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ABSTRACT 

 

Fault Tolerant Pulse Synchronization. (December 2008) 

Keerthi Deconda, B.Tech, National Institute of Technology Warangal, India 

Chair of Advisory Committee: Dr. Jennifer Welch 

 

Pulse synchronization is the evolution of spontaneous firing action across a 

network of sensor nodes. In the pulse synchronization model all nodes across a network 

produce a pulse, or "fire", at regular intervals even without access to a shared global 

time. Previous researchers have proposed the Reachback Firefly algorithm for pulse 

synchronization, in which nodes react to the firings of other nodes by changing their 

period. We propose an extension to this algorithm for tolerating arbitrary or Byzantine 

faults of nodes. Our algorithm queues up all the firings heard in the current cycle and 

discards outliers at the end of the cycle. An adjustment is computed with the remaining 

values and used as a starting point of the next cycle. Through simulation we validate the 

performance of our algorithm and study the overhead in terms of convergence time and 

periodicity. The simulation considers two specific kinds of Byzantine faults, the No 

Jump model where faulty nodes follow their own firing cycle without reacting to firings 

heard from other nodes and the Random Jump model where faulty nodes fire at any 

random time in their cycle.    
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CHAPTER I 

INTRODUCTION 

 

 
1
Time synchronization is an important requirement of wireless sensor networks. 

Sensor motes run on inexpensive hardware with limited resources. Hence their clocks 

are very likely to drift away with time. Since the most important function of a sensor 

network is to sense events, the time of occurrence of the event should be very accurate. 

For example, in a surveillance application the velocity of the enemy vehicle could be 

estimated by the time difference between the events detected at different sensors.  

Centralized techniques for time synchronization in sensor networks have a single 

point of failure at the base station. Traditional clock synchronization algorithms involve 

flooding the network from a reference node [11, 12] or constructing a spanning tree and 

synchronizing along its edges [13].  Such algorithms have a high communication 

overhead and hence may not be scalable to large networks. Therefore decentralized 

algorithms inspired from biological systems are highly attractive for wireless sensor 

networks. 

As mentioned above, wireless sensor networks run on inexpensive hardware with 

limited battery. So lifetime is limited by the battery power. At any time nodes might 

drop out of the network and new nodes may be added to the network.  Also depending 

on the terrain of deployment, certain radio links might become weak and an alternative 
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radio link can be discovered. Hence synchronization algorithms that are flexible and can 

adapt to changes in network topology are highly desirable.  

Due to the nature of deployment of wireless sensor networks, the nodes are 

susceptible to physical capture. Its software can be overwritten and it can keep sending 

malicious messages into the system. Such processes can hamper the working of time 

synchronization algorithms and can result in the sensor node having incorrect clock time. 

Hence time synchronization is a critical function and it must be made fault tolerant.  

This thesis is organized as follows. The remaining sections of this chapter present 

the pulse synchronization problem and explain the importance of fault tolerance. Related 

work section describes previous models and research in the area of pulse 

synchronization. Chapter II presents our main contribution, a fault tolerant algorithm for 

pulse synchronization. The design of the algorithm and its implementation are explained. 

Chapter III describes our simulation efforts to verify the algorithm and presents the 

results of those experiments. We conclude by discussing the implications of our results 

and future directions of this research. Appendix A contains some analysis of Mirollo and 

Strogatz model [1]. The simulation code is included in Appendix B.  

 

A. Pulse Synchronization 

Pulse synchronization is a very interesting phenomenon in natural and biological 

systems.  Some examples of biological oscillators found in nature are fireflies flashing in 

unison and pacemaker cells of the heart. Such systems consist of identical units which 

communicate by exchanging ―firing‖ messages, which is the only communication 
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between them. An oscillator is characterized by a phase which varies with time. The 

phase rises from zero to a certain threshold and when the oscillator hits the threshold it 

―fires‖ and this firing is seen by all other oscillators in the system. Whenever one 

oscillator fires, the other oscillator observe this firing and adjust their rhythm 

accordingly. This adjustment, called coupling in classical mechanics, is performed at 

discrete times (whenever a firing is observed) rather than smoothly over time. Therefore 

units exhibiting the above behavior are called pulse coupled oscillators.  

It was proved by Mirollo and Strogatz [1] that in a system consisting of N 

identical pulse coupled oscillators, regardless of number of oscillators in the system, for 

almost all initial conditions it converges to a state in which all units are firing 

synchronously (See Appendix A for some related analysis). This synchronization occurs 

in a totally distributed fashion and with minimal local state information. There is no 

centralized node directing the actions of the other nodes.  

The M&S model consists of N identical pulse coupled oscillators moving 

towards threshold according to a specific function. This function should be 

monotonically increasing and concave down. All other oscillators react by pulling up 

their phase by an amount or to the threshold, whichever is lower. The firing node’s phase 

then goes back to zero. The amount by which a node is pulled up is defined as a system 

parameter ε. Due to this pulling up of the phase, the phase difference between nodes 

becomes lesser in each cycle and eventually becomes zero. Thus the nodes are firing 

simultaneously and remain in such state subsequently. When the system is in such a state 

it can be said to have achieved pulse synchronization.  
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Such a concept is especially attractive for wireless sensor networks. This model 

has the advantages of being scalable, decentralized and does not require that many 

message exchanges. Coordinated duty cycling and sampling across the network are some 

applications. However this ideal model cannot be directly applied to less than the ideal 

world of wireless sensor networks. For one, there is always some delay in 

communication between two nodes. Hence when a node fires, other nodes don’t hear this 

message instantaneously and each node may hear it at different times. Due to lossy radio 

links, some nodes might not hear this firing message at all. Werner-Allen et al. [2] 

address this issue in their paper.  

The Reachback Firefly algorithm proposed in [2] accommodates the message   

delay factor. Low level timestamping of the firing message is used to calculate the exact 

delay in transmission and hence exact firing time is known. Not only is the firing 

message received after a delay, but it could be received out of order as well. Hence all 

the received messages are placed in a queue to be dealt with at the end of the time 

period. When a node A fires and its neighbor B hears this firing, node B does not 

immediately react. It ―remembers‖ the internal time at which it heard the firing. Now 

when node B reaches the end of its time period, it recalls all such firings heard and 

computes the overall jump and increments its internal time immediately. Therefore a 

node reacts to messages from the previous time period rather than the current time 

period. 
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B. Fault Tolerance 

Any practical distributed system must be able to deal with process failures, 

repairs, clock drifts and varying message delivery times. Byzantine fault tolerance is an 

issue that could arise in such a self-synchronizing system. A node exhibiting Byzantine 

faults could behave erroneously or perform arbitrary execution of a step. This faulty 

behavior could be because of hardware problems, network disconnects or malicious 

attacks.  Byzantine faults in any of the pulse synchronization algorithms could prevent 

stabilization in the synchronization process. A faulty node consistently firing at a wrong 

time could leave the system unstable forever.  

Lamport et al [10] propose an algorithm to achieve clock synchronization in 

presence of Byzantine faults. In their fault tolerant algorithm, non-faulty processes try to 

reach a consensus between them. The algorithm runs in rounds and obtains clock values 

of all other nodes and sets its clock to average of those values. It was proved that clock 

synchronization can be reached successfully, if and only if less than one-third of the total 

numbers of processes are faulty. The interactive convergence algorithm they described 

handles faults in a completely connected network.  

The algorithm proposed by Welch et al. in [6] improves upon the above by 

introducing a fault tolerant averaging function. Instead of using a simple average, this 

function is designed to be immune to fixed maximum number of faults f. This function 

throws out f highest and f lowest values from all the values collected at the end of each 

round. Then an ordinary averaging function is applied to the remaining values.  It was 
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proved in [6] that this averaging function halves the distance between clocks in each 

round.  

 

C. Related Work 

Peskin is one of the first researchers to provide a model for the self 

synchronization of a cardiac pacemaker [4].  The pacemaker is modeled as network of N 

―integrate-and-fire‖ oscillators characterized by a state variable xi , which is subject to 

the equation 

𝑑𝑥𝑖

𝑑𝑡
= 𝑆0 − 𝛾𝑥𝑖              0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, … , 𝑁. 

𝑥𝑖 𝑡 = 1 =>  𝑥𝑗  𝑡
+ = min 1, 𝑥𝑡 𝑡 + 𝜀   ∀𝑗 ≠ 𝑖. 

where S0 is a system defined constant and γ is a small dissipation constant.  

When xi=1, the i
th

 oscillator fires and jumps back to zero. It pulls up all other oscillators 

by an amount ε, the coupling strength. The higher the value of ε, the greater the coupling 

achieved at each firing. The rate at which pulse synchronization can be achieved is 

dependent on ε. Peskin conjectured that for arbitrary initial conditions, the system 

approaches a state in which all oscillators are firing synchronously. He proved it for the 

special case of N=2 oscillators.  

Mirollo and Strogatz [1] analyze a more general version of Peskin’s model for all 

N. Instead of the above equation, the oscillators rise towards threshold following a 

function which is monotonic and concave down. The assumptions are that the oscillators 

are fully connected and identical.  Also there is no delay between firing and receiving 

the messages.  
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Hong and Scaglione [5] is one of the first papers to apply the pulse 

synchronization model to wireless sensor networks. They utilized the characteristic pulse 

of Ultra-Wide-Band (UWB) to emulate the synchronization process of pulse coupled 

oscillators, and included more realistic effects such as channel attenuation and noise. 

UWB radio can be used at very low energy levels for short-range high-bandwidth 

communications. Due to the wide bandwidth provided by UWB systems, nodes can emit 

signals with small pulse durations compared to their duty cycle and therefore emulate the 

mechanism of firing. By using UWB pulses, there is no delay in sending and receiving 

the firing signal. They also assume that a rest period exists immediately after node fires, 

during which it cannot couple with any other node. This is necessary to avoid feedback 

cycles from other nodes of the network and result in an infinite excitation between close 

by nodes.  

Another assumption of M&S model is that all nodes are directly connected to 

every other node. That is all-to-all communication links in the system. In [3], this 

assumption is relaxed and it has been proved that the system still converges to 

synchronized state, even though nodes can hear only some of their neighbors firing.  

Lucarelli and Wang [3] relax the assumption of all-to-all coupling in the network. They 

have shown that in a sensor network, coupling with just the nearest neighbor is sufficient 

to achieve stability. Thus, they have proved that convergence can be achieved for an 

arbitrary topology. Again they haven’t considered delay in receiving the message.  

In [2] Werner-Allen et al. propose the Reachback Firefly Algorithm (RFA), in 

which a node reacts to messages from the previous time period rather than the current 
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time period. When a firing message is received, MAC level timestamping is used to 

estimate the correct firing time. The node on receiving the firing message does not 

immediately react but places the message in a queue. At the end of the cycle, all received 

firing messages are sorted in order of their exact firing time.  The node reaches back in 

time and computes all the jumps that it should have taken, had it received the messages 

instantaneously and in the correct order. Instead of starting from zero after firing, it starts 

at the overall jump computed in the previous cycle. For the special case of N=2 and  

f(t)=ln(t), it has been proved that this scheme converges to synchrony for almost all 

initial conditions. Their analysis makes use of a fixed repeller point due to which the 

system is driven to synchrony. The time to converge is inversely proportional to ε, thus a 

large ε causing faster convergence and a small ε causing longer time to converge. In 

their simulations, some initial conditions never lead to synchrony. This happens when ε 

is a large value causing the nodes to make large jumps and hence overshooting above the 

threshold.  

Clock Synchronization and Pulse Synchronization are complementary concepts. 

Clock synchronization means bringing all processes in a system to agree on the notion of 

a common clock time which can be mapped to real time. If clocks of the whole network 

are kept synchronized, then it is trivial to arrange pulses to be produced at scheduled 

times. Conversely, if a system is pulse synchronized, it can achieve clock 

synchronization as we now explain. First, note that the pulse synchronization produces    

a pulse (or a firing) periodically, which can be used for the nodes to agree on the 
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beginning of each period. This knowledge is used as a building block to achieve clock 

synchronization in two algorithms, which are described next.  

Daliot et. al. [7, 8] proposed a Byzantine self-stabilizing clock synchronization 

algorithm that improves upon exponential convergence times and achieves convergence 

in linear time. Their algorithm is built on top of a self-stabilizing Byzantine pulse 

synchronization block. This pulse must occur simultaneously across all nodes.  Briefly 

the pulse synchronization algorithm [8] works as follows. In a system of n processes out 

of which f are faulty, every Cycle time units each node sends a propose_pulse message. 

When (n-f) messages are collected, nodes enter a Byzantine agreement to decide on the 

time of message sent. Based on the time agreed a node invokes a pulse. At the 

occurrence of a pulse (similar to firing), nodes execute another Byzantine consensus 

algorithm to agree on the next clock synchronization time.  

Dolev and Hoch [9] also describe a clock synchronization algorithm which is 

built on top of a pulse synchronization system. Their model differs from Daliot’s model 

in that all nodes have access to a global beat system and operate in lockstep according to 

these beats.  A pulse has to be produced for every Cycle number of beats. This pulser is 

constructed in a modular manner and the core module is the Byzantine Black Box (BBB) 

algorithm. At every beat the BBB algorithm is run and if agreement is reached then a 

pulse is produced. Given a Byzantine tolerant algorithm that is not stabilizing, the 

pulsing algorithm can be used to transform it into a stabilizing version.  

Another paper by Daliot, Dolev and Parnas [16] is most similar to this thesis. The 

pulse synchronization model defined in their paper is the same as in this thesis. Though 
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their approach to the solution is quite different.  Each node sums the pulses that it learns 

about during a recent time window and fires if the sum reaches a threshold. The counter 

value is broadcast at firing time. The receiving node checks the credibility of the 

message counter.  Their algorithm can tolerate failures of up to one-third of the nodes. 

The identity of the sender needs to be known and verified at the receiver’s side. In our 

algorithm which is based on the Reachback Firefly algorithm, the identity of the firing 

node is not required, only the time of the firing is important. Also in our algorithm the 

content of the firing message is not essential.  

Distributed Firing Squad problem [15] is somewhat similar to the pulse 

synchronization problem. An algorithm is executed in response to request from a 

specific processor (called the general) or from an external source. If the request is from a 

correct processor then all other correct processors start the algorithm in unison (―fire‖). 

However if the requestor is faulty then correct processors learn of the request at different 

steps. The firing mechanism in DFS problem is somewhat similar to the pulse firing in 

this thesis. However the firing is a one-time only process in the DFS algorithm, after 

which the algorithm halts. Whereas pulse synchronization keeps pulsing periodically 

throughout the system lifetime. The solution involves authenticated messages, whereas 

in our fault tolerant algorithm message sender is not known, the receiver is only 

concerned with the time of sending the message. The authors of the DFS problem study 

the fail-stop, rushing and collusion models of Byzantine failures. These fault models are 

different from the No Jump and Random Jump fault models in this thesis.  
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CHAPTER II 

PROBLEM DESCRIPTION 

 

A node acts as an oscillator with a fixed time period T. Each node has an internal 

clock t operating from a value of t=0 to t=T. When a node reaches the end of its time 

period i.e. t=T, it ―fires‖ and starts a new time period from t=0. This ―firing‖ can be 

thought of as a broadcast message sent to all the neighbors of a node. The nodes are 

connected in an all-to-all communication model. The system consists of n such nodes, 

each of which can start out with any initial clock value. A node maintains no internal 

state information other than this clock value. This model is based on Peskin’s model of 

N ―integrate and fire‖ oscillators [4].  

Pulse synchronization involves getting the nodes to fire at the same time. In such 

a situation all nodes would start out their cycle at the same time, as well as reach the end 

of their cycle at the same time. For this synchrony to emerge the following algorithm has 

been developed by Mirollo and Strogatz [1].  

When a node observes a firing from a neighbor, it reacts by adjusting its clock by 

a small value. This adjustment is done according to a firing function f(t) and a small 

constant ε. We can say the clock is pulled up by a small amount ε. If the node has a 

clock value t when a firing is heard, the new clock value is calculated as  

𝑡′ = 𝑓−1(𝑓 𝑡 + 𝜀) 

Hence the increment Δ is 

∆= 𝑡′ − 𝑡 
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An important result proved by Mirollo and Strogatz [1] was that for n nodes 

starting out at any initial clock values t, if the function f is smooth, monotonically 

increasing and concave down, then the n nodes will eventually converge. By converge 

we mean that all nodes start firing at the same time.  

In the RFA algorithm proposed by Werner-Allen [2], a node does not react 

instantaneously to a firing heard. It starts out its time period from a clock value t=0 and 

fires when it reaches t=T. Instead whenever a firing is heard, it computes the increment 

Δ that it was supposed to have taken.  At the end of its time period, all such increments 

are added up and the node starts back at the sum of all those increments instead of t=0. 

RFA algorithm solved the problem of communication delays, where a firing message 

may not be heard immediately after it was sent.  

The above algorithms assume that all nodes are identical. They don’t take into 

account faulty or malicious nodes which may not follow the prescribed correct behavior. 

A node is said to be faulty if it does not follow the above behavior. Faulty nodes can 

prevent convergence from taking place.  In this paper we describe two possible fault 

models. The two faulty behaviors for malicious nodes are:  

(a).No Jump: Where a node refuses to participate in the converging algorithm. It 

still continues to fire at a regular period, just that it does not react to a neighbor’s firing.  

(b).Random Jump: When a node hears a firing from its neighbor, it responds in a 

random fashion. Instead of adjusting its clock in a small increment, its sets its clock to a 

totally random value between t=0 and t=T. This leads to the node firing at random times, 

rather than following the regular clock cycle.  
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It is possible that a faulty node could incorporate both (a) and (b) fault models 

simultaneously. A fault node could choose to not respond to a firing or jump to a random 

value. In this paper we assume that a faulty node follows either (a) or (b) but not both at 

the same time. We leave this for future work.  The next section describes an algorithm 

that is designed to be immune to the above faults.  

A. Algorithm 

We propose a new modification to the Reachback Firefly Algorithm to tolerate 

the effect of faulty processes. In this algorithm a node follows its cycle from t=0 to t=T, 

while making note of all the firings heard. Here a node merely takes note of its position 

in its current period when a firing was heard.  If a node was at t=t’ when a neighbor fires, 

the time t’ is noted down. At the end of its time period, the overall jump is to be 

calculated. Until here it’s the same as the RFA algorithm. But instead, when computing 

the overall jump a fault tolerant averaging function is used. This function is similar to 

the one proposed for approximate agreement problem in [14] and adapted for clock 

synchronization in [6].  Ideally when a node reaches the end of its cycle it would have 

heard n-1 firings, not counting its own firing. Random jump faulty nodes sometimes 

cause more or less than n-1 firings to be heard. This deficit is taken into account by a 

method which is described later. From these n-1 clock values placed in the queue, we 

discard the f highest and f lowest values. The overall jump is calculated from the 

remaining (n-2f) values. It is to be noted that even though we call this function a ―fault 

tolerant averaging function‖, there is no average being computed. We keep the original 
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name as proposed in the paper [6], but the main idea is that we throw out the f highest 

and f lowest values.  

The best values to calculate the fault tolerant average are those firings which are 

closest to each other. The intuition is that the nodes closest to each other are to be driven 

even closer to form a group and nodes further from this group are to be discarded. 

Therefore we consider the values that are most distant from each other as the end points, 

when determining the highest and lowest values. We need to keep in mind the 

―wraparound‖ factor as well when finding the end points.  

 

  

 (a): C and D are end-points.           (b): A and E are end-points. 

Fig. 1: Examples of outliers with and without wrap-around. 

 

 

 

For the above example in Fig 1, the values A, B, C, D and E are the times at 

which firings were heard. In Fig 1(a) the firings at E, A and B are closest to each other. 

When the maximum distance between individual firings are measured, C and D are the 

farthest apart. Hence firings C and D are considered the end points. Hence after 

wrapping around, the order of the firings heard is D, E, A, B, C. Now if we want to 

discard the highest and lowest 1 value, we discard D and C. The overall jump is 

computed using the values E, A and B.  
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In Fig. 1(b) values at B, C and D are closest to each other and maximum distance is 

between E and A.  Therefore after wrapping around the order is A,B,C,D,E. After 

throwing out highest and lowest, we have B,C and D remaining.  

 

The step-by-step working of the pulse synchronization algorithm is as follows: 

1. A node advances its internal clock t from 0 to T steadily.  

2. When it reaches a value of T, it ―fires‖. This firing message is sent to all nodes in 

the network. 

3. When a neighbor hears this firing, it makes a note of the time t’ at which the 

firing was heard and places t’ in its queue.  This t’ is the position in its own 

cycle, not the global time (which is unavailable to the nodes).  

4. At the end of its cycle when t=T after a node has sent the ―firing‖ message, a 

node runs the fault tolerant averaging function on the timings of all the firings it 

has heard and computes the jump for the remaining values.  Say the overall jump 

is calculated as σ. 

5. The clock time is reset to this jump value that was computed. Hence in the next 

cycle, clock starts from this initial value t=σ rather than t=0.  

As this process continues the firings of non-faulty nodes will start moving closer 

together. Ideally the firings should converge, i.e. all non-faulty nodes firings 

simultaneously at the same instant. But because of the corrections performed exact 

synchrony is hard to achieve. Hence for practical purposes we say that convergence is 

achieved when firings occur close together within a small time window w. Once nodes 
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come together within this time window they remain together. This behavior was 

observed through simulations of the algorithm. 

 

B. Implementation  

The simulation of this algorithm was done in Java. In the implementation of this 

system each node is a separate object with clock time as its internal state, in addition to 

some other data. We maintain a notion of global time. This is only to keep track of 

sequence of events, rather than to influence the pulse synchronization algorithm. The 

time period of the clock cycle is taken as 1. Hence the clock cycle starts from t=0 and 

node fires when t=1.  

A queue is used to simulate events that occur in the system. Nodes are placed in 

the queue sorted according to their clock times. Nodes with higher clock values appear at 

the head of the queue and lower clock values at the end of the queue. Therefore the next 

node that has to fire is found at the head of the queue.  

To simulate the next firing, the node at the head of the queue is removed from the 

queue. The clock state of this head node is advanced to 1, to move forward the system 

time to the actual firing time. All other nodes are also advanced by the same time. When 

this firing occurs, all other nodes make a note of the time in their own cycle when they 

heard the firing. These values are used to compute the overall jump that the node was 

supposed to make. Hence the head node uses a fault tolerant averaging function to 

compute this jump and sets its internal clock to this jump. Therefore the node starts its 

new cycle from the jump that was calculated from the previous period.  
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In an ideal situation, a node would have heard exactly (n-1) firings during its 

time period not counting its own firing. However due to reachback a node may jump 

ahead of other nodes when starting out a new time period. Hence it would hear less than 

(n-1) firings in that period. In the case of Random Jump faults, the faulty nodes keep 

firing out of turn and hence it is possible to hear more than (n-1) firings in a cycle. There 

is no problem in the latter case, as we can still discard the highest f and lowest f values. 

Whereas when there are less than (n-1) values and if we discard 2f values, there might 

not be enough values left to compute the jump. The solution here is to pad the queue 

with dummy values. The dummy value should be chosen such that it does not badly 

affect any of the good values.  

    
       (a) B’s firing is not heard                  (b) After padding  

 

Fig. 2: Padding with dummy values. 

 

 

 

Given a set of values representing the firings heard during a cycle, the end points 

are the values that are most distant from each other. The midpoint between the two end-

points is chosen as the dummy value to pad the queue. From the example in Fig. 2 shows 

firings heard when n=6 and f=1. In Fig 6(a) C and D are most distant from each other 

and hence they are chosen as the end points. The dummy value is chosen as point B 

which is the mid-point between C and D. Now when the algorithm discards outliers, B 

and C are the new end points (breaking the tie randomly since B and D which are also 
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equally distant). Thus we ensure that more of the dummy values end up as outliers and 

less of the actual values.  
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CHAPTER III 

 

  RESULTS 

 

The performance of the algorithm has been tested through simulation. For a 

system of n nodes and f faulty nodes given the same input, the following sets of 

experiments were performed.  

1. Reachback Firefly algorithm (orig): All nodes are non faulty. All values are used 

for computing jump. 

2. No Jump faults (r1): Exactly f nodes are faulty in system of n nodes. The faulty 

nodes don’t react in response to a firing heard. For such faulty nodes the initial 

state after a firing is always 0. All values are used for computing jump. 

3. Random jump faults (r2): Exactly f nodes are faulty in system of n nodes. Faulty 

nodes don’t follow the curve function to compute the jump. When a firing is 

heard these nodes jump to any random value between 0 and 1, following a 

uniform distribution. All values are used for computing jump. 

4. Fault tolerant algorithm (ft0): All nodes are non-faulty. But fault tolerant 

function is used to discard outliers at the end of the cycle. This is to analyze the 

overhead introduced by the fault tolerant algorithm.  

5. No Jump faults with fault tolerance (ft1):  Exactly f nodes are faulty in system of 

n nodes. The faulty nodes don’t react in response to a firing heard. But instead 

fault tolerant function is used to correct the faults at the end of cycle.  
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6. Random jump faults with fault tolerance (ft2): Exactly f number of faulty nodes 

which jump to a random value. Fault tolerant function is used to discard outliers 

at the end of cycle.  

For each of the 6 variations of the algorithm, we run 5 simulations of each 

algorithm and take the average of convergence time.  n input values are chosen 

uniformly at random. These input values are assigned to node ids in increasing order 

(i.e., the smallest input value is assigned to node 0, the second smallest to node 1, etc.). 

Then the identity of the f faulty nodes is chosen. The faulty nodes are selected such that 

there are equal number non-faulty nodes between faulty nodes. For example, for a 

simulation of n=7 nodes and f=2 faulty nodes, n0 and n4 are chosen as faulty nodes. The 

placement of the faulty nodes among the non-faulty nodes is chosen such that all faulty 

nodes are not placed consecutively. Note that this placement of faulty nodes is only for 

the first cycle. During subsequent cycles the position of faulty nodes may vary.   

The main parameter that influences the firing cycle is Firing Function Constant 

(FFC). As mentioned in the previous chapter, when a firing is heard at time t the jump is 

calculated as ∆ 𝑡 = 𝑓−1 𝑓 𝑡 + 𝜀 − 𝑡. FFC is defined as 1/ε, the inverse of ε. Small 

values of FFC cause larger jumps and hence causing convergence at a faster rate. But 

conversely it also causes overshooting of the clock value above 1, hence less stability. 

We vary the FFC from 70 and 500. The experiment methodology has been adapted from 

[2] where they use the same FFC values.  
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A. Group Spread 

In the M&S model [1] when all nodes converge and their firings become 

synchronous, they fire at exactly the same instance and with the exact time period 

between each firing. However in the Reachback algorithm and our fault tolerant 

algorithm, due to corrections being made at the end of the cycle and not instantaneously, 

exact synchrony is hard to achieve. Hence we define what could be a reasonable measure 

for convergence. These measures are same as the ones used in RFA algorithm [2].  

Group spread is defined as the maximum difference between firings of non-faulty 

nodes in a given time cycle. Given a time period consisting of firings, the firings can be 

put into clusters such that every node firing must fall within exactly one cluster and 

firings closest to each other form a cluster. Firings in two different clusters must be 

distant from each other. We define convergence as time for all nodes to come together 

into a single cluster and when the group spread becomes smaller than an acceptable 

value called a time window. A small time window parameter takes a longer time for the 

nodes to converge. We say that nodes are converged when the group spread remains 

within the time window for the last 9 out of 10 firings.  

The graph in Fig.3 shows the evolution of group spread between the nodes. This 

figure shows a system of n=10 and f=3, initially starting from random initial clock 

values following a uniform distribution. Time window is 0.1 and FFC is 100. Group 

spread in the initial state is 0.70, as time passes group spread decreases gradually until it 

drops to a less than the time window. When it has remained in that state for that last 9 

out of 10 firings, the simulation stops.  
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Fig. 3: Evolution of Group Spread. 

 

 

 

B. Time to Converge 

As described above, the time to converge is defined as the time for nodes to 

come close together in their clock values, and remain that way for last 9 out of 10 

firings. We run multiple experiments of the same algorithm variant and take the average 

convergence time. Fig. 4 compares the convergence time for the original RFA algorithm 

against our fault tolerant algorithm when there are zero faults. The unit of time is the 

logical time unit, considering T=1.0. Hence the time period goes from t=0.0 to t=1.0. 

Hence the unit of time is the same as one cycle.  
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The graph shows the convergence times for n=4, 7 and 10 nodes for increasing 

FFC values, when all nodes start from random initial states. For almost all cases ft0 

introduces an overhead in the convergence. In the case of n=10 when FFC=100, 250 and 

500, there is almost a 100% increase in convergence time. The convergence time shown 

is the average of 5 runs, with percentage error varying from 20%-50%. 

 

 
Fig 4. Comparison of Reachback and Fault Tolerant algorithm when no faults. 
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(a) n=4, f=1.  

 

 
(b) n=7, f=2.  

 

Fig. 5: Convergence Time with No Jump faults. 
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(c) n=10, f=3.  

 

Fig. 5 (Continued) 

 

 

 

Fig. 5(a)-(c) show the convergence time for increasing values of FFC. We 

compare the RFA algorithm with no faults, the RFA algorithm with No Jump faults and 

the fault tolerant algorithm with No Jump faults. The initial state is random and time 

window is 0.1. From the results we can see that smaller FFC values cause fewer rounds 

to converge. But there is no observable pattern for small FFC values such as FFC=70. 

With a few exceptions, No Jump faults increase the time taken for convergence. We 

discuss the possible reasons for this anomaly in the discussion section below.  Our fault 

tolerant algorithm always increases the convergence time compared with the original 

algorithm with faults. This is in line with our observation that having a fault tolerant 

averaging function introduces an overhead. The convergence time shown is the average 

of 5 runs, with percentage error varying from 26%-55%. 
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 (a) n=4, f=1. 

 

 
(b) n=7, f=2.  

 

Fig. 6: Convergence Time with Random Jump Faults. 
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(c) n=10, f=3. 

 

Fig. 6 (Continued) 

 

 

 

The above graphs from Fig 6(a)-(c) shows the performance of RFA algorithm 

with no faults, the RFA algorithm with Random Jump faults and the fault tolerant 

algorithm with Random Jump faults. The initial state is random and time window is 

0.1.The difference from Fig 4 graphs is that the RFA algorithm with Random Jump 

faults does not always decrease convergence time. Because a faulty node randomly 

switches its firing time, the convergence time is not really predictable. In this example, 

fault tolerant algorithm always increases the time towards convergence. But this is not 

always the case, for a different set of inputs another trend might show up. The 

convergence time shown is the average of 5 runs, with percentage error varying from 

36%-68%.  
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C. Periodicity of Consecutive Firings 

In addition to time taken for convergence, another property required for pulse 

synchronization is the periodic nature of firings. In the original Mirollo and Strogatz 

model [1], a node follows the entire clock cycle from t=0 to t=T. Therefore once 

convergence is reached, all nodes are in sync and time difference between subsequent 

firings is exactly T units. In the RFA algorithm this property is violated, because a node 

does not start its cycle from t=0. The cycle starts from the adjusted value computed from 

the previous cycle, hence the length of the cycle is shortened. Therefore periodicity is 

not achieved in the Reachback Firefly algorithm. From our simulations we have 

observed the periodicity of firings, for each variant of the algorithm.   

 

 

(a) Periodicity with zero faults. 

Fig. 7: Periodicity. 
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(b) Periodicity with No Jump faults. 

 

(c) Periodicity with Random Jump faults. 

Fig. 7 (continued) 
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Periodicity is defined as the time difference between a firing in the n
th

 round and 

the n-1
th

 round. The following graphs in Fig. 7 plot the average periodicity of all non 

faulty nodes measured once every cycle, when n=10, f=3, FFC=100, w=0.1 

From the graphs we can see RFA algorithm does not ensure perfect periodicity. 

In Fig. 7(a) and (b), the periodicity remains around 0.95 for the RFA algorithm with zero 

faults and No faults. But the fault tolerant algorithm increases the periodicity closer to 

1.0 than ever.  In Fig 7(c) show periodicity when there are Random Jump faults. Both 

the RFA algorithm and the fault tolerant algorithm start off badly, but periodicity 

increases steadily and almost becomes 1 for the fault tolerant algorithm. In general we 

can conclude that the fault tolerant algorithm improves the periodicity.  

 

D. Discussion 

From the above results we can conclude that the original RFA algorithm is not 

fully fault tolerant. In almost all cases when No Jump faults are introduced, the RFA 

algorithm takes a longer time to converge. Smaller values of FFC are not exactly good 

indicators to compare convergence time, because small FFC causes a large jump and 

cause overshooting the other nodes. The parameter ε (or 1/FFC) is an important factor in 

determining convergence time. The time taken to converge is inversely proportional to 

the ε parameter. Hence it would be reasonable to assume that if we pick a large value for 

ε, it will lead to faster convergence. But in reality large ε causes the nodes to take big 

jumps and less smooth in going to convergence.  
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Since this algorithm is inspired from biological systems we can look up to the 

firefly flashing phenomenon for an understanding of ε parameter. In biological systems 

the parameter ε translates to the pulse strength of each unit. For example in firefly 

synchronization, ε is the strength of the pulse emitted by each firefly. When two fireflies 

have their firings synchronized they emit a pulse of combined strength. The pulse 

strength also determines the jump taken whenever a firing is heard. A firefly can only 

emit a pulse of so much strength. Due to physical limitations of the unit taking part in 

synchronization process, it may not be possible to choose a large ε value.  

We have observed that sometimes introducing faults into the system makes it 

converge faster than the original RFA algorithm. There could be a number of reasons for 

this odd behavior. Consider when there is only one faulty node in the system and it 

follows No Jump behavior. The one faulty node becomes the leader and all other non-

faulty nodes follow its lead. So it may lead to faster convergence. We have observed 

similar behavior even sometimes when f>1. A probable explanation for this could be that 

the faulty nodes were all close together to start with. Hence they were not able to split up 

the non faulty nodes into unstable clusters.  

The above experiments were all performed for random initial states, with faulty 

nodes placed evenly in between non-faulty nodes. If we choose to start simulation with 

initial state such that all nodes are equally apart, the results of the experiments could 

come out differently. Even when the fault model is Random Jump model, the results for 

convergence time do not seem encouraging.  
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We can see from the results that periodicity improves for the fault tolerant 

algorithm. The periodicity is almost close to ideal (0.97~0.98). Thus we can say that the 

fault tolerant algorithm, though it is slow to converge, gives better periodicity from the 

very beginning. As of now we have counted as system stability for the nodes to remain 

within one cluster for the last 9 out of 10 firings. It remains to be seen whether the 

system can continue in this state forever.  
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

 

A. Conclusions 

In this paper we present a new solution to the problem of pulse synchronization 

in the presence of faulty processes. We propose a fault tolerant algorithm, based on 

Welch et al. paper [6], to correct the errors introduced by faulty processes. Our algorithm 

is an extension to the RFA algorithm presented by Werner-Allen et al. in [2]. In this 

algorithm, each process listens to firings of all other processes. From all the N clock 

values collected, it throws out f highest and f lowest values and computes the overall 

jump based on the remaining values. An adjustment is made to its next clock cycle based 

on this jump computed. We have tested the performance of this algorithm through 

simulation.  

Two kinds of fault models have been analyzed. In the No Jump fault model, 

faulty processes do not react in response to firings from all other nodes. In the Random 

Jump faults, faulty processes do not follow any pattern and fire at any random time. 

Through simulation it was found that fault tolerant averaging function introduces a 

significant overhead in the time taken to achieve convergence, even when there are no 

faulty processes. In the presence of Random Jump faults, the effect of averaging function 

on convergence time is arbitrary. Whereas for No Jump faults, the fault tolerant 

algorithm takes more time for convergence than when no averaging is performed.  
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The advantage of using fault tolerant averaging function comes into light when 

measuring periodicity of the firing interval. For the original RFA algorithm, periodicity 

is not fixed and spikes up and down. With No Jump and Random Jump faults 

introduced, the periodicity becomes even more erratic. But when the fault tolerant 

averaging function is applied, the periodicity curve flattens and ultimately settles down 

to a constant value.  

 

B. Future Work 

In this thesis we have introduced the problem of fault tolerance in the Reachback 

Firefly algorithm [2] for pulse synchronization. While we have discussed only two fault 

models, there is scope for more. A cleverer fault model could disrupt the RFA algorithm 

only in critical stages and remain like a non-faulty node rest of the time. That would 

make it harder for the fault tolerant algorithm to detect these outliers and prevent the 

system from converging forever. For instance in the No Jump and Random Jump fault 

models, faulty processes follow their respective non-conforming behavior throughout 

their lifetime. A more malicious fault model could be that the faulty processes combines 

both the above models and varies its behavior with time.  

The methods used in this paper for verification of the algorithm are simulation 

and experimentation. Theoretical analysis of the algorithm is still needed to be done. 

Werner-Allen et.al paper [2] contains proof of convergence for the RFA algorithm when 

N=2 and f(t)=ln(t). Their proof uses eigenvector decomposition theorem around the 

concept of a fixed repelling point. There is scope for working out a theoretical proof 
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along similar lines for our algorithm, perhaps combined with analysis techniques for the 

fault tolerant averaging functions from [6].   

The communication network was assumed to be all-to-all communication model. 

It would be interesting to relax this assumption and see if the same results hold for an 

arbitrary network.   
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APPENDIX A 

ANALYIS OF MIROLLO & STROGATZ MODEL 

 

This appendix shows another way of explaining the working of Mirollo and 

Strogatz algorithm when N=2. The proof of convergence for the specific case of 2 nodes 

and general case of n nodes has been developed in [1]. The contribution here is to show 

that in the case of N=2, the two nodes always fire alternately and do not overtake each 

other. Since the jump computed is proportional to ε, we show that there must be an upper 

bound on ε if we don’t want nodes to overshoot each other.  

 

A. Illustration of M&S algorithm when N=2 

Consider nodes A and B that have duration timers that exactly match the passing 

of real time. Every time a duration timer reaches some value T (which can also be 

normalized to 1), the process ―fires‖. Every time a process fires, it sets its duration timer 

to some value Δ ε [0,T).  

 

Fig. 8: Duration time vs. Real time. 
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We want to calculate Δ so that A and B can fire at the same time. Assume A and 

B can observe each other firing with no delay.  

Algorithm Schema:  

A computes Δ at real time t (a firing time), to be a function of the time when B fired 

most recently. Since A has only the duration timer, it records the time on its duration 

timer. Assume that initially each of them record 0 as the last firing time of the other. 

Δ(φ) is computed with the help of another function f, which must be smooth, monotonic, 

increasing and concave down.  

 

Fig. 9: Function f is smooth, monotonic increasing and concave down. 

 

 

 

∆ 𝜑 = 𝑓−1 𝑓 𝜑 + 𝜀 − 𝜑 

So if φ is closer to the beginning of the phase, then Δ is smaller.  

For simplicity and concreteness in the following analysis, let  

𝑓 𝜑 =  𝑙𝑛 𝜑 .  

𝑓−1(𝑥) = 𝑒𝑥 .   
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Then 

𝛥(𝜑) = 𝑒ln 𝜑 +𝜀  –  𝜑 =  𝜑𝑒𝜀  –  𝜑 =  (𝑒𝜀 − 1) 𝜑. 

This can be approximated as Δ(φ) ≈ εφ.  

 

B. Showing that nodes A and B fire alternately 

We want to show that A and B always fire alternately. Without loss of generality 

assume that A fires first. Let t2i-1 be the real time of the i
th

 firing by A and t2i be the real 

time of i
th

 firing by B, i≥1. Note that tk ≤tk+2, ∀ k ≥ 1. 

Lemma:  ∀ k ≥ 1, tk ≤tk+1, i.e. A and B are alternately firing. 

Proof: By strong induction on k. 

Basis: k=1, show t1 ≤t2. This follows from assumption that A fires first. 

k=2. We must show that t2 ≤t3. By assumption of above initialization, since at time t1, A 

has no information about B’s firing, it sets Δ to 0. Thus t3=t1+T. Since T is the maximum 

inter-firing time, B must fire somewhere in [t1, t3], so t2 ≤t3. 

Induction: Show tk ≤tk+1, for all k≥3, assuming ti ≤ti+1, for all i<k.  

Without loss of generality, assume k is odd (so tk is a firing by A).  

 

We must show that the jump calculated by B at tk-1, based on hearing A fire at real time 

tk-2, is less than A’s timer at tk-1.  
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Fig. 10: Illustration of A and B firings in real time. 

 

 

 

The value of A’s timer at real time tk-1 is (tk-1 - tk-2 + Δ), where Δ is the jump 

calculated by A at tk-2 . Let a be the value of B’s timer at tk-2 (when B observes A’s 

firing). The jump calculated by B at tk-1 is  (eε − 1)
𝑎

𝑇
 . Fig. 9 shows the sequence of A 

and B’s firings. If the jump computed by B at tk-1 is greater than A’s timer at tk-1, then 

extrapolating B’s curve we can see that B will fire again before A, hence leading to out-

of-turn firings (bad behavior indicated in Fig. 9). Therefore we need that the jump 

computed by B at tk-1 is less than A’s timer at tk-1 (good behavior curve from Fig. 9).  

So we need that  eε − 1 
𝑎

𝑇
<  tk−1  −  tk−2  +  Δ . 

Note that tk−1  −  tk−2 = T − a (look at Fig. 9) 
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So we need a and ε such that  

 eε − 1 
𝑎

𝑇
<  T − a +  Δ .   (1) 

Recall that 0 ≤ Δ ≤ T. So if we can show that  eε − 1 
𝑎

𝑇
<  T − a                   (2) 

Then (2) will ensure (1).  

If we normalize T to be 1. Then we need to show that   eε − 1 𝑎 <  1 − a , where a is 

between 0 and 1. This implies  eε <  1
𝑎
. 

 

Fig. 11: Plot of a vs. 1/a. 

 

 

 

We can ensure this by setting ε small enough, so that a computed is never very 

large. For instance if 𝜀 =
1

10
, then 𝑒𝜀 ≈ 1.11. This crosses the plot of 1/a when a is about 

0.9. 

So if process A observes the other process B firing very close to the end of its 

own cycle, instead of setting its jump very large so that it will fire again before the other 
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process B, A sets its phase to either 1 or the value after the jump, whichever is smaller. If 

process A reaches the threshold 1, it will fire immediately and go back to 0. Therefore at 

most A and B could start again at 0, but A will not overtake B.  

 

If we use the approximation for  𝑒𝜀 − 1 ≈  ε 

From (1) it follows that we have to ensure that  𝜀
𝑎

𝑇
<  T − a +  ∆. 

Since  0 ≤ Δ ≤ T , it is sufficient to show that  𝜀
𝑎

𝑇
<  T − a 

Normalize T to be 1. Then 𝜀𝑎 <  1 − a 

i.e. 𝜀 <  
1−a

a
  or  𝑎 <  

1

1+𝜀
 

Hence the lemma holds as long as 𝑎 <  
1

1+𝜀
. If ε=0.1 then a < 0.99 □ 
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APPENDIX B 

PROGRAM CODE 

 

The following is the program code for simulating RFA algorithm and our fault 

tolerant averaging function.  

Class representing a node process: 

 

  

public class Oscillator implements Comparable  

{ 

 public int nodeId; 

 public double phase; 

 public double pulse; 

 public boolean faulty = false; 

 public double internalPhase; 

 public double lastFiring; 

 public ArrayList<Double> firingsHeard; 

  

  

 public Oscillator(int n, double phi, double epsilon) 

 { 

  nodeId=n; 

  phase=phi; 

  pulse = epsilon; 

  internalPhase = phi; 

   

  firingsHeard = new  ArrayList<Double>(n); 

 } 

  

 public int compareTo(Object anotherOsc) throws 

ClassCastException { 

    if (!(anotherOsc instanceof Oscillator)) 

      throw new ClassCastException("A Oscillator object expected."); 

     

    if ( this.phase < ((Oscillator)anotherOsc).phase) 

     return -1; 

    else  

     return 1; 

  } 

} 



 46 

Main function which implements RFA logic: 

 

 

 

 

 

 

 

 

 

 

 

 

  

public static int reachback(double[] phase)  

{ 

/* Creates an Array List structure to store the clock values. 

Makes it easy for sorting, dequeing */ 

ArrayList<Oscillator> queue = new 

ArrayList<Oscillator>(numNodes); 

  

for (int i = 0; i < numNodes; i++) 

 { 

  Oscillator osc = new Oscillator(i, phase[i], epsilon); 

  queue.add(osc); 

  /* Assign particular nodes as faulty processes */ 

  if (assignFaulty(i)) osc.faulty = true; 

 } 

 

 /*Reverse sort the nodes*/ 

 Collections.sort(queue); 

 Collections.reverse(queue); 

 int iterations = 0, globalTime = 0.0; 

 

 /* Main loop of the algorithm*/ 

 while (true) 

 { 

  /*Measure group spread in each round*/ 

  double gs=groupSpread(queue); 

  if (gs < window) 

   lastCount++; 

  else 

   lastCount = (lastCount==0)? 0 : (--lastCount); 

  /*if group spread remained within window for last 9 

rounds. 

Exit condition for the main while loop */ 

  if (lastCount >= 9) 

   break; 

 

  /* Remove head of the queue */ 

  Oscillator head = queue.remove(0); 

  double phi = head.phase; 

 

/*Add (1-phi) to remaining nodes */ 

  for (Iterator it = queue.iterator(); it.hasNext(); ) 

  { 

   Oscillator p = (Oscillator)it.next(); 

   p.phase += (1 - phi); 

   p.internalPhase += (1 - phi); 

  } 

 

  globalTime += (1 - phi); 

  print_v(globalTime + " : n"+head.nodeId+" fires"); 

 

 

(cont….)    
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  /*remaining nodes jump by epsilon */ 

  for (int i = 0; i < queue.size(); i++) 

  { 

   Oscillator p = queue.get(i); 

   //Make a note of the time at which firing was heard  

p.firingsHeard.add(p.phase); 

 

   double jump =  

calculateJump(p.faulty, p.internalPhase); 

//if firing has brought this oscillator to 

threshold 

   if (jump >= 1.0) 

    p.internalPhase = 1.0; 

   else 

    p.internalPhase = jump; 

  } 

 

/* Compute the fault tolerant average for the head node  

and set the new phase of the head to the overall jump*/ 

  head.phase = FT_Avg(head); 

   

//reset variables and add head to the end of the queue 

  head.firingsHeard.clear(); 

  queue.add(head); 

 

  iterations++; 

  Collections.sort(queue); 

  Collections.reverse(queue); 

 } 

 return iterations; 

} 
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Function to compute fault tolerant average: 

 
 

 

  

public static double FT_Avg(Oscillator osc) 

{ 

 /* Faulty nodes donot perform averaging function */ 

 if (osc.faulty)   return 0.0; 

 /* f is the upper bound on number of faulty nodes */ 

 int f = (int)Math.ceil(((double) n)/3) - 1 ; 

 

 //Step 1: find max distance between consecutive firings heard  

/* partition indicates the end point, padding is the mid value 

between end points */ 

 int partition = 0; 

 double padding = 0.0, prevValue = 0.0, maxdistance = 0.0; 

 for (int i = 0; i < osc.firingsHeard.size(); i++) 

 { 

  double currValue= osc.firingsHeard.get(i).doubleValue(); 

  double distance = prevValue - currValue; 

  if (distance > maxdistance) 

  { 

   maxdistance = distance; 

   partition = i; 

   /*select midpoint as the padding value*/ 

   padding = (prevValue + currValue) / 2; 

  } 

  prevValue = currValue; 

 } 

 

/*wrap-around case: prev=last non-faulty node, queue.get(nf)= 

first non-faulty node */ 

 double lastValue = prevValue; 

 double firstValue = osc.firingsHeard.get(0).doubleValue(); 

 double distance = 1 - (lastValue - firstValue); 

 if (distance > maxdistance) 

 { 

  maxdistance = distance; 

  partition = 0; 

  padding = lastValue + distance / 2; 

  if (padding > 1.0) padding = padding - 1.0; 

 } 

 

/*Step 2: padding 

//If there are less than n values heard, pad up the in the 

center of the queue with midpoint values */ 

 int deficit = 0; 

 while (osc.firingsHeard.size() < numNodes) 

 { 

  osc.firingsHeard.add(partition, padding); 

  deficit++; 

 } 

 Collections.sort(osc.firingsHeard); 

 /*move partition to middle of padded values*/ 

partition += deficit / 2;     (contd….) 
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/* Step 3: throwing out f highest and f lowest values. 

Partition is the end point, so f values on either side of 

partition to be thrown out*/ 

double currentPhase=0.0, delta = 0.0, sumdelta=0.0; 

 

/* Case 1: not enough f values found on the left side of 

partition index*/ 

 if( (partition -f) < 0 ) 

 { 

  /* Start adding up from f values right of partition*/ 

  for (int i = partition + f; i < (n + partition - f); i++) 

  { 

double phase = 

osc.firingsHeard.get(i).doubleValue(); 

   currentPhase = phase + sumdelta; 

   delta =  

calculateJump(osc.faulty, currentPhase) - currentPhase; 

   sumdelta += delta; 

  } 

 } 

  

/* Case 2: not enough f values found on the right side of 

partition index*/ 

 else if ((partition + f - 1) >= n) 

 { 

/* Start from beginning after leaving out wrap around f lowest 

values */ 

 for (int i = partition + f - n; i < (partition-f); i++) 

 { 

  double phase = osc.firingsHeard.get(i).doubleValue(); 

  currentPhase = phase + sumdelta; 

  delta =  

calculateJump(osc.faulty, currentPhase) - currentPhase; 

  sumdelta += delta; 

} 

 

/* Case 3: enough f values found on both left and right side of 

partition index*/ 

 else 

 { 

  for (int i = 0; i < n; i++) 

  { 

double phase = 

osc.firingsHeard.get(i).doubleValue(); 

   if ((i < (partition - f)) || (i > (partition + f - 

1))) 

   { 

    currentPhase = phase + sumdelta; 

    delta =  

calculateJump(osc.faulty, currentPhase) - currentPhase; 

    sumdelta += delta; 

   } 

  } 

 } 

 return sumdelta; 

} 
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Function to compute group spread 

 
static double groupSpread(ArrayList<Oscillator> queue) 

{ 

 double maxdistance = 0.0; 

 int nf = 0; 

  

/* Step 1: find out first non-faulty node */ 

 for (nf = 0; nf < queue.size(); nf++) 

 { 

  Oscillator curr = queue.get(nf); 

  if (!curr.faulty) 

   break; 

 } 

 

/* Step 2: start measuring distance between adjancent non-

faulty nodes */ 

 Oscillator prev = queue.get(nf); 

 for (int i = nf + 1; i < queue.size(); i++) 

 { 

  Oscillator curr = queue.get(i); 

  if (!curr.faulty) 

  { 

   double distance = prev.phase - curr.phase; 

   if (distance > maxdistance) 

    maxdistance = distance; 

   prev = curr; 

  } 

 } 

 

/* Step 3: wrap-around case: prev=last non-faulty node, 

queue.get(nf)= first non-faulty node */ 

 Oscillator first = queue.get(nf); 

 if ((first.phase > prev.phase)) 

 { 

  double distance = 1 - (first.phase - prev.phase); 

  if (distance > maxdistance) 

   maxdistance = distance; 

 } 

  

/* Step 4: Group Spread = (1-maxdistance) */ 

  return (1 - maxdistance); 

} 



 51 

VITA 

 

Name:     Keerthi Deconda 

Permanent Address:   Chaitanya Hospital 

Mukurampura 

Karimnagar, Andhra Pradesh, 505001 

India 

Email Address:  keerthi.deconda@gmail.com 

Education: B.Tech., Computer Science and Engineering, National 

Institute  of Technology, Warangal, India, 2004 

M.S., Computer Science, Texas A&M University, 2008 


