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LENGTHS IN SEMI-FREE GROUPS

by

Mohammad I. KHAN FAR

§l. Introduction. Lyndon [3] introduced the idea of a length
function on a group in order to give a free product structure
for the group in terms of the length function. Work has been
done on length functions by Harrison [1], Hoare [2] and others
with the objective of studying the structure of groups equip-
ped with length functions. In this paper we introduce the
concept of a semi-free group and prove that a group G, with
a length function satisfying certain conditions, can ba em-
bedded in a semi-free group.

§2. length functions. A length function I I:G + R assigns to
each element x of a group G a real number Ixl such that the
following axioms are satisfied for all x,y,z E G:

I x I = 0 if and only if x = 1 E G.
I x -11 I x I .
d(x,y) < d(x,z) implies d(y,z) d(x,y) where d(x,y)
~ ( I xl + I y I -I xy -1 I ) .

An equivalent formulation of A4 is that d(x,y) ~ m and
d(y,z) ? m imply d(x,z) ~ m. In either form, the two samll-
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est numbers in the triple of real numbers are equal.
The numbering of the axioms is that of Lyndon [3J,

Hoare [2] requires a length function on a group to satisfy
only the axioms A2 and A4 given by Lyndon in [3]. Lyndon's
axiom A3, which states that d(x,Y) ~ 0 is a consequence of
A4 since d(x,1) = d(1,Y) = 0 and, it follows from this that
d(x,x) = Ixl ~ O. It is an immediate consquence of A2 that
d(x,y) = d(y,x).

Among other consequences of the axioms, Lyndon proved
in [3] the following proposition:

PROPOSITION 1. d(x,y) + d(x-1,y-1) ~ I xl
I (xy -1) 21 ~ I xy -11 .

I y I implies

Thus a group G with a length function might contain
non-trivial elements x with Ix2

1 ~ Ixl.LetN= {xe::G:lx21,lxP.

PROPOSITION 2. Let X be an element of G. Then x £ N

implies Ixnl ~ Ixl for all integers n ~ O.
Proof. The result holds trivially for n = 0,1 and by

definition for n = 2. Assume the result holds for all non-
negative integers ~ n. That is, Ixn-1" Ixnl ~ Ixl. Now

2d(xn,x) = [x"] + [x ] -lxn-11 ~ [x"],

2d(x,x-1) = [x ] +Ixl -lx2
1 ~ [x ] ~ Ixnl·

n -1 I n/ I n+11 I IHence by A4, 2d(x,x ) ~ x ; giving x ~ x, and
therefore, the result holds for all integers n ~ O. A

The Proposition implies that for XE N, the lengths
Ixnj are bounded by Ixl. FQr the case x not in N, it is
proved in [1] and [3] that the lengths Ixnl are unbounded.

§3. Semi-free groups. Let X be a set
where ~ is in some index set 1, with

-1pondence ~:X + X such that ~x. = x.
.{. .{.

- 'Iof symbols x., x. ;
.{. .{.

a one to tone corres-
-1and ux ,
.{.

x . .
.{.

Then ~
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is an involution on X; and we will say that X is a set with
invoZution.

We form words on X as finite
X, and denote the empty word bye.

-1 -1
xi. xi. e , xi. xi.
group G having a

products of elements from
For every i. E: 1 and every

-1= e and call x., x. an in-
.{. .{.

presentation:
X. E: X we set

.{.

verse pair. A

G = (X : xx-1 = e , x,x-1 E: X)

shall be called a semi-free group on X.
We note that if x 1 x-1 for every x E X, then G is the

- 1free group on X. Here we are taking X = X and we do not
require that x, x-1 be distinct for every x E: X. That is,
~x = x for some x E X is possible, and therefore the rela-
tion x = x-1 might hold in G. Thus the class of free groups
is a subclass of the class of semi-free groups in the above
sense.

The semi-free group on a given set X with involution
is constructed in the same way we construct the free group
on a given set. To make this more precise we give the fol-
lowing

DEFINITION 1. Let X = X-1 be a subset of a group G.
Then G is semi-free on X if and only if the following two
conditions hold:
(1) X generates G,
(2) If x IE G, x = x1x2 .•• x/1' /1 ~1

where x11
E: X, xi.xi.+1 1 1 for 1 ~ i. ~ n-1, then x 1 1

in G.

DEFINITION 2. Let
The word x1x2 ••• xn' /1 ~

word on X if xi. xi. + 1 1

G be a semi-free group on X = X-1•
1, x11 E X is said to be a reduced

(the identity of G) for 1 ~ .<. ~ /1-1.

The empty word is thus a reduced word by definition;
and we point out here the known fact in combinatorial group
theory that a reduced word on a generating set X is unique.
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Therefore, we may consider a reduced word on X as represent-
ing an element of the group G, with the empty word e repre-
senting the identity 1 of G.

DEFINITION 3. If x EG, x = x1 ... xn and x1 .•• xn is a
reduced word on X, then the length Ixl of x is defined to
be n.

PROPOSITION 3. of definition 3 is a length func-
tion on G satisfying the axioms A1,AZ,A4 and the following

conditions:

Co. d(x,y) i~ an intege~ 6o~ all x,y ~ G,
Cl. xi 1, ixZI ~ [ x ] implies [x ] is odd,

CN. IxZI ~ [x ] implies X = x-1.

Proof. The verification of A1 and of AZ for all x in
G is immediate upon writing x as a reduced word on X. The
condition Co. is clearly satisfied since Ixl is an integer
for all x in G and d(x,y) is the number of cancellations
(deleting inverse pairs) in the product xy-1.

To verify A4 for any x,y,z E G, let x,y,z be expressed
as reduced words on X as follows:

x=x1"'xn;

Letd(.x,y) =~, d(x,z) t, d(y,z)
-1 -1-1from yz = yx xz ,we have

~. When ~ < t, then

Since t > ~, we have n-~ > n-t and the number of factors
left from the product x-1

k
••• x ~,after cancellations, isn-'L n- ...

at most t-~. Taking into consideration the possibility of
further cancellations, we have m-~+k-~ ~ (m-~)+(t-~)+(k-t),
giving ~ ~ ~.

Now, since x,y,z are any elements in G, then when
d(y,z) < d(x,z); that is, when ~ < t, we have from yx-1

-1 - 1yz zx
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Since t > 4, we have ~-4 > ~-t and a similar argument as
above yields rn-~+n-~ ~ (rn-4)+(t-4)+(n-t), giving ~ ~ 4. Thus
4 = ~; that is, d(y,z) = d(x,y),

To verify Cl, let x 1 1, I xZ' ~ I x ] and suppose I x] is
even. Let x = xl' .,xZrn' a reduced word on X, Then

Therefore, the number of cancellations in xl' .. xZrnx1" ,xZrn
is greater or equal than rn. Thus x1xZrn = 1, x1xZrn-1 = 1, ..
.. ,xrn xm+1 = 1, giving x = 1 in G and contradicting that
x 1 1. Hence Ixl is odd.

For the condition CN, assume that IxZI ~ Ixl. If x=l
in G, then x = x-1 holds trivially, Therefore, assume that
x 1 1, IxZj ~ lxi, and suppose x 1 x-1• Then xZ 1 1 and by
A1, IxZI > O. By definition, x EN and by the remark follow-
ing Proposition Z, since the lengths Ixnl are bounded by Ixl
for all integers n ? 0, we can conclude that x Z e:: N. I x ZI is
odd by Cl. On the other hand, by CO, d(x,x-1) = Ixl-~lxZI
is an integer; that is, IxZ, is even, acontradiction, and so

- 1x = x . Moreover, this shows that CO. and Cl. imply CN. A

The length function of Proposition 3 is called the nat-

ural length function on the semi-free group G with respect
to X.

§4. Embedding theorem. This section considers an embedding
problem for a group G equipped with a length function satis-
tying A1, AZ' A4, CO, Cl, and a fortiori CN.

For 1 1 x e:: G, me:: Z, let S = {(x,m):l ~ m ~ Ixl}, and
define ~:S + S by

~: (x,m) + (x-1,lxl -m+l).

Then ~ is an involution on S, and we write
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DEFINITION 4. For x,y E G, we define

*(x,m) 'V (y,n) if d(x,y) ? m = n ,

** -1 -1 I I(x,m) 'V (y,n) if d(x ,y ) ~ x - m+1 = I yl - n+1.

* **'V and 'V are equivalence relations on S, A4 gives transi-
tivity. Let 'V be the transitive closure of the union of the
two relations.

LEMMA 1. For x,y,z E G and integers ~,~ > 0,

Proof. By symmetry, it is sufficient to prove only "....".

d ( x , y) ? ~ and d ( Y - 1 , z - 1) ? I y I - ~+1 = I z I - ~+1

Since

- 1d(z y,y)

-1 -1 I -1 Iwe have by A4, d(x,z y) = d(z y,y); hence xy z

I z I - I y I + Ix I = ~ - n: + Ix I, and

- 1d(xy z,z) ~(lxy-1zl + [z ] -lxy-11)

I x I - I y I + ~ ( I x I + I y I - I xy - 1 I )

-1 *Ther~fore (xy z,~) 'V (z,~).

d(z-1yx-1,x-1) ~(lxy-1zl + Ixl-ly-1zl)

Ixl -Iyl +~(Iyl + [z ] -ly-1zl)

Ixl -Iyl +d(y-1,z-1)

~ [x ] -~+1 = Ixy-1z1 -~+1.

** -1Therefore (x,~) 'V (xy z,~).

Lemma 1 allows us to collect the relations ~ and

and so the following two consequences are immediate.

**'V ,
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COROLLARY 1. (x,~) ~ (Y,4) if and only if there is a
* **(z,~) such that (x,~) ~ (z,~) ~ (y,4).

COROLLARY 2. ( x , ~) '" ( y , 4) ~ (x, ~) - 1 ~ (y, 4 ) - 1 •

Let [x,~J be the equivalence class of (x,~) under the
relation~, and define [x,~J-1 = [(x,~)-l]. Let

K = qx,~] :xe:: G, 1" ~ ~ lxi, ~e: Z}.

Then K is a set with involution given by ~:[x,~J ~ [x,~]-l.

LEMMA2. [x,~] '! [x,~r1 unless [x,~] = [y,~] for some
y = y -1 e: G and ~ = ~ ( I y I + 1) •

Proof. Suppose [x,~] = [x,~]-l. This implies that
(x,~) ~ (x-1,lxl-~+1). By Corollary 1, there is (y,~) such
that (x,~) -t (y,Jl.) *~ (x-1,lxl-~+1). That is, d(x,y) ~~ and

Whence, ~ = ~(ly/+1).
-1 -1Now d(x,y) ~ ~ and dey ,x) ~ ~ imply by A4, d(y,y ) ~~.

That is, ~(lyl+IYI_lyZI) ~~, giving Iyl ~ lyZI +1, which
yields Iyl > lyZI. Thus, either y = 1 ~ G and hence ~ = 0,
which gives a contradiction, or Iyl is odd by Cl and y = y-1
by CN. Hence the conclusions of the lemma. !

Let Fk be the set of all reduced words on K. Then the
empty word e is in Fk and K ~ Fk• Since K is a set with in-
volution ~, which may have fixed elements in K, we have that
Fk is, in fact, a semi-free group on K.

DEFINITION 5. Define W:G ~ Fk by W(l)
[x,/xl],..[x,l]' ~ '! 1.

e and W(x)

LEMMA 3. W(x) as defined is a reduced word in Fk.

Proof. W(l) = e is a reduced word in Fk• For x '! 1 c: G,
suppose $(x) is not a reduced word. Then [x,~] = [x,~+lJ-1



for 1 ~ It ~ I x I - 1; and this means that there is (y,lt) such
* ** -1 I Ithat (x,lt) 'V (y,lt) 'V (x , x -It). That is, d(x,y) >;. It and

d(y-1,x) >;. Iyl -It+1 = Ix-11 -Ixl +1t+1 = 1t+1; hence It = ~Iyl,
Iyl is even. But by A4 we have that, d(y,y-1) ~ It, giving
IYI-y,ly21 ~ It = ~Iyl, which gives ly21 ~ Iyl. Therefore,
either y = 1 and hence It = 0, which is a contradiction; or
y # 1, Y = y-1 by eN and Iyl is odd by C1, which contradicts
that Iyl is even. Hance there is no such (y,It), and w(x) is
reduced.

LEMMA 4. W as defined is a monomorphism.

Proof. We first show that W is a homomorphism. Let
d(x,y) = It. Then lxi, Iyl ~ It and Ixy-1, = Ixl+lyl -21t.

I/JCxy-1) = Ixy-1, Ixl+lyl-2JtI ... lxy-1,11.

Now for t ~ It, d(x,y) ~ t; therefore,

Also,
-1 -1d(x ,yx )

- 1 - 1
d(xy ,y )

[x ] -d(x,y)

Iyl - d(x,y)

Therefore,
[x,lxl-t+1] = [xy-1,lxy-11-t+1],t~ lxi-it;

[y-l,t] = [xy-1,t], t ~ Iyl -It.

Hence
[x, I -l l [x, 1] [y-1, I yl] ... [y-1, 1]

[x, I xl] [x,It+1] [y-1,' yl-It] .•• [y-1, 1]

[xy-1, Ixy-11] [xy-1, Ixy-11-lxl+It+1]
[xy-1, I yl-It] [xy-1, 1]

-1lji(xy ).

Now by Lemma 3, lji(x) is a reduced word inF"for all xe: G,
and so Kere = 1. Hence lji is a monomorphism of G into F". •
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Finally, by Lemma 3, l1/J(x) I = I xl for every x E: G, and
because of the involution ~ on K, 1~(x)1 is the correspond-
ing length function on Fk. By Lemma 4, G is embedded in Fk.
Identifying G with its image ~(G) in Fk, we have that the
restriction of the length function on Fk to G is the given
length function on G. We have therefore proved the following
theorem (recall that CO, C1 imply CN).

THEOREM 1. Let G be a group with a length function

satisfying A1,A2,A4,CO and C1. Then G can be embedded in a

semi-free group Fk on a set K constructed above. Moreover,

the given length function on G is the restriction to G of

the length function on Fk with respecto to K.
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