
 

 

 
 

 

© The author; licensee Universidad Nacional de Colombia.  
Revista DYNA, 84(203), pp. 17-23, December, 2017, ISSN 0012-7353 

DOI:  http://dx.doi.org/10.15446/dyna.v84n203.65267 

Comparing energy consumption for rail transit routes through 
Symmetric Vertical Sinusoid Alignments (SVSA), and applying 

artificial neural networks. A case study of Metro Valencia (Spain) •  
 

Juan Diego Pineda-Jaramillo, Pablo Salvador-Zuriaga & Ricardo Insa-Franco 
 

Department of Transport Engineering and Infrastructure, Universitat Politècnica de València, Valencia, Spain. jdpineda@unal.edu.co, 
pabsalzu@ter.upv.es, rinsa@tra.upv.es 

 
Received: May 25th, 2017. Received in revised form: August 23th, 2017 Accepted: September 14th, 2017 

 
Abstract 
This paper presents the training of an artificial neural network using consumption data measured in the metropolitan network of Valencia, Spain, to 
estimate the energy consumption of a metro system. After calibration and validation of the neural network, the results obtained show that it can be 
used to predict energy consumption with high accuracy. Once fully trained, the neural network is used for testing hypothetical operational scenarios 
aimed to reduce the energy consumption of a metro system. These operational scenarios include different vertical alignments that prove that 
Symmetric Vertical Sinusoid Alignments (SVSA) can reduce energy consumption by 18.41% in contrast to a flat (0% gradient) alignment. 
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Comparando el consumo energético para rutas de tránsito ferroviario 
mediante Alineamientos Verticales Sinusoidales Simétricos 

(SVSA), y aplicando redes neuronales artificiales. Un estudio de 
caso de MetroValencia (España) 

 
Resumen 
Este artículo presenta el entrenamiento de una red neuronal artificial usando el consumo energético medido en la red metropolitana de Valencia, 
España, para estimar el consumo energético de un sistema metro. Después de la calibración y validación de la red neuronal, los resultados obtenidos 
muestran que esta puede ser utilizada para predecir el consumo energético con una gran precisión. Una vez entrenada, la red neuronal es utilizada 
para probar diferentes escenarios de operación hipotéticos con el objetivo de reducir el consumo energético de un sistema metro. Estos escenarios de 
operación incluyen diferentes trazados verticales que prueban que los Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en 
inglés) pueden reducir el consumo energético en un 18.41 % en contraste con un alineamiento plano (pendiente del 0%). 
 
Palabras clave: Alineamientos Verticales Sinusoidales Simétricos (SVSA, por sus siglas en inglés); pendiente; consumo energético; redes 
neuronales artificiales; sistema metro. 

 
 
 

1.  Introduction 
 
There is no doubt that the transport sector contributes so 

vastly to total energy consumption that according to the 
International Energy Agency [1], the world’s overall energy 
consumption in 2013 was a whopping 2.56 Billion Tonnes of 
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Oil Equivalent (Mtoe) - and 27.6% of it is from the transport 
sector.  

Railways are generally much more efficient in terms of 
energy consumption than road transport systems in 
transporting both freight and passengers [2-4]. Despite this 
advantage, it is still necessary to reduce its energy 
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consumption to improve competitiveness and contribute to a 
more sustainable world. For this reason, many strategies are 
nowadays being implemented to reduce energy consumption 
in railways and they include strategies that involve line 
design, rolling stock and operations [5].  

To optimize many aspects of this mega transport system, 
some researchers have modelled electric train energy 
consumption [6], while other authors have estimated its 
energy consumption and explored improvements in rail 
transport through track layout optimisation using Geographic 
Information Systems (GIS) [6,7]. There are also other authors 
that have used genetic algorithms to optimise different 
aspects of the said transport system, such as its track 
alignments, operators, user costs for rail operation [6-8] and 
crew scheduling [9,10]. There are also methods created that 
aim to optimise travel time and coasting points by using 
models based on artificial neural networks and genetic 
algorithms [11]. These methods, however, do not include 
gradient or real time measured energy consumption as data. 

Kim and Schonfeld [12] introduced the Dipped Vertical 
Alignment (DVA) concept for urban rail systems. They 
considered Symmetric Vertical Sinusoid Alignment (SVSA) 
profiles (Fig. 1) which is a function of the total curve length S and 
the maximum depth d halfway between two stations having the 
same elevation. There are three sections in the SVSA between two 
stations: 
• Section 1: The train must accelerate upon leaving the 

station, and in this case, it will find a slope and, using 
gravity, the train will reach an adequate rate of 
acceleration easier than that in a flat alignment. Here, 
acceleration and slope resistances are reduced - which 
leads to a reduction in the power requirement. 

• Section 2: The train reaches its cruising speed (optimum 
speed between two points). 

• Section 3: The train is coasting, and the existence of an 
uphill section in the part where it must decelerate to stop 
means requiring less power to brake, which in turn, is 
equivalent to less energy dissipation. This translates to 
energy advantage when a station is located at a relatively 
higher elevation than adjacent sections. 
They compared the alignment below to flat alignments 

and identified its significant potential benefits in energy 
consumption. Their equations for the DVA are shown in eq. 
(1) [12]. 
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where: 
• y1, y2, y3: Difference in elevation relative to the 

initial station [m]. 
• x: Horizontal distance from the center of the initial 

station [m]. 
• δ: Maximum depth at the intermediate of the two 

stations [m]. 
• S: Total length between the two stations [m]. 

 
Figure 1. SVSA at the same station elevations 
Source: Adapted from [12] 

 
 
It is important to note that there is no trace of studies of 

this nature - one with a certain capacity of validation for a 
model with real data of operation in a metropolitan line, and 
a posterior application of energy consumption saving 
methods for railways. 

This paper thus aims to develop, train and validate a 
neural network to simulate the energy consumption of a 
metropolitan line using measured empirical data, and use the 
neural network to predict the energy consumption at each 
instant. Finally, the neural network will be used to compare 
different vertical alignments to improve or reduce energy 
consumption between two stations with the same elevation. 

 
2.  Methodology 

 
2.1.  Data gathering and processing 

 
In order to check the energy consumption of one train, 

three MSAVDC meter devices, manufactured by Mors-
Smitt, were installed in the front car of the train: one in the 
pantograph (circuit breaker), another in the auxiliary 
converter input, and the third in the braking resistors. These 
devices will allow the measurement of not only the overall 
train energy consumption in real time, but also the energy 
consumed by each subsystem: traction, auxiliary devices and 
rheostatic brake.  

The train’s speed was measured by a Knorr sensor (model 
BB0457681100), fed by a phonic wheel on one axis of 
another car of the train. 

After verifying the correct functionality of all the devices, 
measurements were made on August 4th, 2014 with 
passengers on board. Twelve trips were measured in line 5 of 
MetroValencia, between Marítim-Serrería and  

Alameda stations; six trips towards Alameda and six trips 
towards Marítim-Serrería. 

 
2.2  Neural networks 

 
The structure chosen to accomplish this objective is a 

two-layer feed-forward neural network because it is a 
common and a tested scheme, with great ability to adjust 
functions [14,15]. In addition, these networks are known by 
its classification in layers and connections between the units 
strictly forward, and do not form cycles or loops in the 
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network. Feed-forward neural networks are the most 
commonly used in practical applications that use neural 
networks, obtaining very satisfactory results, fundamentally 
as pattern classifiers and function estimators. 

The first layer, called the hidden layer, has a number of 
neurons that it is necessary to define. The second layer (the 
output layer) has a single neuron with a linear transfer 
function. Eq. (2) shows the formula of the network: 

 

𝑂𝑂𝑘𝑘 = 𝑔𝑔�(�𝑤𝑤2𝑘𝑘𝑘𝑘

𝑀𝑀
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∙ 𝑔𝑔(�𝑤𝑤𝑗𝑗𝑗𝑗 ∙ 𝐼𝐼𝑖𝑖))
𝑁𝑁

𝑖𝑖=0

 (2) 

 
where Ok is the network output, M is the number of output 

elements, Ii is the input data, N is the number of input 
variables, wji is the synaptic weight of the first layer and w2kj 
is the synaptic weight of the second layer. The synaptic 
weight wji, for example, defines the strength of a synaptic 
connection between two neurons, the presynaptic neuron j 
and the postsynaptic neuron i. This structure can identify 
non-linear relations between input and output data [14] using 
the Log-Sigmoid function as a transfer function between the 
hidden layer and the output layer. 

The training method used is called the Back-Propagation, 
where the network is evaluated, the results are checked based 
on certain criteria, and the synaptic weights are changed in 
an iterative loop [14]. The chosen calibration criterion is the 
minimization of the Mean Square Error (MSE) between the 
network output and the target data, which is verified by 
deriving the MSE with respect to the network synaptic 
weights. The specific training algorithm used is called the 
Levenberg-Marquardt algorithm, which is very efficient and 
widely checked [14]. 

The neural network presented in this paper uses speed, 
acceleration, gradient and traction effort as input data and 
measured empirical energy consumption as target data. 
These input data provide good accuracy, thus making it 
unnecessary to consider another input data to calibrate on 
energy consumption. Once trained, the neural network may 
predict the train’s energy consumption (output) data with 
high accuracy, as proven when compared to the measured 
empirical data (target data).  

 
2.3.  Simulation model development 

 
After training the neural network, hypothetical vertical 

alignments are specified with their respective speed profile, 
considering the optimal indications for efficient driving 
between two stations [14-16]: 

• To accelerate to maximum acceleration, to maintain 
maximum speed, and to reduce speed in coasting before 
each of the points in which it is necessary to reduce speed. 

• The same strategy as above, but with the difference of the 
coasting not occurring until minimum speed (or until a 
stop), but until a greater speed to this one below which 
the service brake is applied to reduce speed. 

• Accelerating to the maximum acceleration to recover the 
maximum speed and so on. 
Once the hypothetical vertical alignments have been 

determined, the trained neural network is applied to achieve 
the energy consumption (output) verifying them in each 

alignment, comparing them and obtaining the vertical 
alignment with the lowest energy consumption. It is 
necessary to clarify that speed optimization was not 
considered in this paper, but for each alignment, it was 
verified that the travel time between both stations were the 
same. 

The following assumptions used by Yeh [17] are 
considered in this simulation: 
• The vertical track profile is symmetrical regarding to a 

central axis. 
• Parabolic curvatures are applied to the vertical curves 

while the gradient cannot exceed the maximum climbing 
ability of the train. 

• Horizontal curvatures are negligible for this analysis. 
• A concentrated mass is used to represent trains in motion. 
• A train accelerates to its full power unless it exceeds the 

comfort-limited acceleration. 
• The braking system can provide the maximum allowable 

comfort-limited deceleration rate. 
 

3.  Case study 
 

3.1.  Introduction 
 
MetroValencia has six subway lines and three tram lines. 

It also has 132 stations with a total length of 146.8 km and 
has 121 trains [18]. Trips along line 5 were analysed, between 
Marítim-Serrería and Alameda stations. As for the traction 
and power systems of the network, there is only a single input 
voltage to the substations with a magnitude of 20 kV AC. 
There are, however, two different output voltages: 1,500 V 
DC, (used in all six subway lines) and 750 V DC (used in all 
three tram lines), with an annual energy consumption of 
around 64.4 GWh and 18.1 GWh, respectively. This energy 
is consumed by all elements and systems of MetroValencia. 
Considering the energy consumption of each network 
component, 70% of the overall energy goes to traction (53 
GWh) while 24% goes to stations. Other power 
consumptions from the remaining elements are negligible 
[19]. 

 
3.2.  Input data 

 
Four variables were chosen as input data (gradient, speed, 

traction effort and acceleration). During the neural network 
training, all input variables and their combinations were 
tested until the one that provided the best fit with the target 
data was chosen. 

Focusing on Line 5 of MetroValencia, particularly 
between the chosen stations, it is important to consider that 
there are three stations in between them, namely: Ayora, 
Amistat and Aragón. They have a total length of 2,720 m and 
the chosen route has four stops. There is a maximum gradient 
of 2% in this route. Fig. 2 shows a diagram of the vertical 
track layout of the studied route, indicating the gradient 
profile along the five stations of Metro Valencia’s line 5. 

Speed was measured using an odometer placed in one of 
the wheels of the monitored train. Acceleration is directly 
derived from the speed. Fig. 3 shows these two variables of 
the first trip. 
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Figure 2. Vertical layout between Marítim Serrería and Alameda and the 
stations (stops) in between them. 
Source: The authors 

 
 

 
Figure 3. Speed (blue) and acceleration (orange) of the first trip between 
Marítim-Serrería and Alameda 
Source: The authors 

 
 

3.3.  Target data 
 
The monitored train was a Metro Series 4300 (Vossloh) 

with 4 cars, a maximum speed of 80 km/h, a nominal tension 
of 1,500 V DC and a power of 1,480 kW. 

The energy consumption in the pantograph (measured in 
the circuit breaker) was monitored real time while the train 
performed conventional services with passengers on board. 
The measured energy consumption was used as target data. 

The measuring devices provide the energy consumption 
measured in the circuit breaker of the train every second, as 
shown in Fig. 4. The Fig. 4 represents the training target of 
the neural network on the first trip. 

 

 
Figure 4. Example of the energy consumption measured in the circuit breaker 
on the first trip between Marítim-Serrería – Alameda stations 
Source: The authors 

4.  Results and discussion 
 

4.1.  Training of the Artificial Neural Network 
 
Two different criteria were used to assess the 

performance of the network and to decide whether its training 
was successful. The first of which was the Pearson 
correlation coefficient (R) between the neural network output 
(modelled energy consumption) and the target data 
(measured energy consumption), which needs to be equal or 
greater than 90% for all the three subsets (training, validation 
and testing). 

The second criterion was the relative Mean Square Error 
(rMSE), which is defined as follows in eq. (3): 

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑀𝑀𝑀𝑀𝑀𝑀
𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄) ≤ 0.2 (3) 

 
where MSE is the Mean Square Error, and Var(Q) is the 

variance of the measured consumption data (target). The 
rMSE needs to be lower than 20% of the variance of the data 
for all three subsets (training, validation and testing) [20], in 
order to control the dependence of the neural network to the 
specific data used for training. The process of the creation, 
training, and validation of the neural network was performed 
using the Neural Fitting Tool, from MATLAB R2014a (The 
MathWorks, Inc.) 

Different tests were performed by combining the four 
input variables previously defined so as to identify which fits 
the energy consumption data better. If the input variables are 
speed, acceleration, gradient and traction effort, the neural 
network satisfies all the criteria; with the rMSE being lower 
than 20% and the R coefficient being greater than 90% [21]. 
Those input variables were, therefore, chosen for the analysis 
due its significant impact on energy consumption.  

The results (Fig. 5) show an average measured energy 
consumption of 7.29 kWh per km, while the network 
estimated an energy consumption of 7.11 kWh per km, which 
has a small deviation of 0.176 kWh per km (2.42%). Every 
trip was the same: each with four stops between the first 
station and the last, and in terms of train load. 

 

 
Figure 5. Energy consumption by trip 
Source: The authors 
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Figure 6. Hypothetical scenarios of vertical alignments between two stations 
oft the same elevation 
Source: The authors 

 
 

4.2. Application of artificial neural networks on 
hypothetical vertical alignments 

 
For applying the trained artificial neural network on 

alignments, three hypothetical vertical alignments scenarios 
between two stations with a length of 1,000 m were 
considered: the first scenario is a flat alignment; the second 
is the SVSA profile with a maximum depth d halfway 
between two stations of δ = 5 m (0.5% of total length) having 
the same elevation. The last is the SVSA profile with a 
maximum depth d halfway between two stations of δ = 10 m 
(1.0% of total length) having the same elevation. Fig. 6 shows 
the three hypothetical scenarios. 

After which, the trained neural network was implemented 
to estimate the energy consumption for every case using the 
input variables for each hypothetical scenario. 

The results show a total energy consumption of 5.81 kWh 
per km for the flat alignment between two stations, 4.74 kWh 
per km for the SVSA with a maximum depth of δ = 5 m 
between two stations, and 4.94 kWh per km for the SVSA with 
a maximum depth of δ = 10 m between two stations. It was 
observed that the SVSA with a maximum depth of δ = 5 m 
between two stations recorded the lowest energy consumption, 
reducing it by 18.41% in comparison to the flat alignment (Fig. 
7). Each trip had a duration of 86 seconds, which did not affect 
the travel time element of one trip from the other. 

Fig. 8 shows the energy consumption estimated by the 
neural network for the three cases in every location in the 
alignment. 

 
4.3.  Discussion 

 
Fig.5 shows that the network adjusts the energy 

consumption, measured in the circuit breaker, reasonably 
well, reproducing the peaks from traction and valleys, where 
the train is coasting. However, the network omitted small 
oscillations in consumption, and indeed shows small 
oscillations and negative peaks that do not correspond to the 
registration. This shows that there is still room to further 
refine the training of the network, possibly with a post-
processing of the output. 

 
Figure 7. Total energy consumption in the hypothetical vertical alignments 
Source: The authors 

 
 

 
Figure 8. Energy consumption in the hypothetical alignments in every step 
Source: The authors 

 
 
In any case, the trained network as shown above, with 

four input variables, provides a good estimation of the energy 
consumption of the train, and since it is always within the 
range considered for every variable, the network could be 
used to test other alternatives like other hypothetical vertical 
alignments so as to reduce energy consumption and improve 
efficiency. 

The results of applying the neural network on the 
hypothetical vertical alignments scenarios between two 
stations oft the same elevation, with a length of 1,000 m, 
show that the SVSA with a maximum depth of δ = 5 m 
between two stations yields the lowest energy consumption, 
reducing it by 18.41% as compared to a flat alignment. This 
technical advantage is facilitated by gravity, both as the train 
accelerates at the first station and as it decelerates at the steep 
final station. 

As for the flat alignment, Fig. 8 shows a peak of energy 
consumption at the beginning of the route when the train 
accelerates to reach cruising speed. Then, when the train 
coasts, energy consumption is reduced. Finally, when service 
brake is applied, a traction energy consumption of almost 
zero results. 

As for both SVSA alignments, Fig. 8 shows a peak of 
energy consumption at the beginning of the route when the 
train accelerates to reach cruising speed. Then, when the train 
coasts, energy consumption is reduced. Later, while the train 
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is coasting, it arrives to a slope which gradually increases 
energy consumption. Finally, there is a point where energy 
consumption presents another peak just before service brake 
is applied to stop at the next station. 

 
5.  Conclusions 

 
This paper describes the training and validation of a 

neural network to model the energy consumption of a metro 
line in Valencia’s metro network operated by Metro 
Valencia. Actual energy consumption was measured using a 
monitored train operating normally along line 5 of the metro 
network. This data was analysed and used to train and 
validate the neural network. Four input variables were 
chosen: speed, acceleration, gradient and traction effort. 
These combined input variables predict energy consumption 
with high accuracy, proving that just one variable cannot 
explain this phenomenon by itself. 

Total energy consumption shows an average measured 
energy consumption of 7.29 kWh per km, while the trained 
neural network estimates an energy consumption of 7.11 
kWh per km, having a small deviation of 0.176 kWh per km 
(just 2.42%).  

A fully trained neural network is a useful tool in studying 
the energy consumption of the metro system. The advantages 
of this method lie in its adjustment of speed and simulation, 
and, particularly, in the fact that the neural network may 
function as a virtual laboratory where it is possible to test 
hypothetical scenarios, modify variables such as track layout 
and train driving style in order to reduce a train’s energy 
consumption.  

Three hypothetical vertical alignments scenarios between 
two stations were considered for the application of the trained 
artificial neural network, the first scenario was a flat 
alignment; the second was the SVSA profile with a maximum 
depth d halfway between two stations of δ = 5 m having the 
same elevation, the third was the SVSA profile with a 
maximum depth d halfway between two stations of δ = 10 m 
having the same elevation. After which, the trained neural 
network was implemented to estimate the energy 
consumption for every case using the input variables for each 
scenario. 

The model results show an energy consumption of 5.81 
kWh per km for the flat alignment between two stations, 4.74 
kWh per km for the SVSA with a maximum depth of δ = 5 m 
between two stations, and 4.94 kWh per km for the SVSA 
with a maximum depth of δ = 10 m between two stations. 
Results show that the SVSA with a maximum depth of δ = 5 
m between two stations yielded the lowest energy 
consumption, reducing it by 18.41% as compared to the one 
with flat alignment. 

These results highlight the importance of designing 
energetically efficient geometric alignments. As this strategy 
already allows obtaining significant energy consumption 
reduction, it can be accompanied by other strategies such as 
economic driving to come up with a better and efficient 
transport system in terms of energy consumption. 

The next step of research will involve an analysis on how 
the model can be improved if energy recuperation is 
included, so as to use it to test hypothetical operation and 

construction scenarios, with the aim of minimizing the 
energy consumption of the system. 
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