KAISER outperforms FULL on all items.

Table 2-2: Segmentation results for considered selection approaches
BG WM GM CSF Acc

FULL [7] 100 81.5± 8.8 85.8± 5.4 84.5± 7.6 96.1± 1.4

KAISER 100 92.1± 1.9 95.1± 1.4 96.2± 1.0 98.7± 0.3

RAND [4] 100 74.6± 6.7 81.7± 5.1 79.2± 7.0 94.8± 1.3

DEMG [72] 100 77.2± 5.9 83.6± 5.7 82.2± 6.7 95.4± 1.4

2.5 Discussion

The proposed kernel-based image representation is specifically devoted to perform 3D MR

image unsupervised clustering. Besides, a low-dimensional, compact space is built by means

of spectral clustering, so that the demographic categories are easier distinguished. More-

over, due to the intrinsic similarities are better reflected in this low-dimensional space, the

proposed methodology is suitable for atlas selection enabling to construct target specific

probabilistic atlases enhancing brain tissue segmentation.
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As seen in Figure 2-2, the estimated parameters for the Gaussian kernel are close to each

other. Therefore, since the inter slice difference is taken from an image for the three axes, the

difference dynamic range and the parameter search space are the same for all axes. Moreover,

given that the confidence interval, produced by the 30-trials-computed standard deviation,

is narrow, the proposed parameter tuning proved to be a stable criterion. In this sense,

obtained ISK using estimated parameters maximally enhances the inter-slice relationship,

as can be seen in Figure 2-3.

In Figure 2-4, obtained parameters for ISK tuning (see Figure 2.4(b)) lie around the same

value. Such a fact may be explained by a couple reasons: i) the feature values range from 0

to 1 for all axes, so the search space is the same. ii) Although the kernel shape is different

for the three axes (Figure 2-3), the latent phenomenon is the same for all axes. Therefore,

if above considerations are meet, tuned parameters for different views tend to converge to

the same value.

Regarding the age as a demographic category, by visual inspection of the first and second

components depicted in Figure 2-7, it can be seen that the proposed methodology is able to

unfold the age better than any other component pair, even on the baseline decomposition

results (see Figure 2-6). Moreover, a quadratic dependance between second and first eigen-

vectors can be inferred. Additionally, a larger dispersion is shown on older subjects than on

younger ones. This finding can be due to a larger head shape dispersion on older humans,

which is according to anatomical head knowledge. It is known that brain anatomy is steady

on middle age humans, while change (gray matter volume diminish) faster on older humans.

Aiming to prove above statements, a quadratic regression is performed (see Figure 2-8),

which proves to fit adequately the relation between the first two ISK-Axial eigenvectors.

Moreover, since the average age on each cluster tends to increase as the centroid position

increases, it can be said that subject age is directly described by the relationship between

the first two eigenvectors.

Regarding the gender, on a component-wise analysis, the fourth ISK-Axial and third voxel-

wise eigenvectors seem more suitable to distinguish gender than remaining components in

Figures 2-6 and 2-7. Therefore, a two-sample hypothesis test is employed to quantify the

separability between gender clusters for the first four eigenvectors of all considered repre-

sentations. A component-wise and a multivariate test are performed. Results on Table 2-1

show that the largest separability is found when using the first four eigenvectors and proved

that our proposal is more suitable to distinguish gender than the voxel-wise baseline.

Taking into account the aforementioned results, the proposed kernel-based representation

methodology is proved to find the natural inherent distributions of MR images, namely, age

and gender categories. In this sense, our proposal is suitable to support MR image clustering
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and similarity measurement tasks required on template-based image segmentation.

Overall, obtained segmentation results (see Table 2-2) show that the KAISER proposal

achieved the largest average and the least deviation values for all Dice indexes and accuracy.

Hence, our proposal exhibits the best classification performance and the most repeatability.

The above leads to an improvement, regarding the atlas selection, on multi-atlas-based image

labeling approaches.



3 Supervised Similarity Measure

supporting Atlas-Selection

In the previous chapter, we introduce a similarity measure computed in a low-dimensional

space which demonstrated be accurate for highlight the data distribution on the dataset,

enabling to perform appropriate atlas selection. In the aforementioned method, only the

intensity information was employed to inferred image relationships. Now in this chapter, we

incorporate label information aiming to learn the appropriate selection based on the expected

segmentation. Current methodologies use similarity measures such mutual information(MI),

cross-correlation, or squared differences. More sophisticated methods use a distance on a

manifold. However, these methods are limited mainly for two reasons: Firstly, as the mea-

sures are evaluated over the entire image, it is biased towards large regions as the background

instead of the relevant structures. Secondly, these rely on pairwise similarities for both mea-

sure appearance or learn the manifold image, however, image similarities are not necessarily

related with the performance on segmentation of target image. In an attempt to cope with

the first restriction. Structure-wise atlas selection is suggested in [85] to segment the brain

MRIs based on the highest local mutual information. Also, an adaptive method for a local

combination is proposed so that a subset of templates and their weighting are estimated

independently at image localities [62]. The main drawback of these approaches lies in the

requirement of a deformable registration stage measuring the image similarity for all atlases.

That procedure is computationally much more expensive than linearly mapping all the im-

ages into a common reference space. On the other hand, a recent approach [68] propose to

learn relations between pairwise appearance and the labeling performance. Bearing in mind

all described above constraints, we propose a new spatially weighting procedure of the well-

known image metrics for supporting the atlas selection within a multi-atlas-based segmenta-

tion scheme. Specifically, we study the mean squares (MS), histogram correlation coefficient

(HCC), normalized mutual information (NMI), and neighborhood cross-correlation (NCC).

Our approach computes independently the measurements at regular image partitions; then

all partition similarity values are linearly combined to get a single similarity outcome. The

combination parameters are properly tuned to match the optimal similarity based on the

label affinity between the prelabeled images on the training dataset.
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3.1 Materials and Methods

Let X={Xn,Ln:n=1, . . . , N} be a labeled MRI dataset holding N pairs of segmented images,

where Xn={xn
r∈R:r∈Ω} is the n-th MR image, the value r indexes the spatial elements, and

the matrix Ln={lnr ∈ [1, C]:r∈Ω} is the provided image segmentation into C ∈ N classes,

which for 3D volumes holds dimension Ω=R
Ta×Ts×Tc , with {Ta, Ts, Tc} as the Axial, Sagittal,

and Coronal real-valued sizes, respectively.

3.1.1 Image similarity metrics

The similarity between a given image pair, {Xn,Xm}, can be assessed by using one of the

following widely employed metrics:

Mean Squares (MS): This metric that is based on the average square difference along the

space is embedded into a Gaussian kernel function, yielding the following bounded similarity

measure:

s{Xn,Xm} = exp

{
−

1

2σ2
E{(xn

r − xm
r )

2 : ∀r ∈ Ω}

}
∈ [0, 1]; (3-1)

where σ∈R+ is the kernel bandwidth. Notation E{·} stands for the expectation operator.

Histogram Correlation Coefficient (HCC): This metric calculates similarity between im-

age histograms as follows:

s{Xn,Xm} =
E{h(xn

r , x
m
s )(x

n
rx

m
s − x̄nx̄m) : ∀r, s ∈ Ω}

E{h(xn
r )(x

n
r − x̄n)2}E{h(xm

r )(x
m
r − x̄m)2}

∈ [0, 1] (3-2)

where h(xn, xm)∈R+ is the joint histogram between both input images, and x̄υ∈R, with

υ∈{m,n}, is the average intensity of the respective input image Xυ.

Normalized Mutual Information (NMI): This similarity value measures the normalized

mutual information of a couple of images as:

s{Xn,Xm} =
H {Xn}+H {Xm}

H {Xn,Xm}
− 1 ∈ [0, 1] (3-3)

where notation H {Xn,Xm} stands for the joint entropy between Xn and Xm.
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Neighborhood Cross-Correlation (NCC): This metric is widely used within the Advanced

Normalization Tools (ANTs) framework, and computes the normalized cross correlation of

voxel neighborhoods between two images:

s{Xn,Xn} =
E{(xn

s − x̄n
s )

2 (xm
s − x̄m

s )
2 : ∀s ∈ Ω}

E{(xn
s − x̄n

s )
2}E{(xm

s − x̄m
s )

2}
∈ [0, 1] (3-4)

where xn
s∈R

q×q×q is the set of intensity levels in a q-sized neighborhood around the s-th

voxel of the image Xn, and x̄n
s=E{xn

s :∀s∈Ω}.

It is worth noting that MS and NMI measures are re-written from their original definition so

that all of the above similarity metrics share the same interpretation. Namely, s=0 implies

the complete mismatch between images, while s=1 – an absolute match achieved only if

Xn=Xm.

3.1.2 Spatial Enhancement of Image Metrics

Since all studied metrics are computed over the whole image, they do not account for local

content similarities. Therefore, these measures are biased towards the large similar regions, as

the background, masking the relationship between common image structures. Besides, those

similarities lack in robustness against artifacts. For instance, the intensity inhomogeneity

(being a low-frequency artifact) changes the image intensity distribution along the space.

The most common approach to overcome this issue is to compute the metrics at all local

regions, which should be further combined adequately into a single metric value. To this

end, the image X is split into P different regular blocks, {Ωp : p∈P}. Hence, each image

is seen as a set of non-overlapped blocks X={Ξp∈R
ρa×ρs×ρc}, with P=

∏
v Pv, ρv=Tv/Pv,

and Pv the number of partitions along the axis v (v∈{a, s, c}). Consequently, the following

P -dimensional vector of metrics holding each the block-wise similarity value is obtained:

s{Xn,Xm} = {sn,mp = s{Ξn
p ,Ξ

m
p }; ∀p ∈ [1, P ]}

With the aim of building a new bounded scalar similarity metric, ζ, we make use of a linear

combination of the elemental block-wise measures, namely,

ζn,m = w⊤s{Xn,Xm}, ζn,m ∈ R[0, 1]

where w={wp}∈R
P is the combination vector that is subject to

∑
p∈P wp=1. Since each

weight has to account mostly for the influence of the corresponding region on the resulting

metric ζn,m, we assume the vector w to be dependent on the partition size. In the case of

the equally-sized blocks, the combination vector is computed as follows [?]:

wp =
ρaρsρc
TaTsTc

=
1

P
, (3-5)
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As a result, the combination vector estimated in 3-5 leads to the plain averaged block dis-

tance, that is, ζn,m=E{s{Ξn
p ,Ξ

m
p :∀p∈[1, P ]}}. In practice, each block holds a different amount

of information depending on its content or its relevance to the task at hand. Regarding this,

the contribution of each block can be achieved as its average intensity variance:

wp =
1

ω
E{var

{
Ξn

p

}
; ∀n ∈ [1, N ]} (3-6)

where ω∈R+ is the normalization factor.

3.1.3 Supervised Image Measure Learning

Basically, we are looking for a measure supporting the Atlas selection within the multi-

atlas-based segmentation task. Therefore, we propose to use the provided set of segmented

images of the dataset X to learn the corresponding combination weights for improving the

segmentation accuracy. For this purpose, the following similarity matrix Zw={z
n,m
w

∈R+:

m,n=1 . . .N}∈RN×N holding all pair-wise metric values is built as a function of the esti-

mated combination weights:

Z =

P∑

p=1

wpSp (3-7)

zn,m
w

= ζ{Xn,Xm} =
P∑

p=1

wps
n,m
p ; ∀n,m ∈ [1, N ], (3-8)

where Sp={s
n,m
p :m,n=1 . . .N} is the similarity matrix attained at the p-th block. Since

all considered metrics are equivalent to bounded similarity measures, each of the Sp ma-

trices becomes a positive definite symmetric (PDS) kernel matrix, as well as their linear

combination Zw.

Here, we make use of the PDS kernel matrix K={kn,m:m,n=1, . . . , N}∈RNxN to learn the

similarity metric ζ through the centered kernel alignment (CKA) measure. Namely, we search

for optimal weight vector w∗
p maximizing the correlation between Zw and the objective kernel

matrix K as follows:

w∗ = max
w

〈Z ′
w
,K ′〉F

‖Z ′
w
‖F‖K ′‖F

, (3-9)

where notations 〈·, ·〉F and | · | stand for the inner product and the Frobenius norm, respec-

tively. Z ′
w

and K ′ are the centered kernel versions of Zw and K. Here, we compute the
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centered version of Γ as Γ′=HΓH , where H=
[
I − 11⊤/N

]
, and 1∈RNx1 is the all-ones

vector. Generally, the solution for w in the optimization problem of 3-9 is as follows [32]:

Consequently, the solution within the optimization problem in 3-9 (known as the centered

kernel alignment –CKA) for calculating w is given by [32]:

w =
A−1b

‖A−1b‖
(3-10)

A ={apq = 〈S′

p,S
′

q〉F ; ∀p, q ∈ [1, P ]} ∈ R
P×P

b ={bp = 〈S′

p,K
′〉F} ∈ R

P×1

In order to achieve an image similarity function more related to the segmentation, the knowl-

edge about the expected labels can be included within the optimization framework of 3-9. In

particular, we learn the kernel parameters in a supervised scheme by making each one equals

to the Dice Index similarity measuring the accuracy of segmentation between the atlases and

defined as:

kn,m =
2〈Ln,Lm〉

(‖Ln‖1 + ‖Lm‖1)
(3-11)

where notation ‖ · ‖1 stands for the 1-norm.

3.1.4 Label Fusion

The attained measure can be used to select a subset of the most similar atlases to a target

image so that the segmentation is improved. For accomplishing the segmentation, a weighted

majority voting scheme is employed since it is the most widely used label fusion algorithm for

multi-atlas-based segmentation approaches. Such a system provides a single label for each

spell determined by collecting weighted votes from all the contributions over the selected

templates and assigning the label with the highest vote to each voxel.

So, let XT={X
t,Lt : t=1, . . . T} a set of T selected atlases and L̂t be the estimated segmen-

tation after deformable registration to the target image. Provided the similarity measure st

between the target image and the selected atlases X t, matrix L̂t assigns the label L̂(r) to

each spel r, the final segmentation for the spels on the target image O(r) is given by:

O(r) = max
∀c

{O1(r), . . . ,OC(r), . . . ,OC(r)}
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where Oc(r)=
∑

t=1,T δnc (r) and δnc (r)=

{
st, c=L̂t(r)

0, otherwise

3.2 Experimental Set-Up

In order to evaluate all studied metrics within the multi-atlas-based segmentation task, they

are performed to select the most similar labeled images for estimating the segmentation of

a query image. To this end, the majority voting scheme is considered for labeling each voxel

since the segmentation quality is mostly dependant on the selection strategy. Additionally,

the well-known Dice Index similarity is measured to evaluate the segmentation performance.

3.2.1 Database

Here, the dataset tested is the one used in the MICCAI 2012 Multi-Atlas Labeling and

Statistical Fusion challenge1 that is a subset of the Open Access Series of Imaging Studies

(OASIS) database. This data collection holds T1-weighted structural MRI scans from 35

subjects (13 males and 22 females), aging from 18 to 90 years. Each 256×256×287-sized MRI

volume has a voxel size of 1×1×1mm. All images were expertly labeled with 26 structures.

Due to our research interest lies in Parkinson surgery, only the following structures are

considered: hypothalamus (HYPO), amygdala (AMYG), putamen (PUT), caudate nucleus

(CAUD), thalamus (THAL) and pallidum (PAL)3-1 shows a sample of an image subject as

well as its provided segmentation.

Figure 3-1: Left to Right: Axial, Sagittal, and Coronal views as well as the ground-truth

segmented structures.

1https://masi.vuse.vanderbilt.edu/workshop2012

https://masi.vuse.vanderbilt.edu/workshop2012
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3.2.2 Image Preprocessing

For the sake of comparison within a single common space, all images are spatially nor-

malized into the Talairach space. Thus, each image is rigidly aligned to the ICBM atlas

(MNI305-template) allowing to extract the morphological feature set accurately from each

considered image. To this end, the Advanced Normalization Tool (ANTS) is employed using

a quaternion based mapping and the MI metric as parameters.

In order to perform the label propagation, every pre-labelled image is also spatially mapped

into the query image spatial coordinates (target space) with a non-linear transformation so

that query and atlas images match the best. Further, the registration procedure is per-

formed using the ANTS tool having the following default parameters: elastic deformation as

the mapping function (Elast), MI as the similarity metric, and 32-bins histograms for esti-

mating the probability density functions. Lastly, to get a finer alignment, the registration is

performed at three sequential resolution levels: i) the coarsest alignment with a resolution of

1/8×Original space, and 100 iterations, ii) the middle resolution 1/4×Original space and 50

iterations, and iii) the finest deformation with a resolution of 1/2×Original space parameter

and 25 iterations, the Gaussian regularization method is employed (σ=3).

3.2.3 Metric parameter learning

For including spatial information, each similarity metric is assessed separately at different

locations of the image. To this end, the MRI volumes are regularly partitioned into P=27

blocks (3 partitions along each dimension). Then, the outcome metric is computed for all

image pairs as a weighted linear combination of all local measures. Here, three different

parameter tuning approaches are considered. The first one assumes that the contribution of

each block to the similarity metric is equal for all of them. Therefore, the similarity metric

corresponds to the averaging of the local measures. For the second approach, the weights

are computed as the average intensity variance in each block as in 3-6. In this way, the

shape differences on the brain structure intensity changes are considered as more relevant

to the resulting metric than homogeneous regions. For the third approach, the weights are

computed based on the contribution to the kernel centered alignment with respect to the

objective kernel matrix K as introduced in 3-10.

3-3 shows the 3D scatter plotting all resulting weights, where the coordinates of each element

are the spatial location of the image partition while the color and size are directly propor-

tional to the value. As shown in 3.3(a), the central image region has the highest variance.

Anatomically, this partition corresponds to basal ganglia location having tissue structures

with high variant shape and intensity. However, the scatter plot also shows a substantial
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amount of variance on the corners. This dispersion should be related to the partial pres-

ence of the scanned head and background, but not necessarily to the intensity dispersion.

According with Figures 3.3(b) to 3.3(e), the weight distribution for all metrics exhibit the

similar behavior. The corresponding weight to the central region is higher than other ones;

i.e. the similarity metric assessed in this region is more correlated to the supervised kernel

matrix than in boundary regions.

3.2.4 Evaluation of Similarity Metrics

We consider the leave-one-out validation scheme to evaluate the performance of the resulting

metrics. In this case, all metrics are used to carry out an atlas selection task for the atlas-

voting segmentation approach in the target image space. Finally, the metric performance is

assessed with the Dice Index similarity.

3-2 shows obtained results of multi-atlas segmentation obtained by each tested metric and

using all templates selected within the common space. As seen, the achieved accuracy gets

close to the global computation when all weights become equal. Although the accuracy

obtained by the MS metric should tend to the one of equally-weighted case, in practice both

outcomes differ because of computational accuracy issues, but their resulting selection curves

are statistically similar. Moreover, the noise artifact produces a high-variability of intensity,

leading to unsuitable weights and a biased metric. About the weights computation, the

similarity metric slightly improves the accuracy in comparison to the global and equally-

weighted metrics if the variance intensity is taken into account. On the other hand, our

proposed approach achieves the highest accuracy with an optimal atlas selection for all tested

metrics. The approach outperforms not only all other benchmark combination methods, but

also the accuracy obtained with the whole data-set.

3.3 Discussion

We propose a new spatially weighting criterion to improve similarity metrics aiming to mea-

sure image correspondences to support atlas selection on a multi-atlas segmentation scheme.

Our proposed measure outperforms the widely used equal and variance-based weighting on

the tested similarity metrics.

In accordance with the obtained results, it is clear that the spatially weighted metrics out-

perform the global ones. However, the computation of weights becomes an important task.

The equal weighting provides spatial information in terms of partition size, but the con-
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Figure 3-2: Average Dice Index similarities versus the number of selected atlases for all

considered metric tuning approaches.

tent inside each locality is not taken into account. Hence, it performs the worst among all

weighting approaches.

With the purpose of capturing shape differences on brain structures, the variance criterion

weighs each block according to the intensity variance on it. However, the background on the

images biases the weights computation towards image edges, which contain just partially the

scanned head. Moreover, the inherent noise reduces the performance of a variability-based

criterion.

Meanwhile, we propose to use a supervised kernel matrix aiming to learn the combination

weights for the similarity metric. In this sense, the weights are computed according to the

contribution to the kernel centered alignment with respect to the supervised kernel matrix.

An advantage of our proposal is that the closed form to the kernel alignment solution provides

an easy implementation for weights computation, while the construction of supervised kernel

matrix is carried out only once off-line. As a result, we assess a suitable image similarity

metric as an atlas selection criterion. Therefore, the similarity-based atlas ranking correlates

correctly with the segmentation accuracy for subcortical structures. Actually, the learned

metric can provide a subset of atlases achieving a higher accuracy for the label propagation

than the whole dataset provides.
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Figure 3-3: Resulting weight distribution for the variance criterion and all considered met-

rics. Markers are located at the center of each partition. Color and size are

directly proportional to weight parameter value.



4 Target Specific Patch-atlas

Construction

In Chapter 2 we stated Multi-atlas segmentation as a probabilistic atlas-based segmentation,

to this end, the proposed similarity measure is used to select a set of most similar atlases

aiming to construct a target specific probabilistic atlas which is specialized to segment an

unlabeled image. Similarity construction of target specific atlas has been proposed for seg-

mentation [58, 73, 25], specifically for theses methods, spatial prior information is stated as

spatial probability maps of structure existence based on the training set, and then these priors

are used to initialize the Expectation Maximization algorithm(EM). An advantage of Atlas-

based EM methods is that they provide an intuitive way to incorporate spatial label and

intensity information for segmentation. However, this method requires accurate registration

between the training images and the target, which represents a high computational cost,

nevertheless, registration errors can induce to an inadequate priors estimation. Recently,

patch-based approaches have been proposed for dealing with registration errors; these meth-

ods perform label fusion based on local patch search, where labels are computed based only

on local MRI intensity similarities. The key advantage of patch-based approaches is that it is

not restricted by the quality of registration, providing better performance than conventional

multi-atlas methods. Nevertheless, these methods label each point independently assuming

the same labeling difficulty, however, some regions could be harder to segment than others,

where the label affinity between the patches could not be related to patch similarity as is the

case of the boundaries and low contrast regions. In this chapter, we propose to integrate a

patch-based local search aiming to build target specific probabilistic atlases which are more

representative to segment an unlabeled target image. Additionally, we account for spatial

labeling difficulty performing the segmentation in an iterative scheme where the most confi-

dent points are firstly labeled and use this information to drive the segmentation of the less

confident points. To this end, the search for the most similarity points is refined aggregating

the label information in the previous iterations as well as global and local information to

measure patch similarities. Finally, we propose to speed up the method using a Hierarchical

scheme using only a few point to label the confident regions and gradually increment the

number as the segmentation is less reliable.
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4.1 Methods

4.1.1 Target specific probabilistic atlas segmentation

Given a target imageXq, and a set of atlasX ={Xn,Ln:n=1, . . . , N} withN image-segmentation

pairs where Xn={xn
r∈R:r∈Ω} is the n-th MR image, the value r indexes all spatial elements,

and the matrix Ln={lnr∈[1, C]:r∈Ω} is the provided image segmentation into C∈N classes.

Conventional probabilistic atlas methods use the set X to construct a specific probabilistic

atlas for a target image ( usually a subset of the most similarities atlases is selected for atlas

construction). Then, the estimation of the label map Lq is stated in a Bayesian framework

where the probability of having the label map, P (L|X), the probability of occurring the

image given the labeling, P (X|L) and the label prior, P (L) are related as:

P (L|X) ∝ P (X|L)P (L) (4-1)

Where the probabilities P (X|L), P (L) (termed atlas functions ) vary along Ω. Then the

probability of obtaining the a label map given a target image is represented as P (L|X) =∏
r∈Ω P (lr = C|xr), and the probability of obtaining the label c∈[1, C] at the position r given

the voxel xr is given by

P (lr = c|xr) =
P (xr|lr = c)P (lr)

P (xr)
(4-2)

Where P (xr|lr = c) is the conditional probability of observing voxel xr at r given the label

lr = c, P (lr) is the label prior probability, and P (xr) is the evidence probability which are

given by the generated probabilistic atlas. At that point, the segmentation process relies

on the estimation of the atlas functions. For this purpose a subset of the most similar

images and their respective segmentations are registered to the target image. Then, the

prior probability P (lr) is estimated by computing the probability of occurrence of each class

for all r ∈ Ω along of all atlases. And P (xr|lr = c) is the intensity distribution of each class

c which is approximated by a Gaussian distribution, P (xr|µc, σ
2
c ) where µc, σ

2
c are estimated

using EM algorithm.

4.1.2 Probabilistic atlas generation

As aforementioned, the construction of the atlas functions plays a significant role in the

segmentation. However, this process can be affected by registration errors. Even though

the most similar atlases are selected for atlas construction, local anatomical differences are
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hard to cover by the registration algorithms. Recently, patch fusion methods were proposed

to overcome limitations produced by registration errors, on these schemes each voxel is

represented by a patch and a set of the neighboring patches are used to estimate a label.

We use the patch fusion scheme aiming to construct a probabilistic local model, in this way

the resultant probabilistic atlas could be more representative of the target image.

Following the traditional patch fusion schemes, for each spatial position r we extract a set

of patches Pr = {βn
y ⊂ Xn,γn

y ⊂ Ln:y∈η(r)}, from the registered training dataset, where

η(r) is a neighborhood around r, and denote the target patch as βq
r ⊂ Xq. In this sense,

each patch is an arrange βn
y = {xn

s : ‖y − s‖ < ξ}, and γn
y = {lns : ‖y − s‖ < ξ}, being ξ the

patch radius. Let Dr = {βt
y,γ

t
y : t = 1 · · ·T} is a patch dictionary that holds the set of most

similar patches to the target patch, chosen according to the well known structural similarity

measurement ss [33].

ss(βq, βt) =
2µqµt

µ2
q + µ2

t

×
2σqσt

σ2
q + σ2

t

(4-3)

Where (µq, σq) and (µt, σt) are the mean and standard deviation of βq and βt respectively.

Then, a threshold ρ1 is use to select the most similar patches i.e ∀βt∈Dr
ss(βq, βt) > ρ1.

Aiming to construct probabilistic patch function, the eq. (4-1) is rewritten as:

P (γ|β) ∝ P (β|γ)P (γ) (4-4)

Then the objective is to construct the atlas functions P (β|γ), P (γ) from the set of patches

Dr, for this purpose for all spatial position s in βt the prior P (ls = c) and the evidence

P (xs) can be computed as:

P (ls = c) = E{δ(lts = c) : ∀t ∈ T} (4-5)

P (xs) = E{
∑

c=C

P (xs|ls = c)P (ls = c)} (4-6)

Where δ(·) is the delta function and notation E{·} stands for the expectation operator.

Regarding to the intensity distribution P (xs|ls = c) which is assumed to be Gaussian

(i.e P (xs|µc, σc)), Traditionally, Expectation maximization is used to estimated the parame-

ters µc, σc. However, even this approach has been successfully used for segmentation of brain

tissues [25, 7, 73], the convergence of the algorithm in other structures as the sub-cortical

ones could be no garantized, this due to low contrast on the boundaries and intensity inhomo-

geneities. We account this issue by using the selected patches to construct spatial appearance

models. In this way, assuming xs is normally distributed in each class, xs ∼ N(µc
s, σ

2c
s ). The
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mean uc
s ∈ R

d and variance σ2c
s ∈ R

d are estimated as:

µc
s = E{xt

s|l
t
s = c : ∀t ∈ T} (4-7)

σ2c
s = E{(xt

s − µc
s)

2} (4-8)

Note that, µc
s and σc

s can be computed iteratively, as the xt
s and lts are aggregated for each

point. To this end, we use the online computation of mean and variance proposed by [22].

Then, the segmentation for target voxel can be obtained using the maximum a posteriori

(MAP) criterion.

lqs = argmax
c

P (lqs = c|xs) (4-9)

with

P (lqs = c|xs) =
P (xq

s|ls = c)P (ls = c)

P (xq
s)

(4-10)

Multipoint Overlapping

Multipoint estimation was first analyzed by [66], instead to compute the central voxel of

the patch, the whole patch can be segmented using the same weighting scheme. Then the

overlaps estimations are fused by majority vote, they conclude that multipoint outperforms

the point-wise estimations. Moreover, they evaluate the performance of multipoint strategy

using only a subset of points for segmenting the whole image (fast multipoint), although

fast multipoint obtain less accurate results, the time for computation was considerably re-

duced. Similarly in our method, given that the patch extraction is performed for each r

along Ω, there are multiples estimations for each spatial position r, which are given by the

neighboring points. Therefore, we aggregate the overlapping voxels on the estimation of the

atlas function, note that it is possible due to the iterative methodology used to compute the

parameters of the appearance models, in the same way, it is easy to compute the priors P (ls)

by aggregating voxels to the models.

4.1.3 Iterative labeling

One of the drawbacks in the majority of patch-based methods is that each voxel is labeled

independently assuming the same labeling difficulty. However, some regions as the bound-

aries or low contrast regions are more difficult to segment than those inside of the structures.

Some authors have tackled this issue, for example, [9] performs statistical fusion where spa-

tial varying models of rather performance are constructed by estimating the consensus level

of each voxel. On the other hand, [69] label the most confident points and use the partial
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segmentation to guide the segmentation of the less confident points iteratively. For this

purpose, the obtained labels in each iteration are used to refine the patch selection for the

less confident points. Similarly to [69], we use a confidence criterion to estimate the re-

gions where atlas functions are more representative from the target image, being capable of

generating confident labels. On the other hand, we assume that atlas functions in the less

confident regions need to be recomputed. In this way, confident atlas functions are used to

computed a partial segmentation which is used to drive the labeling for the less confident

regions in an iterative scheme. In the same way to [69], the computed labels on the previous

iteration are used improve the search of the most similar patches. Moreover, we account for

the global and local information to build the new refined patch dictionary. Finally aiming

to reduce the computational time, we use a fast multipoint estimation, where a subset of

points Ω∗ is used to label the high confident regions. Then, the subset Ω∗ is augmented at

each iteration.

Confidence measure

As was discussing in Section 4.1.2 for each target voxel xq
r we obtain the vector

[P (lqr = 1|xq
r) · · ·P (lqr = C|xq

r)] which represent the probability of a target voxel to belong to

each class. Note, that each element in the vector can be seen as the grade of confidence to

be labeled with the class c. Given that, the voxel is labeled according to MAP criterion, in

each iteration only the points where the maximum likelihood is superior to a threshold λ are

labeled, λ is decreased in each iteration, this process is carry out as follow.

lq(t)r =

{
c max

c
(P (lqr = c|xq

r)) > λ

⊥ max
c

(P (lqr = c|xq
r)) < λ

(4-11)

Where, l
q(t)
r is the label at r in the iteration t, and ⊥ denotes the unlabeled point.

Patch dictionary refinement

Selection of an appropriate patch dictionary is of vital importance for obtaining accurate

segmentation in patch-based methods. A straightforward way to select similar patches is

using intensity similarities [33]. However, selection based only on intensity similarities could

bias the performance. Another issue that affects the appropriate dictionary construction

is the use of fixed sizes for the patch and search neighborhoods. As was demonstrated in

[83], patches with a fixed size prevent capturing the global and local information. Also, a

fixed size for the search neighborhood imposes a restriction on the tolerance to registration

errors. Even though these parameters can be determined from a given dataset, some regions
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can present more variability, therefore, need a larger search neighborhood size to cover

the registration errors. Aiming, to overcome these issues, we propose a hierarchical search

where the global information is firstly captured using larger sizes for the patches and search

windows, then the sizes are reduced gradually to capture the local information. Additionally,

we refined the patch dictionary by a label similarity measure employing the partial labels

obtained in the previous iterations using the approach proposed in [69].

The process is as follow, suppose that we want to build a patch dictionary for a target patch

centered on a given position r. Then at the first level, we fix the patch size with radius ξ1
and establish the search neighborhood η(r) with radius ξ1 + 2 then the set of most similar

patches are extracted. For the next levels, let r′ the position for one of the selected patches

on the previous level, the search neighborhood is established as η(r′) where ξi = ξ(i−1) − 1,

this process continues until ξi = 1. At the end of the hierarchical patch selection, we obtain

a patch dictionary Dr = {βt,γt : t = 1 · · ·T}, then as was mentioned in section 4.1.3 we

use the partial labeling obtained for the confident points for guide the patch selection. Let

Lq(t − 1) the label map from the previous iteration, then we extract the partial labels for

the target patch at the iteration (t − 1) denoted as γ̃q. Thus, the refined patch dictionary

denoted as D̃r is build using only the patches with high label similarity to the partial target

label patch, as defined in the following:

D̃r = {βt, γt|sim(γt, γ̃q) > ρ2} (4-12)

where 0 ≤ ρ2 ≥ 1 is a label similarity threshold and sim(γt, γ̃q) is a label similarity measure

between the label patch γt and the partial label target patch γ̃q which is de defined as:

sim(γt, γ̃q) =
|id(γt) ∩ id(γ̃q)|

|id(γ̃q)|
(4-13)

Where id(γ̃q) is the function which denote the the set of point in γ̃q which are labeled in the

previous iteration, and | · | denotes the cardinality of the set.

Hierarchical Fast Multi-point estimation

In [66] it was demonstrated that there is not necessary to use all points over the image

when the whole target patch is segmented. Instead, they use a fast-multipoint estimation

where a subset of points is selected to reduce the overlapping estimates, with the constraint

that there is, at least, one label estimate for each voxel. However using all point achieve

higher accuracy that fast multipoint estimation. In light of this, we propose to start the

segmentation with a set of points over a 3D grid where the distance between the grid points

is equal to the half of the employed patch size. Then in each iteration, the distance between

the grid points is reduced until this is equal to one. Given that, in each iteration only it
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is necessary to label the unconfident points computed in the previous iteration, only those

over the grid are used for estimations.

4.2 Experiments

We evaluate the performance of our method in the segmentation of subcortical structures us-

ing the SATA Miccai Challenge Dataset. Our proposal is compared against the conventional

segmentation based on target specific probabilistic atlas and EM algorithm (Target-atlas

EM, and the conventional patch-based methods: Non-Local Weighted Voting(NLWV) and

the Sparse Patch-Based Labeling ( SPBL). Also, we evaluate the proposed segmentation

method based on target-specific patch atlas construction without using the iterative scheme

(Target specific Patch Atlas Segmentation TSPAS) and our complete iterative algorithm

(Hierarchical-Fast Target Specific Patch Atlas Segmentation HF TSPAS), Qualitative eval-

uation is carried out using the Dice ration index.

4.2.1 Database Description

The SATA MICCAI online challenge has been proposed as a framework for comparison of

several approaches which requires a set of training data. Although it has a particular interest

in Multi-atlas methods, another type of approaches as Active shape and appearance models

have been considered. The SATA Dataset consisted of 35 training samples with manual

labels with 14 structures which correspond to both hemispheres of accumbens area, amyg-

dala, caudate, hippocampus, pallidum, putamen, and thalamus, also, all pair deformable

registration for all images are provided.

4.2.2 Experimental results Target-specific atlas construction

Aiming to evaluate the performance of target patch atlas construction, we firstly evaluate

our posed method without the iterative scheme(TSPAS) using all points over the image.

Additionally, a leave-one-out strategy is used to compare the performance of the methods

above, given that one of our goals is to reduce the computational cost all methods are

evaluated using only affine registration as preprocessing. To this end, for each leave-one-out

case, each one of the remaining images is affine-registered to the target space using the ANTs

toolbox with default parameters and mutual information as a cost function.

For a fair comparison, the size of the patch and search neighborhood are tuned independently

for each patch method. Also, due to our proposed estimation take into account patch
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overlapping for the atlas functions estimation. We use multi-point estimation for Non-local

weighting voting NLWV and Sparse based labeling SPBL methods. Moreover, multi-point

estimation has demonstrated better results than point-wise segmentation (labeling only the

central point) [66, 75]. In order to obtain the optimal parameters set, we randomly select 10

subjects from the training set. Additionally, we employ a grid search with patch radius range

from ξ = [2, 3] (5×5×5 to 7×7×7) and neighborhood search radius from 2 to 5 (5×5×5 to

11×11×11). Also, we found that ρ1 = 0.9 was the best value for the patch similarity

threshold, and the l1−norm strength in the SPBM is set to α = 0.01 . Figure 4-1 shows

the Dice ratios for all possible configurations, where the highest values for our proposed

and SPBL are achieved with patch radius of 3 and search neighborhood with radius 4 while

for NLWV are 2 and 4 respectively. Note that our proposed outperform to NLWV for all

possible configurations. Meanwhile, the average dice ratio for our proposal using patch size

ξ = 2 is close to the achieved by SPBL, however, there is an improvement when the patch

size is ξ = 3.
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Figure 4-1: Hirarchical patch selection

Aiming to give an insight of the advantage of incorporate patch search in atlas construction,

all methods are evaluated over the whole training data using the best parameter found above.

Table 4-1 shows the average Dice ratio for each structure(left and right combined) by each

method. It is clear that our proposed method achieves the best labeling accuracy in each
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structure, where the overall segmentation is improved in 1% and 0.42% respect to NLWV

and SPBL respectively. It is worth noting that our proposed method outperforms in 26.84%

to Target-Atlas EM method. The worse performance for this method can be due to this

requires a good initialization for the EM algorithm which is difficult to achieve if the atlases

are only affine-registered to the target. However, our proposed overcome this limitation by

including patch search on the target atlas construction.

Target-Atlas EM NLWV SPBL TSPAS

Accumbens 38.70 (38.70) 79.39 (4.02) 80.32 (3.71) 81.10 (3.74)

Amygdala 51.91 (51.91) 80.99 (2.64) 81.67 (2.59) 82.32 (2.89)

Caudate 63.07 (63.07) 90.24 (2.30) 90.90 (2.32) 90.97 (2.33)

Hippocampus 59.61 (59.61) 86.54 (1.95) 87.20 (1.63) 87.59 (1.66)

Pallidum 63.31 (63.31) 87.58 (2.70) 87.99 (2.41) 88.47 (2.42)

Putamen 70.87 (70.87) 91.47 (2.37) 91.89 (2.24) 92.30 (2.13)

Thalamus 80.23 (80.23) 92.30 (1.13) 92.66 (1.00) 92.83 (1.02)

Overall 61.10 (61.10) 86.93 (2.45) 87.52 (2.27) 87.94 (2.31)

Table 4-1: The mean and the standard deviation of the Dice ratio (% ) for all structures by

Target-Atlas EM, NLWV [33] SPBL [87] and our proposal TSPAS

4.2.3 Fast multi-point and the hierarchical fast multi-point algorithm

Given that, our proposal is based on the fast-multipoint estimation we analyze the perfor-

mance of all patch-based methods under this scheme. To this end, using the same sizes

for patch and neighborhood search found for multipoint estimation, we select a subset of

points over the image in such a way that the distance between each point is equal to the

ratio of the patch ξ. This configuration was selected due to it represent a trade-off between

accuracy and computational cost. To demonstrate this point we evaluate the performance of

fast multipoint scheme changing the distance between the points. Figure 4-2 (Top) shows

the dice ratio using a patch size of 7×7×7 (ξ = 3) and a range of distances from 1 to 7

points in all patch methods. As we can see on the top figure, there is a slight decrease for

distances between 1 to 3, whereas it is more significant for superior values. Note that taking

a distance of one point means use all points on the image, meanwhile with a distance of

7 points (2ξ + 1) there are not overlapping on the estimation. On the other hand, if the

distance is greater than 7 (> 2ξ + 1), some voxels are not estimated. Also, according to

Figure 4-2(Bottom) it is clear that there is an important reduction in the number of points

as the distance increases, specifically, a distance of ξ points leads to a speed-up of 27.

Aiming to evaluate the performance of our complete hierarchical algorithm (HF TSPAS),

we use the same ten SATA subjects for parameter tuning. For the initial patch radius we



48 4 Target Specific Patch-atlas Construction

1 2 3(ξ) 4 5 6 7

0.82

0.84

0.86

0.88

0.9

Ditance between points

D
ic
e
R
at
io

NLWV
SPBL
TSPAS

(a)

1 2 3 4 5 6 7
0

3094
7282

24664

196899
·104

Ditance between points

(b)

Figure 4-2: The top Figure shows the evolution of the Dice ratio as the distance between

the points increase. Bottom Figure shows the total number of points required

to segment an image.

use ξ1 = 9 and the threshold for label similarity measure was ρ2 = 0.9. The results of the

average dice ratios for all structures are reported in Table 4-2 for the baseline patch methods

and our proposals. It is worth noting, that our proposed method using the fast multi-point

estimation(TSPAS) outperforms both NLWV and SPBL by 1.69% and 0.57% respectively.

Regarding our complete hierarchical method HF TSPAS, we can see that it increases the

difference respect to patch based methods obtaining improvements of 2.12% and 1% for

NLWV and SPBL. Most importantly, our proposed method outperform all methods on mul-

tipoint estimation. Thus, it outperforms by 27%, 1.25%, 0.66% to Target-atlas EM, NLWV
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and SPBL respectively, also an improvement of 0.24% is obtained with respect to TSPAS.

However, the hierarchical algorithm requires considerably less time for its computation.

Fast multi-point Estimation

NLWV SPBL TSPAS HF TSPAS

Accumbes 78.72 (4.43) 79.92 (3.44) 80.68 (3.73) 81.44 (3.65)

Amygdala 80.02 (3.11) 81.02 (2.67) 82.00 (2.88) 82.77 (2.65)

Caudate 90.20 (2.56) 90.60 (2.52) 90.84 (2.43) 91.08 (2.36)

Hippocampus 84.72 (4.41) 86.81 (1.58) 87.44 (1.69) 87.85 (1.68)

Pallidum 86.01 (3.79) 87.71 (2.57) 88.34 (2.58) 88.72 (2.21)

Putamen 90.60 (2.87) 91.66 (2.37) 92.17 (2.19) 92.52 (1.87)

Thalamus 92.16 (1.21) 92.51 (1.02) 92.76 (1.05) 92.85 (0.98)

Overall 86.06 (3.19) 87.18 (2.31) 87.75 (2.36) 88.18 (2.20)

Table 4-2: The mean and the standard deviation of the Dice ratio (% ) for all structures

by NLWV [33] SPBL [87] and our complete Hierarchical method(HF TSPAS)

under fast-point scheme.

In order to give an insight about the contribution of the iterative methodology, we evaluate

the evolution of our complete hierarchical method with iterations, on the other hand, given

that, our proposal adds Hierarchical search to the label similarity proposed by [69]. We also

tested the hierarchical algorithm using only the label similarity measure for patch dictionary

refinement. Figure 4-3 show the evolution of the dice ration with iterations, as we can

see, the segmentation accuracy increases most significantly during the first three iterations,

where it stabilizes. Therefore, it is not necessary to carry out through all iterations which

lead to reducing the computational cost. Also, it is worth nothing that using the hierarchical

search leads to improve the segmentation accuracy outperforming the patch dictionary with

label similarity alone.

4.2.4 Influence of deformable registration

Given that, one of our goals is to reduce the computational time, our proposed method was

first applied using linear registration. However, in [66] was demonstrated the advantage of

combine patch methods with non-linear registration. In light of this, we apply our proposed

method after performing deformable registration, to this end, we use the pair-wise registra-

tion provided by MICCAI Sata challenge. Due to deformable registration reduce the spatial

anatomical variability, patch and neighborhood search size were tuned again using a grid

search with radius range of 1 to 3 (3×3×3 to 7×7×7) for both patch and search neighbor-

hood. We found that the best configuration for all patch-based methods is a patch size radius
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Figure 4-3: Evolution of Dice ratio with iterations of our Hierarchical method

ξ = 2 and neighborhood search radius 1. Note that there is a considerable reduction in the

search neighborhood radius, this can due to the high-quality of the registrations. Similarly,

to experiments using affine registration we first evaluate the performance using all points

on the image for all patch-based methods and our proposal (TSPAS). Also, we evaluate the

segmentation performance for the Target-atlas EM method, results are shown in Table 4-3.

Again our method TSPAS perform the best segmentation, however, the improvements re-

spect to patch-based methods are lower compared with results using affine registration 1%

against 0.45% for NLWV and 0.42% against 0.13% for SPBL . Also, it is worth noting that

performance for the Target-atlas EM method using deformable registrations improves by

24.96% respect to the obtained results using affine registrations, this fact can be due to

deformable registration provided a better initialization of the EM algorithm. However, our

proposal outperforms Target-Atlas EM by 3.1% demonstrating that include patch search

leads a better target specific atlas construction. Also, we evaluate the performance of our

complete hierarchical algorithm and compare the results with all patch fusion methods in a

fast multipoint scheme. The results are shown in the Table 4-4, where our complete hier-

archical algorithm achieves the best performance. Moreover, our proposed method without

hierarchical methodology (TSPAS) outperform both patch-based methods. However, it is

worth noting that our complete hierarchical method (HF TSPAS) improves in 0.13% to our

proposal without hierarchical methodology (TSPAS), and 0.06% to our proposal using all

point. Which are lower compared with those obtained using affine registration (0.43% and

0.24%). Also, we can see that the performance of the complete hierarchical method using

affine registration is comparable to the obtained using deformable registration. However,

the computational cost to perform accurate non-linear registration is significantly higher

compared with the required for affine registration.
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Target-Atlas EM NLWV SPBL TSPAS

Accumbes 78.16 (78.16) 80.84 (3.95) 81.21 (3.86) 81.50 (3.93)

Amygdala 80.29 (80.29) 82.86 (2.42) 83.04 (2.27) 83.17 (2.51)

Caudate 82.31 (82.31) 90.67 (2.72) 91.28 (2.53) 91.21 (2.61)

Hippocampus 83.75 (83.75) 86.95 (1.84) 87.58 (1.53) 87.73 (1.51)

Pallidum 88.22 (88.22) 88.49 (2.26) 88.71 (2.24) 88.95 (2.21)

Putamen 92.11 (92.11) 92.32 (2.07) 92.50 (2.01) 92.58 (2.00)

Thalamus 91.11 (91.11) 92.67 (1.03) 92.76 (1.04) 92.80 (1.03)

Overall 85.14 (85.14) 87.83 (2.33) 88.15 (2.21) 88.28 (2.26)

Table 4-3: The mean and the standard deviation of the Dice ratio (% ) for all structures

by Target-Atlas EM, NLWV [33] SPBL [87] and our proposal TSPAS using

deformable registration.

Fast multi-point Estimation

NLWV SPBL TSPAS HF TSPAS

Accumbes 80.61 (3.95) 81.10 (3.79) 81.46 (3.87) 81.24 (3.78)

Amygdala 82.53 (2.46) 82.86 (2.24) 83.05 (2.41) 83.16 (2.31)

Caudate 90.53 (2.66) 91.17 (2.49) 91.15 (2.63) 91.34 (2.63)

Hippocampus 86.38 (2.42) 87.40 (1.53) 87.66 (1.53) 88.00 (1.43)

Pallidum 88.14 (2.31) 88.57 (2.26) 88.88 (2.19) 89.05 (2.08)

Putamen 92.06 (2.13) 92.41 (2.03) 92.53 (2.00) 92.72 (1.89)

Thalamus 92.52 (1.02) 92.68 (1.02) 92.76 (1.03) 92.87 (1.01)

Overall 87.54 (2.42) 88.03 (2.19) 88.21 (2.24) 88.34 (2.16)

Table 4-4: The mean and the standard deviation of the Dice ratio (% ) for all structures

by NLWV [33] SPBL [87], TSPAS and our complete Hierarchical method

HF TSPAS under fast-point scheme using deformable registration.

4.3 Discussion

The proposed method in this chapter addresses the Multi-atlas segmentation by introducing

non-local patch search in the construction of target specific atlases. Thus, segmentation

could be stated in a Bayesian framework where local bayesian classifiers are built for each

point on the image. In this sense, the strength of both probabilistic atlas and patch based

segmentation approaches are combined, enabling to deal with anatomical variability whereas

a parametric model leads the segmentation. In addition, the proposed method is enhanced

to account for spatial labeling difficulty, allowing to refine the segmentation for those regions

where the segmentation could be harder to estimate. Finally, the computational burden is

reduced by employing a Hierarchical fast multipoint strategy where a few points over the
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image with a small overlapping are used to segment the regions which are reliable for labeling.

Meanwhile, the overlapping is augmented for regions which require better estimation for its

segmentation.

In order to give an insight of the contributions of our proposal, we assessed the segmentation

performance when local patch search are introduced on atlas construction alone (TSPAS),

and then the complete hierarchical segmentation method was applied for segmentation(HF

TSPAS). Obtained results using affine registrations shows that TSPAS achieve a consider-

able improvement respect to conventional Target-atlas based segmentation methods, demon-

strating the advantage to include local patch search in atlas construction. Moreover, our

proposal outperforms conventional patch-based methods in both multipoint and fast multi-

point scheme, allowing to infer that bayesian classification provides and effective way obtain

accurate segmentation compared with traditional weighted fusion steps.

Regarding to results using the provided deformable registration, we can note a considerable

improvement on the conventional Target-atlas based segmentation method, this can due to

deformable registration reduces effects of variability on the training set providing a better

initialization for the EM algorithm. On the other hand, even thought the proposed method

outperform to patch-based methods. The performance difference is lower compared with

the obtained results using affine registration. Especially, with the sparse based labeling

method, where TSPAS is slightly superior, this fact can be due to a lower amount of patches

are required for label fusion when a proper registration is provided. Thus sparse patches

labeling is appropriate to eliminate the misleading patches or similar neighboring patches

in the same image wich could bias the segmentation. However, obtaining tuned size for the

neighborhood search suggests there is high quality on the registration which represents a

high computational cost.

The obtained results after evaluating our complete hierarchical method(HF TSPAS) using

the affine registration shows that our proposal outperforms both Target atlas-based method

and the patch-based methods using fast multipoint and multipoint estimation. Most impor-

tant, HF TSPAS outperforms to TSPAS in a multipoint scheme. However, the HF TSPAS

reduces the computational time considerably. On the other hand, comparing the results

using deformable registration, it can be noted that there slightly improvement between

HF TSPAS and TSPAS, it can be due to hierarchical patch search have a poor effect when

there is accurate deformable registration. However, it is worth nothing that HF TSPAS us-

ing affine registration achieve comparable performance to that using deformable registration,

nevertheless, achieve accurate registration represent increases the computational burden.
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5.1 Conclusions

This work addresses structure segmentation of medical images using a set of labeled im-

ages termed atlas. Specifically, this research focuses on multi-atlas segmentation where a

subset of most representative atlases are combined based on the relationships between the

atlases and the target of interest to obtain the target segmentation. Under this scheme,

several methodologies to enhanced the appropriate selection and combination of atlases are

presented. Overall attained results demonstrated that the proposed approaches improve

the segmentation accuracy outperforming conventional multi-atlas methods. Following, the

main concluding remarks regarding each proposed approach are described.

• A kernel based MRI representation that allows highlight the intrinsic relationships be-

tween images is presented to support MRI clustering task and atlas selection. Our

approach is able to reduce the original image space encoding the inter-slice similarities

so that the main shape information is kept in a lower dimensional space. In addition,

a kernel-based embedding space is computed to enhance the measurement of image

correspondences. Thus, distances calculated in this compact space are able to reflect

the intrinsic similarities between images, enabling to highlight the latent data struc-

ture of the data. For the sake of comparison, our proposed approach is tested as MRI

representation strategy to support clustering task aiming to identify demographic cat-

egories age and gender. Attained results demonstrated that proposed method is able

to identify latent groups on the data related to the gender and age, achieving bet-

ter clustering performance that state-of-the-art methodologies. Also, our proposal is

suitable for clustering and measurements tasks required on multi-atlas based segmen-

tation methods, enabling to construct population-probabilistic or target specific atlas

by selecting the appropriate subset of images to segment the underlying target im-

age. To demonstrate this point, multi-atlas segmentation was stated as probabilistic

atlas segmentations scheme where similarities computed in the embedding space were

used to select the appropriate set of images to construct target specific probabilistic

atlases. Attained results, shown that selection in embedding space, outperform the

conventional demographic atlas selection, as well as the whole population atlas on
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brain tissue segmentation.

• A supervised similarity measure that learn the relationship between local appearance

correspondences and the segmentation performance is presented to enhance multia-

atlas segmentation results. Our approach computes independently local similarities in

regular partitions then similarity values are linear weighted combined to get a single

similarity outcome. Thus, a supervised similarity measure which encodes the label

affinity between the images in the training dataset is used to learn the most appropri-

ate combination weights, so the resulting similarity measure between a pair of images

is highly related to the similarity of their provided labelings. To this end, the centered

kernel alignment(CKA) between the supervised kernel and the image kernel is maxi-

mized about the weight values. In this sense, the proposed similarity measure account

for capturing local relationships, meanwhile provide appropriate atlas selection based

on expected performance to segment a target image. The introduced similarity mea-

sure was compared with the global measures assessment as well as two state of the

art combination approaches. Attained results allow highlighting the contributions of

our approaches, since the local measures outperform the global ones, while, supervised

weighted methodology outperform those unsupervised.

• A new method for label fusion that integrates patch based and probabilistic atlas-based

segmentation methods was presented. Our approach integrates patch based local search

to enhance target specific atlas construction, in such a way that the probabilistic atlas

is more representative to label the underlying target image. In this sense, the strengths

of both approaches are combined allowing to reduce the effects the registration while

intensity and label information are incorporated in the label fusion step by a bayesian

framework. Furthermore, we have presented an iterative framework which gradually

estimate labels on the images according to labeling difficulty. Thus, the estimations

for the regions which present a reliable segmentation are use to refine estimations for

those where is less reliable. For refining of estimations, the proposed method focuses

on the enhancing of the local patch search. Thus, the refine search is achieved by

incorporating label information from the segmentation on the previous iterations as well

as incorporating local and global information, besides, the constraint to the registration

errors is relaxed by changing the size of the of the neighborhood search. Finally, our

proposal is embedded in a Hierarchical fast multipoint scheme, where overlapping

between patches is reduced allowing to use fewer points to label the whole image

which leads to reducing the computational time significantly. Attained results in the

segmentation of subcortical structures show that our proposed approach outperforms

both probabilistic atlas and patch-based segmentation methods.
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5.2 Future work

There is, many issues that can be addressed to improve the above proposed approaches:

• Specifically, for the computing embedding representation space, Since obtained de-

composition eigenvectors showed non-linear relationships, other non-linear embedding

techniques e.g Laplacian eigenmaps and local linear embedding can be used to highlight

the essential structure. Supervised decomposition techniques will be provet to find rep-

resentation to distinguish other categories such as ethnicity or pathology subclasses.

Also, new feature extraction methodologies based on mixing inter slide kernel(ISK)

along of three main axes can be explored aiming to encode all dynamics into shorter

and more compact versions of Images.

• New similarity metric combination approaches can be considered for the introduce

supervised framework, as they can take advantage of different relationships between

image partitions. For instance, a gain factor for each weight can be used to span the

combination weights distribution. Also, new experiments for evaluating the metric for

different demographic categories as age, gender, and neurodegenerative disease, as well

as, presence of tumors will be performed. This is because every morphological change

will be reflected into the measure performance.

• Several directions can be taken into account to improve the proposed target specific

patch atlas segmentation method. spatial priors which related information of the

cliques could improve the appearance model construction. Also,Markov model estima-

tion could be introduced to account for spatial relationships. On the other hand, patch

search can be improved by adaptatively changing the patch and neighborhood radius

using a variability criterion.



6 Publications

This thesis has lead to six works presented in international conferences and one participation

in a segmentation challenge. Furthermore, a manuscript have been sent to peer-reviewed

Medical Image Analysis journal .

• Orbes-Arteaga, M., Cardenas-Pena, Castellanos-Dominguez, G. Head and Neck

Auto Segmentation Challenge based on Non-Local Generative Models. Head and Neck

Auto Segmentation MICCAI challenge workshop(2015).

• Orbes-Arteaga, M., Cardenas-Pena, D., Alvarez, M. A., Orozco, A. A., Castellanos-

Dominguez, G. Kernel Centered Alignment Supervised Metric for Multi-Atlas Segmen-

tation. ICIAP 2015. Best Young Paper Awards Finalist

• Orbes-Arteaga, M., Cardenas-Pena, D., Alvarez, M. A., Orozco, A. A., Castellanos-

Dominguez, G. Magnetic Resonance Image Selection for Multi-Atlas Segmentation

Using Mixture Models. CIARP 2015.

• Orbes-Arteaga, M., Cardenas-Pena, D., Alvarez, M. A., Orozco, A. A., Castellanos-

Dominguez, . Spatial-Dependent Similarity Metric Supporting Multi-atlas MRI Seg-

mentation. IbPRIA 2015.

• Cardenas-Pena, D., Orbes-Arteaga, M., Castellanos-Dominguez, G. (2015). Super-

vised brain tissue segmentation using a spatially enhanced similarity metric. IWINAC

2015.

• Cardenas-Pena, D., Orbes-Arteaga, M., Castellanos-Dominguez, G. (2014, August).

Kernel-based Atlas Image Selection for brain tissue segmentation. In Engineering in

Medicine and Biology Society (EMBC) International Conference of the IEEE.

• Cardenas-Pena, D.,Orbes-Arteaga, M., Castro-Ospina, A., Alvarez-Meza, A., Castellanos-

Dominguez, G. (2014, August). A kernel-based representation to support 3d mri un-

supervised clustering. In 2014 22nd International Conference on Pattern Recognition

(ICPR) IEEE.
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