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Bogotá, Colombia

2017





Dedicated to:

Juan Mendivelso for his continuous guidance,

support and patience. To Germán Hernandez

and Yoán Pinzón, the two greatest people I

have ever had as teachers, for their advices and

humanity.





Acknowledgment To my advisor Juan Mendivelso for his continuous feed-

back, advices and teachings in the writing process of this thesis. To Diego Niquefa, my

brother and undergrad student in System and Computer Engineering of the National Uni-

versity of Colombia - Bogotá, for his valuable ideas and advices related to the algorithms

and experimental setup used. To Gabriela Rojas, graduated from the Conservatory of Music

of the National University of Colombia, Bogotá, for her advices and inputs from a musical
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Abstract

In this thesis we combine two string searching related problems: the approximate string

matching under parameters δ and γ, and the order preserving matching problem. Order-

preserving matching regards the internal structure of the strings rather than their absolute

values while matching under δ and γ distances permit a level of error. We formally define

the δγ–order-preserving matching problem. We designed and implement in C++ four

algorithms that solve the proposed problem and an experimental setup to compare them.

The first algorithm is the naive algorithm with complexity Θ(nm lgm) time. The second has

a complexity of Θ(nm) time. The third and four algorithms are based on the segment tree

and Fenwick tree data structures, respectively, and both have O(nm log n) time complexi-

ties. The data structure based algorithms show better experimental performance due to their

better lower bound of Ω(n lg n) complexity. We show applications in music and finance.

Keywords: String searching, Experimental algorithm analysis, Strings similarity me-

tric, String searching algorithms, Fenwick tree, Binary indexed tree, Segment tree

Resumen

En esta tesis se combinan dos problemas de búsqueda de cadenas: la búsqueda aproximada

de cadenas bajo parámetros δγ, y el emparejamiento con preservación de orden. Uno permite

un nivel de error en la búsqueda, mientras que el otro considera la estructura interna de las

cadenas en lugar de sus valores absolutos. Se define formalmente el Emparejamiento con

preservación de orden bajo distancias δγ. Se diseñaron e implementaron en C++ cuatro

algoritmos que resuelven el problema, y una configuración experimental para compararlos.

El algoritmo más simple, tiene complejidad O(nm lgm). El segundo tiene una complejidad

de O(nm). El tercero y el cuarto se basan en estructuras de datos: árbol de segmentos y

árbol de fenwick respectivamente. Ambos tienen complejidad O(nm lg n). Los resultados ex-

perimentales muestran que los algoritmos basados en estructuras de datos tiene un mejor

rendimiento en muchos casos. El de mejor rendimiento experimental es del basado en el árbol

Fenwick, seguido por el basado en árboles de segmentos. Estos resultados se pueden explicar

debido a su complejidad Ω(n lg n). Se muestran aplicaciones en música y finanzas.

Palabras clave: Búsqueda de cadenas, Análisis experimental de algoritmos, Métrica de

similitud de cadenas, Árbol de Fenwick, Árbol indexado binario, Árbol de segmentos.
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1. Introduction

Stringology is the branch of computer science that is dedicated to the study of algorithms,

data structures and techniques related to the definition and solution of problems in which

sequences are involved. One of the main problems of interest in stringology is string mat-

ching (also called string pattern matching or simply pattern matching), which consists in

finding the occurrences of a pattern within a text, possibly according to certain conditions

or characteristics depending on the variation of the problem. Formally, the input of a string

matching algorithm is a text T , of length n, and a pattern P , of length m. Both the text

and the pattern are formed by the concatenation of symbols of a given alphabet Σ. This

alphabet for the vast majority of practical applications can be considered as an ordered set of

different symbols. It may well be the binary alphabet {0, 1}, the alphabet in bioinformatics

{A,G, T, C}, the alphabet given by the Spanish language or any other language. It can also

be the ASCII or UNICODE character alphabet. The strings will be considered throughout

the document as indexed from 0.

The output of a pattern matching algorithm can be: (i) a boolean that indicates whether

or not the pattern appears in the text; (ii) a number that indicates the position of the first

occurrence of the pattern in the text; or (iii) the list of positions in the text T where the

pattern P is found. In this thesis we will consider the problem with output (iii). A notation

generally used to represent substrings in a string, and which we will adopt in this document,

is the following: Let T0...n−1 represent a length-n string defined over Σ. The symbol at the

position i of a string T is denoted as Ti. Also, Ti...j represents the substring of the text

T from the position i to the position j, i.e. Ti...j = TiTi+1 · · ·Tj, where it is assumed that

0 ≤ i ≤ j < n. In particular, we are interested in each length-m substring that starts at

position i of the text, i.e. Ti...i+m−1, 0 ≤ i ≤ n −m, which we call text window and denote

as T i in the rest of the document. Then, the output of the exact string matching problem

should list all the positions i, 0 ≤ i ≤ n −m, such that Pj = Ti+j for all 0 ≤ j ≤ m − 1.

For example, for the text T = GATTACATTACATTACA and the pattern P = TTA, the

answer given by exact pattern matching algorithms would be {2, 7, 12} since the pattern

TTA is found at the positions 2, 7 and 12 of the text T . For information on string matching

algorithms, see for example: [16, 5].

In this thesis, two variants of the problem of exact search of patterns were combined: the

δγ–matching problem and the order preserving matching problem. First, in Section 1.1 we
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describe these two variants. Then, in Section 1.2 we define the problem considered in this

thesis. The objectives are outlined Section1.3. Finally, the structure of the document is

presented in Section 1.4.

1.1. Background

Exact string matching does not support all the applications. Therefore, many variants of

the problem have been defined to tackle specific problems. For instance, in some areas the

alphabet is drawn from a set of integer values. These integer strings are normally found in

cipher text, financial data, meteorology data, image data, and music data, to name some. In

such numeric strings, it would be unrealistic and ineffective to search for exact occurrences

of a pattern but rather ought to search for similar instances of it. Then, some variants of the

problem have been defined, including δγ-matching and order-preserving matching.

The δγ–matching problem consists of finding all the text windows in T for which: (i) the

distance to the corresponding symbols in P is at most δ; and (ii) the sum of such distances

is at most γ. In other words, the output of this problem is the set of positions i such that

|Pj − Ti+j| ≤ δ, 0 ≤ j ≤ m − 1, and
∑m−1

j=0 |Pj − Ti+j| ≤ γ. We can see that δ limits

the individual error of each position while γ limits the total error. Then, δγ–matching has

applications in bioinformatics, computer vision and music information retrieval, to name

some. Numerous algorithms have been design and tested to resolve δγ–matching (see for

instance [12, 26, 30, 21, 13, 25, 47, 20]). The approaches of these solutions make use of

different techniques such as bit parallelism, dynamic programming, and heuristics based

on occurrences (see [54] for a survey on solutions and related problems of δγ–matching).

Recently, it has been used to make more flexible other string matching paradigms such as

parameterized matching [48, 54], function matching [55] and jumbled matching [56, 57].

Cambouropoulos et al. [12] was perhaps the first to mention this algorithm motivated by

Crawford’s work et al. [24]. Variations of these works have been made to allow wildcards or

also known as do not care symbols [22, 6], transposition-invariant [47] and gaps [14, 15, 35].

δ–matching and δγ–matching are also related to other string similarity metrics like L1 and

L∞ also known as Manhattan distance and Chevyshev distance. For review of recent work

in this area, see e.g. [3, 4, 49, 52, 50, 51, 31].

On the other hand, order-preserving matching considers the order relations within the

numeric strings rather than the approximation of their values. In particular, the natural

representation of a string is a string composed by the rankings of each symbol in such

string. In particular, the ranking of symbol Ti, denoted as rankT (i), of string T0...n−1 is

1 + |{Tj < Ti : 0 ≤ j, i < n ∧ i 6= j}| + |{Tj = Ti : j < i}|. With definition of
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the rank of a character in a string, we can define the natural representation of a string,

denoted as nr(T) for any string T , as the concatenation of the ranks in the strings, i.e.

nr(T ) = rankT (0)rankT (1) · · · rankT (n−1). And with the natural representation of a string

of integers, we can define when a order-preserving match (OPM) occurs: Two string X and

Y , both of the same length, have an OPM iff nr(X) = nr(Y ). In a similar fashion, we can

say there is a OPM of a pattern P0...m−1 with T i iff nr(P ) = nr(T i).

Then, order-preserving matching consists of finding every text window in T such that its

natural representation matches the natural representation of P . Note that this problem is

interested in matching the internal structure of the strings rather than their values. Then,

it has important applications in music information retrieval and stock market analysis. Spe-

cifically, in music information retrieval, one may be interested in finding matches between

relative pitches; similarly, in stock market analysis the variation pattern of the share pri-

ces may be more interesting than the actual values of the prices [44]. The order preserving

matching problem can be considered an evolution of studies in combinatorial patterns of

permutations, although those had a different approach, in which they worked on avoiding

patterns (see for example [2, 9, 11, 37, 38, 41, 45, 53, 58]).

Since Kim et al. [44] and Kubica et al. [46] defined the problem, it has gained great atten-

tion from several other researchers [28, 27, 18, 32, 29, 40, 17, 40, 39]. Some approaches to

solve the order preserving matching problem include prefix tables and preprocessing using

indexing structures such as suffix trees [29, 28, 27]. Advances have been made in the design

of algorithms for its exact version, i.e. when there is a match between strings X and Y iff

nr(X) = nr(Y ). Results have been obtained in versions with preprocessing and indexing of

the text [29], as well as in approximate versions with k errors [36]. It has also been shown

that exact order preserving matching in permutations as a subsequence is a NP −Complete
problem, although some special cases have polynomial solutions [2, 38, 41]. Since its first

solutions [44, 46], the exact order preserving matching problem has had polynomial solutions

with practical implementations [8, 19, 18, 32, 40].

1.2. Definition of the Problem

Despite the extensive work on order-preserving matching, the only approximate variant in

previous literature, to the best of our knowledge, was recently proposed by Gawrychowski

and Uznański [36]. In particular, they allow k mismatches between the pattern and each

text window. Then, they regard the number of mismatches but not their magnitude. In

this thesis, we propose a different approach to approximate order-preserving matching that

bounds the magnitude of the mismatches through the δγ- distance. Specifically, δ is a bound

between the ranking of each character in the pattern and its corresponding character in the

text window; likewise, γ is a bound on the sum of all such differences in ranking. Thus, δ and
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γ respectively restrict the magnitude of the error individually and globally across the strings.

We define δγ–order-preserving matching as the problem of finding all the text windows in T

that match the pattern P under this new paradigm.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

2

4

6

8

10

12

14

16

18

20

22

24

26

T

P

nr(P)

nr(T1..8)

nr(T11..18)

Figure 1-1.: Order preserving matching under δγ approximation example.

In this example we can see the text T , the pattern P in two different positions. We also show
below the natural representations of the pattern, and the natural representation of the two
search windows similar to the pattern.

The motivation to define δγ–order-preserving matching stems from the observation that

the application areas of order-preserving matching, mainly stock market analysis and music

information retrieval, require to search for occurrences of the pattern that may not be exact

but rather have slight modifications in the magnitude of the rankings. For example, let us

assume that the text T presented in Fig. 1-1 is a sequence of stock prices and that we want

to determine whether it contains similar occurrences of the pattern P (also shown in this

figure). Under the exact order-preserving matching paradigm, there are no matches, but

there are similar occurrences at positions and 1 and 11. In particular, T1...8 and T11...18 are

similar, regarding order structure, to the pattern. This similarity can be seen even more

clearly if we consider natural representations of these strings (also shown in Fig. 1-1).

1.3. Objectives

Define and solve an approximate variant of the order preserving matching problem under

the δ and γ approximation distances.

1. Formally define the order preserving matching problem under the δ and γ distances.



6 1 Introduction

2. Design at least two polynomial algorithms that solve the order preserving matching

problem under the δ and γ distances.

3. Design and develop an experimental scheme that allows to analyze the efficiency of the

proposed algorithms.

1.4. Document structure

In Chapter 2 we explain the fundamental concepts and definitions of the the area of study.

We define the string matching problem, the approximate matching problem under δ and γ

distances and the order preserving matching problem. Due to the fact that two of the four

proposed algorithms are based on data structures, we include in this section the concepts,

definitions and operations of those structures: the segment tree data structure, and the

Fenwick tree also known as Binary Indexed Tree data structure (BIT from now on).

In Chapter 3 we construct the fundamental notation, definitions to formally define the new

problem, the Order preserving matching problem under δγ approximation. We

define the subproblems and terminology needed to fully and formally define the new problem.

In Chapter 4 we show and explain the four algorithms that solve the new problem. We show

the pseudo code of each one of them and calculate the theoretical upper bound complexity

for each one of them.

In Chapter 5 we describe the experiment performed to compare the four algorithms. The ex-

periments were done with two main objectives: To revise the correctness of all the algorithms

and to compare the time complexity.

In Chapter 6 we show two applications with real data in two very different fields. One in

music and other in finances. The music applications show how the metric can be applied

to find similar sections of a melody inside the melody itself. We choose the very famous

and well known Imperial March from the Star Wars movie franchise. We search a portion

of the Imperial March in the complete melody and found the most similar portions, and

those retrievals coincide with the portions that are considered similar for several professional

musicians consulted. For the application in finance, we try to find similar changes of the

stock prices of Facebook. Specifically, we took as the pattern the changes of a given 21-day

interval period and searched for its matches as intervals in the stock prices of Facebook in

history. We found that are very similar intervals for relatively low values of the similarity

parameters (δ and γ). Finally in Chapter 7 we describe what could be the next steps in

developments in this area, and questions that remain open.



2. Preliminaries

In this chapter we explain the fundamental concepts and definitions needed to formally define

and solve the δγ-order preserving matching problem (δγ–OPMP). We start by giving the

fundamentals on stringology in Section 2.1, then we explain and define the δγ matching

problem (δγ–MP) in Section 2.2 and the order preserving matching problem (OPMP) in

Section 2.3. Furthermore, in Section 2.4 we describe the data structures that will be used in

Chapter 4 to solve the δγ–OPMP.

2.1. String fundamentals

A string is a sequence of zero or more symbols from an alphabet Σ; the string with zero

symbols is denoted by ε. The cardinality of alphabet Σ, denoted by |Σ|, is the number of

characters in Σ. The set of all strings over the alphabet Σ is denoted by Σ∗. Throughout the

thesis, we consider the numeric alphabet Σσ which is assumed to be an interval of integers

from 1 to σ, i.e. Σσ = {1, 2, ..., σ} where |Σ| = σ. A text T = T0...n−1 is a string of length

n defined over Σσ. Ti is used to denote the i-th element of T , Ti...j is used as a notation for

the substring TiTi+1 · · ·Tj of T , where 0 ≤ i ≤ j ≤ n− 1. Similarly, a pattern P = P0...m−1 is

a string of length m defined over Σσ. For easy notation, we use T i to denote the length-m

substring of T starting at position i; thus T i = Ti...i+m−1. Next, we present the definition of

δγ-match and order-preserving match for the string comparison problem.

2.2. δγ–matching problem (δγ–MP)

Pattern matching under δ and/or γ has been studied for its application to real problems

where similar pattern occurrences need to be encountered; that is, where errors are allowed

under certain restrictions. This pattern matching is done over strings with integer alphabets

since with them you can get symbol-to-symbol differences and similarity measures based on

them. The parameter δ sets the maximum allowable difference between each character in

the pattern and the corresponding character in the text search window. On the other hand,

the γ parameter represents the maximum amount allowed in the sum of these differences.

Now we are going to formally define what is a δγ–match and based on that definition we

are going to define the δγ–matching problem (δγ–MP):
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Ti 4 3 9 4 7 5 3 5 2 3 6 3 8 5 1 4 2 9
j 0 1 2 3 4 0 1 2 3 4
Pj 3 7 5 1 5 3 7 5 1 5

|Ti − Pj| 1 0 0 2 0 0 1 0 0 1∑m−1
j=0 |Ti+j − Pj| 3 2

Table 2-1.: δγ–Matching example.

Definition 1 (δγ–match) Let X = X0...m−1 and Y = Y0...m−1 be two equal-length strings

defined over Σσ. Also, let δ, γ be two given numbers (δ, γ ∈ N). Strings X and Y are said to

δγ–match, denoted as X δγ
= Y , iff máxm−1j=0 |Xj − Yj| ≤ δ and

∑m−1
j=0 |Xj − Yj| ≤ γ.

Example 1 There is a δγ–match, for δ = 2 and γ = 7, between the strings X = 〈1, 3,
1, 3, 6, 3, 3, 4, 1, 2〉 and Y = 〈2, 2, 1, 3, 4, 3, 4, 5, 2, 2〉 defined over Σ6 as |X − Y | = 〈1, 1,
0, 0, 2, 0, 1, 1, 1, 0〉. Note that the maximum difference between corresponding characters is 2

and takes place at the fifth position. Similarly, the sum of all differences is 7.

Problem 1 (δγ–matching problem (δγ–MP)) Let P = P0...m−1 be a pattern string and

T = T0...n−1 be a text string, both defined over Σσ. Also, let δ, γ be two given numbers

(δ, γ ∈ N). The δγ–matching problem is to calculate the set of all indices i, 0 ≤ i ≤ n−m,

satisfying the condition P δγ
= T i. From now on δγ–MP.

In Table 2-1 we can see how the text T =
〈
4, 3, 9, 4, 7, 5, 3, 5, 2, 3, 6, 3, 8, 5, 1, 4, 2, 9

〉
has

two occurrences of pattern P =
〈
3, 7, 5, 1, 5

〉
in positions 3 and 11 (with δ = 2 and γ = 3).

These occurrences do not exceeds the limit given by δ = 2, since the difference symbol to

symbol (penultimate row of the table) is at most of 2, and also satisfy the limit given by

γ = 3 since the sum of these differences for each occurrence is less than and equal to 3 (3 in

the first and 2 in the second) in the last row of the table.

2.3. Order preserving pattern matching (OPMP)

Like the matching problem under parameters δγ, the OPMP can be seen as the task of

finding a pattern P within a text T so that certain conditions are met. In this problem

we also work with integer ordered alphabets. And consists of finding all the substrings (or

positions i within the text T ) that have the same relative order and length as the given

pattern P . Formally (by taking the definition given in [17]), the problem can be defined

from the order-isomorphism of strings: Given two strings u and v of the same length n over

an ordered alphabet Σ, these strings are said to be isomorphic, written u ≈ v if and only if

it is true:ui ≤ uj ⇐⇒ vi ≤ vj ∀0≤i,j≤n−1. Another form to determine order-isomorphism in

strings is through the natural representation of a string presented in Chapter 1. For a string

T0...n−1 the ranking of symbol Ti, denoted as rankT (i), is 1+ |{Tj < Ti : 0 ≤ j, i < n∧ i 6= j}|
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+ |{Tj = Ti : j < i}|. With definition of the rank of a character in a string, we can define the

natural representation of a string, denoted as nr(T) and is the concatenation of the ranks in

the strings, i.e. nr(T ) = rankT (0)rankT (1) · · · rankT (n − 1). Now we present the definition

of order-preserving match based no the natural representation of two strings of the

same length, and based on that definition we formulate the Order preserving matching

problem.

Definition 2 (order-preserving match) Let X = X0...m−1 and Y = Y0...m−1 be two equal-

length strings defined over Σσ. Strings X and Y are said to be a order-preserving match,

denoted as X ! Y , iff nr(X) = nr(Y ).

Example 2 Given integer strings X = 〈10, 15, 19, 12, 11, 18, 23, 22〉 and Y = 〈12, 18, 22, 15,

13, 20, 30, 23〉, X ! Y as nr(X) = nr(Y ) = 〈1, 4, 6, 3, 2, 5, 8, 7〉.

Problem 2 (Order preserving–matching problem (OPMP)) Let P = P0...m−1 be a

pattern string and T = T0...n−1 be a text string, both defined over Σσ. Also, let δ, γ be two

given numbers (δ, γ ∈ N). The OPMP is to calculate the set of all indices i, 0 ≤ i ≤ n−m,

satisfying the condition P ! T i. From now on OPMP.

In the OPMP we want to locate all the substrings in the text T that are order-isomorphic

with the pattern P . For example, the text T =
〈
5, 7, 11, 10, 12, 15, 16, 9, 11, 10, 14, 17, 12

〉
in Figure 2-1, the pattern P =

〈
2, 4, 3, 6, 7

〉
(in blue) has two order-preserving matches.

These occurrences are in the positions 1 and 7. The pattern is shown below the T text from

the positions where the matching occurs. In this problem the accuracy refers to the pattern

having the same form as the substring in T where the match is, although the symbols could

be different from position to position in the window to be considered.

2.4. Data structures implemented and used

In this section we present two data structures we use in the algorithms we will present in later

chapters. The first is the segment tree data structure, and the second is the Fenwick tree data

structure. We will explain their operations we are going to use, and their complexities, mainly,

the one we use in our algorithms. We also present both pseudo-codes of our implementations.

The real C++ code can be seen in the Appendix C, D and E.

2.4.1. Segment Tree - Data Structure

The segment tree data structure is a powerful data structure with applications in many areas

like in computational geometry [10, 1] and graph theory. The segment tree data structure

uses the divide and conquer approach to answer queries in ranges of an underlying array
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Figure 2-1.: Exact order preserving matching example

Exact order preserving matching for the text T =
〈
5, 7, 11, 10, 12, 15, 16, 9, 11, 10, 14, 17, 12

〉
and the pattern P =

〈
2, 4, 3, 6, 7

〉
.

A. Every node in a Segment Tree is assigned a range and will contain the answer to the

query for that specific range. Let node X have assigned the range [a, b], so it’s in charge of

Aa, Aa+1, . . . , Ab. If a = b, then X is a leaf; otherwise X has two children: leftChild(X) in

charge of the left half of [a, b] and rightChild(X) in charge of the right half (each child has

a half of the interval [a, b]).

We will use the segment tree data structure to solve the range minimum query (RMQ)

problem, which consists in finding the index of the minimum value of the array in a given

range, and we will be able to change elements of the array. Building a segment tree to

solve the RMQ problem for an array A of length |A| takes O(|A|) space and time. The

update and query operations both take O(lg |A|). Figure 2-2 shows the segment tree for

the array A =
〈
90, 64, 65, 70, 66, 63, 70, 67

〉
. For example, the interval of the right child of

the root in Figure 2-2 is labeled with 5, which means that the lowest value in the interval

[4, 7] is in that position (position 5), i.e. A5 = 63, is the lowest element in the sub array

A4...7 = 〈66, 63, 70, 67〉. Figure 2-3 shows the segment tree after updating A4 to ∞ (in the

implementation a big number can be used). Note that to update an element of A only the

nodes from the root to the leaf containing the element can be changed (at most O(lg n)

nodes). In the Figures 2-2 and 2-3 The squares below each leaf show the elements of the

array A with their index bellow them. Every node of the segment tree is represented with

a circle, with its range underneath that circle, and the index of the minimum value in the

range inside the circle itself.
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Figure 2-2.: Segment tree example.

Figure 2-3.: Segment tree example after update.

Implementation

The data class SegTreeNode will be to stored a segment tree node. The fields stored will

be:

a: Start of the range the node is in charge, inclusive.

b: End of the range the node is in charge, inclusive.

index: Index of the minimum element of A in the range [a, b]. In case of ties, the left

most is chosen.

leftChild: Pointer to the left child of the node, or null if its a leaf.

rightChild: Pointer to the right child of the node, or null if its a leaf.
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In the pseudo-code we use the notation newSegTreeNode(a, b, index, leftChild, rightChild)

to instantiate a new SegTreeNode with the given values for the fields. We will need the

following procedures/methods:

buildSegTree(A, a, b): Builds a segment tree with the sub array Aa, Aa+1, . . . , Ab and

returns the root node. The complexity is O(n).

updateSegTree(node, i, x): Sets Ai to x. The complexity is O(lg n).

querySegTree(node, i, j): Returns the index of the minimum value among Ai, Ai+1

, . . . , Aj. If there are several minimum values, the leftmost (smallest index) is chosen.

The complexity is O(lg n).

Function : buildSegTree(A, a, b)

Input: integer array: A = A0...n−1, integer: a, b
Output: SegTreeNode: Root node of the Segment Tree
1. Define: leftChild, rightChild as SegTreeNode
2. if a = b then return new SegTreeNode(a, a, a, null, null)
3. leftChild← buildSegTree(A, a, b(a+ b)/2c
4. rightChild← buildSegTree(A, b(a+ b)/2c+ 1, b)
5. if AleftChild.index <= ArightChild.index then
6. return new SegTreeNode(a, b, leftChild.index, leftChild, rightChild)
7. return new SegTreeNode(a, b, rightChild.index, leftChild, rightChild)

Figure 2-4.: Segment tree construction pseudo code.

In Figure 2-4 we see how to recursively build a segment tree given an array A. The function

buildSegTree(A, 0, |A| − 1) will return the root of the segment tree. In line 2 we see how to

build a segment tree of a subarray with a single element, we just need a leaf node. If there is

more than one element in [a, b] the node has two children (lines 1, 3 and 4) and each takes

half the subarray, and then we get the index of the minimum element in [a, b] by using the

indexes of the minimums in the children (lines 5, 6 and 7). The ≤ sign in line 5 ensures that

in case of a tie the left most will be chosen. The segment tree is built in O(|A|) time and

space, since there is 2× |A| − 1 nodes and each node is built in constant time.

In Figure 2-5 we see how to change a value of Ai to x. First we go to the leaf node in charge

of the range [i, i] and assign x to Ai (lines 1 to 7). Then, as we backtrack we update the
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Procedure : updateSegTree(node, i, x)

Input: SegTreeNode: node, integer: i, x
1. if node.a = node.b then
2. Ai = x
3. else
4. if i ≤ node.leftChild.b then
5. updateSegTree(node.leftChild, i, x)
6. else
7. updateSegTree(node.rightChild, i, x)
8. if AleftChild.index ≤ ArightChild.index then
9. node.index← node.leftChild.index
10. else
11. node.index← node.rightChild.index

Figure 2-5.: Segment tree update procedure pseudo code

index of every visited node with the indexes of its children (lines 8 to 11). This procedure

works in O(lg n) since the height of the tree is O(lg n).

Function : querySegTree(node, i, j)

Input: SegTreeNode: node, integer: i, j
1. Define: leftAns, rightAns as integer
2. if node.a = i and node.b = j then
3. return node.index
4. if j ≤ node.leftChild.b then
5. return querySegTree(node.leftChild, i, j)
6. if i ≥ node.rightChild.a then
7. return querySegTree(node.rightChild, i, j)
8. leftAns← querySegTree(node.leftChild, i, node.leftChild.b)
9. rightAns← querySegTree(node.rightChild, node.rightChild.a, j)
10. if AleftAns ≤ ArightAns return leftAns
11. return rightAns

Figure 2-6.: Segment tree query function pseudo code.

In Figure 2-6 we see how to get the index of the minimum value in the range [i, j], it must

hold that node.a ≤ i ≤ j ≤ node.b. The base case is when the searched range equals the

range of node, the answer is node.index (lines 2 and 3). In lines 4 and 5 we see the case when

the range searched is completely inside the left child, and similarly in lines 6 and 7 the case

where the range is completely inside the right child. The only case left to consider is when

a part of the range is in the left child and another part in the right child. In this case we

recurse on both children (lines 8 and 9) and then pick the best answer out of the two (lines

10 and 11). Note that the ≤ on line 10 ensures that in case of a tie, the leftmost index will
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be chosen. The complexity of this function is O(lg n) since on at most two nodes of each

level the recursion will split, which means that at most 4 nodes of each level will be visited.

Optimization

Instead of using a data class, the whole segment tree can be stored in just a 1-indexed integer

array T of size 2 ∗ |A| − 1. Ti will store the index of node i. The leaf node in charge of the

range [i, i] will be i+ |A|, so Ti+|A| = i for 0 ≤ i < |A|. This means that leaves are the nodes

|A| through 2 ∗ |A| − 1. There is no need to keep pointers or the range of each node, if we

build T with this simple rule: The parent of i is bi/2c. From this rule we know that the

children of node i are 2 ∗ i and 2 ∗ i+ 1.

With this segment tree implementation we achieve the same complexities for building, quer-

ying and updating operations. But the execution time of the segtreeBA algorithm that will

be presented in Section 4.3 is halved by this optimization. Both implementations can be

found in the Appendix C and Appendix D.

2.4.2. Fenwick tree (Binary indexed tree - BIT)

The Binary indexed tree (BIT ) or Fenwick tree, proposed by Peter M. Fenwick in 1994 [33],

is a data structure that can be used to maintain and query cumulative frequencies. In this

section we explain the main ideas and operations of the BIT data structure that will be used

later in this document. We also describe the complexities associated with the BIT operations

we will use.

The BIT data structure keeps an abstraction of an array A with positions indexed from 1

to n. Initially the BIT is assumed to be full of zeros.

BIT - Operations

Here we present the two BIT operations of interest:

sumUpTo(tree, i): Returns A1 + A2 + . . . + Ai. The complexity is O(lg n).

addAt(tree, i, x): Add x to Ai. The complexity is O(lg n).

The BIT is in memory an array we are going to call tree, with position from 1 to n so

that: treei = Ai−lbit(i)+1 + Ai−lbit(i)+2+ . . .+ Ai, where lbit(x) = bitwiseAND(x,−x). Here

bitwiseAND(a, b) is the bit to bit logical and in the binary representation of two integers,

and −x is the two’s complement of x. So lbit(x) is a function that returns the value of the

least significant bit of x in its binary representation (e.g. lbit(10) = 2 since since 6 = 10102
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Figure 2-7.: Binary indexed tree graphic example.

Function : sumUpTo(tree, i)

Input: integer array: tree = tree1...n, integer: i
Output: A1 + A2 + . . . + Ai
1. Define: sum← 0 as integer
2. while i > 0 do
3. sum← sum+ tree[i]
4. i← i− bitwiseAND(i,−i)
5. return sum

Figure 2-8.: Binary indexed tree function sumUpTo(tree, i).

(here the subindex 2 means the base in which the number is written;10 in base 2), the least

significant bit is 102 and has a value of 4. See Figure 2-7.

With the tree array we can do sumUpTo as shown in the function in Figure 2-8. The

complexity is in O(lg n), since by subtracting bitwiseAND(i,−i) from i we get the binary

representation of i without the least significant bit, so we remove one bit on each iteration.

So the number of iterations is the number of bits 1 in i. As an example: sumUpTo(tree, 11)

will add the values of tree11, tree10 and tree8 and return them.

Procedure : addAt(bit, i, x)

Input: integer array: tree = tree1...n, integer: i, x
1. while i ≤ n do
2. treei ← treei + x
3. i← i+ bitwiseAND(i,−i)

Figure 2-9.: Binary indexed tree function: addAt(bit, i, x).

In Figure 2-9 we see how to increment the value of Ai by x, we update all the elements

of tree that contain Ai in their sum (Line 2). The indexes of tree to update are obtained

starting with i and then incrementing i by its least significant bit on each iteration (Line 3).



16 2 Preliminaries

What line 3 does is assign to i the next smallest index of tree which sum contains the sum of

treei (e.g. if i starts at 5, the positions of tree updated will be: 5, 6, 8 and 16, in that order,

see Figure 2-7). The complexity is O(lg n) since after each iteration the least significant bit

of i becomes bigger.



3. Definition of δγ–order preserving

matching problem (δγ–OPMP)

In this thesis it was proposed to combine the paradigms of patterns searching known as

δγ–matching and order preserving matching . These two problems share some aspects,

and can be formulated on the same basis:

The search for a pattern P of length m is made on a text T of length n.

The output of an algorithm is a series of positions within the text T : the positions

where there is a match.

Both the text and the pattern can be considered as consisting of symbols of an integer

alphabet that could well be a subset of the natural numbers. This would make possible

its application finance, text searches and musical information retrieval, since in all

these fields, the abstraction of reality can be made by mapping the changes of values

in time to a finite set of integers.

Each of these two problems has different applications and advantages over the other

depending on how a given practical problem is addressed.

They also have a number of solutions that work well for each case.

Based on these similarities it was possible to formulate a new string pattern matching pro-

blem in integer sequences which combines the advantages of the approximate pattern mat-

ching based on δ and γ parameters with those of the order preserving matching problem.

The result is a tool that would at least have the same applications possibilities as the order

preserving matching applications, but with the flexibility to allow approximate matching

under parameters δ and γ. In Section 3.1 we will explain the definition of the new problem:

δγ–OPMP and in Section 3.2 we will give several examples to clarify the problem.

3.1. The proposal of order preserving matching under δγ

approximation

Given the possibility of combining the two mentioned problems (δγ–Matching and OPM)

in a new variant of approximate pattern matching for integer alphabet, in this thesis we
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formally formulate and design the definition and solutions of this new variation of the well

known string matching problem. This problem, its solutions and applications will have the

advantages of both approaches. In this variant the pattern to be searched has a relative order

similar to that found in the text, and this similarity will be given by the δ and γ parameters.

The application of the restrictions is done taking into account the differences in the ranking

of each symbol in the pattern and the ranking of each symbol in the text window. This new

problem is interesting algorithmically since it required the application of different techniques

and data structures to design its solution, since the union of these two approaches has not

been considered. Now we will formally define the δγ–order-preserving match, and with

that definition we will define the δγ–order-preserving matching (δγ–OPMP).

Definition 3 (δγ–order-preserving match ) Let X = X0...m−1 and Y = Y0...m−1 be two

equal-length strings defined over Σσ. Also, let δ, γ be two given numbers (δ, γ ∈ N). Strings

X and Y are said to δγ–order-preserving match, denoted as X δγ! Y , iff nr(X) δγ
= nr(Y ).

Example 3 Given δ = 2, γ = 6, X = 〈10, 15, 19, 12, 11, 18, 23, 22〉 and Y = 〈14, 17, 20, 18,

12, 15, 23, 22〉, X δγ! Y as nr(X) = 〈1, 4, 6, 3, 2, 5, 8, 7〉, nr(Y ) = 〈2, 4, 6, 5, 1, 3, 8, 7〉 and

nr(X) δγ
= nr(Y ).

Problem 3 (δγ–order-preserving matching (δγ–OPMP)) Let P = P0...m−1 be a pat-

tern string and T = T0...n−1 be a text string, both defined over Σσ. Also, let δ, γ be two given

numbers (δ, γ ∈ N). The δγ–order-preserving matching problem is to calculate the set of all

indices i, 0 ≤ i ≤ n−m, satisfying the condition P δγ! T i. From now on δγ–OPMP.

3.2. Examples of δγ–OPMP

For the sake of clarity as to how the two variations of the pattern matching problem were

combined (δγ–Matching and Order-preserving matching), see in Figure 3-1 in conjunction

with Table 3-1 an example of text T and pattern P , and a δγ match. In this example, at

position 2 of the text T , there is an order preserving match under parameters δ = 2 and

γ = 8 of the pattern P . These restriction apply to the natural representation of the pattern,

and the natural representation of T 2, i.e. nr(P ) and nr(T 2). T 2, as we said before, is the the

length– m search window starting at position 2 of the text T . The δγ restriction are fulfilled

since, as shown in the penultimate row of Table 3-1, the maximum difference in the P and

T rankings in the search window is at most 2 (δ) and the sum of the differences is 8 (γ in

the last row). In Figure 3-2 we show the example given in Chapter 1 with given values in

Table 3-2 for clarity.
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ti 36 40 35 45 27 37 23 21 39 24 41 31 22 48 40 35
j 0 1 2 3 4 5 6 7 8 9 10 11 12

nr(T 2) 7 12 5 8 3 1 9 4 11 6 2 13 10
Pj 30 41 27 40 22 21 34 22 45 27 21 44 42

nr(P ) 7 10 5 9 3 1 8 4 13 6 2 12 11
|nr(T 2)j − nr(P )j| 0 2 0 1 0 0 1 0 2 0 0 1 1

δ = max(|nr(T 2)j − nr(P )j|) 2

γ =
∑12

j=0 |nr(T 2)j − nr(P )j| 8

Table 3-1.: Order preserving matching problem under δ and γ
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Figure 3-1.: Order preserving matching under δ and γ approximation example.
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Figure 3-2.: δγ–OPMP example from introduction explained.

Example of δγ–order-preserving matching. In this example, δ = 2, γ = 6 and integer strings T =

〈9, 10, 15, 19, 12, 11, 18, 23, 22, 26, 7, 14, 16, 21, 17, 13, 20, 25, 24, 8〉 and P = 〈14, 17, 20, 18, 12, 15, 23, 22〉 are de-

fined over Σ26. The X-axis and the Y -axis respectively correspond to the positions and values and rankings

of both the pattern P and the substrings in T where there is two approximate order preserving matches with

δ = 2 and γ = 6 in positions 1 and 11. The figure in the lower side shows the similarity between the natural

representation of the pattern and the natural representation of the substrings T1...8 and T11...18.

i 0 1 2 3 4 5 6 7 8 9
Ti 9 10 15 19 12 11 18 23 22 26

nr(T 1) 1 4 6 3 2 5 8 7
j 0 1 2 3 4 5 6 7
Pj 14 17 20 18 12 15 23 22

nr(P ) 2 4 6 5 1 3 8 7
|nr(T 1)j − nr(P )j| 1 0 0 2 1 2 0 0

δ = max(|nr(T 1)j − nr(P )j|) 2

γ =
∑7

j=0 |nr(T 1)j − nr(P )j| 6

i 10 11 12 13 14 15 16 17 18 19
Ti 7 14 16 21 17 13 20 25 24 8

nr(T 1) 1 3 6 4 2 5 8 7
j 0 1 2 3 4 5 6 7
Pj 14 17 20 18 12 15 23 22

nr(P ) 2 4 6 5 1 3 8 7
|nr(T 1)j − nr(P )j| 1 1 0 1 1 2 0 0

δ = max(|nr(T 1)j − nr(P )j|) 2

γ =
∑7

j=0 |nr(T 1)j − nr(P )j| 6

Table 3-2.: δγ–OPMP example from introduction explained.
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δγ–OPMP

In this chapter, we present four algorithms that solve the δγ–Order preserving matching

problem (δγ–OPMP). All our algorithms work in a similar way to many string search algo-

rithms (examples of pattern search approaches with sliding window can be found in [16]).

There is always a sliding window to check if there is a match, from positions 0 until position

n−m of the text. A sliding window is a length–m substring of the text that moves in every

iteration of the search algorithm by one or more positions. We assume that the size of the

pattern is always much smaller than the size of the text (m << n).

The first algorithm, we call naiveA, is the naive algorithm with a complexity of Θ(nm lgm).

The naive algorithm tries all possible positions, and for each one of them verifies if there

is a match in Θ(m lgm+m) time. The complete description on this algorithm is presented

in Section 4.1. The second algorithm, we call updateBA, is based on a linear update and

verification, Θ(m), of the sliding window. The complexity of the second algorithm Θ(nm)

and is presented in Section 4.2.

The third algorithm is based on the segment tree data structure, we call it segtreeBA. For

each window, the algorithm iterates ranks from 1 to m checking if the δγ restrictions hold.

The complexity of the third algorithm is O(nm lg n). The last algorithm we present is based

on the Fenwick tree data structure, also known as binary indexed tree or BIT (BIT from

now on). We call the last algorithm: bitBA. It uses a BIT to calculate rankings in the sliding

window and compare them to the rankings in the natural representation of the pattern. The

complexity of the BIT-Based algorithm is O(nm lg n). The data structure based algorithms,

both have a complexity of Ω(n lg n), i.e. a better lower bound than the first two algorithms.

the segtreeBA is presented in in Section 4.3 and bitBA in Section 4.4. The C++ code of all

algorithms can be found in Appendix A (naiveA), Appendix B (updateBA), Appendix C

(segtreeBA implemented with pointers and classes), Appendix D (segtreeBA implemented

with arrays) and Appendix E (bitBA).

The difference between the third and fourth algorithm, besides the data structure used,

is the order in which the search window is analyzed, and the way the individual ranks in

the search window are calculated. In the segment tree–based solution the positions in the
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sliding window are analyzed in ascending order of the their rank and not in the order they

appear: first the smallest element in the sliding window, element with rank 1, then the second

smallest element in the sliding window, element with rank 2, and so on, until the biggest

element in the sliding window, with rank m. In the BIT–based Solution, the sliding window

T i is analyzed in the order that the symbols appear: first T i0, then T i1, and so on until T im.

We now present some operations common to several algorithms:

Random Access: All the random accesses to get the i–th symbol or element in a string,

list or array; denoted in the algorithm with sub index (e.g. Xi) are considered to have

O(1).

isAMatch(Y,X, δ, γ): Returns true iff X δγ! Y . X and Y both of size m. When X

and Y are original strings, the complexity of this function is O(m lgm+m). The term

m lgm is due to the calculation of the natural representation of each string. The term

m is due to the rank by rank comparison to check if the parameters δ and γ hold. If

X and Y are the natural representation of two strings, i.e. each a permutation of the

numbers between 1 and n, the complexity of this function is O(m), because the only

work it does is checking for every position if the restrictions δ and γ holds.

4.1. Naive algorithm (naiveA)

The first algorithm to solve the δγ–OPMP we present, is the naive algorithm (see Figure 4-

1). This algorithm iterates over all possible candidates T i, 0 ≤ i ≤ n −m, and for each T i

decides in Θ(m lgm + m) time if there is an δγ–order preserving match. The complexity

can be calculated as follows. The cost of creating P nr = nr(P ) in line 1 is Θ(m lgm). The

algorithm iterates over all n−m+1 possible candidates to a match. And for each one of them,

it creates T nr = nr(T i) in Θ(m lgm) time and verifies if there is a match in Θ(m) time. The

total complexity of the algorithm is then Θ((n−m+1)(m lgm+m)+m lgm) = Θ(nm lgm).

Algorithm 1: δγ–OPMP naiveA

Input: P = P0...m−1, T = T0...n−1, δ, γ
Output: {i ∈ {0, . . . , n−m} : T i δγ! P}
1. Create as Array: P nr ← nr(P )
2. for i = 0→ n−m do
3. T nr ← nr(T i)
4. if isAMatch(T nr, P nr, δ, γ) then report i

Figure 4-1.: Naive algorithm: naiveA.
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4.2. Update based algorithm (updateBA)

The second algorithm we present for the δγ–OPMP (see Figure 4-2) has two phases: pre-

processing and searching. In the preprocessing phase, we find the natural representation of

the pattern and the natural representation of the first text window (i.e. T 0), which takes

Θ(m lgm). In the searching phase, we consider every candidate substring from T 0 to T n−m

to decide in Θ(m) time if it is a δγ–order preserving match under the given values. In par-

ticular, in order to achieve such complexity, we update some data structures to compute

the natural representation of each text substring as the window slides. When we process the

window T i = Ti...i+m−1, we update in Θ(m) the data structures needed to process the next

search window. The total complexity is given by the cost of the preprocessing phase, plus the

cost of iterating over all candidate positions, and for each one of them updating the natural

representation of the search window and checking if there is a match. Then, the complexity

of the proposed update based algorithm is Θ((n−m+ 1)m+m lgm) = Θ(nm).

The data structures that we use to be able to process each text window in Θ(m) time

complexity are:

An integer array P nr with the natural representation of the pattern P . Its construction

cost is Θ(m lgm). The cost of the random access operations is O(1). A native array in

many programming languages will suffice.

A list T nr with the natural representation of each sliding window. Its construction

cost is Θ(m lgm). In each iteration of the main loop of the algorithm, the list will be

updated in Θ(m) time. To get the desired complexity of the algorithm, the T nr list must

have a complexity of O(1) (amortized or not) for the random access operation, adding

elements at the end, and removing elements at the beginning. Such data structure

could be, for example, a deque in the standard template library of C++ (see [23] for

more on the C++ deque).

Operations in the list T nr:

add(x): Adds an integer to the end. It has a complexity of O(1).

removeF irst(): It removes the first element. It has a complexity of O(1).

The algorithm works as follows. In the preprocessing phase it creates the list T nr: a list of

size m with the natural representation of T 0, it cost Θ(m lgm). It also creates the list P nr,

of size m, with the natural representation of the pattern P , with cost Θ(m lgm). This phase

has a time complexity of Θ(m lgm). In the search phase, there is a verification of δγ order

preserving match at position i in the main loop. The verification phase is a very simple

function with complexity Θ(m), which takes T nr and P nr, and checks if there is a δγ–order
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preserving match (line 5). The update of the sliding window is done by removing the first

element of T nr, and then appending the new rank (rank of element Ti+m in the window), this

will change some ranks in T nr (lines 6 to 14 in Figure 4-2). Finally, the last search window

is checked for a δγ–OPM (line 15).

Algorithm 2: δγ–OPMP updateBA

Input: P = P0...m−1, T = T0...n−1, δ, γ
Output: {i ∈ {0, . . . , n−m} : T i δγ! P}
1. Create as List: T nr ← nr(T 0)
2. Create as Array: P nr ← nr(P )
3. Define: rankToDelete, valueToAdd, rankToAdd as integers
4. for i = 0→ n−m− 1 do
5. if isAMatch(T nr, P nr, δ, γ) then report i
6. rankToDelete← T nr0
7. valueToAdd← Ti+m
8. T nr.removeF irst()
9. rankToAdd← 1
10. for j = 0→ m− 2 do
11. if T nrj > rankToDelete then T nrj ← T nrj − 1
12. if Ti+j+1 <= valueToAdd then rankToAdd← rankToAdd+ 1
13. else T nrj ← T nrj + 1
14. T nr.add(rankToAdd)
15. if isAMatch(T nr, P nr, δ, γ) then report n−m

Figure 4-2.: Update based algorithm: updateBA.

4.3. Segment tree based algorithm (segtreeBA)

This solution, settreeBA, in Figure 4-3, based on segment tree (see [1] for more on segment

tree data structure), first calculates the natural representation of the pattern P (line 1 in

Figure 4-3). Then, it iterates over all possible position and tries to find δγ-order preserving

matches in every one of them. The process of finding a match at position i in T is as follows:

First the algorithm finds the smallest number in the interval
[
i, i + m − 1

]
(line 8); this

value has the rank 1 in the sliding window T i. It then uses the natural representation of

P to check the δ and γ restrictions for the rank 1 in the window T i. Then it prepares

the segment tree for the next iteration; this is done by changing the smallest value in the

interval
[
i, i+m− 1

]
to infinity, so in the next iteration of the first inner loop the operation

querySegTree(minIndex, i, i+m− 1) finds the second smallest value in the same interval.

This process is done for all the rankings from 1 to m.

In the second inner loop (lines 17 and 18 in Figure 4-3), the values of T in the interval[
i, i+m− 1

]
must be changed so in the next window those contain the original values of T
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and no infinity. The arrays oldV alue and changedIndex help in the process of restoring the

segment tree. We are going to adapt the operations of the segment tree described in Chapter 2

to this solution. Here the segment tree is built on the node–type variable minIndex:

buildSegTree(T, 0, n − 1): Builds a segment tree with T0, T1 , . . . , Tn−1 and returns

the root node. The complexity is O(n).

updateSegTree(minIndex, i, x): Sets Ti to x. The complexity is O(lg n).

querySegTree(minIndex, i, j): Returns the index of the minimum value among Ti,

Ti+1 , . . . , Tj. If there are several minimum values, the leftmost (smallest index) is

chosen. The complexity is O(lg n).

Algorithm 3: δγ–OPMP segtreeBA

Input: P = P0...m−1, T = T0...n−1, δ, γ
Output: {i ∈ {0, . . . , n−m} : T i δγ! P}
1. Create as Array: P nr ← nr(P )
2. Create as Array of size m: oldV alue,changedIndex
3. Create as Segment Tree: minIndex← buildSegTree(T, 0, n− 1)
4. Define: curDelta,curGamma,rank,idxT ,idxP ,nChanges as integers
5. nChanges← 0
6. for i = 0→ n−m do
7. for rank = 1→ m do
8. idxT ← querySegTree(minIndex, i, i+m− 1)
9. idxP ← idxT − i
10. curDelta← |rank − P nr

idxP |
11. curGamma← curGamma+ curDelta
12. if curDelta > delta ∨ curGamma > gamma then break loop
13. changedIndexnChanges← idxT
14. oldV aluenChanges← TidxT
15. nChanges← nChanges+ 1
16. updateSegTree(minIndex, idxT,∞)
17. for c = 0→ nChanges− 1 do
18. updateSegTree(minIndex, changedIndexc, oldV aluec)
19. if rank > m then report i
20. nChanges← 0

Figure 4-3.: Segment tree based algorithm: segtreeBA.

The complexity of segtreeBA can be computed as follows: In line 1 in Figure 4-3, the

algorithm creates the natural representation of the pattern with cost Θ(m lgm). In line 2 it

creates two arrays of size m in Θ(m). In line 3 a segment tree is created in Θ(n). Then in the

main loop it iterates over all n−m+ 1 candidates. For each candidate it finds the elements

with ranks 1 to m using the segment tree. Finding the position of each rank in the window

costs O(lg n). After each rank position finding, the algorithm checks if the δγ restrictions
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holds for the current window (lines 10 to 12). If so, it continue with the next rank; if not,

the algorithm breaks the inner loop and continues with the next search window (line 12).

Due to the fact that the segment tree is used to find the smallest element in an interval, the

algorithm must mark as ∞ the position of each rank. Then, in the next iteration, the next

smallest element that is found, is the next rank. These changes are done in O(lg n) time

(lines 13 to 16). Reversing those changes cost O(m lg n) (lines 17 to 18). In fact, the inner

loops (lines 7 to 20) have a combined complexity of O(m lg n), but also have a lower bound

of Ω(lg n). It is important to notice that this algorithm has a better lower bound than the

first two algorithms (naiveA and updateBA). This because it can abort the analysis of a

sliding window when it detects that either the δ or γ restrictions does not hold. The lower

bound of this algorithm is then Ω(n lg n), because in many cases it does not perform the m

comparisons of cost O(lg n). The total complexity of the algorithm is then O(n + n lg n +

m lgm+ (n−m+ 1)(m lg n)) = O(nm lg n), but with a lower bound of Ω(n lg n).

4.4. Fenwick tree based algorithm (bitBA)

This algorithm, bitBA, showed in Figure 4-4, uses a binary indexed tree (BIT or Fenwick

tree) data structure (see [33] for more information on this data structure) to find the ranks in

the sliding window. The BIT is a well known data structure that is mainly used to efficiently

calculate prefix sums in an array of numbers. The BIT data structure could be considered

then as an abstraction of an integer array of size n indexed from 1, i.e. a bit encapsulate

A = A1A2 · · ·An. The version we are going to use has two operations:

sumUpTo(tree, i): Returns A1 + A2 + . . . + Ai. The complexity is O(lg n).

addAt(tree, i, x): Sums x to Ai. The complexity is O(lg n).

The algorithm has a preprocessing phase in which the data structures needed to solve the

δγ–OPMP are created. This is done with a complexity of Θ(n+ n lg n+m lgm). The term

n is due to the creation of the BIT. The term n lg n is due to the creation of T nr and the

term m lgm is due to the creation of P nr. In the searching phase, it iterates over all possible

positions in the text T to find the existing matches. For each position i to be considered, the

algorithm uses the BIT to get the rank of every symbol in the searching window Ti...i+m−1,

and then each rank in the window is compared with each rank in P nr to check if T i is a δγ–

order preserving match. Each rank calculation using the BIT costs O(lg n). Then the total

complexity of the algorithm is O(n lg n+m lgm+(n−m+1)(m lg n)) = O(nm lg n). Similar

to segtreeBA, bitBA has a better lower bound in comparison to naiveBA and updateBA,

it is: Ω(n lg n) because, in many cases, bitBA does not perform the m comparisons of cost

O(lg n). The total complexity of bitBA is then O(n+ n lg n+m lgm+ (n−m+ 1)(m lg n))

= O(nm lg n), but with a lower bound of Ω(n lg n).
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In the preprocessing phase, the algorithm first creates the natural representations of the

pattern P and the text T (P nr and T nr, respectively). Then, it creates a BIT which is an

encapsulation of an array with n positions numbered from 1 to n. Then assigns 1 the posi-

tions T nr0 , T nr1 , . . . T nrm−2 (Lines 1 to 5 in Figure 4-4).

In the searching phase, for each candidate position i, the algorithm computes the rank of

each symbol Ti+j, 0 ≤ j ≤ m− 1 using sumUpTo(i + j). After checking if there is a match

at position i, the BIT must be updated in each iteration to consider symbol Ti+m (line 7 in

Figure 4-4). And the BIT must be updated so it does not consider the position i in the next

search window (line 9 in Figure 4-4).

Algorithm 4: δγ–OPMP bitBA

Input: P = P0...m−1, T = T0...n−1, δ, γ,Σσ

Output: {i ∈ {0, . . . , n−m} : T i δγ! P}
1. Create as Array: T nr ← nr(T )
2. Create as Array: P nr ← nr(P )
3. Create as Array of size n: bit
4. for i = 0→ m− 2 do
5. addAt(bit, T nri , 1)
6. for i = 0→ n−m do
7. addAt(bit, T nri+m−1, 1)
8. isAMatch(i, bit, T nr, P nr, δ, γ) then report i
9. addAt(bit, T nri ,−1)

Figure 4-4.: BIT based algorithm: bitBA.

To understand better how bitBA works, consider for example consider the text T = 〈10, 5,

8, 12, 3, 9〉 and the pattern P = 〈6, 2, 4〉. In line 1 of Figure 4-4, we create T nr = 〈5, 2, 3, 6, 1,

4〉 and P nr = 〈3, 1, 2〉 in line 2. The BIT is considered for this application as an encapsulation

of an array with indices from 1 to n. In line 3 of the algorithm in Figure 4-4, we create a

BIT which is an encapsulation of the array: bit = 〈0, 1,1, 0, 1, 0〉. The 1 at positions 2, 3 and

5 (indexed from 1) are there because those three numbers are the first m (3 in this example)

numbers in T nr. To check the rank for example of T0 = 10, in the natural representation

of the first search window T0...2, we must compute sumUpTo(T nri+j) = sumUpTo(T nr0+0) =

sumUpTo(T nr0 ) = sumUpTo(5) = 3. This can be seen in the bit, because the sum from

position 1 to position 5 in bit is 3. In a similar fashion, we can compute the rank of T2 in the

first search window: sumUpTo(T nri+j) = sumUpTo(T nr0+2) = sumUpTo(T nr2 ) = sumUpTo(3) =

2, and the rank of T1 in the first search window: sumUpTo(T nri+j) = sumUpTo(T nr0+1) =

sumUpTo(T nr1 ) = sumUpTo(2) = 1. In other words, each call to sumUpTo(T nrk ) counts the

number of symbols lower or equal to Tk that are in the current window.
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Function : isAMatch(i, bit, T nr, P nr, δ, γ)

Input: i, bit, T nr, P nr, δ, γ
Output: true if: T i δγ! P}, false otherwise
1. Define: gamma← 0 as integer
2. for j = 0→ m− 1 do
3. rank ← sumUpTo(bit, T nri+j)
4. delta← |P nr

j − rank|
5. gamma← gamma+ delta
6. if delta > δ ∨ gamma > γ) then return false
7. return true

Figure 4-5.: Function: isAMatch(i, bit, Tnr, Pnr, δ, γ).

So we can see that the natural representation of any search window can be calculated symbol

by symbol using the operation of the BIT data structure, and in some cases it can ignore

some rank calculations when the parameters δ and γ are relatively low. In those cases, i.e.

when is very unlikely that in a given application a match occurs, the algorithm will very

often break the search in a given window in line 6 of the function in Figure 4-5.
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In this section, we describe the experimental setup we designed to evaluate the performance

of the proposed algorithms. We compare the four algorithms. The algorithms to compare,

naiveA, updateBA, segtreeBA and bitBA have similar theoretical complexities. The naive

algorithm have a theoretical complexity of Θ(nm lgm), the algorithm based on a Θ(m)

update of the every search window in linear time, updateBA has a complexity of Θ(nm),

and the algorithms based on data structures both have complexities O(nm lg n) for the worst

case and Ω(n lg n) lower bound. In Section 5.1 we present the experimental framework, while

we describe the data generation in Section 5.2. Then, in Section 5.3, we discuss the results

obtained. Finally in Section 5.4 we show the results of the experiments directed to detect

how the algorithms segtreeBA and bitBA behave when in all the experiment instances the

worst case came up.

5.1. Experimental setup

In Section 5.1.1, we describe the hardware and software used for the experiments. Then, we

show how we vary the input parameters in Section 5.1.2.

5.1.1. Hardware and software

All the algorithms were implemented using C++. The computer used for the experiments

was a Lenovo ThinkPad with a processor Intel(R) Core(TM) i7 4600u CPU @ 2.10GHz 2.69

GHz and installed RAM memory of 8GB. The computer was running 64-bit Linux Ubuntu

14.04.5 LTS. The C++ compiler version was g++ (Ubuntu 4.8.4-2ubuntu1 14.04.3) 4.8.4.

5.1.2. Parameters

It is clear that the defined problem has several parameters. They may change depending on

the area of study in which the problem and string searching algorithms are applied. To show

how our solution behaves with different configuration of the given parameters, we perform

five types of experiments. In each experiment, we vary one of the given parameters n, m, δ,

γ and σ, and let the other four parameters fixed at a given value. We chose the fixed values

after several attempts via try and error to find values that produced results varying from

no matches to matches near the value of n. For each experiment type, we performed five
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Varying n Varying m Varying δ Varying γ Varying σ

n
[3000, 60000]
∆n = 3000

10000 10000 10000 10000

m 40
[30, 600]
∆m = 30

40 40 40

δ 10 10
[0, 228]

∆δ = 12
10 10

γ 60 60 60
[0, 570]

∆γ = 30
60

σ 100 100 100 100
[12, 240]
∆σ = 12

Table 5-1.: Experimental values of n m, δ, γ and σ.
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Figure 5-1.: Experiments varying the parameter δ.

different experiments and took the median as the value to plot, making the median of five

experiments the representative value for a experiment configuration of values n m, δ, γ and

σ. The variation of the parameter values for each experiment type is presented in Table 5-1.

5.2. Random data generation

An experiment consists of two stages. The first stage is the pseudo-random generation of a

text T of length n and the pattern P of length m. The second stage is the execution of the

algorithms on the generated strings P and T . The random generation of each character of

both the pattern P and the text T is done by calling a function that pseudo-randomly and

selects a number between 1 and σ with the same probability for each number to be selected,

i.e., all symbols have the same probability to appear in a position and for that reason, the

count of each symbol on a generated string will be similar to the quantities of the others

symbols in the alphabet.
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Figure 5-2.: Experiments varying the parameter γ.
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Figure 5-3.: Experiments varying alphabet size |Σ|.
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Figure 5-4.: Experiments varying text size n.
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Figure 5-5.: Experiments varying pattern size m.
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Figure 5-6.: Experiments varying text size n (bitBA vs segtreeBA).
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Figure 5-7.: Experiments varying pattern size m (bitBA vs segtreeBA).
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5.3. Experimental results and analysis

The first result to highlight is the fact that, in every experiment, is that the naive algorithm

always have the worst performance, as expected. The results shown in Figures 5-2, 5-3 and

5-1 show that the size of the alphabet and the parameters δ and γ have practically no impact

on the execution time of any of the algorithms, they all show nearly constant time behavior.

Figures 5-4 and 5-5 verify the theoretical complexity analysis that states that n and m are

the parameters that really determine the growth in the execution time of all the algorithms.

In Figure 5-4, m is a constant and n is a variable while in Figure 5-5, n is a constant and m

is a variable. It is important to notice that, under these conditions, the graphs are expected

to be linear and the experiments verify that.

In the figures where we show the result of varying the parameter n and the parameter m, (Fi-

gures 5-4 and 5-5 show the behavior of all four algorithms while Figures 5-6 and 5-7 only

show the best two algorithms on the same data), which are the main variables in the comple-

xities, we can see that the best two algorithms are the based on data structures (segtreBA

and bitBA), this despite the fact that these two algorithms have a higher upper bound on

their complexities in relation with the first two algorithms (naiveA and updateBA). This

result can be explained by the fact that the lower bound on the data structure based algo-

rithms is considerably lower in comparison with the other two. The lower bound of the data

structures based algorithms is Ω(n lg n) and the lower bound of the naiveA and updateBA

is the same as their upper bound which is Θ(nm lgm) and Θ(nm) respectively. This can be

understood by taking into account that the first two algorithms check for a match after a

natural representation of every window is completely obtained; on the contrary, data struc-

ture based algorithm break the calculation of a given natural representation of a window if

at some point the δ or γ restriction do not hold.

Given the result of the experiments it is safe to say that the algorithms based on data

structures are faster in most cases, especially if they are going to be used in applications

where very few matches are expected to appear, this is due to their lower bound of complexity.

We test two different implementations of the segment tree data structure. One based on

classes and pointers, and the other based on an array. In Chapter 2 we show the classes

based implementation, and for the experiment we use both. Finally we chose the array based

as representative for the segment tree based solution and the experiments plots show their

results. The array–based segment tree is almost twice time faster than the classes–based

implementation.
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Figure 5-8.: Experiments varying pattern size n (Worst case bitBA and segtreeBA).
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Figure 5-9.: Experiments varying pattern size m (Worst case bitBA and segtreeBA).

5.4. Worst case experiments on seegtreBA and bitBA

Taking into account that the first two algorithms, naiveA and updateBA both have com-

plexities in θ–notation, i.e. their worst case is the same as their best case, the experiments

described so far are enough for their experimental analysis. For the data structures based

algorithms a more particular kind of experiment is needed, i.e. the worst case experimental

analysis. For this algorithms the worst case is when there is a match in every candidate

position. An easy way to generate data for the worst case is when all the symbols in both

the pattern P and the text T are the same. Other way to generate worst cases scenarios for

this two algorithms is when both P and T are strictly increasing or both strictly decreasing.

Results from this experiments show a fast degradation in experimental performance of the

segtreeBA algorithm, but a very slow degradation of the bitBA algorithm. Results of this

last experiments are shown in Figures 5-8 and 5-9.



6. Applications

In this chapter we show a couple of applications of the defined problem, in music and finance.

For music we show how δγ–OPMP can be applied to the searching of portions of similar

melodies in a music piece. For finance we show how similar periods of time in the stock prices

of the Facebook company can be found.

6.1. Application in music

Figure 6-1.: Darth Vader’s theme from Star Wars. by John Williams (Excerpt).

Here we show the melody of the Imperial March, we took the image of the score of the
melody from [34] and added the MIDI numbers below.

For the music example, we choose the main theme from The Imperial March, soundtrack

of the film series Star Wars [43] composed by John Williams [42] also known as the Darth

Vader’s theme because it represents him. This melody sounds every time this villain has a

significant scene. Here we use an integer alphabet abstraction of a music piece, where each

note of the melody is an integer. This abstraction of music takes into account only the pitch

leaving out other aspects as silences, note duration, harmony, or instrumentation, but it

gives a very good idea of the possible applications in music retrieval.
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Figure 6-2.: T and P in the music application example.

The alphabet for music applications could be for example the given by the MIDI (Musical

Instrument Digital Interface) technical standard [59, 7]. In the MIDI standard, the first note,

0 is a C note of the octave 0 (the lowest octave), note 1 is a C# of the same octave and so

on. There could be up to note 127 which will be a G in the 10th octave.

In Figure 6-1 we show the excerpt of the Darth Vader’s theme, in Figure 6-2 we show the

melody in MIDI standard and the pattern to search. We can see in Figure 6-2 how similar

the pattern to search and the text window where the δγ–OPM is found. In Figure 6-3 we

show the natural representation of both the pattern P and the search window where the

match is found. Here we show an example involving searching for substrings similar to a

pattern that is also in the text. In the example, there was only one match found in all the

melody. There we show the natural representation of the pattern and the search window

that have the match: T 18 δγ! P . Here δ = 8 and γ = 32. The music similarity of the

match was verified by Gabriela Rojas, a professional musician from the National University

of Colombia Conservatory. This gives an idea of possible applications in musical retrieval of

approximate string matching. This can be useful for the advanced music students in order to

help them with the theoretical analysis of the scores so they can look for melodic similarities

or differences either in the same piece or comparing different pieces. Another application

could also be the design of plagiarism detection software.

We draw an example of δγ–OPM with the same musical excerpt. For the example, we search

the pattern P = 〈79, 67, 67, 79, 78, 77, 76, 75, 76, 68, 73, 72, 71, 70, 69, 70, 63, 66, 63, 66, 67, 63,
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Figure 6-3.: P and search window natural representation in the music application example.

70, 67〉 in the given text for a δ = 8, γ = 32 we found a match in position 18 of the text. This

pattern as illustrated in the Figure 6-2 is also part of the main melody; the pattern appears

at position 42, which for professional musicians, and even non professional musicians, sounds

very similar to the found match.

6.2. Application in finance

For the finance application we choose to analyze the stock price of the Facebook company.

We take the history of the stock price of Facebook from the beginning to April 2017. We

take 21 days of recent Facebook stock price changes as the pattern. Specifically, the pattern

to search is the 21 days period starting in February 28 2017 up to March 28 2017. Take

into account that not all days the stock actions change, for that reason we choose 21 days

which is approximately the amount of days the stock actions change in a month. The text

to consider is the day to day stock price changes from May 18 2012 to March 31 2017 (The

size of this text is 1225).

In Figure 6-4 we can see the representation of the pattern P . In Figure 6-5 we can see

the representation of a portion of the text with the search window we found similar to the

given pattern P . We can notice that the pattern in Figure 6-4 is similar in shape to the

search windows highlighted with filled circles iin Figure 6-5. It is important to see that the

similarity holds despite the absolute values are very different.

In Figure 6-6 we can see the natural representation (or ranks) of both the pattern P and

the natural representation of the search window that we found to be the most similar to
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the pattern. We can see that they both have a similar structure. Finally in Figure 6-7 we

can see the portion of the text with the highlighted search window and the search pattern.

In this last figure we omit the y and x axes labels because we want to show the similarity

in shape of the pattern and the search window, not the similarity in absolute values which

indeed is quite different. In fact the values in the pattern to search (first month of Facebook

stock prices) are values lower than 34 and the search window found has values greater than

100.
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7. Conclusions and future work

We successfully define a new variant of the string matching problem, the δγ–order preser-

ving matching problem (δγ–OPMP). This new variant gives the possibility of searching

a pattern according to the relative order of the symbols as the order preserving matching

problem. But we also gives more flexibility to the search allowing error in the individual

ranking comparisons due to the parameter δ. And also the proposed problem gives a bound

for the global error in the comparison of a pattern against a text window by γ. This new

variant has at least the same applications as the order preserving matching problem.

We designed and implemented in C++ four algorithms that solve the δγ–OPMP. The naive

algorithm (naiveA), the updated based algorithm (updateBA), the segment tree based algo-

rithm (segtreeBA) and the Binary indexed tree based algorithm (bitBA). Their theoretical

time complexity is Θ(nm lgm) for the naiveA, Θ(nm) for the updateBA. The segtreeBA

and bitBA both with complexities O(nm lg n) for their worst case and a Ω(n lg n) lower

bound.

We also designed an experimental setup to compare the designed algorithm and see how

they behave in practice with randomly generated data. The experimental results show that

in many cases, given the uniformly data generation, the data structure based algorithms work

faster than the naiveA and the updateBA. One question that remains open is if an algorithm

with better worst case time complexity than O(nm) can be designed; other question that al-

so remains open is that if an algorithm with better lower bound than Ω(n lg n) can be obtain.

We show experiment results on the worst cases of the bitBA and segtreeBA. We conclude

that the degradation in performance in the segtreeBA algorithms is much more notorious

than the degradation of bitBA. A question remains, and is if we can device an experimental

setup where the better worst case algorithm, updateBA experimentally beats the other three

algorithms. Given the theory behind the big O notation, we can say that this experimental

setup exist.

We show two applications with real data in music and finance. In music we use our findings

to search for a portion of a melody in the melody itself; the melody we choose was the

Imperial March of the Star Wars franchise. We show graphically how similar the portion to

search and the match we found are similar. Those two portions of the melody are also very
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similar according to professional musicians consulted. For the financial applications, we take

a recent 21 day interval of stock actions of the Facebook company, and search for the most

similar 21 day interval in all the history of the Facebook stock exchange history. We show

how similar the changes despite the difference in their absolutes values.

More general experiments could be designed to test the efficiency of all the algorithm with

real data, that could be financial data, music data or real data in other areas that are still yet

to be determined. Finally, taking into account the way we generate the pseudo–random data

for the experiments, i.e. all symbols with the same probability, we can conjecture that for

specific applications more efficient algorithms could be designed based on the particularities

of the chosen field (alphabet, language, etc).

Other aspect left to explore related to the applications showed are whether or not the ad-

vances in this thesis can be extended to more complex ideas. For example, in the finance

application, the tools presented here could help to device or complement algorithms/tech-

niques to make predictive analysis of stock price changes. In music, our contributions can

be useful to design tools for the advanced music students in order to help them with the

theoretical analysis of the scores so they can look for melodic similarities or differences either

in the same piece or comparing different pieces. Also composers could see the δγ–OPMP,

as a tool to check the perception they have about the similarity of musical ideas developed

in different ways in one or several pieces of their own. For the musicologist this could be a

way to track the development of one composer’s musical ideas throughout their life and to

analyze the way the composer evolves. Finally, another application could also be the support

the design of the design of plagiarism detection software.



A. Appendix: C++ code of the naive

algorithm (naiveA)

#include <bits/stdc++.h>

#include "Solver1.h"

#include "Utils.h"

using namespace std;

vector<int> Solver1::findAllDeltaGammaMatches(

const vector<int>& T,

const vector<int>& P,

const int delta,

const int gamma) {

const int n = T.size();

const int m = P.size();

vector<int> ans, rP = getRankArray(P);

for( int i = 0; i <= n-m; ++i )

{

vector<int> Ti = vector<int>(T.begin()+i,T.begin()+i+m);

vector<int> rTi = getRankArray(Ti);

if( isAMatch(rTi,rP,delta,gamma) )

ans.push_back(i);

}

return ans;

}



B. Appendix: C++ code of the update

based algorithm (updateBA)

#include <bits/stdc++.h>

#include "Solver2.h"

#include "Utils.h"

using namespace std;

vector<int> Solver2::findAllDeltaGammaMatches(

const vector<int>& T,

const vector<int>& P,

const int delta,

const int gamma)

{

const int n = T.size();

const int m = P.size();

vector<int> ans;

deque<int> Tnr = getRankDeque( vector<int>(T.begin(),T.begin()+m) );

vector<int> Pnr = getRankArray( P );

int rankToDelete, valueToAdd, rankToAdd;

for( int i = 0; i < n-m; ++i )

{

if( isAMatchDeque(Tnr,Pnr,delta,gamma))

ans.push_back(i);

rankToDelete = Tnr[0];

valueToAdd = T[i+m];

Tnr.pop_front();

rankToAdd = 1;

for( int j = 0; j+1 < m; ++ j ) {

if( Tnr[j] > rankToDelete ) Tnr[j]--;

if ( T[i+j+1] <= valueToAdd ) rankToAdd++;
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else Tnr[j]++;

}

Tnr.push_back( rankToAdd );

}

if( isAMatchDeque(Tnr,Pnr,delta,gamma))

ans.push_back(n-m);

return ans;

}



C. Appendix: C++ code of the segment

tree based algorithm (segtreeBA).

Classes and pointers based version

#include <bits/stdc++.h>

#include "Utils.h"

#include "Solver3.h"

using namespace std;

#define L(x) ((x)<<1) //left child of x

#define R(x) (L(x)+1) //right child of x

void Solver3::updateFromChildren ( int node ) {

if ( T[minIndex[L(node)]] <= T[minIndex[R(node)]] )

minIndex[node] = minIndex[L(node)];

else minIndex[node] = minIndex[R(node)];

}

void Solver3::buildSegtree ( int node, int fr, int to) {

if ( fr == to ) minIndex[node] = fr;

else {

const int mid = (fr+to)>>1;

buildSegtree(L(node),fr,mid);

buildSegtree(R(node),mid+1,to);

updateFromChildren ( node );

}

}

int Solver3::queryMinIndex ( int a, int b, int node, int fr, int to ) {

if ( a == fr && to == b ) return minIndex[node];

const int mid = (fr+to)>>1;

if ( b <= mid ) return queryMinIndex ( a, b, L(node), fr, mid );

if ( a > mid ) return queryMinIndex ( a, b, R(node), mid+1, to );

int iL = queryMinIndex ( a, mid, L(node), fr, mid );



47

int iR = queryMinIndex ( mid+1, b, R(node), mid+1, to );

return T[iL] <= T[iR] ? iL : iR;

}

void Solver3::update ( int idx, int newVal, int node, int fr, int to ) {

if ( fr == to ) { // fr == to == idx

T[idx] = newVal;

return;

}

const int mid = (fr+to)>>1;

if ( idx <= mid ) update ( idx, newVal, L(node), fr, mid );

else update ( idx, newVal, R(node), mid+1, to );

updateFromChildren(node);

}

#undef L

#undef R

vector<int> Solver3::findAllDeltaGammaMatches(

const vector<int>& T,

const vector<int>& P,

const int delta,

const int gamma)

{

this->T = T;

const int n = T.size();

const int m = P.size();

vector<int> rP = getRankArray(P);

// seg tree size is 2 * ( n rounded up to a power of 2)

minIndex.resize ( 2<<(32-__builtin_clz(n-1)) );

// save changes made to T, to undo them later

vector<int> changedIndex(m), oldValue(m);

int nChanges = 0;

vector<int> ans;

buildSegtree(1, 0,n-1);

for ( int startIdx = 0; startIdx+m <= n; ++startIdx ) {

//cout << "matching T[" << startIdx << ".." << (startIdx + m - 1) << "]

with P" << endl;

int curDelta = 0, curGamma = 0, rank;
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C Appendix: C++ code of the segment tree based algorithm (segtreeBA). Classes and

pointers based version

for ( rank = 1; rank <= m; ++rank ) {

const int idxT = queryMinIndex ( startIdx, startIdx+m-1, 1, 0, n-1 );

const int idxP = idxT-startIdx;

//cout << "comparing " << rank << " vs " << rP[idxP] << endl;

curDelta = abs ( rank - rP[idxP] );

curGamma += curDelta;

if ( curDelta > delta || curGamma > gamma )

break;

//make T[idxT] = INT_MAX, so that it won’t be the minimum again

changedIndex[nChanges] = idxT;

oldValue[nChanges++] = T[idxT];

update ( idxT, INT_MAX, 1, 0, n-1 );

}

//undo changes

for ( int c = 0; c < nChanges; ++c )

update ( changedIndex[c], oldValue[c], 1, 0, n-1 );

nChanges = 0;

//found match, add it to answer

if ( rank > m )

ans.push_back ( startIdx );

}

return ans;

}



D. Appendix: C++ code of the segment

tree based algorithm (segtreeBA).

Array based version

#include <bits/stdc++.h>

#include "Solver5.h"

#include "Utils.h"

using namespace std;

inline int bestIndex( const vector<int>& T, int a, int b ) {

return T[a] <= T[b] ? a : b;

}

void buildSegTree ( vector<int>& stree, const vector<int>& A ) {

stree.resize ( A.size()*2 );

for ( int i = 0; i < A.size(); ++i ) stree[A.size()+i] = i;

for ( int i = A.size()-1; i; --i )

stree[i] = bestIndex(A, stree[i<<1], stree[i<<1|1]);

}

void updateSegTree( vector<int>& stree, vector<int>& A, int i, int x ) {

for (A[i] = x, i += A.size(); i >>= 1; )

stree[i] = bestIndex(A, stree[i<<1], stree[i<<1|1] );

}

// minimum index in [l,r)

int querySegTree (const vector<int>& stree, const vector<int>& A, int l, int r )

{

int ansL = l, ansR = r-1;

for ( l += A.size(), r += A.size(); l < r; l >>= 1, r >>= 1 ) {

if ( l&1 ) ansL = bestIndex(A, ansL, stree[l++]);

if ( r&1 ) ansR = bestIndex(A, stree[--r], ansR);

}

return bestIndex(A, ansL, ansR );
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version

}

vector<int> Solver5::findAllDeltaGammaMatches(

const vector<int>& _T,

const vector<int>& P,

const int delta,

const int gamma)

{

vector<int> T = _T;

const int n = T.size();

const int m = P.size();

vector<int> rP = getRankArray(P);

// build seg tree with n leaves and initialize it with T

vector<int> minIndex;

buildSegTree ( minIndex, T );

// save changes made to T, to undo them later

vector<int> changedIndex(m), oldValue(m);

int nChanges = 0;

vector<int> ans;

for ( int startIdx = 0; startIdx+m <= n; ++startIdx ) {

//cout << "matching T[" << startIdx << ".." << (startIdx + m - 1) << "]

with P" << endl;

int curDelta = 0, curGamma = 0, rank;

for ( rank = 1; rank <= m; ++rank ) {

const int idxT = querySegTree ( minIndex, T, startIdx, startIdx+m );

const int idxP = idxT-startIdx;

//cout << "comparing " << rank << " vs " << rP[idxP] << endl;

curDelta = abs ( rank - rP[idxP] );

curGamma += curDelta;

if ( curDelta > delta || curGamma > gamma )

break;

//make T[idxT] = INT_MAX, so that it won’t be the minimum again

changedIndex[nChanges] = idxT;

oldValue[nChanges++] = T[idxT];

updateSegTree ( minIndex, T, idxT, INT_MAX );

}

//undo changes

for ( int c = 0; c < nChanges; ++c )
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updateSegTree ( minIndex, T, changedIndex[c], oldValue[c] );

nChanges = 0;

//found match, add it to answer

if ( rank > m )

ans.push_back ( startIdx );

}

return ans;

}

#undef best



E. Appendix: C++ code of the binary

indexed tree (BIT or Fenwick tree)

based algorithm (bitBA)

#include <bits/stdc++.h>

#include "Utils.h"

#include "Solver4.h"

using namespace std;

inline void addAt ( vector<int>& tree, int i, int x ) {

for ( ; i < tree.size(); i += (i&(-i)) )

tree[i] += x;

}

inline int sumUpTo ( const vector<int>& tree, int i ) {

int r = 0;

for ( ; i ; i -= (i&(-i)) ) r += tree[i];

return r;

}

//true if T[i...i+m-1] matches P

bool isAMatch ( int i, const vector<int>& bit, const vector<int>& Tnr,

const vector<int>& Pnr, int delta, int gamma )

{

int curGamma = 0;

for ( unsigned j = 0; j < Pnr.size(); ++j )

{

const int rank = sumUpTo(bit, Tnr[i+j]);

const int deltaJ = abs ( Pnr[j] - rank );

curGamma += deltaJ;

if ( deltaJ > delta || curGamma > gamma )

return false;

}
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return true;

}

vector<int> Solver4::findAllDeltaGammaMatches(

const vector<int>& T,

const vector<int>& P,

const int delta,

const int gamma)

{

const int n = T.size(), m = P.size();

vector<int> ans;

vector<int> Tnr = getRankArray(T);

vector<int> Pnr = getRankArray(P);

vector<int> bit ( n+1, 0 );

for ( int i = 0; i+1 < m && i < n; ++i )

addAt(bit, Tnr[i],1);

for ( int i = 0; i+m <= n; ++i ) {

addAt(bit, Tnr[i+m-1],1);

if ( isAMatch(i, bit, Tnr, Pnr, delta, gamma) )

ans.push_back(i);

addAt(bit, Tnr[i],-1);

}

return ans;

}



F. Appendix: C++ code of the

experimental setup

F.1. Experimental setup to compare our algorithms

solving δγ–OPMP

Here we show an example of the experimental setup used to compare our four algorithms. In

particular, we show the experimental setup to compare the algorithm when the parameter

n grows (see c++ function runexperimentrangingn below), with the other four parameters

fixed in a given value (δ, γ, the size of the pattern m and the size of the alphabet Σσ). Here

we omit the implementation of some trivial utilitarian functions.

int global_experiment_counter = 0;

int files_generated_counter = 0;

int global_matches_counter_naive = 0;

int global_matches_counter_nm_solution = 0;

int global_matches_counter_nm_solution_DEBUG = 0;

const string SEPARATOR = "\t";

const int N_SOLVERS = 5;

int get_random_number( const int& min, const int& max );

template<class T> void write_to_file( const vector<T>& lines , const string&

file_name );

vector<string> read_from_file( const string& file_name );

vector<int> to_int_vector( const vector<string>& v );

vector<string> to_string_vector( const vector<int>& v );

vector<int> get_ordered_permutation( const int& n);

vector<int> get_random_permutation( const int& n );

vector<int> get_random_array( const int& n, const int& min_value, const int&

max_value );

set<int> get_random_set( const int& n, const int& min_value, const int&

max_value );
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vector<abstract_dgopm_solver*> get_solvers() {

return vector<abstract_dgopm_solver*> {

new dgopm_solver1(),

new dgopm_solver2(),

new dgopm_solver3(),

new dgopm_solver4(),

new dgopm_solver5()

};

}

/**

* Runs a single experiment with the given T, P, delta and gamma agains all the

* solvers. And adds the time in seconds at the end of each times vector.

* The return value is the number of matches found by the solvers. They all

should

* return the same, if they don’t the program will be terminated and an error

message

* will be shown.

*/

int run_single_experiment (

const vector<int>& T,

const vector<int>& P,

const int delta,

const int gamma,

vector<vector<double> >& times) {

vector<abstract_dgopm_solver*> solvers = get_solvers();

vector<int> previus_matches_found;

for ( int solver_idx = 0; solver_idx < N_SOLVERS; ++solver_idx ) {

const clock_t begin_time = clock();

vector<int> matches_found =

solvers[solver_idx]->find_all_delta_gamma_matches

(T,P,delta,gamma);

times[solver_idx].push_back (( clock() - begin_time ) /

(double)CLOCKS_PER_SEC);

if ( solver_idx && previus_matches_found != matches_found ) {

cout <<

"--------------------------------------------------" <<

endl;

cout << " ERROR ! MISMATCH, solutions " << solver_idx-1 <<

" ans ";

cout << solver_idx << " return different results" << endl;

cout << endl;
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cout << endl;

cout <<

"--------------------------------------------------" <<

endl;

exit(0);

}

previus_matches_found = matches_found;

}

return previus_matches_found.size();

}

//! Run experiment with given values of m (size of the pattern P), delta, and

gamma.

/*!

\param min_n

\param max_n

\param step_n

\param delta The given delta

\param gamma The given gamma

Run experiment with given values of m (size of the pattern P), delta, and

gamma. The values

of n starts at min_n and end in max_n. The value of n increases in steps of

step_n. Each call to this

function produces a file with three columns: value of n, average time to find

all matches, and total amount of matches found.

*/

void run_experiment_ranging_n( int min_n, int max_n , int step_n , int m , int

delta , int gamma ,

int min_real_value_T, int max_real_value_T, int

min_real_value_P, int max_real_value_P,

int experiment_count_per_instance )

{

const bool LOCAL_DEB = false;

++files_generated_counter;

string file_name = norm(tostring(files_generated_counter),3,’0’)+" m

"+tostring(m)+" delta "+tostring(delta)+" gamma "+tostring(gamma)+" n

from "+tostring(min_n)+" to "+tostring(max_n)+" step "+tostring(step_n);

vector<string> lines_to_file;

lines_to_file.push_back ( get_columns_header("n") );

int total_matches_per_instance = 0;
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for( int n = min_n; n <= max_n; n += step_n )

{

vector<vector<double> > times ( N_SOLVERS );

int matches_accumulator = 0;

cout << "For n = " << n << endl;

for( int experiment = 0; experiment < experiment_count_per_instance; ++

experiment )

{

cout << "Experiment " << experiment << endl;

vector<int> T = get_random_array(n,min_real_value_T,max_real_value_T);

vector<int> P = get_random_array(m,min_real_value_P,max_real_value_P);

matches_accumulator += run_single_experiment(T,P,delta,gamma, times);

}

total_matches_per_instance += matches_accumulator;

vector<double> times_median;

for ( int i = 0; i < N_SOLVERS; ++i ) {

sort ( times[i].begin(), times[i].end() );

times_median.push_back ( times[i][times[i].size()/2] );

}

double average_matches = matches_accumulator /

(double)experiment_count_per_instance;

stringstream ssline;

ssline << tostring(n);

for ( int i = 0; i < N_SOLVERS; ++i )

ssline << SEPARATOR + tostring(times_median[i]);

ssline << SEPARATOR+tostring(average_matches);

lines_to_file.push_back( ssline.str() );

cout << lines_to_file.back() << endl;

}

if( LOCAL_DEB )

{

cout << "In file \"" << file_name << "\" following " <<

lines_to_file.size() << " lines to write: " << endl;

for( int i = 0; i < lines_to_file.size(); ++ i )

cout << lines_to_file[i] << endl;
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}

file_name = file_name+" {"+tostring(total_matches_per_instance)+"total

matches}.csv";

cout << "\""<< file_name <<"\"" << endl;

write_to_file(lines_to_file,file_name);

}



G. Appendix: C++ code of the

utilitarian functions

#include <bits/stdc++.h>

using namespace std;

bool isAMatch(const vector<int>& ra, const vector<int>& rb , int maxDelta, int

maxGamma )

{

if( ra.size() != rb.size() )

{

cerr << "Error, illegal arguments in isAMatch()" << endl;

return false;

}

int delta = 0, gamma = 0;

for( int i = 0; i < ra.size(); ++ i )

if( ra[i] != rb[i] )

{

delta = fabs(ra[i]-rb[i]);

gamma += delta;

if( delta > maxDelta || gamma > maxGamma )

return false;

}

return true;

}

bool isAMatchDeque(const deque<int>& ra, const vector<int>& rb , int maxDelta,

int maxGamma )

{

if( ra.size() != rb.size() )

{

cerr << "Error, illegal arguments in isAMatchDeque()" << endl;

return false;

}

int delta = 0, gamma = 0;

for( int i = 0; i < ra.size(); ++ i )

if( ra[i] != rb[i] )
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{

delta = fabs(ra[i]-rb[i]);

gamma += delta;

if( delta > maxDelta || gamma > maxGamma )

return false;

}

return true;

}

vector<int> getRankArray( const vector<int>& v )

{

int n = v.size();

vector<pair<int,int> > vPairs ( n );

for( int i = 0; i < n ; ++ i )

vPairs[i] = make_pair(v[i],i);

sort( vPairs.begin(), vPairs.end());

vector<int> rank(n,-1);

for( int i = 0; i < n; ++ i )

rank[ vPairs[i].second ] = i+1;

return rank;

}

deque<int> getRankDeque( const vector<int>& v )

{

int n = v.size();

vector<pair<int,int> > vPairs(n);

for( int i = 0; i < n ; ++ i )

vPairs[i] = make_pair(v[i],i);

sort( vPairs.begin(), vPairs.end());

deque<int> rank(n,-1);

for( int i = 0; i < n; ++ i )

rank[ vPairs[i].second ] = i+1;

return rank;

}
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Order-preserving indexing. Theor. Comput. Sci., 638(C):122–135, July 2016.

[30] Maxime Crochemore, Costas S. Iliopoulos, Thierry Lecroq, Yoan Pinzon, Wojciech Plan-

dowski, Wojciech Rytter, and Uniwersytet Warszawski. Occurrence and substring heu-

ristics for δ-matching, 2003.

[31] Klim Efremenko and Ely Porat. Approximating general metric distances between a

pattern and a text. CoRR, abs/0802.1427, 2008.
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