Neolignanos en Hojas de Virola Calophylla (Warb)*

Enrique Alvarez V., Luis E. Cuca S. y Juan C. Martinez V.**

- Parte III de la serie: Química de Miristicaceas Colombianas" Para la parte II ver la referencia (1).
- " Departamento de Química. Universidad Nacional de Colombia, Bogota.

SUMARIO

De las hojas de Virola Calophylla (Myristicaceae) se aislaron e identificaron dos neolignanos nuevos, calophyn y calophyllin, y dos neolignanos conocidos, ácido meso-dihidroguaiarético y austrobailignano-6. Las estructuras fueron establecidas por métodos espectroscópicos.

ABSTRACTS

Two new neolignans, calophyn and calophyllin, were identificated from the leaves of Virola calophylla (Myristicaceae). Likewise two known neolingnans, meso-dihidroguaiarectic acid and austrobailignan-6, were isolated. All the structures were stablished by spectroscopical methods.

INTRODUCCION

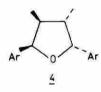
Los indígenas de la Amazonía colombiana usan preparados de Virola calophylla (Myristicaceae) en forma de rapé. Estos preparados tienen propiedades alucinógenas, las cuales son atribuídas a la presencia de alcaloides que, según estudios fitoquímicos realizados (2), son del tipo triptamina.

En el estudio del extracto bencénico de las hojas de *Virola calophylla* se aislaron e identificaron neolignanos con dos tipos de esqueleto básico (3): el tipo 7.0.7', 8.8' y el tipo 8.8' inédito en este género. Al primer tipo pertenecen los neolignanos tetrahidrofuránicos y al segundo tipo los derivados del ácido nordihidroguaiarético 1a el cual ha sido usado como antioxidante de productos alimenticios (4), posee actividad citotóxica (5) y es un agente antitumoral muy activo in vitro (6); por lo que es de esperar que otros neolignanos de este tipo sean biológicamente activos. Los neolignanos identificados fueron: sustancia Ca-I como el ácido meso-dihidroguaiarético 1b, sustancia Ca-II como una mezcla de austrobailignano-6 1d y calophyn 1e, y la sustancia Ca-III como calophyllin 2a.

RESULTADOS Y DISCUSION

La elucidación de la estructura de la sustancia que se denominó Ca-l se hizo basándose en los datos espectroscópicos. En efecto, del espectro de masas, teniendo en cuenta las intensidades de M 1, M + 1 y M + 2, se dedujo la fórmula C20 H26 O4. Del espectro IR (banda en 3.500 cm⁻¹) y del espectro UV que presentó desplazamiento batocrómico al adicionar CH₃ONa, se estableció la presencia de un grupo fenólico. El espectro de RMN ¹H indicó la existencia de dos grupos -OH (δ 5.35 desaparece con D₂O), dos grupos –CH₃ (& 0,85) y confirmación de aromaticidad $(\delta 6.4 - 6.9).$

El espectro de RMN13C de la sustancia Ca-I muestra diez señales y como ésta tiene veinte carbonos se deduce que la molécula es simétrica. De estas diez señales seis tienen un desplazamiento químico correspondientes a carbonos aromáticos y por tanto existen dos anillos aromáticos idénticamente sustituídos. El espectro de masas presenta un único pico de gran intensidad en m/z 137 (100%) atribuíble a un ión tipo tropilio con -OH y -OCH₃ como sustituyentes. El grupo -OH debe estar en posición para con respecto a la cadena alifática ya que el test de Gibbs dió negativo y el -OCHa debe estar orto al OH como puede inferirse de la biogenesis de este tipo de compuestos (3).


R = R = R = H

(8R, 8'S); R=R4=H, R2=R3= CH3 16

(8R, 8R); R1=R4=H, R2=R3= CH3 1c

rel (8R,8'R); R₁+R₂ = CH₂, R₃ = CH₃, R₄ = H rel (8R,8'S); R₁+R₂ = CH₂, R₃ = CH₃, R₄ = H 1d

$$Ar$$
 $\frac{3}{3}$

- Ar=4-hidroxi-3-metoxifenil
- Ar=3,4-metilenodioxifenil
- Ar=3,4-dimetoxifenil
- Ar = 4 hidroxi-3,5 dimetoxifenil
- Ar=3,4,5 -trimetoxifenil

TABLA 1

DESPLAZAMIENTO QUIMICO EN RMN¹³C DE LA SUSTANCIA 1b

Y DEL ACIDO (-) DIHIDROGUAIARETICO 1c

Carbono	Sust.	Sust.	
	1b	1c (7)	
C-1 y C-1'	133.59	133.34	
C-2 y C-2	111.38	111.25	
C-3 y C-3	146.23	146.10	
C-4 y C-4'	143.48	143.35	
C-5 y C-5'	113.88	113.80	
C-6 y C-6'	121.57	121,44	
C-7 y C-7	39.02	40.88	
C-8 y C-8'	38.75	37.28	
C-9 y C-9	16.05	13.66	
(CH ₃ O) -3 y 3	55.71	55.59	

Los datos de RMN¹³C de la sustancia Ca-I resultaron comparativamente iguales a los reportados para el ácido (–) dihidroguaiarético **1c** (7) (tabla 1) a excepción de los valores asignados a los carbonos alifáticos, lo cual es atribuible a la diferencia de estereoquímica y como la sustancia Ca-I presentó un $\|\alpha\|_D = 0$ se trata del ácido meso-dihidroguaiarético **1b**.

La presencia de **1d** y **1e** fue deducida en la mezcla de sustancias, que denominamos Ca-II, la cual en cromatografía de capa delgada, utilizando diferentes sistemas de eluyentes y soportes, se comportó como si se tratara de una sustancia pura e igual comportamiento presentó el acetato obtenido a partir de la mezcla. El espectro de RMN ^1H de Ca-II (fig. 1) indicó que se trataba de un neolignano del mismo tipo del ácido dihidroguaiarético **1b**, siendo sustituyentes de los anillos los grupos — OCH₂O— (δ 5.85), —OH (δ 5.28 desaparece en el acetato) y —OCH₃ (δ 3.75). Sin embargo, en δ 3.75 aparecen dos señales, debidas a dos grupos —OCH₃, que únicamente integran para tres hidrógenos, lo cual hizo pensar que se trataba de una mezcla.

Para confirmar la mezcla se sometieron Ca-II y su acetato (Ca-II-Ac), a cromatografía líquida de alta eficiencia (HPLC) en fase reserva empleando diferentes condiciones (ver parte experimental) y se obtuvieron los cromatogramas de la figura 2. En los cromatogramas C y D se observan dos picos con tiempos de retención ligeramente diferentes, lo que comprueba que Ca-II corresponde a una mezcla de dos sustancias con estructuras muy similares. Mediante HPLC preparativa (fig. 3), se logró separar pequeñas cantidades de las sustancias 1d y 1e cuyos espectros de masa dieron prácticamente idénticos. Los picos m/z 135 y 137 permitieron deducir los sustituyentes de cada anillo: $-OCH_2O-$ en un anillo, -OH y $-OCH_3$ en el otro, y sus posiciones relativas fueron deducidas teniendo en cuenta que el test de Gibbs dió negativo y por consideraciones biogenéticas (3).

Puesto que Ca-II es una mezcla de dos sustancias (tipo ácido dihidroguaiarético), que presentan el mismo espectro de masas y el espectro de RMN¹H sólo muestra una ligera diferencia en las señales de los grupos —OCH₃, se concluye que es una mezcla de epímeros 1d y 1e. La sustancia 1d es conocida en la literatura (8) con el nombre de austrobiailignano-6 y en la tabla 2 se correlacionan los datos espectroscópicos de ella con los de la mezcla Ca-II, siendo la principal diferencia la señal del grupo —OCH₃, que en el caso de la mezcla son dos picos mientras que en el austrobailignano-6 es uno solo. La sustancia 1e no está descrita en la literatura y la hemos denominado calophyn.

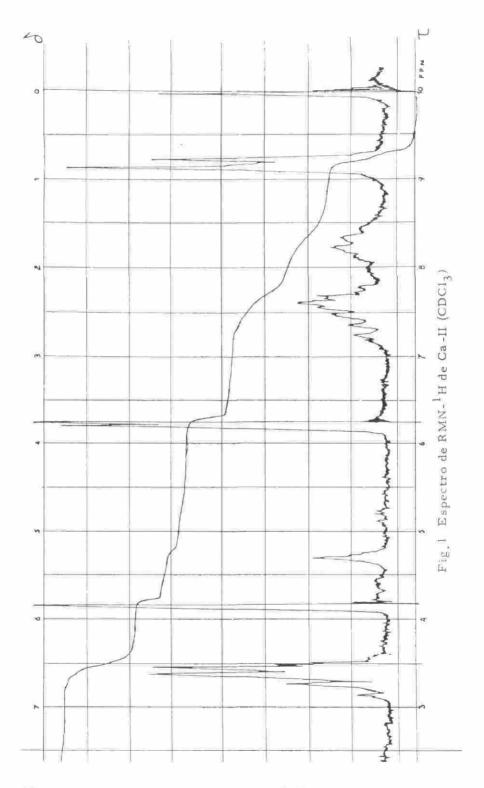


TABLA 2

DATOS ESPECTROSCOPICOS DE Ca-II Y DEL AUSTROBAILIGNANO-6 1d

Datos RMN¹H*

Tipo de protón	Ca-II (60 MHz, δ ppm)	Austrobailignano-6 (100 MHz, & ppm) (8) 6.40 – 6.90, m, 6H 5.99, s, 2H		
Ar-H	6.3 - 6.8, m, 6H			
-OCH ₂ O-	5.85, s, 2H			
-OH	5.28, s, 1H	5.50, s, 1H		
-OCH ₃	3.75, doble señal, 3H	3.81, s, 3H		
Ar-CH ₂	2.10 - 2.90, m, 4H	2.19-2.68, m, 4H		
CH ₃ -C <u>H</u> -CH ₂ -	1.40 – 2.00, m, 2H	1.53 – 1.92, m, 2H		
С <u>Н</u> ₃ –СН–	0.85, d, J = 6Hz, 6H	0.81, d, J 6 7 Hz, 6H		

^{*} Solvente CDCl₃, s = singlete, d = doblete y m - multiplete.

lones principales en el EM

m/z	Ca-II % de intensidad	Austrobailignano-6 % de intensidad		
328	60	80		
137	100	100		
135	100	70		

Para la sustancia Ca-III se estableció una fórmula condensada $C_{20}H_{24}O_5$ consistente con el ión molecular m/z 344, obtenido de su espectro de masas. La presencia de —OH fenólico fue deducida de su espectro IR (banda 3400 cm $^{-1}$) y de su espectro UV que presentó desplazamientos batocrómicos al adicionar CH $_3$ ONa. El espectro de RMN 1 H de la sustancia Ca-III comparado con el de la galbacina 5b (9), permitio asignarle una estructura básica de neolignano tipo tetrahidrofuránico y la presencia de dos grupos —OCH $_3$ (\S 3.84). El espectro de masas de la sustancia Ca-III presenta un pico base en m/z 192 que, de acuerdo con la fragmentación principal (esquema 1) en compuestos diariltetrahidrofuránicos, permitió establecer sobre cada uno de los anillos la existencia de un grupo —OH y un grupo —OCH $_3$, cuyas posiciones relativas se asignaron teniendo en cuenta el resultado negativo del test de Gibbs y la biogénesis de estas sustancias (3).

De los seis posibles estereoisómeros de los neolignanos tetrahidrofuránicos, 2 a 7, se encuentran datos de RMN¹H para cinco de ellos (2, 3, 5, 6, 7) con una gran variedad de sustituyentes oxigenados en los grupos arilo (10) a (17). En la tabla 3 se presentan los datos de RMN¹H correspondientes a la parte alifática, para este tipo de neolignanos, cuyo análisis permitió asignar la estructura de la sustancia Ca-III.

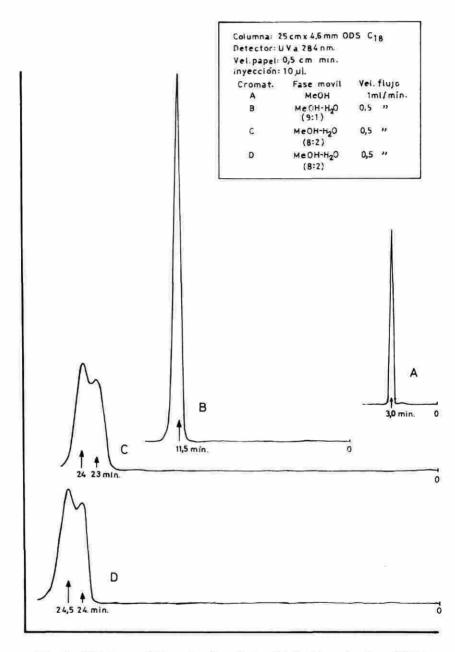


Fig. 2 HPLC analitica de Ca-II-Ac(A,B,C) y de Ca-II(D).

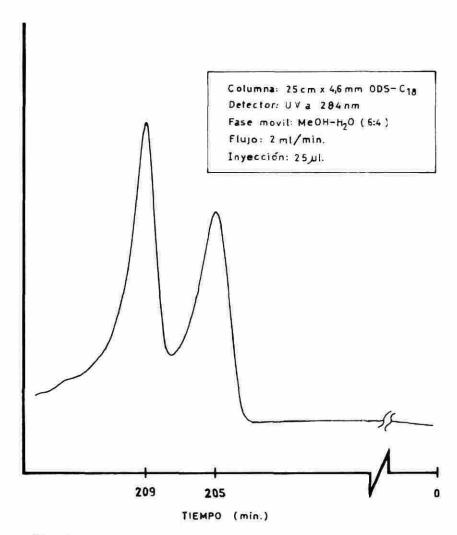


Fig.3 HPLC preparativa de Ca-II

Esquema 1. Fragmentación principal en el espectro de masas para neolignanos tetrahidrofuránicos

TABLA 3

DATOS DE RMN⁻¹H DE NEOLIGNANOS TETRAHIDROFURANICOS*

Compuesto	СН ₃ -8		CH8	H-8 H-8		H-7 H-7		Biblio- grafia
2c Galgravin	7	1.05(d) J 6.3		2 37(m)		4.61(d) J = 6.6		10,11
2e	1 08(d) J - 6.3			2.36(m)		4 55(d) J 5 9		12,13
3с	0.62(d) J = 7.0			2.70(m)		5 19(m) J = 6.5		14,15
5a	1.00(d) J = 5.9			1.80(m)		4.65(d) J = 9.0		13
5b Galbacina	1.05(d) J = 6.0			1.78(m)		4.61(d) J = 9.0		9,16
5c Galbelgin		1.05(d) J = 6.3		1.80	(m)	4.67(J = 9		11,13
5d	1.07(d) J = 6.5			1.70(m)	4.65(d) J = 8.6		13
5e	1 10(d) J = 6.5			1.77(m)		4.67(d) J = 8.6		12.13
6a Verrucosin	1.05(d) J = 6.3		0.65(d) J 6.5	1.6-2.5	š(m)	4.42(d) J = 8.6	5.13(d) J = 8.2	13,17
6c Veraguencina	1.06(d) J = 6.7		0 66(d) J = 6.7	1.7(m)	2.2(m)	4.43(d) J = 8.6	5.16(d) J = 8.2	11,13-16
6d	1.08(d) J 6.0		0.67(d) J ~ 6.4	1.5-2.5(m)		4:42(d) J = 8.3	5.11(d) J = 8.0	13
6e	1.12(d) J = 5.9		0.70(d) J = 6.5	1.83(m)	2.2(m)	4.43(d) J = 8.3	5.11(d) J = 8.0	12,13
7d	1.02(d) J = 6.0		0.60(d) J = 6.5	2.5(r	n)	4.66(d) J = 8.0	5 46(d) J = 4.0	13
7e	1.05(d) J 6.1		0 64(d) J = 6.7	2.47	(m)	4.67(d) J = 8.0	5.48(d) J = 4.0	12.13
Ca-III	1.03(d) J = 6.0		2.30(m)		4.50(d) J = 6.0			

^{*} Desplazamientos químicos en escala δ y en ppm, solvente CDCl₃ en todos los casos, el valor de J en H_Z, d = doblete y m = multiplete.

Los CH_3 -8 y CH_3 -8' en cada uno de los isómeros **2** a **5** son equivalentes y dan una sola señal cuyo desplazamiento químico depende de la estereoquímica e igual cosa sucede con las señales de H-7 y H-7', mientras que en los isómeros **6** y **7** tanto los CH_3 -8 y CH_3 -8' como H-7 y H-7' no son equivalentes y dan señales con diferentes desplazamientos químicos. La sustancia Ca-III presenta una sola señal para los CH_3 -8 y CH_3 -8' (δ 1.03) y una sola señal para H-7 y H-7' (δ 4.50) por lo cual su estructura debe corresponder a uno de los isómeros **2** a **5**. Analizando los datos de la tabla 3 se puede ver que cuando el - CH_3 y el -Ar vecino son **trans**, el desplazamiento químico del - CH_3 es alrededor de δ 1.0, mientras que cuando son **cis** es alrededor de δ 0.6, por lo que la sustancia Ca-III corresponderá al isómero **2** o al **5**. Si se tiene en cuenta que el desplazamiento químico de H-8 y H-8' para los isómeros **2** y **5** es δ 2.3 y 1.7 respectivamente y que para la sustancia Ca-III es δ 2.30, se puede asignar a ésta la estructura **2a** que hemos denominado Calophyllin.

PARTE EXPERIMENTAL

Equipo

Los espectros fueron tomados en los siguientes equipos: UV en un espectrofotómetro Beckman - 25, en solución metanólica; IR en un Perkin-Elmer - 467; EM en un Shimadzu - GEMS - 9020 - DF; RMN-1H en un Perkin - Elmer - R12B y en un Varian - T60; RMN-13C en un Varian - FT80 y las rotaciones ópticas en un polarimetro digital Perkin-Elmer-241.

Aislamiento de los constituyentes

El material vegetal correspondiente a las hojas de *Virola calophylla* (Myristicaceae), fué recolectado en octubre de 1981 por Roberto Jaramillo M., Juan C. Martinez V. y Luis Enrique Cuca S. en la comisaría del Vaupés, márgenes del rio Piraparaná, dos kilómetros arriba de Sonañá a 200 metros de altura sobre el nivel del mar. La planta fue determinada por el Biólogo R. Jaramillo M. del Instituto de Ciencias Naturales de la Universidad Nacional de Colombia; una muestra se encuentra en el Herbario Nacional bajo el No. COL 231575.

Las hojas secas y molidas (1100 g) se extrajeron con C₆H₆ en soxhlet y después de haber retirado el solvente, a presión reducida, se obtuvo una pasta verdosa (117 g). Una parte de ésta (25 g) se sometió a CC (300 g de silica gel) eluyendo con C₆H₆-AcOEt (de polaridad creciente) obteniéndose las siguientes fracciones: A (95;5), B y C (9:1) y D (8:2). La fracción A (1.0910 g) estaba constituída por ésteres alifáticos; B (14.4165 g) se purificó por CC eluyendo con Eter de Petróleo-AcOEt (85:15) y se obtuvo la sustancia Ca-II (1.06 g) que se identificó como una mezcla de los isómeros 1d y 1e; C (4.8990 g) se purificó por CC y CCDP eluyendo con Eter de Petróleo-AcOEt (7:3) obteniéndose una sustancia (0.10 g pf 135-136°C) y la sustancia Ca-I (0.195 g); D (1.098 g) se purificó por CC y CCDP eluyendo con Eter de Petróleo-Acetona (7:3) y C₆H₆-Acetona (8:2) respectivamente obteniéndose una sustancia aceitosa denominada Ca-III (0.080 g).

La sustancia Ca-II (400 mg) se acetiló (anhídrido acético-Piridina) obteniéndose Ca-II-Ac (395 mg). La sustancia Ca-II y Ca-II-Ac sometidas a CCD utilizando diferentes fases estacionarias (sílica gel, alúmina ácida, alúmina básica, alúmina neutra) y diversos sistema de eluyentes se comportaron siempre como un solo compuesto, sin embargo al someterlas a HPLC-analítica en fase reversa utilizando las siguientes condiciones: fase móvil: MeOH, MeOH-H₂O (9:1) y MeOH-H₂O (8:2), columna: Ultrasphere ODS-C₁₈ (25 cm x 4.6 mm), Detector: espectofotómetro UV Hitachi, detección a 284 nm, Equipo: cromatógrafo de gradiente líquido Beckman

110A, flujo 0.5 ml/min, loop: 25 \upmu I, inyección de 10 \upmu I de una solución metanólica de 7 mg/ml; se detectó que la sustancia Ca-II estaba constituída por dos compuestos.

Para separar la mezcla se empleó HPLC-preparativa, haciendo inyecciones de 25 || I cada una de una solución metanólica de la sustancia Ca-II (10 mg/ml) y cambiando las siguientes condiciones con respecto a la HPLC-analítica inicial: fase móvil: MeOH-H₂O (6:4), flujo: 2 ml/min.

SUSTANCIA Ca-I.- (8R,8'S)-4,4' -dihidroxi- 3,3' -dimetoxi- 8,8' -lignano (ácido meso-dihidroguaiarético 1b) ($C_{20}H_{26}O_4$), sólido blanco, pf 80-81°C; I $^{\circ}$ I $^{\circ}$ D° (C 0.36 en CHCl3); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ϵ): 210 (40150), 231 (13750), 286 (6600); $\lambda_{\text{max}}^{\text{MeOH}}+\text{MeONa}$ nm (ϵ): 215 (15400), 245 (15400), 294 (7150); $\lambda_{\text{max}}^{\text{MeOH}}+\text{MeONa}+\text{Holoma}$ nm (ϵ): 210 (40150), 230 (13750), 284 (6050); IR, $\nu_{\text{max}}^{\text{KBr}}$: 3500, 2960, 2920, 1605, 1516, 1435, 1275, 1120; RMN¹H (60 MHz, CCl4, δ , TMS): 0.85 (d, J = 6Hz, 6H-9,9'), 1.5-3.1 (m, 6H-7,7',8,8'), 3.80 (s, 6H-2CH3O -3,3'), 5.35 (s , 2H-2-OH-4,4' desaparece con D2O), 6.4-6.9 (m, 6H-2,5,6,2',5',6'); EM, m/z (%I): 330 (54,5), 331 (12.1) 332 (1.7), 137 (100), 138 (48), 330 (54); RMN¹³C (ver tabla 1).

SUSTANCIA Ca-II.- rel. (8R, 8'R)-4'-hidroxi-3,4-metilenodioxi-3'-metoxi-8,8'lignano (Austrobailignano-6 **1d**) y rel. (8R, 8'S)-4'-hidroxi-3,4-metilenodioxi-3'-metoxi-8,8'-lignano (calophyn **1e**) aceite amarillo pálido, $|\alpha|_D^{18} = -0.125^0$ (C 1.28 en CHCl₃); UV: λ MeOH + MeONa nm (ϵ): 215 (11530), 236 (11530), 290 (7554); λ MeOH + Me ONa + Hol nm (ϵ): 212 (19283), 232 (11132), 286 (7156); IR, ν pericula 3.500, 2960, 2930, 1610, 1520, 1490, 1470, 1190; RMN¹H (60 MHz, CDCl₃, ϵ , TMS) (ver Tabla 2).

ACETATO DE LA SUSTANCIA Ca-II.- Aceite amarillo pálido; IR, $\lor \frac{pelicula}{cm}$ 2960, 2930, 2880, 1770, 1610, 1510, 1490, 1445, 1220, 1200, 1125, 860; RMN¹H (60 MHz, CDCl₃, &, TMS): 0.85 (d, J = 6Hz, 6H-9,9'), 1.4-1.9 (m, 2H-8,8'), 2.0-2.7 (m, 4H-7,7'), 2.27 (s, 3H-COCH₃) 3.75 (s, 3H-CH₃O-3'), 5.85 (s, 2H-OCH₂O-3,4), 6.4-6.7 (m, 6H-2,5,6,2',5',6'); EM m/z (%l): 370 (33), 329 (21), 328 (95), 138 (78), 137 (100), 136 (96), 135 (100), 122 (21), 105 (34), 77 (71).

SUSTANCIA Ca-III.- (7S,7'R,8S,8'R)-4,4'-dihidroxi-3,3'-dimetoxi-7. 0.7'-8.8'-lignano (calophyllin **2a**) Aceite Amarillo, $|\Omega|^{18}_{D} = 0^{0}$ (C 0.81 en CHCl3); UV, λ_{mex}^{MeOH} nm (ϵ) : 210 (32589), 233 (13398), 283 (5432); $\lambda_{mex}^{MeOH+MeONa}$ nm (ϵ) : 214 (13398), 251 (13398), 290 (5794); $\lambda_{mex}^{MeOH+MeONa-HCl}$ nm (ϵ) : 210 (32589) 232 (13036), 282 (5096); IR, $\forall_{mex}^{Pelicula}$ 3400, 2960, 2920, 2850, 1610, 1520, 1465, 1270, 860; RMN¹H (60 MHz, CCl4, δ , TMS): 1.03 (d, J = 6Hz, 6H-9,9'), 2,30 (m, 2H-8,8'), 3.84 (s, 6H-2-OCH3-3,3'), 4.50 (d, J = 6Hz, 2H-7,7'), 6.65 -7.05 (m, 6H-2,5,6,2',5',6'); EM, m/z (%l): 344 (14), 192 (100), 177 (32), 145 (44), 137 (20).

AGRADECIMIENTOS

Manifestamos nuestros agradecimientos al Departamento de Química de la Universidad Nacional de Colombia, al Proyecto Multinacional de Química (OEA), al CINDEC (PI-1303-118), y a COLCIENCIAS (PI-10000-1-135-81) por la ayuda financiera; al Departamento de Química de la Universidad del Valle por facilitar el uso del equipo de RMN ¹H, a la Sección de Análisis del Instituto Nacional de Salud (INAS) por facilitar el uso del polarimetro y al Doctor Massayoshi Yoshida del Instituto de Química de la Universidad de São Paulo (Brasil) por tomar los espectros de RMN ¹³C.

BIBLIOGRAFIA

- MARTINEZ, V., J.C. CUCA, S., L.E., SANTANA, M., A.J., POMBO, V., E. and GOLDING, BT., Phytochemistry, 24, 1612 (1985).
- AGURELL, S. HOLMSTEDT, B., LINDGREN, J. and SCHULTES, R.E., Acta Chem. Scand, 23, 903 (1969).
- 3. GOTTLIEB, O.R., Fortschritte der Chemie Organischer Naturstoffe, 35, 1 (1978).
- HEARON, W. M. and MACGREGOR, W.S., Chem. Rev., 55, 958 (1955).
- 5. OLIVETO, E. P., Chem. Ind., 677 (1972).
- BURK, D. and WOODS, M., Radiat. Res. Suppl., 3, 212 (1963), según Chem. Abstr. 59, 1934 (1963).
- CUCA S., L.E., "Estudios de los extractos bencénicos de las hojas, corteza y madera Virola Calophylloidea (markgraf)". Tesis de Maestrado, Departamento de Química, Universidad Nacional de Colombia (1985), pp. 56-66.
- 8. MURPHY, S.T., RITCHIE, E. and TAYLOR, W.C., Aust. J. Chem., 28, 81 (1975).
- BARATA, L.E. and BAKER, P.M., An. Acad. Bras. Cienc., 49, 387 (1977).
- 10. DOSKOTCH, R.W. and FLOM, M.S., Tetrahedron, 28, 4711 (1972).
- 11. CROSSLEY, N.S. and DJERASSI, C., J. Chem. Soc., 1459 (1962).
- 12. SARKANEN, K.V. and WALLIS, A.F.A. J. Heterocycl. Chem. 10, 1025 (1973).
- 13. SARKANEN, K. V. and WALLIS, A.F.A., J. Chem. Soc. Perkin I. 1869 (1973).
- PERRY, C.W., KALNINS, M.V. and DEITCHER, K.H., J. Org. chem., 37, 4371 (1972).
- 15. KING, F.E. and WILSON, J. G., J. Chem. Soc., 4011 (1964).
- BARATA, L.E., BAKER, P.M., GOTTLIEB, O.R. and RUVEDA, E.A. Phytochemistry, 17, 783 (1978).
- DIAZ, A. DE F., GIESBRECHT, A.M. and GOTTLIEB, O.R. Phytochemistry, 21, 1137 (1982).