Interactions between non-commutative algebraic geometry and skew PBW extensions

Edward Orlando Latorre Acero
Matemático

Universidad Nacional de Colombia
Facultad de Ciencias
Departamento de Matemáticas
Bogotá, D.C.
2016

Interactions between non-commutative algebraic geometry and skew $P B W$ extensions

Edward Orlando Latorre Acero Matemático

Graduate work to obtain the title of

 Master of Science-MathematicsAdvisor
Oswaldo Lezama, Ph.D.
Full Professor

Research Line
Noncommutative Algebra
Seminario de Álgebra Constructiva $S A C^{2}$

Universidad Nacional de Colombia
Facultad de Ciencias Departamento de Matemáticas

Bogotá, D.C.
2016

Title in English

Interactions between non-commutative algebraic geometry and skew PBW extensions
Título en español
Interacciones entre la geometría algebraica no conmutativa y las extensiones PBW torcidas
Abstract: We study some relations and interactions between non-commutative algebraic geometry and the skew PBW extensions. For this we will introduce a new class of noncommutative rings, the semi-graded rings, and for them we will prove a generalization of the famous Serre-Artin-Zhang-Verevkin theorem. Semi-graded rings extend not only skew PBW extension but also graded rings.

Resumen: Estudiamos algunas relaciones entre geometría algebraica no conmutativa y las extensiones PBW torcidas. Para esto, introducimos una nueva clase de anillos, los anillos semi-graduados, y para ellos demostraremos una versión generalizada del famoso teorema de Serre-Artin-Zhang-Verevkin. Los anillos semi-graduados no solo generalizan las extensiones PBW torcidas sino también los anillos graduados.

Keywords: Skew PBW extensions, quantum algebras, graded and semigraded rings, filtration, non-commutative algebraic geometry, non-commutative schemes, quasi-coherent sheaves, coherent sheaves, abelian categories.
Palabras clave: Extensiones PWB torcidas, álgebras cuánticas, anillos graduados y semigraduados, filtraciones, geometría algebraica no conmutativa, esquemas no conmutativos, haces cuasi-coherentes, haces coherentes, categorías abelianas.

Acknowledgement

I first would like to thank my advisor Professor Oswaldo Lezama for teach me all that I know about algebra and all that I want to know of non-commutative algebra. Since five years ago that he accepted me as his student I have seen what means be a mathematician. I am extremely grateful for his guidance, insight, and patience in all the projects that I could do under his direction. I specially thank his enthusiastic supervision during this work.

I also state my gratitude to Colciencias and the Faculty of Science of the Universidad Nacional de Colombia for give me the financial support and the possibility to train as researcher during my internship grant as young researcher.

Finally, and most importantly, I would like to thank my parents and my brothers for their unconditional love and support.

Contents

Contents II
Introduction III

1. Preliminaries and basic tools 1
1.1 Finitely graded algebras: definition and basic properties 1
1.2 Classical Hilbert series and polynomials 2
1.3 Classical Gelfand-Kirillov dimension 3
1.4 Graded Hom and Ext 6
1.5 Artin-Schelter regular algebras 7
1.6 Geometry via non-commutative schemes. 9
1.7 The χ condition 11
1.8 Classical Serre-Artin-Zhang-Verevkin theorem 11
1.9 Skew PBW extensions 13
1.9.1 Examples 15
2. Semi-graded rings 17
2.1 Semi-graded rings and modules 17
2.2 Generalized Hilbert series and Hilbert polynomial 20
2.3 Generalized Gelfand-Kirillov dimension 22
3. Non-commutative algebraic geometry for semi-graded rings 25
3.1 Non-commutative projective schemes 25
3.2 Serre-Artin-Zhang-Verevkin theorem for semi-graded rings 28
Bibliography 37

Introduction

The classical algebraic geometry have been built upon the correspondence between algebraic objects such as rings and ideals and the geometric structures of curves, surfaces, and more general varieties and schemes. Since 1950 all the advantage of categorical language have been adapted using all the developments of Grothendieck and his school [14]. The rich and beautiful of this subject is integral to modern expositions of the field, such as [7, [15] and [31], and has been essential to most recent progress in both algebraic geometry and commutative algebra.

A basic idea in algebraic geometry, relying on the duality between commutative rings R and their spectra $X=S p e c R$, is to study algebraic problems via geometrical methods/results and viceversa. In special, by the affine version of the famous Serre's global sections theorem, the category of R-modules is equivalent to the category of quasi-coherent sheaves of \mathcal{O}_{X}-modules for a geometric object X. A natural question is whether something similar holds for some non-commutative noetherian rings; many authors have asked if for certain quantum algebras and non-commutative rings any scheme theory in the sense of Grothendieck is available. However, try to use the ideals in this case is a useless work. A less ambitious goal, but still worthy to be considered, would be to use the commutative intuition to generalize some of results which might improve our understanding of certain concrete problems in non-commutative algebra. This is in a sense the basic philosophy and driving force behind a lot of work done in recent years in search of non-commutative algebraic geometry.

One of the most important active areas in non-commutative algebraic geometry is the classification of non-commutative projective objects. The use of geometric techniques to study non-commutative graded rings has had important applications to noncommutative algebra. A lot of ideas, techniques and doctoral research has been done in the last twenty years (see [9], [17], [25], [28]). These include Artin and Stafford's classification of non-commutative projective curves [27] and the use of geometric techniques to study and classify the non-commutative analogues of \mathbb{P}^{2}, and in general setting \mathbb{P}^{n}. The work of M. Artin and J.J. Zhang in which they propose a model for non-commutative projective scheme, inspired by the projective version of Serre's theorem [2], is considered fundamental for beginners. For another approach, via Ore sets and the micro-localization techniques using the natural filtrations on the considered rings, we find the propose of F. Van Oystaeyen [32].

With the work of M. Artin and J.J. Zhang [2] as corner stone, non-commutative projective algebraic geometry is done taken a non-commutative graded algebra A and associating a category $\operatorname{Proj}(A)$ in which one can do geometry. More specifically, $\operatorname{Proj}(A)$ is a quotient category of the module category $G r A$ of graded modules by the dense subcategory of direct limits of finite-dimensional modules. This is not a new idea. In the 50's Serre taught us that the projective algebraic geometry of a commutative graded ring R is the study of a quotient category ProjR of the graded module category $G r R$. More precisely, let R be a commutative connected \mathbb{N}-graded K-algebra, where K is an algebraically closed field, and assume R is generated by R_{1} as a K-algebra. Let $\left(X, \mathcal{O}_{X}\right)=\operatorname{Proj} R$ be the projective scheme defined by R. We define an equivalence relation on graded R-modules by $M \sim M^{\prime}$ if there is an integer n for which $M_{\geq n} \cong M_{\geq n}^{\prime}$ where $M_{\geq n}=\oplus_{d \geq n} M_{d}$.

On the other hand, in their seminal paper [19] O. Lezama and C. Gallego propose a new way of understand non-commutative rings through the use of the technique of filtration and graduation. This procedure has been essential to show good properties as Hilbert basis theorem, Goldie theorem, and more algebraic and homological properties [20]. They generalized the $P B W$ (Poincaré-Birkhoff-Witt) extensions and Ore extensions and include in this classification many important classes of non-commutative rings and algebras coming from quantum mechanics. Quantum polynomials algebras and universal enveloping algebras of finite-dimensional Lie algebras are examples of skew $P B W$ (Poincaré-Birkhoff-Witt) extensions (see [2], [4], [13], [20] and [23]). Recently, exists special interest in developing the non-commutative projective algebraic geometry for finitely graded algebras (see [12], [17] and [23]. However, for non \mathbb{N}-graded algebras, in particular, for many important classes of skew PBW extensions, only few works have been realized (see [9]).

In this thesis we gives the basic steps to develop the non-commutative projective algebraic geometry for skew PBW extensions and some non \mathbb{N}-graded algebras and rings, defining a new class of rings: the semi-graded rings. As we will see, the semi-graded rings generalize the finitely graded algebras and the skew PBW extensions. Based in the work of Artin and Zhang and collaborators [23], [25], [27]. we generalized all the non-commutative techniques existent for graded algebras. We will discuss the most basic problems on non-commutative algebraic geometry for semi-graded rings. The problems to be discussed are around the following topics: generalized Hilbert series and Hilbert polynomial, generalized Gelfand-Kirillov dimension, non-commutative schemes associated to semi-graded rings. Our main result is a new version of Artin-Zhang theorem for semi-graded algebras over non-commutative rings with special restrictions.

We start a new perspective for the recent work to understand the geometry inherent to non-commutative algebras, objects as Artin-Schelter regular algebras, Calabi-Yau algebras, skew Calabi-Yau algebras are of special interest in mathematical physics. With our propose we try to extend the power of Artin-Zhang methods for algebras do not studied before. In this new framework main questions are adapted to the semi-graded case: how can we describe the geometric data ?, which modules can be adapted as component of this data?, is possible to extend the point modules technique?. We hope that this ideas can be studied and applied as a new tool in noncommutative algebraic geometry for more algebras, this document is the first
step in this mission.

In the remainder of this introduction, we give a overview of the context and main results of this thesis. In the first chapter we review some basic notions about graded algebras and its modules (see [23]), we introduce the classical notions of Hilbert polynomials and Hilbert series, and classical Gelgand-Kirillov dimension (see [6]). We complete this chapter with the definition of skew $P B W$ extensions introduced in [19].

In the second chapter we introduced our main goal: we define the semi-graded rings as a generalization of skew $P B W$ extensions and non-commutative graded algebras. We include a generalization of Hilbert series and Gelfand-Kirillov dimension for this structures. Finally, in third chapter we include the main result concerning to semi-graded rings, we will adapt a categorical equivalence for some skew $P B W$ extensions under a special restriction. We present the theoretical tools for obtain a new general version of the Serre-Artin-Zhang-Verevkin theorem in a categorical setting, some elementary examples are included have not been studied before in the literature.

Chapter

Preliminaries and basic tools

In this chapter we review some basic notions about graded algebras and its modules (see [23]), we introduce the classical notions of Hilbert polynomials and Hilbert series, and classical Gelgand-Kirillov dimension (see [6]). We complete this chapter with the definition of skew $P B W$ extensions introduced in [19; some basic facts and theorems relative to skew $P B W$ extensions are shown.

All the techniques and definitions are introduced for support the main results of this thesis that will be present in 2.1 and 3.1 .

1.1 Finitely graded algebras: definition and basic properties

In Definition 1.4 of [23] is recalling the concept of finitely graded algebra. We start with this concept and we present some classical properties of this type of algebras needed in any approach of non-commutative algebraic geometry.

Definition 1.1.1. Let K be a field. It is said that a K-algebra A is finitely graded if the following conditions hold:
(i) A is \mathbb{N}-graded: $A=\bigoplus_{n \geq 0} A_{n}$.
(ii) A is connected, i.e., $A_{0}=K$.
(iii) A is finitely generated as K-algebra.

Proposition 1.1.2. Let A be a connected \mathbb{N}-graded K-algebra. A is finitely generated as K algebra if and only if $A \cong K\left\langle x_{1}, \ldots, x_{m}\right\rangle / I$, where I is a proper homogeneous two-sided ideal of $K\left\langle x_{1}, \ldots, x_{m}\right\rangle$. Moreover, for every $n \in \mathbb{N}, \operatorname{dim}_{K} A_{n}<\infty$.

Proof. $\Leftarrow)$: Note that the free algebra $F:=K\left\langle x_{1}, \ldots, x_{m}\right\rangle$ is \mathbb{N}-graded with graduation given by

$$
\left.F_{n}:={ }_{K}\langle w| w \text { is a word of length } n \text { in the alphabet }\left\{x_{1}, \ldots, x_{m}\right\}\right\rangle, n \in \mathbb{N} \text {. }
$$

Since I is homogeneous, i.e., graded, then F / I es \mathbb{N}-graded with graduation given by $(F / I)_{n}:=$ $\left(F_{n}+I\right) / I$. Note that F / I is connected since $(F / I)_{0}=K$. Moreover F / I is finitely generated as K-algebra by the elements $\overline{x_{i}}:=x_{i}+I, 1 \leq i \leq m$.
Observe that F_{n} is finitely generated as K-vector space, whence, $(F / I)_{n}$ is also finitely generated as K-vector space, i.e., $\operatorname{dim}_{K}\left((F / I)_{n}\right)<\infty$.
$\Rightarrow)$: Let $a_{1}, \ldots, a_{m} \in A$ be a finite collection of elements that generate A as K-algebra; by the universal property of the free algebra $K\left\langle x_{1}, \ldots, x_{m}\right\rangle$, there exists a K-algebra homomorphism $f: K\left\langle x_{1}, \ldots, x_{m}\right\rangle \rightarrow A$ with $f\left(x_{i}\right):=a_{i}, 1 \leq i \leq m$; it is clear that f is surjective. Let $I:=\operatorname{ker}(f)$, then I is a proper two-sided ideal of $K\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and

$$
\begin{equation*}
A \cong K\left\langle x_{1}, \ldots, x_{m}\right\rangle / I . \tag{1.1.1}
\end{equation*}
$$

Since A is \mathbb{N}-graded, we can assume that every a_{i} is homogeneous, $a_{i} \in A_{d_{i}}$ for some $d_{i} \geq 1$, moreover, at least one of generators is of degree 1 . We define a new graduation for $F:=$ $K\left\langle x_{1}, \ldots, x_{m}\right\rangle$: we put weights d_{i} to the variables x_{i} and we set

$$
F_{n}^{\prime}:={ }_{K}\left\langle x_{i_{1}} \cdots x_{i_{m}} \mid \sum_{j=1}^{m} d_{i_{j}}=n\right\rangle, n \in \mathbb{N} .
$$

This implies that f is graded, and from this we obtain that I is homogeneous. In fact, let $X_{1}+\cdots+X_{t} \in I$, where $X_{l} \in F_{n_{l}}^{\prime}, 1 \leq l \leq t$, so $f\left(X_{1}\right)+\cdots+f\left(X_{t}\right)=0$, and hence, $f\left(X_{l}\right)=0$ for every l, i.e., $X_{l} \in I$.
Finally, note that under the isomorphism \tilde{f} in 1.1.1), $\tilde{f}\left(\left(F_{n}^{\prime}+I\right) / I\right)=A_{n}$, so $\operatorname{dim}_{K}\left(A_{n}\right)<\infty$.

Definition 1.1.3. Let A be a finitely graded algebra; it is said that A is finitely presented if the two-sided ideal I of relations in Proposition 1.1.2 is finitely generated.

Proposition 1.1.4. Let A be a finitely graded algebra and M be a \mathbb{Z}-graded A-module which is finitely generated. Then, for every $n \in \mathbb{Z}, \operatorname{dim}_{K} M_{n}<\infty$.

Proof. Since M is finitely generated, M is generated by a finite set of homogeneous elements, m_{1}, \ldots, m_{r}, with $m_{i} \in M_{d_{i}}, 1 \leq i \leq r$. Let $m \in M_{n}$, then there exist $a_{1}, \ldots, a_{r} \in A$ such that $m=a_{1} \cdot m_{1}+\cdots+a_{r} \cdot m_{r}$, from this we can assume that $a_{i} \in A_{n-d_{i}}$, but as was observed in Proposition 1.1.2, every $A_{n-d_{i}}$ is finitely generated as K-vector space, this implies that M_{n} is finitely generated over K, i.e., $\operatorname{dim}_{K} M_{n}<\infty$.

1.2 Classical Hilbert series and polynomials

The proposition 1.1 .4 shows that any finitely generated graded A-module M over a finitely graded algebra A has $\operatorname{dim}_{k} M_{n}<\infty$ for all n and $\operatorname{dim}_{k} M_{n}=0$ for $n \gg 0$, and so the following definitions makes sense.

Definition 1.2.1. Let A be a finitely graded algebra and M a finitely generated \mathbb{Z}-graded A module. The Hilbert series of M is defined by

$$
h_{M}(t):=\sum_{n \in \mathbb{Z}}\left(\operatorname{dim}_{K} M_{n}\right) t^{n} .
$$

In particular,

$$
h_{A}(t):=\sum_{n=0}^{\infty}\left(\operatorname{dim}_{K} A_{n}\right) t^{n}
$$

Example 1.2.2. In the following examples A is considered as A-module:

1. $A=K[x], \operatorname{dim}_{K} A_{n}=1$ for every $n \geq 0$, so

$$
h_{A}(t)=1+t+t^{2}+t^{3}+\cdots=\frac{1}{1-t} .
$$

2. $A=K\left[x_{1}, \ldots, x_{m}\right], \operatorname{dim}_{K} A_{n}=\binom{m+n-1}{n}$ for every $n \geq 0$, whence

$$
h_{A}(t)=1+\binom{m}{1} t+\binom{m+1}{2} t^{2}+\binom{m+3}{3} t^{3}+\cdots=\frac{1}{(1-t)^{m}} .
$$

3. $A=K\left\langle x_{1}, \ldots, x_{m}\right\rangle, \operatorname{dim}_{K} A_{n}=m^{n}$ for every $n \geq 0$, so

$$
h_{A}(t)=1+m t+m^{2} t^{2}+m^{3} t^{3}+\cdots=\frac{1}{1-m t} .
$$

1.3 Classical Gelfand-Kirillov dimension

If B is a commutative ring and M is any B-module, then the Krull dimension of M is defined to be the length of a maximal chain of prime ideals in the ring ($B / a n n M$). Many non-commutative rings, including those of interest in this thesis, tend to have relatively few prime ideals, and so some different definitions of dimension are more useful in the non-commutative setting. The basic dimension functions we shall use below is the Gelfand-Kirillov dimension, or GKdimension for short.
Recall that if A is a K-algebra, then the Gelfand-Kirillov dimension of A is defined by

$$
\begin{equation*}
\operatorname{GKdim}(A):=\sup _{V} \varlimsup_{n \rightarrow \infty} \log _{n} \operatorname{dim}_{K} V^{n}, \tag{1.3.1}
\end{equation*}
$$

where V ranges over all frames of A and $V^{n}:={ }_{K}\left\langle v_{1} \cdots v_{n} \mid v_{i} \in V\right\rangle$ (a frame of A is a finite dimensional K-subspace of A such that $1 \in V$; since A is a K-algebra, then $K \hookrightarrow A$, and hence, K is a frame of A of dimension 1).

Proposition 1.3.1. Let A be a K-algebra. If A has a generating frame V, i.e, A is generated by V as K-algebra, $A=K[V]$, then

$$
\operatorname{GKdim}(A)=\varlimsup_{n \rightarrow \infty} \log _{n}\left(\operatorname{dim}_{K} V^{n}\right)
$$

Moreover, this equality does not depend on the generating frame V.
Proof. It is clear that $\varlimsup_{n \rightarrow \infty} \log _{n}\left(\operatorname{dim}_{K} V^{n}\right) \leq \operatorname{GKdim}(A)$. Let W be any frame of A; since $\operatorname{dim}_{K} W<\infty$, then there exists m such that $W \subseteq V^{m}$, so for every n we have $W^{n} \subseteq V^{n m}$, and hence $\operatorname{dim}_{K} W^{n} \leq \operatorname{dim}_{K} V^{n m}$. From this we get that $\log _{n}\left(\operatorname{dim}_{K} W^{n}\right) \leq \log _{n}\left(\operatorname{dim}_{K} V^{n m}\right)=\left(1+\log _{n} m\right) \log _{n m}\left(\operatorname{dim}_{K} V^{n m}\right)$. Taking lim we have $\varlimsup_{n \rightarrow \infty} \log _{n}\left(\operatorname{dim} W^{n}\right) \leq \varlimsup_{n \rightarrow \infty} \log _{n m}\left(\operatorname{dim} V^{n m}\right)$ since $\varlimsup_{n \rightarrow \infty}\left(1+\log _{n} m\right)=1$. In addition, note that $\varlimsup_{n \rightarrow \infty} \log _{n m}\left(\operatorname{dim} V^{n m}\right) \leq \varlimsup_{n \rightarrow \infty} \log _{n}\left(\operatorname{dim} V^{n}\right)$, whence

$$
\operatorname{GKdim}(A)=\sup _{W} \varlimsup_{n \rightarrow \infty} \log _{n}\left(\operatorname{dim} W^{n}\right) \leq \varlimsup_{n \rightarrow \infty} \log _{n}\left(\operatorname{dim} V^{n}\right)
$$

The proof of the second statement is completely similar.

Proposition 1.3.2. Let A be a finitely graded K-algebra. Then,

$$
\operatorname{GKdim}(A)=\varlimsup_{n \rightarrow \infty} \log _{n}\left(\sum_{i=0}^{n} \operatorname{dim}_{K} A_{i}\right)
$$

Proof. See Lemma 6.1 in [18].
A classical result in commutative algebra about the Gelfand-Kirillov dimension is the following.
Proposition 1.3.3. Let A be a finitely generated commutative K-algebra. Then,

$$
\operatorname{GKdim}(A)=\operatorname{Kdim}(A) .
$$

Proof. [18], Theorem 4.5(a).
Example 1.3.4. Let K be a field. Then, $\operatorname{GKdim}\left(K\left[x_{1}, \ldots, x_{m}\right]\right)=m$.
Remark 1.3.5. In 22 is presented the exact computation of the Gelfand-Kirillov dimension for the most important examples of skew $P B W$ extensions. In section 2.3. 2.3 we will give a more general version of this dimension for finitely semi-graded noetherian domains.

In [23] are considered the following finitely presented algebras, which are bijective skew $P B W$ extensions:

1. The quantum polynomial ring (Example 1.10, [23]): given any constants $0 \neq q_{i, j} \in K, 1 \leq$ $i<j \leq n$,

$$
A=K\left\langle x_{1}, \ldots, x_{n}\right\rangle /\left\langle x_{j} x_{i}-q_{i j} x_{i} x_{j}\right\rangle
$$

Thus, $A=\sigma(K)\left\langle x_{1}, \ldots, x_{n}\right\rangle$, with

$$
x_{j} x_{i}=q_{i j} x_{i} x_{j}, 0 \neq q_{i, j} \in K, 1 \leq i<j \leq n .
$$

In this case $h_{A}(t)=\frac{1}{(1-t)^{n}}$ and $\operatorname{GKdim}(A)=n$.
2. The quantum plane (Example 1.10, [23]): given $0 \neq q \in K$,

$$
A=K\langle x, y\rangle /\langle y x-q x y\rangle .
$$

Thus, $A=\sigma(K)\langle x, y\rangle$, with

$$
y x=q x y, 0 \neq q \in K
$$

In this case $h_{A}(t)=\frac{1}{(1-t)^{2}}$ and $\operatorname{GKdim}(A)=2$.
3. The Jordan plane (Example 1.10, [23]):

$$
A=K\langle x, y\rangle /\left\langle y x-x y-x^{2}\right\rangle
$$

Thus, $A=\sigma(K[x])\langle y\rangle$, with

$$
y x=x y+x^{2} .
$$

For the Jordan plane holds $h_{A}(t)=\frac{1}{(1-t)^{2}}$ and $\operatorname{GKdim}(A)=2$.
4. The Sklyanin algebra (Example 1.14, [23]): let $a, b, c \in K$, then

$$
S=K\langle x, y, z\rangle /\left\langle a y x+b x y+c z^{2}, a x z+b z x+c y^{2}, a z y+b y z+c x^{2}\right\rangle .
$$

Note if $c=0$ and $a, b \neq 0$, then $S=\sigma(K)\langle x, y, z\rangle$:

$$
y x=-\frac{b}{a} x y, z x=-\frac{a}{b} x z, z y=-\frac{b}{a} y z .
$$

In this case $h_{S}(t)=\frac{1}{(1-t)^{3}}$ and $\operatorname{GKdim}(S)=3$.
5. The quantum polynomial ring in three variables in Example 1.16, [23]:

$$
A=K\langle x, y, z\rangle /\left\langle f_{1}, f_{2}, f_{3}, \text { with } f_{1}:=y x-p x y, f_{2}:=z x-q x z, f_{3}:=z y-r y z\right.
$$

In this case $h_{A}(t)=\frac{1}{(1-t)^{3}}$ and $\operatorname{GKdim}(A)=3$.
6. The K-algebra in Example 1.18 of [23]:

$$
A=K\langle x, y, z\rangle /\left\langle z^{2}-x y-y x, z x-x z, z y-y z\right\rangle .
$$

Then, $A=\sigma(K[z])\langle x, y\rangle$, where

$$
y x=-x y+z^{2}, z x=x z, z y=y z .
$$

In this example $h_{A}(t)=\frac{1}{(1-t)^{3}}$ and $\operatorname{GKdim}(A)=3$.
The finitely graded K-algebra in Example 1.17 of [23] can not be viewed as a skew $P B W$ extension:

$$
A=K\langle x, y\rangle /\left\langle y x^{2}-x^{2} y, y^{2} x-x y^{2}\right\rangle .
$$

The same is true for the Sklyanin algebra with $c \neq 0$.
Closely related with the Hilbert series and the Gelfand-Kirillov dimension of an algebra A is the Hilbert polynomial of A.

Definition 1.3.6. Let A be a finitely graded K-algebra. We say that A has Hilbert polynomial if there exists a polynomial $p_{A}(t) \in \mathbb{Q}[t]$ such that for all n sufficiently large, $p_{A}(n)=\operatorname{dim}_{K} A_{n}$. In this case $p_{A}(t)$ is called the Hilbert polynomial of A. Thus,

$$
\operatorname{dim}_{K} A_{n}=p_{A}(n), \text { for all } n \ggg 0 .
$$

Proposition 1.3.7. Let A be a finitely graded K-algebra. If $p_{A}(t)$ exists, then

$$
\operatorname{GKdim}(A)=\operatorname{deg}\left(p_{A}(t)\right)+1 .
$$

The Hilbert series and the Hilbert polynomial have interesting applications in the study and classification of non-commutative algebras, and also in non-commutative algebraic geometry (see [11]).

1.4 Graded Hom and Ext

The next topic consider in [23] is the graded version of Hom and Ext.
Definition 1.4.1. Let A be a \mathbb{N}-graded ring and let M be a \mathbb{Z}-graded A-module, $M=\underset{n \in \mathbb{Z}}{ } M_{n}$. Let $i \in \mathbb{Z}$, the \mathbb{Z}-graded module $M(i)$ defined by $M(i)_{n}:=M_{i+n}$ is called a shift of M, i.e.,

$$
M(i)=\bigoplus_{n \in \mathbb{Z}} M(i)_{n}=\bigoplus_{n \in \mathbb{Z}} M_{i+n}
$$

Proposition 1.4.2. Let A be a \mathbb{N}-graded ring and let M be a \mathbb{Z}-graded A-module. Then, $M \cong M(i)$ as A-modules.

Proof. The isomorphism is given by

$$
\begin{gathered}
M=\underset{n \in \mathbb{Z}}{ } M_{n} \rightarrow \underset{n \in \mathbb{Z}}{ } M(i)_{n}=M(i) \\
m_{n_{1}}+\cdots+m_{n_{t}} \in M_{n_{1}}+\cdots+M_{n_{t}} \mapsto m_{n_{1}}+\cdots+m_{n_{t}} \in M(i)_{n_{1}-i}+\cdots+M(i)_{n_{t}-i} .
\end{gathered}
$$

Proposition 1.4.3. Let A be a finitely graded algebra. Then $A_{\geq 1}:=\underset{n \geq 1}{\bigoplus} A_{n}$ is the unique homogeneous two-sided maximal ideal of A.

Proof. It is clear that $A_{\geq 1}$ is a homogeneous two-sided ideal of A; the homomorphism defined by taking the homogeneous component of degree zero of any element of A is surjective and has kernel equals $A_{\geq 1}$, so $A / A_{\geq 1} \cong K$, and whence, $A_{\geq 1}$ is maximal. Let I be another two-sided homogeneous maximal ideal of A, then since I is proper, $I \cap A_{0}=I \cap K=0$; let $x \in I$, then $x=x_{0}+x_{1}+\cdots+x_{n}$, with $x_{i} \in A_{i}, 1 \leq i \leq n$, but since I is homogeneous, $x_{i} \in I$ for every i, so $x_{0}=0$, and hence, $x \in A_{\geq 1}$. Thus, $I \subseteq A_{\geq 1}$, but I is maximal, so $I=A_{\geq 1}$.

Definition 1.4.4. Let A be a finitely graded algebra and let M, N be \mathbb{Z}-graded A-modules.
(i) $\operatorname{Hom}_{g r-A}(M, N):=\{f: M \rightarrow N \mid f$ is a graded A-homomorphism $\}$.
(ii) $\underline{H o m}_{A}(M, N):=\bigoplus_{d \in \mathbb{Z}} \operatorname{Hom}_{g r-A}(M, N(d))$.
(iii) $\operatorname{Ext}_{A}^{i}(M, N)$ is defined by taking a graded free resolution of M, applying the functor $\operatorname{Hom}_{A}(, N)$ and taking the $i^{\text {th }}$ homology.

Proposition 1.4.5. Let A be a finitely graded K-algebra and let M, N be \mathbb{Z}-graded A-modules.
(i) $\operatorname{Hom}_{g r-A}(M, N)$ is a K-vector space.
(ii) $\underline{\operatorname{Hom}}_{A}(M, N)$ is a graded K-vector space.
(iii) $\underline{E x t}_{A}^{i}(M, N)$ is a graded K-vector space.
(iv) There is a natural inclusion $\underline{\operatorname{Hom}}_{A}(M, N) \hookrightarrow \operatorname{Hom}_{A}(M, N)$. If M is finitely generated, then

$$
\underline{\operatorname{Hom}}_{A}(M, N) \cong \operatorname{Hom}_{A}(M, N) \text { and } \underline{E x t}_{A}^{i}(M, N) \cong E x t_{A}^{i}(M, N) .
$$

Proof. (i) It is clear that $\operatorname{Hom}_{g r-A}(M, N)$ is an abelian group; moreover, if $f \in$ $\operatorname{Hom}_{g r-A}(M, N)$ and $a \in K$, then $a \cdot f \in \operatorname{Hom}_{g r-A}(M, N)$, with $(a \cdot f)(m):=a \cdot f(m)$, for $m \in M$.
(ii) Let $S:=\underline{\operatorname{Hom}}_{A}(M, N)$, then for $d \in \mathbb{Z}, S_{d}:=\operatorname{Hom}_{g r-A}(M, N(d))$ defines a \mathbb{Z}-graduation of S with respect to K (note that K is a trivial finitely graded K-algebra).
(iii) This follows from (ii).
(iv) Observe that $\operatorname{Hom}_{g r-A}(M, N(d)) \subseteq \operatorname{Hom}_{A}(M, N(d)) \cong \operatorname{Hom}_{A}(M, N)$, thus the inclusion $\underline{\operatorname{Hom}}_{A}(M, N) \hookrightarrow \operatorname{Hom}_{A}(M, N)$ is given by

$$
\left(\ldots, 0, \phi_{d_{1}}, \ldots, \phi_{d_{t}}, 0, \ldots\right) \mapsto \phi_{d_{1}}+\cdots+\phi_{d_{t}}
$$

Note that $\phi_{d_{1}}+\cdots+\phi_{d_{t}}=0$ if and only if $\phi_{d_{1}}=\cdots=\phi_{d_{t}}=0$. Indeed, let $m \in M$ be homogeneous of degree p, then $0=\left(\phi_{d_{1}}+\cdots+\phi_{d_{t}}\right)(m)=\phi_{d_{1}}(m)+\cdots+\phi_{d_{t}}(m) \in N_{d_{1}+p} \oplus$ $\cdots \oplus N_{d_{t}+p}$, whence, for every $j, \phi_{d_{j}}(m)=0$. This means that $\phi_{d_{j}}=0$ for $1 \leq j \leq t$.
If M is finitely generated, then M is generated by a finite set of homogeneous elements m_{1}, \ldots, m_{t} of degrees d_{1}, \ldots, d_{t}, respectively, and in this case,

$$
\underline{\operatorname{Hom}}_{A}(M, N) \cong \operatorname{Hom}_{A}(M, N)
$$

In fact, let $f \in \operatorname{Hom}_{A}(M, N)$ and $f\left(m_{j}\right)=n_{j 1}+\cdots+n_{j l}$, with $d_{j 1}:=\operatorname{deg}\left(n_{j 1}\right)<\cdots<d_{j l}:=$ $\operatorname{deg}\left(n_{j l}\right)$; we define the functions $h_{j i}: M \rightarrow N$ given by

$$
h_{j i}\left(m_{k}\right):= \begin{cases}0, & \text { if } k \neq j \\ n_{j i}, & \text { if } k=j\end{cases}
$$

Note that $h_{j i} \in \operatorname{Hom}_{g r-A}\left(M, N\left(d_{j i}-d_{j}\right)\right)$:
Thus, $f=\sum_{j=1, i=1}^{t, l} h_{j i} \in \bigoplus_{j=1, i=1}^{t, l} \operatorname{Hom}_{g r-A}\left(M, N\left(d_{j i}-d_{j}\right)\right) \hookrightarrow \underline{\operatorname{Hom}_{A}}(M, N)$, so $\operatorname{Hom}_{A}(M, N) \hookrightarrow \underline{\operatorname{Hom}}_{A}(M, N)$.

1.5 Artin-Schelter regular algebras

Now we come to the definition of Artin-Schelter regular algebras. This class of graded algebras was introduced by Artin and Schelter [3] in 1987 and classified a few years later by Artin, Tate and Van den Bergh [4], [5] and Stephenson [29], 30] . They may be considered as noncommutative analogues of polynomial rings.

Definition 1.5.1. A connected graded K-algebra A is called an Artin-Schelter regular algebra of dimension d if it has the following properties:

1. (i) A has finite global dimension $g l d(A)=d<\infty$,
2. (ii) A has finite Gelfand-Kirillov dimension $G K \operatorname{dim}(A)=d<\infty$,
3. (iii) A is Gorenstein, meaning there is an integer l such that

$$
\left.\underline{\operatorname{Ext}_{A}^{i}}{ }_{(}{ }_{A} K_{A},{ }_{A} A\right) \cong \begin{cases}K(l)_{A}, & \text { if } i=d \\ 0, & \text { otherwise }\end{cases}
$$

where l is called the Gorenstein parameter of A.

Remark 1.5.2. Is well know that the third condition is equivalent to

$$
\underline{\operatorname{Ext}}{ }_{A}^{i}\left(K_{A}, A_{A}\right) \cong \begin{cases}{ }_{A} K(l), & \text { if } i=d \\ 0, & \text { otherwise } .\end{cases}
$$

in addition, since $K \cong A / A_{\geq 1}$ is finitely generated as left A-module, then we can replace $\underline{\operatorname{Ext}_{A}^{i}}{ }_{(}\left({ }_{A} K,{ }_{A} A\right)$ by $E x t_{A}^{i}\left({ }_{A} K, A\right.$.

The polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ is an $A S$ (for short)-regular algebra of global dimension n. We think $A S$-regular algebras as non-commutative deformations of $k\left[x_{1}, \ldots, x_{n}\right]$, and the following definition is accepted as the quantum version, or non-commutative version, of the projective space \mathbb{P}^{n} (see [24] and also [13]).

Definition 1.5.3. A quantum projective space \mathbb{P}^{n} is an $A S$ algebra of global dimension n with $h_{A}(t)=\frac{1}{(1-t)^{n}}$.
The main work developed in the last thirty years for $A S$-regular algebras turn around classification problem (see [27]). At this moment this is still unknown for $n \geq 4$, but completely solved for $n \leq 3$.

Examples 1.5.4. (i) If $n=1$ then $A \cong K[x]$.
(ii) If $n=2$ then A [28] Lema 2.2.5 is either isomorphic to

$$
K\langle x, y\rangle /\left(a x^{2}+b y x+c x y+d y^{2}\right), \text { where } a, b, c, d \in K \text { and } a d-c b \neq 0
$$

(in this case $\operatorname{deg}(x)=\operatorname{deg}(y)>0$) or A is isomorphic to the skew polynomial ring $K[x][y ; \sigma, \delta]$, where σ is a graded morphism and δ is a σ-derivation. If we restrict to the case where A is generated in degree one then A is either isomorphic to so-called quantum plane

$$
K\langle x, y\rangle /(y x-q x y) \text { where } q \in K \backslash\{0\}
$$

or to the Jordan quantum plane

$$
K\langle x, y\rangle /\left(x^{2}-y x+x y\right),
$$

and the category $\operatorname{gr}(A)$ is equivalent with $\operatorname{gr}(K[x, y])$, see [36].
(iii) If $n=3$ then there also exists a complete classification for AS-regular algebras of dimension three [3], 4], 5], 29, 30]. They are all left and right noetherian domains with Hilbert series of a weighted polynomial ring $K[x, y, z]$.

- Homogenizations of the first Weyl algebra

$$
A_{1}=K\langle x, y\rangle /(x y-y x-1)
$$

(1) Introduce a third variable z which commutes with x and y, and for which $y x-x y-z^{2}=$ 0 . Thus $\operatorname{deg} z=1$, and we obtain the quadratic AS-algebra

$$
H=H_{q}=K\langle x, y, z\rangle /\left(y z-z y, z x-x z, x y-y x-z^{2}\right)
$$

to which we refer as the homogenized Weyl algebra.
(2) Introduce a third variable z which commutes with x and y and for which $x y-y x-z=0$. Thus $\operatorname{deg} z=2$ and we obtain the enveloping algebra of Heisenberg-Lie algebra, which is a cubic AS algebra

$$
H_{c}=K\langle x, y, z\rangle /(y z-z y, x z-z x, x y-y x-z)
$$

We refer to H_{c} as the enveloping algebras for short.

- The generic three dimensional AS algebras generated in degree one are so-called type A-algebras [3] , they are of the form:
(1) quadratic:

$$
A=K\langle x, y, z\rangle /\left(f_{1}, f_{2}, f_{3}\right)
$$

where f_{1}, f_{2}, f_{3} are the quadratic equations

$$
\left\{\begin{array}{l}
f_{1}=a y z+b z y+c z^{2} \\
f_{2}=a z x+b x z+c y^{2} \\
f_{3}=a x y+b y x+c z^{2} .
\end{array}\right.
$$

(2) cubic:

$$
K\langle x, y\rangle /\left(f_{1}, f_{2}\right)
$$

where f_{1}, f_{2} are the cubic equations

$$
\left\{\begin{array}{l}
f_{1}=a y^{2} x+b y x y+a x y^{2}+c x^{3} \\
f_{2}=a x^{2} y+b x y x+a y x^{2}+c y^{3} .
\end{array}\right.
$$

where $(a, b, c) \in \mathbb{P}^{2} \backslash F$ where F is some finite set. In order to describe F, we recall from [4], Theorem 1 that the regular algebras of global dimension three generated in degree one are exactly the non-degenerated standard algebras. Quadratic algebras of generic type A are also called three dimensional Sklyanin algebras.

1.6 Geometry via non-commutative schemes

A famous Serre's theorem on commutative projective algebraic geometry states that the category of coherent sheaves over the projective n-space \mathbb{P}^{n} is equivalent to a category of noetherian graded modules over a graded commutative polynomial ring. The fourth topic considered in the Rogalski's paper is the study of this equivalence for non-commutative finitely graded noetherian algebras.

Definition 1.6.1. Let K be a field and let A be a left noetherian finitely graded K-algebra. Let $\mathrm{gr}-A$ be the abelian category of finitely generated \mathbb{Z}-graded left A-modules. We define a new abelian category qgr $-A$. The objects are the same as the objects in gr $-A$, and we let
$\pi: \mathrm{gr}-A \rightarrow \mathrm{qgr}-A$ be the identity map on objects. The morphisms in $\mathrm{qgr}-A$ are defined in the following way:

$$
\operatorname{Hom}_{\mathrm{qgr}-\mathrm{A}}(\pi(M), \pi(N)):=\underline{\longrightarrow} \lim _{\mathrm{gr}-A}\left(M_{\geq n}, N\right),
$$

where the direct limit is taken over maps of abelian groups $\operatorname{Hom}_{\operatorname{gr}-A}\left(M_{\geq n}, N\right) \rightarrow$ $\operatorname{Hom}_{\mathrm{gr}-A}\left(M_{\geq n+1}, N\right)$ induced by the inclusion homomorphism $M_{\geq n+1} \rightarrow M_{\geq n}$.

The pair (qgr $-\mathrm{A}, \pi(\mathrm{A}))$ is called the non-commutative projective scheme associated to A, and often denoted simple by qgr - A. The object $\pi(A)$ is called the distinguished object and plays the role of the sheaf. The map $\pi: \mathrm{gr}-A \rightarrow \mathrm{qgr}-A$, called the quotient functor, which sends the morphism $f: M \rightarrow N$ to $\left.f\right|_{M \geq 0} \in \operatorname{Hom}_{\operatorname{gr}-A}\left(M_{\geq 0}, N\right)$ in the direct limit. The category $\mathrm{qgr}-A$ is usually understood as $\mathrm{qgr}-A=\mathrm{gr}-A / \mathrm{tor}-A$.

Now, we present some remarks about how noncommutative projective schemes generalize commutative projective schemes. Some concrete examples of non-commutative projective schemes will be presented later below.

Remark 1.6.2. (i) If X is a fixed topological space, the collection of all sheaves on X is a category: the objects of this category are the sheaves on X; if \mathcal{F}, \mathcal{G} are two sheaves on X, then a morphism $\phi: \mathcal{F} \rightarrow \mathcal{G}$ is defined by the morphism of the corresponding schemes $(X, \mathcal{F}) \xrightarrow{\phi}(X, \mathcal{G})$ such that the continuous function $X \rightarrow X$ is the identical function and given an open set U of X we have a ring homomorphism $\psi_{U}: \mathcal{G}(U) \rightarrow \mathcal{F}(U)$. If the objects $\mathcal{F}(U)$ are not rings but groups, vector spaces or modules, then the ψ_{U} are morphisms of the correspondent structure.
(ii) Let A be a commutative finitely graded K-algebra generated in degree 1 by elements x_{0}, \ldots, x_{n}. Let $\operatorname{proj}(A):=\left\{\left(a_{0}: a_{1}: \cdots: a_{n}\right) \in \mathbb{P}^{n} \mid f\left(a_{0}, \ldots, a_{n}\right)=\right.$ 0 for all homogeneous $f \in J\}$. The category of coherent sheaves on $\operatorname{proj}(A)$, denoted by $\operatorname{coh}(\operatorname{proj}(A))$, can be described in the following way (see Lemma 4.2 in [23]). Every coherent sheaf on $\operatorname{proj}(A)$ is isomorphic to some sheaf \widetilde{M} on $\operatorname{proj}(A)$, where M is some finitely graded A-module, and the sheaf \widetilde{M} is defined as follows: Firstly observe that $\operatorname{proj}(A)$ has a finite open cover $\left\{U_{0}, \ldots, U_{n}\right\} ; \widetilde{M}\left(U_{i}\right):=M_{\left(x_{i}\right)}, 0 \leq i \leq n$, with $M_{\left(x_{i}\right)}$ is the homogeneous component of degree 0 of the graded module $M_{x_{i}}$ (the localization of M by the ring $A_{x_{i}}$, and this last one is the localization of the ring A by the powers of x_{i}). Note that in this case $\widetilde{M}\left(U_{i}\right)$ is not a ring but a K-vector space.
(iii) (Serre's theorem) Let A be a commutative finitely graded K-algebra generated in degree 1. Then, there exists an equivalence of categories

$$
\operatorname{qgr}-A \simeq \operatorname{coh}(\operatorname{proj}(A)) .
$$

In particular,

$$
\operatorname{qgr}-K\left[x_{0}, \ldots, x_{n}\right] \simeq \operatorname{coh}\left(\mathbb{P}^{n}\right)
$$

Thus, the commutative projective schemes (or more exactly, their categories of coherent sheaves) are particular cases of non-commutative projective schemes.

1.7 The χ condition

In this section we describe one property, which, while technical, are needed to extend important techniques from commutative to noncommutative geometry. Because in their absence one's tools are relatively limited, it is important to understand when this property hold.
We recall the Artin-Zhang χ conditions [2].
Definition 1.7.1. Let R be a finitely \mathbb{N}-graded k-algebra, and fix $j \in \mathbb{N}$. We say that R satisfies right χ_{j} if, for all $i \leq j$ and for all finitely generated graded right R-modules M, we have that

$$
\operatorname{dim}_{k} \underline{E x} t_{R}^{i}(k, M)<\infty
$$

We say that R satisfies right χ if R satisfies right χ_{j} for all $j \in \mathbb{N}$. We similarly define left χ_{j} and left χ; we say that R satisfies χ if it satisfies left and right χ.

By [2] Corollary 8.2, any commutative noetherian ring satisfies χ. It is an easy exercise to see that R satisfies right χ_{0} if and only if R is right noetherian.

The most important of the χ conditions is χ_{1}. Artin and Zhang discovered that its presence allows one to reconstruct R from $\operatorname{Proj}-R$. This procedure will be formalized in the next section.

1.8 Classical Serre-Artin-Zhang-Verevkin theorem

Given a non-commutative finitely graded algebra A, it is an interesting and challenging problem to describe its associated non-commutative projective scheme qgr -A . Of course the first attempt is to investigate the non-commutative version of Serre's theorem. Some definitions are needed first.

Definition 1.8.1. It is said that a category \mathcal{C} is K-linear abelian if it satisfies the following conditions:
(i) \mathcal{C} is abelian.
(ii) For every C_{1}, C_{2} objects of $\mathcal{C}, \operatorname{Mor}\left(C_{1}, C_{2}\right)$ is a K-vector space.

We have to consider triples of the form (\mathcal{C}, C, s), where \mathcal{C} is a K-linear abelian category, C is a fixed special object of \mathcal{C} and s is an autoequivalence of \mathcal{C}, i.e., $s: \mathcal{C} \rightarrow \mathcal{C}$ is a faithful, full and representative functor. For example, if A is a left noetherian finitely graded K-algebra we have the triple ($\mathrm{qg} r-A, \pi(A), s$), where s is the autoequivalence of $\mathrm{qg} r-A$ defined by the shifts of degrees.

Definition 1.8.2. Let (\mathcal{C}, C, s) be a triple; the global section functor H^{0} on (\mathcal{C}, C, s) is defined by

$$
H^{0}(M):=\operatorname{Mor}(C, M), M \in \operatorname{Ob}(\mathcal{C})
$$

Observe that $H^{0}(C)$ is a K-algebra.
Definition 1.8.3. Let (\mathcal{C}, C, s) be a triple; it is defined

$$
\Gamma(C)_{\geq 0}:=\bigoplus_{d=0}^{\infty} \operatorname{Mor}\left(C, s^{d}(C)\right)
$$

Observe that $\Gamma(C)_{\geq 0}$ is a graded K-algebra.
Definition 1.8.4. Let (\mathcal{C}, C, s) be a triple; s is ample if the following conditions hold:
(i) For every $M \in \operatorname{Ob}(\mathcal{C})$, there exist positive integers l_{1}, \ldots, l_{p} and an epimorphism $\bigoplus_{i=1}^{p} C\left(-l_{i}\right) \rightarrow M$.
(ii) For every epimorphism $M \rightarrow N$ there exists an integer n_{0} such that for every $n \geq n_{0}$ the function $H^{0}(M(n)) \rightarrow H^{0}(N(n))$ is surjective.

The following is the non-commutative version of Serre's theorem.
Theorem 1.8.5 (Artin-Zhang; [2], Theorem 4.5). Let (\mathcal{C}, C, s) be a triple that satisfies the following conditions:
(a) C is noetherian.
(b) $H^{0}(C)$ is left noetherian and $H^{0}(M)$ is a finitely generated $H^{0}(C)$-modulo for every $M \in$ $O b(\mathcal{C})$.
(c) s is ample.

Then $\Gamma(C)_{\geq 0}$ is a finitely graded left noetherian K-algebra that satisfies χ_{1} and there exists an equivalence of categories

$$
\mathcal{C} \simeq \operatorname{qgr}-\Gamma(C)_{\geq 0}
$$

Conversely, if A is a finitely graded left noetherian K-algebra that satisfies χ_{1}, then the triple $(\mathrm{qg} r-A, \pi(A), s)$, where s is the autoequivalence of $\mathrm{qg} r-A$ defined by the shifts of degrees, satisfies the following conditions:
(a) $\pi(A)$ is left noetherian.
(b) $H^{0}(\pi(A))$ is left noetherian and $H^{0}(\pi(M))$ is a finitely generated $H^{0}(\pi(A))$-modulo for every $M \in O b(\mathrm{qg} r-A)$.
(c) s is ample.

Moreover, there exists an equivalence of categories

$$
\begin{equation*}
\operatorname{qgr}-A \simeq \operatorname{qgr}-\Gamma(\pi(A))_{\geq 0} \tag{1.8.1}
\end{equation*}
$$

Corollary 1.8.6 ([2], Theorem 8.1). Let A be a left noetherian $A S$ algebra. Then A satisfies χ and hence Artin-Zhang theorem holds for A.

Remark 1.8.7. Verevkin gave the same definition in [33] of projective scheme $\operatorname{proj}(A)$ for a K-graded algebra A but he works without the assumption of notherianity (see, [34]).

It seems to be an open problem to describe qgr - A for arbitrary $A S$ algebras, or instead, to establish if any $A S$ algebra is noetherian, and then to apply the previous corollary.

Next we present two particular examples investigated in the specialized literature.

Example 1.8.8. There are interesting examples of non-commutative graded rings whose non-commutative projective schemes are isomorphic to commutative projective schemes, i.e., Serre's theorem holds.
(i) $([23])$ Let A be the quantum plane. Then,

$$
\operatorname{qgr}-A \simeq \operatorname{coh}\left(\mathbb{P}^{1}\right)
$$

The same is true for the Jordan plane. Remember that these two examples are $A S$ algebras. (ii) $([23])$ Consider the quantum polynomial ring A in three variables with $p q r=1$. Then,

$$
\operatorname{qgr}-A \simeq \operatorname{coh}\left(\mathbb{P}^{2}\right)
$$

If $p q r \neq 1$, it is known that qgr $-A$ is not equivalent to the category of coherent sheaves on any commutative projective scheme. These two examples are $A S$ algebras. Thus, there exist $A S$ algebras whose non-commutative projective schemes are isomorphic to commutative projective schemes, but also there exist $A S$ algebras whose non-commutative projective schemes are not isomorphic to commutative projective schemes.

Remark 1.8.9. A recent Ph.D. thesis (2014), and its corresponding preprint titled Noncommutative projective Calabi-Yau schemes [17], by Atsushi Kanazawa, give a description of qgr $-A$ for finitely graded CY algebras. With this in mint, understand and extend this technique have recent interest for others non-commutative objects.

1.9 Skew PBW extensions

Now we recall the definition of skew $P B W$ extensions defined firstly in [19]; many important algebras coming from mathematical physics are particular examples of skew PBW extensions: $\mathcal{U}(\mathcal{G})$, where \mathcal{G} is a finite dimensional Lie algebra, the algebra of q-differential operators, the algebra of shifts operators, the additive analogue of the Weyl algebra, the multiplicative analogue of Weyl algebra, the quantum algebra $U^{\prime}(s o(3, K))$, the 3-dimensional skew polynomial algebra, the dispin algebra, the Woronowicz algebra, the q-Heisenberg algebra, are particular examples of skew PBW (see [20]).

Definition 1.9.1. Let R and A be rings. We say that A is a skew $P B W$ extension of R (also called $a \sigma-P B W$ extension of R) if the following conditions hold:
(i) $R \subseteq A$.
(ii) There exist finitely many elements $x_{1}, \ldots, x_{n} \in A$ such A is a left R-free module with basis

$$
\operatorname{Mon}(A):=\left\{x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\}, \text { with } \mathbb{N}:=\{0,1,2, \ldots\}
$$

The set $\operatorname{Mon}(A)$ is called the set of standard monomials of A.
(iii) For every $1 \leq i \leq n$ and $r \in R-\{0\}$ there exists $c_{i, r} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{i} r-c_{i, r} x_{i} \in R \tag{1.9.1}
\end{equation*}
$$

(iv) For every $1 \leq i, j \leq n$ there exists $c_{i, j} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{j} x_{i}-c_{i, j} x_{i} x_{j} \in R+R x_{1}+\cdots+R x_{n} \tag{1.9.2}
\end{equation*}
$$

Under these conditions we will write $A:=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$.
Associated to a skew $P B W$ extension $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$, there are n injective endomorphisms $\sigma_{1}, \ldots, \sigma_{n}$ of R and σ_{i}-derivations, as the following proposition shows.

Proposition 1.9.2. Let A be a skew $P B W$ extension of R. Then, for every $1 \leq i \leq n$, there exist an injective ring endomorphism $\sigma_{i}: R \rightarrow R$ and a σ_{i}-derivation $\delta_{i}: R \rightarrow R$ such that

$$
x_{i} r=\sigma_{i}(r) x_{i}+\delta_{i}(r)
$$

for each $r \in R$.
Proof. See [19], Proposition 3.
A particular case of skew $P B W$ extension is when all derivations δ_{i} are zero. Another interesting case is when all σ_{i} are bijective and the constants $c_{i j}$ are invertible. We recall the following definition (cf. [19]).

Definition 1.9.3. Let A be a skew $P B W$ extension.
(a) A is quasi-commutative if the conditions (iii) and (iv) in Definition 1.9.1 are replaced by
(iii') For every $1 \leq i \leq n$ and $r \in R-\{0\}$ there exists $c_{i, r} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{i} r=c_{i, r} x_{i} \tag{1.9.3}
\end{equation*}
$$

(iv') For every $1 \leq i, j \leq n$ there exists $c_{i, j} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{j} x_{i}=c_{i, j} x_{i} x_{j} \tag{1.9.4}
\end{equation*}
$$

(b) A is bijective if σ_{i} is bijective for every $1 \leq i \leq n$ and $c_{i, j}$ is invertible for any $1 \leq i<$ $j \leq n$.

Observe that quasi-commutative skew $P B W$ extensions are \mathbb{N}-graded rings but arbitrary skew $P B W$ extensions are semi-graded rings as we will se below. Actually, the main motivation for constructing the non-commutative algebraic geometry of semi-graded rings is due to arbitrary skew $P B W$ extensions.

Many properties of skew $P B W$ extensions have been studied in previous works (see [1], [20]). For example, the global, Krull and Goldie dimensions of bijective skew $P B W$ extensions were estimated in [20]. The next theorem establishes two classical ring theoretic results for skew $P B W$ extensions.

Theorem 1.9.4. Let A be a bijective skew $P B W$ extension of a ring R.
(i) (Hilbert Basis Theorem) If R is a left (right) Noetherian ring then A is also left (right) Noetherian.
(ii) (Ore's theorem) If R is a left Ore domain R. Then A is also a left Ore domain.

We conclude this introductory section fixing some notation. If not otherwise noted, all modules are left modules; B will denote a non-commutative ring; K will be a field; $A:=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ will represent a skew $P B W$ extension.

1.9.1 Examples

1. $P B W$ extensions: any $P B W$ extension is a bijective skew $P B W$ extension since in this case $\sigma_{i}=i_{R}$ for each $1 \leq i \leq n$, and $c_{i, j}=1$ for every $1 \leq i, j \leq n$. Thus, for $P B W$ extension is hold $A=i(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Examples of $P B W$ extensions are the following:
(a) Any skew polynomial ring of derivation type $A=R[x ; \sigma, \delta]$ i.e. with $\sigma=i_{R}$.
(b) The Weyl algebra $A_{n}(k):=k\left[t_{1}, \ldots, t_{n}\right]\left[x_{1} ; \partial / \partial t_{1}, \ldots, \partial / \partial t_{n}\right]$.
(c) Let k be a commutative ring and \mathcal{G} a finite dimensional Lie algebra over k with basis $\left\{x_{1}, \ldots, x_{n}\right\}$; the Universal enveloping algebra of $\mathcal{G}, \mathcal{U}(\mathcal{G})$, is a $P B W$ extension of k.
2. Ore extensions of bijective type: any skew polynomial ring $R[x ; \sigma, \delta]$ of bijective type, i.e. with σ bijective, is a bijective skew $P B W$ extension. More generally, let $R\left[x_{1} ; \sigma_{1}, \delta_{1}\right] \cdots\left[x_{n} ; \sigma_{n}, \delta_{n}\right]$ be an iterated skew polynomial ring of bijective type with its standard conditions then, $R\left[x_{1} ; \sigma_{1}, \delta_{1}\right] \cdots\left[x_{n} ; \sigma_{n}, \delta_{n}\right]$ is a bijective skew $P B W$ extension.

Some concrete examples of Ore algebras of bijective type are the following
(a) The algebra of q-differential operators $D_{q, h}[x, y]$: let $q, h \in k, q \neq 0$; consider $k[y][x ; \sigma, \delta], \sigma(y):=q y$ and $\delta(y):=h$. By definition of skew polynomial ring we have $x y=\sigma(y) x+\delta(y)=q y x+h$, and hence $x y-q y x=h$, Therefore, $D_{q, h}[x, y] \cong \sigma(k[y])\langle x\rangle$.
(b) The algebra of shift operators S_{h} : let $h \in k$. The algebra of shift operators is defined by $S_{h}:=k[t]\left[x_{h} ; \sigma_{h}, \delta_{h}\right]$, where $\sigma_{h}(p(t)):=p(t-h)$, and $\delta_{h}:=0$. Thus $S_{h} \cong \sigma(k[t])\left\langle x_{h}\right\rangle$.

3. Quantum algebras

(a) Additive analogue of the Weyl algebra The k-algebra $A_{n}\left(q_{1}, \ldots, q_{n}\right)$ generated by $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ and its inner relations. Then $A_{n}\left(q_{1}, \ldots, q_{n}\right) \cong$ $\sigma\left(k\left[x_{1}, \ldots, x_{n}\right]\right)\left\langle y_{1}, \ldots, y_{n}\right\rangle$.
(b) Multiplicative analogue of the Weyl algebra The k-algebra $\mathcal{O}_{n}\left(\lambda_{j i}\right)$ generated by x_{1}, \ldots, x_{n} subject to the relations $x_{i} x_{j}=\lambda_{j i} x_{i} x_{j}$ for $1 \leq i<j \leq n$, We note that $\mathcal{O}_{n}\left(\lambda_{j i}\right) \cong \sigma\left(k\left[x_{1}\right]\right)\left\langle x_{2}, \ldots, x_{n}\right\rangle$.
(c) Quantum algebra $\mathcal{U}^{\prime}(\mathfrak{s o}(3, k))$. It is the k-algebra generated by I_{1}, I_{2}, I_{3} subject to the relations

$$
I_{2} I_{1}-q I_{1} I_{2}=-q^{1 / 2} I_{3}, I_{3} I_{1}-q^{-1} I_{1} I_{3}=q^{-1 / 2} I_{2}, I_{3} I_{2}-q I_{2} I_{3}=-q^{1 / 2} I_{1}
$$

In this way, $\mathcal{U}^{\prime}(\mathfrak{s o}(3, k)) \cong \sigma(k)\left\langle I_{1}, I_{2}, I_{3}\right\rangle$.
(d) Woronowicz algebra $\mathcal{W}_{v}(\mathfrak{s l}(2, k))$. This algebra was introduced by Woronowicz in [35] and in is genrated by x, y, z subject to the relations

$$
x z-v^{2} z x=\left(1+v^{2}\right) x, x y-v^{2} y x=v z, z y-v^{4} y z=\left(1+v^{2}\right) y
$$

Then $\mathcal{W}_{v}(\mathfrak{s l}(2, k)) \cong \sigma(k)\langle x, y, z\rangle$
(e) q - Heisenberg algebra The k-algebra $H_{n}(q)$ is generated by the set of variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}$ subject to its inner relations. Note that $H_{n}(q) \cong$ $\sigma\left(k\left[y_{1}, \ldots, y_{n}\right]\right)\left\langle x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{n}\right\rangle$

These and more examples can be find in more detail in [20].
With the above discussion we can formulate the next problem.
Problem 1.9.5. Associate to a skew $P B W$ extension a non-commutative scheme and adapt the equivalence 1.8 .1 in theorem 1.8.5.

Semi-graded rings

In this chapter we introduced our main goal: we define the semi-graded rings as a generalization of skew $P B W$ extensions and non-commutative graded algebras. We include a generalization of Hilbert series and Gelfand-Kirillov dimension for this structures. Some examples are included for explain and support our results.

2.1 Semi-graded rings and modules

In this section we introduce the semi-graded rings and modules, we prove some elementary properties of them, and we will show that graded rings, finitely graded algebras and skew $P B W$ extensions are particular cases of this new type of non-commutative rings.

Definition 2.1.1. Let B be a ring. We say that B is semi-graded $(S G)$ if there exists a collection $\left\{B_{n}\right\}_{n \geq 0}$ of subgroups B_{n} of the additive group B^{+}such that the following conditions hold:
(i) $B=\bigoplus_{n \geq 0} B_{n}$.
(ii) For every $m, n \geq 0, B_{m} B_{n} \subseteq B_{0} \oplus \cdots \oplus B_{m+n}$.
(iii) $1 \in B_{0}$.

The collection $\left\{B_{n}\right\}_{n \geq 0}$ is called a semi-graduation of B and we say that the elements of B_{n} are homogeneous of degree n. Let B and C be semi-graded rings and let $f: B \rightarrow C$ be a ring homomorphism, we say that f is homogeneous if $f\left(B_{n}\right) \subseteq C_{n}$ for every $n \geq 0$.

Definition 2.1.2. Let B be a $S G$ ring and let M be a B-module. We say that M is a \mathbb{Z} -semi-graded, or simply semi-graded, if there exists a collection $\left\{M_{n}\right\}_{n \in \mathbb{Z}}$ of subgroups M_{n} of the additive group M^{+}such that the following conditions hold:
(i) $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$.
(ii) For every $m \geq 0$ and $n \in \mathbb{Z}, B_{m} M_{n} \subseteq \bigoplus_{k \leq m+n} M_{k}$.

We say that M is positively semi-graded, also called \mathbb{N}-semi-graded, if $M_{n}=0$ for every $n<0$. Let $f: M \rightarrow N$ be an homomorphism of B-modules, where M and N are semi-graded B modules; we say that f is homogeneous if $f\left(M_{n}\right) \subseteq N_{n}$ for every $n \in \mathbb{Z}$.

As for the case of rings, the collection $\left\{M_{n}\right\}_{n \in \mathbb{Z}}$ is called a semi-graduation of M and we say that the elements of M_{n} are homogeneous of degree n.

Let B be a semi-graded ring and let M be a semi-graded B-module, let N be a submodule of M, let $N_{n}:=N \cap M_{n}, n \in \mathbb{Z}$; observe that the sum $\sum_{n} N_{n}$ is direct. This induces the following definition.

Definition 2.1.3. Let B be a $S G$ ring and M be a semi-graded module over B. Let N be a submodule of M, we say that N is a semi-graded submodule of M if $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$.

Note that if N is semi-graded, then $B_{m} N_{n} \subseteq \bigoplus_{k \leq m+n} N_{k}$, for every $n \in \mathbb{Z}$ and $m \geq 0$: In fact, let $b \in B_{m}$ and $z \in N_{n}$, then $b z \in B_{m} M_{n} \subseteq \bigoplus_{k \leq m+n} M_{k}$ and $b z=z_{1}+\cdots+z_{l}$, with $z_{i} \in N_{n_{i}} \subseteq M_{n_{i}}$, but since the sum is direct, then $n_{i} \leq m+n$ for every $1 \leq i \leq l$.

Finally, we introduce an important class of semi-graded rings that includes finitely graded algebras and skew $P B W$ extensions.

Definition 2.1.4. Let B be a ring. We say that B is finitely semi-graded (FSG) if B satisfies the following conditions:
(i) B is $S G$.
(ii) There exists finitely many elements $x_{1}, \ldots, x_{n} \in B$ such that the subring generated by B_{0} and x_{1}, \ldots, x_{n} coincides with B.
(iii) For every $n \geq 0, B_{n}$ is a free B_{0}-module of finite dimension.

Moreover, if M is a B-module, we say that M is finitely semi-graded if M is semi-graded, finitely generated, and for every $n \in \mathbb{Z}, M_{n}$ is a free B_{0}-module of finite dimension.

Remark 2.1.5. Observe if B is $F S G$, then $B_{0} B_{p}=B_{p}$ for every $p \geq 0$, and if M is finitely semi-graded, then $B_{0} M_{n}=M_{n}$ for all $n \in \mathbb{Z}$.

From the definitions above we get the following conclusions.
Proposition 2.1.6. Let $B=\bigoplus_{n \geq 0} B_{n}$ be a $S G$ ring and I be a proper two-sided ideal of B semi-graded as left ideal. Then,
(i) B_{0} is a subring of B. Moreover, for any $n \geq 0, B_{0} \oplus \cdots \oplus B_{n}$ is a $B_{0}-B_{0}$-bimodule, as well as B.
(ii) B has a standard \mathbb{N}-filtration given by

$$
\begin{equation*}
F_{n}(B):=B_{0} \oplus \cdots \oplus B_{n} . \tag{2.1.1}
\end{equation*}
$$

(iii) The associated graded ring satisfies

$$
\operatorname{Gr}(B)_{n} \cong B_{n}, \text { for every } n \geq 0 \text { (isomorphism of abelian groups). }
$$

(iv) Let $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ be a semi-graded B-module and N a submodule of M. The following conditions are equivalent:
(a) N is semi-graded.
(b) For every $z \in N$, the homogeneous components of z are in N.
(c) M / N is semi-graded with semi-graduation given by

$$
(M / N)_{n}:=\left(M_{n}+N\right) / N, n \in \mathbb{Z} .
$$

(v) B / I is $S G$.
(vi) If B is $F S G$ and $I \cap B_{n} \subseteq I B_{n}$ for every n, then B / I is $F S G$.

Proof. (i) and (ii) are obvious. For (iii) observe that $\operatorname{Gr}(B)_{n}=F_{n}(B) / F_{n-1}(B) \cong B_{n}$ for every $n \geq 0$ (isomorphism of abelian groups); in addition, note how acts the product: let $z:=\overline{b_{0}+\cdots+b_{m}} \in \operatorname{Gr}(B)_{m}, z^{\prime}:=\overline{c_{0}+\cdots+c_{n}} \in \operatorname{Gr}(B)_{n}$, then

$$
z z^{\prime}=\overline{b_{m}} \overline{c_{n}}=\overline{d_{0}+\cdots+d_{m+n}}=\overline{d_{m+n}} \in G r(B)_{m+n} \cong B_{n+m} .
$$

(iv) $(\mathrm{a}) \Leftrightarrow$ (b) is obvious.
(b) \Rightarrow (c): Let $\bar{M}_{n}:=(M / N)_{n}:=\left(M_{n}+N\right) / N, n \in \mathbb{Z}$, then $\bar{M}:=M / N=\bigoplus_{n \in \mathbb{Z}} \bar{M}_{n}$. In fact, let $z \in M$, then $\bar{z} \in \bar{M}$ can be written as $\bar{z}=\overline{z_{1}+\cdots+z_{l}}=\overline{z_{1}}+\cdots+\overline{z_{l}}$, with $z_{k} \in M_{n_{k}}$, $1 \leq k \leq l$, thus, $\bar{z} \in \sum_{n \in \mathbb{Z}} \bar{M}_{n}$, and hence, $\bar{M}=\sum_{n \in \mathbb{Z}} \bar{M}_{n}$. This sum is direct since if $\overline{z_{1}}+\cdots+\overline{z_{l}}=\overline{0}$, then $z_{1}+\cdots+z_{l} \in N$, so by (b) $z_{k} \in N$, i.e., $\overline{z_{k}}=\overline{0}$ for every $1 \leq k \leq l$. Now, let $b_{m} \in B_{m}$ and $\overline{z_{n}} \in \bar{M}_{n}$, then $b_{m} \overline{z_{n}}=\overline{b_{m} z_{n}}=\overline{d_{1}+\cdots+d_{p}}$, with $d_{i} \in M_{n_{i}}$ and $n_{i} \leq m+n$, so $\overline{b_{m}} \overline{z_{n}}=\overline{d_{1}}+\cdots+\overline{d_{p}} \in \bigoplus_{k \leq m+n} \bar{M}_{k}$. We have proved that \bar{M} is semi-graded.
(c) \Rightarrow (b): Let $z=z_{1}+\cdots+z_{l} \in N$, with $z_{i} \in M_{n_{i}}, 1 \leq i \leq l$, then $\overline{0}=\overline{z_{1}}+\cdots+\overline{z_{l}} \in \bar{M}=$ $\bigoplus_{n \in \mathbb{Z}} \bar{M}_{n}$, therefore, $\overline{z_{i}}=\overline{0}$, and hence $z_{i} \in N$ for every i.
(v) The proof is similar to (b) \Rightarrow (c) in (iv).
(vi) By (v), \bar{B} is $S G$. Let $x_{1}, \ldots, x_{n} \in B$ such that the subring generated by B_{0} and x_{1}, \ldots, x_{n} coincides with B, then it is clear that the subring of \bar{B} generated by \bar{B}_{0} and $\overline{x_{1}}, \ldots, \overline{x_{n}}$ coincides with \bar{B}. Let $n \geq 0$ and $\left\{z_{1}, \ldots, z_{l}\right\}$ be a basis of the free left B_{0}-module B_{n}, then $\left\{\overline{z_{1}}, \ldots, \overline{z_{l}}\right\}$ is a basis of \bar{B}_{n} : in fact, let $\bar{z} \in \bar{B}_{n}$ with $z \in B_{n}$, then $z=c_{1} z_{1}+\cdots+c_{l} z_{l}$, with $c_{i} \in B_{0}$, $1 \leq i \leq l$, and hence, $\bar{z}=\overline{c_{1}} \overline{z_{1}}+\cdots+\overline{c_{l}} \overline{z_{l}}$, i.e., \bar{B}_{n} is generated by $\overline{z_{1}}, \ldots, \overline{z_{l}}$ over \bar{B}_{0}; now, if $\overline{c_{1}} \overline{z_{1}}+\cdots+\overline{c_{l}} \overline{z_{l}}=\overline{0}$, with $c_{i} \in B_{0}$, then $c_{1} z_{1}+\cdots+c_{l} z_{l} \in I \cap B_{n} \subseteq I B_{n}$ and hence we can write

$$
c_{1} z_{1}+\cdots+c_{l} z_{l}=d_{1} z_{1}+\cdots+d_{l} z_{l}, \text { with } d_{i} \in I, 1 \leq i \leq l .
$$

From this we get that $c_{i}=d_{i}$, so $\overline{c_{i}}=\overline{0}$ for every i.
Note that the condition imposed to I in (vi) is of type Artin-Rees (see [McConnell]).
Proposition 2.1.7. (i) Any \mathbb{N}-graded ring is $S G$.
(ii) Let K be a field. Any finitely graded K-algebra is a $F S G$ ring.
(iii) Any skew $P B W$ extension is a $F S G$ ring.

Proof. (i) and (ii) follow directly from the definitions.
(iii) Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a skew $P B W$ extension, then $A=\bigoplus_{k \geq 0} A_{k}$, where

$$
A_{k}:={ }_{R}\left\langle x^{\alpha} \in \operatorname{Mon}(A) \mid \operatorname{deg}\left(x^{\alpha}\right)=k\right\rangle .
$$

Thus, A_{k} is a free left R-module with

$$
\begin{equation*}
\operatorname{dim}_{R} A_{k}=\binom{n+k-1}{k}=\binom{n+k-1}{n-1} . \tag{2.1.2}
\end{equation*}
$$

We are assuming that R is an $\mathcal{I B N}$ ring (Invariant basis number), and hence, A also satisfies this condition, see [10].

2.2 Generalized Hilbert series and Hilbert polynomial

In this section we introduce the notion of generalized Hilbert series and generalized Hilbert polynomial for semi-graded rings. As in the classical case of finitely graded algebras over fields, these notions depends on the semi-graduation, in particular, they depend on the ring B_{0}. We will compute these tools for skew $P B W$ extensions.

Definition 2.2.1. Let $B=\sum_{n \geq 0} \oplus B_{n}$ be a $F S G$ ring and $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ be a finitely semigraded B-module. The generalized Hilbert series of M is defined by

$$
G h_{M}(t):=\sum_{n \in \mathbb{Z}}\left(\operatorname{dim}_{B_{0}} M_{n}\right) t^{n} .
$$

In particular,

$$
G h_{B}(t):=\sum_{n=0}^{\infty}\left(\operatorname{dim}_{B_{0}} B_{n}\right) t^{n} .
$$

We say that B has a generalized Hilbert polynomial if there exists a polynomial $G p_{B}(t) \in \mathbb{Q}[t]$ such that

$$
\operatorname{dim}_{B_{0}} B_{n}=G p_{B}(n), \text { for all } n \ggg 0 .
$$

In this case $G p_{B}(t)$ is called the generalized Hilbert polynomial of B.
Remark 2.2.2. (i) Note that if K is a field and B is a finitely graded K-algebra, then the generalized Hilbert series coincides with the habitual Hilbert series, i.e., $G h_{B}(t)=h_{B}(t)$; the same is true for the generalized Hilbert polynomial.
(ii) Observe that if a semi-graded ring B has another semi-graduation $B=\bigoplus_{n \geq 0} C_{n}$, then its generalized Hilbert series and its generalized Hilbert polynomial can change, i.e., the notions of generalized Hilbert series and generalized Hilbert polynomial depend on the semi-graduation, in particular on B_{0}. For example, consider the habitual real polynomial ring in two variables $B:=\mathbb{R}[x, y]$, then $G h_{B}(t)=\frac{1}{(1-t)^{2}}$ and $G p_{B}(t)=t+1$; but if we view this ring as $B=(\mathbb{R}[x])[y]$ then $C_{0}=\mathbb{R}[x]$, its generalized Hilbert polynomial series is $\frac{1}{1-t}$ and its generalized Hilbert polynomial is 1 .

For skew $P B W$ extensions the generalized Hilbert series and the generalized Hilbert polynomial can be computed explicitly.

Theorem 2.2.3. Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be an arbitrary skew $P B W$ extension. Then,

$$
\begin{equation*}
G h_{A}(t)=\frac{1}{(1-t)^{n}} . \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
G p_{A}(t)=\frac{1}{(n-1)!}\left[t^{n-1}-s_{1} t^{n-2}+\cdots+(-1)^{r} s_{r} t^{n-r-1}+\cdots+(n-1)!\right] . \tag{2.2.2}
\end{equation*}
$$

where $s_{1}, \ldots, s_{k}, \ldots, s_{n-1}$ are the elementary symmetric polynomials in the variables $1-$ $n, 2-n, \ldots,(n-1)-n$.

Proof. (i) We have

$$
G h_{A}(t)=\sum_{k=0}^{\infty}\left(\operatorname{dim}_{R} A_{k}\right) t^{k}=\sum_{k=0}^{\infty}\binom{n+k-1}{k} t^{k}=\frac{1}{(1-t)^{n}} .
$$

(ii) Note that

$$
\begin{aligned}
\operatorname{dim}_{R} A_{k}=\binom{n+k-1}{k} & =\frac{(n+k-1)!}{k!(n-1)!} \\
& =\frac{(k+n-1)(k+n-2)(k+n-3) \cdots(k+n-(n-1))(k+n-n)!}{k!(n-1)!} \\
& =\frac{(k+n-1)(k+n-2)(k+n-3) \cdots(k+n-(n-1))}{(n-1)!} \\
& =\frac{1}{(n-1)!}\left[k^{n-1}-s_{1} k^{n-2} \cdots+(-1)^{r} s_{r} k^{n-r-1}+\cdots+(-1)^{n-1} s_{n-1} k^{n-n}\right] \\
& =\frac{1}{(n-1)!}\left[k^{n-1}-s_{1} k^{n-2} \cdots+(-1)^{r} s_{r} k^{n-r-1}+\cdots+(n-1)!\right]
\end{aligned}
$$

where $s_{1}, \ldots, s_{k}, \ldots, s_{n-1}$ are the elementary symmetric polynomials in the variables $1-n, 2-$ $n, \ldots,(n-1)-n$. Thus, we found a polynomial $G p_{A}(t) \in \mathbb{Q}[t]$ of degree $n-1$ such that

$$
\begin{equation*}
\operatorname{dim}_{R} A_{k}=G p_{A}(k) \text { for all } k \geq 0 . \tag{2.2.3}
\end{equation*}
$$

From Theorem 2.2.3, and considering the numeral (ii) in Remark 2.2 .2 , we can compute the generalized Hilbert series and the generalized Hilbert polynomial for all examples of skew $P B W$ extensions described in [lezamareyes1]. In addition, for the skew quantum polynomials, we can interpreted some of them as quasi-commutative bijective skew $P B W$ extensions of the r-multiparameter quantum torus. Thus, we have the following table:

2.3 Generalized Gelfand-Kirillov dimension

With respect to the Gelfand-Kirillov dimension, the classical definition over fields is not good since, in general, for a ring R a finitely generated R-module is not free. Whence, we have to replace the classical dimension of free modules with other invariant. Next we will show that for our purposes the Goldie dimension works properly, assuming that R is a left noetherian domain. A similar problem was considered in [6] for algebras over commutative noetherian domains replacing the vector space dimension with the reduced rank.
The following two remarks induce our definition.
(i) If R is a left noetherian domain, then R is a left Ore domain and hence $\operatorname{udim}\left({ }_{R} R\right)=1$. From this we get the following conclusion: let V be a free R-module of finite dimension, i.e., $\operatorname{dim}_{R} V=k$, then $\operatorname{udim}(V)=k$: in fact, $V \cong R^{k}$, and from this we obtain $\operatorname{udim}(V)=$ $\operatorname{udim}\left({ }_{R} R \oplus \cdots \oplus_{R} R\right)=\operatorname{udim}\left({ }_{R} R\right)+\cdots+\operatorname{udim}\left({ }_{R} R\right)=k$ (see [21]).
(ii) Let R be a left noetherian domain and $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a skew $P B W$ extension of R, then (2.2.1) takes the following form:

$$
G h_{A}(t)=\sum_{k=0}^{\infty}\left(\operatorname{udim} A_{k}\right) t^{k}=\sum_{k=0}^{\infty}\left(\operatorname{dim}_{R} A_{k}\right) t^{k}=\sum_{k=0}^{\infty}\binom{n+k-1}{k} t^{k}=\frac{1}{(1-t)^{n}} .
$$

Definition 2.3.1. Let B be a FSG ring such that B_{0} is a left noetherian domain. The generalized Gelfand-Kirillov dimension of B is defined by

$$
\operatorname{GGKdim}(B):=\sup _{V} \overline{\lim _{k \rightarrow \infty}} \log _{k} \operatorname{udim} V^{k},
$$

where V ranges over all frames of B and $V^{k}:={ }_{B_{0}}\left\langle v_{1} \cdots v_{k} \mid v_{i} \in V\right\rangle$ (a frame of B is a finite dimensional B_{0}-free submodule of B such that $1 \in V$).

Remark 2.3.2. (i) Note that B has at least one frame: B_{0} is a frame of dimension 1. We say that V is a generating frame of B if the subring of B generating by V and B_{0} is B. For example, if R is a left noetherian domain and $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a skew $P B W$ extension of R, then $V:={ }_{R}\left\langle 1, x_{1}, \ldots, x_{n}\right\rangle$ is a generating frame of A.
(ii) In a similar way as was observed in Remark 2.2 .2 , the notion of generalized Gelfand-Kirillov dimension of a finitely semi-graded ring B depends on the semi-graduation, in particular, depends on B_{0}. Note that this type of consideration was made in [6] for an alternative notion of the Gelfand-Kirillov dimension using the reduced rank.
(iii) If B is a finitely graded K-algebra, then the classical Gelfand-Kirillov dimension of B coincides with the just defined above notion, i.e., $\operatorname{GGKdim}(B)=\operatorname{GKdim}(B)$.

Proposition 2.3.3. Let B be a $F S G$ ring such that B_{0} is a left noetherian domain. Let V be a generating frame of B, then

$$
\begin{equation*}
\operatorname{GGKdim}(B)=\varlimsup_{k \rightarrow \infty} \log _{k}\left(\operatorname{udim} V^{k}\right) \tag{2.3.1}
\end{equation*}
$$

Moreover, this equality does not depend on the generating frame V.

Proof. It is clear that $\varlimsup_{k \rightarrow \infty} \log _{k}\left(\operatorname{udim} V^{k}\right) \leq \operatorname{GGKdim}(B)$. Let W be any frame of B; since $\operatorname{dim}_{B_{0}} W<\infty$, then there exists m such that $W \subseteq V^{m}$, and hence for every k we have $W^{k} \subseteq V^{k m}$, but observe that $V^{k m}$ is a finitely generated left B_{0}-module, and since B_{0} is left noetherian, then $V^{k m}$ is a left noetherian B_{0}-module, so udim $V^{k m}<\infty$. From this, udim $W^{k} \leq$ $\underline{\operatorname{udim} V^{k m}}$. Therefore, $\log _{k}\left(\operatorname{udim} W^{k}\right) \leq \log _{k}\left(\operatorname{udim} V^{k m}\right)=\left(1+\log _{k} m\right) \log _{k m}\left(\operatorname{udim} V^{k m}\right)$. Since $\varlimsup_{k \rightarrow \infty}\left(1+\log _{k} m\right)=1$, we get that $\varlimsup_{k \rightarrow \infty} \log _{k}\left(\operatorname{udim} W^{k}\right) \leq \varlimsup_{k \rightarrow \infty} \log _{k m}\left(\operatorname{udim} V^{k m}\right)$. But observe that $\varlimsup_{k \rightarrow \infty} \log _{k m}\left(\operatorname{udim} V^{k m}\right) \leq \varlimsup_{k \rightarrow \infty} \log _{k}\left(\operatorname{udim} V^{k}\right)$, whence

$$
\operatorname{GGKdim}(B)=\sup _{W} \varlimsup_{k \rightarrow \infty} \log _{k}\left(\operatorname{udim} W^{k}\right) \leq \varlimsup_{k \rightarrow \infty} \log _{k}\left(\operatorname{udim} V^{k}\right) .
$$

The proof of the second statement is completely similar.
Next we present the main result of the present section.
Theorem 2.3.4. Let R be a left noetherian domain and $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a skew PBW extension of R. Then,

$$
\operatorname{GGKdim}(A)=\varlimsup_{k \rightarrow \infty} \log _{k}\left(\sum_{i=0}^{k} \operatorname{dim}_{R} A_{i}\right)=1+\operatorname{deg}\left(G p_{A}(t)\right)=n
$$

Proof. According to 2.3.1), GGKdim $(A)=\varlimsup_{k \rightarrow \infty} \log _{k}\left(\operatorname{udim} V^{k}\right)$, with

$$
V:={ }_{R}\left\langle 1, x_{1}, \ldots, x_{n}\right\rangle=A_{0} \oplus A_{1} ;
$$

note that $V^{k} \subseteq A_{0} \oplus A_{1} \oplus \cdots \oplus A_{k}$, from this and using 2.2.3 we get

$$
\begin{gathered}
\operatorname{GGKdim}(A) \leq \overline{\lim _{k \rightarrow \infty}} \log _{k}\left(\operatorname{udim}\left(\sum_{i=0}^{k} \oplus A_{i}\right)\right)=\overline{\lim _{k \rightarrow \infty}} \log _{k}\left(\sum_{i=0}^{k} \operatorname{udim} A_{i}\right)= \\
\overline{\lim _{k \rightarrow \infty}} \log _{k}\left(\sum_{i=0}^{k} \operatorname{dim}_{R} A_{i}\right)=\lim _{k \rightarrow \infty} \log _{k}\left(\sum_{i=0}^{k} G p_{A}(i)\right)= \\
\lim _{k \rightarrow \infty} \log _{k}\left(G p_{A}(0)+G p_{A}(1)+\cdots+G p_{A}(k)\right),
\end{gathered}
$$

but according to 2.2 .2 , every coefficient in $G p_{A}(t)$ is positive, so $G p_{A}(i)$ is positive for every $0 \leq i \leq k$, moreover, $G p_{A}(i) \leq G p_{A}(k)$, so $G p_{A}(0)+G p_{A}(1)+\cdots+G p_{A}(k) \leq(k+1) G p_{A}(k)$ and hence

$$
\begin{gathered}
\operatorname{GGKdim}(A) \leq \overline{\lim _{k \rightarrow \infty}} \log _{k}\left((k+1) G p_{A}(k)\right)=\varlimsup_{1 m_{k \rightarrow \infty}} \log _{k}(k+1)+\varlimsup_{k \rightarrow \infty} \log _{k}\left(G p_{A}(k)\right)= \\
1+\varlimsup_{k \rightarrow \infty} \log _{k}\left(G p_{A}(k)\right) .
\end{gathered}
$$

Observe that every summand of $G p_{A}(k)$ in the bracket of 2.2 .2 is $\leq k^{n-1}$ for k enough large, so $G p_{A}(k) \leq \frac{n}{(n-1)!} k^{n-1}$ for $k \gg 0$ and this implies that
$\operatorname{GGKdim}(A) \leq 1+\varlimsup_{k \rightarrow \infty} \log _{k} \frac{n}{(n-1)!}+\varlimsup_{k \rightarrow \infty} \log _{k} k^{n-1}=1+0+n-1=1+\operatorname{deg}\left(G p_{A}(t)\right)=n$.
Now we have to prove that $\operatorname{GGK} \operatorname{dim}(A) \geq n$. Note that $W:=V^{k^{n-1}}$ is a frame of A and $\operatorname{udim} W^{k}=\operatorname{udim} V^{k^{n}} \geq k^{n}$, therefore, $\log _{k}\left(\operatorname{udim} V^{k^{n}}\right) \geq \log _{k} k^{n}=n$, and hence

$$
\operatorname{GGK} \operatorname{dim}(A) \geq \varlimsup_{\lim _{k \rightarrow \infty}} \log _{k}\left(\operatorname{udim} W^{k}\right)=\varlimsup_{k \rightarrow \infty} \log _{k}\left(\operatorname{udim} V^{k^{n}}\right) \geq \overline{\lim _{k \rightarrow \infty}} n=n
$$

Ring	$G h_{A}(t)$	$G p_{A}(t)$
Habitual polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Ore extension of bijective type $R\left[x_{1} ; \sigma_{1}, \delta_{1}\right] \cdots\left[x_{n} ; \sigma_{n}, \delta_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Weyl algebra $A_{n}(K)$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Extended Weyl algebra $B_{n}(K)$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Enveloping algebra of a Lie algebra \mathcal{G} of dimension $n, \mathcal{U}(\mathcal{G})$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Tensor product $R \otimes_{K} \mathcal{U}(\mathcal{G})$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Crossed product $R * \mathcal{U}(\mathcal{G})$	$\frac{1}{(1-t){ }^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Algebra of q-differential operators $D_{q, h}[x, y]$	$\frac{1}{1-t}$	1
Algebra of shift operators S_{h}	$\frac{1}{1-t}$	1
Mixed algebra D_{h}	$\frac{1-t}{\frac{1}{(1-t)^{2}}}$	$t+1$
Discrete linear systems $K\left[t_{1}, \ldots, t_{n}\right]\left[x_{1}, \sigma_{1}\right] \cdots\left[x_{n} ; \sigma_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Linear partial shift operators $K\left[t_{1}, \ldots, t_{n}\right]\left[E_{1}, \ldots, E_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Linear partial shift operators $K\left(t_{1}, \ldots, t_{n}\right)\left[E_{1}, \ldots, E_{n}\right]$	$\frac{1}{(1-t)}{ }^{n}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
L. P. Differential operators $K\left[t_{1}, \ldots, t_{n}\right]\left[\partial_{1}, \ldots, \partial_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
L. P. Differential operators $K\left(t_{1}, \ldots, t_{n}\right)\left[\partial_{1}, \ldots, \partial_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
L. P. Difference operators $K\left[t_{1}, \ldots, t_{n}\right]\left[\Delta_{1}, \ldots, \Delta_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
L. P. Difference operators $K\left(t_{1}, \ldots, t_{n}\right)\left[\Delta_{1}, \ldots, \Delta_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
L. P. q-dilation operators $K\left[t_{1}, \ldots, t_{n}\right]\left[H_{1}^{(q)}, \ldots, H_{m}^{(q)}\right]$	$\frac{1}{(1-t)^{m}}$	$\frac{1}{(m-1)!}\left[t^{m-1}+\cdots+1\right]$
L. P. q-dilation operators $K\left(t_{1}, \ldots, t_{n}\right)\left[H_{1}^{(q)}, \ldots, H_{m}^{(q)}\right]$	$\frac{1}{(1-t)^{m}}$	$\frac{1}{(m-1)!}\left[t^{m-1}+\cdots+1\right]$
L. P. q-differential operators $K\left[t_{1}, \ldots, t_{n}\right]\left[D_{1}^{(q)}, \ldots, D_{m}^{(q)}\right]$	$\frac{1}{(1-t)^{m}}$	$\frac{1}{(m-1)!}\left[t^{m-1}+\cdots+1\right]$
L. P. q-differential operators $K\left(t_{1}, \ldots, t_{n}\right)\left[D_{1}^{(q)}, \ldots, D_{m}^{(q)}\right]$	$\frac{1}{(1-t)^{m}}$	$\frac{1}{(m-1)!}\left[t^{m-1}+\cdots+1\right]$
Diffusion algebras	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Additive analogue of the Weyl algebra $A_{n}\left(q_{1}, \ldots, q_{n}\right)$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Multiplicative analogue of the Weyl algebra $\mathcal{O}_{n}\left(\lambda_{j i}\right)$	$\frac{1}{(1-t)^{n-1}}$	$\frac{1}{(n-2)!}\left[t^{n-2}+\cdots+1\right]$
Quantum algebra $\mathcal{U}^{\prime}(\mathfrak{s o}(3, K))$	$\frac{1}{(1-t)^{3}}$	$\frac{1}{2}\left[t^{2}+3 t+1\right]$
3-dimensional skew polynomial algebras	$\frac{1}{(1-t)^{3}}$	$\frac{1}{2}\left[t^{2}+3 t+1\right]$
Dispin algebra $\mathcal{U}(\operatorname{osp}(1,2))$	$\frac{1}{(1-t)^{3}}$	$\frac{1}{2}\left[t^{2}+3 t+1\right]$
Woronowicz algebra $\mathcal{W}_{\nu}(\mathfrak{s l}(2, K))$	$\frac{1}{(1-t)^{3}}$	$\frac{1}{2}\left[t^{2}+3 t+1\right]$
Complex algebra $V_{q}\left(\mathfrak{s l}_{3}(\mathbb{C})\right)$	$\frac{1}{(1-t)^{6}}$	$\frac{1}{120}\left[t^{5}+15 t^{4}+85 t^{3}+217 t^{2}+274 t+120\right]$
Algebra U	$\frac{1}{(1-t)^{2 n}}$	$\frac{1}{(2 n-1)!}\left[t^{2 n-1}+\cdots+1\right]$
Manin algebra $\mathcal{O}_{q}\left(M_{2}(K)\right)$	$\frac{1}{(1-t)^{3}}$	$\frac{1}{2}\left[t^{2}+3 t+1\right]$
Coordinate algebra of the quantum group $S L_{q}(2)$	$\frac{1}{(1-t)^{3}}$	$\frac{1}{2}\left[t^{2}+3 t+1\right]$
q-Heisenberg algebra $\mathbf{H}_{n}(q)$	$\frac{1}{(1-t)^{2 n}}$	$\frac{1}{(2 n-1)!}\left[t^{2 n-1}+\cdots+1\right]$
Quantum enveloping algebra of $\mathfrak{s l}(2, K), \mathcal{U}_{q}(\mathfrak{s l}(2, K))$	$\frac{1}{(1-t)^{2}}$	$t+1$
Hayashi algebra $W_{q}(J)$	$\frac{1}{(1-t)^{2 n}}$	$\frac{1}{(2 n-1)!}\left[t^{2 n-1}+\cdots+1\right]$
Differential operators on a quantum space $S_{\mathbf{q}}, D_{\mathbf{q}}\left(S_{\mathbf{q}}\right)$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Witten's Deformation of $\mathcal{U}(\mathfrak{s l}(2, K)$	$\frac{1}{1-t}$	
Quantum Weyl algebra of Maltsiniotis $A_{n}^{\mathbf{q}, \lambda}$	$\frac{1}{(1-t)^{2}}$	$t+1$
Quantum Weyl algebra $A_{n}\left(q, p_{i, j}\right)$	$\frac{1}{(1-t)^{2}}$	$t+1$
Multiparameter Weyl algebra $A_{n}^{Q, \Gamma}(K)$	$\frac{1}{(1-t)^{2}}$	$t+1$
Quantum symplectic space $\mathcal{O}_{q}\left(\mathfrak{s p}\left(K^{2 n}\right)\right.$)	$\frac{1}{(1-t)^{2}}$	$t+1$
Quadratic algebras in 3 variables	$\frac{1}{1-t}$	1
n-Multiparametric skew quantum space $R_{\mathbf{q}, \sigma}\left[x_{1}, \ldots, x_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
n-Multiparametric quantum space $R_{\mathbf{q}}\left[x_{1}, \ldots, x_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
n-Multiparametric skew quantum space $K_{\mathbf{q}, \sigma}\left[x_{1}, \ldots, x_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
n-Multiparametric quantum space $K_{\mathbf{q}}\left[x_{1}, \ldots, x_{n}\right]$	$\frac{1}{(1-t)^{n}}$	$\frac{1}{(n-1)!}\left[t^{n-1}+\cdots+1\right]$
Ring of skew quantum polynomials $R_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$	$\frac{1}{(1-t)^{n-r}}$	$\frac{1}{(n-r-1)!}\left[t^{n-r-1}+\cdots+1\right]$
Ring of quantum polynomials $R_{\mathbf{q}}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$	$\frac{1}{(1-t)^{n-r}}$	$\frac{1}{(n-r-1)!}\left[t^{n-r-1}+\cdots+1\right]$
Algebra of skew quantum polynomials $K_{\mathbf{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$	$\frac{1}{(1-t)^{n-r}}$	$\frac{1}{(n-r-1)!}\left[t^{n-r-1}+\cdots+1\right]$
Algebra of quantum polynomials $\mathcal{O}_{\mathbf{q}}=K_{\mathbf{q}}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$	$\frac{1}{(1-t)^{n-r}}$	$\frac{1}{(n-r-1)!}\left[t^{n-r-1}+\cdots+1\right]$

TABLE 2.1. Hilbert series and Hilbert polynomials of some skew quantum polynomials.

Non-commutative algebraic geometry for semi-graded rings

In this chapter we include the main result concerning to semi-graded rings, we will solve 1.9.5 for some skew $P B W$ extensions under the restriction $B_{0} \subset Z(B)$. We present the theoretical tools for obtain a new general version of the Serre-Artin-Zhang-Verevkin theorem in a categorical setting, some elementary examples are included have not been studied before in the literature.

3.1 Non-commutative projective schemes

The purpose of this section is to extend the notion of non-commutative projective scheme defined in 1.6 .1 to the case of semi-graded rings. We will assume that the ring B satisfies the following conditions:
(C1) B is a left noetherian $S G$.
$(\mathrm{C} 2) B_{0}$ is left noetherian.
(C3) For every n, B_{n} is a finitely generated left B_{0}-module.
(C4) $B_{0} \subset Z(B)$.
Remark 3.1.1. (i) From (C4) we have that B_{0} is commutative noetherian ring.
(ii) All important examples of skew $P B W$ extensions satisfy (C1) and (C2). Indeed, let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a bijective skew $P B W$ extension of R, assuming that R is a left noetherian, then A is also a left noetherian (see Theorem 1.9.4; in addition, by Proposition 2.1.7. A also satisfies (C3).
(iii) With respect to condition (C4), it is satisfied for finitely graded K-algebras since in such case $B_{0}=K$. On the other hand, let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a skew $P B W$ extension of R,
then in general $R=A_{0} \nsubseteq Z(A)$, unless A be a K-algebra, with $A_{0}=K$ a commutative ring.
(iv) It is important to remark that some results below can be proved without assuming all of conditions (C1)-(C4). For example, for the Definition 3.1.6 we only need (C1).

Proposition 3.1.2. Let $\operatorname{sgr}-B$ be the collection of all finitely generated semi-graded B modules, then sgr $-B$ is an abelian category where the morphisms are the homogeneous B homomorphisms.

Proof. It is clear that sgr $-B$ is a category. sgr $-B$ has kernels and co-kernels: Let M, M^{\prime} be objects of sgr $-B$ and let $f: M \rightarrow M^{\prime}$ be an homogeneous B-homomorphism; let $K:=\operatorname{ker}(f)$, since B is left noetherian and M is finitely generated, then K is a finitely generated semi-graded B-module; let $M^{\prime} / \operatorname{Im}(f)$ be the co-kernel of f, note that $\operatorname{Im}(f)$ is semi-graded, so $M^{\prime} / \operatorname{Im}(f)$ is a semi-graded finitely generated B-module.
$\operatorname{sgr}-B$ is normal and co-normal: Let $f: M \rightarrow M^{\prime}$ be a monomorphism in sgr $-B$, then f is the kernel of the canonical homomorphism $j: M^{\prime} \rightarrow M^{\prime} / \operatorname{Im}(f)$. Now, let $f: M \rightarrow M^{\prime}$ be an epimorphism in sgr $-B$, then f is the co-kernel of the inclusion $\iota: \operatorname{ker}(f) \rightarrow M^{\prime}$.
$\operatorname{sgr}-B$ is additive: the trivial module 0 is an object of $\operatorname{sgr}-B$; if $\left\{M_{i}\right\}$ is a finite family of objects of sgr $-B$, then its co-product $\bigoplus M_{i}$ in the category of left B-modules is an object of sgr $-B$, with semi-graduation given by

$$
\left(\bigoplus M_{i}\right)_{p}:=\bigoplus\left(M_{i}\right)_{p}, p \in \mathbb{Z}
$$

Thus, sgr $-B$ has finite co-products. Finally, for any objects M, M^{\prime} of $\operatorname{sgr}-B, \operatorname{Mor}\left(M, M^{\prime}\right)$ is an abelian group and the composition of morphisms is bilinear with respect the operations in these groups.

Definition 3.1.3. Let M be an object of $\operatorname{sgr}-B$.
(i) For $s \geq 0, B_{\geq s}$ is the least two-sided ideal of B that satisfies the following conditions:
(a) $B_{\geq s}$ contains $\bigoplus_{p \geq s} B_{p}$.
(b) $B_{\geq s}$ is semi-graded as left ideal of B.
(c) $B_{\geq s}$ is a direct sumand of B.
(ii) An element $x \in M$ is torsion if there exist $s, n \geq 0$ such that $B_{\geq s}^{n} x=0$; the set of torsion elements of M is denoted by $T(M) ; M$ is torsion if $T(M)=M$ and torsion-free if $T(M)=0$.
(iii) For $s, n \geq 0, M_{s, n}$ will denote the least semi-graded submodule of M containing $B_{\geq s}^{n} M$.

Remark 3.1.4. (i) Observe that if B is \mathbb{N}-graded, then $B_{\geq s}=\bigoplus_{p \geq s} B_{p}$.
(ii) Note that $T(M)$ is a submodule of M : In fact, let $x, y \in T(M)$, then there exist $r, s, n, m \geq 0$ such that $B_{\geq s}^{n} x=0$ and $B_{\geq r}^{m} y=0$; observe that $B_{\geq r+s} \subseteq B_{\geq s}, B_{\geq r}$, so $B_{\geq r+s}^{n+m} x \subseteq B_{\geq s}^{n} x=0$ and $B_{\geq r+s}^{n+m} y \subseteq B_{\geq r}^{m} y=0$, whence $B_{\geq r+s}^{n+m}(x+y)=0$, i.e., $x+y \in T(M)$; if $b \in B$, then
$B_{\geq s}^{n} b \subseteq B_{\geq s}^{n}$, so $B_{\geq s}^{n} b x \subseteq B_{\geq s}^{n} x=0$, i.e., $b x \in T(M)$.
(iii) Since M is noetherian, $M_{s, n}$ is finitely generated, i.e., $M_{s, n}$ is finitely generated, i.e. $M_{s, n}$ is a direct summand of M. Moreover, $M / M_{s, n}$ is torsion because $B_{\geq s}^{n} M \subseteq M_{s, n}$. In addition, note that $M_{s, n}$ is a direct summand of M.
(iv) If we assume that B is a domain, and hence, a left Ore domain, an alternative notion of torsion can be defined as in the classical case of commutative domains : An element $x \in M$ is torsion if there exists $b \neq 0$ in B such that $b x=0$; the set $t(M)$ of torsion elements of M is in this case also a submodule of M. In addition, note that $T(M) \subseteq t(M)$: Since $B_{\geq s} \neq 0$, let $b \neq 0$ in $B_{\geq s}$, then $b^{n} x=0$ and $b^{n} \neq 0$, i.e., $x \in t(M)$.
(v) It is clear that the collection \mathcal{T} of modules M in sgr $-B$ such that $t(M)=M$ conforms a full subcategory of sgr $-B$. Moreover, let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be a short exact sequence in sgr $-B$; it is obvious that $t(M)=M$ if and only if $t\left(M^{\prime}\right)=M^{\prime}$ and $t\left(M^{\prime \prime}\right)=M^{\prime \prime}$, i.e., the collection \mathcal{T} is a Serre subcategory of sgr $-B$. The next lemma shows that this property is satisfied also by the torsion modules introduced in Definition 3.1.3.

Theorem 3.1.5. The collection stor $-B$ of torsion modules forms a Serre subcategory of $\mathrm{sgr}-B$, and the quotient category

$$
\operatorname{qsgr}-B:=\operatorname{sgr}-B / \text { stor }-B
$$

is abelian.
Proof. It is obvious that stor $-B$ is a full subcategory of $\operatorname{sgr}-B$. Let $0 \rightarrow M^{\prime} \xrightarrow{\iota} M \xrightarrow{j} M^{\prime \prime} \rightarrow 0$ be a short exact sequence in $\operatorname{sgr}-B$.
Suppose that M is in stor $-B$ and let $x^{\prime} \in M^{\prime}$, then $\iota\left(x^{\prime}\right) \in M$ and there exist $s, n \geq 0$ such that $\iota\left(B_{\geq s}^{n} x^{\prime}\right)=B_{\geq s}^{n} \iota\left(x^{\prime}\right)=0$, but since ι is injective, then $B_{\geq s}^{n} x^{\prime}=0$. This means that $x^{\prime} \in T\left(M^{\prime}\right)$, so $\bar{T}\left(M^{\prime}\right)=\bar{M}^{\prime}$, i.e., M^{\prime} is in stor $-B$. Now let $x^{\prime \prime} \in \bar{M}^{\prime \prime}$, then there exists $x \in M$ such that $j(x)=x^{\prime \prime}$; there exist $r, m \geq 0$ such that $B_{\geq r}^{m} x=0$, whence $B_{\geq s}^{n} x^{\prime \prime}=0$, this implies that $x^{\prime \prime} \in T\left(M^{\prime \prime}\right)$. Thus, $T\left(M^{\prime \prime}\right)=M^{\prime \prime}$, i.e., $M^{\prime \prime}$ is in stor $-B$.
Conversely, suppose that M^{\prime} and $M^{\prime \prime}$ are in stor $-B$; let $x \in M$, then there exist $s, n \geq 0$ such that $B{ }_{\geq s}^{n} j(x)=0$, i.e., $j\left(B_{\geq s}^{n} x\right)=0$. Therefore, $B_{\geq s}^{n} x \subseteq \operatorname{ker}(j)=\operatorname{Im}(\iota)$, but since M^{\prime} is torsion, then $\operatorname{Im}(\iota)$ is also a torsion module. Because B is left noetherian, there exist $a_{1}, \ldots, a_{l} \in B_{\geq s}^{n}$ such that $B_{\geq s}^{n}=B a_{1}+\cdots+B a_{l}$; there exist $r_{i}, m_{i} \geq 0,1 \leq i \leq l$, such that $B_{\geq r_{i}}^{m_{i}} a_{i} x=0$. Without lost of generality we can assume that $r_{1} \geq r_{i}$ for every i, so $B \geq r_{1} \subseteq B_{\geq r_{i}}$ and hence $B_{\geq r_{1}}^{m_{1}} \subseteq B_{\geq r_{1}}^{m_{1}}, B_{\geq r_{1}}^{m_{2}} \subseteq B_{\geq r_{2}}^{m_{2}}, \ldots, B_{\geq r_{1}}^{m_{l}} \subseteq B_{\geq r_{l}}^{m_{l}}$; from this we get that $B_{\geq r_{1}}^{m_{1}} a_{1} x=0, B_{\geq r_{1}}^{m_{2}} a_{2} x=$ $0, \ldots, B_{\geq r_{1}}^{m_{l}} a_{l} x=0$, let $m:=\max \left\{m_{1}, \ldots, m_{l}\right\}$, then $B_{\geq r}^{m} a_{i} x=0$ for every $1 \leq i \leq l$, with $r:=r_{1}$. Therefore, $B_{\geq r}^{m} B \sum_{\geq s}^{n} x=B_{\geq r}^{m}\left(B a_{1}+\cdots+B a_{l}\right) x=B_{\geq r}^{m} a_{1} x+\cdots+B_{\geq r}^{m} a_{l} x=0$, i.e., $B_{\geq r}^{m} B_{\geq s}^{n} x=0$. Observe that $B_{\geq r+s}^{m} \subseteq B_{\geq r}^{m}$ and $B_{\geq r+s}^{n} \subseteq B_{\geq s}^{n}$, so $B_{\geq r+s}^{m+n} \subseteq B_{\geq r}^{m} B_{\geq s}^{n}$ and hence $B_{\geq r}^{m+n} x=0$, i.e., $x \in T(M)$. We have proved that $T(M)=M$, i.e., M is in stor $-B$.
The second statement of the theorem is a well known property of abelian categories. We want to recall that the objects of qsgr $-B$ are the objects of sgr - B; moreover, given M, N objects of qsgr $-B$ the set of morphisms from M to N in the category qsgr $-B$ is defined by

$$
\operatorname{Hom}_{\mathrm{qsgr}-\mathrm{B}}(M, N):=\underset{\longrightarrow}{\lim } \operatorname{Hom}_{\mathrm{sgr}-B}\left(M^{\prime}, N / N^{\prime}\right),
$$

where the direct limit is taken over all $M^{\prime} \subseteq M, N^{\prime} \subseteq N$ in sgr - B with $M / M^{\prime} \in$ stor - B and $N^{\prime} \in$ stor $-B$ (see [14], [8], or also [26] Proposition 2.13.4). More exactly, the limit is taken over the set \mathcal{P} of all pairs $\left(M^{\prime}, N^{\prime}\right)$ in sgr - B such that $M^{\prime} \subseteq M, N^{\prime} \subseteq N, M / M^{\prime} \in$ stor $-B$ and $N^{\prime} \in$ stor $-B$. The set \mathcal{P} is partially ordered with order defined by

$$
\left(M^{\prime}, N^{\prime}\right) \leq\left(M^{\prime \prime}, N^{\prime \prime}\right) \text { if and only if } M^{\prime \prime} \subseteq M^{\prime} \text { and } N^{\prime} \subseteq N^{\prime \prime}
$$

\mathcal{P} is directed: Indeed, given $\left(M^{\prime}, N^{\prime}\right),\left(M^{\prime \prime}, N^{\prime \prime}\right) \in \mathcal{P}$ we apply Proposition 2.1.6 and the fact that B is left noetherian to conclude that $\left(M^{\prime} \cap M^{\prime \prime}, N^{\prime}+N^{\prime \prime}\right) \in \mathcal{P}$, and this couple satisfies $\left(M^{\prime}, N^{\prime}\right) \leq\left(M^{\prime} \cap M^{\prime \prime}, N^{\prime}+N^{\prime \prime}\right),\left(M^{\prime \prime}, N^{\prime \prime}\right) \leq\left(M^{\prime} \cap M^{\prime \prime}, N^{\prime}+N^{\prime \prime}\right)$.

We have all ingredients in order to define non-commutative schemes associated to semi-graded rings.

Definition 3.1.6. We define

$$
\operatorname{sproj}(B):=(\mathrm{qsgr}-B, \pi(B))
$$

and we call it the non-commutative semi-projective scheme associated to B.

3.2 Serre-Artin-Zhang-Verevkin theorem for semi-graded rings

We conclude the paper investigating the non-commutative version of Serre-Atin-Zhang theorem for semi-graded rings. For this goal some preliminaries are needed.

Definition 3.2.1. Let M be a semi-graded B-module, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$. Let $i \in \mathbb{Z}$, the semigraded module $M(i)$ defined by $M(i)_{n}:=M_{i+n}$ is called a shift of M, i.e.,

$$
M(i)=\bigoplus_{n \in \mathbb{Z}} M(i)_{n}=\bigoplus_{n \in \mathbb{Z}} M_{i+n}
$$

Remark 3.2.2. Note that for every $i \in \mathbb{Z}, M \cong M(i)$ as B-modules. The isomorphism is given by

$$
\begin{gathered}
M=\bigoplus_{n \in \mathbb{Z}} M_{n} \xrightarrow{\phi_{i}} \bigoplus_{n \in \mathbb{Z}} M_{i+n}=M(i) \\
m_{n_{1}}+\cdots+m_{n_{t}} \in M_{n_{1}}+\cdots+M_{n_{t}} \mapsto m_{n_{1}}+\cdots+m_{n_{t}} \in M(i)_{n_{1}-i}+\cdots+M(i)_{n_{t}-i} .
\end{gathered}
$$

ϕ_{i} is not homogeneous for $i \neq 0$.
The next proposition shows that the shift of degrees is an auto-equivalence.
Proposition 3.2.3. Let $s: \operatorname{sgr}-B \rightarrow \operatorname{sgr}-B$ defined by

$$
\begin{gathered}
M \mapsto M(1), \\
M \xrightarrow[\rightarrow]{f} N \mapsto M(1) \xrightarrow{f(1)} N(1), \\
f(1)(m):=f(m), m \in M(1) .
\end{gathered}
$$

Then,
(i) s is an auto-equivalence.
(ii) For every $d \in \mathbb{Z}, s^{d}(M)=M(d)$.
(iii) s induces an auto-equivalence of $\mathrm{qsgr}-B$ also denoted by s.

Proof. (i) and (ii) are evident. For (iii) we only have to observe that if M is an object of stor $-B$, then $s(M)$ is also an object of stor $-B$.

Definition 3.2.4. Let M, N be objects of $\operatorname{sgr}-B$. Then
(i) $\underline{\operatorname{Hom}}_{B}(M, N):=\bigoplus_{d \in \mathbb{Z}} \operatorname{Hom}_{\mathrm{sgr}-B}(M, N(d))$.
(ii) $\underline{E x t}_{B}^{i}(M, N):=\bigoplus_{d \in \mathbb{Z}} E x t_{\mathrm{sgr}-B}^{i}(M, N(d))$.

Remark 3.2.5. Note that $\underline{\operatorname{Hom}}_{B}(M, N) \hookrightarrow \operatorname{Hom}_{B}(M, N)$. In fact, we have the group homomorphism $\iota: \underline{\operatorname{Hom}}_{B}(M, N) \rightarrow \operatorname{Hom}_{B}(M, N)$ given by $\left(\ldots, 0, f_{d_{1}}, \ldots, f_{d_{t}}, 0, \ldots\right) \mapsto f_{d_{1}}+\cdots+$ $f_{d_{t}}$; observe that $f_{d_{1}}+\cdots+f_{d_{t}}=0$ if and only if $f_{d_{1}}=\cdots=f_{d_{t}}=0$. Indeed, let $m \in M$ be homogeneous of degree p, then $0=\left(f_{d_{1}}+\cdots+f_{d_{t}}\right)(m)=f_{d_{1}}(m)+\cdots+f_{d_{t}}(m) \in N_{d_{1}+p} \oplus \cdots \oplus N_{d_{t}+p}$, whence, for every $j, f_{d_{j}}(m)=0$. This means that $f_{d_{j}}=0$ for $1 \leq j \leq t$, and hence, ι is injective.

Proposition 3.2.6. Let M and N be semi-graded B-modules such that every of its homogeneous components are B_{0}-modules. Then,
(i) $H o m_{\operatorname{sgr}-B}(M, N)$ is a B_{0}-module.
(ii) $\underline{\operatorname{Hom}}_{B}(M, N)$ is a B_{0}-module.
(iii) $E x t_{\operatorname{sgr}-B}^{i}(M, N)$ is a B_{0}-module for every $i \geq 1$.
(iv) $\underline{\operatorname{Ext}_{B}^{i}}(M, N)$ is a B_{0}-module for every $i \geq 1$.

Proof. (i) If $f \in \operatorname{Hom}_{\operatorname{sgr}-B}(M, N)$ and $b_{0} \in B_{0}$, then product $b_{0} \cdot f$ defined by $\left(b_{0} \cdot f\right)(m):=$ $b_{0} \cdot f(m), m \in M$, is an element of $\operatorname{Hom}_{\mathrm{sgr}-B}(M, N)$: In fact, $b_{0} \cdot f$ is obviously additive; let $b \in B$, then $\left(b_{0} \cdot f\right)(b \cdot m)=b_{0} \cdot f(b \cdot m)=b_{0}[b \cdot f(m)]=\left(b_{0} b\right) \cdot f(m)=\left(b b_{0}\right) \cdot f(m)=b \cdot\left(b_{0} \cdot f(m)\right)=$ $b \cdot\left(b_{0} \cdot f\right)(m) ; b_{0} \cdot f$ is homogeneous: Let $m \in M_{p}$, then $\left(b_{0} \cdot f\right)(m)=b_{0} \cdot f(m) \in b_{0} \cdot N_{p} \subseteq N_{p}$, for every $p \in \mathbb{Z}$. It is easy to check that $\operatorname{Hom}_{\operatorname{sgr}-B}(M, N)$ is a B_{0}-module with the defined product.
(ii) This follows from (i).
(iii) Taking a projective resolution of M in the abelian category $\operatorname{sgr}-B$ and applying the functor $\operatorname{Hom}_{\mathrm{sgr}-B}(-, N)$, it is easy to verify using (i) that in the complex defining $\operatorname{Ext}_{\mathrm{sgr}-B}^{i}(M, N)$ the kernels and the images are B_{0}-modules, i.e., every abelian group $E x t_{\mathrm{sgr}-B}^{i}(M, N)$ is a $B_{0^{-}}$ module.
(iv) This follows from (iii).

Definition 3.2.7. Let $i \geq 0$; we say that B satisfies the $s-\chi_{i}$ condition if for every finitely generated semi-graded B-module N and for any $j \leq i, \underline{E x t}{ }_{B}^{j}\left(B / B_{\geq 1}, N\right)$ is finitely generated as B_{0}-module. The ring B satisfies the $s-\chi$ condition if it satisfies the $s-\chi_{i}$ condition for all $i \geq 0$.

Remark 3.2.8. (i) By Proposition 3.2.6, $\underline{E x t}_{B}^{j}(B / B \geq 1, N)$ is a B_{0}-module.
(ii) In the theory of graded rings and modules the conditions defined above are usually denoted simply by χ_{i} and χ. In this situation, $B / B_{\geq 1} \cong B_{0}$.
(iii) Observe that in the case of finitely graded K-algebras, $B_{0}=K, B / B_{\geq 1} \cong K$ and the the condition $s-\chi_{i}$ means that $\operatorname{dim}_{K} \underline{E x t}{ }_{B}^{j}(K, N)<\infty$.

Definition 3.2.9. Let s be the auto-equivalence of $\mathrm{qsgr}-B$ defined by the shifts of degrees. We define

$$
\Gamma(\pi(B))_{\geq 0}:=\bigoplus_{d=0}^{\infty} \operatorname{Hom}_{\mathrm{qsgr}-B}\left(\pi(B), s^{d}(\pi(B))\right)
$$

Following the ideas in the proof of Theorem 4.5 in [Artin2] and Proposition 4.11 in [Rogalski] we get the following key lemma.

Lemma 3.2.10. Let B be a ring that satisfies (C1)-(C4).
(i) $\Gamma(\pi(B))_{\geq 0}$ is a \mathbb{N}-graded ring.
(ii) Let $\underline{B}:=\bigoplus_{d=0}^{\infty} H o m_{\operatorname{sgr}-B}\left(B, s^{d}(B)\right)$. Then, \underline{B} is a \mathbb{N}-graded ring and there exists a ring homomorphism $\underline{B} \rightarrow \Gamma(\pi(B)) \geq 0$.
(iii) For any object M of $\operatorname{sgr}-B$

$$
\Gamma(M)_{\geq 0}:=\bigoplus_{d=0}^{\infty} \operatorname{Hom}_{\operatorname{sgr}-B}\left(B, s^{d}(M)\right)
$$

is a graded \underline{B}-module, and

$$
\Gamma(\pi(M))_{\geq 0}:=\bigoplus_{d=0}^{\infty} \operatorname{Hom}_{\mathrm{qsgr}-B}\left(\pi(B), s^{d}(\pi(M))\right)
$$

is a graded $\Gamma(\pi(B))_{\geq 0}$-module.
(iv) \underline{B} has the following properties:
(a) $(\underline{B})_{0} \cong B_{0}$ and \underline{B} satisfies $(\mathrm{C} 2)$.
(b) \underline{B} satisfies (C3). More generally, let N be a finitely generated graded \underline{B}-module, then every homogeneous component of N is finitely generated over $(\underline{B})_{0}$.
(c) \underline{B} satisfies (C1).
(d) If B is a domain, then \underline{B} is also a domain.
(v) If B is a domain, then
(a) $\Gamma(\pi(B))_{\geq 0}$ satisfies $(\mathrm{C} 2)$.
(b) $\Gamma(\pi(B))_{\geq 0}$ satisfies (C3). More generally, let N be a finitely generated graded $\Gamma(\pi(B)) \geq 0$-module, then every homogeneous component of N is finitely generated over $\left(\Gamma(\pi(B))_{\geq 0}\right)_{0}$.
(c) $\Gamma(\pi(B))_{\geq 0}$ satisfies (C1).
(d) If \underline{B} satisfies \mathcal{X}_{1}, then $\Gamma(\pi(B))_{\geq 0}$ satisfies \mathcal{X}_{1}.
(e) $\Gamma(\pi(B))_{\geq 0}$ is a domain.

Proof. (i) Since qsgr $-B$ is an abelian category, $\operatorname{Hom}_{\text {qsgr }-B}\left(\pi(B), s^{d}(\pi(B))\right.$) is an abelian group; the product in $\Gamma(\pi(B)) \geq 0$ is defined by distributive law and the following rule:

$$
\begin{aligned}
& \text { If } f \in \operatorname{Hom}_{\mathrm{qsgr}-B}\left(\pi(B), s^{n}(\pi(B))\right) \text { and } g \in \operatorname{Hom}_{\mathrm{qsgr}-B}\left(\pi(B), s^{m}(\pi(B))\right) \text {, then } \\
& \qquad \notin g:=s^{n}(g) \circ f \in \operatorname{Hom}_{\mathrm{qsgr}}-B\left(\pi(B), s^{m+n}(\pi(B))\right) .
\end{aligned}
$$

This product is associative: In fact, if $h \in \operatorname{Hom}_{\mathrm{qsgr}-B}\left(\pi(B), s^{p}(\pi(B))\right)$, then

$$
(f \star g) \star h=\left[s^{n}(g) \circ f\right] \star h=s^{m+n}(h) \circ s^{n}(g) \circ f=f \star(g \star h) .
$$

It is clear that the product is \mathbb{N}-graded and the unity of $\Gamma(\pi(B))_{\geq 0}$ is i_{B} taken in $d=0$ (observe that we have simplified the notation avoiding the bar notation for the morphisms in the category qsgr $-B$).
(ii) The proof of that \underline{B} is a \mathbb{N}-graded ring is as in (i). For the second assertion we can apply the quotient functor π to define the function

$$
\begin{align*}
& \underline{B} \xrightarrow{\rho} \Gamma(\pi(B))_{\geq 0} \tag{3.2.1}\\
&\left(f_{0}, \ldots, f_{d}, 0, \ldots\right) \mapsto\left(\pi\left(f_{0}\right), \ldots, \pi\left(f_{d}\right), 0, \ldots\right)
\end{align*}
$$

which is a ring homomorphism since π is additive (π is exact) and $s \pi=\pi s$.
(iii) The proof of both assertions are as in (i), we only illustrate the product in the first case:

$$
\begin{aligned}
& \text { If } f \in \operatorname{Hom}_{\mathrm{sgr}-B}\left(B, s^{n}(B)\right) \text { and } g \in \operatorname{Hom}_{\mathrm{sgr}-B}\left(B, s^{m}(M)\right) \text {, then } \\
& \quad f \star g:=s^{n}(g) \circ f \in \operatorname{Hom}_{\mathrm{sgr}-B}\left(B, s^{m+n}(M)\right) .
\end{aligned}
$$

(iv) (a) Note that $(\underline{B})_{0}=\operatorname{Hom}_{\text {sgr }-B}(B, B)$, and consider the function

$$
B_{0} \xrightarrow{\alpha} \operatorname{Hom}_{\mathrm{sgr}-B}(B, B), \alpha(x)=\alpha_{x}, \alpha_{x}(b):=b x, x \in B_{0}, b \in B ;
$$

since $B_{0} \subset Z(B)$ this function is a ring homomorphism, moreover, bijective. Thus, $(\underline{B})_{0}$ is a commutative noetherian ring, so $(\underline{B})_{0}$ satisfies (C2). In addition, observe that the structure of B_{0}-module of $\operatorname{Hom}_{\mathrm{sgr}-B}(B, B)$ induced by α coincides with the structure defined in Proposition 3.2.6.
(b) Note that the function $\operatorname{Hom}_{\mathrm{sgr}-B}(B, B(d)) \xrightarrow{\lambda} B_{d}$ defined by $f \mapsto f(1)$ is an injective $B_{0^{-}}$ homomorphism. Since B_{0} is noetherian and B satisfies C3, then $\operatorname{Hom}_{\mathrm{sgr}-B}(B, B(d))$ is finitely generated over $B_{0} \cong(\underline{B})_{0}$.
For the second part, let N be generated by x_{1}, \ldots, x_{r}, with $x_{i} \in N_{d_{i}}, 1 \leq i \leq r$. Let $x \in N_{d}$, then there exist $f_{1}, \ldots, f_{r} \in \underline{B}$ such that $x=f_{1} \cdot x_{1}+\cdots+f_{r} \cdot x_{r}$, from this we can assume that $f_{i} \in(\underline{B})_{d-d_{i}}$; by the just proved property (C3) for \underline{B} we obtain that every $(\underline{B})_{d-d_{i}}$ is finitely generated as $(\underline{B})_{0}$-module, this implies that N_{d} is finitely generated over $(\underline{B})_{0}$.
(c) By (ii), \underline{B} is not only $S G$ but \mathbb{N}-graded.
\underline{B} is left noetherian: We will adapt a proof given in [2]. Let I be a graded left ideal of \underline{B}; let $f \in \underline{B}$ be homogeneous of degree d_{f}, then f induces a morphism $s^{-d_{f}}(B) \xrightarrow{f_{-}} B$; thus, given a finite set F of homogeneous elements of I, let $P_{F}:=\bigoplus_{f \in F} s^{-d_{f}}(B), f_{F}:=\sum_{f \in F} f_{-}: P_{F} \rightarrow B$ and let $N_{F}:=\operatorname{Im}\left(f_{F}\right)$. Since B is left noetherian we can choose a finite set F_{0} such that $N_{F_{0}}$ is maximal among such images. Let $N:=N_{F_{0}}$ and $P:=P_{F_{0}}$; we define $N^{\prime \prime}:=\Gamma(N)_{\geq 0}:=$ $\bigoplus_{d=0}^{\infty} H o m_{\mathrm{sgr}-B}\left(B, s^{d}(N)\right)$. According to (iii), $N^{\prime \prime}$ is a \mathbb{N}-graded \underline{B}-module. Given any element $f \in I$ homogeneous of degree d_{f} we have the morphism f_{-}, but since N is maximal the image of this morphism is included in N, and this implies that $f \in N^{\prime \prime}$, so $I \subseteq N^{\prime \prime}$. On the other
hand, given $f \in I$ homogeneous of degree d_{f} the \mathbb{N}-graded \underline{B}-homomorphism $s^{-d_{f}}(\underline{B}) \xrightarrow{f_{-}} \underline{B}$ defined by $f_{-}(h):=h f$ has his image in I. Therefore, $N^{\prime} \subseteq I$, where N^{\prime} is the image of the induced morphism $P^{\prime \prime} \rightarrow \underline{B}$, with $P^{\prime \prime}:=\bigoplus_{f \in F_{0}} s^{-d_{f}}(\underline{B})$. Thus, we have $N^{\prime} \subseteq N^{\prime \prime}$, where both are \mathbb{N}-graded \underline{B}-modules, whence we have the \mathbb{N}-graded \underline{B}-module $N^{\prime \prime} / N^{\prime}$. If we prove that $N^{\prime \prime} / N^{\prime}$ is noetherian, then since $I / N^{\prime} \subseteq N^{\prime \prime} / N^{\prime}$ we get that I / N^{\prime} is also noetherian, whence, I / N^{\prime} is finitely generated; but N^{\prime} is a finitely generated left ideal of \underline{B}, so I is finitely generated. $N^{\prime \prime} / N^{\prime}$ is noetherian: Note first that $N^{\prime \prime} / N^{\prime}$ is a module over $(\underline{B})_{0}$; if we prove that $N^{\prime \prime} / N^{\prime}$ is noetherian over $(\underline{B})_{0}$, then it is also noetherian over \underline{B}. According to (a), we only need to show that $N^{\prime \prime} / N^{\prime}$ is finitely generated over $(\underline{B})_{0}$. But this follows from (b) since $N^{\prime \prime} / N^{\prime}$ is right bounded (i.e., there exists $n \gg 0$ such that the homogeneous component of $N^{\prime \prime} / N^{\prime}$ of degree $k \geq n$ is zero, see [2]).
(d) If B is a domain, then \underline{B} is also a domain: Suppose there exist $f, g \neq 0$ in \underline{B} such that $f \star g=0$, let $f_{n} \neq 0$ and $g_{m} \neq 0$ the nonzero homogeneous components of f and g of lowest degree, thus $f_{n} \in \operatorname{Hom}_{\text {sgr }-B}\left(B, s^{n}(B)\right), g_{m} \in \operatorname{Hom}_{\mathrm{sgr}-B}\left(B, s^{m}(B)\right)$ and $0=f_{n} \star g_{m}=s^{n}\left(g_{m}\right) \circ$ $f_{n} \in \operatorname{Hom}_{\operatorname{sgr}-B}\left(B, s^{m+n}(B)\right)$; since $f_{n} \neq 0$ we have $f_{n}(1) \neq 0$, also $g_{m}(1) \neq 0$ and hence $s^{n}\left(g_{m}\right)(1) \neq 0$, so $0=s^{n}\left(g_{m}\right)\left(f_{n}(1)\right)=f_{n}(1) s^{n}\left(g_{m}\right)(1)$, but this is impossible since B is a domain.
(v) We set $\Gamma:=\Gamma(\pi(B))_{\geq 0}$. Then,
(a) Γ satisfies (C2): We divide the proof of this statement in two steps.

Step 1. Adapting the proof of Proposition 5.3.7 in [26] we will show that

$$
\Gamma_{0}=\operatorname{Hom}_{\mathrm{qsgr}-B}(\pi(B), \pi(B))=\underline{\mathrm{lim}}_{\longrightarrow} \operatorname{Hom}_{\mathrm{sgr}-B}\left(B_{s, n}, B\right),
$$

where the direct limit is taken over the homomorphisms of abelian groups

$$
\operatorname{Hom}_{\mathrm{sgr}-B}\left(B_{s, n}, B\right) \rightarrow \operatorname{Hom}_{\mathrm{sgr}-B}\left(B_{r, m}, B\right)
$$

induced by the inclusion homomorphism $B_{r, m} \rightarrow B_{s, n}$, with $r \geq s$ and $m \geq n$. Observe that the collection of couples (s, n) is a partially ordered directed set.
Note first that $\operatorname{Hom}_{\mathrm{qsgr}-B}(\pi(B), \pi(B))=\lim _{\longrightarrow} \operatorname{Hom}_{\mathrm{sgr}-B}\left(M^{\prime}, B\right)$, where the direct limit is taken over all $M^{\prime} \subseteq B$ with $B / M^{\prime} \in$ stor $-B$. In fact, we know that

$$
\operatorname{Hom}_{\mathrm{qsgr}-\mathrm{B}}(\pi(B), \pi(B))=\underset{\longrightarrow}{\lim } \operatorname{Hom}_{\mathrm{sgr}-B}\left(M^{\prime}, B / N^{\prime}\right)
$$

where the direct limit is taken over all $\left(M^{\prime}, N^{\prime}\right) \in \mathcal{P}$, but since B is a domain, $N^{\prime}=0$.
 $T\left(B / M^{\prime}\right)=B / M^{\prime}$; since B / M^{\prime} is finitely generated, we can reasoning as in the proof of Theorem 3.1.5 and find $s, n \geq 0$ such that $B_{s}^{n} B \subseteq M^{\prime}$, i.e., $B_{s, n} \subseteq M^{\prime}$. From this we get that $\bar{f}=\overline{f^{\prime}}$, where $\overline{f^{\prime}} \in \operatorname{Hom}_{\operatorname{sgr}-B}\left(B_{s, n}, B\right)$, with $f^{\prime}:=f \iota$ and $\iota: B_{s, n} \hookrightarrow M^{\prime}$ the inclusion. Since $B / B_{s, n}$ is torsion we obtain that $\lim _{\longrightarrow} \operatorname{Hom}_{\operatorname{sgr}-B}\left(M^{\prime}, B\right)=\underset{\longrightarrow}{\lim } \operatorname{Hom}_{\operatorname{sgr}-B}\left(B_{s, n}, B\right)$.
Step 2. Considering $s, n=0$ in the limit above we obtain \vec{a} ring homomorphism

$$
(\underline{B})_{0}=\operatorname{Hom}_{\mathrm{sgr}-B}(B, B) \xrightarrow{\gamma} \operatorname{Hom}_{\mathrm{qsgr}-B}(\pi(B), \pi(B))=\Gamma_{0}
$$

since $(\underline{B})_{0}$ is noetherian we can prove that γ is surjective. Let $\bar{f} \in \Gamma_{0}$ with $f \in$ $\operatorname{Hom}_{\mathrm{sgr}-B}\left(B_{s, n}, B\right)$, consider the commutative triangles

where f^{\prime} is defined by $f^{\prime}(x+l):=f(x)$, with $x \in B_{s, n}, l \in L$ and $B=B_{s, n} \oplus L$. Thus, $i^{*}(f)=f i=f$ and $\iota^{*}\left(f^{\prime}\right)=f^{\prime} \iota=f$, so $\bar{f}=\overline{f^{\prime}}=\gamma\left(f^{\prime}\right)$.
From this we conclude that Γ_{0} is a commutative noetherian ring, and hence, Γ satisfies (C2).
(b) Γ satisfies (C3): Since Γ is graded, Γ_{d} is a Γ_{0}-module for every d, but by (a) we have a ring homomorphism $B_{0} \cong(\underline{B})_{0} \xrightarrow{\gamma} \Gamma_{0}$, so the idea is to prove that Γ_{d} is finitely generated over B_{0}. For this we will show that there exists a surjective B_{0}-homomorphism $(\underline{B})_{d} \xrightarrow{\beta} \Gamma_{d}$. Note that $\Gamma_{d}=\operatorname{Hom}_{\mathrm{qsgr}-B}(\pi(B), \pi(B(d)))=\underset{\longrightarrow}{\lim } \operatorname{Hom}_{\mathrm{sgr}-B}\left(B_{s, n}, B(d)\right)$ (the proof of this is as the step 1 in (a)); let $f \in(\underline{B})_{d}=\operatorname{Hom}_{\text {sgr }-B}(B, B(d))$, we define $\beta(f):=\overline{f \iota}$, where $\iota: B_{s, n} \rightarrow B=B_{0,0}$; we can repeat the proof of the step 2 in (a) and conclude that β is a surjective B_{0}-homomorphism. Additionally, let N be a finitely generated graded Γ-module, says N generated by a finite set of homogeneous elements x_{1}, \ldots, x_{r}, with $x_{i} \in N_{d_{i}}, 1 \leq i \leq r$. Let $x \in N_{d}$, then there exist $f_{1}, \ldots, f_{r} \in \Gamma$ such that $x=f_{1} \cdot x_{1}+\cdots+f_{r} \cdot x_{r}$, from this we can assume that $f_{i} \in \Gamma_{d-d_{i}}$, but as was observed before, every $\Gamma_{d-d_{i}}$ is finitely generated as Γ_{0}-module, so N_{d} is finitely generated over Γ_{0} for every d.
(c) Γ satisfies (C1): By (iii), Γ is not only $S G$ but \mathbb{N}-graded.
Γ is left noetherian: We will adapt the proof of (iv)-(c). Let I be a graded left ideal of Γ; let $f \in \Gamma$ be homogeneous of degree d_{f}, then f induces a morphism $s^{-d_{f}}(\pi(B)) \xrightarrow{f_{-}} \pi(B)$; thus, given a finite set F of homogeneous elements of I, let $P_{F}:=\bigoplus_{f \in F} s^{-d_{f}}(\pi(B)), f_{F}:=$ $\sum_{f \in F} f_{-}: P_{F} \rightarrow \pi(B)$ and let $N_{F}:=\operatorname{Im}\left(f_{F}\right)$. Since $\pi(B)$ is a noetherian object of qsgr $-B$ we can choose a finite set F_{0} such that $N_{F_{0}}$ is maximal among such images. Let $\pi(N):=N_{F_{0}}$ and $\pi(P):=P_{F_{0}}$; we define $N^{\prime \prime}:=\Gamma(\pi(N))_{\geq 0}:=\bigoplus_{d=0}^{\infty} \operatorname{Hom}_{\mathrm{qsgr}-B}\left(\pi(B), s^{d}(\pi(N))\right)$. According to (iii), $N^{\prime \prime}$ is a \mathbb{N}-graded Γ-module. Given any element $f \in I$ homogeneous of degree d_{f} we have the morphism f_{-}, but since N is maximal the image of this morphism is included in N, and this implies that $f \in N^{\prime \prime}$, so $I \subseteq N^{\prime \prime}$. On the other hand, given $f \in I$ homogeneous of degree d_{f} the \mathbb{N}-graded Γ-homomorphism $s^{-d_{f}}(\Gamma) \xrightarrow{f_{-}} \Gamma$ defined by $\boldsymbol{f}_{-}(h):=h f$ has his image in I. Therefore, $N^{\prime} \subseteq I$, where N^{\prime} is the image of the induced morphism $P^{\prime \prime} \rightarrow \Gamma$, with $P^{\prime \prime}:=\bigoplus_{f \in F_{0}} s^{-d_{f}}(\Gamma)$. Thus, we have $N^{\prime} \subseteq N^{\prime \prime}$, where both are \mathbb{N}-graded Γ-modules, whence we have the \mathbb{N}-graded Γ-module $N^{\prime \prime} / N^{\prime}$. If we prove that $N^{\prime \prime} / N^{\prime}$ is noetherian, then since $I / N^{\prime} \subseteq N^{\prime \prime} / N^{\prime}$ we get that I / N^{\prime} is also noetherian, whence, I / N^{\prime} is finitely generated; but N^{\prime} is a finitely generated left ideal of Γ, so I is finitely generated.
$N^{\prime \prime} / N^{\prime}$ is noetherian: Note first that $N^{\prime \prime} / N^{\prime}$ is a module over Γ_{0}; if we prove that $N^{\prime \prime} / N^{\prime}$ is noetherian over Γ_{0}, then it is also noetherian over Γ. According to (a), we only need to show that $N^{\prime \prime} / N^{\prime}$ is finitely generated over Γ_{0}. But this follows from (b) since $N^{\prime \prime} / N^{\prime}$ is right bounded.
(d) Γ satisfies \mathcal{X}_{1} : Let N be a finitely generated graded Γ-module, we have $\underline{E x t}{ }_{\Gamma}^{j}\left(\Gamma / \Gamma_{\geq 1}, N\right)=$ $\underline{E x t}{ }_{\Gamma}^{j}\left(\Gamma_{0}, N\right)$, so we must prove that $\underline{E x t}{ }_{\Gamma}^{j}\left(\Gamma_{0}, N\right)$ is finitely generated as Γ_{0}-module for $j=0,1$.

By the surjective homomorphism $(\underline{B})_{0} \xrightarrow{\gamma} \Gamma_{0}$ in the step 2 in (a), it is enough to show that $\underline{E x t}{ }_{\Gamma}^{j}\left(\Gamma_{0}, N\right)$ is finitely generated over $(\underline{B})_{0}$. Observe that γ is also a graded homomorphism of left (\underline{B})-modules; moreover, N is a finitely generated graded left (\underline{B})-module since the homomorphism ρ in (ii) is surjective; the proof of this last statement is as in the step 2 of (a), using of course that B is a domain, we include it for completeness: It is enough to consider $\bar{f} \in \Gamma_{d}=\underline{\longrightarrow} \operatorname{limom}_{\mathrm{sgr}-B}\left(B_{s, n}, B(d)\right)$, with $f \in \operatorname{Hom}_{\mathrm{sgr}-B}\left(B_{s, n}, B(d)\right)$ for some $s, n \geq 0$; we define $f^{\prime}: B_{0,0} \rightarrow B(d), f^{\prime}(x):=f(y)$, where $B=B_{s, n} \oplus L$ and $x=y+l$ with $y \in B_{s, n}$ and $l \in L$; therefore, $\rho\left(f^{\prime}\right)=\pi\left(f^{\prime}\right)=\bar{f}$ since we have $f^{\prime} \iota=f$.
Now we can apply the functor $\underline{E x t}_{\underline{B}}^{j}(, N)$ and get the injective homomorphism of left $(\underline{B})_{0^{-}}$ modules $\left.\underline{E x t} \underline{B}_{\underline{j}}^{j}\left(\Gamma_{0}, N\right) \rightarrow \underline{E x t} \underline{B}_{\underline{B}}^{j}(\underline{B})_{0}, N\right)$, but since \underline{B} satisfies $\left.\mathcal{X}_{1}, \underline{E x t}_{\underline{B}}^{j}(\underline{B})_{0}, N\right)$ is finitely generated over $(\underline{B})_{0}$, so $\underline{E x t} \underline{B}_{\underline{j}}\left(\Gamma_{0}, N\right)$ is finitely generated since $(\underline{B})_{0}$ is left noetherian. From the injective $(\underline{B})_{0}$-homomorphism $\underline{E x t}{\underset{\Gamma}{j}}_{j}\left(\Gamma_{0}, N\right) \rightarrow \underline{E x t} \underline{B}_{j}^{j}\left(\Gamma_{0}, N\right)$ we conclude that $\underline{E x t}{ }_{\Gamma}^{j}\left(\Gamma_{0}, N\right)$ is also finitely generated over $(\underline{B})_{0}$.
(e) Γ is a domain: Suppose there exist $f, g \neq 0$ in Γ such that $f \star g=0$, let $f_{n} \neq 0$ and $g_{m} \neq 0$ the nonzero homogeneous components of f and g of lowest degree, thus

$$
f_{n} \in \operatorname{Hom}_{\mathrm{qsgr}-B}\left(\pi(B), s^{n}(\pi(B))\right), g_{m} \in \operatorname{Hom}_{\mathrm{qsgr}-B}\left(\pi(B), s^{m}(\pi(B))\right)
$$

and $0=f_{n} \star g_{m}=s^{n}\left(g_{m}\right) \circ f_{n} \in \operatorname{Hom}_{\mathrm{qsgr}-B}\left(\pi(B), s^{m+n}(\pi(B))\right)$; note that the representative elements of f_{n} and g_{m} in $\operatorname{Hom}_{\text {sgr-B }}\left(B_{0,0}, B(n)\right) \cong \operatorname{Hom}_{\text {sgr-B }}(B, B)=(\underline{B})_{0}$ and $\operatorname{Hom}_{\text {sgr }-B}\left(B_{0,0}, B(m)\right) \cong \operatorname{Hom}_{\text {sgr }-B}(B, B)=(\underline{B})_{0}$, respectively, are non zero, but this is impossible since $(\underline{B})_{0}$ is a domain and the representative element of $f \star g$ in $H o m_{\text {sgr }-B}\left(B_{0,0}, B(n+\right.$ $m)) \cong \operatorname{Hom}_{\text {sgr }-B}(B, B)=(\underline{B})_{0}$ is zero.

Proposition 3.2.11. Let S be a commutative noetherian ring and $\rho: C \rightarrow D$ be a homomorphism of \mathbb{N}-graded left noetherian S-algebras. If the kernel and cokernel of ρ are right bounded, then $D \underline{\otimes}_{C}$ - defines an equivalence of categories $\mathrm{qgr}-C \simeq \mathrm{qgr}-D$, where $\underline{\otimes}$ denotes the graded tensor product.

Proof. The proof of Proposition 2.5 in [2] applies since it is independent of the notion of torsion.

We are prepared for proving the main theorem of the present section.
Theorem 3.2.12. If B is a domain that satisfies (C1)-(C4) and \underline{B} satisfies the condition \mathcal{X}_{1} then there exists an equivalence of categories

$$
\operatorname{qgr}-\underline{B} \simeq \operatorname{qgr}-\Gamma(\pi(B))_{\geq 0} .
$$

Proof. Note that the ring homomorphism in (3.2.1) satisfies the conditions of Proposition 3.2.11, with $S=B_{0}, C=\underline{B}$ and $D=\Gamma(\pi(B))_{\geq 0}$. In fact, from Lemma 3.2 .10 we know that \underline{B} and $\Gamma(\pi(B))_{\geq 0}$ are \mathbb{N}-graded left noetherian rings and B_{0}-modules; moreover, they are B_{0}-algebras: We check this for \underline{B}, the proof for $\Gamma(\pi(B))_{\geq 0}$ is similar. If $f \in \operatorname{Hom}_{\mathrm{sgr}-B}(B, B(n)), g \in$ $H o m_{\text {sgr }-B}(B, B(m)), x \in B_{0}$ and $b \in B$, then

$$
\begin{gathered}
{[x \cdot(f \star g)](b)=x \cdot\left(s^{n}(g) \circ f\right)(b)=x g(n)(f(b)) ;} \\
{[f \star(x \cdot g)](b)=\left[s^{n}(x \cdot g) \circ f\right](b)=(x \cdot g)(n)(f(b))=x g(n)(f(b)) .}
\end{gathered}
$$

Finally, we can apply the proof of part S10 in Theorem 4.5 in [2] to conclude that the kernel and cokernel of ρ are right bounded.

Remark 3.2.13. Considering the above developed theory for graded rings and right modules instead of semi-graded rings and left modules it is possible to prove that $\underline{B} \cong B$. Thus, in such case we get from the previous theorem the Serre-Artin-Zhang-Verevkin equivalence qgr $-B \simeq \operatorname{qgr}-\Gamma(\pi(B))_{\geq 0}$.
Example 3.2.14. The examples of skew $P B W$ extensions below are semi-graded (non \mathbb{N} graded) domains and satisfy the conditions (C1)-(C4); in each case we will prove that \underline{B} satisfies the condition \mathcal{X}_{1}; therefore, for these algebras Theorem 3.2 .12 is true. In every example $B_{0}=K$ is a field, we indicate the relations defining B (see [20]) and the associated graded ring $\operatorname{Gr}(B)$ (Proposition 2.1.6):
(i) Enveloping algebra of a Lie K-algebra \mathcal{G} of dimension $n, \mathcal{U}(\mathcal{G})$:

$$
\begin{gathered}
x_{i} k-k x_{i}=0, k \in K ; \\
x_{i} x_{j}-x_{j} x_{i}=\left[x_{i}, x_{j}\right] \in \mathcal{G}=K x_{1}+\cdots+K x_{n}, 1 \leq i, j \leq n ; \\
\operatorname{Gr}(B)=K\left[x_{1}, \ldots, x_{n}\right] .
\end{gathered}
$$

(ii) Quantum algebra $\mathcal{U}^{\prime}(s o(3, K))$:
$x_{2} x_{1}-q x_{1} x_{2}=-q^{1 / 2} x_{3}, \quad x_{3} x_{1}-q^{-1} x_{1} x_{3}=q^{-1 / 2} x_{2}, \quad x_{3} x_{2}-q x_{2} x_{3}=-q^{1 / 2} x_{1}, q \in K-\{0\} ;$
in this case $\operatorname{Gr}(B)=K_{\mathbf{q}}\left[x_{1}, x_{2}, x_{3}\right]$ is the 3 -multiparametric quantum space, i.e., a quantum polynomial ring in 3 variables, with

$$
\mathbf{q}=\left[\begin{array}{ccc}
1 & q & q^{-1} \\
q^{-1} & 1 & q \\
q & q^{-1} & 1
\end{array}\right]
$$

(iii) Dispin algebra $\mathcal{U}(\operatorname{osp}(1,2))$:

$$
\begin{aligned}
x_{2} x_{3}-x_{3} x_{2} & =x_{3}, \quad x_{3} x_{1}+x_{1} x_{3}=x_{2}, \quad x_{1} x_{2}-x_{2} x_{1}=x_{1} ; \\
G r(B) & =K_{\mathbf{q}}\left[x_{1}, x_{2}, x_{3}\right], \text { with } \mathbf{q}=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

(iv) Woronowicz algebra $\mathcal{W}_{\nu}(\mathfrak{s l}(2, K))$, where $\nu \in K-\{0\}$ is not a root of unity:

$$
\begin{gathered}
x_{1} x_{3}-\nu^{4} x_{3} x_{1}=\left(1+\nu^{2}\right) x_{1}, \quad x_{1} x_{2}-\nu^{2} x_{2} x_{1}=\nu x_{3}, \quad x_{3} x_{2}-\nu^{4} x_{2} x_{3}=\left(1+\nu^{2}\right) x_{2} ; \\
G r(B)=K_{\mathbf{q}}\left[x_{1}, x_{2}, x_{3}\right], \text { with } \mathbf{q}=\left[\begin{array}{ccc}
1 & \nu^{-2} & \nu^{-4} \\
\nu^{2} & 1 & \nu^{4} \\
\nu^{4} & \nu^{-4} & 1
\end{array}\right] .
\end{gathered}
$$

(v) Nine types of 3-dimensional skew polynomial algebras, $\alpha, \beta, \gamma \in K-\{0\}$:

$$
\begin{gathered}
x_{2} x_{3}-\alpha x_{3} x_{2}=0, \quad x_{3} x_{1}-\beta x_{1} x_{3}=0, \quad x_{1} x_{2}-\gamma x_{2} x_{1}=0 \\
x_{2} x_{3}-x_{3} x_{2}=x_{3}, \quad x_{3} x_{1}-\beta x_{1} x_{3}=x_{2}, \quad x_{1} x_{2}-x_{2} x_{1}=x_{1} \\
x_{2} x_{3}-x_{3} x_{2}=0, \quad x_{3} x_{1}-\beta x_{1} x_{3}=x_{2}, \quad x_{1} x_{2}-x_{2} x_{1}=0 \\
x_{2} x_{3}-x_{3} x_{2}=x_{3}, \quad x_{3} x_{1}-\beta x_{1} x_{3}=0, \quad x_{1} x_{2}-x_{2} x_{1}=x_{1} \\
x_{2} x_{3}-x_{3} x_{2}=x_{3}, \quad x_{3} x_{1}-\beta x_{1} x_{3}=0, \quad x_{1} x_{2}-x_{2} x_{1}=0 \\
x_{2} x_{3}-x_{3} x_{2}=x_{1}, \quad x_{3} x_{1}-x_{1} x_{3}=x_{2}, \quad x_{1} x_{2}-x_{2} x_{1}=x_{3} \\
x_{2} x_{3}-x_{3} x_{2}=0, \quad x_{3} x_{1}-x_{1} x_{3}=0, \quad x_{1} x_{2}-x_{2} x_{1}=x_{3} \\
x_{2} x_{3}-x_{3} x_{2}=-x_{2}, \quad x_{3} x_{1}-x_{1} x_{3}=x_{1}+x_{2}, \quad x_{1} x_{2}-x_{2} x_{1}=0 \\
x_{2} x_{3}-x_{3} x_{2}=x_{3}, \quad x_{3} x_{1}-x_{1} x_{3}=x, \quad x_{1} x_{2}-x_{2} x_{1}=0 \\
\operatorname{Gr}(B)=K_{\mathbf{q}}\left[x_{1}, x_{2}, x_{3}\right], \quad \text { where } \mathbf{q} \text { is an appropiate matrix in every case. }
\end{gathered}
$$

Observe that in every example, $G r(B)$ is a noetherian Artin-Schelter regular algebra, and hence, $\operatorname{Gr}(B)$ satisfies the \mathcal{X}_{1} condition (see [23]). From this we will conclude that \underline{B} also satisfies such condition.
In fact, note first that in general there is an injective \mathbb{N}-graded homomorphism of B_{0}-algebras $\eta: \underline{B} \rightarrow G r(B)$ defined by

$$
\begin{gathered}
\bigoplus_{d=0}^{\infty} \operatorname{Hom}_{\mathrm{sgr}-B}(B, B(d)) \xrightarrow{\eta} \bigoplus_{d=0}^{\infty} G r(B)_{d}=\bigoplus_{d=0}^{\infty} \frac{B_{0} \oplus \cdots \oplus B_{d}}{B_{0} \oplus \cdots \oplus B_{d-1}} \\
f_{0}+\cdots+f_{d} \mapsto f_{0}(1) \\
\hline \cdots+\cdots+\overline{f_{d}(1)},
\end{gathered}
$$

with $f_{i} \in \operatorname{Hom}_{\mathrm{sgr}-B}(B, B(i)), 0 \leq i \leq d$. We only check that η is multiplicative, the other conditions can be proved also easily: $\eta\left(f_{n} \star g_{m}\right)=\eta\left(s^{n}\left(g_{m}\right) \circ f_{n}\right)=\overline{\left(s^{n}\left(g_{m}\right) \circ f_{n}\right)(1)}=$ $\overline{s^{n}\left(g_{m}\right)\left(f_{n}(1)\right)}=\overline{g_{m}\left(f_{n}(1)\right)}=\overline{f_{n}(1) g_{m}(1)}=\overline{f_{n}(1)} \overline{g_{m}(1)}=\eta\left(f_{n}\right) \eta\left(g_{m}\right)$.
Thus, in the examples above $K=B_{0},(\underline{B})_{0} \cong B_{0} \cong G r(B)_{0}$ and the kernel and cokernel of η are right bounded, so we can apply the part (5) of Lemma 8.2 in [2] and conclude that \underline{B} satisfies \mathcal{X}_{1}.
We finish remarking that for the listed examples we can apply Proposition 3.2.11 and Theorem 3.2.12 and obtain that

$$
\begin{gathered}
\operatorname{qgr}-K\left[x_{1}, x_{2}, x_{3}\right] \simeq \operatorname{qgr}-\Gamma(\pi(B))_{\geq 0}, \text { with } B=\mathcal{U}(\mathcal{G}) ; \\
\operatorname{qgr}-K_{\mathbf{q}}\left[x_{1}, x_{2}, x_{3}\right] \simeq \operatorname{qgr}-\Gamma(\pi(B))_{\geq 0},
\end{gathered}
$$

with $B=\mathcal{U}^{\prime}(\operatorname{so}(3, K)), \mathcal{U}(\operatorname{osp}(1,2)), \mathcal{W}_{\nu}(\mathfrak{s l}(2, K))$ or any of nine types of 3-dimensional skew polynomial algebras above, and \mathbf{q} an appropiate matrix in every case.

Bibliography

[1] J.P. Acosta, Lezama O. Ojeda I. Chaparro, C., and C. Venegas, Ore and goldie theorems for skew pbw extensions, Asian-European Journal of Mathematics, 6 (4), 1350061-1; 135006120. (2013).
[2] M. Artin and Zhang J. J., Noncommutative projective schemes, Adv. Mah. 109 (2), 228-287. (1994).
[3] Schelter W. Artin, M., Graded algebras of global dimension 3, Advances in Mathematics, 66, 171-216 (1987).
[4] Tate J. Artin, M. and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festchrift, Vol. I, Birkhäuser Boston, 33-85. (1990).
[5] , Modules over regular algebras of dimension 3, Invent. Math. 105, 335-388 (1991).
[6] Jensen A. Beaulieu, R. A. and S. Jø ndrup, Towards a more general notion of gelfandkirillov dimension, Israel Journal of Mathematics, 93, 73-92. (1996).
[7] Harris J. Eisenbud, D., The geometry of schemes, Springer, 1991.
[8] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90, 323-448. (1962).
[9] J. D. Gaddis, Pbw deformations of artin-schelter regular algebras and their homogenizations, Ph.D. thesis, The University of Wisconsin-Milwaukee., 2013.
[10] C. Gallego and O. Lezama, d-hermite rings and skew pbw extensions, to appear in São Paulo J. Math. Sci.DOI 10.1007/s40863-015-0010-8. (2016).
[11] T. Gateva-Ivanova, Quadratic algebras, yang-baxter equation, and artin-schelter regularity, Max-Planck-Institut für Mathematik, Preprint Series (5) (2012).
[12] V. Ginzburg, Calabi-yau algebras, arXiv:math.AG/0612139v3. (2006).
[13] P. Goetz, The noncommutative algebraic geometry of quantum projective spaces, Ph.D. Thesis, University of Oregon., 2003.
[14] A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119-221; English translation by Marcia L. Barr and Michael Barr, September 10, 2010.
[15] R. Hartshorne, Algebraic geometry, Springer-Verlag, 1977.
[16] C. Huh and C. O. Kim, Gelfand-kirillov dimension of skew polynomial rings of automorphism type, Communications in Algebra, 24, No. 7, 2317-2323. (1996).
[17] A. Kanazawa, Non-commutative projective calabi-yau schemes, preprint (2015).
[18] G.R. Krause and T.H. Lenagan, Growth of algebras and gelfand-kirillov dimension, (Revised edition), Graduate Studies in Mathematics, 22, AMS, Providence, RI (2000).
[19] O. Lezama and C. Gallego, Gröbner bases for ideals of sigma-pbw extensions, Communications in Algebra, 39 (1), 50-75. (2011).
[20] O. Lezama and M. Reyes, Some homological properties of skew pbw extensions, Comm. in Algebra, 42, 1200-1230. (2014).
[21] J. McConnell and J. Robson, Non-commutative noetherian rings, Graduate Studies in Mathematics, AMS., 2001.
[22] M. A. Reyes, Gelfand-kirillov dimension of skew pbw extensions, Rev. Col. Mat., 47 (1), 95-111. (2013).
[23] D. Rogalski, An introduction to non-commutative projective algebraic geometry, arXiv:1403.3065 [math.RA] (2014).
[24] B. Shelton and M. Vancliff, Some quantum \mathbb{P}^{3} 's with one point, Comm. Alg. 27(3), 14291443 (1999).
[25] S. Sierra, The geometry of birrationall commutative graded domains, Ph.D. Thesis, University of Michigan, UMI, 2008.
[26] S.P. Smith, Non-commutative algebraic geometry, Department of Mathematics, University of Washington, 2000.
[27] J.T. Stafford and M. Van den Bergh, Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc.(NS) 38 no.2, 171-216 (2001).
[28] D.R. Stephenson, Artin-schelter regular algebras of global dimension three, Ph.D. Thesis, University of Michigan, UMI, 1994.
[29] , Artin-schelter regular algebras of global dimension three, J. Algebra 183, 55-73 (1996).
[30]_, Algebras associated to elliptic curves, Trans. Amer. Math. Soc. 349, 2317-2340 (1997).
[31] R. Vakil, Foundations of algebraic geometry, math216.wordpress.com, 2013.
[32] Willaert I. Van Oystaeyen, F., Grothendieck topology, coherent sheaves and serre's theorem for schematic algebras, J. Pure Appl. Algebra 104, no.1. 109-122 (1995).
[33] A. B. Verevkin, Serré injective sheaves, Mat. Zametki, 52 (4), 35-41. (1992).
[34] A.B. Verevkin, On a noncommutative analogue of the category of coherent sheaves on a projective sheme, Amer. Math. Soc. Trans(2) 151 (1992).
[35] S.L. Woronowicz, Twisted su(2) group. an example of a non-commutative differential calculus, Publ. RIMS, Kyoto Univ., 23, 117-181 (1987).
[36] J.J. Zhang, Twisted graded algebras and equivalences of graded categories, Proc. London Math. Soc. (2) 72 281-311 (1996).

