

OBJECT-ORIENTED SOFTWARE DEVELOPMENT EFFORT PREDICTION

USING DESIGN PATTERNS FROM OBJECT INTERACTION ANALYSIS

A Dissertation

by

OLUSEGUN ADEKILE

Submitted to the Office of Graduate Studies of

 Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2008

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4276439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OBJECT-ORIENTED SOFTWARE DEVELOPMENT EFFORT PREDICTION

USING DESIGN PATTERNS FROM OBJECT INTERACTION ANALYSIS

A Dissertation

by

OLUSEGUN ADEKILE

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Dick B. Simmons

 William M. Lively

Committee Members, Richard Furuta

 Ergun Akleman

Head of Department, Valerie E. Taylor

December 2008

Major Subject: Computer Science

 iii

ABSTRACT

Object-Oriented Software Development Effort Prediction Using Design Patterns from

Object Interaction Analysis. (December 2008)

Olusegun Adekile, B.S., University of Georgia

Co-Chairs of Advisory Committee: Dr. Dick B. Simmons

 Dr. William M. Lively

Software project management is arguably the most important activity in modern

software development projects. In the absence of realistic and objective management, the

software development process cannot be managed in an effective way. Software

development effort estimation is one of the most challenging and researched problems in

project management. With the advent of object-oriented development, there have been

studies to transpose some of the existing effort estimation methodologies to the new

development paradigm. However, there is not in existence a holistic approach to

estimation that allows for the refinement of an initial estimate produced in the

requirements gathering phase through to the design phase. A SysML point methodology

is proposed that is based on a common, structured and comprehensive modeling

language (OMG SysML) that factors in the models that correspond to the primary phases

of object-oriented development into producing an effort estimate. This dissertation

presents a Function Point-like approach, named Pattern Point, which was conceived to

estimate the size of object-oriented products using the design patterns found in object

interaction modeling from the late OO analysis phase. In particular, two measures are

 iv

proposed (PP1 and PP2) that are theoretically validated showing that they satisfy well-

known properties necessary for size measures.

 An initial empirical validation is performed that is meant to assess the usefulness

and effectiveness of the proposed measures in predicting the development effort of

object-oriented systems. Moreover, a comparative analysis is carried out; taking into

account several other size measures. The experimental results show that the Pattern Point

measure can be effectively used during the OOA phase to predict the effort values with a

high degree of confidence. The PP2 metric yielded the best results with an aggregate

PRED (0.25) = 0.874.

 v

DEDICATION

To my family for their love, patience and encouragement.

 vi

ACKNOWLEDGEMENTS

This dissertation would not have been successful without the help and support of many

people. I would like to particularly express my gratitude and deep appreciation to my

advisor, Dr. Dick Simmons, for his guidance, inspiration, and the countless hours he

spent on me during my graduate studies at Texas A&M University. His knowledge and

experience have enriched both my academic and work experience. This research work

would not have been possible without his guidance and support.

I would like to thank my research committee co-chair, Dr. William Lively for his

guidance in the area of software engineering and for his interest in my research. I would

also like to thank Dr. Akleman and Dr. Furuta for their support and guidance as

members of my research committee. I would like to thank my wonderful parents, Dr. and

Mrs. Adekile. I grow in appreciation daily of having been blessed with such caring and

loving people as parents. Lastly, I would like to thank my lord and my savior Jesus

Christ.

 vii

TABLE OF CONTENTS

 Page

ABSTRACT. ... iii

DEDICATION. ... v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES... ix

LIST OF TABLES .. xi

1. INTRODUCTION... 1

1.1 Motivation .. 1

1.2 SysML .. 2

1.3 Research Objectives ... 9

1.4 Organization of the Dissertation... 11

2. LITERATURE SURVEY ... 12

2.1 Software Project Management ... 12

2.2 Effort Estimation .. 23

2.3 Function Point Analysis ... 41

2.4 Use Case Points (UCP) Model ... 43

2.5 Object-Oriented Function Point (OOFP) Model .. 45

2.6 Class Point (CP) Model.. 46

2.7 SysML Point Overview.. 47

3. PATTERN POINT ESTIMATION... 48

3.1 Design Patterns... 48

3.2 The Pattern Point Model .. 50

3.3 Identification and Classification of User Objects 51

3.4 Evaluation of a Pattern Complexity Level ... 52

3.5 Estimating the Total Unadjusted Pattern Point .. 57

3.6 Technical Complexity and Environmental Factor Estimation 58

 viii

4. THEORETICAL VALIDATION ... 61

4.1 Representation of Systems and Modules ... 62

4.2 Theorem ... 64

4.3 Proof ... 64

5. EMPIRICAL VALIDATION ... 65

5.1 IBM Lotus Quickr 8.0 .. 65

5.2 Applying the Pattern Point Method to Lotus Quickr 66

5.3 Reverse Engineering Using MaintainJ ... 67

5.4 The Cross Validation Process .. 69

5.5 Partitioning the Data Set .. 70

5.6 OLS Regression Analysis to Derive Effort Prediction Models.................. 79

5.7 Accuracy Evaluation of the Prediction Models.. 87

6. COMPARISON ANALYSIS.. 98

6.1 Single Measures and Their Sums ... 98

6.2 Multivariate OLS Regression... 100

7. CONCLUSIONS AND FUTURE EXTENSIONS ... 102

7.1 Conclusions .. 102

7.2 Future Extensions ... 105

REFERENCES.. 107

APPENDIX A ... 120

VITA ... 129

 Page

 ix

LIST OF FIGURES

 Page

Figure 1 OMG SysML taxonomy.. 3

Figure 2 The unified process ... 8

Figure 3 Object-oriented development stages and corresponding effort

estimation models.. 9

Figure 4 Simmon’s project triangle and cost ... 20

Figure 5 Considering people, process, and product together................................. 22

Figure 6 Sequence diagram for the Command design pattern 53

Figure 7 Structural diagram of the Abstract Factory design pattern 54

Figure 8 Outliers in the training set ... 76

Figure 9 The scatter plots for (a) EFD and PP1, and (b) EFD and PP2,

 resulting from the OLS regression applied to the four training sets 78

Figure 10 Results of the OLS regression analysis with PP1 as independent

 variable and PP2 as dependent variable .. 97

Figure 11 Object-oriented development stages and corresponding effort

 estimation models.. 105

Figure 12 Structural diagram of the Composite pattern... 120

Figure 13 Structural diagram of the Decorator pattern ... 120

Figure 14 Structural diagram of the Factory pattern ... 120

Figure 15 Structural diagram of the Flyweight pattern.. 121

Figure 16 Structural diagram of the Interpreter pattern .. 121

Figure 17 Structural diagram of the Memento pattern... 121

 x

Figure 18 Structural diagram of the Observer pattern... 122

Figure 19 Structural diagram of the Prototype pattern .. 122

Figure 20 Structural diagram of the Singleton pattern... 122

Figure 21 Structural diagram of the Strategy pattern .. 123

Figure 22 Structural diagram of the Abstract Factory pattern 123

Figure 23 Structural diagram of the Bridge pattern... 123

Figure 24 Structural diagram of the Builder pattern.. 124

Figure 25 Structural diagram of the Template Method pattern................................ 124

Figure 26 Structural diagram of the Visitor pattern... 125

Figure 27 Structural diagram of the State pattern.. 125

Figure 28 Structural diagram of the Façade pattern.. 126

Figure 29 Structural diagram of the Proxy pattern .. 126

Figure 30 Structural diagram of the Mediator pattern... 127

Figure 31 Structural diagram of the Iterator pattern ... 127

Figure 32 Structural diagram of the Adapter pattern... 128

Figure 33 Structural diagram of the Chain Of Responsibility pattern 128

 Page

 xi

LIST OF TABLES

 Page

Table 1 The 23 design patterns categorized by design pattern type and

 the corresponding DD, SC and Complexity values 55

Table 2 Evaluation of the complexity level of a design pattern 56

Table 3 Evaluating the TUPP... 57

Table 4 Technical factors ... 59

Table 5 Environmental factors ... 60

Table 6 The data for the 78 use cases... 70

Table 7 Descriptive statistics: EFD, PP1, PP2 ... 74

Table 8 The values of Cook’s distance for outliers of PP1 and PP2 76

Table 9 The results of the OLS regression analysis for training set no. 1............ 81

Table 10 The results of the OLS regression analysis for training set no. 2............ 82

Table 11 The results of the OLS regression analysis for training set no. 3............ 82

Table 12 The results of the OLS regression analysis for training set no. 4............ 83

Table 13 The results of the OLS regression analysis for training set no. 5............ 84

Table 14 The results of the OLS regression analysis for training set no. 6............ 84

Table 15 The results of the OLS regression analysis for training set no. 7............ 85

Table 16 The results of the OLS regression analysis for training set no. 8............ 86

Table 17 The mean and median R
2
 values for PP1 and PP2 86

Table 18 The validation results for test set 1.. 89

Table 19 The validation results for test set 2.. 90

 xii

Table 20 The validation results for test set 3.. 91

Table 21 The validation results for test set 4.. 92

Table 22 The validation results for test set 5.. 93

Table 23 The validation results for test set 6.. 94

Table 24 The validation results for test set 7.. 95

Table 25 The validation results for test set 8.. 96

Table 26 Aggregate accuracy evaluation ... 96

Table 27 Descriptive statistics of the measures considered for the comparison

 analysis .. 99

Table 28 Aggregate accuracy evaluation of the prediction models derived

 basic and combined size measures .. 100

Table 29 Aggregate accuracy evaluation of the prediction models derived

 from multivariate OLS regression analyses .. 101

 Page

 1

1. INTRODUCTION

“The process of controlling a software engineering project may well be the most talked

about and least understood of all the project managers’ functions.” Lehman [40]

1.1 Motivation

Traditional software effort estimation techniques rely on analytic equations, statistical

data fitting, expert judgment or some combination of the three. Although these are

continually updated, they are still notoriously inaccurate. This is the case because no two

software projects are the same and some of the assumptions made in the estimations are

never realized in the actual course of the project, others are either unaccounted for or are

inaccurately estimated. Furthermore, traditional methodologies were not designed for the

object-oriented software development paradigm and are thus ill suited for OO projects

[34], [35].

There are two bases that make the approach taken in this dissertation feasible and

practical. The first is the increasing popularity and advancements made in the CASE

(Computer Aided Software Engineering) tools. The CASE tools make a recording of the

entire length of a software project at any stage of development readily available.

Secondly, a key characteristic of the object-oriented paradigm is the continual realization

and refinement of the same system artifacts/objects at each phase of development or

within each development iteration (depending on the chosen project life cycle). These

two factors make it possible to define a comprehensive model that can use data gathered

This dissertation follows the style of IEEE Transactions on Software Engineering.

 2

unobtrusively from the CASE tools in the stages of development preceding

implementation, to predict the effort required to further realize, refine and develop these

and other system artifacts regardless of the level of realization or refinement of the

existing artifacts.

1.2 SysML

This dissertation proposes an effort prediction model – the SysML Point Model - for

object-oriented development systems that is based on a common, structured and

comprehensive modeling language (OMG SysML), which can be built using the CASE

tools from which data can be unobtrusively gathered and applied to prediction equations.

The Object Management Group Inc (OMG), established in 1989, is a not-for-

profit, open membership, computer industry standards consortium that produces and

maintains computer industry specifications for portable, reusable and interoperable

enterprise applications in distributed, heterogeneous environments [98].

 OMG's specifications include: CORBA (Common Object Request Broker

Architecture); UML (Unified Modeling Language); CWM (Common Warehouse

Metamodel); and industry-specific standards for dozens of vertical markets. OMG

member companies write, adopt, and maintain its specifications following an open and

mature process. OMG's specifications implement the Model Driven Architecture

(MDA), maximizing return on investment through a full-lifecycle approach to enterprise

integration that covers multiple programming languages, operating systems, middleware

and networking infrastructures, and software development environments. More

information on the OMG is available at http://www.omg.org/.

 3

 OMG SysML [98] is a specification that defines a general-purpose modeling

language for systems engineering applications. It supports the specification, analysis,

design, verification and validation of a broad range of complex systems. These systems

may include hardware, software, information, processes, personnel, and facilities.

SysML is intended to be supported by two evolving interoperability standards: the OMG

XMI 2.1 (XML) model interchange standard for UML 2.1 modeling tools and the ISO

10303-233 data interchange standard for systems engineering tools. SysML reuses a

subset of UML 2.1 and provides additional extensions needed to address the

requirements in the UML for SE RFP.

Figure 1: OMG SysML taxonomy

Following is the description of the OMG SysML taxonomy [98] as seen in Figure 1:

Structure Diagram

This defines the static and structural constructs in SysML.

 4

• Block Definition Diagram

The Block Definition Diagram in SysML defines features of a block and

relationships between blocks such as associations, generalizations, and

dependencies. It captures the definition of blocks in terms of properties

and operations, and relationships such as a system hierarchy or a system

classification tree. Blocks are modular units of a system description,

which define a collection of features to describe a system or other

elements of interest. These may include both structural and behavioral

features, such as properties and operations, to represent the state of the

system and behavior that the system may exhibit. SysML blocks are

based on UML classes as extended by UML composite structures.

• Internal Block Diagram

The Internal Block Diagram in SysML captures the internal structure of a

block in terms of properties and connectors between properties. A block

can include properties to specify its values, parts, and references to other

blocks. Ports are a special class of property used to specify allowable

types of interactions between blocks. Constraint Properties are a special

class of property used to constrain other properties of blocks. Various

notations for properties are available to distinguish these specialized

kinds of properties on an internal block diagram.

 5

o Parametric Diagram

A parametric diagram is defined as a restricted form of internal

block diagram. A parametric diagram may contain constraint

properties and their parameters, along with other properties from

within the internal block context. All properties that appear, other

than the constraints themselves, must either be bound directly to a

constraint parameter, or contain a property that is bound to one

(through any number of levels of containment).

• Package Diagram

A package diagram depicts how a system is split up into logical

groupings by showing the dependencies among these groupings. As a

package is typically thought of as a directory, package diagrams provide a

logical hierarchical decomposition of a system.

Behavior Diagram

• Sequence Diagram

The Sequence Diagram is the most common of a classification of

diagrams called Interaction Diagrams, others include Communications

Diagram, Interaction Overview Diagram, and Timing Diagram. The

sequence diagram describes the flow of control between actors and

systems (blocks) or between parts of a system. This diagram represents

the sending and receiving of messages between the interacting entities

called lifelines, where time is represented along the vertical axis. The

 6

sequence diagrams can represent highly complex interactions with special

constructs to represent various types of control logic, reference

interactions on other sequence diagrams, and decomposition of lifelines

into their constituent parts.

• State Machine Diagram

The State Machine package defines a set of concepts that can be used for

modeling discrete behavior through finite state transition systems. The

state machine represents behavior as the state history of an object in terms

of its transitions and states. The activities that are invoked during the

transition, entry, and exit of the states are specified along with the

associated event and guard conditions. Activities that are invoked while

in the state are specified as “do Activities,” and can be either continuous

or discrete. A composite state has nested states that can be sequential or

concurrent.

• Use Case Diagram

The use case diagram describes the usage of a system (subject) by its

actors (environment) to achieve a goal that is realized by the subject

providing a set of services to selected actors. The use case can also be

viewed as functionality and/ or capabilities that are accomplished through

the interaction between the subject and its actors. Use case diagrams

include the use case and actors and the associated communications

between them. Actors represent classifier roles that are external to the

 7

system that may correspond to users, systems, and or other environmental

entities. They may interact either directly or indirectly with the system.

The actors are often specialized to represent taxonomy of user types or

external systems.

• Activity Diagram

Activity modeling emphasizes the inputs, outputs, sequences, and

conditions for coordinating other behaviors. It provides a flexible link to

blocks owning those behaviors.

Requirement Diagram

The requirements diagram can depict the requirements in graphical, tabular, or

tree structure format. A requirement can also appear on other diagrams to show

its relationship to other modeling elements. The requirements modeling

constructs are intended to provide a bridge between traditional requirements

management tools and the other SysML models. Several requirements

relationships are specified that enable the modeler to relate requirements to other

requirements as well as to other model elements. These include relationships for

defining a requirements hierarchy, deriving requirements, satisfying

requirements, verifying requirements, and refining requirements.

The proposed SysML Point model is composed of four separate estimation

models that correspond to the middle tier of the SysML taxonomy (Figure 1), and is

designed to cover the primary phases in a typical object-oriented development effort

such as the Unified Process [99].

 8

Figure 2: The unified process

That is, the requirements gathering, object-oriented analysis (behavioral artifacts)

and the object-oriented design (structural artifacts) activities (Figure 2), with linkages

between the three and a mechanism that allows for the substitution of refined artifacts as

they occur in the estimation model. While in the requirements gathering phase, a SysML

Point practitioner would apply the Function Point methodology [30] in producing a

development effort estimate (Figure 3). This estimate would be refined in the early and

late analysis stages using the Use Case Point [9] and Pattern Point methods respectively.

Finally, prior to the commencement of the implementation phase, the Class Point

method [29], which utilizes artifacts from the late design phase would be applied in

generating a further refinement of the estimate.

 9

Function Point → Use case Point → Pattern Point → Class Point

Figure 3: Object-oriented development stages and corresponding effort estimation

models

1.3 Research Objectives

The focus of this dissertation is to define and validate the Pattern Points (PP) method of

the SysML Point approach. The PP method utilizes artifacts from the late object-oriented

analysis phase to produce an effort estimate. Object-oriented analysis (OOA) is

concerned with the transformation of software engineering requirements and

specifications into a system's object model, which is composed of a population of

interacting objects (rather than the functional views or traditional data of systems) [108].

Some of the benefits of OOA include: “maintainability through simplified mapping to

the real world, which provides for less analysis effort, less complexity in system design,

and easier verification by the user; reusability of the analysis artifacts which saves time

and costs; and depending on the analysis method and programming language,

productivity gains through direct mapping to features of Object-Oriented Programming

Languages” [108].

Requirements

Analysis

Design

 10

The Pattern Points (PP) model is an empirical parametric estimation method that

uses object interactions and the class structure of object-oriented design patterns to

predict development effort in the late analysis phase of an object-oriented project. It

relies on a sizing of each of the 23 object-oriented design patterns as defined in the

seminal book Design Patterns: Elements of Reusable Object-Oriented Software, 1994

(Gamma et al) [3]. In software engineering, a design pattern is a common reusable

solution to a frequently occurring problem in software design. It is a description or

template for how to solve a problem and not a finished design that can be transformed

directly into code. A design pattern can be used in many different situations. Typically,

object-oriented design patterns display relationships and interactions between classes or

objects without specifying the final application classes or objects that are involved.

The remaining effort prediction methodologies in the SysML Point model are

already in existence. The Function Point method was introduced by Albrecht [30] to

measure the size of a data-processing system from the end-user’s point of view. It is

based on the functional requirements of the system. The Use Case Point model, which is

based on use case counts called use case points, is defined in Carol et al [9]. A use case

is a description of a system's behavior as it responds to a request that originates from

outside of that system. Use cases are refined into object interaction diagrams such as

sequence diagrams, and analysis classes in the late analysis stage. Lastly, the Class Point

method as defined by Costagliola et al [29] produces an estimate of the effort based on

the design/structural artifacts.

 11

Hypothesis. A reliable development effort estimate can be produced using an empirical

parametric estimation model, which is based on the object-oriented design patterns that

are found in analysis artifacts in an object-oriented development project.

1.4 Organization of the Dissertation

Following this introductory section, this dissertation is presented in six additional

sections. Section 2 presents relevant background research. This includes literature on the

subject of software project management and effort estimation. Design patterns and the

Pattern Point model are described in Section 3. Section 4 describes the theoretical

validation of the Pattern Point model. Section 5 explains the project experiment results

used to empirically test the research model. Section 6 presents the conclusions and

discusses future extension of this research.

 12

2. LITERATURE SURVEY

2.1 Software Project Management

Software project management is a major endeavor that helps to realize a successful

software project. It is a sub-discipline of project management in which software projects

are planned, monitored and controlled. The determination of success for a software

project is a software product that is delivered on time and within budget to a satisfied

customer. In large complex systems, project management is the biggest challenge in the

development process for managers. To help in this undertaking, various methodologies

and techniques have been studied, and several CASE (Computer Aided Software

Engineering) tools have been introduced to assist managers in solving the reoccurring

problems. Presented in this section are some of the techniques used in software project

management, in particular effort estimation.

Evaluating the status of a software project entails the collection, validation,

analysis and presentation of software metrics and project data in a timely manner. Thus,

the main functions of software project managers are planning, estimating, tracking, and

decision-making. As long as the progression of the project matches the plan, the project

is expected to succeed. Conversely, if there are some mismatches between the progress

and plan, then a control process needs to be initiated to return the project activities back

on track.

Software project management is “deciding what to do, how to do it and who does

it, setting objectives, breaking work into tasks, establishing schedules and budgets,

allocating resources, setting standards, and selecting future courses of action” [44].

 13

Planning is central to software project management; it involves the identification of the

activities, milestones, and deliverables produced by a project [39]. The project plan is a

key deliverable in which the manager describes how the project will be developed, what

resources will be required, and how those resources will be utilized. It is an evolving

document that guides the software project manager and other staff members through the

software development process. The Software Engineering Process Office (SEPO) of the

United States Navy, describes the Software Development Plan (SDP) as the essential

planning document for a software development project.

An important function of an SDP is to categorize the project development

process and sub-processes that would be used in the construction of the software

product. Boehm [45] uses the WWWWWHH principle as an organizing criterion in the

planning process to identify the process model or models (such as waterfall,

evolutionary, spiral, incremental, design-to-cost or –schedule, or a hybrid): who, what,

where, when, why, how and how much, as follows:

Objectives - Why is the system being developed?

Milestones and Schedules - What will be done? When?

Responsibilities - Who is responsible for a function? Where are they organizationally

located?

Approach - How will the job be done technically and managerially?

Resources - How much of each resources are needed?

The planning process must involve both the product that is to be developed and

the accompanying processes that are needed to support the software product [47]. Once a

 14

development process that fits both the product and people is identified, the activities can

be broken down into tasks, which are then executed according to the selected process

model [46].

The Software Engineering Institute’s Capability Maturity Model (SEI CMM)

[48]-[50] first described in the book “Managing the Software Process” by Watts

Humphrey [54] provides a benchmark of software process maturity. It aids in the

definition and understanding of an organization's processes and is widely employed in

the industry to evaluate the maturity of an organization’s software process. The SEI

Maturity Questionnaire includes a scenario on software project planning that is used to

assess the completeness of the planning framework. It is as follows:

1. Are estimates (e.g. size, cost, and schedule) documented for use in planning and

tracking the software project?

2. Do the plans document the activities to be performed and the commitments made

for the software project?

3. Do all affected groups and individuals agree as to their commitments related to

the software project?

4. Does the project follow a written organizational policy for planning a software

project?

5. Are adequate resources provided for planning the software project (e.g. funding

and experienced individuals)?

 15

6. Are measurements used to determine the status of the activities for planning the

software project (e.g., completion of milestones for the project planning activities

as compared to the plan)?

7. Does the project manager review the activities for planning the software project

both a periodical and event-driven basis?

Within the Capability Maturity Model (CMM) Key Process Area (KPA) [49],

software project planning is a Level 2. Passing the KPA is a major step toward reaching

Level 2 (Repeatable). The KPA requires the development of a project Software

Development Plan (SDP) and a written process for planning a software project. The

CMM [49] defines 15 activities for the Project Planning KPA. The 15 steps in the CMM

Planning KPA are as follows:

1. The software engineering group participates on the project proposal team.

2. Software project planning is initiated in the early stages of, and in parallel with,

the overall project planning.

3. The software engineering group participates with other affected groups in the

overall project planning throughout the project life.

4. Software project commitments made to individuals and groups external to the

organization are reviewed with senior management according to a documented

procedure.

5. A software life cycle with predefined stages of manageable size is identified or

defined.

 16

6. The project’s software development plan is developed according to a

documented procedure.

7. Software work products that are needed to established and maintain control of

the software project are identified.

8. Estimates for the size of the software work products (or changes to the size of

software work products) are derived according to a documented procedure.

9. Estimates for the software project’s effort and cost are derived according to a

documented procedure.

10. Estimates for the project’s critical computer resources are derived according to a

documented procedure.

11. The project’s schedule is derived according to a documented procedure.

12. The software risks associated with the cost, resources, schedule and the technical

aspects of the project are identified, assessed, and documented.

13. Plans for the project’s software engineering facilities and support tools are

prepared.

14. Software planning data are documented.

15. Measurements are made and used to determine the status of the software

planning activities.

According to Humphrey [54], there are five basic important components of a software

project plan:

1. Goals and Objectives: For a software project to be considered a success, the

software product must be delivered on time and within budget to a satisfied

 17

customer. The goals and objectives of the project are determined in the

requirements negotiation phase. The initial statement of work must be clear,

straightforward, and stable because it will be the statement from which the

software development company will determine the product’s functional goals.

2. Work Breakdown Structure: The WBS provides a hierarchical view for the

whole project. After the requirements have been declared, an estimate of the

product size and project effort is required. To produce an effective estimate, the

project has to be broken down into its various work elements, which comprise

the project WBS. The project structure and the selected software development

process affect the WBS. After the project structure is formalized, the tasks for

each unit of the project is defined and then apportioned to respective owners. The

WBS was introduced into software project planning in the early 80’s [51].

3. Product Size and 17 Other Dominators: This is perhaps the key portion of the

planning process. The 17 project dominators are as follows: Development

Schedule Constraints, Project Life Cycle process, Volume, Amount of

Documentation, Programming Language, Complexity, Type of Application,

Work Breakdown Structure, Management Quality, Lead Designer, Individual

Developers, Personnel Turnover, Communications, Number of People, Software

Reuse, Customer Interface Complexity, and Requirements Volatility Dominators

are project attributes that cause effort (and productivity) to vary by an order of

magnitude (10 to 1) [52]. A poor size and dominators estimate is the root of

many problems in the software industry. Dominators may or may not appear as

 18

variables in effort models. For example, we often assume that all projects are

properly managed, even though they may not be. The result can be a failed

project dominated by poor management. Dominators like management often do

not have a 10:1 affect on reducing effort, but they definitely can have over a 10:1

affect on increasing effort [52]. Productivity is improved when managers reduce

the effort to produce a product, as effort required to produce a product is

inversely related to productivity. Dominators that affect effort prediction are

everywhere in the project life cycle and are not independent of each other.

Product size is useful for predicting effort. Two units are common for size

measurement: lines of code and function points. A line of code is a fixed unit and

easier to count, but is language-dependent. Function points are a more subjective

and abstract unit, which is subject to bias [52].

4. Resource Estimates: There are always resource constraints that limit the amount

of time that is spent on a project [52]. However, it is possible for a manager to

estimate the resources that are required to design and implement the software

product once an estimate of the size of code that is needed is available. Human

resource is the most critical as it plays the most essential role in determining the

cost of implementation. There is a myriad of methods and accompanying tools

that are available for cost estimation and some of them are visited in the

following section (2.1). However, a software company’s historical performance

plays the most important role when it comes to estimation of resources. The

historical productivity rate can be applied to a new estimate to convert a size

 19

estimate into a corresponding estimate of resources .If a cost model such as

COCOMO or SLIM is used, its calibrations must match the software company’s

historical experience [52].

5. Scheduling: The resource estimates (described above) determine the scheduling

of a project. Two scenarios surface in scheduling, depending on which side sets

the release date for the product [53]. Usually, the project manager will make the

decision on the release date based on an appropriate starting date and schedule.

However, market forces/pressures or the customer could require that the product

be complete by a certain date. In either case, the software organization may or

may not be able to meet the deadline depending on their existing obligations. If

the organization is not able to meet the deadline, overtime and extra staff may be

required or certain features may need to be left off the release. In developing a

schedule, the manager has a number of tools at his disposal; some of the

commonly used tools in creating a schedule include Milestone Documents,

Project Evaluation Review Technique (PERT) Charts and Gantt Charts.

Disentangling the problem of software project management consists of two

primary phases: “planning, including creation and scheduling, and on-going project

control” [55]. These incorporate “what is to be done, a decision regarding how to do it,

the control of how it is being done, and an evaluation (or measurement) of what was

done” [56]. The software development plan typically covers the “what”; however, many

more tasks have to be executed in order for a manager to properly manage a software

 20

project. These typically fall into the following categories: planning, organization,

staffing, monitoring, controlling, innovating, and representing [57].

According to Simmons [110], every project, irrespective of the industry or job

function, including a software development project, is a compromise between three

variables: scope, time, and cost:

Figure 4: Simmons’ project triangle and cost

Planning a project constitutes finding a compromise between the activities that

comprise the vertices of the project triangle as shown in Figure 4. The scope is the

breadth of the project: the sum of the activities that will lead, at the end of the project, to

the software product. The total resource usage that is needed to complete the activities

identified in the scope is the cost or budget. The Time is the total elapsed time, from

inception to product delivery that is needed to bring the activities identified in the work

scope to completion. Software project management is a process of adjusting the

variables as preferred to handle the impact of any change across all three.

Cost

Time
Scope

 21

For a software project to succeed, a manager must reach a compromise between

resource, feature, and schedule as seen in Figure 4, so as to maintain compliance with

the plan. If any one of the triangle vertices is adjusted, one or both of the other vertices

must be modified and the plan has to be tailored for the project to stay on track. If, for

example, a project is ahead of schedule, the manager can choose to reduce resources or

increase features. If a project is behind schedule, the manager can increase resources or

decrease features. If the manager wants to decrease resources, s/he must reduce features

or lengthen the schedule. But if the manager wants to add features, s/he must prolong the

schedule or add additional resources.

According to Dwayne Phillips [58], all undertakings in a software project include

the 3Ps: product, process and people. In order to conform to a project plan, a successful

software project needs to keep these three variables in harmony. Without a product, there

is no customer, no income, and no software organization; the objective of software

development is to create a product. The product must be completed within budget and to

a satisfied customer for the project to be deemed a success. In recent years, process has

become the most discussed aspect of the 3Ps. This includes some of the famous software

process improvement methods, the Capability Maturity Model, the ISO 9000 series, and

Best Practices.

 22

Figure 5: Considering people, process, and product together

Process is significant because it lets people efficiently build products by

imposing a structure on the progression of the project. The manager first defines a

process needed for the project prior to the commencement of any other activity. A good

process is repeatable; however, the same process does not fit all projects, even though

they might have similar goals. Some contemporary examples of software development

processes include the Unified Process [99], Rapid Application Development [59],

Extreme Programming [32], and the Scrum [100]. Typically, managers select a

development process based on the organizational culture and the type and estimated size

of the software product that is to be built. Lastly, software development is people-

intensive; people are critical to software development and maintenance. The best asset

on a software project is people who know how to build the product. Figure 5 shows how

people, process, and product fit together. The axes represent the capabilities of people

and process. The distance from the origin of the graph represents how difficult the

 23

product is to build. The goal of a manager is to keep 3Ps in balance to create a good

quality product.

As noted in the CMM Planning KPA [49], a critical portion of developing a plan

for a software project is the estimation of the size and cost of the software product. This

affects the selected development process, budgeting and scheduling amongst other

planning activities. In the next section, we take an in-depth look into research efforts

addressing the creation of models aimed at estimating the size and cost of a software

product.

2.2 Effort Estimation

Even though the difficulties of software cost estimation were discussed 30 years ago in

“The Mythical Man Month” [42], it is as much a relevant area of research now as it was

then.

Effort estimation is critical because of the following [107]:

• Exploring the practicality of developing or purchasing a new system

• Determining a price or schedule for a new system

• Planning how to staff a software development project

• Understanding the impact of changing the functions of an existing system

In spite of the importance, software cost estimates are more often than not

imprecise, and there is no indication that the software engineering community is making

significant gains in making better predictions. We see estimates with greater inaccuracy

[66], [67], and in reality most estimates are made informally. The latter fact also

 24

suggests that software developers also have difficulty in applying existing research on

software cost estimation.

The consequences of inaccurate estimates of software cost and delivery times is

typified by cost overruns that may make a project unprofitable, and delays in delivery

time that may result in project failure. Conversely, an overestimate of effort may also

adversely affect the competitiveness of a business, for example, where a decision is

made to cancel what would otherwise have been finished in time or where the

overestimate leads to subsequent overstaffing when a project is completed.

In the course of the past three decades there has been significant research in the

area of effort estimation with five classes of estimation models emerging:

• Empirical parametric models

• Empirical nonparametric models

• Analogical models

• Theoretical models

• Heuristic

2.2.1 Empirical parametric models

The most prevalent of estimation models are empirical parametric models. Empirical

parametric methods analyze data to establish a numerical model of the relationship

between measures of the attributes in the empirical model. Where effort is estimated

based on one or more simple measures, these models have been extended, in some cases,

by the use of up to 36 of cost drivers.

 25

The most straightforward form of an empirical parametric model is a function

that relates a size measure to the effort required to develop a system or program. In this

instance, a size measure is a count of some feature of a product of the development

process, for example, a count of the number of lines of code in a program. The effort

required for development, on the other hand, is typically measured in person-hours,

person-days or person-months. Statistical regression modeling is an example of the

empirical parametric approach. The most commonly explored models have linear and

exponential relationships between effort and the size measure; irrespective of the exact

niceties of the model, the general form tends to be:

E = a × V
b
,

 where E is effort, V is Volume typically measured as lines of code (LOC) or function

points, a is a productivity parameter and b is an economies or diseconomies of scale

parameter [43], [69], [70].

An alternative empirical parametric methodology is to calibrate a model by

estimating values for the parameters (a and b in the case of (2.1)). The most basic

method is to assume a linear model that is set b to unity, and then use regression analysis

to estimate the slope (parameter a) and possibly introduce an intercept so the model

becomes:

E = a1 + a2 × V.

In the above, a1 represents fixed development costs and a2 represents productivity.

There are some inherent drawbacks to the development of empirical parametric

models, especially if the data set used in their formulation is insufficient. It is not

(2.1)

(2.2)

 26

uncommon for models based on the empirical parametric approach to produce a

relatively high error rate, whether the functional form is linear or nonlinear. Conte et al.

[72] give an example of a linear model with a correlation coefficient, R
2
, of 82% and

mean absolute relative error of 37%. Miyazaki et al. [73] give an example of a calibrated

COCOMO model with a lower mean absolute relative error of 20%. Courtney et al. [71]

suggest that researchers who embark on learning empirical relationships by

experimenting with differing combinations of measures and functional forms before

selecting the one with the highest correlation typically construct a better model

especially with small data sets.

In addition, the possible range of estimates of an empirical parametric model

increases with the number of input parameters (each with a range of possible values).

The variation in values for an estimate also broadens when the uncertainty in input

values is combined with the uncertainty associated with the model. Conte et al. [72]

report that a variation in effort of up to 800% is possible in Intermediate COCOMO

when the range from highest to lowest values for each cost driver is combined. However,

such a wide variation in input values would not necessarily be evidenced in practice.

The re-calibration of empirical models is typically required when they are

utilized outside of the organization or environment on whose data they were formulated

[74], [76], [77]. Even more generic examples such as COCOMO fail to make precise

estimations without calibration. Boehm and Miyazaki et al. [43], [73] illustrate

methodologies on how to calibrate estimation models. Models that include a large

 27

number of cost drivers are difficult to calibrate, mainly because the data set required for

calibration can be much larger than is available within the organization.

COCOMO II [111] is one of the popular software engineering cost models,

which is based on the multiple regression approach. COCOMO was first published in

1981 by Barry J. Boehm [43] as a model for estimating effort, cost, and schedule for

software projects. COCOMO II is a relatively recent update of the COCOMO model that

was developed in 1997 and finally published in 2001. COCOMO II provides two

estimation models: the Early Design and Post-Architecture. The Early Design model is

used when a rough estimate is needed based on incomplete project and product analysis.

Where as the Post-Architecture model is applied when the top-level design is complete

and detailed information is known about the project [112]. The system should have a

life-cycle architecture package that includes information on cost driver inputs,

architectural alternatives and incremental development strategies.

The Early Design and Post-architecture models use the same functional form to

estimate the amount of effort and calendar time it will take to develop a software project.

These nominal-schedule (NS) formulas exclude the Cost Driver for Required

Development Schedule (SCED). The amount of effort in person-months, PMNS, is

estimated by the formula:

PMNS = A × Size
E

 ×Π E M i ,

n

i = 1

(2.3)

 28

E = B + 0.01 ×Σ S F j

E is the scaling exponent for the effort equation, and F scaling exponent for schedule.

The amount of calendar time, TDEVNS, it will take to develop the product is estimated by

the formula:

TDEVNS = [C × (PMNS)
F

] ×SCED% /100,

F = D + 0.2 × [E − B],

where the values of A,B,C, and D are 2.94, 0.91, 3.67 and 0.28, respectively.

Reliable effort prediction is dependent on good size estimation. Software projects

are generally composed of new code, code reused from other sources - with or without

modifications - and automatically translated code. Size attributes are used to describe

physical magnitude, extent or bulk. Software size measures are classified as volume,

structure, and rework, and can represent relative or proportionate dimensions. The

amount of effort required to produce a software product, the defects remaining in a

software product, and time required to create a software product are all estimated using

Volume attributes. Of the existing size measures, the SLOC (Source Lines Of Code)

attribute is the most commonly accepted because it is [107]:

• Relatively easy to define and discuss unambiguously,

• Easy to objectively measure,

• Conceptually familiar to software developers,

• Used directly or indirectly by most cost estimation models and rules of thumb for

productivity estimation, and

5

j = 1

(2.4)

 29

• Is available directly from many organization’s project databases.

However, there are a number of problems associated with the SLOC size metric as noted

by Jones [95]:

• Cross-language comparisons for productivity or quality for the more than 500

programming languages in current use are not accurately supported.

• There is no national or international standard for a source line of code.

• Paradoxically, as the level of language gets higher, the most powerful and

advanced languages appear to be less productive than the lower level languages.

Additionally, the SLOC attribute is available after the product has been implemented and

thus its use in effort prediction is limited.

Researchers have introduced metrics to address some of the flaws associated with

the SLOC measure. The Function Point metric is based on the functional requirements of

the software product and can be estimated and counted much earlier than lines of code.

Function points let organizations normalize data such as cost, effort, duration, and

defects. Even though function points are a popular measure, they too have drawbacks:

• They are based on a subjective measure, which have resulted in a 30% variance

within an organization and more than 30% across organizations [77].

• Function points behave well when used within a specific organization, but they

do not work well for cross-company bench marking.

Object points are similar to function points. They have the same advantages and

disadvantages, but can be estimated and counted earlier than function points. Simmons

et al. [52] introduced the Chunk metric, which is a size measure at the cognitive level.

 30

Chunks can be applied to objects, scripts, spreadsheets, graphic icons, application

generators, etc.

2.2.2 Empirical nonparametric models

Nonparametric models typically involve the use of artificial intelligence techniques in

producing an effort estimate. Briand et al. [78] demonstrate the use of the optimized set

reduction (OSR) method, which is a pattern recognition model for analyzing data sets

based on classification trees. In [78] the authors contrast the accuracy of the OSR

method to a COCOMO model calibrated for the combined COCOMO and Kemerer data

sets and to a stepwise regression model. In the comparison, the OSR methodology

produced a lower mean absolute relative error than both the two parametric models, with

the COCOMO model performing least favorably.

An advantage of OSR is that nominal or ordinal cost driver values can be used as

inputs without being mapped to numeric multiplier values. Another advantage is that it

can be applied with incomplete input data; especially where only a subset of the cost

driver values is known [107]. Srinivasan and Fisher [79] describe two nonparametric

methods for generating effort models. One method uses back-propagation to train an

artificial neural network and another other uses a learning algorithm to derive a decision

tree. Even though they may provide better effort estimates, empirical nonparametric

methods such as a neural network are hard to set up and they typically require more

work than preparing a statistical regression model [91].

 31

Kemerer [74] tested the artificial intelligence methods on the COCOMO data

sets. The effort estimates from the artificial neural network had a lower mean absolute

relative error than the decision tree. Discrepancies in the sampling methodologies mean

that the results presented by Srinivasan and Fisher [79] are not directly comparable with

those of Briand et al. [78], although the same data sets are used. It is probable that the

accuracy of both the artificial neural network and the decision tree is comparable with

that of OSR and the stepwise regression model. However, Srinivasan and Fisher [79]

indicate that the computational cost of training the artificial neural network is high in

comparison to the cost of deriving the decision tree.

Most of the research into software project effort estimation has adopted the

aforementioned approaches. Some other explorations of the use of artificial intelligence

techniques worth mentioning: Wittig et al. [81] described the use of back propagation

learning algorithms on a multilayer perception in order to predict development effort. A

study [80] on the use of neural nets for predicting software reliability concluded that

both feed forward and Jordan networks with a cascade correlation-learning algorithm

outperform traditional statistical models. An Albus multilayer perception was used by

Samson et al. [82] in order to estimate software development effort. The work compares

a neural net approach to linear regression using the COCOMO data set. There have been

several attempts to use regression and decision trees to estimate aspects of software

engineering. They found that the results were not as conclusive compared to either a

statistical model derived from function points or a neural net.

 32

In order to be applied with assurance, both the empirical parametric and

nonparametric models that have been described require a large number of data points

due to the large number of independent variables and value ranges covered by the

models. Both sets of researchers comment on the small size of the COCOMO data set

(63 projects) for applying their techniques and on the desirability of all projects in the

data set coming from the same environment. Even though the COCOMO data set may

be small, it is significantly larger than many organizations could hope to gather. A single

organization can provide a large enough data set but it is hard to believe that all the

projects would come from the same environment.

The empirical nonparametric models such as the decision tree, artificial neural

network, and OSR techniques can still be applied where the number of independent

variables is reduced to complement the size of the available data set, for example, lines

of code as the single independent variable. However, it is uncertain whether these

methods are more accurate than simple regression techniques under those circumstances.

2.2.3 Analogical models

Effort estimation by analogy (EBA) is an established method for software effort

prediction. In EBA, the estimated effort of the project under consideration (target

project) is a function of the known effort values from analogous historical projects. This

is primarily a data-driven process where the attributes common to both the target project

and similar historical projects are compared [114] to find a set of ‘analogous’ projects.

Atkison and Shepperd [86] describe an EBA methodology for estimating

development effort where the common attribute used in the comparison is the function

 33

point [30] count of each component. The vector distance of the function point counts

from the target project to the historical projects is calculated in order to identify the

neighbors of the target project. The estimated effort for the target project is then

determined as the weighted mean of the effort values of its neighbors.

Shepperd et al. describe the tool ANGEL, which is based on a generalization of

the approach of Atkison and Shepperd [86]. ANGEL affords the user the ability to

specify the attributes that are used in the search for analogous projects; it can be directed

to search for one, two, or three analogous projects and then calculate an unweighted

mean of their effort values to estimate effort for the new project. It also includes a

feature to automatically determine an optimal subset of measures for a particular data set

of historical projects.

Estimation by analogy is a form of Case Based Reasoning (CBR), which is the

process of solving new problems based on the solutions of similar past problems. CBR

employs the five basic processes [84]:

• Construction of a representation of the target problem

• Retrieval of a suitable case to act as source analog

• Transfer of the solution from the source case to target

• Mapping the differences between source and target cases

• Adjusting the initial solution to take account of these differences

ESTOR [85] is another example of a case-based reasoning model that is used for

software development effort estimation. The cases (software projects) are represented by

function point counts and Intermediate COCOMO model inputs. ESTOR retrieves one

 34

case to act as a source analog based on a vector distance calculation of the function point

counts from the target case (new project). The initial solution or effort estimate for the

target project is the effort value for the analogous project; this is then adjusted to take

into consideration the differences between the analog and new project. Adjustments are

determined by comparing the values of the measures and applying a set of rules /

heuristics determined by an expert. The rules amend the effort value by a multiplier

when certain preconditions on the target and source project values are met.

The data set used to develop ESTOR is a subset of 10 projects from the Kemerer

[74] data set. On the Kemerer [74] data set, the reported mean absolute relative error for

ANGEL is 62%, which compares with more than 100% for the regression models and

53% for ESTOR. ANGEL performed as well as or better than linear and stepwise

regression models for effort estimation. The regression models were based on the

measures in the data set that displayed the highest correlations with effort. Even though

ESTOR appears to outperform ANGEL on this data set, the adjustment rules for ESTOR

were developed based on 10 of the 15 projects in the set, and these rules may not be as

successful when applied to projects from difference data sets.

It is argued that estimation by analogy offers some distinct advantages to

parametric and non-parametric estimation methodologies [115]:

• It avoids the problems associated both with knowledge elicitation and extracting

and codifying the knowledge.

 35

• Analogy-based systems only need deal with those problems that actually occur in

practice, while generative (i.e., algorithmic) systems must handle all possible

problems.

• Analogy-based systems can also handle failed cases (i.e., those cases for which

an accurate prediction was not made). This is useful as it enables users to identify

potentially high-risk situations.

• Analogy is able to deal with poorly understood domains (such as software

projects) since solutions are based upon what has actually happened as opposed

to chains of rules in the case of rule-based systems.

• Users may be more willing to accept solutions from analogy based systems since

they are derived from a form of reasoning more akin to human problem solving,

as opposed to the somewhat arcane chains of rules or neural nets. This final

advantage is particularly important if systems are to be not only deployed but

also have reliance placed upon them.

2.2.4 Theoretical models

In comparison to the algorithmic (parametric and non-parametric) and analogical

models, there is less research on the development of theoretical models for software

effort estimation. Wang and Yuan [113] have developed a ‘coherent’ theory on the

nature of collaborative work and their mathematical models in software engineering.

This is modeled in the form of the formal economic model of software engineering costs

(FEMSEC). The FEMSEC model provides a theoretical foundation for software

engineering decision optimizations on the optimal labor allocation, the shortest duration

 36

determination, and the lowest workload/effort and costs estimation. The experiments

conducted indicate that the strategy for the optimization of a software engineering

project for the lowest cost is to set the project at W (Tmin, L0), where L0 is the optimal

labor allocation for a given project and Tmin is the corresponding shortest duration of the

project with L0. The FEMSEC can be derived by the following steps:

1. Estimate the project size

2. Determine the ideal workload W

3. Allocate the optimal labor L0

4. Determine the shortest duration Tmin

5. Minimize the project effort Wmin

6. Optimize the project cost Cmin

Abdel-Hamid and Madnick [87]-[89] use dynamic feedback relationships among

staff management, software production, planning, and control modeled via a simulation

language. The model works from an initial estimate for overall effort and then explores

how the actual effort is influenced by the model’s assumptions about the interactions and

feedback between project and decisions. Simulations of project management scenarios

can be run to investigate the effects of management policies and decisions. Their overall

contribution is to demonstrate how both underestimates and overestimates of project

effort can lead to lower average productivity and increased overall effort.

2.2.5 Heuristic models

Heuristics are rules of thumb, developed through experience that capture knowledge

about relationships between attributes of the empirical model. Heuristics can be used to

 37

adjust estimations made by other methods. An example is the COSEEKMO [116] effort-

modeling workbench, which applies a set of heuristic rejection rules to comparatively

assess results from alternative models. It is intended to provide a solution to the large

deviation problem that is seen in model-based estimation methodologies. An experiment

was conducted [116] to compare the “before” and “after” effects of applying

COSEEKMO to COCOMO and COCOMO II effort estimation models. Reduction in

errors of more than 100 % is reported. The COSEEKMO process is also fully automated.

In addition to the formal aforementioned methodologies, expert judgment is also

recognized as an estimation approach [43], [66]. Expert judgment is likely to be utilized

whenever an expert is available. Experts typically employ one or more of the other

methods in making estimations, either informally or formally. The framework for

selecting estimation methods does not formally include expert judgment because the

method cannot easily be characterized, and it is assumed that it is used whenever experts

are available.

It is hard to evaluate which of the above methodologies would be most fitting for

a software development project on hand. The easiest to apply are the empirical

parametric models; the popular COCOMO II [90] is based on this method. Analogy

based estimation models are also straightforward, provided that only a small data set

needs to be searched for analogs, and the number of variables to consider is no more

than half a dozen. Specific tools are needed to help build analogous models when the

number of cases and variables increases above this threshold [41], [81]. Furthermore, the

level of similarity of historical projects to the new project development project exerts

 38

great influence on the estimation. Ideally, an estimate should take this difference into

account when the new project differs notably from the historical projects.

To an organization’s management team and also to the customer, the most

interesting software cost estimation measures are total effort and total duration. Once

development commences, the remaining totals needed to complete the project also

becomes of interest. However, the individual developers are less likely to be interested in

total effort estimates. They might prefer to track their own productivity in order to make

effort estimates for the activities that they have ownership. For example, in some

organizations, developers are expected to sign up to meet the target duration for a

particular activity [107]. Estimates based on group productivity figures generally will

not be satisfactory, because of the significant variations commonly found between

individual developers [92].

Total effort estimates are undoubtedly very desirable at the start of system

development. Ironically, this is the time relative to system development activities when

there is the least information available on which to base an estimate. Models that predict

total effort based on lines of code particularly cannot give an accurate effort estimate

because of the lack of detailed information at this time. Models based on function points

[30] offer some improvement over lines of code, as it appears that function points can be

estimated more consistently from specification and design descriptions than lines of code

[74]. On the other hand, considerably more experience and effort is involved in counting

function points than lines of code, so data pairs of total effort and function points are

likely to be harder to obtain.

 39

Since initial software cost estimates are made based on preliminary data, re-

estimating is desirable when additional information is available. Additionally, there is a

shift of interest from total effort to total effort to complete development once system

development is under way. The computed re-estimate of total effort needs to take into

consideration the actual progress that has been made so far, as well as the effort that has

been expended. For example, the function point methodology might be used to give a

rough preliminary initial estimate of the total effort in the requirements gathering phase

of development and a new estimate can be calculated from a re-estimate of the function

points, which is made after a high level design is complete.

However, when a re-estimate is calculated the model should not assume the same

average productivity for system development for both estimates. For instance, the

productivity of the teams involved in differing activities could be substantially different,

and thus the new total effort estimate should incorporate this knowledge. The process of

re-estimation is made more complicated by such issues, but in order to successfully

estimate the total effort or time to complete successfully, effort estimation models need

to incorporate these measures.

The environment (including the targeted market) in which a software

development project is undertaken has great impact on the software product and the

project has a whole. It contributes important factors such as constraints on the

availability of staff members that are able to work on the project and it affects the target

release date. Estimates of the constraints and the actual estimated feasible release date

based on these constraints are needed in order to plan system development or check

 40

whether it is possible to deliver the product within the desired time. Total effort,

duration, and staffing are closely related and interdependent, but there may be

independent constraints on all three. Due to the constraints and their interdependency of

the variables, the complexity of estimating any one or two is increased.

Current parametric models such as COCOMO [43] and Putnam [93] have not

proved generally successful in clarifying the relationships among effort, duration, and

staffing across a range of organizational settings. Theoretical models such as the

dynamic model of Abdel-Hamid and Madnick [89] appear able to better explain

interrelationships among duration, staffing, and overall cost in a qualitative way, but

they are typically not easy to apply. For instance, the dynamic model of Abdel-Hamid

and Madnick [89] requires a specialized simulation tool.

An organization’s historical data is very important in model development. The

estimated effort is produced by inputting data gathered into the model; in addition, some

models require re-calibration using previously collected data before they can be put to

use. In order to realize the benefits of collecting local data, experience in developing and

applying measures and models must be cultivated within the organization [107]. The

simplest models to construct and utilize are empirical parametric models, with few

variables, and analogical models. Models that are more difficult to develop and apply are

typically based on a large number of variables such as Abdel-Hamid and Madnick [89].

The effort estimation models described thus far like COCOMO II were not

defined specifically for the object-oriented development paradigm. In the following

 41

sections we explore Function Point analysis and the variations to the Function Point

method that were designed to suite the object-oriented development model.

2.3 Function Point Analysis

The Function Point method was introduced in 1979 by Albrecht [30] to measure the size

of a data-processing system from the end-user’s point of view. The initial counting

procedure has been modified several times, resulting in different versions. Since 1986,

the International Function Point User Group (IFPUG) has operated as the standard

definition body for the function point methodology. The current standard version is

reported in the IFPUG Counting Practices Manual [41].

The FP method is applicable at multiple stages of a typical development process,

starting from the early requirements definition phase. It measures the size of a system by

performing a sequence of steps. The first step is the identification of all functions - each

function is classified as belonging to one of the following function types: external input

(EI), external output (EO), external inquiry (EQ), internal logical file (ILF), and external

interface file (EIF). The function point metric is the weighted totals of five external

aspects of the software application:

1. External Input (EI): the types of inputs to application.

2. External Output (EO): the types of outputs to leave the application.

3. External Inquiry (EQ): the types of inquiries that users can make.

4. Internal Logical File (ILF): the types of logical files that the application

maintains.

5. External Interface File (EIF): the types of interfaces to other applications.

 42

The first three classes of functions fall within the transaction function typology, while

the last two, referring to the logical files, are considered data function types. Each

function is then weighted based on its type and on the level of its complexity, in

agreement with standard values as specified in the Counting Practices Manual. As an

example, for transactions (EI, EO, and EQ), the rating is based on the number of Data

Element Types (DETs) and Referenced File Types (FTRs). A DET is a unique, non-

repeated field recognized by the user. An FTR can be an ILF referenced or maintained

by the transaction or an EIF read by the transaction. Thus, if an external inquiry has

more than 16 DETs and at least two FTRs, it is assigned a high complexity level and a

weight value equal to 6. The weighted total of the five components of the application is

then multiplied by the Value Adjustment Factor, which is computed on the basis of the

degree of influence that each of 14 general system characteristics is likely to have on the

application. The adjustment factor causes the FP count to vary with respect to the

unadjusted count from -35 percent (corresponding to a null degree of influence for all

the 14 characteristics) to +35 percent (corresponding to all degrees set to 5) [29].

The FP measure has been used by application developers to estimate

productivity, in terms of Function Points per person-month, and quality, in terms of the

number of defects per Function Point with respect to requirements, design, coding, and

user documentation phases. The success of Function Point method, in part, can be

attributed to its early applicability but also to its independence from the language and the

tools used throughout the lifecycle. The attractive features of the Function Point

approach have motivated several proposals meant to exploit the main ideas of the

 43

method in order to predict the size of object-oriented systems. In the following sections,

several adaptations of the FP method to OO systems, besides other size measures

conceived for object-orientation are examined.

2.4 Use Case Points (UCP) Model

The Use Case Points (UCP) model [9] is a software sizing estimation method based on

use case counts called use case points. A use case is a description of a system's behavior

as it responds to a request that originates from outside of that system.

The use case technique is used in software and systems engineering to capture

the functional requirements of a system. Use cases describe the interaction between a

primary actor—the initiator of the interaction—and the system itself, represented as a

sequence of simple steps. Actors are something or someone which exist outside the

system under study, and that take part in a sequence of activities in a dialogue with the

system, to achieve some goal: they may be end users, other systems, or hardware

devices. Each use case is a complete series of events or transactions, described from the

point of view of the actor [97].

An estimate of effort based on use cases can be made early in a development

project as soon as there is some understanding of the problem domain, system size and

architecture. Use case modeling is part of the UML 2.0 and is therefore applicable in the

early estimation of an object oriented software development project. Below is the UCP

estimation method.

 44

Use Case Point (UCP) estimation model:

a) Weighting actors for complexity: a simple actor represents another system with a

defined API; an average actor is either another system that interacts through a

protocol such TCP/IP; or a person interacting through a text-based interface and

a complex actor is a person interacting through a GUI interface.

b) Weight use cases for complexity: a simple use case has 3 or fewer transactions;

an average use case has 4 to 7 transactions; and a complex use case has greater

than 7 transactions.

c) UUCP (Unadjusted UCP) = Weighted Actors + Weighted Use Cases.

d) Weighing Technical Factor is an exercise to calculate a Use Case Point modifier

which will modify the UUCP by the weight of the technical factors.

 SzUC = UUCP * ((0.01 * Tfactor) +0.6).

e) Weighing Environment Factor is an exercise to calculate a Use Case Point

modifier which will modify the UUCP by the weight of the Environment factors.

 UCP = SzUC *((-0.03 * Efactor) +1.4).

f) Translating Man-hours from UCP is a matter of calculating a standard usage or

effort rate (ER) and multiplying that value by the number of UCPs.

The main limitation of the UCP is that it can only be used early on in an object-

oriented project, and a comprehensive methodology that will be able to produce more

accurate estimates as the use cases are further realized and refined is needed.

 45

2.5 Object-Oriented Function Point (OOFP) Model

Another related work in the sizing of OOP is the Object-Oriented Function Point

(OOFP) model. Most traditional methods for estimating software project effort require

an estimate of a size metric (volume + complexity) of the software. For example, the

function point size metric uses functional, logical entities such as inputs, outputs, and

inquiries that tend to relate more closely to the functions performed by the software as

compared to other measures, such as lines of code. The object oriented function point is

an adaptation of the traditional function points to the object-oriented paradigm. The

OOFP as proposed by Antoniol et al. [10] follows the function point counting procedure.

Inputs, Outputs and Inquiries are all treated in the same way: they are generically called

“service requests” and correspond to class methods. The complexity of service requests

depends on the number and type of method parameters. Classes within the application

boundary correspond to ILFS, while classes outside the application boundary (including

libraries) correspond to EIFS. The complexity of ILFs and EIFs depends on the number

and type of attributes and associations. Function types contribute to the FPs according to

the weights defined by Albrecht [30]. OOFP are based on counts of classes, weighted

methods per class and data attributes with adjustments for the depth of the inheritance

tree, number of children per class and aggregation.

The OOFP is an adaptation of the original FP and although it attempts to use

Object Oriented metrics, the framework itself is not very well suited to the object-

oriented paradigm. It is simply trying to retrofit a model designed for an earlier

development paradigm to the OO paradigm.

 46

2.6 Class Point (CP) Model

The Class Point model as defined by Costagliola et al, 2005 [29], is similar to the OOFP

approach in that it attempts to give an estimate of the size metric based on

design/structural artifacts. There are two forms of the Class point metric, named CP1 and

CP2 respectively. The former is used later in the design stage as more information is

available where as CP1 is meant to be used a bit earlier at the beginning of the design

process to carry out a preliminary size estimate.

The process of Class Point size estimation is composed of three main phases:

a) Identification and classification of User Classes: design specifications are

analyzed to classify systems components into four types. These are the problem

domain type (PDT)/entity classes, the human interaction type (HIT)/boundary

classes, the data management type (DMT)/data classes, and the task management

type (TMT)/ control classes.

b) Evaluation of a Class Complexity Level: each of the identified classes in the

previous step’s behavior is taken into account to evaluate its complexity level. In

CP1, the number of external methods and the number of services requested are

taken into account; whereas, in CP2, the number of attributes is also exploited.

c) Estimating the Total Unadjusted Class Point: this consists of computing a

weighted total of the classes with their complexity levels determined.

d) Technical Complexity Factor Estimation: this is similar to the UCP where the

Total Unadjusted Points are adjusted based on system characteristics such as

multiple sites, operational ease, multi-user interactivity etc.

 47

The CP estimation is done only on design artifacts and although it provides a

mechanism to accommodate for the refinement of the design artifacts, it does not

provide a mechanism to make predictions at the earlier phases, nor a bridge or a means

of conversion to relate to earlier metrics.

2.7 SysML Point Overview

In object-oriented development projects, it is desirable to have an estimation model that

imitates the continuous realization and refinement of the same system artifacts through

the pre-implementation activities of the project development. For example, use cases

models are realized into object interaction diagrams and analysis classes, and these are

further refined into the class structures that will be coded. The Pattern Point model is a

constituent of the proposed SysML point approach (Figure 3). The remainder of this

dissertation defines and validates the Pattern Point estimation model.

 48

3. PATTERN POINT ESTIMATION

3.1 Design Patterns

In software engineering, a design pattern is a common reusable solution to a frequently-

occurring problem in software design. A design pattern is not a finished design that can

be transformed directly into code. It is a description or template for how to solve a

problem that can be used in many different situations. Typically, object-oriented design

patterns display relationships and interactions between classes or objects without

specifying the final application classes or objects that are involved. Algorithms are not

considered design patterns because they solve computational problems and not design

problems.

3.1.1 History

Although the practical employment of design patterns is widespread, the concept of a

design pattern was not formalized for several years. Patterns, in general, emerged as an

architectural concept by Christopher Alexander in 1977. In 1987, Kent Beck and Ward

Cunningham began experimenting with the concept of applying patterns to computer

programming and presented their results at the OOPSLA conference that year [20], [21].

In the following years, Beck, Cunningham and others followed up on this work.

In the field of computer science design patterns gained popularity after the book

Design Patterns: Elements of Reusable Object-Oriented Software was published in 1994

(Gamma et al.)[3]. That same year, the maiden Pattern Languages of Programming

 49

Conference was held and the following year, the Portland Pattern Repository was created

for documentation of design patterns.

3.1.2 Uses

Design patterns provide tested, proven development paradigms and can thus speed up

the development process. Effective software design demands the consideration of issues

that may not come to light until later in the implementation stage. The reuse of design

patterns helps to avert subtle issues that can cause major problems, and it also improves

code readability for developers who are conversant with the patterns.

Often, people only understand how to apply certain software design techniques to

certain problems. These techniques are difficult to apply to a broader range of problems.

Design patterns provide general solutions, documented in a format that doesn't require

specifics tied to a particular problem. Moreover, patterns enable developers to

communicate using established names for software interactions. Common design

patterns can be improved over time, making them more robust than ad-hoc designs.

3.1.3 Classification

Object-oriented design patterns are classified into the categories: Creational Patterns,

Structural Patterns, and Behavioral Patterns, and described using the concepts of

aggregation, delegation, and consultation [21]. Creational Patterns are design patterns

that are concerned with object creation mechanisms; trying to create objects in a manner

suitable to the situation. Structural Patterns are design patterns that ease the design by

identifying a simple way to realize relationships between entities. Lastly, Behavioral

 50

Patterns are design patterns that identify common communication patterns between

objects and realize these patterns. By doing so, these patterns increase flexibility in

carrying out this communication. Table 1 lists design patterns classified into the three

categories.

3.2 The Pattern Point Model

The Pattern Points (PP) model is an empirical parametric estimation method that utilizes

UML sequence diagrams (object interactions) to predict development effort in the

analysis phase of an object-oriented development project. It relies on a sizing of each of

the 23 object oriented design patterns as defined in the seminal book Design Patterns:

Elements of Reusable Object-Oriented Software, 1994 (Gamma et al) [3]. Each pattern is

sized based on a pattern ranking and an implementation ranking. The pattern ranking

metric is a function of the degree of difficulty and the structural complexity of the design

pattern; where as the implementation ranking is a function of the ease of applicability of

the pattern to the problem type.

The PP model focuses on UML sequence diagrams as the modeling

representation for object interactions. At the earliest stages, a practitioner is able to

compute a range of estimates for a component size using the Pattern Points of the design

patterns that might be used in the implementation of each object interaction. As the

interaction model is refined and designers have identified which patterns to use in the

construction of each object interaction, a single unadjusted component size estimate can

be attained. Size estimates are then adjusted to accommodate for technical and

 51

environmental factors such as the lead programmer experience and requirements

volatility.

At the late analysis stage where the object interactions have been further refined

to reflect some initial design elements, the PP metric is computed a little differently. The

design pattern implementation ranking together with class metrics of the number of

children of abstract classes and interfaces to be implemented, are used in a formulation

to compute the PP size estimate.

3.2.1 The pattern point method

The Pattern Point size estimation process is composed of three main phases,

corresponding to analogous phases in the FP approach [30]. There are two size metrics:

PP1 and PP2. The former is applicable at the beginning of the analysis phase where a

majority of the design constructs have not been formalized, where as the latter takes into

account the structural constructs that have been identified in the late analysis phase.

Following are the three main steps in estimating the Pattern Point size.

3.3 Identification and Classification of User Objects

The user objects that form the design patterns are classified into 4 groups. Table 1 shows

a default grouping as defined for the objects that comprise the 23 design patterns as

defined by Gamma et al [3]. These are default groupings that are based on the type of

components in which the design patterns are typically found.

a. Problem domain type (PDT) – The PDT component contains patterns comprised

of objects/classes representing real-world entities in the application domain of

 52

the system. Examples taken from Bruegge et al [9], which describes a distributed

information system for accident management, includes objects such as Incident,

FieldOfficer, and EmergencyReport.

b. Human interaction type (HIT) – The objects of HIT type are created to

accomplish the need for information visualization and human-computer

interaction. With regard to the previous example, the objects

EmergencyReportForm and ReportEmergencyButton belong to HIT.

c. Data management type (DMT) - The objects that belong to the DMT component

offer functionality for data storage and retrieval. In the example [3], a DMT

component is the IncidentManagement subsystem containing classes responsible

for issuing SQL queries in order to store and retrieve records representing

Incidents in the database.

d. Task management type (TMT) - TMT objects are responsible for the definition

and control of tasks. In the example, Manage-EmergencyControl and

ReportEmergencyControl are two objects designed for this purpose.

Additionally, a task management type also includes objects responsible for the

network communications between subsystems on different hosts. As a matter of

fact, Message and Connection are typical classes falling within this component.

3.4 Evaluation of a Pattern Complexity Level

The second step is to evaluate the complexity level of the design patterns that are found

in the object interaction analysis of the system. Two metrics have been formulated which

are the Degree of Difficulty (DD) and Structural Complexity (SC), for each of the 23

 53

design patterns as identified by Gamma et al [3]. The former is a function of the # of

objects and # of messages identified in each design pattern according to its sequence

diagram. For example, the degree of difficulty of the Command pattern in Figure 6 is 7,

as there are 4 objects and 3 messages passed between the objects in the diagram.

Figure 6: Sequence diagram for the Command design pattern

The structural complexity is a function of the # of classes and # of associations

that are identified in the structure of the design pattern. For example, the structural

complexity of the Abstract Factory design pattern in Figure 7 is 7 because there are 3

classes and 4 associations (concrete classes are not counted). Concrete class

implementations of interfaces and abstract classes are more readily available in the late

analysis stage and are included the PP2 metric. Table 1 lists the degree of difficulty and

structural complexity of the 23 design patterns identified by Gamma et al [3] and in

addition two common object oriented design patterns not listed in [3] that are in blue.

These are the Interface pattern and the Filter pattern as defined in [4]. The PP1 metric is

a function of the Degree of Difficulty (DD) and Structural Complexity (SC) of the design

 54

Figure 7: Structural diagram of the Abstract Factory design pattern

pattern, and PP2 takes the number of implemented concrete classes in the pattern also

into consideration. For example, in Fig. 3, ProductA1 and ProductB1 are examples of

Pattern Concrete (PC) classes.

PP2 = PP1 + # of Pattern concrete classes (PC).

The PP2 metric is applicable at the late analysis early design stages where more of the

concrete implementations have been identified.

Association Class

(3.1)

 55

Table 1: The 23 design patterns categorized by design pattern type and the

corresponding DD, SC and Complexity values

Type Pattern objs. mesgs. DD classes assoc. SC Group Complexity

Abstract

Factory

2 1 3 3 4 7 PDT High

Builder 3 4 7 3 4 7 PDT High

Factory

Method

1 1 2 2 2 4 PDT Low

Prototype 2 1 3 2 1 3 PDT Low

C
re

at
io

n
al

Singleton 1 1 2 2 1 3 PDT Low

Adapter 2 1 3 4 3 7 PDT Average

Bridge 2 2 4 5 5 10 PDT High

Composite 2 1 3 4 5 9 PDT High

Decorator 2 1 3 4 3 7 HIT Average

Façade 1 0 1 1 1 2 PDT Low

Flyweight 2 1 3 5 5 10 PDT High

S
tr

u
ct

u
ra

l

Proxy 2 1 3 1 1 2 PDT Low

Chain of

Responsibility

2 1 3 3 3 6 TMT Average

Command 4 3 7 5 3 8 TMT High

B
eh

av
io

ra
l

Interpreter 3 1 4 4 4 8 TMT High

 56

Type Pattern objs. mesgs. DD classes assoc. SC Group Complexity

Iterator 1 1 2 3 2 5 DMT Low

Mediator 3 3 6 4 4 8 TMT High

Memento 3 4 7 3 2 5 DMT High

Observer 2 5 7 4 3 7 TMT High

State 2 3 5 3 2 5 TMT Average

Strategy 2 3 5 3 2 5 PDT Average

Template

Method

1 2 3 2 1 3 PDT Low

B
eh

av
io

ra
l

Visitor 3 3 6 5 5 10 TMT High

 Filter 2 1 3 2 PDT Low

 Interface 1 0 1 2 1 3 PDT Low

The Complexity Level as identified in the Complexity column in Table 1 is based

on an entry mapping of the DD and SC metric in Table 2. Each design pattern is

assigned a complexity level of Low, Average or High depending on the size of the

corresponding DD and SC metrics.

Table 2: Evaluation of the complexity level of a design pattern

 0 – 4 SC 5 – 8 SC >= 9 SC

0 – 2 DD LOW LOW AVERAGE

3 – 5 DD LOW AVERAGE HIGH

>= 6 DD AVERAGE HIGH HIGH

Table 1: Continued,

 57

3.5 Estimating the Total Unadjusted Pattern Point

After estimating the complexity of each of the design patterns found in the object

interaction analysis of the system according to Table 2, we can now compute the Total

Unadjusted Pattern Point (TUPP). To achieve this, Table 3 below, as defined in the

Class Point estimation [29] is completed for Pattern Point estimation.

Table 3: Evaluating the TUPP

System

Component Type

Description Complexity

 Low Average High Total

PDT Problem Domain …*3=… …*6=… …*10=… …

HIT Human Interaction …*4=… …*7=… …*12=… …

DMT Data Management …*5=… …*8=… …*13=… …

TMT Task Management …*4=… …*6=… …*9=… …

TUPP Total Unadjusted Pattern Point

The entries in the table above express the weighted number of patterns whose

typology and complexity level are given by the corresponding row and column,

respectively. In summary, the TUPP is computed as the weighted total of the four

components of the application:

TUPP = ∑∑ w ij × x ij, (3.2)

 58

where xij is the number of patterns of component type i (problem domain, human

interaction, etc.) with complexity level j (low, average, or high), and wij is the weighting

value for type i, and complexity level j.

3.6 Technical Complexity and Environmental Factor Estimation

The Technical Complexity Factor (TCF) [9] is determined by assigning the degree of

influence (ranging from 0 to 5) that 13 general system characteristics have on the

application, from the designer’s point of view. The estimates given for the degrees of

influence are recorded in the Technical factors table illustrated in Table 4. The sum of

the influence degrees related to such general system characteristics forms the Technical

Factor (TFactor), which is used to determine the TCF according to the following

formula:

TCF = 0.6 + (0.01 * TFactor).

The Environmental Adjustment Factor (EAF) [9] is determined by factors that represent

some characteristics existent at the development environment that could influence the

software cost. Each factor from Table 5 receives a value and the Environmental

Adjustment Factor (FAA) is given by

EAF = 1.4 + (-0.03 * EFactor)

The final value of the Adjusted Pattern Point (PP) is obtained by multiplying the Total

Unadjusted Pattern Point value by the TCF and EAF

PP = TUPP * TCF *EAF

The PP count can vary with respect to the unadjusted count from -45 percent

(corresponding to a null TDI) to +45 percent (corresponding to all degrees set to 5), due

(3.3)

(3.4)

(3.5)

 59

to the adjustment factor. It is worth mentioning that the Technical Complexity Factor

and Environmental Adjustment Factor are determined by taking into account the

characteristics that are considered in the FP.

Table 4: Technical factors

Factor Description Weight

T1 Distributed system 2

T2 Response or throughput performance objectives 2

T3 End-user efficiency 1

T4 Complex internal processing 1

T5 Reusable code 1

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portable 2

T9 Easy to change 1

T10 Concurrent 1

T11 Includes security features 1

T12 Provide access for third parties 1

T13 Special user training facilities are required 1

 60

Table 5: Environmental factors

Factor Description Weight

F1 Familiar with Rational Unified Process 1.5

F2 Application experience 0.5

F3 Object-oriented experience 1

F4 Lead analyst capability 0.5

F5 Motivation 1

F6 Stable requirements 2

F7 Part-time workers -1

F8 Difficult programming language -1

 61

4. THEORETICAL VALIDATION

The PP metric as well as its composite metrics: DD, SC and PC have been defined so

far, but a software measure can be acceptable and effectively usable only if its usefulness

has been proven by means of a validation process. The goal of such a process is to

convey that a measure really measures the attribute that it is supposed to and it is

practically useful [29]. It is widely accepted that two forms of validation are required:

theoretical and empirical validation. Theoretical validation is a fundamental step in the

validation process and should allow one to demonstrate that a measure satisfies

properties characterizing the concept (e.g., size, complexity, coupling, etc.) it is intended

to [5]. Once the measure satisfies the properties, its usefulness can be verified by

carrying out an empirical validation process, which usually employs the use of statistical

analysis techniques.

Several authors have defined measurement theoretical principles that software

measures should adhere to in order to be valid [6]-[8]. Nonetheless, as indicated by

Briand et al. in [12], the software engineering community might gain from the adoption

of a more pragmatic approach that is able to provide more practical results. Such

concerns have led several researchers [13]-[16] to provide guidelines on frameworks for

theoretical and empirical validation of measures. Specifically, it is suggested that the

measures should conform to certain fundamental properties. In addition, measures of

internal attributes should be validated empirically against external attributes.

In this section, the general framework proposed by Briand et al. [5] is applied in

the theoretical validation. The framework contributes to the definition of a stronger

 62

theoretical ground of software measurement by providing convenient and intuitive

properties for several measurement concepts, such as complexity, cohesion, length,

coupling and size. The generality of the approach is due to the fact that the properties

characterizing these concepts are independent of the software artifacts (e.g., software

specification, design, code) the concepts are applied to [29].

The theoretical validation is conducted by evaluating the Pattern Point approach

against the properties proposed by Briand et al [5] that are specific to size measures.

Consideration is given only to the PP2 measure since the corresponding theoretical

validation process can also be applied to PP1 as a special case.

In [5], three properties are defined that are specific to the size measures, namely,

Nonnegativity, Null Value, and Module Additivity. It is important to mention that such

properties are requisite but not sufficient. Still, they constrain the search for measures

and “make the measure definition process more rigorous and less exploratory.” Before

describing the analysis process that was performed on the PP2 measure, the definitions of

the general framework and the properties that the size measures are supposed to verify

are detailed in the following section. Within the framework, a system is characterized as

a set of elements and a set of relationships between those elements, as formalized in the

following definition.

4.1 Representation of Systems and Modules

A system S will be represented as a pair < E, R >, where E represents the set of elements

of S and R is a binary relation on E (R ⊆ E Χ E) representing the relationships between

S’s elements. Given a system S = < E, R >, a system m = < Em, Rm > is a module of S if

 63

and only if Em ⊆ E, Rm ⊆ EmΧ Em, and Rm⊆ R. The elements of a module are connected

to the elements of the rest of the system by incoming and outgoing relationships. The set

InputR(m) of relationships from elements outside module m to those of module m is

defined as:

InputR(m) = {< e1, e2 > ∈ R | e2 ∈ Em and e1∈ E - Em}

The set of OutputR(m) of relationships from the elements of a module m to those of the

rest of the system is defined as:

OutputR(m) = {< e1, e2 > e1∈ R | ∈ Em and e2 ∈ E - Em}

 The basic properties of size measures are very intuitive; they ensure that the size cannot

be negative, it is null when the system has no element, and it can be obtained as the sum

of the size of its modules when they are disjoint. More formally:

Property Size 1: (Nonnegativity). The size of a system S = < E, R > is nonnegative

Size≥ 0

Property Size 2: (Null Value). The size of a system S = < E, R > is null if E is empty

E = φ ⇒ Size(S) = 0

Property Size 3: (Module Additivity) The size of a system S = < E, R > is equal to the

sum of the sizes of two of its modules m1 = <Em1, Rm1> and m2 = <Em2, Rm2> such that

any element of S is an element of either m1 or m2

(m1 ⊆ S and m2⊆ S and E = Em1 ∪ Em2 and Em1∩ Em2 = φ)

⇒ Size(S) = Size(m1) + Size(m2).

 64

4.2 Theorem

The Nonnegativity, Null Value, and Module Additivity properties hold for the Pattern

Point measure.

4.3 Proof

Since the PP value is obtained as a weighted sum of nonnegative numbers, the

Nonnegativity property holds. If no design pattern (i.e. classes/objects, associations/calls)

is present in the system analysis the PP value is trivially null and the Null Value

property is also verified.

In order to prove the Module Additivity property, let S = < E, R > be the system,

and let m1 = <Em1, Rm1> and m2 = <Em2, Rm2> be its modules, such that the following

condition holds: m1 ⊆ S, m2⊆ S, E = Em1 ∪ Em2, and Em1∩ Em2 = φ).

Let us observe that the conditions m1 ⊆ S, m2⊆ S and E = Em1 ∪ Em2 imply that no

modification is made to the design patterns of S when the system is partitioned into

modules m1 and m2. This means that for each pattern, the values for DD and SC will be

unchanged after the partitioning. Indeed, the DD, SC and PC values in a design pattern

are the same no matter how the design pattern is used in the system, i.e., regardless of

the actual connections among modules.

 65

5. EMPIRICAL VALIDATION

In the literature, it is largely accepted that system size is strongly correlated with

development effort [17]-[20]. The theoretical validation conducted in the previous

section illustrates that the Pattern Point measures satisfy properties that are considered

requisite for size measures. However, a theoretical validation alone does not guarantee

the usefulness of the measures as predictors of effort and cost. Moreover, an empirical

evaluation process is needed to verify their predictive power. Thus, the author has

performed an empirical study purposed to determine whether the Pattern Point measures

can be used to predict the development effort of OO systems in terms of person-days (8

hours per day).

The subject of the study was the initial release of the IBM Lotus Quickr software

product. This particular product was chosen as the subject because of its extensive use of

design patterns and the ample documentation on the effort expended per use case that

existed. The experimentation on the data from the Quickr 8.0 release has provided initial

evidence of the effectiveness of the Pattern Point approach.

5.1 IBM Lotus Quickr 8.0

Lotus Quickr is IBM’s team collaboration and content sharing software that helps users

access and interact with the people, information and project materials that they need to

get their work done. Lotus Quickr has a rich set of features such as content libraries to

share everyday business files, team discussion forums and blogs to facilitate

communications, wikis that let you author and edit content in place together, and

 66

connectors that help make sharing easier than ever right from your favorite desktop

software such as Lotus Notes, Lotus Sametime, Lotus Symphony, Microsoft Office and

Microsoft Outlook.

The IBM Lotus Quickr 8.0 release was selected as the subject of this study

because of the extensive use of design patterns in its implementation, the careful

recording of the effort expended in completing each project task, which was also

grouped by use case, and also because the 8.0 release was the first release and thus there

was more emphasis on new code development. The software was released June 2007 and

the Pattern Point method was applied retroactively on the recorded data.

5.2 Applying the Pattern Point Method to Lotus Quickr

Like many software development projects, there was incomplete documentation

particularly with respect to the artifacts from the analysis phase of the software product

i.e. there was little or no documentation of object interaction analyses including

sequence diagrams. However, there was ample data on implemented use case scenarios,

and also the package structure of the code was designed for easy identification of the

design patterns in play, which helped in the reverse engineering of the object interaction

diagrams in the following section. For instance, the package structure below identifies a

Mediator design pattern and concrete class implementations of the classes involved in

the design pattern:

com.ibm.content.clb.mediator.handler.OperationHandlerImpl

com.ibm.content.clb.mediator.handler.UserOperationHandlerImpl

 67

com.ibm.content.clb.mediator.handler.ChildMetadataHandler

com.ibm.content.clb.mediator.cache.CustomDataCacheEventListener

Where as, the next set of package names identify the Visitor design pattern and the

concrete class implementations of the classes involved in the design pattern:

com.ibm.content.service.clb.serialization.visitor.ImportItemVisitorContainer

com.ibm.content.service.clb.serialization.visitor.impl.ImportCopyObjectVisitor

com.ibm.content.service.clb.serialization.visitor.impl.ImportRemoveControlData

Visitor

The reverse engineering tool MaintainJ was employed to reverse engineer the object

interaction diagrams involved in a particular use case.

5.3 Reverse Engineering Using MaintainJ

MaintainJ is an Eclipse plug-in that generates runtime UML sequence and class

diagrams for a use case. This occurs in three steps:

1. Instrument the Quickr server

2. Perform the use case scenario in the application

3. Generate trace files

In the first step, Instrument the Quickr server, MaintainJ uses AspectJ technology [28],

which allows for byte-code weaving directly in the Virtual Machine so that MaintainJ

developers can write aspects (which insert instrumentation software) for code in binary

(.class) form. With respect to Quickr, which runs off a WebSphere Portal server, this

 68

step involves deploying the MaintainJ.war application onto the Portal server. In Step 2,

the user can now log in to the Quickr application and perform use case scenarios with

the MaintainJ application running. With the MaintainJ application started we are able to

capture the flow of message calls between the objects that are involved in the

actualization of the use case. Once this is complete, in step 3, the user can now output a

trace file of the object interactions, which can then be imported into the Eclipse IDE.

With the MaintainJ eclipse plug-in installed, the user can view run-time sequence and

class diagrams. The author has written a separate tool that takes as input the trace file

and it outputs class and method names involved in the object interactions to a text file.

 In order to calculate the Pattern Point metrics for the use cases, the author has

implemented an algorithm that identifies the design patterns based on the package name

and structure of the outputted trace for each use case scenario. The program then

performs the Complexity Level calculations in section 3.4 and generates corresponding

TUPP1 and TUPP2 metrics for each use case.

 The Technical Complexity Factors (TCF) and Environmental Adjustment Factors

(EAF) were not included in the experiment. The first reason is because the use cases

were all taken from the same project and thus the factors would not vary much between

the use cases. Furthermore from the literature, some studies have revealed that the

application of the Processing Complexity Factor to the raw Function Point measure can

have little impact on the performance of Function Points in the cost estimation process

[38], [43], [68]. The same was also verified in the Class Point approach, i.e. whether or

 69

not the 14 Function Point factors are useful in our context, and also if the four additional

Class Point factors enhance the prediction accuracy [29].

As a side effect, the experiment has ascertained the author’s intuition that the

Pattern Point measures do not require a long training, and is not labor intensive. As a

matter of fact, one of the objectives when the measures were conceived was to overcome

one of the criticisms to Function Point Analysis approach [21]-[23]. Additionally, in

order to arrive at a more realistic accuracy of the derived models and have more reliable

nonbiased results, an 8-fold cross-validation approach was utilized in the empirical

validation. Multiple-fold cross validation has been successfully used in the literature in

order to validate cost estimation models (see references [24]-[27]). The process is

especially recommended to increase the accuracy of prediction models when dealing

with small data sets. In the remainder of section 6, the cross validation process applied to

PP1 and PP2 is described. Subsequently, a comparison of the results gained for PP1 and

PP2 with other measures is performed in Section 7.1.

5.4 The Cross Validation Process

To carry out the cross validation process on the 78 selected use cases from the Lotus

Quickr, the following steps were performed:

1. The whole data set was partitioned into eight randomly selected test sets; seven of

equal size (10) and the last test set had two less data elements (8). For each data set,

the remaining use cases were analyzed to identify the corresponding training set

obtained by removing influential outliers.

 70

2. An Ordinary Least-Squares (OLS) regression analysis was performed on each

training set to derive the effort prediction model.

3. Accuracy was separately calculated for each test set and the resulting values have

been aggregated across all 8 test sets.

In what follows, we describe each of the above steps.

5.5 Partitioning the Data Set

Table 6 reports the data of the 78 use cases, following the order resulting from the

random partition performed. Thus, the first ten use cases form the first test set, the

subsequent ten use cases form the second one, and so on.

Table 6: The data for the 78 use cases

Use case DD SC PC EFD TUPP1 TUPP2

1 27 27 11 13 33 44

2 0 0 0 4 0 0

3 48 61 29 20.5 78 109

4 97 147 122 39 165 287

5 51 74 79 18 81 160

6 37 51 46 16 63 112

7 58 80 88 28 93 181

8 11 13 3 7 15 18

 71

Use case DD SC PC EFD TUPP1 TUPP2

9 62 87 89 28 96 185

10 35 41 18 13 48 66

11 72 101 62 35 124 280

12 57 76 50 46 90 140

13 11 13 3 4 15 18

14 34 38 14 15 45 59

15 11 13 3 4 15 18

16 45 73 34 24 78 112

17 49 68 30 22 75 105

18 34 38 14 13 45 59

19 31 34 7 18 48 55

20 11 13 3 10 15 18

21 11 13 1 4 15 16

22 0 0 0 7 0 0

23 11 13 1 9 15 16

24 43 64 45 17 69 114

25 43 82 30 22 87 117

26 11 13 3 10 15 18

27 59 80 116 30.5 96 212

28 0 0 0 7 0 0

Table 6: Continued,

 72

Use case DD SC PC EFD TUPP1 TUPP2

29 35 51 60 27 60 123

30 37 48 8 18 62 70

31 27 38 4 10 45 49

32 72 111 78 55 125 203

33 73 114 66 31 128 194

34 29 30 4 7 39 43

35 11 13 3 4 15 18

36 45 61 30 17 75 108

37 35 41 18 18 48 66

38 11 13 1 7 15 16

39 83 130 70 28.5 145 215

40 0 0 0 3 0 0

41 36 48 20 20 60 83

42 0 0 0 13 0 0

43 56 79 81 22 87 168

44 35 41 18 16 48 66

45 94 138 118 39 156 274

46 57 83 81 31 103 187

47 42 61 15 20 66 81

48 48 61 29 17 78 109

Table 6: Continued,

 73

Use case DD SC PC EFD TUPP1 TUPP2

49 32 39 12 7 48 60

50 0 0 0 6 0 0

51 40 66 33 23 77 110

52 47 67 47 19.5 81 130

53 0 0 0 8 0 0

54 42 55 34 16 66 100

55 62 84 52 21 96 148

56 48 69 67 21 75 142

57 11 13 3 7 15 18

58 56 79 31 24 87 118

59 54 77 79 27 91 170

60 37 48 8 19 62 70

61 69 77 34 27 108 142

62 11 13 3 10 15 18

63 0 0 0 7 0 0

64 63 90 103 31 106 209

65 47 61 16 20 72 88

66 58 85 84 36 93 177

67 0 0 0 5 0 0

68 0 0 0 4 0 0

Table 6: Continued,

 74

Use case DD SC PC EFD TUPP1 TUPP2

69 53 63 30 25 84 117

70 51 74 76 28 91 169

71 51 72 47 22 81 128

72 51 76 51 25 81 132

73 11 13 2 0 15 17

74 44 38 8 15 66 74

75 0 0 0 5 0 0

76 42 61 64 22 66 130

77 100 144 70 39 163 233

78 58 74 46 27 100 146

Descriptive statistics have been computed both for the variable Effort (denoted

by EFD), expressed in terms of person-days (8 hours/day), and the variables PP1 and

PP2, related to the 78 use cases. The summary statistics of those variables are given in

Table 7.

Table 7: Descriptive statistics: EFD, PP1, PP2

Variable Obs. Min Max Median Mean Std Dev.

Days 78 0.00 55.00 18.00 18.38 11.13

PP1 78 0.00 165.00 66.00 60.42 42.80

PP2 78 0.00 287.00 94.00 95.36 76.10

Table 6: Continued,

 75

A careful outlier analysis was performed in order to remove possible extreme

values, which may unduly influence the models obtained from the regression analysis.

For each data point, the Cook’s distance was calculated to verify its influence on the

generated model. In regression models, Cook’s distance is the standard statistic to detect

influential observations—it measures the overall effect that omitting a given observation

would have in the model. Figure 8 shows example outliers in the training set. Thus, any

influential outlier has been omitted from the corresponding initial training set, resulting

in the sets used to derive the models.

Influential observation for the training sets are determined based on Cook’s

distances greater than the threshold value 0.10, corresponding to the ratio 8 and the

sample size 78. The other data points have been retained since they are not influential

observations and cannot prejudice the results. Table 8 shows that for PP1 use case 12

represents outliers for training sets 1, 3, 4, 5, 6, 7 and 8, and that the use cases 32 and 39

represent outliers for training sets 1, 2, 3, 5, 6, 7 and 8. Where as for PP2, use case 11 is

also detected and represents outliers for training sets 1, 3 and 4; use case 12 represents

outlier for training sets 1, 3, 4, 5, 6, 7 and 8; use case 32 represents outliers for training

sets 1, 2, 3, 5, 6, 7 and 8; and lastly use case 39 represent outliers for training sets 5, 6

and 7.

 76

300250200150100500

60

50

40

30

20

10

0

TUPP2

E
FD

Scatterplot of EFD vs TUPP2

Figure: 8 Outliers in the training set

Table 8: The values of Cook’s distance for outliers of PP1 and PP2

PP1 Set 1 Set2 Set3 Set4 Set5 Set6 Set7 Set8

12 0.175 0.172 0.271 0.192 0.170 0.184 0.182

32 0.450 0.591 0.433 0.484 0.421 0.478 0.475

39 0.154 0.134 0.131 0.176 0.142 0.131 0.153

PP2 Set 1 Set2 Set3 Set4 Set5 Set6 Set7 Set8

11 0.195 0.126 0.126 0.002 0.002 0.004 0.112

12 0.184 0.168 0.261 0.192 0.170 0.184 0.181

32 0.469 0.642 0.420 0.484 0.420 0.478 0.466

39 0.048 0.039 0.030 0.176 0.142 0.131 0.028

 77

For each test set, the remaining 68 projects (70 for the last test set) are considered

as an initial training set. In order to verify the presence of a positive linear relationship

between each of the measures PP1 and PP2 and the effort, a scatter plot for each training

set was produced. As illustrated in Figures 9a and 9b, for either measure, each scatter

plot shows a positive linear relationship between the variables involved. This suggests

that a linear regression analysis of EFD and PP1 (respectively, EFD and PP2) can be

performed.

 78

1 801 601 4012 010 0806040200

4 0

3 0

2 0

1 0

0

TUPP1

E
F
D

S ca t te rp l o t o f EF D v s T U P P 1

180160140120100806040200

40

30

20

10

0

TUPP1

E
F
D

S ca tte rplo t o f EFD v s TUP P1

1 801 601 4012 010 08 06040200

4 0

3 0

2 0

1 0

0

TUPP1

E
F
D

S ca t te rp l o t o f EF D v s T U P P 1

180160140120100806040200

50

40

30

20

10

0

TUPP1

E
FD

Scatterplot of EFD vs TUPP1

180160140120100806040200

40

30

20

10

0

TUPP1

E
FD

Scatterplot of EFD vs TUPP1

180160140120100806040200

40

30

20

10

0

TUPP1

E
FD

Scatterplot of EFD vs TUPP1

180160140120100806040200

40

30

20

10

0

TUPP1

E
FD

Scatterplot of EFD vs TUPP1

180160140120100806040200

40

30

20

10

0

TUPP1

E
FD

Scatterplot of EFD vs TUPP1

(a)

300250200150100500

40

30

20

10

0

TUPP2

E
FD

Scatterplot of EFD vs TUPP2

300250200150100500

40

30

20

10

0

TUPP2

E
FD

Scatterplot of EFD vs TUPP2

300250200150100500

40

30

20

10

0

TUPP2

E
FD

S catterplot of EFD vs TUPP2

300250200150100500

50

40

30

20

10

0

TUPP2

E
FD

Scatterplot of EFD vs TUPP2

300250200150100500

40

30

20

10

0

TUPP2

E
FD

Scatterplot of EFD vs TUPP2

300250200150100500

40

30

20

10

0

TUPP2

E
FD

Scatterplot of EFD vs TUPP2

300250200150100500

40

30

20

10

0

TUPP2

E
FD

Scatterplot of EFD vs TUPP2

300250200150100500

40

30

20

10

0

TUPP2

E
FD

Scatterplot of EFD vs TUPP2

(b)

Figure 9: The scatter plots for (a) EFD and PP1, and (b) EFD and PP2, resulting from the

OLS regression applied to the four training sets

Set 1 Set 2 Set 3

Set 4 Set 5 Set 6

Set 7 Set 8

Set 1

Set 7

Set 6 Set 5 Set 4

Set 3 Set 2

Set 8

 79

5.6 OLS Regression Analysis to Derive Effort Prediction Models

An Ordinary Least-Squares regression analysis was applied in order to perform an

empirical validation of the PP1 and PP2 measures. OLS allows the analyst to determine

the equation of a line that can be used to predict the development effort in terms of the

number of person-days required. This modeling technique has often been used for

validation purposes due to its useful predictive capability and to the mature statistical

packages supporting it. For this experiment, the statistics package Minitab 15 Statistical

Software English was employed in deriving the models.

When applying the OLS regression, a number of determinative indicators have

been taken into account to establish the quality of the prediction. An important measure

is the goodness of fit of a regression model, which is determined by the Coefficient of

Determination, R
2
. The Coefficient of Determination measures the percentage of

variation in the dependent variable explained by the independent variable. Furthermore,

to evaluate the statistical significance a t-test was performed and the p-value, t-value of

the coefficient and intercept for each model was determined. Specifically, a significance

threshold of 0.05 for the p-value is generally used to establish whether a variable is a

significant predictor. When it is less than 0.05, we can reject the hypothesis that the

coefficient is zero; the reliability of the predictor is then given by the t-value of the

coefficient. The commonly used threshold is 1.5, so a t-value greater than 1.5 indicates

that the predictor is reliable at a risk level of 5 percent or less and hence it is a reliable

predictor. It is important to note that the p-value of the coefficient coincides with the

overall p-value of the model - Significant F - which is related to the probability that the

 80

independent variable impacts the dependent variable, i.e., that the regression equation is

significant. Furthermore, by squaring the t-value we can obtain the F value, due to the

relation between Student’s t distribution and Fisher-Snedecor’s F distribution. As for the

intercept, the corresponding p-value provides the probability that it is zero. Thus, also

for the intercept a high t-value, together with a low p-value indicate that the null

hypothesis can be rejected.

In tables 9 to 16, the results of the OLS regression carried out with each training

set are presented. It can be observed that for each training set, the linear regression

analysis shows a high R
2
 value, for both PP1 and PP2, with a slightly higher value for

PP2 in training sets 1, 2, 6, 7, and 8, and a higher R
2

for PP1 in training sets 3, 4, and 5.

As an example, consider training set 1. For PP1, we have R
2
 = 0.86, which indicates that

86 percent is the amount of variance of the dependent variable EFD that is explained by

the model related to PP1, whereas for PP2, we have R
2
 = 0.88 indicating that 88 percent

is the amount that is explained by the model related to PP2. For this training set, the

equation of the regression model for PP1 is:

EFD = 4.486 + 0.223 PP1,

where the coefficient 0.223 and the intercept 4.486 are significant at level 0.05, as from

the t-test. The equation of the regression model for PP2 on the other hand, is:

EFD = 5.84 + 0.129 PP2

where the coefficient 0.129 and the intercept 5.84 are again significant at level 0.05. In

table 17, the mean and median R
2

values have also been calculated for PP1and PP2. for

PP1, both values are 0.881, and for PP2 the mean and median R
2

values are 0.879 and

(5.1)

(5.2)

 81

0.884 for PP1 and PP2 respectively. These set of results have led to the conclusion that

the R
2

values for PP1 are comparable to that PP2, but the median PP2 slightly

outperforms PP1.

Table 9: The results of the OLS regression analysis for training set no. 1

(a)

 Prediction model R R
2
 Std. Err F Significant F

PP1 EFD = 4.486 + 0.223 PP1 0.932 0.869 3.59 418.879 0.000

PP2 EFD = 5.84 + 0.129 PP2 0.940 0.884 3.33 479.930 0.000

(b)

 Value Std. Err t-value p-value

Coefficient 0.224 0.010 20.467 0.000 Model for

PP1 Intercept 4.486 0.764 5.867 0.000

Coefficient 0.129 0.006 21.907 0.000 Model for

PP2 Intercept 5.843 0.660 8.860 0.000

 82

Table 10: The results of the OLS regression analysis for training set no. 2

(a)

 Prediction model R R
2
 Std. Err F Significant F

PP1 EFD = 4.647 + 0.219 PP1 0.935 0.875 3.552 446.216 0.000

PP2 EFD = 5.873 + 0.125 PP2 0.950 0.903 3.09 588.286 0.000

(b)

 Value Std. Err t-value p-value

Coefficient 0.219 0.010 21.124 0.000 Model for

PP1 Intercept 4.647 0.752 6.180 0.000

Coefficient 0.125 0.005 24.255 0.000 Model for

PP2 Intercept 5.873 0.632 9.286 0.000

Table 11: The results of the OLS regression analysis for training set no. 3

(a)

 Prediction model R R
2
 Std. Err F Significant F

PP1 EFD = 4.13 + 0.225 PP1 0.943 0.889 3.365 505.711 0.000

PP2 EFD = 5.709 + 0.127 PP2 0.940 0.884 3.397 479.433 0.000

 83

(b)

 Value Std. Err t-value p-value

Coefficient 0.225 0.010 22.488 0.000 Model for

PP1 Intercept 4.13 0.735 5.623 0.000

Coefficient 0.127 0.006 21.896 0.000 Model for

PP2 Intercept 5.709 0.689 8.289 0.000

Table 12: The results of the OLS regression analysis for training set no. 4

(a)

 Prediction model R R
2
 Std. Err F Significant F

PP1 EFD = 4.877 + 0.221 PP1 0.938 0.88 3.411 483.639 0.000

PP2 EFD = 6.512 + 0.124 PP2 0.909 0.823 4.347 312.776 0.000

(b)

 Value Std. Err t-value p-value

Coefficient 0.221 0.010 21.992 0.000 Model for

PP1 Intercept 4.877 0.729 6.693 0.000

Coefficient 0.124 0.007 17.685 0.000 Model for

PP2 Intercept 6.512 0.856 7.609 0.000

Table 11: Continued,

 84

Table 13: The results of the OLS regression analysis for training set no. 5

(a)

 Prediction model R R
2
 Std. Err F Significant F

PP1 EFD = 4.144 + 0.228 PP1 0.945 0.893 3.279 523.493 0.000

PP2 EFD = 5.572 + 0.129 PP2 0.942 0.888 3.249 489.266 0.000

(b)

 Value Std. Err t-value p-value

Coefficient 0.228 0.010 22.880 0.000 Model for

PP1 Intercept 4.144 0.698 5.935 0.000

Coefficient 0.129 0.006 22.119 0.000 Model for

PP2 Intercept 5.572 0.650 8.576 0.000

Table 14: The results of the OLS regression analysis for training set no. 6

(a)

 Prediction model R R
2
 Std. Err F Significant F

PP1 EFD = 4.343 + 0.226 PP1 0.940 0.883 3.570 474.896 0.000

PP2 EFD = 6.063 + 0.124 PP2 0.941 0.886 3.503 488.507 0.000

 85

(b)

 Value Std. Err t-value p-value

Coefficient 0.226 0.010 21.792 0.000 Model for

PP1 Intercept 4.343 0.738 5.884 0.000

Coefficient 0.124 0.006 22.102 0.000 Model for

PP2 Intercept 6.063 0.668 9.070 0.000

Table 15: The results of the OLS regression analysis for training set no. 7

(a)

 Prediction model R R
2
 Std. Err F Significant F

PP1 EFD = 4.299 + 0.220 PP1 0.939 0.881 3.347 468.486 0.000

PP2 EFD = 5.970 + 0.121 PP2 0.939 0.882 3.338 471.409 0.000

(b)

 Value Std. Err t-value p-value

Coefficient 0.220 0.010 21.644 0.000 Model for

PP1 Intercept 4.299 0.723 5.949 0.000

Coefficient 0.121 0.006 21.712 0.000 Model for

PP2 Intercept 5.970 0.659 9.053 0.000

Table 14: Continued,

 86

Table 16: The results of the OLS regression analysis for training set no. 8

(a)

 Prediction model R R
2
 Std. Err F Significant F

PP1 EFD = 4.648 + 0.221 PP1 0.935 0.874 3.442 452.336 0.000

PP2 EFD = 6.265 + 0.121 PP2 0.938 0.881 3.303 479.402 0.000

(b)

 Value Std. Err t-value p-value

Coefficient 0.221 0.010 21.268 0.000 Model for

PP1 Intercept 4.648 0.723 6.429 0.000

Coefficient 0.121 0.006 21.895 0.000 Model for

PP2 Intercept 6.265 0.637 9.834 0.000

Table 17: The mean and median R
2

values for PP1 and PP2

 Mean R
2
 Median R

2

PP1 0.881 0.881

PP2 0.879 0.884

 87

5.7 Accuracy Evaluation of the Prediction Models

In order to assess the acceptability of the effort prediction models, the criteria suggested

by Conte et al. [31] were adopted. In particular, the author applied the Magnitude of

Relative Error, which is defined as

MRE = |EFDreal – EFDpred| / EFDreal,

where EFDreal and EFDpred are the actual and predicted efforts, respectively. The

rationale behind this measure is that the gravity of the absolute error is proportional to

the size of the observations. Such value has been calculated for each of the 10

observations in any test set, using the models derived for both PP1 and PP2. For each test

set, the prediction accuracy has been evaluated by taking into account a summary

measure, given by the Mean of MRE (MMRE), to measure the aggregation of MRE over

the 10 observations.

An acceptable threshold for an effort prediction model, as suggested by Conte et

al is an MMRE value ≤ 0.25. The values of such measures are reported in Tables 18 to

25. It can be observed that the model derived from training sets 2 and 4 for both PP1 and

PP2 exhibit MMRE values greater than 0.25; in addition, the model derived from training

sets 3 and 5 exhibit an MMRE value greater than 0.25 for in PP1. All other models

satisfy that condition. This represents an acceptable threshold for an effort prediction

model, as suggested by Conte et al [31], which is confirmed by the aggregate (mean) and

median MMRE values for PP1 and PP2 in Table 17, which are both ≤ 0.25.

Another meaningful measure of accuracy namely, the prediction at level l, was

assessed. The prediction at level l is defined as

(5.3)

 88

PRED (l) = k/N

where k is the number of observations whose MRE is less than or equal to l, and N is the

total number of observations. Again, according to Conte et al., at least 75 percent of the

predicted values should fall within 25 percent of their actual values. In other words, a

good effort prediction model should have PRED (0.25) ≥ 0.75. As we can observe from

the results shown in Tables 9 to 16, the required condition is satisfied for most of the

derived models. PP2 clearly outperforms PP1. The exceptions where PRED (0.25) < 0.75

lie in the models derived from training set 2 and 4 in both PP1 and PP2, and in the

models derived from training sets 1 and 3 for PP1.

Once accuracy has been separately calculated for each test set, the resulting

values have been aggregated across all eight sets. Table 26 reports the results of such

analysis. The aggregate MMRE and aggregate PRED (0.25) suggests that PP2 is good for

estimating the development effort but PP1 falls just short at a mean PRED (0.25) value

of 0.71. PP2 exhibits a better performance, thus confirming our intuition that the PC

metric may contribute, together with the DD and SC measures, to predict the

development effort of object-oriented systems. Nevertheless, the knowledge of the # of

Pattern Concrete classes may not be very accurate early in the development process,

whereas the DD and SC metrics are usually available earlier than the PC metric. This

suggests the use of the PP1 measure at the beginning of the development process, in

order to obtain a preliminary effort estimation, which can be refined by employing PP2

when the number of Pattern Concrete classes is known. As a matter of fact, PP2 is

 (5.4)

 89

strongly correlated to PP1 (Figure 10), as shown by the OLS regression carried out on

the 78 projects.

Table 18: The validation results for test set 1

EFD = 4.486 + 0.223 PP1 EFD = 5.84 + 0.129 PP2 EFDreal

PP1 EFDpred MRE PP2 EFDpred MRE

1 13 25.938 11.845 0.089 34.584 11.519 0.114

2 4 0 4.486 0.122 0 5.843 0.461

3 20.5 61.308 21.88 0.067 85.674 19.904 0.029

4 39 129.69 41.281 0.058 225.582 42.866 0.099

5 18 63.666 22.549 0.253 125.76 26.483 0.471

6 16 49.518 18.535 0.158 88.032 20.291 0.268

7 28 73.098 25.225 0.099 142.266 29.192 0.043

8 7 11.790 7.831 0.119 14.148 8.165 0.166

9 28 75.456 25.894 0.075 145.41 29.708 0.061

10 13 37.728 15.19 0.168 51.876 14.357 0.104

MMRE 0.121 MMRE 0.182

PRED (0.25) 0.9 PRED (0.25) 0.8

 90

Table 19: The validation results for test set 2

EFD = 4.647 + 0.219 PP1 EFD = 5.873 + 0.125 PP2 EFDreal

PP1 EFDpred MRE PP2 EFDpred MRE

1 35 97.464 31.679 0.095 220.080 40.873 0.168

2 46 70.740 24.267 0.472 110.040 23.373 0.492

3 4 11.790 7.917 0.979 14.148 8.123 1.031

4 15 35.370 14.457 0.036 46.374 13.248 0.117

5 4 11.790 7.917 0.979 14.148 8.123 1.031

6 24 61.308 21.651 0.098 88.032 19.873 0.172

7 22 58.950 20.997 0.046 82.530 18.998 0.136

8 13 35.370 14.457 0.112 46.374 13.248 0.019

9 18 37.728 15.111 0.161 43.230 12.748 0.292

10 10 11.790 7.917 0.208 14.148 8.123 0.188

MMRE

 0.319

MMRE

0.365

PRED (0.25) 0.7 PRED (0.25) 0.6

 91

Table 20: The validation results for test set 3

EFD = 4.13 + 0.225 PP1 EFD = 5.709 + 0.127 PP2 EFDreal

PP1 EFDpred MRE PP2 EFDpred MRE

1 4 11.790 7.505 0.876 12.576 7.741 0.935

2 7 0.000 4.130 0.410 0.000 5.709 0.184

3 9 11.790 7.505 0.166 12.576 7.741 0.140

4 17 54.234 19.655 0.156 89.604 20.187 0.187

5 22 68.382 23.705 0.078 91.962 20.568 0.065

6 10 11.790 7.505 0.250 14.148 7.995 0.201

7 30.5 75.456 25.730 0.156 166.632 32.633 0.070

8 7 0.000 4.130 0.410 0.000 5.709 0.184

9 27 47.160 17.630 0.347 96.678 21.330 0.210

10 18 48.732 18.080 0.004 55.020 14.599 0.189

MMRE 0.285 MMRE 0.237

PRED (0.25) 0.6 PRED (0.25) 0.9

 92

Table 21: The validation results for test set 4

EFD = 4.877 + 0.221 PP1 EFD = 6.512 + 0.124 PP2 EFDreal

PP1 EFDpred MRE PP2 EFDpred MRE

1 10 35.370 14.822 0.482 38.514 12.588 0.2588

2 55 98.250 32.502 0.409 159.558 31.684 0.424

3 31 100.608 33.165 0.070 152.484 30.568 0.014

4 7 30.654 13.496 0.928 33.798 11.844 0.692

5 4 11.790 8.192 1.048 14.148 8.744 1.186

6 17 58.950 21.452 0.262 84.888 19.904 0.171

7 18 37.728 15.485 0.140 51.876 14.696 0.184

8 7 11.790 8.192 0.170 12.576 8.496 0.214

9 28.5 113.970 36.922 0.296 168.99 33.172 0.164

10 3 0.000 4.877 0.626 0 6.512 1.171

MMRE 0.443 MMRE 0.448

PRED (0.25) 0.3 PRED (0.25) 0.6

 93

Table 22: The validation results for test set 5

EFD = 4.144 + 0.228 PP1 EFD = 5.572 + 0.129 PP2 EFDreal

PP1 EFDpred MRE PP2 EFDpred MRE

1 20 47.160 17.824 0.109 65.238 16.279 0.186

2 13 0.000 4.144 0.681 0.000 5.572 0.571

3 22 68.382 23.980 0.090 132.048 27.244 0.238

4 16 37.728 15.088 0.057 51.876 14.086 0.120

5 39 122.616 39.712 0.018 215.364 40.918 0.049

6 31 80.958 27.628 0.109 146.982 29.695 0.042

7 20 51.876 19.192 0.040 63.666 16.021 0.199

8 17 61.308 21.928 0.290 85.674 19.633 0.155

9 7 37.728 15.088 1.155 47.160 13.312 0.902

10 6 0.000 4.144 0.623 0.000 5.572 0.071

MMRE 0.317 MMRE 0.253

PRED (0.25) 0.6 PRED (0.25) 0.8

 94

Table 23: The validation results for test set 6

EFD = 4.343 + 0.226 PP1 EFD = 6.063 + 0.124 PP2 EFDreal

PP1 EFDpred MRE PP2 EFDpred MRE

1 23 60.522 21.745 0.055 86.460 19.703 0.143

2 19.5 63.666 22.649 0.161 102.180 22.183 0.138

3 8 0.000 4.343 0.457 0.000 6.063 0.242

4 16 51.876 19.259 0.204 78.600 18.463 0.154

5 21 75.456 26.039 0.240 116.328 24.415 0.163

6 21 58.950 21.293 0.014 111.612 23.671 0.127

7 7 11.790 7.733 0.105 14.148 8.295 0.185

8 24 68.382 24.005 0.000208 92.748 20.695 0.138

9 27 71.526 24.909 0.077 133.620 27.143 0.005

10 19 48.732 18.355 0.034 55.020 14.743 0.224

MMRE 0.135 MMRE 0.152

PRED (0.25) 0.9 PRED (0.25) 1

 95

Table 24: The validation results for test set 7

EFD = 4.299 + 0.220 PP1 EFD = 5.970 + 0.121 PP2 EFDreal

PP1 EFDpred MRE PP2 EFDpred MRE

1 27 84.888 28.059 0.039 111.612 23.152 0.143

2 10 11.790 7.599 0.240 14.148 8.148 0.185

3 7 0.000 4.299 0.386 0.000 5.970 0.147

4 31 83.316 27.619 0.109 164.274 31.259 0.008

5 20 56.592 20.139 0.007 69.168 16.618 0.169

6 36 73.098 24.759 0.312 139.122 27.387 0.239

7 5 0.000 4.299 0.140 0.000 5.970 0.194

8 4 0.000 4.299 0.075 0.000 5.970 0.493

9 25 66.024 22.779 0.089 91.962 20.127 0.195

10 28 71.526 24.319 0.131 132.834 26.419 0.056

MMRE 0.153 MMRE 0.183

PRED (0.25) 0.8 PRED (0.25) 1

 96

Table 25: The validation results for test set 8

EFD = 4.648 + 0.221 PP1 EFD = 6.265 + 0.121 PP2

 EFDreal

PP1 EFDpred MRE PP2 EFDpred MRE

1 22 63.666 22.549 0.025 100.608 21.758 0.011

2 25 63.666 22.549 0.098 103.752 22.242 0.110

3 0 11.790 7.963 0.000 13.362 8.327 0.000

4 15 51.876 19.234 0.282 58.164 15.224 0.015

5 5 0.000 4.648 0.070 0.000 6.270 0.254

6 22 51.876 19.234 0.126 102.180 22.000 0.000

7 39 128.118 40.671 0.043 183.138 34.463 0.116

8 27 78.600 26.748 0.009 114.756 23.936 0.113

MMRE 0.082 MMRE 0.078

PRED (0.25) 0.875 PRED (0.25) 1

Table 26: Aggregate accuracy evaluation

 Aggregrate MMRE Aggregrate PRED (0.25)

PP1 0.232 0.709

PP2 0.237 0.874

 97

180160140120100806040200

300

250

200

150

100

50

0

TUPP1

T
U
P
P
2

Scatterplot of TUPP2 vs TUPP1

R
2
 R Std Err F Significant F

0.931 0.965 20.178 1019.174 0.000

Figure 10: Results of the OLS regression analysis with PP1 as independent variable and

PP2 as dependent variable

 98

6. COMPARISON ANALYSIS

6.1 Single Measures and Their Sums

Courtney et al. [71] report that researchers who set out to learn empirical relationships

by experimenting with different combinations of measures and functional forms before

choosing the one with the highest correlation tend to make a good model with small data

sets. A comparative study was conducted with respect to each of the single measures

employed in the Pattern Point approach (i.e., DD, SC, and PC), and with respect to the

measures obtained by summing them. The results of the study are presented in this

section. An 8-fold cross validation technique similar to that used in the empirical

validation process of the PP1 and PP2 measures was again used in this study. An

Ordinary Least Squares regression was carried out on the training sets after removing the

influential outliers. Then, the performance of the derived models for all considered

measures was evaluated using the data coming from the corresponding testing sets.

Table 27 shows a summary descriptive statistics of the measures considered. We recall

that data about DD, SC, and PC for the 78 use cases are listed in Table 6. For the sake of

simplicity, only the aggregate MMRE and PRED (0.25) resulting from the cross

validation, for each of the considered measures is shown in Table 28.

Among the single measures, the best performance is gained by SC+PC, for

which we have acceptable MMRE values, and PRED (0.25) values that surpass the

indicated threshold. An acceptable MMRE value and corresponding PRED (0.25) value

also results for SC, DD+SC, DD+SC+PC, which shows that the SC metric is very

strongly correlated with effort. In fact, all the measures with SC fair slightly better than

 99

the PP1 metric. Even though the SC+PC and DD+SC+PC measures are expected to

perform better because the PC metric is a part of these measures, SC by itself also faired

slightly better: an aggregate PRED (0.25) of 0.75 VS an aggregate PRED (0.25) of 0.71

for PP1. This leads to the conclusion that the SC metric can be used interchangeably with

the PP1 metric at the early analysis stage. The PP2 metric outperformed all the other

measures.

Table 27: Descriptive statistics of the measures considered for the comparison analysis

 Obs. Min Max Mean Median Mode Std Dev.

DD 78 0 100 37.641 41 11 25.265

SC 78 0 147 51.436 53 31 37.374

PC 78 0 122 33.397 24.5 0 33.880

DD + SC 78 0 244 88.910 92.5 24 62.332

DD + PC 78 0 219 70.872 68 0 56.647

SC + PC 78 0 269 84.833 83 0 68.750

DD + SC + PC 78 0 366 122.308 127.5 0 92.961

 100

Table 28: Aggregate accuracy evaluation of the prediction models derived from basic

and combined size measures

 Aggregate MMRE Aggregate PRED (0.25)

DD 0.37 0.23

SC 0.23 0.75

PC 0.36 0.56

DD+SC 0.23 0.74

DD+PC 0.26 0.79

SC+PC 0.25 0.80

DD+SC+PC 0.24 0.78

Comparing the above results with the ones of Section 6.7, we may derive two

main conclusions. First, the PP2 metric is better correlated to effort than any single

measure composing it. Second, the mere sum of the single measures is sufficient to

enhance the performance of its prediction model as can been seen in DD+PC. Lastly,

the PP1 metric can be used interchangeably with SC metric at the early analysis stage.

6.2 Multivariate OLS Regression

In order to complete the analysis, a multivariate OLS regression using as independent

variables the basic measures of the Pattern Point approach, was carried out. Again, the

8-fold cross validation technique was applied by carrying out a multivariate OLS

regression on the eight training sets, and then evaluating the performance of the derived

 101

models, using the data coming from the corresponding testing sets. Table 29 reports the

aggregate MMRE and PRED (0.25) resulting from this analysis. Compared with the

values reported in Table 26, it can be deduced that the PP2 measure exhibits a more

accurate predictive capability. In any case, this study has confirmed once again that the

use of the PP2 measure may yield a better predictive accuracy in models, which are

based on a multivariate regression as well.

Table 29: Aggregate accuracy evaluation of the prediction models derived from

multivariate OLS regression analyses

 Aggregate MMRE Aggregate PRED (0.25)

Multivariate DD_SC 0.24 0.74

Multivariate DD_SC_PC 0.23 0.78

 102

7. CONCLUSIONS AND FUTURE EXTENSIONS

7.1 Conclusions

There are several models in existence that are used to estimate the size of software

systems. System-level measures are especially important for project managers who could

benefit from an overall view of the system [32]. As a matter of fact, activities such as

software development planning, and particularly the tasks of estimating cost and effort,

are more effectively performed when a size estimate of the whole system is available.

The object-oriented development paradigm warrants a re-thinking of the way

estimation models are contrived because of the unique characteristic of the OO

paradigm; namely, that the same artifacts are systematically realized and refined. The

definition of a common, structured modeling framework like OMG SysML and the

availability of the artifacts in the CASE tools present an opportunity for a holistic

modeling approach that can leverage these artifacts. The SysML Point model was

presented to take advantage of these factors. Of the estimation techniques that constitute

the SysML Point approach, only the Pattern Point model was yet to be defined.

Among system level measures, the Function Point count has achieved

international acceptance as a size estimate of business systems and in predicting the

effort, cost and duration of projects [30], [33], [34]. The methodology provides an

estimate of software size by measuring the functionality of the system to be developed.

Despite the fact that the FP method was originally conceived to be independent of the

methodology used to develop the system under measurement, the application of the FP

method turns out to be rather unnatural when applied to object-oriented systems [34, 35].

 103

Kemerer and Porter concluded their empirical study on improving the reliability of FP

measurement with the statement: “The advent of event driven, object-oriented systems ...

may require redefinition of FP’s or the development of one or several new measures to

identify system size” [34].

Many researchers are in agreement that the FP method can be generalized in

order to be successfully used for other types of systems (e.g. engineering, scientific and

real-time systems) and for different programming paradigms [17], [33], [36]-[39]. This

is the case as seen in Object-oriented Function Point [10], Use Case Point [9] and Class

Point models [29] in estimating object-oriented projects. Verner and Tate suggest a

general FP-like model for a more objective and accurate size estimation, which can be

tailored to any specific software development environment [117].

The Pattern Point approach reflects the main features of the FP-like general

model proposed by Verner and Tate, namely, the partitioning of a system into different

component types with different sizing criteria for each type, the sizing of the individual

components, the sum of the component sizes and an overall system adjustment to allow

for global factors. The proposed partitioning of the design patterns into different types,

which are sized with different rules is not tailored to a specific application environment

and this provides a high level of flexibility of the method.

The Pattern Point model provides a system-level size measure using the design

patterns from object interaction analyses in the late OOA phase of development. Two

measures are defined within the Pattern Point method; these are the PP1 and PP2

metrics. PP1 is useful as a size measure earlier in than PP2 because it does not require

 104

the number of pattern concrete (PC) classes metric, which is typically available later in

OOA.

The empirical study shows that Pattern Point measure can be effectively used

during the OOA phase to predict the effort values with a high degree of confidence. In

particular, the PP2 measure outperformed PP1, supporting the intuition that the PC

measure can be profitably exploited in the estimation of system size. The empirical study

presented in the dissertation has suggested that the PP1 measure may have an equal or

lesser predictive capability than its constituent SC metric. Moreover, the proposed

aggregation and multivariate models turns out to be quite effective; however the PP2

measure outperformed all others measures in the comparison analyses.

In conclusion, further investigation is needed for assessment of the Pattern Point

method. A preliminary empirical evaluation, based on data coming from 78 use cases,

developed in the IBM Lotus Quickr 8.0 release prove that a model based on the design

patterns from object interaction modeling is effective in estimating size and remaining

development effort. However, a multi-project study is desired to assess the possible

effects of the Technical Complexity Factors and Environmental Factors in the Pattern

Point method.

 105

7.2 Future Extensions

In the SysML Point approach, since a Pattern Point Model has been defined, the next

step would be for an analysis of the complete methodology to be conducted. It would be

particularly beneficial to perform an empirical study in an iterative development project

environment such as the Unified Process [99] where OO artifacts would likely be at

different levels of realizations.

Function Point → Use case Point → Pattern Point → Class Point

Figure 11: Object-oriented development stages and corresponding effort estimation

models

Also of interest is the development of a conversion mechanism from one metric

to another. For example, converting Function Points to Pattern Points and vice versa.

This might not be completely necessary because each of the measures already have a

conversion to a time value such as hours, days or months.

 A software architectural pattern expresses a fundamental structural organization

schema for a software system, which consists of subsystems, their responsibilities and

interrelations. In comparison to design patterns, architectural patterns are larger in scale

Requirements

Analysis

Design

 106

and operate at a higher level [103]. Examples include, Model-view-controller, Peer-to-

peer and Presentation and Presentation-abstraction-control. A study on the possible

effects of these architectural patterns on size and effort estimates would be of interest.

However since they operate at a much higher level they are more likely to be included as

a Technical Complexity Factor (TCF) or Environmental Adjustment Factor (EAF).

 107

REFERENCES

[1] R. Smith, "Panel on Design Methodology," in OOPSLA '87. OOPSLA '87

Addendum to the Proceedings. doi:10.1145/62138.62151, 1987.

[2] K. Beck and W. Cunningham, "Using Pattern Languages for Object-Oriented

Program," in OOPSLA '87. OOPSLA '87 Workshop on Specification and Design

for Object-Oriented Programming.

[3] E. Gamma, R. Helm, R. Johnson and J.M. Vlissides, “Design Patterns: Elements

of Reusable Object-Oriented Software,” 1994.

[4] M. Grand, “Patterns in Java: A Catalog of Reusable Design Patterns Illustrated

with UML,” 1998.

[5] L.C. Briand, S. Morasca, and V.R. Basili, “Property Based Software Engineering

Measurement,” IEEE Trans. Software Eng., vol. 22, no. 1, pp. 68-86, Jan. 1996.

[6] N. Fenton, “Software Measurement: A Necessary Scientific Basis,” IEEE Trans.

Software Eng., vol. 20, no. 3, pp. 199-206, Mar. 1994.

[7] H. Zuse, “Reply to: Property-Based Software Engineering Measurement,” IEEE

Trans. Software Eng., vol. 23, p. 533 Aug. 1997.

[8] H. Zuse, Software Complexity: Measures and Methods: Walter de Gruyter, 1990.

[9] E. R. Carroll, Estimating Software Based on Use Case Points, OOPSLA, ACM,

2005.

[10] G. Caldiera, G. Antoniol, R. Fiutem and C. Lokan, “Definition and Experimental

valuation of Function Points for Object-Oriented Systems,” 5
th

 Software Metrics

Symposium, 1998.

 108

[11] C. Gennaro, F. Filomena, T. Genoveffa and V. Guiliana, “Class Point: An

Approach for the Size Estimation of Object-Oriented Systems.” IEEE

Transactions on Software Engineering, vol. 31, no. 1, January 2005.

[12] L. Briand, K. El Emam, and S. Morasca, “On the Application of Measurement

Theory in Software Engineering,” J. Empirical Software Eng., vol. 1, pp. 61-68,

1996.

[13] B.A. Kitchenham, N. Fenton, and S.L. Pfleeger, “Towards a Framework for

Software Measurement Validation,” IEEE Trans. Software Eng., vol. 21, no. 12,

pp. 929-944, Dec. 1995.

[14] K.B. Lakshmanan, S. Jayaprakash, and P.K. Sinha, “Properties of Control-Flow

Complexity Measures,” IEEE Trans. Software Eng., vol. 17, pp. 1289-1295, Dec.

1991.

[15] E.J. Weyuker, “Evaluating Software Complexity Measures,” IEEE Trans.

Software Eng., vol. 14, pp. 1357-1365, Sept. 1988.

[16] G. Booch, Object-Oriented Analysis and Design, 2nd Ed. Benjamin/Cummings,

1994.

[17] B.W. Boehm, B. Clark, and E. Hiriwitz, “Cost Models for Future Life Cycle

Processes: COCOMO 2. 0,” Ann. Software Eng., vol. 1, no. 1, pp. 1-24, 1995.

[18] V.B. Misic and D.N. Tesic, “Estimation of Effort and Complexity: an Object-

Oriented Case Study,” J. Systems and Software, vol. 41, pp. 133-143, 1999.

[19] S. Moser, B. Henderson-Sellers, and V.B. Misic, “Cost EstimationBased on

Business Models,” J. Systems and Software, vol. 49, pp. 33-42, 1999.

 109

[20] P. Nesi and T. Querci, “Effort Estimation and Prediction of Object-Oriented

Systems,” J. Systems and Software, vol. 42, pp. 89-102, 1998.

[21] R.D. Banker, R.J. Kauffman, C. Wright, and D. Zweig, “Automating Output Size

and Reuse Metrics in a Repository-Based Computer-Aided Software

Engineeering (CASE) Environment,” IEEE Trans. Software Eng., vol. 20, no. 3,

pp. 169-187, Mar. 1994.

[22] G.C. Low and D.R. Jeffrey, “Function Points in the Estimation and Evaluation of

the Software Process,” IEEE Trans. Software Eng., vol. 16, pp. 64-71, Jan. 1990.

[23] S. Moser, B. Henderson-Sellers, and V.B. Misic, “Measuring Object-Oriented

Business Models,” Proc. TOOL Pacific’97 Conf., 1997.

[24] L. Briand, E. Arisholm, S. Counsell, F. Houdek, and P. The´venod-Fosse,

“Empirical Studies of Object-Oriented Artifacts, Methods, and Processes: State

of The Art and Future Directions,” J. Empirical Software Eng., vol. 4, pp. 387-

404, Sept. 1999.

[25] F. Brito and E. Abreu, “The MOOD Metrics Set,” Proc. ECOOP’95 Workshop

Metrics, 1995.

[26] F. Brito, E. Abreu, M. Goulao, and R. Estevers, “Toward the Design Quality

Evaluation of OO Software Systems,” Proc. Fifth Int’l Conf. Software Quality,

1995.

[27] P. Coad and J. Nicola, Object-Oriented Programming. Prentice Hall, 1993.

 110

[28] D. Wampler, "Aspect-Oriented Design in Java/AspectJ and Ruby," - Companion,

2007. ICSE 2007 Companion. 29th International Conference on Software

Engineering, pp.184-185, 20-26 May 2007.

[29] G. Costagliola, F. Ferrucci, G. Tortora and G. Vitiello, "Class Point: An

Approach for the Size Estimation of Object-oriented Systems," IEEE

Transactions on Software Engineering, vol.31, no.1, pp. 52-74, Jan. 2005.

[30] A.J. Albrecht, “Measuring Application Development Productivity,” Proc. Joint

SHARE/GUIDE/IBM Application Development Symp., pp. 83-92, 1979.

[31] S.D. Conte, H.E. Dunsmore, and V.Y. Shen, Software Eng. Metrics and Models.

Menlo Park, Benjamin/Cummings, 1986.

[32] R. Harrison, S.J. Counsell, and R.V. Nithi, “An Evaluation of the MOOD Set of

Object-Oriented Software Metrics,” IEEE Trans. Software Eng., vol. 24, no. 6,

pp. 491-496, June 1998.

[33] J.B. Dreger, Function Point Analysis. Prentice Hall, 1989.

[34] C.F. Kemerer and B.S. Porter, “Improving the Reliability of Function Point

Measurement: An Empirical Study,” IEEE Trans. Software Eng., vol. 18, no. 11,

pp. 1011-1024, Nov. 1992.

[35] J. Keyes, “New Metrics Needed for New Generation: Lines of Code, Function

Points Won’t Do at the Dawn of the Graphical, Object Era,” IEEE Software, vol.

12, no. 6, pp. 42-52, 1992.

[36] P. Coad and E. Yourdon, Object-Oriented Analysis, second ed. Yourdon Press,

1991.

 111

[37] M. Itakura and A. Takayanagi, “A Model for Estimating Program Size and Its

Evaluation,” Proc. Sixth Int’l Conf. Software Eng., pp. 104-109, 1982.

[38] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-

Oriented Modeling and Design. Prentice Hall, 1991.

[39] I. Sommerville, Software Engineering, Addison Wesley, 1996.

[40] J. Lehman, “How Software Projects Are Really Managed,” Datamation, vol. 3,

pp. 119–129, 1979.

[41] Function Point Counting Practices Manual, Release 4.1.1, Int’l Function Point

Users Group, 2001.

[42] F. Brooks, The Mythical Man-Month: Essays on Software Engineering. Addison-

Wesley, 1995.

[43] B. Boehm, Software Engineering Economics. Prentice-Hall, 1981.

[44] H. Rehesaar and E. Beames, “Project Plans and Times Budgets in Information

System Projects,” International Conference on Software Engineering: Education

& Practice, pp. 120–124, 1998.

[45] B. Boehm, “Anchoring the Software Process,” IEEE Software, vol. 13, no. 4, pp.

73–82, 1996.

[46] D. Phillips, “Project Management: Filling in the Gaps,” IEEE Software, vol. 13,

no. 4, pp. 17–18, 1996.

[47] R. B. Pittman, “Product & Project Planning: Key to Getting It Right the First

Time,” IEEE WESCON/96, pp. 91–95, 1996.

 112

[48] Carnegie Mellon Software Engineering Institute, The Capability Maturity Model:

Guidelines for Improving the Software Process. Addison-Wesley, 1995.

[49] M. C. Paulk, Key Practices of the Capability Maturity Model. Addison-Wesley,

1993.

[50] C. R. Snyder, “The Software Development Plan: A Key to Achieve SEI

Capability Maturity Model Compliance,” ACM, vol. 3, no. 7, pp. 106–112, 1992.

[51] R. C. Tausworthe, “The Work Breakdown Structure in Software Project

Management,” Systems and Software, vol. 81, pp. 181–186, 1980.

[52] D. Simmons, N. Ellis, H. Fujihara, and W. Kuo, Software Measurement—A

Visualization Tool Kit for Process Control and Process Improvement. Prentice-

Hall, 1998.

[53] R. Pressman, Software Engineering: A Practitioner’s Approach. McGraw-Hill,

1997.

[54] W. S. Humphrey, Managing the Software Process. Reading, Addison-Wesley,

1989.

[55] A. Tatnall and P. Shackleton, “IT Project Management: Developing On-going

Skills in the Management of Software Development Projects,” Proceedings of

Software Engineering: Education and Practice, pp. 400–405, 1996.

[56] C. Chang, C. Chao, and T. Nguyen, “Software Project Management Net: A New

Methodology on Software Management,” Proceedings of International

Computer Software and Applications Conference, pp. 534–539, 1998.

 113

[57] E. Bennatan, On Time Within Budget: Software Project Management Practices

and Techniques. John Wiley & Sons, 2000.

[58] D. Phillips, The Software Project Management Handbook, Principles That Work

at Work. IEEE Computer Society, 2000.

[59] W. Keuffel, “People Based Processes: A RADical Concept,” Software

Development, vol. 4, pp. 27–30, 1995.

[60] C. Jones, “Patterns of Large Software Systems: Failure and Success,” IEEE

Computer, vol. 28, no. 3, pp. 86–87, 1995.

[61] C. Jones, “Management Tools and Software Failures and Success,” CrossTalk,

vol. 7, no. 10.

[62] W. Royce, Software Project Management—A Unified Framework. Reading:

Addison-Wesley, 1998.

[63] F. McGrath, 16 Critical Software Practices for Performance-Based

Management. Software Program Management Network, 1999.

[64] A. Shenhar, “Strategic Project Management: The New Framework,” Portland

IEEE International Conference on Management of Engineering and Technology,

pp. 382–386, 1999.

[65] M. D. Rosenau and M. D. Lewin, Software Project Management, Step by Step.

Lifetime Learning Publications, 1984.

[66] F. J. Heemstra, “Software Cost Estimation,” Information on Software

Technology, vol. 34, no. 10, pp. 627–639, 1992.

 114

[67] A. L. Lederer and J. Prasad, “Information System Cost Estimating: A Current

Assessment,” Journal of Information, vol. 8, no. 1, pp. 22–33, 1993.

[68] A. Cuelenaere, M. van Genuchten, and F. Heemstra, “Calibrating a Software

Cost Estimation Model: Why and How,” Information and Software Technology,

vol. 29, pp. 558–567, 1994.

[69] C. Walston and C. Felix, “A Method of Programming Measurement and

Estimation,” IBM System Journal, vol. 16, no. 1, pp. 54–73, 1977.

[70] J. Bailey and V. Basili, “A Meta-Model for Software Development Resource

Expenditures,” Proceedings of the Fifth International Conference on Software

Engineering, pp. 107–116, 1981.

[71] R. Courtney and D. Gustafson, “Shotgun Correlations in Software Measures,”

Software Engineering Journal, vol. 8, no. 1, pp. 5–13, 1993.

[72] S. Conte, H. Dunsmore, and V. Shen, Software Engineering Metrics and Models.

Benjamin Cummings, 1986.

[73] Y. Miyazaki and K. Mori, “COCOMO Evaluation and Tailoring,” Proceedings

of the Eighth International Conference on Software Engineering, pp. 292–299,

1985.

[74] C. Kemerer, “An Empirical Validation of Software Cost Estimation Models,”

Communications of the ACM, vol. 30, no. 5, pp. 416–429, 1987.

[75] C. Kemerer and M. Patrick, Staffing Factor in Software Cost Estimation Models.

Windcrest/McGraw-Hill, 1993.

 115

[76] D. Jeffrey, “Time-Sensitive Cost Models in the Commercial MIS Environment,”

IEEE Transactions on Software Engineering, vol. 13, no. 7, pp. 852–859, 1987.

[77] B. Kitchenham and N. Taylor, “Software Cost Models,” ICL Technology

Journal, vol. 4, no. 3, pp. 73–102, 1984.

[78] L. Briand, V. Basili, and W. Thomas, “A Pattern Recognition Approach for

Software Engineering Data Analysis,” IEEE Transactions on Software

Engineering, vol. 18, no. 11, pp. 931–942, 1992.

[79] K. Srinivasan and D. Fisher, “Machine Learning Approach to Estimating

Development Effort,” IEEE Transactions on Software Engineering, vol. 21, no.

2, pp. 126–137, 1995.

[80] B. Kitchenham and K. Kansala, “Inter-Item Correlation Among Function

Points,” Proceedings of the 15th International Conference on Software

Engineering, pp. 477–480, 1993.

[81] G. Wittig and G. Finnie, “Using Artificial Neural Networks and Function Points

to Estimate 4GL Software Development Effort,” Australian Journal of

Information Systems, vol. 1, no. 2, pp. 87–94, 1994.

[82] B. Samson, D. Ellison, and P. Dugard, “Software Cost Estimation Using an

Albus Perception (CMAC),” Journal of Systems Software, vol. 12, pp. 209–218,

1997.

[83] A. Cuelenaere, M. V. Genuchten, and F. Heemstra, “Calibrating a Software Cost

Estimation Model: Why and How,” Information and Software Technology, vol.

29, pp. 558–567, 1994.

 116

[84] F. Walkerden and R. Jeffery, “Software Cost Estimation: A Review of Models,

Process, and Practice,” Advances in Computers, vol. 44, pp. 59–125, 1997.

[85] T. Mukhopadhyav, S. Vicinanza, and M. Prietula, “Estimating the Feasibility of a

Case-Based Reasoning Model for Software Effort Estimation,” MIS Quarterly,

vol. 16, pp. 155–171, 1992.

[86] K. Atkison and M. Sheppered, “The Use of Function Points to Find Cost

Analogies,” Proceedings in European Software Cost Modelling Conference,

1994.

[87] K. Sengupta and T. Abdel-Hamid, “Impact of Schedule Estimation on Software

Project Behavior,” IEEE Software, vol. 3, no. 4, pp. 70–75, 1986.

[88] T. Abdel-Hamid and S. Madnick, Software Project Dynamics: An Integrated

Approach. Prentice Hall, 1991.

[89] T. Abdel-Hamid, “Adapting, Correcting, and Perfecting Software Estimates: A

Maintenance Metaphor,” Computer, vol. 26, no. 3, pp. 20–29, 1993.

[90] B. Boehm, C. Abts, A. Brown, S. Chulani, B. Clark, E. Horowitz, R. Madachy,

D. Reifer, and B. Steece, Software Cost Estimation with COCOMO II. Prentice-

Hall, 2000.

[91] G. Finnie and G. Wittig, “A Comparison of Software Effort Estimation

Techniques: Using Function Points with Neural Networks, Case-Based

Reasoning and Regression Models,” Journal of Systems Software, vol. 39, pp.

281–289,1997.

[92] T. DeMarco and T. Lister, Peopleware. Dorset House, 1987.

 117

[93] L. Putnam, “A General Empirical Solution to the Macro Software Sizing and

Estimating Problem,” IEEE Transactions on Software Engineering, vol. 4, no. 4,

pp. 345–361, 1978.

[94] A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian Data Analysis. Chapman

& Hall, 1995.

[95] B. Kitchenham, “Empirical Studies of Assumptions That Underlie Software

Cost-Estimation Models,” Information and Software Technology, vol. 34, no. 4,

pp. 211–218, 1992.

[96] C. Jones, Applied Software Measurement: Assuring Productivity and Quality.

McGraw-Hill, 1996.

[97] I. Jacobson, Object-Oriented Software Engineering. Addison Wesley

Professional. 1992.

[98] OMG SysML Specification v. 1.0. September 2007.

[99] P. Kruchten, The Rational Unified Process: An Introduction (3rd Ed.). Publisher,

2004.

[100] K. Schwaber, Agile Project Management with Scrum, Microsoft Press, January

2004.

[101] M. Stephens and D. Rosenberg, Extreme Programming Refactored: The Case

Against XP, Apress, 2003.

[102] W. Royce, "Managing the Development of Large Software Systems,"

Proceedings of IEEE WESCON 26 (August): 1-9, 1970.

 118

[103] P. Avgeriou and Z. Uwe, "Architectural Patterns Revisited: A Pattern Language."

10th European Conference on Pattern Languages of Programs (EuroPlop 2005),

2005.

[104] J. Coutaz, "PAC: an Implementation Model for Dialog Design". H-J. Bullinger,

B. Shackel (ed.) Proceedings of the Interact'87 Conference, September 1-4,

1987, Stuttgart, Germany: North-Holland, pp. 431-436, 1987.

[105] D. Schoder and K. Fischbach, Core Concepts in Peer-to-Peer (P2P) Networking.

In: Subramanian, R.; Goodman, B. (eds.): P2P Computing: The Evolution of a

Disruptive Technology, Idea Group Inc, 2005.

[106] A. Leff and J.T. Rayfield, "Web-application Development Using the

Model/View/Controller Design Pattern," Enterprise Distributed Object

Computing Conference, 2001. EDOC '01. Proceedings. Fifth IEEE International,

pp.118-127, 2001.

[107] S. J. Yun (2005). Productivity Prediction Model Based on Bayesian Analysis and

Productivity Console. Dissertation, Texas A&M University, 2005.

[108] C. Baudoin and G. Hollowell Realizing the Object-Oriented Lifecycle. Prentice

Hall, 1996.

[109] S. J. Yun and D.B. Simmons, "Continuous Productivity Assessment and Effort

Prediction Based on Bayesian Analysis," Computer Software and Applications

Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual

International , vol. 1, 28-30, pp. 44-49 Sept. 2004.

 119

[110] D.B. Simmons, "Measuring and Tracking Distributed Software Development

Projects," 2003. FTDCS 2003. Proceedings. The Ninth IEEE Workshop on

Future Trends of Distributed Computing Systems, pp. 63-69, 28-30 May 2003.

[111] B. Boehm, et al. Software Cost Estimation with COCOMO II. Prentice-Hall,

2000.

[112] B. Clark, S. Devnani-Chulani and B. Boehm, "Calibrating the COCOMO II Post-

Architecture Model," Proceedings of the 1998 International Conference on

Software Engineering, pp.477-480, 19-25 Apr 1998.

[113] Y. Wang and Y. Yuan, “The Formal Economic Model of Software Engineering,”

2006.Canadian Conference on Electrical and Computer Engineering, pp. 2385-

2388, May 2006.

[114] J. Li and G. Ruhe, "Decision Support Analysis for Software Effort Estimation by

Analogy," ICSE Workshops 2007. International Workshop on Predictor Models

in Software Engineering, pp.6-6, 20-26 May 2007.

[115] M. Shepperd and C. Schofield, "Estimating Software Project Effort Using

Analogies," IEEE Transactions on Software Engineering, vol. 23, no.11, pp.736-

743, Nov 1997.

[116] T. Menzies, C. Zhihao, J. Hihn and K. Lum, "Selecting Best Practices for Effort

Estimation," IEEE Transactions on Software Engineering, vol.32, no.11, pp.883-

895, Nov. 2006.

[117] J. Verner and G. Tate, “A Software Size Model,” IEEE Trans. Software Eng.,

vol. 18, pp. 265-278, Apr. 1992.

 120

APPENDIX A

Figure 12: Structural diagram of the Composite pattern

Figure 13: Structural diagram of the Decorator pattern

Figure 14: Structural diagram of the Factory pattern

 121

Figure 15: Structural diagram of the Flyweight pattern

Figure 16: Structural diagram of the Interpreter pattern

Figure 17: Structural diagram of the Memento pattern

 122

Figure 18: Structural diagram of the Observer pattern

Figure 19: Structural diagram of the Prototype pattern

Figure 20: Structural diagram of the Singleton pattern

 123

Figure 21: Structural diagram of the Strategy pattern

Figure 22: Structural diagram of the Abstract Factory pattern

Figure 23: Structural diagram of the Bridge pattern

 124

Figure 24: Structural diagram of the Builder pattern

Figure 25: Structural diagram of the Template Method pattern

 125

Figure 26: Structural diagram of the Visitor pattern

Figure 27: Structural diagram of the State pattern

 126

Figure 28: Structural diagram of the Façade pattern

Figure 29: Structural diagram of the Proxy pattern

 127

Figure 30: Structural diagram of the Mediator pattern

Figure 31: Structural diagram of the Iterator pattern

 128

Figure 32: Structural diagram of the Adapter pattern

Figure 33: Structural diagram of the Chain Of Responsibility pattern

 129

VITA

Olusegun Adekile was born in Ile Ife, Nigeria. He moved to Kuwait with his family

while in middle school, where he completed an A-Level education at New English

School, Jabriya, Kuwait in 1999. He then traveled to the United States of America to

commence a Bachelor of Science in computer science at the University of Georgia,

which he attained in 2002. After graduation, he was admitted into a doctoral program at

Texas A&M University. This was interrupted periodically by stints in the software

industry working for both IBM and Dell Inc. for a year. He received his Ph.D. in

computer science in December 2008. He can be reached at 4205 S MIAMI BLVD,

DURHAM NC 27703-9141.

