UNIVERSIDAD NACIONAL DE COLOMBIA

Definition and solution of a new
approximate variant of the order

preserving matching problem

Rafael Alberto Niquefa Velasquez

National University of Colombia
Engineering Faculty, System and Computing Engineering
Bogotd, Colombia
2017

Definition and solution of a new
approximate variant of the order

preserving matching problem

Rafael Alberto Niquefa Velasquez

Thesis work submitted as a partial requirement to opt for degree of:
Msc in System and Computing Engineering

Advisor:
Juan Mendivelso, Ph.D

Co-advisor:
German Hernandez, Ph.D

Research Line:
Theoretical Computer Science
Research Group:
ALGOS: Algorithms and Combinatory Research Group

National University of Colombia
Engineering Faculty
Bogoté, Colombia
2017

Dedicated to:

Juan Mendivelso for his continuous guidance,
support and patience. To German Hernandez
and Yoan Pinzén, the two greatest people I
have ever had as teachers, for their advices and
humanity.

ACkﬂOWledgment To my advisor Juan Mendivelso for his continuous feed-
back, advices and teachings in the writing process of this thesis. To Diego Niquefa, my
brother and undergrad student in System and Computer Engineering of the National Uni-
versity of Colombia - Bogotd, for his valuable ideas and advices related to the algorithms
and experimental setup used. To Gabriela Rojas, graduated from the Conservatory of Music
of the National University of Colombia, Bogotd, for her advices and inputs from a musical
perspective in the possible applications and examples of the work in this thesis.

IX

Abstract

In this thesis we combine two string searching related problems: the approximate string
matching under parameters 0 and 7, and the order preserving matching problem. Order-
preserving matching regards the internal structure of the strings rather than their absolute
values while matching under ¢ and ~ distances permit a level of error. We formally define
the /y—order-preserving matching problem. We designed and implement in C++ four
algorithms that solve the proposed problem and an experimental setup to compare them.
The first algorithm is the naive algorithm with complexity ©(nmlgm) time. The second has
a complexity of ©(nm) time. The third and four algorithms are based on the segment tree
and Fenwick tree data structures, respectively, and both have O(nmlogn) time complexi-
ties. The data structure based algorithms show better experimental performance due to their
better lower bound of (nlgn) complexity. We show applications in music and finance.

Keywords: String searching, Experimental algorithm analysis, Strings similarity me-

tric, String searching algorithms, Fenwick tree, Binary indexed tree, Segment tree
Resumen

En esta tesis se combinan dos problemas de buisqueda de cadenas: la buisqueda aproximada
de cadenas bajo parametros 4+, y el emparejamiento con preservacién de orden. Uno permite
un nivel de error en la bisqueda, mientras que el otro considera la estructura interna de las
cadenas en lugar de sus valores absolutos. Se define formalmente el Emparejamiento con
preservacion de orden bajo distancias . Se disenaron e implementaron en C++ cuatro
algoritmos que resuelven el problema, y una configuracién experimental para compararlos.
El algoritmo més simple, tiene complejidad O(nmlgm). El segundo tiene una complejidad
de O(nm). El tercero y el cuarto se basan en estructuras de datos: arbol de segmentos y
arbol de fenwick respectivamente. Ambos tienen complejidad O(nmlgn). Los resultados ex-
perimentales muestran que los algoritmos basados en estructuras de datos tiene un mejor
rendimiento en muchos casos. El de mejor rendimiento experimental es del basado en el arbol
Fenwick, seguido por el basado en arboles de segmentos. Estos resultados se pueden explicar
debido a su complejidad Q(nlgn). Se muestran aplicaciones en musica y finanzas.

Palabras clave: Bisqueda de cadenas, Analisis experimental de algoritmos, Métrica de

similitud de cadenas, Arbol de Fenwick, Arbol indexado binario, Arbol de segmentos.

Contents

Abstract

. Introduction

1.1. Background
1.2. Definition of the Problem
1.3. Objectives
1.4. Document structure

. Preliminaries

2.1. String fundamentalso
2.2. d~y—matching problem (0y-MP)
2.3. Order preserving pattern matching (OPMP)
2.4. Data structures implemented and used
2.4.1. Segment Tree - Data Structure
2.4.2. Fenwick tree (Binary indexed tree - BIT)

. Definition of jy—order preserving matching problem (67—OPMP)
3.1. The proposal of order preserving matching under dy approximation
3.2. Examples of 0—OPMP

. Proposed algorithms to solve the)v—OPMP

4.1. Naive algorithm (naiveA)
4.2. Update based algorithm (update BA)
4.3. Segment tree based algorithm (segtreeBA)
4.4. Fenwick tree based algorithm (bitBA)

. Experiments

5.1. Experimental setup
5.1.1. Hardware and software
5.1.2. Parameters

5.2. Random data generation Lo

5.3. Experimental results and analysis o000

5.4. Worst case experiments on seegtre BA and bitBA

S TR W N

© © o N N ™~

14

17
17
18

21
22
23
24
26

Contents XI
6. Applications 35
6.1. Application in music 35
6.2. Application in finance 37
7. Conclusions and future work 41
A. Appendix: C++ code of the naive algorithm (naiveA) 43
B. Appendix: C++ code of the update based algorithm (update BA) 44
C. Appendix: C++ code of the segment tree based algorithm (segtree BA). Clas-
ses and pointers based version 46
D. Appendix: C++ code of the segment tree based algorithm (segtree BA). Array
based version 49
E. Appendix: C++ code of the binary indexed tree (BIT or Fenwick tree) based
algorithm (bitBA) 52
F. Appendix: C4++ code of the experimental setup 54
F.1. Experimental setup to compare our algorithms solving 6v—~OPMP b4
G. Appendix: C++ code of the utilitarian functions 59
Bibliography 61

List of Tables

2-1.)y-Matching example. 8
3-1. Order preserving matching problem under d and v 19
3-2.)7v—OPMP example from introduction explained. 20

5-1. Experimental values of n m, , yando. 30

List of Figures

1-1.

2-1.
2-2.
2-3.

2-5.
2-6.

2-8.
2-9.

3-1.
3-2.

4-2.
4-3.
4-4.
4-5.

5-1.
5-2.
5-3.

5-5.
5-6.
5-7.
5-8.

6-1.
6-2.
. P and search window natural representation in the music application example. 37
6-4.

Order preserving matching under 6y approximation example. 5
Exact order preserving matching example o000 10
Segment tree example. Lo oL 11
Segment tree example after update. 11
. Segment tree construction pseudo code. 12
Segment tree update procedure pseudo codeo 13
Segment tree query function pseudo code.o 13
. Binary indexed tree graphic example.o 15
Binary indexed tree function sumUpTo(tree,i). 15
Binary indexed tree function: addAt(bit,i,z). 15
Order preserving matching under ¢ and + approximation example. 19
0y—OPMP example from introduction explained. 20
. Naive algorithm: naiveA. 22
Update based algorithm: updateBA. 24
Segment tree based algorithm: segtreeBA. 25
BIT based algorithm: bitBA. 27
Function: isAMatch(i, bit, T™ , P™ 6,7y).« i 28
Experiments varying the parameter 6. 30
Experiments varying the parameter ~v.o 31
Experiments varying alphabet size |X[.o 31
. Experiments varying text size n.o 31
Experiments varying pattern size m.o 32
Experiments varying text size n (bit BA vs segtreeBA). 32
Experiments varying pattern size m (bitBA vs segtreeBA).. 32
Experiments varying pattern size n (Worst case bit BA and segtreeBA). . . . 34
. Experiments varying pattern size m (Worst case bit BA and segtreeBA). . . 34
Darth Vader’s theme from Star Wars. by John Williams (Excerpt). 35
T and P in the music application example. 36

P in the financial example.o o oL 38

List of Figures

6-5. T in the financial example.o
6-6. Natural representations of 7" and P in the financial example.
6-7. T, P, and search window in the financial example of 6v—~OPMP.

1. Introduction

Stringology is the branch of computer science that is dedicated to the study of algorithms,
data structures and techniques related to the definition and solution of problems in which
sequences are involved. One of the main problems of interest in stringology is string mat-
ching (also called string pattern matching or simply pattern matching), which consists in
finding the occurrences of a pattern within a text, possibly according to certain conditions
or characteristics depending on the variation of the problem. Formally, the input of a string
matching algorithm is a text T, of length n, and a pattern P, of length m. Both the text
and the pattern are formed by the concatenation of symbols of a given alphabet . This
alphabet for the vast majority of practical applications can be considered as an ordered set of
different symbols. It may well be the binary alphabet {0, 1}, the alphabet in bioinformatics
{A,G,T,C}, the alphabet given by the Spanish language or any other language. It can also
be the ASCII or UNICODE character alphabet. The strings will be considered throughout
the document as indexed from 0.

The output of a pattern matching algorithm can be: (i) a boolean that indicates whether
or not the pattern appears in the text; (ii) a number that indicates the position of the first
occurrence of the pattern in the text; or (iii) the list of positions in the text 7' where the
pattern P is found. In this thesis we will consider the problem with output (iii). A notation
generally used to represent substrings in a string, and which we will adopt in this document,
is the following: Let Tj. ,,—1 represent a length-n string defined over . The symbol at the
position ¢ of a string 7" is denoted as T;. Also, T;. ; represents the substring of the text
T from the position ¢ to the position j, i.e. T; ; = T;T;4q --- T, where it is assumed that
0 <7 < j < n. In particular, we are interested in each length-m substring that starts at
position ¢ of the text, i.e. T} ;1m-1, 0 <7 < n —m, which we call text window and denote
as T" in the rest of the document. Then, the output of the exact string matching problem
should list all the positions ¢, 0 < i < n —m, such that P; = T;; forall 0 < j < m — 1.
For example, for the text T'= GATTACATTACATTACA and the pattern P =TT A, the
answer given by exact pattern matching algorithms would be {2,7,12} since the pattern
TTA is found at the positions 2, 7 and 12 of the text T'. For information on string matching
algorithms, see for example: [16, 5].

In this thesis, two variants of the problem of exact search of patterns were combined: the
dy—matching problem and the order preserving matching problem. First, in Section 1.1 we

1.1 Background 3

describe these two variants. Then, in Section 1.2 we define the problem considered in this
thesis. The objectives are outlined Sectionl.3. Finally, the structure of the document is
presented in Section 1.4.

1.1. Background

Exact string matching does not support all the applications. Therefore, many variants of
the problem have been defined to tackle specific problems. For instance, in some areas the
alphabet is drawn from a set of integer values. These integer strings are normally found in
cipher text, financial data, meteorology data, image data, and music data, to name some. In
such numeric strings, it would be unrealistic and ineffective to search for exact occurrences
of a pattern but rather ought to search for similar instances of it. Then, some variants of the
problem have been defined, including év-matching and order-preserving matching.

The dy-matching problem consists of finding all the text windows in 7" for which: (i) the
distance to the corresponding symbols in P is at most §; and (ii) the sum of such distances
is at most 7. In other words, the output of this problem is the set of positions ¢ such that
|P; —Tij] <6,0 <35 <m-—1, and Z;'L:_Ol |P; — T;+;] < 7. We can see that ¢ limits
the individual error of each position while v limits the total error. Then, dy—matching has
applications in bioinformatics, computer vision and music information retrieval, to name
some. Numerous algorithms have been design and tested to resolve dy—matching (see for
instance [12, 26, 30, 21, 13, 25, 47, 20]). The approaches of these solutions make use of
different techniques such as bit parallelism, dynamic programming, and heuristics based
on occurrences (see [54] for a survey on solutions and related problems of Jy—matching).
Recently, it has been used to make more flexible other string matching paradigms such as
parameterized matching [48, 54|, function matching [55] and jumbled matching [56, 57].
Cambouropoulos et al. [12] was perhaps the first to mention this algorithm motivated by
Crawford’s work et al. [24]. Variations of these works have been made to allow wildcards or
also known as do not care symbols [22, 6], transposition-invariant [47] and gaps [14, 15, 35].
0—matching and dy—matching are also related to other string similarity metrics like L; and
L+, also known as Manhattan distance and Chevyshev distance. For review of recent work
in this area, see e.g. [3, 4, 49, 52, 50, 51, 31].

On the other hand, order-preserving matching considers the order relations within the
numeric strings rather than the approximation of their values. In particular, the natural
representation of a string is a string composed by the rankings of each symbol in such
string. In particular, the ranking of symbol T;, denoted as rankr(i), of string Tp 1 is
L+ H{L; < T, : 0 < ji <nANi#g} + {2, =1, :j < i}|. With definition of

4 1 Introduction

the rank of a character in a string, we can define the natural representation of a string,
denoted as nr(T) for any string T, as the concatenation of the ranks in the strings, i.e.
nr(T) = rankr(0)ranky(1) - - - rankr(n—1). And with the natural representation of a string
of integers, we can define when a order-preserving match (OPM) occurs: Two string X and
Y, both of the same length, have an OPM iff nr(X) = nr(Y). In a similar fashion, we can
say there is a OPM of a pattern Py, with T% ¢ff nr(P) = nr(T").

Then, order-preserving matching consists of finding every text window in 7" such that its
natural representation matches the natural representation of P. Note that this problem is
interested in matching the internal structure of the strings rather than their values. Then,
it has important applications in music information retrieval and stock market analysis. Spe-
cifically, in music information retrieval, one may be interested in finding matches between
relative pitches; similarly, in stock market analysis the variation pattern of the share pri-
ces may be more interesting than the actual values of the prices [44]. The order preserving
matching problem can be considered an evolution of studies in combinatorial patterns of
permutations, although those had a different approach, in which they worked on avoiding
patterns (see for example [2, 9, 11, 37, 38, 41, 45, 53, 58]).

Since Kim et al. [44] and Kubica et al. [46] defined the problem, it has gained great atten-
tion from several other researchers [28, 27, 18, 32, 29, 40, 17, 40, 39]. Some approaches to
solve the order preserving matching problem include prefix tables and preprocessing using
indexing structures such as suffix trees [29, 28, 27]. Advances have been made in the design
of algorithms for its exact version, i.e. when there is a match between strings X and Y &ff
nr(X) = nr(Y). Results have been obtained in versions with preprocessing and indexing of
the text [29], as well as in approximate versions with k errors [36]. It has also been shown
that exact order preserving matching in permutations as a subsequence is a NP — Complete
problem, although some special cases have polynomial solutions [2, 38, 41]. Since its first
solutions [44, 46], the exact order preserving matching problem has had polynomial solutions
with practical implementations [8, 19, 18, 32, 40].

1.2. Definition of the Problem

Despite the extensive work on order-preserving matching, the only approximate variant in
previous literature, to the best of our knowledge, was recently proposed by Gawrychowski
and Uznaniski [36]. In particular, they allow k& mismatches between the pattern and each
text window. Then, they regard the number of mismatches but not their magnitude. In
this thesis, we propose a different approach to approximate order-preserving matching that
bounds the magnitude of the mismatches through the §v- distance. Specifically, ¢ is a bound
between the ranking of each character in the pattern and its corresponding character in the
text window; likewise, v is a bound on the sum of all such differences in ranking. Thus, § and

1.3 Objectives 5

v respectively restrict the magnitude of the error individually and globally across the strings.
We define dy-order-preserving matching as the problem of finding all the text windows in T’
that match the pattern P under this new paradigm.

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19

Figure 1-1.: Order preserving matching under ¢+ approximation example.
In this example we can see the text T, the pattern P in two different positions. We also show
below the natural representations of the pattern, and the natural representation of the two
search windows similar to the pattern.

The motivation to define dy—order-preserving matching stems from the observation that
the application areas of order-preserving matching, mainly stock market analysis and music
information retrieval, require to search for occurrences of the pattern that may not be exact
but rather have slight modifications in the magnitude of the rankings. For example, let us
assume that the text 7" presented in Fig. 1-1 is a sequence of stock prices and that we want
to determine whether it contains similar occurrences of the pattern P (also shown in this
figure). Under the exact order-preserving matching paradigm, there are no matches, but
there are similar occurrences at positions and 1 and 11. In particular, T g and 771 13 are
similar, regarding order structure, to the pattern. This similarity can be seen even more
clearly if we consider natural representations of these strings (also shown in Fig. 1-1).

1.3. Objectives

Define and solve an approximate variant of the order preserving matching problem under
the 0 and v approximation distances.

1. Formally define the order preserving matching problem under the ¢ and ~ distances.

6 1 Introduction

2. Design at least two polynomial algorithms that solve the order preserving matching
problem under the 6 and distances.

3. Design and develop an experimental scheme that allows to analyze the efficiency of the
proposed algorithms.

1.4. Document structure

In Chapter 2 we explain the fundamental concepts and definitions of the the area of study.
We define the string matching problem, the approximate matching problem under 6 and -~y
distances and the order preserving matching problem. Due to the fact that two of the four
proposed algorithms are based on data structures, we include in this section the concepts,
definitions and operations of those structures: the segment tree data structure, and the
Fenwick tree also known as Binary Indexed Tree data structure (BIT from now on).

In Chapter 3 we construct the fundamental notation, definitions to formally define the new
problem, the Order preserving matching problem under ¢y approximation. We
define the subproblems and terminology needed to fully and formally define the new problem.

In Chapter 4 we show and explain the four algorithms that solve the new problem. We show
the pseudo code of each one of them and calculate the theoretical upper bound complexity
for each one of them.

In Chapter 5 we describe the experiment performed to compare the four algorithms. The ex-
periments were done with two main objectives: To revise the correctness of all the algorithms
and to compare the time complexity.

In Chapter 6 we show two applications with real data in two very different fields. One in
music and other in finances. The music applications show how the metric can be applied
to find similar sections of a melody inside the melody itself. We choose the very famous
and well known Imperial March from the Star Wars movie franchise. We search a portion
of the Imperial March in the complete melody and found the most similar portions, and
those retrievals coincide with the portions that are considered similar for several professional
musicians consulted. For the application in finance, we try to find similar changes of the
stock prices of Facebook. Specifically, we took as the pattern the changes of a given 21-day
interval period and searched for its matches as intervals in the stock prices of Facebook in
history. We found that are very similar intervals for relatively low values of the similarity
parameters (0 and 7). Finally in Chapter 7 we describe what could be the next steps in
developments in this area, and questions that remain open.

2. Preliminaries

In this chapter we explain the fundamental concepts and definitions needed to formally define
and solve the dvy-order preserving matching problem (6y—OPMP). We start by giving the
fundamentals on stringology in Section 2.1, then we explain and define the ¢y matching
problem (d7—MP) in Section 2.2 and the order preserving matching problem (OPMP) in
Section 2.3. Furthermore, in Section 2.4 we describe the data structures that will be used in
Chapter 4 to solve the 6y—OPMP.

2.1. String fundamentals

A string is a sequence of zero or more symbols from an alphabet >; the string with zero
symbols is denoted by e. The cardinality of alphabet X, denoted by |X|, is the number of
characters in Y. The set of all strings over the alphabet X is denoted by »*. Throughout the
thesis, we consider the numeric alphabet ¥, which is assumed to be an interval of integers
from 1 to o, i.e. ¥, = {1,2,...,0} where |X| = 0. A text T = Ty ,—1 is a string of length
n defined over X,. T; is used to denote the i-th element of T, T; ; is used as a notation for
the substring T;T;11---T; of T', where 0 < i < j < n — 1. Similarly, a pattern P = Py _,,,—1 is
a string of length m defined over X,. For easy notation, we use 7" to denote the length-m
substring of T' starting at position 4; thus 7% = T} _;,,,—1. Next, we present the definition of
dv-match and order-preserving match for the string comparison problem.

2.2. j)~—matching problem (6—MP)

Pattern matching under § and/or v has been studied for its application to real problems
where similar pattern occurrences need to be encountered; that is, where errors are allowed
under certain restrictions. This pattern matching is done over strings with integer alphabets
since with them you can get symbol-to-symbol differences and similarity measures based on
them. The parameter 0 sets the maximum allowable difference between each character in
the pattern and the corresponding character in the text search window. On the other hand,
the v parameter represents the maximum amount allowed in the sum of these differences.
Now we are going to formally define what is a)y—match and based on that definition we
are going to define the dy—matching problem (67-MP):

8 2 Preliminaries

1 0| 1128|4616 |7|8|9]|10 |11 12|18 |14 |15)| 16 | 17
T, 131947 5/3(5[2(3/6 |3 |8 |5 |1 |4 2 |9
J 0111284 0 |1 |2 |38 |4
P, 37515 3 (7 [5 |1 |5
|T; — Pl 1]0]0]2]0 0 |1 |0 O |1
> Ty — Byl 3 2

Table 2-1.: jv—Matching example.

Definition 1 (0y—match) Let X = Xo o1 and Y = Yy m_1 be two equal-length strings
defined over ¥,. Also, let §,~ be two given numbers (6, € N). Strings X and Y are said to
dy-match, denoted as X 2V, iff mzix}l@l | X; —Y;| <0 and Z;.n:_ol 1X; =Y, <.

Example 1 There is a 0y—match, for 6 = 2 and v = 7, between the strings X = (1,3,
1,3,6, 3,3,4, 1,2) and Y = (2,2, 1,3,4, 3,4,5, 2,2) defined over ¥g as | X — Y| = (1,1,
0,0,2,0,1,1, 1,0). Note that the mazimum difference between corresponding characters is 2
and takes place at the fifth position. Similarly, the sum of all differences is 7.

Problem 1 (§y—matching problem (67v—MP)) Let P = Fy_,,—1 be a pattern string and
T = To.n1 be a text string, both defined over ¥,. Also, let 6,7 be two given numbers
(6,7 € N). The §y—matching problem is to calculate the set of all indices i, 0 <i <n —m,
satisfying the condition P 22 T*. From now on dy—MZP.

In Table 2-1 we can see how the text T = <4,3, 9,4,7,5, 3,5, 2,3, 6,3, 85, 1,4, 2,9> has
two occurrences of pattern P = <3, 7,5,1, 5> in positions 3 and 11 (with § = 2 and v = 3).
These occurrences do not exceeds the limit given by § = 2, since the difference symbol to
symbol (penultimate row of the table) is at most of 2, and also satisfy the limit given by
v = 3 since the sum of these differences for each occurrence is less than and equal to 3 (3 in
the first and 2 in the second) in the last row of the table.

2.3. Order preserving pattern matching (OPMP)

Like the matching problem under parameters 0, the OPMP can be seen as the task of
finding a pattern P within a text T" so that certain conditions are met. In this problem
we also work with integer ordered alphabets. And consists of finding all the substrings (or
positions ¢ within the text T') that have the same relative order and length as the given
pattern P. Formally (by taking the definition given in [17]), the problem can be defined
from the order-isomorphism of strings: Given two strings v and v of the same length n over
an ordered alphabet X, these strings are said to be isomorphic, written u &~ v if and only if
it is truerw; < u; <= v; < v; Vo< j<n—1. Another form to determine order-isomorphism in
strings is through the natural representation of a string presented in Chapter 1. For a string
To..n—1 the ranking of symbol T}, denoted as rankr (i), is 1+ |{7; < T;: 0 < j,i <nAi # j}|

2.4 Data structures implemented and used 9

+ {1; =T; : j < i}|. With definition of the rank of a character in a string, we can define the
natural representation of a string, denoted as nr(T) and is the concatenation of the ranks in
the strings, i.e. nr(T) = rankr(0)ranky(1)---rankr(n — 1). Now we present the definition
of order-preserving match based no the natural representation of two strings of the
same length, and based on that definition we formulate the Order preserving matching
problem.

Definition 2 (order-preserving match) Let X = X ,,_1 andY =Yg 1 be two equal-
length strings defined over %,. Strings X and Y are said to be a order-preserving match,
denoted as X «~ Y iff nr(X) = nr(Y).

Example 2 Given integer strings X = (10,15, 19,12, 11,18, 23,22) and Y = (12,18, 22,15,
13,20, 30,23), X «~ Y asnr(X) =nr(Y) = (1,4, 6,3, 2,5, 8,7).

Problem 2 (Order preserving—matching problem (OPMP)) Let P = Py -1 be a
pattern string and T = Ty ,—1 be a text string, both defined over %,. Also, let §,~v be two
given numbers (0, € N). The OPMP is to calculate the set of all indices i, 0 < i <n—m,
satisfying the condition P «~ T*. From now on OPMP.

In the OPMP we want to locate all the substrings in the text T that are order-isomorphic
with the pattern P. For example, the text T = (5,7, 11,10, 12, 15,16,9, 11,10, 14, 17,12)
in Figure 2-1, the pattern P = <2,4, 3,6,7> (in blue) has two order-preserving matches.
These occurrences are in the positions 1 and 7. The pattern is shown below the T' text from
the positions where the matching occurs. In this problem the accuracy refers to the pattern
having the same form as the substring in 7" where the match is, although the symbols could
be different from position to position in the window to be considered.

2.4. Data structures implemented and used

In this section we present two data structures we use in the algorithms we will present in later
chapters. The first is the segment tree data structure, and the second is the Fenwick tree data
structure. We will explain their operations we are going to use, and their complexities, mainly,
the one we use in our algorithms. We also present both pseudo-codes of our implementations.
The real C++ code can be seen in the Appendix C, D and E.

2.4.1. Segment Tree - Data Structure

The segment tree data structure is a powerful data structure with applications in many areas
like in computational geometry [10, 1] and graph theory. The segment tree data structure
uses the divide and conquer approach to answer queries in ranges of an underlying array

10 2 Preliminaries

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2-1.: Exact order preserving matching example
Exact order preserving matching for the text 7' = (5,7,11,10,12,15,16,9,11, 10, 14,17, 12)
and the pattern P = <2,4, 3,6, 7>.

A. Every node in a Segment Tree is assigned a range and will contain the answer to the
query for that specific range. Let node X have assigned the range [a, b], so it’s in charge of
Ay, Agsty o Ap. If @ = b, then X is a leaf; otherwise X has two children: le ftChild(X) in
charge of the left half of [a, b] and rightChild(X) in charge of the right half (each child has
a half of the interval [a, b]).

We will use the segment tree data structure to solve the range minimum query (RMQ)
problem, which consists in finding the index of the minimum value of the array in a given
range, and we will be able to change elements of the array. Building a segment tree to
solve the RM(@ problem for an array A of length |A| takes O(|A|) space and time. The
update and query operations both take O(lg|A|). Figure 2-2 shows the segment tree for
the array A = (90,64, 65,70, 66,63,70,67). For example, the interval of the right child of
the root in Figure 2-2 is labeled with 5, which means that the lowest value in the interval
[4,7] is in that position (position 5), i.e. A5 = 63, is the lowest element in the sub array
Ay 7 = (66,63,70,67). Figure 2-3 shows the segment tree after updating A4 to oo (in the
implementation a big number can be used). Note that to update an element of A only the
nodes from the root to the leaf containing the element can be changed (at most O(lgn)
nodes). In the Figures 2-2 and 2-3 The squares below each leaf show the elements of the
array A with their index bellow them. Every node of the segment tree is represented with
a circle, with its range underneath that circle, and the index of the minimum value in the
range inside the circle itself.

2.4 Data structures implemented and used 11

Figure 2-3.: Segment tree example after update.

Implementation

The data class SegTreeNode will be to stored a segment tree node. The fields stored will
be:

a: Start of the range the node is in charge, inclusive.

b: End of the range the node is in charge, inclusive.

index: Index of the minimum element of A in the range [a,b]. In case of ties, the left

most is chosen.

leftChild: Pointer to the left child of the node, or null if its a leaf.

rightChild: Pointer to the right child of the node, or null if its a leaf.

12 2 Preliminaries

In the pseudo-code we use the notation newSegTreeNode(a, b, index, le ftChild, rightChild)
to instantiate a new SegTreeNode with the given values for the fields. We will need the
following procedures/methods:

» buildSegTree(A,a,b): Builds a segment tree with the sub array A,, Ay, ..., Ay and
returns the root node. The complexity is O(n).

» updateSegTree(node,i,z): Sets A; to x. The complexity is O(lgn).

» querySegTree(node, i, j): Returns the index of the minimum value among A;, A;y;
,..., A;. If there are several minimum values, the leftmost (smallest index) is chosen.
The complexity is O(lgn).

Function : buildSegTree(A,a,b)

Input: integer array: A = Ay ,,_1, integer: a,b

Output: SegTreeNode: Root node of the Segment Tree

. Define: leftChild, rightChild as SegTreeNode

. if @ = b then return new SegTreeNode(a, a,a,null, null)

. leftChild + buildSegTree(A, a,|(a+b)/2]

. rightChild < buildSegTree(A, |(a+b)/2] + 1,b)

A Aiepronitdindes <= ArightChild.indes then

return new SegTreeNode(a,b,leftChild.index,leftChild, rightChild)
. return new SegTreeNode(a,b, rightChild.index,le ftChild, rightChild)

Qmm«%mN

Figure 2-4.: Segment tree construction pseudo code.

In Figure 2-4 we see how to recursively build a segment tree given an array A. The function
buildSegTree(A, 0, |A| — 1) will return the root of the segment tree. In line 2 we see how to
build a segment tree of a subarray with a single element, we just need a leaf node. If there is
more than one element in [a, b] the node has two children (lines 1, 3 and 4) and each takes
half the subarray, and then we get the index of the minimum element in [a, b] by using the
indexes of the minimums in the children (lines 5, 6 and 7). The < sign in line 5 ensures that
in case of a tie the left most will be chosen. The segment tree is built in O(|A|) time and
space, since there is 2 x |A| — 1 nodes and each node is built in constant time.

In Figure 2-5 we see how to change a value of A; to z. First we go to the leaf node in charge
of the range [i,7] and assign = to A; (lines 1 to 7). Then, as we backtrack we update the

2.4 Data structures implemented and used 13

Procedure : updateSegTree(node, i, x)

Input: SegTreeNode: node, integer: ¢, x
1. if node.a = node.b then
Ai =X
else
if i < node.le ftChild.b then
updateSegTree(node.le ftChild, i, x)
else
updateSegTree(node.rightChild, i, x)
if Ajepicnitd.indes < ArightChild.index then
node.index < node.le ftChild.index
else

node.index < node.rightChild.index

~ S 000N D s Lo de

NS

Figure 2-5.: Segment tree update procedure pseudo code

index of every visited node with the indexes of its children (lines 8 to 11). This procedure
works in O(lgn) since the height of the tree is O(lgn).

Function : querySegTree(node, 1, j)

Input: SegTreeNode: node, integer: 7, j
. Define: leftAns, rightAns as integer
if node.a =1 and node.b = j then
return node.index
if j < node.leftChild.b then
return querySegTree(node.leftChild, i, j)
if 1 > node.rightChild.a then
return querySegTree(node.rightChild, i, j)
leftAns < querySegTree(node.le ftChild, i, node.le ftChild.b)
right Ans <— querySegTree(node.rightChild, node.rightChild.a, j)
10. if Ajefrans < Arightans return leftAns
11. return right Ans

~

LRI o

Figure 2-6.: Segment tree query function pseudo code.

In Figure 2-6 we see how to get the index of the minimum value in the range [¢, j], it must
hold that node.a < ¢ < j < node.b. The base case is when the searched range equals the
range of node, the answer is node.index (lines 2 and 3). In lines 4 and 5 we see the case when
the range searched is completely inside the left child, and similarly in lines 6 and 7 the case
where the range is completely inside the right child. The only case left to consider is when
a part of the range is in the left child and another part in the right child. In this case we
recurse on both children (lines 8 and 9) and then pick the best answer out of the two (lines
10 and 11). Note that the < on line 10 ensures that in case of a tie, the leftmost index will

14 2 Preliminaries

be chosen. The complexity of this function is O(lgn) since on at most two nodes of each
level the recursion will split, which means that at most 4 nodes of each level will be visited.

Optimization

Instead of using a data class, the whole segment tree can be stored in just a 1-indexed integer
array T of size 2 * |A| — 1. T; will store the index of node i. The leaf node in charge of the
range [i,¢] will be i + |A|, so Tjyja) =i for 0 < i < |A|. This means that leaves are the nodes
|A| through 2 % |A| — 1. There is no need to keep pointers or the range of each node, if we
build 7" with this simple rule: The parent of i is |i/2]. From this rule we know that the
children of node 7 are 2 x4 and 2 %7 4 1.

With this segment tree implementation we achieve the same complexities for building, quer-
ying and updating operations. But the execution time of the segtree BA algorithm that will
be presented in Section 4.3 is halved by this optimization. Both implementations can be
found in the Appendix C and Appendix D.

2.4.2. Fenwick tree (Binary indexed tree - BIT)

The Binary indexed tree (BIT') or Fenwick tree, proposed by Peter M. Fenwick in 1994 [33],
is a data structure that can be used to maintain and query cumulative frequencies. In this
section we explain the main ideas and operations of the BIT data structure that will be used
later in this document. We also describe the complexities associated with the BIT operations
we will use.

The BIT data structure keeps an abstraction of an array A with positions indexed from 1
to n. Initially the BIT is assumed to be full of zeros.
BIT - Operations

Here we present the two BIT operations of interest:

» sumUpTo(tree,i): Returns A; + Az +... + A;. The complexity is O(lgn).

» addAt(tree,i,z): Add = to A;. The complexity is O(lgn).

The BIT is in memory an array we are going to call tree, with position from 1 to n so
that: tree; = A;_piiy+1 + Aicwity+2+ - -+ Aq, where lbit(x) = bitwise AN D(x, —z). Here
bitwise AN D(a, b) is the bit to bit logical and in the binary representation of two integers,
and —z is the two’s complement of . So lbit(x) is a function that returns the value of the
least significant bit of = in its binary representation (e.g. [bit(10) = 2 since since 6 = 1010

2.4 Data structures implemented and used 15

[1-16 []

| IS []

| 4 [] n 912 []

AN ﬁrﬂj giaan ’]—V’"ﬂ] O ﬁﬂ-ﬁu RIEAEN ﬁmﬂ ,
Tree 5 8 1 13 5 8 1 24 1 6 4 16 4 4 6 57
Array 5 1 4 5 3 1 2 1 5 4 6 4 0 6 7
Indexes 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16
Binary indexes 1 10 1 100 101 10 111] 1000 1001] 1010 1011 100 1101 1110 1111 10000

Figure 2-7.: Binary indexed tree graphic example.

Function : sumUpTo(tree, 1)

Input: integer array: tree = tree, _,, integer: ¢
Output: A, + As +... + A;

1. Define: sum < 0 as integer

2. while 7 > 0 do

3. sum < sum + treeli]

4. i< i — bitwise AND(i,—1)

5. return sum

Figure 2-8.: Binary indexed tree function sumUpTo(tree,1).

(here the subindex 2 means the base in which the number is written;10 in base 2), the least
significant bit is 105 and has a value of 4. See Figure 2-7.

With the tree array we can do sumUpTo as shown in the function in Figure 2-8. The
complexity is in O(lgn), since by subtracting bitwise AN D(i,—i) from i we get the binary
representation of ¢ without the least significant bit, so we remove one bit on each iteration.
So the number of iterations is the number of bits 1 in i. As an example: sumUpTo(tree, 11)
will add the values of treeiy, treejy and treeg and return them.

Procedure : addAt(bit, i,)

Input: integer array: tree = tree;, ., integer: i, x
1. while i <n do

2. tree; < tree; +

3. i< i+ bitwiseAND(i, —1)

Figure 2-9.: Binary indexed tree function: addAt(bit, i, x).

In Figure 2-9 we see how to increment the value of A; by z, we update all the elements
of tree that contain A; in their sum (Line 2). The indexes of tree to update are obtained
starting with 7 and then incrementing ¢ by its least significant bit on each iteration (Line 3).

16 2 Preliminaries

What line 3 does is assign to ¢ the next smallest index of tree which sum contains the sum of
tree; (e.g. if i starts at 5, the positions of tree updated will be: 5, 6, 8 and 16, in that order,
see Figure 2-7). The complexity is O(lgn) since after each iteration the least significant bit
of ¢ becomes bigger.

3. Definition of 0y—order preserving
matching problem (6y—OPMP)

In this thesis it was proposed to combine the paradigms of patterns searching known as
0y—matching and order preserving matching. These two problems share some aspects,
and can be formulated on the same basis:

= The search for a pattern P of length m is made on a text T" of length n.

= The output of an algorithm is a series of positions within the text T: the positions
where there is a match.

= Both the text and the pattern can be considered as consisting of symbols of an integer
alphabet that could well be a subset of the natural numbers. This would make possible
its application finance, text searches and musical information retrieval, since in all
these fields, the abstraction of reality can be made by mapping the changes of values
in time to a finite set of integers.

= Each of these two problems has different applications and advantages over the other
depending on how a given practical problem is addressed.

= They also have a number of solutions that work well for each case.

Based on these similarities it was possible to formulate a new string pattern matching pro-
blem in integer sequences which combines the advantages of the approximate pattern mat-
ching based on 0 and ~ parameters with those of the order preserving matching problem.
The result is a tool that would at least have the same applications possibilities as the order
preserving matching applications, but with the flexibility to allow approximate matching
under parameters ¢ and . In Section 3.1 we will explain the definition of the new problem:
0y7—OPMP and in Section 3.2 we will give several examples to clarify the problem.

3.1. The proposal of order preserving matching under 6~
approximation

Given the possibility of combining the two mentioned problems (6y—Matching and OP M)
in a new variant of approximate pattern matching for integer alphabet, in this thesis we

18 3 Definition of §y—order preserving matching problem (6y—OPMP)

formally formulate and design the definition and solutions of this new variation of the well
known string matching problem. This problem, its solutions and applications will have the
advantages of both approaches. In this variant the pattern to be searched has a relative order
similar to that found in the text, and this similarity will be given by the ¢ and + parameters.
The application of the restrictions is done taking into account the differences in the ranking
of each symbol in the pattern and the ranking of each symbol in the text window. This new
problem is interesting algorithmically since it required the application of different techniques
and data structures to design its solution, since the union of these two approaches has not
been considered. Now we will formally define the dy—order-preserving match, and with
that definition we will define the §y—order-preserving matching (0y—OPMP).

Definition 3 (0y—order-preserving match) Let X = Xq 1 and Y = Yy 1 be two
equal-length strings defined over ¥,. Also, let §,~ be two given numbers (5, € N). Strings
X and Y are said to dy—order-preserving match, denoted as X 2% Y, iff nr(X) 2 nr(Y).

Example 3 Given § = 2, v =6, X = (10,15, 19,12, 11,18, 23,22) and Y = (14, 17, 20, 18,
12,15, 23,22), X &% Y as nr(X) = (1,4, 6,3, 2,5, 8,7), nr(Y) = (2,4, 6,5, 1,3, 8,7) and
nr(X) 2 nr(Y).

Problem 3 (dy—order-preserving matching (:v—OPMP)) Let P = Fy_,,—1 be a pat-
tern string and T =Ty, ,,_1 be a text string, both defined over X,. Also, let 6,7 be two given
numbers (6,7 € N). The §y—order-preserving matching problem is to calculate the set of all
indices i, 0 < i < mn —m, satisfying the condition P 2% T*. From now on 6y—OPMZP.

3.2. Examples of 6v—OPMP

For the sake of clarity as to how the two variations of the pattern matching problem were
combined (dy—Matching and Order-preserving matching), see in Figure 3-1 in conjunction
with Table 3-1 an example of text T" and pattern P, and a v match. In this example, at
position 2 of the text T, there is an order preserving match under parameters § = 2 and
~ = 8 of the pattern P. These restriction apply to the natural representation of the pattern,
and the natural representation of T2, i.e. nr(P) and nr(T?). T?, as we said before, is the the
length— m search window starting at position 2 of the text 7. The 0~ restriction are fulfilled
since, as shown in the penultimate row of Table 3-1, the maximum difference in the P and
T rankings in the search window is at most 2 (0) and the sum of the differences is 8 (v in
the last row). In Figure 3-2 we show the example given in Chapter 1 with given values in
Table 3-2 for clarity.

3.2 Examples of 6v—OPMP 19
1 0|1 12|84 |56 |7 8|9 1011|1213 |14 |15
T; 36 |40 | 35| 45 |27 | 37|23 |21 (39|24 |41 |31 |22 |48 |40 | 35
J 0|1 2|84 |56 |78]9 |10]|11)|12
nr(T?) 7127583194116 2][13][10
P 30|41 | 27140 |22 |21 |34 |22|45 |27 |21 | 44 | 42
nr(P) 711059 3|1 |8 4|13]6 | 2 |12]11
Inr(T%); — nr(P);] 0Ol2/0]1]0]o|1lo[2]0[0]1]1
6 = max(|nr(T?); — nr(P);| 2
v =312 Inr(T%); — nr(P),| 8
Table 3-1.: Order preserving matching problem under ¢ and ~
50 -
45 -
T
40 o p
35 -)
€ nr(T?)
30 1 - nr(P)
25 -
20 -~
15 4
10 -
5 -
0 _
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Figure 3-1.: Order preserving matching under ¢ and v approximation example.

20 3 Definition of §y—order preserving matching problem (6y—OPMP)

nr(Ty.g)

nr(Ty1.18)
nr(P)

b ¢ ¢ ¢ 0

Figure 3-2.:)v—OPMP example from introduction explained.
Example of §y—order-preserving matching. In this example, § = 2, v = 6 and integer strings T =
(9,10,15,19,12,11, 18, 23,22, 26,7, 14, 16,21, 17,13, 20, 25, 24, 8) and P = (14,17,20,18, 12,15, 23, 22) are de-
fined over Yog. The X-axis and the Y-axis respectively correspond to the positions and values and rankings
of both the pattern P and the substrings in T" where there is two approximate order preserving matches with
0 =2 and v = 6 in positions 1 and 11. The figure in the lower side shows the similarity between the natural

representation of the pattern and the natural representation of the substrings 77, g and 771, 1s.

i 0] 1]2]3]4 617819
T, 9 10|15 | 19| 12 18 [23 | 22| 26
nr(T7) 14|63 518 |7
] 0 1]2]3 516 |7
P, 14 |17 |20 | 18 15 [23] 22
nr(P) 2465 3187
nr(T7); — nr(P);] 1]0]0]2 2010

6 = max(|nr(T); — nr(P),|
N = 237':0 |nr(T1)j — nr(P);|

7 10 | 11 | 12 | 18 16 | 17 | 18 | 19
T; 7 |14 |16 |21 |17 20125124 | 8
nr (T 11364 58 |7
J 0 1 2 3) 6 7
Pj 14 | 17 | 20 | 18 15 | 23 | 22
nr(P) 24,65 38 |7
[(T7); — nr(P)] T 101 2100

6 = maz(Inr(T"); — nr(P),|)
v =2 |nr(Th); — nr(P)|

Table 3-2.: 57—OPMP example from introduction explained.

~
B
E= TS e R RN T Ry e (= T e e e RN] R RN

4. Proposed algorithms to solve the
oyv—-OPMP

In this chapter, we present four algorithms that solve the Jy—Order preserving matching
problem (64—OPMP). All our algorithms work in a similar way to many string search algo-
rithms (examples of pattern search approaches with sliding window can be found in [16]).
There is always a sliding window to check if there is a match, from positions 0 until position
n —m of the text. A sliding window is a length—m substring of the text that moves in every
iteration of the search algorithm by one or more positions. We assume that the size of the
pattern is always much smaller than the size of the text (m << n).

The first algorithm, we call naiveA, is the naive algorithm with a complexity of ©(nmlgm).
The naive algorithm tries all possible positions, and for each one of them verifies if there
is a match in ©(mlgm + m) time. The complete description on this algorithm is presented
in Section 4.1. The second algorithm, we call update BA, is based on a linear update and
verification, ©(m), of the sliding window. The complexity of the second algorithm ©(nm)
and is presented in Section 4.2.

The third algorithm is based on the segment tree data structure, we call it segtree BA. For
each window, the algorithm iterates ranks from 1 to m checking if the §7 restrictions hold.
The complexity of the third algorithm is O(nmlgn). The last algorithm we present is based
on the Fenwick tree data structure, also known as binary indexed tree or BIT (BIT from
now on). We call the last algorithm: bit BA. Tt uses a BIT to calculate rankings in the sliding
window and compare them to the rankings in the natural representation of the pattern. The
complexity of the BIT-Based algorithm is O(nmlgn). The data structure based algorithms,
both have a complexity of Q(nlgn), i.e. a better lower bound than the first two algorithms.
the segtree BA is presented in in Section 4.3 and bit BA in Section 4.4. The C++ code of all
algorithms can be found in Appendix A (naiveA), Appendix B (updateBA), Appendix C
(segtree BA implemented with pointers and classes), Appendix D (segtree BA implemented
with arrays) and Appendix E (bitBA).

The difference between the third and fourth algorithm, besides the data structure used,
is the order in which the search window is analyzed, and the way the individual ranks in
the search window are calculated. In the segment tree-based solution the positions in the

22 4 Proposed algorithms to solve the 6y—-OPMP

sliding window are analyzed in ascending order of the their rank and not in the order they
appear: first the smallest element in the sliding window, element with rank 1, then the second
smallest element in the sliding window, element with rank 2, and so on, until the biggest
element in the sliding window, with rank m. In the BIT-based Solution, the sliding window
T" is analyzed in the order that the symbols appear: first T¢, then T}, and so on until 77 .

We now present some operations common to several algorithms:

= Random Access: All the random accesses to get the i—th symbol or element in a string,

list or array; denoted in the algorithm with sub index (e.g. X;) are considered to have
O(1).

» isAMatch(Y, X,0,7): Returns true if f X 2% Y. X and Y both of size m. When X
and Y are original strings, the complexity of this function is O(mlgm +m). The term
mlgm is due to the calculation of the natural representation of each string. The term
m is due to the rank by rank comparison to check if the parameters ¢ and + hold. If
X and Y are the natural representation of two strings, i.e. each a permutation of the
numbers between 1 and n, the complexity of this function is O(m), because the only
work it does is checking for every position if the restrictions é and « holds.

4.1. Naive algorithm (naiveA)

The first algorithm to solve the 6y—OPMP we present, is the naive algorithm (see Figure 4-
1). This algorithm iterates over all possible candidates T%,0 < i < n — m, and for each T"
decides in ©(mlgm + m) time if there is an dy—order preserving match. The complexity
can be calculated as follows. The cost of creating P"" = nr(P) in line 1 is ©(mlgm). The
algorithm iterates over all n—m+1 possible candidates to a match. And for each one of them,
it creates T™" = nr(T") in ©(mlgm) time and verifies if there is a match in ©(m) time. The
total complexity of the algorithm is then ©((n—m+1)(mlgm+m)+mlgm) = O(nmlgm).

Algorithm 1:)v—OPMP naiveA

Input: P =Py 1,7 =Ty n1,0,7

Output: {i € {0,...,n —m} : T" 2 P}

1. Create as Array: P" < nr(P)
2.fort1=0—-n—mdo

8. T« nr(TY

4. if isAMatch(T™, P" §,~) then report i

Figure 4-1.: Naive algorithm: naiveA.

4.2 Update based algorithm (update BA) 23

4.2. Update based algorithm (update BA)

The second algorithm we present for the y—OPMP (see Figure 4-2) has two phases: pre-
processing and searching. In the preprocessing phase, we find the natural representation of
the pattern and the natural representation of the first text window (i.e. T°), which takes
O(mlgm). In the searching phase, we consider every candidate substring from 7° to 7"~
to decide in ©(m) time if it is a dy—order preserving match under the given values. In par-
ticular, in order to achieve such complexity, we update some data structures to compute
the natural representation of each text substring as the window slides. When we process the
window 7% = T} _;ym_1, we update in ©(m) the data structures needed to process the next
search window. The total complexity is given by the cost of the preprocessing phase, plus the
cost of iterating over all candidate positions, and for each one of them updating the natural
representation of the search window and checking if there is a match. Then, the complexity
of the proposed update based algorithm is ©((n —m + 1)m + mlgm) = O(nm).

The data structures that we use to be able to process each text window in ©(m) time
complexity are:

= An integer array P™" with the natural representation of the pattern P. Its construction
cost is ©(mlgm). The cost of the random access operations is O(1). A native array in
many programming languages will suffice.

= A list 7™ with the natural representation of each sliding window. Its construction
cost is O(mlgm). In each iteration of the main loop of the algorithm, the list will be
updated in ©(m) time. To get the desired complexity of the algorithm, the 7™ list must
have a complexity of O(1) (amortized or not) for the random access operation, adding
elements at the end, and removing elements at the beginning. Such data structure
could be, for example, a deque in the standard template library of C++ (see [23] for
more on the C++ deque).

Operations in the list T™":

» add(z): Adds an integer to the end. It has a complexity of O(1).

» removeFirst(): It removes the first element. It has a complexity of O(1).

The algorithm works as follows. In the preprocessing phase it creates the list 77" a list of
size m with the natural representation of 77, it cost ©(mlgm). It also creates the list P,
of size m, with the natural representation of the pattern P, with cost ©(mlgm). This phase
has a time complexity of ©(mlgm). In the search phase, there is a verification of §vy order
preserving match at position ¢ in the main loop. The verification phase is a very simple
function with complexity ©(m), which takes 7" and P™", and checks if there is a §y—order

24 4 Proposed algorithms to solve the 6y—-OPMP

preserving match (line 5). The update of the sliding window is done by removing the first
element of 7", and then appending the new rank (rank of element 7}, in the window), this
will change some ranks in 7™ (lines 6 to 14 in Figure 4-2). Finally, the last search window
is checked for a 9y-OPM (line 15).

Algorithm 2: 6y~OPMP updateBA

Input: P =Py 1,7 =To. n-1,0,7
Output: {i € {0,...,n —m} : T* 2% P}
1. Create as List: T™ < nr(T°)

2. Create as Array: P < nr(P)

3. Define: rankToDelete, valueT oAdd, rankToAdd as integers
4.fort=0—-n—m—1do

5. if isAMatch(T™, P™,0,7) then report i

6. rankToDelete < T§"

7. walueToAdd + Tz+m

8. T".removeFirst()

9. rankToAdd < 1

10. for 7=0—m—2 do

11. if 7" > rankToDelete then T} < T — 1

12. if TH 1 <= valueToAdd then rankToAdd + rankToAdd +1
15. else T7" « T + 1

14. T"T.add(rank‘ToAdd)
15. if isAMatch(T™, P, §,~) then report n —m

Figure 4-2.: Update based algorithm: updateBA.

4.3. Segment tree based algorithm (segtree BA)

This solution, settreeBA, in Figure 4-3, based on segment tree (see [1] for more on segment
tree data structure), first calculates the natural representation of the pattern P (line 1 in
Figure 4-3). Then, it iterates over all possible position and tries to find §y-order preserving
matches in every one of them. The process of finding a match at position i in T is as follows:
First the algorithm finds the smallest number in the interval [i,z’ +m — 1} (line 8); this
value has the rank 1 in the sliding window T". It then uses the natural representation of
P to check the ¢ and v restrictions for the rank 1 in the window 7% Then it prepares
the segment tree for the next iteration; this is done by changing the smallest value in the
interval [i, 1+m— 1] to infinity, so in the next iteration of the first inner loop the operation
querySegTree(minIndex,i,i +m — 1) finds the second smallest value in the same interval.
This process is done for all the rankings from 1 to m.

In the second inner loop (lines 17 and 18 in Figure 4-3), the values of T" in the interval
[Z‘, I+ m— 1] must be changed so in the next window those contain the original values of T’

4.3 Segment tree based algorithm (segtreeBA) 25

and no infinity. The arrays oldV alue and changedIndez help in the process of restoring the
segment tree. We are going to adapt the operations of the segment tree described in Chapter 2
to this solution. Here the segment tree is built on the node—type variable minIndex:

» buildSegTree(T,0,n — 1): Builds a segment tree with Ty, T} ,..., T,,—1 and returns
the root node. The complexity is O(n).

» updateSegTree(minlndex,i,z): Sets T; to x. The complexity is O(lgn).

» querySegTree(minindex,i,j): Returns the index of the minimum value among 7T,
Tiv1 ..., T;. If there are several minimum values, the leftmost (smallest index) is
chosen. The complexity is O(lgn).

Algorithm 3:)7—OPMP segtreeBA

IHPUt: P = PO...m—la T = TO...n—la 57 Y

Output: {i € {0,...,n —m} : T" 2 P}

1. Create as Array: P" < nr(P)

2. Create as Array of size m: oldV alue,changedIndex

3. Create as Segment Tree: minIndex < buildSegTree(T,0,n — 1)

4. Define: curDelta,curGamma,rank,idxT idx P,nChanges as integers
5. nChanges < 0

6. for i =0—n—m do

7. for rank =1 — m do

8. idxT < querySegTree(minIndex,i,i +m — 1)

9. 1de P < idxT — 1

10. curDelta < |rank — Pl |

11. curGamma < curGamma + cur Delta

12. if curDelta > delta V curGamma > gamma then break loop
15. changedIndex,Changes < idxT

14. oldV alue,Changes < Tigor

15. nChanges <— nChanges + 1

16. updateSegTree(minIndex,idxT, o)

17. for ¢ =0 — nChanges — 1 do

18. updateSegTree(minlndex, changedIndez., oldV alue,)

19. if rank > m then report i
20. nChanges < 0

Figure 4-3.: Segment tree based algorithm: segtree BA.

The complexity of segtreeBA can be computed as follows: In line 1 in Figure 4-3, the
algorithm creates the natural representation of the pattern with cost ©(mlgm). In line 2 it
creates two arrays of size m in ©(m). In line 3 a segment tree is created in O(n). Then in the
main loop it iterates over all n —m + 1 candidates. For each candidate it finds the elements
with ranks 1 to m using the segment tree. Finding the position of each rank in the window
costs O(lgn). After each rank position finding, the algorithm checks if the d- restrictions

26 4 Proposed algorithms to solve the 6y—-OPMP

holds for the current window (lines 10 to 12). If so, it continue with the next rank; if not,
the algorithm breaks the inner loop and continues with the next search window (line 12).

Due to the fact that the segment tree is used to find the smallest element in an interval, the
algorithm must mark as oo the position of each rank. Then, in the next iteration, the next
smallest element that is found, is the next rank. These changes are done in O(lgn) time
(lines 13 to 16). Reversing those changes cost O(mlgn) (lines 17 to 18). In fact, the inner
loops (lines 7 to 20) have a combined complexity of O(mlgn), but also have a lower bound
of Q(lgn). It is important to notice that this algorithm has a better lower bound than the
first two algorithms (naiveA and updateBA). This because it can abort the analysis of a
sliding window when it detects that either the § or 7 restrictions does not hold. The lower
bound of this algorithm is then Q(nlgn), because in many cases it does not perform the m
comparisons of cost O(lgn). The total complexity of the algorithm is then O(n + nlgn +
mlgm+ (n—m+1)(mlgn)) = O(nmlgn), but with a lower bound of Q(nlgn).

4.4. Fenwick tree based algorithm (bitBA)

This algorithm, bit BA, showed in Figure 4-4, uses a binary indexed tree (BIT or Fenwick
tree) data structure (see [33] for more information on this data structure) to find the ranks in
the sliding window. The BIT is a well known data structure that is mainly used to efficiently
calculate prefix sums in an array of numbers. The BIT data structure could be considered
then as an abstraction of an integer array of size n indexed from 1, i.e. a bit encapsulate
A= AAy--- A,. The version we are going to use has two operations:

» sumUpTo(tree,i): Returns A; + As +... + A;. The complexity is O(lgn).
» addAt(tree,i,x): Sums z to A;. The complexity is O(lgn).

The algorithm has a preprocessing phase in which the data structures needed to solve the
d7—OPMP are created. This is done with a complexity of ©(n 4+ nlgn + mlgm). The term
n is due to the creation of the BIT. The term nlgn is due to the creation of 7™ and the
term m 1gm is due to the creation of P™". In the searching phase, it iterates over all possible
positions in the text T" to find the existing matches. For each position ¢ to be considered, the
algorithm uses the BIT to get the rank of every symbol in the searching window T;_;ym_1,
and then each rank in the window is compared with each rank in P™ to check if 7% is a 6~
order preserving match. Each rank calculation using the BIT costs O(lgn). Then the total
complexity of the algorithm is O(nlgn+mlgm+(n—m+1)(mlgn)) = O(nmlgn). Similar
to segtreeBA, bit BA has a better lower bound in comparison to naive BA and update BA,
it is: Q(nlgn) because, in many cases, bit BA does not perform the m comparisons of cost
O(lgn). The total complexity of bit BA is then O(n+nlgn+mlgm+ (n—m+1)(mlgn))
= O(nmlgn), but with a lower bound of Q(nlgn).

4.4 Fenwick tree based algorithm (bitBA) 27

In the preprocessing phase, the algorithm first creates the natural representations of the
pattern P and the text T (P™ and T™", respectively). Then, it creates a BIT which is an
encapsulation of an array with n positions numbered from 1 to n. Then assigns 1 the posi-
tions T3, 17, ... T, (Lines 1 to 5 in Figure 4-4).

In the searching phase, for each candidate position ¢, the algorithm computes the rank of
each symbol T, ;,0 < j < m — 1 using sumUpTo(i + j). After checking if there is a match
at position 7, the BIT must be updated in each iteration to consider symbol 7;,,, (line 7 in
Figure 4-4). And the BIT must be updated so it does not consider the position ¢ in the next
search window (line 9 in Figure 4-4).

Algorithm 4:)y~ OPMP bitBA

Input: P =Py 1,17 =To. n-1,0,7 25
Output: {i € {0,...,n —m} : T* 2, P}
1. Create as Array: T"" < nr(T)

2. Create as Array: P < nr(P)

3. Create as Array of size n: bit

4.for i=0—m —2 do

5. addAt(bit, T, 1)

6. for i =0—n—m do

7. addAt(bit, T), _1,1)

8. isAMatch(i,bit, T, P"" ¢, ~) then report i
9. addAt(bit, T, —1)

Figure 4-4.: BIT based algorithm: bitBA.

To understand better how bit BA works, consider for example consider the text 7' = (10, 5,
8,12, 3,9) and the pattern P = (6,2,4). In line 1 of Figure 4-4, we create T"" = (5, 2,3, 6, 1,
4) and P™ = (3,1,2) in line 2. The BIT is considered for this application as an encapsulation
of an array with indices from 1 to n. In line 3 of the algorithm in Figure 4-4, we create a
BIT which is an encapsulation of the array: bit = (0,1,1,0, 1,0). The 1 at positions 2, 3 and
5 (indexed from 1) are there because those three numbers are the first m (3 in this example)
numbers in T™". To check the rank for example of T, = 10, in the natural representation
of the first search window Ty 2, we must compute sumUpTo(T}{;) = sumUpTo(Ty,) =
sumUpTo(TF") = sumUpTo(5) = 3. This can be seen in the bit, because the sum from
position 1 to position 5 in bit is 3. In a similar fashion, we can compute the rank of 75 in the
first search window: sumUpTo(T}{;) = sumUpTo(Tg],) = sumUpTo(13") = sumUpTo(3) =
2, and the rank of 7} in the first search window: sumUpTo(T}y;) = sumUpTo(Tg},) =
sumUpTo(T]") = sumUpTo(2) = 1. In other words, each call to sumUpTo(1}'") counts the

number of symbols lower or equal to T}, that are in the current window.

28 4 Proposed algorithms to solve the 6y—-OPMP

Function : isAMatch(i, bit, T™ P™ §,~)

Input: ¢, bit, T, P™ 6,y

Output: true if: 7" 2% P}, false otherwise
1. Define: gamma < 0 as integer

2.for j=0—m—1do

8. rank < sumUpTo(bit, T}\;)

4. delta < [P — rank|

5 gamma < gamma + delta

6

if delta > 0 V gamma >) then return false
7. return true

Figure 4-5.: Function: isAMatch(i, bit, T™", P"" §, 7).

So we can see that the natural representation of any search window can be calculated symbol
by symbol using the operation of the BIT data structure, and in some cases it can ignore
some rank calculations when the parameters 6 and ~ are relatively low. In those cases, i.e.
when is very unlikely that in a given application a match occurs, the algorithm will very
often break the search in a given window in line 6 of the function in Figure 4-5.

5. Experiments

In this section, we describe the experimental setup we designed to evaluate the performance
of the proposed algorithms. We compare the four algorithms. The algorithms to compare,
naiveA, update BA, segtree BA and bit BA have similar theoretical complexities. The naive
algorithm have a theoretical complexity of ©(nmlgm), the algorithm based on a O(m)
update of the every search window in linear time, update BA has a complexity of ©(nm),
and the algorithms based on data structures both have complexities O(nm lgn) for the worst
case and 2(nlgn) lower bound. In Section 5.1 we present the experimental framework, while
we describe the data generation in Section 5.2. Then, in Section 5.3, we discuss the results
obtained. Finally in Section 5.4 we show the results of the experiments directed to detect
how the algorithms segtree BA and bit BA behave when in all the experiment instances the
worst, case came up.

5.1. Experimental setup

In Section 5.1.1, we describe the hardware and software used for the experiments. Then, we
show how we vary the input parameters in Section 5.1.2.

5.1.1. Hardware and software

All the algorithms were implemented using C++. The computer used for the experiments
was a Lenovo ThinkPad with a processor Intel(R) Core(TM) i7 4600u CPU @ 2.10GHz 2.69
GHz and installed RAM memory of 8GB. The computer was running 64-bit Linux Ubuntu
14.04.5 LTS. The C++ compiler version was g++ (Ubuntu 4.8.4-2ubuntul 14.04.3) 4.8.4.

5.1.2. Parameters

It is clear that the defined problem has several parameters. They may change depending on
the area of study in which the problem and string searching algorithms are applied. To show
how our solution behaves with different configuration of the given parameters, we perform
five types of experiments. In each experiment, we vary one of the given parameters n, m, 9,
~v and o, and let the other four parameters fixed at a given value. We chose the fixed values
after several attempts via try and error to find values that produced results varying from
no matches to matches near the value of n. For each experiment type, we performed five

30 5 Experiments

Varying n | Varying m | Varying ¢ | Varying v | Varying o
n [?2)20’26??888] 10000 10000 10000 10000
m 40 A[BT?”; 620(;)]0 40 40 40
5 10 0| 92 1 10
y 60 60 60 A[(By’ 5:7%]0 60
o 100 100 100 100 [A1§7i4;)]2

Table 5-1.: Experimental values of n m, §, v and o.

Secs

0.10+ .
o naiveA

0.084 O 0 0 OO OO OO O 0O OO OO O O 0 O . updateBA
0.06 x segtreeBA
’ o bitBA
0.04 P L D R A I A A . A B N B
0.024 x X X X X X X X X X X X X X X X X

Q] é 0O 0O0OOOODODODOOOODODODOOGDODO OO
0.004 T T T T o

0 50 100 150 200

Figure 5-1.: Experiments varying the parameter ¢.

different experiments and took the median as the value to plot, making the median of five
experiments the representative value for a experiment configuration of values n m, §, v and
0. The variation of the parameter values for each experiment type is presented in Table 5-1.

5.2. Random data generation

An experiment consists of two stages. The first stage is the pseudo-random generation of a
text T' of length n and the pattern P of length m. The second stage is the execution of the
algorithms on the generated strings P and 7. The random generation of each character of
both the pattern P and the text T is done by calling a function that pseudo-randomly and
selects a number between 1 and o with the same probability for each number to be selected,
i.e., all symbols have the same probability to appear in a position and for that reason, the
count of each symbol on a generated string will be similar to the quantities of the others
symbols in the alphabet.

5.2 Random data generation

31

Secs
0.10-
(]
OOS_OOOOOOOOOOOOOOOOOOO .
x
0.06-
o
0.04
+ + + + + + + + + + + + + + + + + + +
0.024
0_00?9QQQQQIQQQQQQQIQQQQQQ 7/
0 200 400
Figure 5-2.: Experiments varying the parameter ~.
secs
0.10+
o
°°Oooooooooooooo
0.08 o o oo .
x
0.06
o
0.04
+ + + + + + + + + + o+ F o+ o+ o+ o+ o+ *
0.02-
0_00999999999999999999992
0 50 100 150 200
Figure 5-3.: Experiments varying alphabet size |3|.
secs
0.6+
o
(]
o ° ° ’
0.4 o ©° x
o
o ° o
° o
0.2- o©°° ettt
° o PR +
-] PR + *
+
ool g;.;.’...ggggaaaaaaaa n

20000 40000 60000

Figure 5-4.: Experiments varying text size n.

naiveA
updateBA
segtreeBA
bitBA

naiveA
updateBA
segtreeBA
bitBA

naiveA
updateBA
segtreeBA
bitBA

32

5 Experiments

secs
2.0 .
o naiveA
1.5- 0 © ° + updateBA
o © ° x segtreeBA
1.0 0 ©° o bitBA
o ° ° . v 1 *
o s + *
0.5 ° + *
o ° M
o s + 1
. v !
0.0-—O—g—.—.—.—.—r% m
0 200 400 600

secs
0.05+

0.04

0.03+

0.02+

0.01+

0.00-
0

Figure 5-5.: Experiments varying pattern size m.

$ 0
| o 8

o segtreeBA
+ * + bitBA

+
o
. + ° o ©
+ oO
oO

T T 1 N
20000 40000 60000

Figure 5-6.: Experiments varying text size n (bitBA vs segtree BA).

Secs
0.025-

0.020+

0.015+

0.010+

0.0054

0.000

o segtreeBA

©O 000 O OOOOOGO OO OOGO OO0 O + DbitBA

50 100 150 200

Figure 5-7.: Experiments varying pattern size m (bitBA vs segtreeBA).

5.3 Experimental results and analysis 33

5.3. Experimental results and analysis

The first result to highlight is the fact that, in every experiment, is that the naive algorithm
always have the worst performance, as expected. The results shown in Figures 5-2, 5-3 and
5-1 show that the size of the alphabet and the parameters § and v have practically no impact
on the execution time of any of the algorithms, they all show nearly constant time behavior.

Figures 5-4 and 5-5 verify the theoretical complexity analysis that states that n and m are
the parameters that really determine the growth in the execution time of all the algorithms.
In Figure 5-4, m is a constant and n is a variable while in Figure 5-5, n is a constant and m
is a variable. It is important to notice that, under these conditions, the graphs are expected
to be linear and the experiments verify that.

In the figures where we show the result of varying the parameter n and the parameter m, (Fi-
gures 5-4 and 5-5 show the behavior of all four algorithms while Figures 5-6 and 5-7 only
show the best two algorithms on the same data), which are the main variables in the comple-
xities, we can see that the best two algorithms are the based on data structures (segtre BA
and bit BA), this despite the fact that these two algorithms have a higher upper bound on
their complexities in relation with the first two algorithms (naiveA and update BA). This
result can be explained by the fact that the lower bound on the data structure based algo-
rithms is considerably lower in comparison with the other two. The lower bound of the data
structures based algorithms is Q(nlgn) and the lower bound of the naiveA and update BA
is the same as their upper bound which is ©(nmlgm) and ©(nm) respectively. This can be
understood by taking into account that the first two algorithms check for a match after a
natural representation of every window is completely obtained; on the contrary, data struc-
ture based algorithm break the calculation of a given natural representation of a window if
at some point the ¢ or v restriction do not hold.

Given the result of the experiments it is safe to say that the algorithms based on data
structures are faster in most cases, especially if they are going to be used in applications
where very few matches are expected to appear, this is due to their lower bound of complexity.
We test two different implementations of the segment tree data structure. One based on
classes and pointers, and the other based on an array. In Chapter 2 we show the classes
based implementation, and for the experiment we use both. Finally we chose the array based
as representative for the segment tree based solution and the experiments plots show their
results. The array—based segment tree is almost twice time faster than the classes—based
implementation.

34 5 Experiments

secs

2.0+ .
o naiveA

1.5 L x + updateBA

x x segtreeBA

X
1.0 X o bitBA
X
X x x
0.5- "
x X 00 @ 9@
x @ @ @ @
00--&-‘-‘-I33333nnlnnuunn? n
0 20000 40000 60000

Figure 5-8.: Experiments varying pattern size n (Worst case bit BA and segtreeBA).

Secs
1.5

o naiveA
« x + updateBA
1.0+ L X * x segtreeBA
N o bitBA
X
x
0.5- x %
x
x * 9 9
x
x @ © © © o
x 2 e @ oooo0O
00-—‘—’—‘—'—'—999@??????----”
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38

Figure 5-9.: Experiments varying pattern size m (Worst case bit BA and segtreeBA).

5.4. Worst case experiments on seegtre BA and bit BA

Taking into account that the first two algorithms, naiveA and update BA both have com-
plexities in #—notation, i.e. their worst case is the same as their best case, the experiments
described so far are enough for their experimental analysis. For the data structures based
algorithms a more particular kind of experiment is needed, i.e. the worst case experimental
analysis. For this algorithms the worst case is when there is a match in every candidate
position. An easy way to generate data for the worst case is when all the symbols in both
the pattern P and the text T are the same. Other way to generate worst cases scenarios for
this two algorithms is when both P and T are strictly increasing or both strictly decreasing.
Results from this experiments show a fast degradation in experimental performance of the
segtree BA algorithm, but a very slow degradation of the bit BA algorithm. Results of this
last experiments are shown in Figures 5-8 and 5-9.

6. Applications

In this chapter we show a couple of applications of the defined problem, in music and finance.
For music we show h