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LENGTHS IN SEMI-FREE GROUPS

by

Mohammad I. KHANFAR

§1. Introduction. Lyndon [3] introduced the idea of a length
function on a group in order to give a free product structure
for the group in terms of the length function. Work has been
done on length functions by Harrison [1], Hoare [2] and others
with the objective of studying the structure of groups equip-
ped with length functions. In this paper we introduce the
concept of a semi-free group and prove that a group G, with
a length function satisfying certain conditions, can ba em-

bedded in a semi-free group.

§2. Length functions. A length function | |:G6 - R assigns to
each element x of a group G a real number |x| such that the
following axioms are satisfied for all x,y,z e G:

A;. |x] = 0 if and only if x = 1€ G.

o 17T = ]

Ay. d(x,y) < d(x,z% implies d(y,z) = d(x,y) where d(x,y) =
S0 x| +lyl-1xy "]).

An equivalent formulation of Ay is that d(x,y) > m and
d(y,z) » m imply d(x,z) > m. In either form, the two samll-
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est numbers in the triple of real numbers are equal.

The numbering of the axioms is that of Lyndon [3],
Hoare [2] requires a length function on a group to satisfy
only the axioms A, and A, given by Lyndon in [3]. Lyndon's
axiom Az, which states that d(x,Y) > 0 is a consequence of
A4 since d(x,1) = d(1,y) = 0 and, it follows from this that
d(x,x) = |x| » 0. It is an immediate consquence of A, that
d(x,y) = d(y,x).

Among other consequences of the axioms, Lyndon proved

in [3] the following proposition:

PROPOSITION 1. d(x,y) +d(x'1,y'1) > |x| = |y| implies

-1,2 -1
)l < Ixy .

| (xy
Thus a group G with a length function might contain
non-trivial elements x with |x2| < |x|.Let N = {xe G:lle < | x|}

PROPOSITION 2. Let x be an element of G. Then x e« N
implies |x"| < |x| for all integers n » 0.

Proof. The result holds trivially for n = 0,1 and by
definition for n = 2. Assume the result holds for all non-

negative integers < n. That is, |xn-1|, |x"| < |x|. Now

2d(x",x) = |x"] x| - [T (KM,
2d(x,x”1) = |x| +[x| - [%%] > |x] > %",
Hence by A,, Zd(xn,x'I) > |x"|; giving lx"+1| < |x|, and
therefore, the result holds for all integersn > 0. A

The Proposition implies that for x « N, the lengths
|x"| are bounded by |x|. Fer the case x not in N, it is
proved in [1] and [3] that the lengths |x"| are unbounded.

§3. Semi-free groups. Let X be a set of symbols x,, xi';

where £ is in some index set I, with a one to tone corres-

. - =1 =1¢L
pondence p:X » X such that HX X, and uX Xie Then u
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is an involution on X; and we will say that X is a set with
involution.

We form words on X as finite products of elements from
X, and denote the ?mpty wor? by e. For every {1 and every

x, « X we set x.x, = e, x, x, = ¢ and call x., x, an in-
L L4 " P ¢ LY 15k

verse pair. A group G having a presentation:

=il 1

G = (X:xx  =-¢e, x,x «X)

shall be called a semi-free group on X.
We note that if x # x'1 for every x € X, then G is the

1 and we do not

free group on X. Here we are taking X = X
require that «x, x—1 be distinct for every x e X. That is,
ux = x for some x € X is possible, and therefore the rela-
tion x = x'1 might hold in G. Thus the class of free groups
is a subclass of the class of semi-free groups in the above
sense.

The semi-free group on a given set X with involution
is constructed in the same way we construct the free group
on a given set. To make this more precise we give the fol-

lowing

DEFINITION 1. Let X = X | be a subset of a group G.
Then G is semi-free on X if and only if the following two
conditions hold:

(1) X generates G,

(2) 1f xe= G, x = XqXpeeuX n >l

n’
where xil = X, X X4 # 1 for 1< 4 € n-1, then x # 1
in G.

DEFINITION 2. Let G be a semi-free group on X = X'1.
+1
The word XqXgeooX p N > 1, X
word on X if X X # 1 (the identity of G) for 1< £ sn-1.

e« X is said to be a reduced

The empty word is thus a reduced word by definition;
and we point out here the known fact in combinatorial group
theory that a reduced word on a generating set X is unique.

69



Therefore, we may consider a reduced word on X as represent-
ing an element of the group G, with the empty word e repre-

senting the identity 1 of G.

DEFINITION 3. If x « G, x = XqeeoX, and XqeooX, is a
reduced word on X, then the length |x| of x is defined to

be n.

PROPOSITION 3. | | of definition 3 is a length func-
tion on G satisfying the axioms A1,A2,A4 and the following
conditions:

Co. d(x,y) 44 an integen forn all x,y « G,
Cl. x # 1, jx®] < |x| implies |x| is odd,
CN. |x2| < | x| implies x = x~

Proof. The verification of Ay and of A, for all x in
G is immediate upon writing x as a reduced word on X. The
condition Co. is clearly satisfied since |x| is an integer
for all x in G and d(x,y) is the number of cancellations
(deleting inverse pairs) in the product xy-1

To verify A, for any x,y,z = G, let x,y,z be expressed

as reduced words on X as follows:

X = Xpee.X,; Y = Yqeeelps zZ = z5...2,.
Let d(x,y) = n, d(x,z) = %, d(y,z) = 5. When » < £, then
from yz_1 = yx'1xz-1, we have
- -1 _ -1 -1 i -1
Yg oY g Zhog 21 Y1 YmonXpn =1 X1 X $Zppo= 27 -

Since t > n, we have n-2 > n-£ and the number of factors

left from the product Xp_pe Xt
at most £-n. Taking into consideration the possibility of
further cancellations, we have m-s+k-5 < (m-n)+(£-n)+(k-1),

after cancellations, is

giving 5 > .
Now, since x,y,z are any elements in G, then when
d(y,z) < d(x,z); that is, when 4 < t, we have from y:f1 =

yz'1zx'1

-1 -1 _ -1 -1 -1 -1
y1 ...ym_nxn_}l...x1 L y‘l-uy'"'ézk‘b."b] Zl...Zk_tXn_t...X1 .

70



Since t > 4, we have k-4 > k-t and a similar argument as
above yields m-a+n-n ¢ (m-8)+(t-8)+(n-t), giving 2 > 4. Thus
4 = n; that is, d(y,z) = d(x,y).

To verify C1, let x # 1, Ile < |x| and suppose |x| is
even. Let x = XqeeeXgn, @ reduced word on X. Then

|x1x2...x2mx1x2...x2ml < 2m, m>1.
Therefore, the number of cancellations in XqeweXgnXqee Xy
is greater or equal than m. Thus X X = 15 XqXom 1 = y
+»X Xp,q = 1, giving x = 1 in G and contradicting that

x # 1. Hence |x| is odd.
For the condition CN, assume that |x2| < x| If x =1

in G, then x = x-1 holds trivially. Therefore, assume that

x #1, |x2[ < |x|, and suppose x # x“1. Then x® # 1 and by

Ay, |x”] > 0. By definition, x € N and by the remark follow-

"| are gounded by |x|

ing Proposition 2, since the lengths |x
for all integers n » 0, we can conclude that x“ = N. |x2| is
odd by C1. On the other hand, by CO, d(x,x—1) = [xl-%|x2|

is an integer; that is, |x2| is even, acontradiction, and so

1. Moreover, this shows that C0. and C1. imply CN. A

X = x

The length function of Proposition 3 is called the nat-
ural length function on the semi-free group G with respect
to X.

§4. Embedding theorem. This section considers an embedding
problem for a group G equipped with a length function satis-
tying A1, AZ’ A4, C0, C1, and a fortiori CN.

For 1 # x= 6, me Z, let S = {(x,m):1 < m< |x|}, and

define u:S » S by

wio,m o> (N x| -me1).

Then y is an involution on S, and we write

1

(eom) 1= (17T

, x| -m+1).
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DEFINITION 4. For x,y €« G, we define

(x,m) ~ (y,n) if d(x,9) »m = n,
Cem) W o(g,n) if d(x T,y 3 (x| - me1 = [y - e,

* * % § s ) 2
v and N~ are equivalence relations on S, Ay gives transi-

tivity. Let ~ be the transitive closure of the union of the
two relations.

LEMMA 1. For x,yYy,z € G and integers r,s > 0,

1

(1) & (g,n) ™ (2,8) = (x,n) ™ (xy 'z,8) A (z,8).

Proof. By symmetry, it is sufficient to prove only "-'".

1

d(x,y) 3« and d(y 1,27 1) 3 |y| -n+1 = |z] - a+1

Since

1

dz ly,g) = |yl -dy™ 2 < -1 < d(x,y),

we have by A4, d(x,z'1y) = d(z_1y,g); hence lxy-1z| =
lz] - |yl +|x| = s-n+]|x]|, and
-1 -1
5(lxy "z +]z] - |xy '])
-1
Ix] -1yl +%Clx] +[y| - |xy”"[)

-1 +d(x,y) > 5.

d(xy'1z,z)

Therefore (xy'1z,5) : (z,8).

diz Tyx Ty = m(xy 2] ¢ Ix)- |y 2))
= x| -1yl +%5Cyl +iz] - |y '2])
= |x| - y| +d(y" ",z ")
> | x| -n+1 = Ixy'1zl -45+1.

Therefore (x,x) ~ (xy'1z,4).

L * k%
Lemma 1 allows us to collect the relations ~ and ~,

and so the following two consequences are immediate.
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COROLLARY 1. (x,1) v (y,8) zif and only if there is a
(z,1) such that (x,1) ~ (z,n) ~ (y,s).
COROLLARY 2. (x,1) ~ (y,8) = (:c,lt)_1 v (y,é)-1-

Let [x,r] be the equivalence class of (x,4) under the
relation ~, and define [X,&]—1 = [(x,n)_1]. Let

K= {[x,n] :x=6, 1< rn¢g |x]|], » e}

Then K is a set with involution given by u:[x,2] — [x,a]'1.

LEMMA 2. [x,2] # [:(,"L]-1 unless [x,n] = [y,1] for some
y=y e 6and n=%(y|+1).

Proof. Suppose [x,x] = [x,a]'1. This implies that
(x,n) ~ (x_1,|x|-n+1). By Corollary 1, there is (y,4) such

that (x,n) & (y,n) = (x'1,|x|-k+1). That is, d(x,y) >« and

deg 1,0 3 yg]-2+1 = |x7V] - |x| +a- 141 = .

Whence, n = %(|y|+1).

Now d(x,y) » n and d(y-1,x) > 2 imply by A4, d(y,y;H .
That is, %Clyl+|yl-14%]) > x, giving y| > |4%| +1, which
yields |y| > |y2|. Thus, either y = 1« G and hence 2 = 0,
which gives a contradiction, or |y| is odd by C1 and y = y'1
by CN. Hence the conclusions of the lemma. A

Let Fk be the set of all reduced words on K. Then the
empty word e is in Fk and K < Fk‘ Since K is a set with in-
volution u, which may have fixed elements in K, we have that
Fk is, in fact, a semi-free group on K.

DEFINITION 5. Define y:G ~» Fk by ¢(1) = e and y(x) =
(2, |x}]esslx, 1], 2% 1.

LEMMA 3. y(x) as defined is a reduced word in Fk'
Proof. (1) = e is a reduced word in F,. For x # 1« G,
suppose Y(x) is not a reduced word. Then [x,x] = [x,ln+1]-1
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for 1 ¢ n ¢ |x] -1; and this means that there is (y,1) such
that (x,x) ~ (y,n) Y (x'1,[x]-n). That is, d(x,y) > 2 and
d(y'1,x) > lyl -n+1 = [x-1| - |x| +2+1 = n+1; hence 1 = %|y]|,
|yl is even. But by A, we have that, d(y,y'1) > 1, giving
lyl-4uly%| » » = %|y|, which gives |y?| < |y|. Therefore,
either y 1 and hence o = 0, which is a contradiction; or
y#$1, y = y'1 by CN and |y| is odd by C1, which contradicts
that |y| is even. Hance there is no such (y,1), and ¥ (x) is

reduced.

LEMMA 4. y as defined is a monomorphism.
Proof. We first show that y is a homomorphism. Let
d(x,y) = n. Then |x|, |y| > 2 and lxy'1[ = |x|+]y] - 2x.

1 1

- . -1
Vixy ') = |xy 5 |x|*|y|-22|...|xy ",1].

Now for t < #, d(x,y) > t; therefore,

[x,2] = [4,¢] = [y ', 1yl -2+1]"".

Also,

dix Vgl = x| -d(x,y) = |x] -n,

Y=yl -dix,y) =yl -,

d(xy ',y

Therefore,

[, [x] -2+1] = [xy™ " [y '] -241], ¢ < |x] -2 ;

-1 1
[y ",2] = [xy ',2], 2 < |y| -1

Hence

TEVICED

[x, [x1]-- [%, 1000 19l [y 1]

[x, [x]].e [, 2#1] [y™ Y yl-n] o [y, 1]
ey 1xy™ 1] [xy”]
ey lyl-n) oo [xy™ 1, 1]
vixy 1.

n

L xy -] x| +241]

Now by Lemma 3, ¢(x) is a reduced word in kaor all x= G,

and so Kery = 1. Hence y is a monomorphism of G into Fk' A
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Finally, by Lemma 3, |y(x)| = |x| for every xeG, and
because of the involution p on K, |y(x)]| is the correspond-
ing length function on Fk' By Lemma 4, G is embedded in Fr-
Identifying G with its image y(G) in Fk’ we have that the
restriction of the length function on F, to G is the given
length function on G. We have therefore proved the following
theorem (recall that CO, C1 imply CN).

THEOREM 1. Let G be a group with a length funection
satisfying A1,A2,A4,C0 and C1. Then G can be embedded in a
semi-free group Fk on a set K constructed above. Moreover,
the given length function on G is the restriction to G of

the length function on Fk with respecto to K.
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