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ABSTRACT 

 

Object-Oriented Software Development Effort Prediction Using Design Patterns from 

Object Interaction Analysis. (December 2008)  

Olusegun Adekile, B.S., University of Georgia  

Co-Chairs of Advisory Committee: Dr. Dick B. Simmons 

                 Dr. William M. Lively 

 

Software project management is arguably the most important activity in modern 

software development projects. In the absence of realistic and objective management, the 

software development process cannot be managed in an effective way. Software 

development effort estimation is one of the most challenging and researched problems in 

project management. With the advent of object-oriented development, there have been 

studies to transpose some of the existing effort estimation methodologies to the new 

development paradigm. However, there is not in existence a holistic approach to 

estimation that allows for the refinement of an initial estimate produced in the 

requirements gathering phase through to the design phase. A SysML point methodology 

is proposed that is based on a common, structured and comprehensive modeling 

language (OMG SysML) that factors in the models that correspond to the primary phases 

of object-oriented development into producing an effort estimate. This dissertation 

presents a Function Point-like approach, named Pattern Point, which was conceived to 

estimate the size of object-oriented products using the design patterns found in object 

interaction modeling from the late OO analysis phase. In particular, two measures are 
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proposed (PP1 and PP2) that are theoretically validated showing that they satisfy well-

known properties necessary for size measures. 

 An initial empirical validation is performed that is meant to assess the usefulness 

and effectiveness of the proposed measures in predicting the development effort of 

object-oriented systems. Moreover, a comparative analysis is carried out; taking into 

account several other size measures. The experimental results show that the Pattern Point 

measure can be effectively used during the OOA phase to predict the effort values with a 

high degree of confidence. The PP2 metric yielded the best results with an aggregate 

PRED (0.25) = 0.874.  
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1. INTRODUCTION 

“The process of controlling a software engineering project may well be the most talked 

about and least understood of all the project managers’ functions.” Lehman [40]                 

1.1 Motivation 

Traditional software effort estimation techniques rely on analytic equations, statistical 

data fitting, expert judgment or some combination of the three. Although these are 

continually updated, they are still notoriously inaccurate. This is the case because no two 

software projects are the same and some of the assumptions made in the estimations are 

never realized in the actual course of the project, others are either unaccounted for or are 

inaccurately estimated. Furthermore, traditional methodologies were not designed for the 

object-oriented software development paradigm and are thus ill suited for OO projects 

[34], [35].  

There are two bases that make the approach taken in this dissertation feasible and 

practical. The first is the increasing popularity and advancements made in the CASE 

(Computer Aided Software Engineering) tools. The CASE tools make a recording of the 

entire length of a software project at any stage of development readily available. 

Secondly, a key characteristic of the object-oriented paradigm is the continual realization  

and refinement of the same system artifacts/objects at each phase of development or 

within each development iteration (depending on the chosen project life cycle). These 

two factors make it possible to define a comprehensive model that can use data gathered  

___________ 

This dissertation follows the style of IEEE Transactions on Software Engineering. 
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unobtrusively from the CASE tools in the stages of development preceding 

implementation, to predict the effort required to further realize, refine and develop these 

and other system artifacts regardless of the level of realization or refinement of the 

existing artifacts.  

1.2 SysML  

This dissertation proposes an effort prediction model – the SysML Point Model - for 

object-oriented development systems that is based on a common, structured and 

comprehensive modeling language (OMG SysML), which can be built using the CASE 

tools from which data can be unobtrusively gathered and applied to prediction equations.  

The Object Management Group Inc (OMG), established in 1989, is a not-for-

profit, open membership, computer industry standards consortium that produces and 

maintains computer industry specifications for portable, reusable and interoperable 

enterprise applications in distributed, heterogeneous environments [98].  

 OMG's specifications include: CORBA (Common Object Request Broker 

Architecture); UML (Unified Modeling Language); CWM (Common Warehouse 

Metamodel); and industry-specific standards for dozens of vertical markets. OMG 

member companies write, adopt, and maintain its specifications following an open and 

mature process. OMG's specifications implement the Model Driven Architecture 

(MDA), maximizing return on investment through a full-lifecycle approach to enterprise 

integration that covers multiple programming languages, operating systems, middleware 

and networking infrastructures, and software development environments. More 

information on the OMG is available at http://www.omg.org/. 



 3

 OMG SysML [98] is a specification that defines a general-purpose modeling 

language for systems engineering applications. It supports the specification, analysis, 

design, verification and validation of a broad range of complex systems. These systems 

may include hardware, software, information, processes, personnel, and facilities. 

SysML is intended to be supported by two evolving interoperability standards: the OMG 

XMI 2.1 (XML) model interchange standard for UML 2.1 modeling tools and the ISO 

10303-233 data interchange standard for systems engineering tools. SysML reuses a 

subset of UML 2.1 and provides additional extensions needed to address the 

requirements in the UML for SE RFP.  

  

 

Figure 1: OMG SysML taxonomy 

Following is the description of the OMG SysML taxonomy [98] as seen in Figure 1: 

Structure Diagram     

This defines the static and structural constructs in SysML.  
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• Block Definition Diagram 

The Block Definition Diagram in SysML defines features of a block and 

relationships between blocks such as associations, generalizations, and 

dependencies. It captures the definition of blocks in terms of properties 

and operations, and relationships such as a system hierarchy or a system 

classification tree. Blocks are modular units of a system description, 

which define a collection of features to describe a system or other 

elements of interest. These may include both structural and behavioral 

features, such as properties and operations, to represent the state of the 

system and behavior that the system may exhibit. SysML blocks are 

based on UML classes as extended by UML composite structures.  

• Internal Block Diagram 

The Internal Block Diagram in SysML captures the internal structure of a 

block in terms of properties and connectors between properties. A block 

can include properties to specify its values, parts, and references to other 

blocks. Ports are a special class of property used to specify allowable 

types of interactions between blocks. Constraint Properties are a special 

class of property used to constrain other properties of blocks. Various 

notations for properties are available to distinguish these specialized 

kinds of properties on an internal block diagram.  

 

 



 5

o Parametric Diagram 

A parametric diagram is defined as a restricted form of internal 

block diagram. A parametric diagram may contain constraint 

properties and their parameters, along with other properties from 

within the internal block context. All properties that appear, other 

than the constraints themselves, must either be bound directly to a 

constraint parameter, or contain a property that is bound to one 

(through any number of levels of containment).  

• Package Diagram 

A package diagram depicts how a system is split up into logical 

groupings by showing the dependencies among these groupings. As a 

package is typically thought of as a directory, package diagrams provide a 

logical hierarchical decomposition of a system. 

Behavior Diagram 

• Sequence Diagram 

The Sequence Diagram is the most common of a classification of 

diagrams called Interaction Diagrams, others include Communications 

Diagram, Interaction Overview Diagram, and Timing Diagram. The 

sequence diagram describes the flow of control between actors and 

systems (blocks) or between parts of a system. This diagram represents 

the sending and receiving of messages between the interacting entities 

called lifelines, where time is represented along the vertical axis. The 
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sequence diagrams can represent highly complex interactions with special 

constructs to represent various types of control logic, reference 

interactions on other sequence diagrams, and decomposition of lifelines 

into their constituent parts. 

• State Machine Diagram 

The State Machine package defines a set of concepts that can be used for 

modeling discrete behavior through finite state transition systems. The 

state machine represents behavior as the state history of an object in terms 

of its transitions and states. The activities that are invoked during the 

transition, entry, and exit of the states are specified along with the 

associated event and guard conditions. Activities that are invoked while 

in the state are specified as “do Activities,” and can be either continuous 

or discrete. A composite state has nested states that can be sequential or 

concurrent.  

• Use Case Diagram 

The use case diagram describes the usage of a system (subject) by its 

actors (environment) to achieve a goal that is realized by the subject 

providing a set of services to selected actors. The use case can also be 

viewed as functionality and/ or capabilities that are accomplished through 

the interaction between the subject and its actors. Use case diagrams 

include the use case and actors and the associated communications 

between them. Actors represent classifier roles that are external to the 
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system that may correspond to users, systems, and or other environmental 

entities. They may interact either directly or indirectly with the system. 

The actors are often specialized to represent taxonomy of user types or 

external systems. 

• Activity Diagram 

Activity modeling emphasizes the inputs, outputs, sequences, and 

conditions for coordinating other behaviors. It provides a flexible link to 

blocks owning those behaviors. 

Requirement Diagram 

The requirements diagram can depict the requirements in graphical, tabular, or 

tree structure format. A requirement can also appear on other diagrams to show 

its relationship to other modeling elements. The requirements modeling 

constructs are intended to provide a bridge between traditional requirements 

management tools and the other SysML models. Several requirements 

relationships are specified that enable the modeler to relate requirements to other 

requirements as well as to other model elements. These include relationships for 

defining a requirements hierarchy, deriving requirements, satisfying 

requirements, verifying requirements, and refining requirements. 

The proposed SysML Point model is composed of four separate estimation 

models that correspond to the middle tier of the SysML taxonomy (Figure 1), and is 

designed to cover the primary phases in a typical object-oriented development effort 

such as the Unified Process [99].  
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Figure 2: The unified process 

That is, the requirements gathering, object-oriented analysis (behavioral artifacts) 

and the object-oriented design (structural artifacts) activities (Figure 2), with linkages 

between the three and a mechanism that allows for the substitution of refined artifacts as 

they occur in the estimation model. While in the requirements gathering phase, a SysML 

Point practitioner would apply the Function Point methodology [30] in producing a 

development effort estimate (Figure 3). This estimate would be refined in the early and 

late analysis stages using the Use Case Point [9] and Pattern Point methods respectively. 

Finally, prior to the commencement of the implementation phase, the Class Point 

method [29], which utilizes artifacts from the late design phase would be applied in 

generating a further refinement of the estimate. 
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Function Point → Use case Point → Pattern Point → Class Point 

 

 

 

 

Figure 3: Object-oriented development stages and corresponding effort estimation 

models 

1.3 Research Objectives 

The focus of this dissertation is to define and validate the Pattern Points (PP) method of 

the SysML Point approach. The PP method utilizes artifacts from the late object-oriented 

analysis phase to produce an effort estimate. Object-oriented analysis (OOA) is 

concerned with the transformation of software engineering requirements and 

specifications into a system's object model, which is composed of a population of 

interacting objects (rather than the functional views or traditional data of systems) [108]. 

Some of the benefits of OOA include: “maintainability through simplified mapping to 

the real world, which provides for less analysis effort, less complexity in system design, 

and easier verification by the user; reusability of the analysis artifacts which saves time 

and costs; and depending on the analysis method and programming language, 

productivity gains through direct mapping to features of Object-Oriented Programming 

Languages” [108].  

Requirements 

Analysis 

Design 
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The Pattern Points (PP) model is an empirical parametric estimation method that 

uses object interactions and the class structure of object-oriented design patterns to 

predict development effort in the late analysis phase of an object-oriented project. It 

relies on a sizing of each of the 23 object-oriented design patterns as defined in the 

seminal book Design Patterns: Elements of Reusable Object-Oriented Software, 1994 

(Gamma et al) [3]. In software engineering, a design pattern is a common reusable 

solution to a frequently occurring problem in software design. It is a description or 

template for how to solve a problem and not a finished design that can be transformed 

directly into code. A design pattern can be used in many different situations. Typically, 

object-oriented design patterns display relationships and interactions between classes or 

objects without specifying the final application classes or objects that are involved. 

The remaining effort prediction methodologies in the SysML Point model are 

already in existence. The Function Point method was introduced by Albrecht [30] to 

measure the size of a data-processing system from the end-user’s point of view. It is 

based on the functional requirements of the system. The Use Case Point model, which is 

based on use case counts called use case points, is defined in Carol et al [9]. A use case 

is a description of a system's behavior as it responds to a request that originates from 

outside of that system. Use cases are refined into object interaction diagrams such as 

sequence diagrams, and analysis classes in the late analysis stage. Lastly, the Class Point 

method as defined by Costagliola et al [29] produces an estimate of the effort based on 

the design/structural artifacts. 
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Hypothesis. A reliable development effort estimate can be produced using an empirical 

parametric estimation model, which is based on the object-oriented design patterns that 

are found in analysis artifacts in an object-oriented development project. 

1.4 Organization of the Dissertation 

Following this introductory section, this dissertation is presented in six additional 

sections. Section 2 presents relevant background research. This includes literature on the 

subject of software project management and effort estimation. Design patterns and the 

Pattern Point model are described in Section 3. Section 4 describes the theoretical 

validation of the Pattern Point model. Section 5 explains the project experiment results 

used to empirically test the research model. Section 6 presents the conclusions and 

discusses future extension of this research. 
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2. LITERATURE SURVEY 

2.1 Software Project Management  

Software project management is a major endeavor that helps to realize a successful 

software project. It is a sub-discipline of project management in which software projects 

are planned, monitored and controlled. The determination of success for a software 

project is a software product that is delivered on time and within budget to a satisfied 

customer. In large complex systems, project management is the biggest challenge in the 

development process for managers.  To help in this undertaking, various methodologies 

and techniques have been studied, and several CASE (Computer Aided Software 

Engineering) tools have been introduced to assist managers in solving the reoccurring 

problems. Presented in this section are some of the techniques used in software project 

management, in particular effort estimation. 

Evaluating the status of a software project entails the collection, validation, 

analysis and presentation of software metrics and project data in a timely manner. Thus, 

the main functions of software project managers are planning, estimating, tracking, and 

decision-making. As long as the progression of the project matches the plan, the project 

is expected to succeed. Conversely, if there are some mismatches between the progress 

and plan, then a control process needs to be initiated to return the project activities back 

on track.  

Software project management is “deciding what to do, how to do it and who does 

it, setting objectives, breaking work into tasks, establishing schedules and budgets, 

allocating resources, setting standards, and selecting future courses of action” [44]. 
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Planning is central to software project management; it involves the identification of the 

activities, milestones, and deliverables produced by a project [39]. The project plan is a 

key deliverable in which the manager describes how the project will be developed, what 

resources will be required, and how those resources will be utilized. It is an evolving 

document that guides the software project manager and other staff members through the 

software development process. The Software Engineering Process Office (SEPO) of the 

United States Navy, describes the Software Development Plan (SDP) as the essential 

planning document for a software development project.  

An important function of an SDP is to categorize the project development 

process and sub-processes that would be used in the construction of the software 

product. Boehm [45] uses the WWWWWHH principle as an organizing criterion in the 

planning process to identify the process model or models (such as waterfall, 

evolutionary, spiral, incremental, design-to-cost or –schedule, or a hybrid): who, what, 

where, when, why, how and how much, as follows: 

Objectives - Why is the system being developed? 

Milestones and Schedules - What will be done? When? 

Responsibilities - Who is responsible for a function? Where are they organizationally 

located? 

Approach - How will the job be done technically and managerially? 

Resources - How much of each resources are needed?  

The planning process must involve both the product that is to be developed and 

the accompanying processes that are needed to support the software product [47]. Once a 
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development process that fits both the product and people is identified, the activities can 

be broken down into tasks, which are then executed according to the selected process 

model [46].  

The Software Engineering Institute’s Capability Maturity Model (SEI CMM) 

[48]-[50] first described in the book “Managing the Software Process” by Watts 

Humphrey [54] provides a benchmark of software process maturity. It aids in the 

definition and understanding of an organization's processes and is widely employed in 

the industry to evaluate the maturity of an organization’s software process. The SEI 

Maturity Questionnaire includes a scenario on software project planning that is used to 

assess the completeness of the planning framework. It is as follows: 

1. Are estimates (e.g. size, cost, and schedule) documented for use in planning and 

tracking the software project? 

2. Do the plans document the activities to be performed and the commitments made 

for the software project? 

3. Do all affected groups and individuals agree as to their commitments related to 

the software project? 

4. Does the project follow a written organizational policy for planning a software 

project? 

5. Are adequate resources provided for planning the software project (e.g. funding 

and experienced individuals)? 
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6. Are measurements used to determine the status of the activities for planning the 

software project (e.g., completion of milestones for the project planning activities 

as compared to the plan)? 

7. Does the project manager review the activities for planning the software project 

both a periodical and event-driven basis? 

Within the Capability Maturity Model (CMM) Key Process Area (KPA) [49], 

software project planning is a Level 2. Passing the KPA is a major step toward reaching 

Level 2 (Repeatable). The KPA requires the development of a project Software 

Development Plan (SDP) and a written process for planning a software project. The 

CMM [49] defines 15 activities for the Project Planning KPA. The 15 steps in the CMM 

Planning KPA are as follows: 

1. The software engineering group participates on the project proposal team. 

2. Software project planning is initiated in the early stages of, and in parallel with, 

the overall project planning. 

3. The software engineering group participates with other affected groups in the 

overall project planning throughout the project life. 

4. Software project commitments made to individuals and groups external to the 

organization are reviewed with senior management according to a documented 

procedure. 

5. A software life cycle with predefined stages of manageable size is identified or 

defined. 
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6. The project’s software development plan is developed according to a 

documented procedure. 

7. Software work products that are needed to established and maintain control of 

the software project are identified. 

8. Estimates for the size of the software work products (or changes to the size of 

software work products) are derived according to a documented procedure. 

9. Estimates for the software project’s effort and cost are derived according to a 

documented procedure. 

10. Estimates for the project’s critical computer resources are derived according to a 

documented procedure. 

11. The project’s schedule is derived according to a documented procedure. 

12. The software risks associated with the cost, resources, schedule and the technical 

aspects of the project are identified, assessed, and documented. 

13. Plans for the project’s software engineering facilities and support tools are 

prepared. 

14. Software planning data are documented. 

15. Measurements are made and used to determine the status of the software 

planning activities. 

According to Humphrey [54], there are five basic important components of a software 

project plan: 

1. Goals and Objectives: For a software project to be considered a success, the 

software product must be delivered on time and within budget to a satisfied 
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customer. The goals and objectives of the project are determined in the 

requirements negotiation phase. The initial statement of work must be clear, 

straightforward, and stable because it will be the statement from which the 

software development company will determine the product’s functional goals. 

2. Work Breakdown Structure: The WBS provides a hierarchical view for the 

whole project. After the requirements have been declared, an estimate of the 

product size and project effort is required. To produce an effective estimate, the 

project has to be broken down into its various work elements, which comprise 

the project WBS. The project structure and the selected software development 

process affect the WBS. After the project structure is formalized, the tasks for 

each unit of the project is defined and then apportioned to respective owners. The 

WBS was introduced into software project planning in the early 80’s [51]. 

3. Product Size and 17 Other Dominators: This is perhaps the key portion of the 

planning process. The 17 project dominators are as follows: Development 

Schedule Constraints, Project Life Cycle process, Volume, Amount of 

Documentation, Programming Language, Complexity, Type of Application, 

Work Breakdown Structure, Management Quality, Lead Designer, Individual 

Developers, Personnel Turnover, Communications, Number of People, Software 

Reuse, Customer Interface Complexity, and Requirements Volatility Dominators 

are project attributes that cause effort (and productivity) to vary by an order of 

magnitude (10 to 1) [52]. A poor size and dominators estimate is the root of 

many problems in the software industry. Dominators may or may not appear as 
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variables in effort models. For example, we often assume that all projects are 

properly managed, even though they may not be. The result can be a failed 

project dominated by poor management. Dominators like management often do 

not have a 10:1 affect on reducing effort, but they definitely can have over a 10:1 

affect on increasing effort [52]. Productivity is improved when managers reduce 

the effort to produce a product, as effort required to produce a product is 

inversely related to productivity. Dominators that affect effort prediction are 

everywhere in the project life cycle and are not independent of each other. 

Product size is useful for predicting effort. Two units are common for size 

measurement: lines of code and function points. A line of code is a fixed unit and 

easier to count, but is language-dependent. Function points are a more subjective 

and abstract unit, which is subject to bias [52]. 

4. Resource Estimates: There are always resource constraints that limit the amount 

of time that is spent on a project [52]. However, it is possible for a manager to 

estimate the resources that are required to design and implement the software 

product once an estimate of the size of code that is needed is available. Human 

resource is the most critical as it plays the most essential role in determining the 

cost of implementation. There is a myriad of methods and accompanying tools 

that are available for cost estimation and some of them are visited in the 

following section (2.1). However, a software company’s historical performance 

plays the most important role when it comes to estimation of resources. The 

historical productivity rate can be applied to a new estimate to convert a size 
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estimate into a corresponding estimate of resources .If a cost model such as 

COCOMO or SLIM is used, its calibrations must match the software company’s 

historical experience [52]. 

5. Scheduling: The resource estimates (described above) determine the scheduling 

of a project. Two scenarios surface in scheduling, depending on which side sets 

the release date for the product [53]. Usually, the project manager will make the 

decision on the release date based on an appropriate starting date and schedule. 

However, market forces/pressures or the customer could require that the product 

be complete by a certain date. In either case, the software organization may or 

may not be able to meet the deadline depending on their existing obligations. If 

the organization is not able to meet the deadline, overtime and extra staff may be 

required or certain features may need to be left off the release. In developing a 

schedule, the manager has a number of tools at his disposal; some of the 

commonly used tools in creating a schedule include Milestone Documents, 

Project Evaluation Review Technique (PERT) Charts and Gantt Charts. 

Disentangling the problem of software project management consists of two 

primary phases: “planning, including creation and scheduling, and on-going project 

control” [55]. These incorporate “what is to be done, a decision regarding how to do it, 

the control of how it is being done, and an evaluation (or measurement) of what was 

done” [56]. The software development plan typically covers the “what”; however, many 

more tasks have to be executed in order for a manager to properly manage a software 
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project. These typically fall into the following categories: planning, organization, 

staffing, monitoring, controlling, innovating, and representing [57].  

According to Simmons [110], every project, irrespective of the industry or job 

function, including a software development project, is a compromise between three 

variables: scope, time, and cost:  

 

 

Figure 4: Simmons’ project triangle and cost 

 

Planning a project constitutes finding a compromise between the activities that 

comprise the vertices of the project triangle as shown in Figure 4. The scope is the 

breadth of the project: the sum of the activities that will lead, at the end of the project, to 

the software product. The total resource usage that is needed to complete the activities 

identified in the scope is the cost or budget. The Time is the total elapsed time, from 

inception to product delivery that is needed to bring the activities identified in the work 

scope to completion. Software project management is a process of adjusting the 

variables as preferred to handle the impact of any change across all three. 

Cost 

Time 
Scope 
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For a software project to succeed, a manager must reach a compromise between 

resource, feature, and schedule as seen in Figure 4, so as to maintain compliance with 

the plan. If any one of the triangle vertices is adjusted, one or both of the other vertices 

must be modified and the plan has to be tailored for the project to stay on track. If, for 

example, a project is ahead of schedule, the manager can choose to reduce resources or 

increase features. If a project is behind schedule, the manager can increase resources or 

decrease features. If the manager wants to decrease resources, s/he must reduce features 

or lengthen the schedule. But if the manager wants to add features, s/he must prolong the 

schedule or add additional resources.  

According to Dwayne Phillips [58], all undertakings in a software project include 

the 3Ps: product, process and people. In order to conform to a project plan, a successful 

software project needs to keep these three variables in harmony. Without a product, there 

is no customer, no income, and no software organization; the objective of software 

development is to create a product. The product must be completed within budget and to 

a satisfied customer for the project to be deemed a success. In recent years, process has 

become the most discussed aspect of the 3Ps. This includes some of the famous software 

process improvement methods, the Capability Maturity Model, the ISO 9000 series, and 

Best Practices.  
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Figure 5: Considering people, process, and product together 

 

Process is significant because it lets people efficiently build products by 

imposing a structure on the progression of the project. The manager first defines a 

process needed for the project prior to the commencement of any other activity. A good 

process is repeatable; however, the same process does not fit all projects, even though 

they might have similar goals. Some contemporary examples of software development 

processes include the Unified Process [99], Rapid Application Development [59], 

Extreme Programming [32], and the Scrum [100]. Typically, managers select a 

development process based on the organizational culture and the type and estimated size 

of the software product that is to be built. Lastly, software development is people-

intensive; people are critical to software development and maintenance. The best asset 

on a software project is people who know how to build the product. Figure 5 shows how 

people, process, and product fit together. The axes represent the capabilities of people 

and process. The distance from the origin of the graph represents how difficult the 
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product is to build. The goal of a manager is to keep 3Ps in balance to create a good 

quality product. 

As noted in the CMM Planning KPA [49], a critical portion of developing a plan 

for a software project is the estimation of the size and cost of the software product. This 

affects the selected development process, budgeting and scheduling amongst other 

planning activities. In the next section, we take an in-depth look into research efforts 

addressing the creation of models aimed at estimating the size and cost of a software 

product. 

2.2 Effort Estimation 

Even though the difficulties of software cost estimation were discussed 30 years ago in 

“The Mythical Man Month” [42], it is as much a relevant area of research now as it was 

then. 

Effort estimation is critical because of the following [107]: 

• Exploring the practicality of developing or purchasing a new system 

• Determining a price or schedule for a new system 

• Planning how to staff a software development project 

• Understanding the impact of changing the functions of an existing system 

In spite of the importance, software cost estimates are more often than not 

imprecise, and there is no indication that the software engineering community is making 

significant gains in making better predictions. We see estimates with greater inaccuracy 

[66], [67], and in reality most estimates are made informally. The latter fact also 
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suggests that software developers also have difficulty in applying existing research on 

software cost estimation. 

The consequences of inaccurate estimates of software cost and delivery times is 

typified by cost overruns that may make a project unprofitable, and delays in delivery 

time that may result in project failure. Conversely, an overestimate of effort may also 

adversely affect the competitiveness of a business, for example, where a decision is 

made to cancel what would otherwise have been finished in time or where the 

overestimate leads to subsequent overstaffing when a project is completed. 

In the course of the past three decades there has been significant research in the 

area of effort estimation with five classes of estimation models emerging: 

• Empirical parametric models 

• Empirical nonparametric models 

• Analogical models 

• Theoretical models 

• Heuristic  

2.2.1 Empirical parametric models 

The most prevalent of estimation models are empirical parametric models. Empirical 

parametric methods analyze data to establish a numerical model of the relationship 

between measures of the attributes in the empirical model. Where effort is estimated 

based on one or more simple measures, these models have been extended, in some cases, 

by the use of up to 36 of cost drivers.  
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The most straightforward form of an empirical parametric model is a function 

that relates a size measure to the effort required to develop a system or program. In this 

instance, a size measure is a count of some feature of a product of the development 

process, for example, a count of the number of lines of code in a program. The effort 

required for development, on the other hand, is typically measured in person-hours, 

person-days or person-months. Statistical regression modeling is an example of the 

empirical parametric approach. The most commonly explored models have linear and 

exponential relationships between effort and the size measure; irrespective of the exact 

niceties of the model, the general form tends to be: 

E = a × V 
b
, 

 where E is effort, V is Volume typically measured as lines of code (LOC) or function 

points, a is a productivity parameter and b is an economies or diseconomies of scale 

parameter [43], [69], [70].  

An alternative empirical parametric methodology is to calibrate a model by 

estimating values for the parameters (a and b in the case of (2.1)). The most basic 

method is to assume a linear model that is set b to unity, and then use regression analysis 

to estimate the slope (parameter a) and possibly introduce an intercept so the model 

becomes: 

E = a1 + a2 × V. 

In the above, a1 represents fixed development costs and a2 represents productivity. 

There are some inherent drawbacks to the development of empirical parametric 

models, especially if the data set used in their formulation is insufficient. It is not 

(2.1)

(2.2)
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uncommon for models based on the empirical parametric approach to produce a 

relatively high error rate, whether the functional form is linear or nonlinear. Conte et al. 

[72] give an example of a linear model with a correlation coefficient, R
2
, of 82% and 

mean absolute relative error of 37%. Miyazaki et al. [73] give an example of a calibrated 

COCOMO model with a lower mean absolute relative error of 20%. Courtney et al. [71] 

suggest that researchers who embark on learning empirical relationships by 

experimenting with differing combinations of measures and functional forms before 

selecting the one with the highest correlation typically construct a better model 

especially with small data sets. 

In addition, the possible range of estimates of an empirical parametric model 

increases with the number of input parameters (each with a range of possible values). 

The variation in values for an estimate also broadens when the uncertainty in input 

values is combined with the uncertainty associated with the model. Conte et al. [72] 

report that a variation in effort of up to 800% is possible in Intermediate COCOMO 

when the range from highest to lowest values for each cost driver is combined. However, 

such a wide variation in input values would not necessarily be evidenced in practice. 

The re-calibration of empirical models is typically required when they are 

utilized outside of the organization or environment on whose data they were formulated 

[74], [76], [77]. Even more generic examples such as COCOMO fail to make precise 

estimations without calibration. Boehm and Miyazaki et al. [43], [73] illustrate 

methodologies on how to calibrate estimation models. Models that include a large 
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number of cost drivers are difficult to calibrate, mainly because the data set required for 

calibration can be much larger than is available within the organization.  

COCOMO II [111] is one of the popular software engineering cost models, 

which is based on the multiple regression approach. COCOMO was first published in 

1981 by Barry J. Boehm [43] as a model for estimating effort, cost, and schedule for 

software projects. COCOMO II is a relatively recent update of the COCOMO model that 

was developed in 1997 and finally published in 2001. COCOMO II provides two 

estimation models: the Early Design and Post-Architecture. The Early Design model is 

used when a rough estimate is needed based on incomplete project and product analysis. 

Where as the Post-Architecture model is applied when the top-level design is complete 

and detailed information is known about the project [112]. The system should have a 

life-cycle architecture package that includes information on cost driver inputs, 

architectural alternatives and incremental development strategies.  

The Early Design and Post-architecture models use the same functional form to 

estimate the amount of effort and calendar time it will take to develop a software project. 

These nominal-schedule (NS) formulas exclude the Cost Driver for Required 

Development Schedule (SCED). The amount of effort in person-months, PMNS, is 

estimated by the formula: 

 

PMNS = A × Size
E

 ×Π E M i , 

 

 

n

i = 1

 

(2.3) 
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E = B + 0.01 ×Σ S F j 

E is the scaling exponent for the effort equation, and F scaling exponent for schedule. 

The amount of calendar time, TDEVNS, it will take to develop the product is estimated by 

the formula: 

TDEVNS = [C × (PMNS)
F

 ] ×SCED% /100, 

F = D + 0.2 × [E − B], 

where the values of A,B,C, and D are 2.94, 0.91, 3.67 and 0.28, respectively.  

Reliable effort prediction is dependent on good size estimation. Software projects 

are generally composed of new code, code reused from other sources - with or without 

modifications - and automatically translated code. Size attributes are used to describe 

physical magnitude, extent or bulk. Software size measures are classified as volume, 

structure, and rework, and can represent relative or proportionate dimensions. The 

amount of effort required to produce a software product, the defects remaining in a 

software product, and time required to create a software product are all estimated using 

Volume attributes. Of the existing size measures, the SLOC (Source Lines Of Code) 

attribute is the most commonly accepted because it is [107]: 

• Relatively easy to define and discuss unambiguously, 

• Easy to objectively measure, 

• Conceptually familiar to software developers, 

• Used directly or indirectly by most cost estimation models and rules of thumb for 

productivity estimation, and 

5 

j = 1 

 

(2.4)



 29

• Is available directly from many organization’s project databases. 

However, there are a number of problems associated with the SLOC size metric as noted 

by Jones [95]: 

• Cross-language comparisons for productivity or quality for the more than 500 

programming languages in current use are not accurately supported. 

• There is no national or international standard for a source line of code. 

• Paradoxically, as the level of language gets higher, the most powerful and 

advanced languages appear to be less productive than the lower level languages. 

Additionally, the SLOC attribute is available after the product has been implemented and 

thus its use in effort prediction is limited.  

Researchers have introduced metrics to address some of the flaws associated with 

the SLOC measure. The Function Point metric is based on the functional requirements of 

the software product and can be estimated and counted much earlier than lines of code. 

Function points let organizations normalize data such as cost, effort, duration, and 

defects. Even though function points are a popular measure, they too have drawbacks: 

• They are based on a subjective measure, which have resulted in a 30% variance 

within an organization and more than 30% across organizations [77]. 

•  Function points behave well when used within a specific organization, but they 

do not work well for cross-company bench marking. 

Object points are similar to function points. They have the same advantages and 

disadvantages, but can be estimated and counted earlier than function points. Simmons 

et al. [52] introduced the Chunk metric, which is a size measure at the cognitive level. 
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Chunks can be applied to objects, scripts, spreadsheets, graphic icons, application 

generators, etc.  

2.2.2 Empirical nonparametric models 

Nonparametric models typically involve the use of artificial intelligence techniques in 

producing an effort estimate. Briand et al. [78] demonstrate the use of the optimized set 

reduction (OSR) method, which is a pattern recognition model for analyzing data sets 

based on classification trees. In [78] the authors contrast the accuracy of the OSR 

method to a COCOMO model calibrated for the combined COCOMO and Kemerer data 

sets and to a stepwise regression model. In the comparison, the OSR methodology 

produced a lower mean absolute relative error than both the two parametric models, with 

the COCOMO model performing least favorably. 

An advantage of OSR is that nominal or ordinal cost driver values can be used as 

inputs without being mapped to numeric multiplier values. Another advantage is that it 

can be applied with incomplete input data; especially where only a subset of the cost 

driver values is known [107]. Srinivasan and Fisher [79] describe two nonparametric 

methods for generating effort models. One method uses back-propagation to train an 

artificial neural network and another other uses a learning algorithm to derive a decision 

tree. Even though they may provide better effort estimates, empirical nonparametric 

methods such as a neural network are hard to set up and they typically require more 

work than preparing a statistical regression model [91]. 
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Kemerer [74] tested the artificial intelligence methods on the COCOMO data 

sets. The effort estimates from the artificial neural network had a lower mean absolute 

relative error than the decision tree. Discrepancies in the sampling methodologies mean 

that the results presented by Srinivasan and Fisher [79] are not directly comparable with 

those of Briand et al. [78], although the same data sets are used. It is probable that the 

accuracy of both the artificial neural network and the decision tree is comparable with 

that of OSR and the stepwise regression model. However, Srinivasan and Fisher [79] 

indicate that the computational cost of training the artificial neural network is high in 

comparison to the cost of deriving the decision tree. 

Most of the research into software project effort estimation has adopted the 

aforementioned approaches. Some other explorations of the use of artificial intelligence 

techniques worth mentioning: Wittig et al. [81] described the use of back propagation 

learning algorithms on a multilayer perception in order to predict development effort. A 

study [80] on the use of neural nets for predicting software reliability concluded that 

both feed forward and Jordan networks with a cascade correlation-learning algorithm 

outperform traditional statistical models. An Albus multilayer perception was used by 

Samson et al. [82] in order to estimate software development effort. The work compares 

a neural net approach to linear regression using the COCOMO data set. There have been 

several attempts to use regression and decision trees to estimate aspects of software 

engineering. They found that the results were not as conclusive compared to either a 

statistical model derived from function points or a neural net. 
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In order to be applied with assurance, both the empirical parametric and 

nonparametric models that have been described require a large number of data points 

due to the large number of independent variables and value ranges covered by the 

models. Both sets of researchers comment on the small size of the COCOMO data set 

(63 projects) for applying their techniques and on the desirability of all projects in the 

data set coming from the same environment.  Even though the COCOMO data set may 

be small, it is significantly larger than many organizations could hope to gather. A single 

organization can provide a large enough data set but it is hard to believe that all the 

projects would come from the same environment. 

The empirical nonparametric models such as the decision tree, artificial neural 

network, and OSR techniques can still be applied where the number of independent 

variables is reduced to complement the size of the available data set, for example, lines 

of code as the single independent variable. However, it is uncertain whether these 

methods are more accurate than simple regression techniques under those circumstances. 

2.2.3 Analogical models 

Effort estimation by analogy (EBA) is an established method for software effort 

prediction. In EBA, the estimated effort of the project under consideration (target 

project) is a function of the known effort values from analogous historical projects. This 

is primarily a data-driven process where the attributes common to both the target project 

and similar historical projects are compared [114] to find a set of ‘analogous’ projects.  

Atkison and Shepperd [86] describe an EBA methodology for estimating 

development effort where the common attribute used in the comparison is the function 
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point [30] count of each component. The vector distance of the function point counts 

from the target project to the historical projects is calculated in order to identify the 

neighbors of the target project. The estimated effort for the target project is then 

determined as the weighted mean of the effort values of its neighbors.  

Shepperd et al. describe the tool ANGEL, which is based on a generalization of 

the approach of Atkison and Shepperd [86]. ANGEL affords the user the ability to 

specify the attributes that are used in the search for analogous projects; it can be directed 

to search for one, two, or three analogous projects and then calculate an unweighted 

mean of their effort values to estimate effort for the new project. It also includes a 

feature to automatically determine an optimal subset of measures for a particular data set 

of historical projects.  

Estimation by analogy is a form of Case Based Reasoning (CBR), which is the 

process of solving new problems based on the solutions of similar past problems. CBR 

employs the five basic processes [84]: 

• Construction of a representation of the target problem 

• Retrieval of a suitable case to act as source analog 

• Transfer of the solution from the source case to target 

• Mapping the differences between source and target cases 

• Adjusting the initial solution to take account of these differences 

ESTOR [85] is another example of a case-based reasoning model that is used for 

software development effort estimation. The cases (software projects) are represented by 

function point counts and Intermediate COCOMO model inputs. ESTOR retrieves one 
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case to act as a source analog based on a vector distance calculation of the function point 

counts from the target case (new project). The initial solution or effort estimate for the 

target project is the effort value for the analogous project; this is then adjusted to take 

into consideration the differences between the analog and new project. Adjustments are 

determined by comparing the values of the measures and applying a set of rules / 

heuristics determined by an expert. The rules amend the effort value by a multiplier 

when certain preconditions on the target and source project values are met.  

The data set used to develop ESTOR is a subset of 10 projects from the Kemerer 

[74] data set. On the Kemerer [74] data set, the reported mean absolute relative error for 

ANGEL is 62%, which compares with more than 100% for the regression models and 

53% for ESTOR. ANGEL performed as well as or better than linear and stepwise 

regression models for effort estimation. The regression models were based on the 

measures in the data set that displayed the highest correlations with effort. Even though 

ESTOR appears to outperform ANGEL on this data set, the adjustment rules for ESTOR 

were developed based on 10 of the 15 projects in the set, and these rules may not be as 

successful when applied to projects from difference data sets. 

It is argued that estimation by analogy offers some distinct advantages to 

parametric and non-parametric estimation methodologies [115]: 

• It avoids the problems associated both with knowledge elicitation and extracting 

and codifying the knowledge. 



 35

• Analogy-based systems only need deal with those problems that actually occur in 

practice, while generative (i.e., algorithmic) systems must handle all possible 

problems. 

• Analogy-based systems can also handle failed cases (i.e., those cases for which 

an accurate prediction was not made). This is useful as it enables users to identify 

potentially high-risk situations. 

• Analogy is able to deal with poorly understood domains (such as software 

projects) since solutions are based upon what has actually happened as opposed 

to chains of rules in the case of rule-based systems. 

• Users may be more willing to accept solutions from analogy based systems since 

they are derived from a form of reasoning more akin to human problem solving, 

as opposed to the somewhat arcane chains of rules or neural nets. This final 

advantage is particularly important if systems are to be not only deployed but 

also have reliance placed upon them. 

2.2.4 Theoretical models 

In comparison to the algorithmic (parametric and non-parametric) and analogical 

models, there is less research on the development of theoretical models for software 

effort estimation. Wang and Yuan [113] have developed a ‘coherent’ theory on the 

nature of collaborative work and their mathematical models in software engineering. 

This is modeled in the form of the formal economic model of software engineering costs 

(FEMSEC). The FEMSEC model provides a theoretical foundation for software 

engineering decision optimizations on the optimal labor allocation, the shortest duration 
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determination, and the lowest workload/effort and costs estimation. The experiments 

conducted indicate that the strategy for the optimization of a software engineering 

project for the lowest cost is to set the project at W (Tmin, L0), where L0 is the optimal 

labor allocation for a given project and Tmin is the corresponding shortest duration of the 

project with L0. The FEMSEC can be derived by the following steps: 

1. Estimate the project size 

2. Determine the ideal workload W 

3. Allocate the optimal labor L0 

4. Determine the shortest duration Tmin 

5. Minimize the project effort Wmin 

6. Optimize the project cost Cmin 

Abdel-Hamid and Madnick [87]-[89] use dynamic feedback relationships among 

staff management, software production, planning, and control modeled via a simulation 

language. The model works from an initial estimate for overall effort and then explores 

how the actual effort is influenced by the model’s assumptions about the interactions and 

feedback between project and decisions. Simulations of project management scenarios 

can be run to investigate the effects of management policies and decisions. Their overall 

contribution is to demonstrate how both underestimates and overestimates of project 

effort can lead to lower average productivity and increased overall effort.  

2.2.5 Heuristic models 

Heuristics are rules of thumb, developed through experience that capture knowledge 

about relationships between attributes of the empirical model. Heuristics can be used to 
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adjust estimations made by other methods. An example is the COSEEKMO [116] effort-

modeling workbench, which applies a set of heuristic rejection rules to comparatively 

assess results from alternative models. It is intended to provide a solution to the large 

deviation problem that is seen in model-based estimation methodologies. An experiment 

was conducted [116] to compare the “before” and “after” effects of applying 

COSEEKMO to COCOMO and COCOMO II effort estimation models. Reduction in 

errors of more than 100 % is reported. The COSEEKMO process is also fully automated. 

In addition to the formal aforementioned methodologies, expert judgment is also 

recognized as an estimation approach [43], [66]. Expert judgment is likely to be utilized 

whenever an expert is available. Experts typically employ one or more of the other 

methods in making estimations, either informally or formally. The framework for 

selecting estimation methods does not formally include expert judgment because the 

method cannot easily be characterized, and it is assumed that it is used whenever experts 

are available. 

It is hard to evaluate which of the above methodologies would be most fitting for 

a software development project on hand. The easiest to apply are the empirical 

parametric models; the popular COCOMO II [90] is based on this method. Analogy 

based estimation models are also straightforward, provided that only a small data set 

needs to be searched for analogs, and the number of variables to consider is no more 

than half a dozen. Specific tools are needed to help build analogous models when the 

number of cases and variables increases above this threshold [41], [81]. Furthermore, the 

level of similarity of historical projects to the new project development project exerts 
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great influence on the estimation. Ideally, an estimate should take this difference into 

account when the new project differs notably from the historical projects. 

To an organization’s management team and also to the customer, the most 

interesting software cost estimation measures are total effort and total duration. Once 

development commences, the remaining totals needed to complete the project also 

becomes of interest. However, the individual developers are less likely to be interested in 

total effort estimates. They might prefer to track their own productivity in order to make 

effort estimates for the activities that they have ownership. For example, in some 

organizations, developers are expected to sign up to meet the target duration for a 

particular activity [107]. Estimates based on group productivity figures generally will 

not be satisfactory, because of the significant variations commonly found between 

individual developers [92]. 

Total effort estimates are undoubtedly very desirable at the start of system 

development. Ironically, this is the time relative to system development activities when 

there is the least information available on which to base an estimate. Models that predict 

total effort based on lines of code particularly cannot give an accurate effort estimate 

because of the lack of detailed information at this time. Models based on function points 

[30] offer some improvement over lines of code, as it appears that function points can be 

estimated more consistently from specification and design descriptions than lines of code 

[74]. On the other hand, considerably more experience and effort is involved in counting 

function points than lines of code, so data pairs of total effort and function points are 

likely to be harder to obtain. 
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Since initial software cost estimates are made based on preliminary data, re-

estimating is desirable when additional information is available. Additionally, there is a 

shift of interest from total effort to total effort to complete development once system 

development is under way. The computed re-estimate of total effort needs to take into 

consideration the actual progress that has been made so far, as well as the effort that has 

been expended. For example, the function point methodology might be used to give a 

rough preliminary initial estimate of the total effort in the requirements gathering phase 

of development and a new estimate can be calculated from a re-estimate of the function 

points, which is made after a high level design is complete.  

However, when a re-estimate is calculated the model should not assume the same 

average productivity for system development for both estimates. For instance, the 

productivity of the teams involved in differing activities could be substantially different, 

and thus the new total effort estimate should incorporate this knowledge. The process of 

re-estimation is made more complicated by such issues, but in order to successfully 

estimate the total effort or time to complete successfully, effort estimation models need 

to incorporate these measures. 

The environment (including the targeted market) in which a software 

development project is undertaken has great impact on the software product and the 

project has a whole. It contributes important factors such as constraints on the 

availability of staff members that are able to work on the project and it affects the target 

release date. Estimates of the constraints and the actual estimated feasible release date 

based on these constraints are needed in order to plan system development or check 
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whether it is possible to deliver the product within the desired time. Total effort, 

duration, and staffing are closely related and interdependent, but there may be 

independent constraints on all three. Due to the constraints and their interdependency of 

the variables, the complexity of estimating any one or two is increased. 

Current parametric models such as COCOMO [43] and Putnam [93] have not 

proved generally successful in clarifying the relationships among effort, duration, and 

staffing across a range of organizational settings. Theoretical models such as the 

dynamic model of Abdel-Hamid and Madnick [89] appear able to better explain 

interrelationships among duration, staffing, and overall cost in a qualitative way, but 

they are typically not easy to apply. For instance, the dynamic model of Abdel-Hamid 

and Madnick [89] requires a specialized simulation tool. 

An organization’s historical data is very important in model development. The 

estimated effort is produced by inputting data gathered into the model; in addition, some 

models require re-calibration using previously collected data before they can be put to 

use. In order to realize the benefits of collecting local data, experience in developing and 

applying measures and models must be cultivated within the organization [107]. The 

simplest models to construct and utilize are empirical parametric models, with few 

variables, and analogical models. Models that are more difficult to develop and apply are 

typically based on a large number of variables such as Abdel-Hamid and Madnick [89]. 

The effort estimation models described thus far like COCOMO II were not 

defined specifically for the object-oriented development paradigm. In the following 
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sections we explore Function Point analysis and the variations to the Function Point 

method that were designed to suite the object-oriented development model. 

2.3 Function Point Analysis 

The Function Point method was introduced in 1979 by Albrecht [30] to measure the size 

of a data-processing system from the end-user’s point of view. The initial counting 

procedure has been modified several times, resulting in different versions. Since 1986, 

the International Function Point User Group (IFPUG) has operated as the standard 

definition body for the function point methodology. The current standard version is 

reported in the IFPUG Counting Practices Manual [41].  

The FP method is applicable at multiple stages of a typical development process, 

starting from the early requirements definition phase. It measures the size of a system by 

performing a sequence of steps. The first step is the identification of all functions - each 

function is classified as belonging to one of the following function types: external input 

(EI), external output (EO), external inquiry (EQ), internal logical file (ILF), and external 

interface file (EIF). The function point metric is the weighted totals of five external 

aspects of the software application: 

1. External Input (EI): the types of inputs to application. 

2. External Output (EO): the types of outputs to leave the application. 

3. External Inquiry (EQ): the types of inquiries that users can make. 

4. Internal Logical File (ILF): the types of logical files that the application 

maintains. 

5. External Interface File (EIF): the types of interfaces to other applications. 
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The first three classes of functions fall within the transaction function typology, while 

the last two, referring to the logical files, are considered data function types. Each 

function is then weighted based on its type and on the level of its complexity, in 

agreement with standard values as specified in the Counting Practices Manual. As an 

example, for transactions (EI, EO, and EQ), the rating is based on the number of Data 

Element Types (DETs) and Referenced File Types (FTRs). A DET is a unique, non-

repeated field recognized by the user. An FTR can be an ILF referenced or maintained 

by the transaction or an EIF read by the transaction. Thus, if an external inquiry has 

more than 16 DETs and at least two FTRs, it is assigned a high complexity level and a 

weight value equal to 6. The weighted total of the five components of the application is 

then multiplied by the Value Adjustment Factor, which is computed on the basis of the 

degree of influence that each of 14 general system characteristics is likely to have on the 

application. The adjustment factor causes the FP count to vary with respect to the 

unadjusted count from -35 percent (corresponding to a null degree of influence for all 

the 14 characteristics) to +35 percent (corresponding to all degrees set to 5) [29].  

The FP measure has been used by application developers to estimate 

productivity, in terms of Function Points per person-month, and quality, in terms of the 

number of defects per Function Point with respect to requirements, design, coding, and 

user documentation phases. The success of Function Point method, in part, can be 

attributed to its early applicability but also to its independence from the language and the 

tools used throughout the lifecycle. The attractive features of the Function Point 

approach have motivated several proposals meant to exploit the main ideas of the 
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method in order to predict the size of object-oriented systems. In the following sections, 

several adaptations of the FP method to OO systems, besides other size measures 

conceived for object-orientation are examined. 

2.4 Use Case Points (UCP) Model 

The Use Case Points (UCP) model [9] is a software sizing estimation method based on 

use case counts called use case points. A use case is a description of a system's behavior 

as it responds to a request that originates from outside of that system. 

The use case technique is used in software and systems engineering to capture 

the functional requirements of a system. Use cases describe the interaction between a 

primary actor—the initiator of the interaction—and the system itself, represented as a 

sequence of simple steps. Actors are something or someone which exist outside the 

system under study, and that take part in a sequence of activities in a dialogue with the 

system, to achieve some goal: they may be end users, other systems, or hardware 

devices. Each use case is a complete series of events or transactions, described from the 

point of view of the actor [97]. 

An estimate of effort based on use cases can be made early in a development 

project as soon as there is some understanding of the problem domain, system size and 

architecture. Use case modeling is part of the UML 2.0 and is therefore applicable in the 

early estimation of an object oriented software development project. Below is the UCP 

estimation method. 
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Use Case Point (UCP) estimation model: 

a) Weighting actors for complexity: a simple actor represents another system with a 

defined API; an average actor is either another system that interacts through a 

protocol such TCP/IP; or a person interacting through a text-based interface and 

a complex actor is a person interacting through a GUI interface. 

b) Weight use cases for complexity: a simple use case has 3 or fewer transactions; 

an average use case has 4 to 7 transactions; and a complex use case has greater 

than 7 transactions. 

c) UUCP (Unadjusted UCP) = Weighted Actors + Weighted Use Cases. 

d) Weighing Technical Factor is an exercise to calculate a Use Case Point modifier 

which will modify the UUCP by the weight of the technical factors.  

 SzUC = UUCP * ((0.01 * Tfactor) +0.6). 

e) Weighing Environment Factor is an exercise to calculate a Use Case Point 

modifier which will modify the UUCP by the weight of the Environment factors.   

      UCP = SzUC *((-0.03 * Efactor) +1.4). 

f) Translating Man-hours from UCP is a matter of calculating a standard usage or 

effort rate (ER) and multiplying that value by the number of UCPs.   

The main limitation of the UCP is that it can only be used early on in an object-

oriented project, and a comprehensive methodology that will be able to produce more 

accurate estimates as the use cases are further realized and refined is needed. 
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2.5 Object-Oriented Function Point (OOFP) Model 

Another related work in the sizing of OOP is the Object-Oriented Function Point 

(OOFP) model. Most traditional methods for estimating software project effort require 

an estimate of a size metric (volume + complexity) of the software. For example, the 

function point size metric uses functional, logical entities such as inputs, outputs, and 

inquiries that tend to relate more closely to the functions performed by the software as 

compared to other measures, such as lines of code. The object oriented function point is 

an adaptation of the traditional function points to the object-oriented paradigm. The 

OOFP as proposed by Antoniol et al. [10] follows the function point counting procedure. 

Inputs, Outputs and Inquiries are all treated in the same way: they are generically called 

“service requests” and correspond to class methods. The complexity of service requests 

depends on the number and type of method parameters. Classes within the application 

boundary correspond to ILFS, while classes outside the application boundary (including 

libraries) correspond to EIFS. The complexity of ILFs and EIFs depends on the number 

and type of attributes and associations. Function types contribute to the FPs according to 

the weights defined by Albrecht [30]. OOFP are based on counts of classes, weighted 

methods per class and data attributes with adjustments for the depth of the inheritance 

tree, number of children per class and aggregation. 

The OOFP is an adaptation of the original FP and although it attempts to use 

Object Oriented metrics, the framework itself is not very well suited to the object-

oriented paradigm. It is simply trying to retrofit a model designed for an earlier 

development paradigm to the OO paradigm. 
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2.6 Class Point (CP) Model 

The Class Point model as defined by Costagliola et al, 2005 [29], is similar to the OOFP 

approach in that it attempts to give an estimate of the size metric based on 

design/structural artifacts. There are two forms of the Class point metric, named CP1 and 

CP2 respectively. The former is used later in the design stage as more information is 

available where as CP1 is meant to be used a bit earlier at the beginning of the design 

process to carry out a preliminary size estimate. 

The process of Class Point size estimation is composed of three main phases: 

a) Identification and classification of User Classes: design specifications are 

analyzed to classify systems components into four types. These are the problem 

domain type (PDT)/entity classes, the human interaction type (HIT)/boundary 

classes, the data management type (DMT)/data classes, and the task management 

type (TMT)/ control classes. 

b) Evaluation of a Class Complexity Level: each of the identified classes in the 

previous step’s behavior is taken into account to evaluate its complexity level. In 

CP1, the number of external methods and the number of services requested are 

taken into account; whereas, in CP2, the number of attributes is also exploited. 

c) Estimating the Total Unadjusted Class Point: this consists of computing a 

weighted total of the classes with their complexity levels determined. 

d) Technical Complexity Factor Estimation: this is similar to the UCP where the 

Total Unadjusted Points are adjusted based on system characteristics such as 

multiple sites, operational ease, multi-user interactivity etc. 
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The CP estimation is done only on design artifacts and although it provides a 

mechanism to accommodate for the refinement of the design artifacts, it does not 

provide a mechanism to make predictions at the earlier phases, nor a bridge or a means 

of conversion to relate to earlier metrics.  

2.7 SysML Point Overview 

In object-oriented development projects, it is desirable to have an estimation model that 

imitates the continuous realization and refinement of the same system artifacts through 

the pre-implementation activities of the project development. For example, use cases 

models are realized into object interaction diagrams and analysis classes, and these are 

further refined into the class structures that will be coded. The Pattern Point model is a 

constituent of the proposed SysML point approach (Figure 3). The remainder of this 

dissertation defines and validates the Pattern Point estimation model. 
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3. PATTERN POINT ESTIMATION 

3.1 Design Patterns 

In software engineering, a design pattern is a common reusable solution to a frequently-

occurring problem in software design. A design pattern is not a finished design that can 

be transformed directly into code. It is a description or template for how to solve a 

problem that can be used in many different situations. Typically, object-oriented design 

patterns display relationships and interactions between classes or objects without 

specifying the final application classes or objects that are involved. Algorithms are not 

considered design patterns because they solve computational problems and not design 

problems. 

3.1.1 History 

Although the practical employment of design patterns is widespread, the concept of a 

design pattern was not formalized for several years. Patterns, in general, emerged as an 

architectural concept by Christopher Alexander in 1977. In 1987, Kent Beck and Ward 

Cunningham began experimenting with the concept of applying patterns to computer  

programming and presented their results at the OOPSLA conference that year [20], [21]. 

In the following years, Beck, Cunningham and others followed up on this work. 

In the field of computer science design patterns gained popularity after the book 

Design Patterns: Elements of Reusable Object-Oriented Software was published in 1994 

(Gamma et al.)[3]. That same year, the maiden Pattern Languages of Programming 
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Conference was held and the following year, the Portland Pattern Repository was created 

for documentation of design patterns.  

3.1.2 Uses 

Design patterns provide tested, proven development paradigms and can thus speed up 

the development process. Effective software design demands the consideration of issues 

that may not come to light until later in the implementation stage. The reuse of design 

patterns helps to avert subtle issues that can cause major problems, and it also improves 

code readability for developers who are conversant with the patterns. 

Often, people only understand how to apply certain software design techniques to 

certain problems. These techniques are difficult to apply to a broader range of problems. 

Design patterns provide general solutions, documented in a format that doesn't require 

specifics tied to a particular problem. Moreover, patterns enable developers to 

communicate using established names for software interactions. Common design 

patterns can be improved over time, making them more robust than ad-hoc designs. 

3.1.3 Classification 

Object-oriented design patterns are classified into the categories: Creational Patterns, 

Structural Patterns, and Behavioral Patterns, and described using the concepts of 

aggregation, delegation, and consultation [21]. Creational Patterns are design patterns 

that are concerned with object creation mechanisms; trying to create objects in a manner 

suitable to the situation. Structural Patterns are design patterns that ease the design by 

identifying a simple way to realize relationships between entities. Lastly, Behavioral 
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Patterns are design patterns that identify common communication patterns between 

objects and realize these patterns. By doing so, these patterns increase flexibility in 

carrying out this communication. Table 1 lists design patterns classified into the three 

categories. 

3.2 The Pattern Point Model 

The Pattern Points (PP) model is an empirical parametric estimation method that utilizes 

UML sequence diagrams (object interactions) to predict development effort in the 

analysis phase of an object-oriented development project. It relies on a sizing of each of 

the 23 object oriented design patterns as defined in the seminal book Design Patterns: 

Elements of Reusable Object-Oriented Software, 1994 (Gamma et al) [3]. Each pattern is 

sized based on a pattern ranking and an implementation ranking. The pattern ranking 

metric is a function of the degree of difficulty and the structural complexity of the design 

pattern; where as the implementation ranking is a function of the ease of applicability of 

the pattern to the problem type.  

The PP model focuses on UML sequence diagrams as the modeling 

representation for object interactions. At the earliest stages, a practitioner is able to 

compute a range of estimates for a component size using the Pattern Points of the design 

patterns that might be used in the implementation of each object interaction. As the 

interaction model is refined and designers have identified which patterns to use in the 

construction of each object interaction, a single unadjusted component size estimate can 

be attained. Size estimates are then adjusted to accommodate for technical and 
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environmental factors such as the lead programmer experience and requirements 

volatility.  

At the late analysis stage where the object interactions have been further refined 

to reflect some initial design elements, the PP metric is computed a little differently. The 

design pattern implementation ranking together with class metrics of the number of 

children of abstract classes and interfaces to be implemented, are used in a formulation 

to compute the PP size estimate. 

3.2.1 The pattern point method 

The Pattern Point size estimation process is composed of three main phases, 

corresponding to analogous phases in the FP approach [30]. There are two size metrics: 

PP1 and PP2. The former is applicable at the beginning of the analysis phase where a 

majority of the design constructs have not been formalized, where as the latter takes into 

account the structural constructs that have been identified in the late analysis phase. 

Following are the three main steps in estimating the Pattern Point size. 

3.3 Identification and Classification of User Objects 

The user objects that form the design patterns are classified into 4 groups. Table 1 shows 

a default grouping as defined for the objects that comprise the 23 design patterns as 

defined by Gamma et al [3].  These are default groupings that are based on the type of 

components in which the design patterns are typically found. 

a. Problem domain type (PDT) – The PDT component contains patterns comprised 

of objects/classes representing real-world entities in the application domain of 
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the system. Examples taken from Bruegge et al [9], which describes a distributed 

information system for accident management, includes objects such as Incident, 

FieldOfficer, and EmergencyReport. 

b. Human interaction type (HIT) – The objects of HIT type are created to 

accomplish the need for information visualization and human-computer 

interaction. With regard to the previous example, the objects 

EmergencyReportForm and ReportEmergencyButton belong to HIT. 

c. Data management type (DMT) - The objects that belong to the DMT component 

offer functionality for data storage and retrieval. In the example [3], a DMT 

component is the IncidentManagement subsystem containing classes responsible 

for issuing SQL queries in order to store and retrieve records representing 

Incidents in the database. 

d. Task management type (TMT) - TMT objects are responsible for the definition 

and control of tasks. In the example, Manage-EmergencyControl and 

ReportEmergencyControl are two objects designed for this purpose. 

Additionally, a task management type also includes objects responsible for the 

network communications between subsystems on different hosts. As a matter of 

fact, Message and Connection are typical classes falling within this component. 

3.4 Evaluation of a Pattern Complexity Level 

The second step is to evaluate the complexity level of the design patterns that are found 

in the object interaction analysis of the system. Two metrics have been formulated which 

are the Degree of Difficulty (DD) and Structural Complexity (SC), for each of the 23 
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design patterns as identified by Gamma et al [3]. The former is a function of the # of 

objects and # of messages identified in each design pattern according to its sequence 

diagram. For example, the degree of difficulty of the Command pattern in Figure 6 is 7, 

as there are 4 objects and 3 messages passed between the objects in the diagram. 

 

Figure 6: Sequence diagram for the Command design pattern 

The structural complexity is a function of the # of classes and # of associations 

that are identified in the structure of the design pattern. For example, the structural 

complexity of the Abstract Factory design pattern in Figure 7 is 7 because there are 3 

classes and 4 associations (concrete classes are not counted). Concrete class 

implementations of interfaces and abstract classes are more readily available in the late 

analysis stage and are included the PP2 metric. Table 1 lists the degree of difficulty and 

structural complexity of the 23 design patterns identified by Gamma et al [3] and in 

addition two common object oriented design patterns not listed in [3] that are in blue. 

These are the Interface pattern and the Filter pattern as defined in [4]. The PP1 metric is 

a function of the Degree of Difficulty (DD) and Structural Complexity (SC) of the design  
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Figure 7: Structural diagram of the Abstract Factory design pattern 

pattern, and PP2 takes the number of implemented concrete classes in the pattern also 

into consideration. For example, in Fig. 3, ProductA1 and ProductB1 are examples of 

Pattern Concrete (PC) classes.  

PP2 = PP1 + # of Pattern concrete classes (PC). 

The PP2 metric is applicable at the late analysis early design stages where more of the 

concrete implementations have been identified. 

 

 

 

 

 

Association Class 

(3.1) 
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Table 1: The 23 design patterns categorized by design pattern type and the 

corresponding DD, SC and Complexity values 

Type Pattern objs. mesgs. DD classes assoc. SC Group Complexity 

Abstract 

Factory 

2 1 3 3 4 7 PDT High 

Builder 3 4 7 3 4 7 PDT High 

Factory 

Method 

1 1 2 2 2 4 PDT Low 

Prototype 2 1 3 2 1 3 PDT Low 

C
re

at
io

n
al

 

Singleton 1 1 2 2 1 3 PDT Low 

Adapter 2 1 3 4 3 7 PDT Average 

Bridge 2 2 4 5 5 10 PDT High 

Composite 2 1 3 4 5 9 PDT High 

Decorator 2 1 3 4 3 7 HIT Average 

Façade 1 0 1 1 1 2 PDT Low 

Flyweight 2 1 3 5 5 10 PDT High 

S
tr

u
ct

u
ra

l 

Proxy 2 1 3 1 1 2 PDT Low 

Chain of 

Responsibility 

2 1  3 3 3 6 TMT Average 

Command 4 3 7 5 3 8 TMT High 

B
eh

av
io

ra
l 

Interpreter 3 1 4 4 4 8 TMT High 
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Type Pattern objs. mesgs. DD classes assoc. SC Group Complexity 

Iterator 1 1 2 3 2 5 DMT Low 

Mediator 3 3 6 4 4 8 TMT High 

Memento 3 4 7 3 2 5 DMT High 

Observer 2 5 7 4 3 7 TMT High 

State 2 3 5 3 2 5 TMT Average 

Strategy 2 3 5 3 2 5 PDT Average 

Template 

Method 

1 2 3 2 1 3 PDT Low 

B
eh

av
io

ra
l 

Visitor 3 3 6 5 5 10 TMT High 

 Filter 2 1 3   2 PDT Low 

 Interface 1 0 1 2 1 3 PDT Low 

 

The Complexity Level as identified in the Complexity column in Table 1 is based 

on an entry mapping of the DD and SC metric in Table 2. Each design pattern is 

assigned a complexity level of Low, Average or High depending on the size of the 

corresponding DD and SC metrics. 

 

Table 2: Evaluation of the complexity level of a design pattern 

 0 – 4 SC 5 – 8 SC >= 9 SC 

0 – 2 DD LOW LOW AVERAGE 

3 – 5 DD LOW AVERAGE HIGH 

>= 6 DD AVERAGE HIGH HIGH 

Table 1: Continued, 
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3.5 Estimating the Total Unadjusted Pattern Point 

After estimating the complexity of each of the design patterns found in the object 

interaction analysis of the system according to Table 2, we can now compute the Total 

Unadjusted Pattern Point (TUPP). To achieve this, Table 3 below, as defined in the 

Class Point estimation [29] is completed for Pattern Point estimation. 

 

Table 3: Evaluating the TUPP 

System 

Component Type 

Description Complexity 

  Low Average High Total 

PDT Problem Domain …*3=… …*6=… …*10=… … 

HIT Human Interaction …*4=… …*7=… …*12=… … 

DMT Data Management …*5=… …*8=… …*13=… … 

TMT Task Management …*4=… …*6=… …*9=… … 

TUPP  Total Unadjusted Pattern Point 

 

The entries in the table above express the weighted number of patterns whose 

typology and complexity level are given by the corresponding row and column, 

respectively. In summary, the TUPP is computed as the weighted total of the four 

components of the application: 

TUPP = ∑∑ w ij × x ij, (3.2)
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where xij is the number of patterns of component type i (problem domain, human 

interaction, etc.) with complexity level j (low, average, or high), and wij is the weighting 

value for type i, and complexity level j. 

3.6 Technical Complexity and Environmental Factor Estimation 

The Technical Complexity Factor (TCF) [9] is determined by assigning the degree of 

influence (ranging from 0 to 5) that 13 general system characteristics have on the 

application, from the designer’s point of view. The estimates given for the degrees of 

influence are recorded in the Technical factors table illustrated in Table 4. The sum of 

the influence degrees related to such general system characteristics forms the Technical 

Factor (TFactor), which is used to determine the TCF according to the following 

formula: 

TCF = 0.6 + (0.01 * TFactor). 

 

The Environmental Adjustment Factor (EAF) [9] is determined by factors that represent 

some characteristics existent at the development environment that could influence the 

software cost. Each factor from Table 5 receives a value and the Environmental 

Adjustment Factor (FAA) is given by 

EAF = 1.4 + (-0.03 * EFactor) 

The final value of the Adjusted Pattern Point (PP) is obtained by multiplying the Total 

Unadjusted Pattern Point value by the TCF and EAF 

PP = TUPP * TCF *EAF 

The PP count can vary with respect to the unadjusted count from -45 percent 

(corresponding to a null TDI) to +45 percent (corresponding to all degrees set to 5), due 

(3.3) 

(3.4) 

(3.5) 
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to the adjustment factor. It is worth mentioning that the Technical Complexity Factor 

and Environmental Adjustment Factor are determined by taking into account the 

characteristics that are considered in the FP. 

 

Table 4: Technical factors 

Factor Description Weight 

T1 Distributed system 2 

T2 Response or throughput performance objectives 2 

T3 End-user efficiency 1 

T4 Complex internal processing 1 

T5 Reusable code 1 

T6 Easy to install 0.5 

T7 Easy to use 0.5 

T8 Portable 2 

T9 Easy to change 1 

T10 Concurrent 1 

T11 Includes security features 1 

T12 Provide access for third parties 1 

T13 Special user training facilities are required 1 
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Table 5: Environmental factors 

Factor Description Weight 

F1 Familiar with Rational Unified Process 1.5 

F2 Application experience 0.5 

F3 Object-oriented experience 1 

F4 Lead analyst capability 0.5 

F5 Motivation 1 

F6 Stable requirements 2 

F7 Part-time workers -1 

F8 Difficult programming language -1 
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4. THEORETICAL VALIDATION 

The PP metric as well as its composite metrics: DD, SC and PC have been defined so 

far, but a software measure can be acceptable and effectively usable only if its usefulness 

has been proven by means of a validation process. The goal of such a process is to 

convey that a measure really measures the attribute that it is supposed to and it is 

practically useful [29]. It is widely accepted that two forms of validation are required: 

theoretical and empirical validation. Theoretical validation is a fundamental step in the 

validation process and should allow one to demonstrate that a measure satisfies 

properties characterizing the concept (e.g., size, complexity, coupling, etc.) it is intended 

to [5]. Once the measure satisfies the properties, its usefulness can be verified by 

carrying out an empirical validation process, which usually employs the use of statistical 

analysis techniques.  

Several authors have defined measurement theoretical principles that software 

measures should adhere to in order to be valid [6]-[8]. Nonetheless, as indicated by 

Briand et al. in [12], the software engineering community might gain from the adoption 

of a more pragmatic approach that is able to provide more practical results. Such 

concerns have led several researchers [13]-[16] to provide guidelines on frameworks for 

theoretical and empirical validation of measures. Specifically, it is suggested that the 

measures should conform to certain fundamental properties. In addition, measures of 

internal attributes should be validated empirically against external attributes. 

In this section, the general framework proposed by Briand et al. [5] is applied in 

the theoretical validation. The framework contributes to the definition of a stronger 
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theoretical ground of software measurement by providing convenient and intuitive 

properties for several measurement concepts, such as complexity, cohesion, length, 

coupling and size. The generality of the approach is due to the fact that the properties 

characterizing these concepts are independent of the software artifacts (e.g., software 

specification, design, code) the concepts are applied to [29]. 

The theoretical validation is conducted by evaluating the Pattern Point approach 

against the properties proposed by Briand et al [5] that are specific to size measures. 

Consideration is given only to the PP2 measure since the corresponding theoretical 

validation process can also be applied to PP1 as a special case. 

In [5], three properties are defined that are specific to the size measures, namely, 

Nonnegativity, Null Value, and Module Additivity. It is important to mention that such 

properties are requisite but not sufficient. Still, they constrain the search for measures 

and “make the measure definition process more rigorous and less exploratory.” Before 

describing the analysis process that was performed on the PP2 measure, the definitions of 

the general framework and the properties that the size measures are supposed to verify 

are detailed in the following section. Within the framework, a system is characterized as 

a set of elements and a set of relationships between those elements, as formalized in the 

following definition. 

4.1 Representation of Systems and Modules 

A system S will be represented as a pair < E, R >, where E represents the set of elements 

of S and R is a binary relation on E (R ⊆ E Χ E) representing the relationships between 

S’s elements. Given a system S = < E, R >, a system m = < Em, Rm > is a module of S if 
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and only if Em ⊆ E, Rm ⊆ EmΧ Em, and Rm⊆ R. The elements of a module are connected 

to the elements of the rest of the system by incoming and outgoing relationships. The set 

InputR(m) of relationships from elements outside module m to those of module m is 

defined as: 

InputR(m) = {< e1, e2 > ∈ R | e2 ∈ Em and e1∈ E -  Em} 

The set of OutputR(m) of relationships from the elements of a module m to those of the 

rest of the system is defined as: 

OutputR(m) = {< e1, e2 > e1∈ R | ∈ Em and e2 ∈ E -  Em} 

 The basic properties of size measures are very intuitive; they ensure that the size cannot 

be negative, it is null when the system has no element, and it can be obtained as the sum 

of the size of its modules when they are disjoint. More formally: 

Property Size 1: (Nonnegativity). The size of a system S = < E, R > is nonnegative 

Size≥ 0 

Property Size 2: (Null Value). The size of a system S = < E, R > is null if E is empty 

E = φ ⇒ Size(S) = 0 

Property Size 3: (Module Additivity) The size of a system S = < E, R > is equal to the 

sum of the sizes of two of its modules m1 = <Em1, Rm1> and m2 = <Em2, Rm2> such that 

any element of S is an element of either m1 or m2 

(m1 ⊆ S and m2⊆ S and E = Em1 ∪ Em2 and Em1∩ Em2 = φ) 

⇒ Size(S) = Size(m1) + Size(m2). 
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4.2 Theorem 

The Nonnegativity, Null Value, and Module Additivity properties hold for the Pattern 

Point measure. 

4.3 Proof 

Since the PP value is obtained as a weighted sum of nonnegative numbers, the 

Nonnegativity property holds. If no design pattern (i.e. classes/objects, associations/calls) 

is present in the system analysis the PP value is trivially null and the Null Value 

property is also verified. 

In order to prove the Module Additivity property, let S = < E, R > be the system, 

and let m1 = <Em1, Rm1> and m2 = <Em2, Rm2> be its modules, such that the following 

condition holds: m1 ⊆ S, m2⊆ S, E = Em1 ∪ Em2, and Em1∩ Em2 = φ).  

Let us observe that the conditions m1 ⊆ S, m2⊆ S and E = Em1 ∪ Em2 imply that no 

modification is made to the design patterns of S when the system is partitioned into 

modules m1 and m2. This means that for each pattern, the values for DD and SC will be 

unchanged after the partitioning. Indeed, the DD, SC and PC values in a design pattern 

are the same no matter how the design pattern is used in the system, i.e., regardless of 

the actual connections among modules. 
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5. EMPIRICAL VALIDATION 

In the literature, it is largely accepted that system size is strongly correlated with 

development effort [17]-[20]. The theoretical validation conducted in the previous 

section illustrates that the Pattern Point measures satisfy properties that are considered 

requisite for size measures. However, a theoretical validation alone does not guarantee 

the usefulness of the measures as predictors of effort and cost. Moreover, an empirical 

evaluation process is needed to verify their predictive power. Thus, the author has 

performed an empirical study purposed to determine whether the Pattern Point measures 

can be used to predict the development effort of OO systems in terms of person-days (8 

hours per day).  

The subject of the study was the initial release of the IBM Lotus Quickr software 

product. This particular product was chosen as the subject because of its extensive use of 

design patterns and the ample documentation on the effort expended per use case that 

existed. The experimentation on the data from the Quickr 8.0 release has provided initial 

evidence of the effectiveness of the Pattern Point approach.  

5.1 IBM Lotus Quickr 8.0 

Lotus Quickr is IBM’s team collaboration and content sharing software that helps users 

access and interact with the people, information and project materials that they need to 

get their work done. Lotus Quickr has a rich set of features such as content libraries to 

share everyday business files, team discussion forums and blogs to facilitate 

communications, wikis that let you author and edit content in place together, and 
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connectors that help make sharing easier than ever right from your favorite desktop 

software such as Lotus Notes, Lotus Sametime, Lotus Symphony, Microsoft Office and 

Microsoft Outlook. 

The IBM Lotus Quickr 8.0 release was selected as the subject of this study 

because of the extensive use of design patterns in its implementation, the careful 

recording of the effort expended in completing each project task, which was also 

grouped by use case, and also because the 8.0 release was the first release and thus there 

was more emphasis on new code development. The software was released June 2007 and 

the Pattern Point method was applied retroactively on the recorded data. 

5.2 Applying the Pattern Point Method to Lotus Quickr 

Like many software development projects, there was incomplete documentation 

particularly with respect to the artifacts from the analysis phase of the software product 

i.e. there was little or no documentation of object interaction analyses including 

sequence diagrams. However, there was ample data on implemented use case scenarios, 

and also the package structure of the code was designed for easy identification of the 

design patterns in play, which helped in the reverse engineering of the object interaction 

diagrams in the following section.  For instance, the package structure below identifies a 

Mediator design pattern and concrete class implementations of the classes involved in 

the design pattern: 

com.ibm.content.clb.mediator.handler.OperationHandlerImpl 

com.ibm.content.clb.mediator.handler.UserOperationHandlerImpl 
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com.ibm.content.clb.mediator.handler.ChildMetadataHandler 

com.ibm.content.clb.mediator.cache.CustomDataCacheEventListener 

Where as, the next set of package names identify the Visitor design pattern and the 

concrete class implementations of the classes involved in the design pattern: 

com.ibm.content.service.clb.serialization.visitor.ImportItemVisitorContainer 

com.ibm.content.service.clb.serialization.visitor.impl.ImportCopyObjectVisitor 

com.ibm.content.service.clb.serialization.visitor.impl.ImportRemoveControlData

Visitor 

The reverse engineering tool MaintainJ was employed to reverse engineer the object 

interaction diagrams involved in a particular use case. 

5.3 Reverse Engineering Using MaintainJ 

MaintainJ is an Eclipse plug-in that generates runtime UML sequence and class 

diagrams for a use case. This occurs in three steps: 

1. Instrument the Quickr server 

2. Perform the use case scenario in the application 

3. Generate trace files 

In the first step, Instrument the Quickr server, MaintainJ uses AspectJ technology [28], 

which allows for byte-code weaving directly in the Virtual Machine so that MaintainJ 

developers can write aspects (which insert instrumentation software) for code in binary 

(.class) form. With respect to Quickr, which runs off a WebSphere Portal server, this 
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step involves deploying the MaintainJ.war application onto the Portal server. In Step 2, 

the user can now log in to the Quickr application and perform use case scenarios with 

the MaintainJ application running. With the MaintainJ application started we are able to 

capture the flow of message calls between the objects that are involved in the 

actualization of the use case. Once this is complete, in step 3, the user can now output a 

trace file of the object interactions, which can then be imported into the Eclipse IDE. 

With the MaintainJ eclipse plug-in installed, the user can view run-time sequence and 

class diagrams. The author has written a separate tool that takes as input the trace file 

and it outputs class and method names involved in the object interactions to a text file.  

 In order to calculate the Pattern Point metrics for the use cases, the author has 

implemented an algorithm that identifies the design patterns based on the package name 

and structure of the outputted trace for each use case scenario. The program then 

performs the Complexity Level calculations in section 3.4 and generates corresponding 

TUPP1 and TUPP2 metrics for each use case. 

 The Technical Complexity Factors (TCF) and Environmental Adjustment Factors 

(EAF) were not included in the experiment. The first reason is because the use cases 

were all taken from the same project and thus the factors would not vary much between 

the use cases. Furthermore from the literature, some studies have revealed that the 

application of the Processing Complexity Factor to the raw Function Point measure can 

have little impact on the performance of Function Points in the cost estimation process 

[38], [43], [68]. The same was also verified in the Class Point approach, i.e. whether or 
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not the 14 Function Point factors are useful in our context, and also if the four additional 

Class Point factors enhance the prediction accuracy [29].  

As a side effect, the experiment has ascertained the author’s intuition that the 

Pattern Point measures do not require a long training, and is not labor intensive. As a 

matter of fact, one of the objectives when the measures were conceived was to overcome 

one of the criticisms to Function Point Analysis approach [21]-[23]. Additionally, in 

order to arrive at a more realistic accuracy of the derived models and have more reliable 

nonbiased results, an 8-fold cross-validation approach was utilized in the empirical 

validation. Multiple-fold cross validation has been successfully used in the literature in 

order to validate cost estimation models (see references [24]-[27]). The process is 

especially recommended to increase the accuracy of prediction models when dealing 

with small data sets. In the remainder of section 6, the cross validation process applied to 

PP1 and PP2 is described. Subsequently, a comparison of the results gained for PP1 and 

PP2 with other measures is performed in Section 7.1. 

5.4 The Cross Validation Process 

To carry out the cross validation process on the 78 selected use cases from the Lotus 

Quickr, the following steps were performed: 

1. The whole data set was partitioned into eight randomly selected test sets; seven of 

equal size (10) and the last test set had two less data elements (8). For each data set, 

the remaining use cases were analyzed to identify the corresponding training set 

obtained by removing influential outliers. 



 70

2. An Ordinary Least-Squares (OLS) regression analysis was performed on each 

training set to derive the effort prediction model. 

3. Accuracy was separately calculated for each test set and the resulting values have 

been aggregated across all 8 test sets. 

In what follows, we describe each of the above steps. 

5.5 Partitioning the Data Set 

Table 6 reports the data of the 78 use cases, following the order resulting from the 

random partition performed. Thus, the first ten use cases form the first test set, the 

subsequent ten use cases form the second one, and so on. 

 

Table 6: The data for the 78 use cases 

Use case DD SC PC EFD TUPP1 TUPP2 

1 27 27 11 13 33 44 

2 0 0 0 4 0 0 

3 48 61 29 20.5 78 109 

4 97 147 122 39 165 287 

5 51 74 79 18 81 160 

6 37 51 46 16 63 112 

7 58 80 88 28 93 181 

8 11 13 3 7 15 18 

 



 71

Use case DD SC PC EFD TUPP1 TUPP2 

9 62 87 89 28 96 185 

10 35 41 18 13 48 66 

11 72 101 62 35 124 280 

12 57 76 50 46 90 140 

13 11 13 3 4 15 18 

14 34 38 14 15 45 59 

15 11 13 3 4 15 18 

16 45 73 34 24 78 112 

17 49 68 30 22 75 105 

18 34 38 14 13 45 59 

19 31 34 7 18 48 55 

20 11 13 3 10 15 18 

21 11 13 1 4 15 16 

22 0 0 0 7 0 0 

23 11 13 1 9 15 16 

24 43 64 45 17 69 114 

25 43 82 30 22 87 117 

26 11 13 3 10 15 18 

27 59 80 116 30.5 96 212 

28 0 0 0 7 0 0 

 

Table 6: Continued, 
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Use case DD SC PC EFD TUPP1 TUPP2 

29 35 51 60 27 60 123 

30 37 48 8 18 62 70 

31 27 38 4 10 45 49 

32 72 111 78 55 125 203 

33 73 114 66 31 128 194 

34 29 30 4 7 39 43 

35 11 13 3 4 15 18 

36 45 61 30 17 75 108 

37 35 41 18 18 48 66 

38 11 13 1 7 15 16 

39 83 130 70 28.5 145 215 

40 0 0 0 3 0 0 

41 36 48 20 20 60 83 

42 0 0 0 13 0 0 

43 56 79 81 22 87 168 

44 35 41 18 16 48 66 

45 94 138 118 39 156 274 

46 57 83 81 31 103 187 

47 42 61 15 20 66 81 

48 48 61 29 17 78 109 

Table 6: Continued, 
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Use case DD SC PC EFD TUPP1 TUPP2 

49 32 39 12 7 48 60 

50 0 0 0 6 0 0 

51 40 66 33 23 77 110 

52 47 67 47 19.5 81 130 

53 0 0 0 8 0 0 

54 42 55 34 16 66 100 

55 62 84 52 21 96 148 

56 48 69 67 21 75 142 

57 11 13 3 7 15 18 

58 56 79 31 24 87 118 

59 54 77 79 27 91 170 

60 37 48 8 19 62 70 

61 69 77 34 27 108 142 

62 11 13 3 10 15 18 

63 0 0 0 7 0 0 

64 63 90 103 31 106 209 

65 47 61 16 20 72 88 

66 58 85 84 36 93 177 

67 0 0 0 5 0 0 

68 0 0 0 4 0 0 

Table 6: Continued, 
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Use case DD SC PC EFD TUPP1 TUPP2 

69 53 63 30 25 84 117 

70 51 74 76 28 91 169 

71 51 72 47 22 81 128 

72 51 76 51 25 81 132 

73 11 13 2 0 15 17 

74 44 38 8 15 66 74 

75 0 0 0 5 0 0 

76 42 61 64 22 66 130 

77 100 144 70 39 163 233 

78 58 74 46 27 100 146 

 

Descriptive statistics have been computed both for the variable Effort (denoted 

by EFD), expressed in terms of person-days (8 hours/day), and the variables PP1 and 

PP2, related to the 78 use cases. The summary statistics of those variables are given in 

Table 7. 

 

Table 7: Descriptive statistics: EFD, PP1, PP2 

Variable Obs.  Min     Max Median     Mean   Std Dev.   

Days       78    0.00    55.00 18.00    18.38      11.13      

PP1      78    0.00   165.00 66.00    60.42      42.80      

PP2      78    0.00   287.00 94.00   95.36      76.10      

Table 6: Continued, 
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A careful outlier analysis was performed in order to remove possible extreme 

values, which may unduly influence the models obtained from the regression analysis. 

For each data point, the Cook’s distance was calculated to verify its influence on the 

generated model. In regression models, Cook’s distance is the standard statistic to detect 

influential observations—it measures the overall effect that omitting a given observation 

would have in the model. Figure 8 shows example outliers in the training set. Thus, any 

influential outlier has been omitted from the corresponding initial training set, resulting 

in the sets used to derive the models.  

Influential observation for the training sets are determined based on Cook’s 

distances greater than the threshold value 0.10, corresponding to the ratio 8 and the 

sample size 78. The other data points have been retained since they are not influential 

observations and cannot prejudice the results. Table 8 shows that for PP1 use case 12 

represents outliers for training sets 1, 3, 4, 5, 6, 7 and 8, and that the use cases 32 and 39 

represent outliers for training sets 1, 2, 3, 5, 6, 7 and 8. Where as for PP2, use case 11 is 

also detected and represents outliers for training sets 1, 3 and 4; use case 12 represents 

outlier for training sets 1, 3, 4, 5, 6, 7 and 8; use case 32 represents outliers for training 

sets 1, 2, 3, 5, 6, 7 and 8; and lastly use case 39 represent outliers for training sets 5, 6 

and 7. 
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Figure: 8 Outliers in the training set 

 

Table 8: The values of Cook’s distance for outliers of PP1 and PP2 

PP1 Set 1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 

12 0.175  0.172 0.271 0.192 0.170 0.184 0.182 

32 0.450 0.591 0.433  0.484 0.421 0.478 0.475 

39 0.154 0.134 0.131  0.176 0.142 0.131 0.153 

PP2 Set 1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 

11 0.195  0.126 0.126 0.002 0.002 0.004 0.112 

12 0.184  0.168 0.261 0.192 0.170 0.184 0.181 

32 0.469 0.642 0.420  0.484 0.420 0.478 0.466 

39 0.048 0.039 0.030  0.176 0.142 0.131 0.028 
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For each test set, the remaining 68 projects (70 for the last test set) are considered 

as an initial training set. In order to verify the presence of a positive linear relationship 

between each of the measures PP1 and PP2 and the effort, a scatter plot for each training 

set was produced. As illustrated in Figures 9a and 9b, for either measure, each scatter 

plot shows a positive linear relationship between the variables involved. This suggests 

that a linear regression analysis of EFD and PP1 (respectively, EFD and PP2) can be 

performed. 
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(b) 

Figure 9: The scatter plots for (a) EFD and PP1, and (b) EFD and PP2, resulting from the 

OLS regression applied to the four training sets 
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5.6 OLS Regression Analysis to Derive Effort Prediction Models 

An Ordinary Least-Squares regression analysis was applied in order to perform an 

empirical validation of the PP1 and PP2 measures. OLS allows the analyst to determine 

the equation of a line that can be used to predict the development effort in terms of the 

number of person-days required. This modeling technique has often been used for 

validation purposes due to its useful predictive capability and to the mature statistical 

packages supporting it. For this experiment, the statistics package Minitab 15 Statistical 

Software English was employed in deriving the models.  

When applying the OLS regression, a number of determinative indicators have 

been taken into account to establish the quality of the prediction. An important measure 

is the goodness of fit of a regression model, which is determined by the Coefficient of 

Determination, R
2
. The Coefficient of Determination measures the percentage of 

variation in the dependent variable explained by the independent variable. Furthermore, 

to evaluate the statistical significance a t-test was performed and the p-value, t-value of 

the coefficient and intercept for each model was determined. Specifically, a significance 

threshold of 0.05 for the p-value is generally used to establish whether a variable is a 

significant predictor. When it is less than 0.05, we can reject the hypothesis that the 

coefficient is zero; the reliability of the predictor is then given by the t-value of the 

coefficient. The commonly used threshold is 1.5, so a t-value greater than 1.5 indicates 

that the predictor is reliable at a risk level of 5 percent or less and hence it is a reliable 

predictor. It is important to note that the p-value of the coefficient coincides with the 

overall p-value of the model - Significant F - which is related to the probability that the 
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independent variable impacts the dependent variable, i.e., that the regression equation is 

significant. Furthermore, by squaring the t-value we can obtain the F value, due to the 

relation between Student’s t distribution and Fisher-Snedecor’s F distribution. As for the 

intercept, the corresponding p-value provides the probability that it is zero. Thus, also 

for the intercept a high t-value, together with a low p-value indicate that the null 

hypothesis can be rejected. 

In tables 9 to 16, the results of the OLS regression carried out with each training 

set are presented. It can be observed that for each training set, the linear regression 

analysis shows a high R
2
 value, for both PP1 and PP2, with a slightly higher value for 

PP2 in training sets 1, 2, 6, 7, and 8, and a higher R
2 

for PP1 in training sets 3, 4, and 5. 

As an example, consider training set 1. For PP1, we have R
2
 = 0.86, which indicates that 

86 percent is the amount of variance of the dependent variable EFD that is explained by 

the model related to PP1, whereas for PP2, we have R
2
 = 0.88 indicating that 88 percent 

is the amount that is explained by the model related to PP2. For this training set, the 

equation of the regression model for PP1 is: 

EFD = 4.486 + 0.223 PP1, 

where the coefficient 0.223 and the intercept 4.486 are significant at level 0.05, as from 

the t-test. The equation of the regression model for PP2 on the other hand, is: 

EFD = 5.84 + 0.129 PP2 

where the coefficient 0.129 and the intercept 5.84 are again significant at level 0.05. In 

table 17, the mean and median R
2 

values have also been calculated for PP1and PP2. for 

PP1, both values are 0.881, and for PP2 the mean and median R
2 

values are 0.879 and 

(5.1) 

(5.2) 
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0.884 for PP1 and PP2 respectively.  These set of results have led to the conclusion that 

the R
2 

values for PP1 are comparable to that PP2, but the median PP2 slightly 

outperforms PP1. 

 

Table 9: The results of the OLS regression analysis for training set no. 1 

(a) 

 Prediction model R R
2
 Std. Err F Significant F 

PP1 EFD = 4.486 + 0.223 PP1 0.932 0.869 3.59 418.879 0.000 

PP2 EFD = 5.84 + 0.129 PP2 0.940 0.884 3.33 479.930 0.000 

 

(b) 

 Value Std. Err t-value p-value 

Coefficient 0.224 0.010 20.467 0.000 Model for 

PP1 Intercept 4.486 0.764 5.867 0.000 

Coefficient 0.129 0.006 21.907 0.000 Model for 

PP2 Intercept 5.843 0.660 8.860 0.000 
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Table 10: The results of the OLS regression analysis for training set no. 2 

(a) 

 Prediction model R R
2
 Std. Err F Significant F 

PP1 EFD = 4.647 + 0.219 PP1 0.935 0.875 3.552 446.216 0.000 

PP2 EFD = 5.873 + 0.125 PP2 0.950 0.903 3.09 588.286 0.000 

 

(b) 

 Value Std. Err t-value p-value 

Coefficient 0.219 0.010 21.124 0.000 Model for 

PP1 Intercept 4.647 0.752 6.180 0.000 

Coefficient 0.125 0.005 24.255 0.000 Model for 

PP2 Intercept 5.873 0.632 9.286 0.000 

 

Table 11: The results of the OLS regression analysis for training set no. 3 

(a) 

 Prediction model R R
2
 Std. Err F Significant F 

PP1 EFD = 4.13 + 0.225 PP1 0.943 0.889 3.365 505.711 0.000 

PP2 EFD = 5.709 + 0.127 PP2 0.940 0.884 3.397 479.433 0.000 
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(b) 

 Value Std. Err t-value p-value 

Coefficient 0.225 0.010 22.488 0.000 Model for 

PP1 Intercept 4.13 0.735 5.623 0.000 

Coefficient 0.127 0.006 21.896 0.000 Model for 

PP2 Intercept 5.709 0.689 8.289 0.000 

 

Table 12: The results of the OLS regression analysis for training set no. 4 

(a) 

 Prediction model R R
2
 Std. Err F Significant F 

PP1 EFD = 4.877 + 0.221 PP1 0.938 0.88 3.411 483.639 0.000 

PP2 EFD = 6.512 + 0.124 PP2 0.909 0.823 4.347 312.776 0.000 

 

(b) 

 Value Std. Err t-value p-value 

Coefficient 0.221 0.010 21.992 0.000 Model for 

PP1 Intercept 4.877 0.729 6.693 0.000 

Coefficient 0.124 0.007 17.685 0.000 Model for 

PP2 Intercept 6.512 0.856 7.609 0.000 

 

Table 11: Continued, 
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Table 13: The results of the OLS regression analysis for training set no. 5 

(a) 

 Prediction model R R
2
 Std. Err F Significant F 

PP1 EFD = 4.144 + 0.228 PP1 0.945 0.893 3.279 523.493 0.000 

PP2 EFD = 5.572 + 0.129 PP2 0.942 0.888 3.249 489.266 0.000 

 

(b) 

 Value Std. Err t-value p-value 

Coefficient 0.228 0.010 22.880 0.000 Model for 

PP1 Intercept 4.144 0.698 5.935 0.000 

Coefficient 0.129 0.006 22.119  0.000 Model for 

PP2 Intercept 5.572 0.650 8.576 0.000 

 

Table 14: The results of the OLS regression analysis for training set no. 6 

(a) 

 Prediction model R R
2
 Std. Err F Significant F 

PP1 EFD = 4.343 + 0.226 PP1 0.940 0.883 3.570 474.896 0.000 

PP2 EFD = 6.063 + 0.124 PP2 0.941 0.886 3.503 488.507 0.000 
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(b) 

 Value Std. Err t-value p-value 

Coefficient 0.226 0.010 21.792 0.000 Model for 

PP1 Intercept 4.343 0.738 5.884 0.000 

Coefficient 0.124 0.006 22.102 0.000 Model for 

PP2 Intercept 6.063 0.668 9.070 0.000 

 

Table 15: The results of the OLS regression analysis for training set no. 7 

(a) 

 Prediction model R R
2
 Std. Err F Significant F 

PP1 EFD = 4.299 + 0.220 PP1 0.939 0.881 3.347 468.486 0.000 

PP2 EFD = 5.970 + 0.121 PP2 0.939 0.882 3.338 471.409 0.000 

 

(b) 

 Value Std. Err t-value p-value 

Coefficient 0.220 0.010 21.644 0.000 Model for 

PP1 Intercept 4.299 0.723 5.949 0.000 

Coefficient 0.121 0.006 21.712 0.000 Model for 

PP2 Intercept 5.970 0.659 9.053 0.000 

 

Table 14: Continued, 
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Table 16: The results of the OLS regression analysis for training set no. 8 

(a) 

 Prediction model R R
2
 Std. Err F Significant F 

PP1 EFD = 4.648 + 0.221 PP1 0.935 0.874 3.442 452.336 0.000 

PP2 EFD = 6.265 + 0.121 PP2 0.938 0.881 3.303 479.402 0.000 

 

(b) 

 Value Std. Err t-value p-value 

Coefficient 0.221 0.010 21.268 0.000 Model for 

PP1 Intercept 4.648 0.723 6.429 0.000 

Coefficient 0.121 0.006 21.895 0.000 Model for 

PP2 Intercept 6.265 0.637 9.834 0.000 

 

Table 17: The mean and median R
2 

values for PP1 and PP2 

 Mean R
2
 Median R

2
 

PP1 0.881 0.881 

PP2 0.879 0.884 
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5.7 Accuracy Evaluation of the Prediction Models 

In order to assess the acceptability of the effort prediction models, the criteria suggested 

by Conte et al. [31] were adopted. In particular, the author applied the Magnitude of 

Relative Error, which is defined as 

MRE = |EFDreal – EFDpred| / EFDreal, 

where EFDreal and EFDpred are the actual and predicted efforts, respectively. The 

rationale behind this measure is that the gravity of the absolute error is proportional to 

the size of the observations. Such value has been calculated for each of the 10 

observations in any test set, using the models derived for both PP1 and PP2. For each test 

set, the prediction accuracy has been evaluated by taking into account a summary 

measure, given by the Mean of MRE (MMRE), to measure the aggregation of MRE over 

the 10 observations.  

An acceptable threshold for an effort prediction model, as suggested by Conte et 

al is an MMRE value ≤ 0.25. The values of such measures are reported in Tables 18 to 

25. It can be observed that the model derived from training sets 2 and 4 for both PP1 and 

PP2 exhibit MMRE values greater than 0.25; in addition, the model derived from training 

sets 3 and 5 exhibit an MMRE value greater than 0.25 for in PP1. All other models 

satisfy that condition. This represents an acceptable threshold for an effort prediction 

model, as suggested by Conte et al [31], which is confirmed by the aggregate (mean) and 

median MMRE values for PP1 and PP2 in Table 17, which are both ≤ 0.25.  

Another meaningful measure of accuracy namely, the prediction at level l, was 

assessed. The prediction at level l is defined as 

(5.3) 
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PRED (l) = k/N 

where k is the number of observations whose MRE is less than or equal to l, and N is the 

total number of observations. Again, according to Conte et al., at least 75 percent of the 

predicted values should fall within 25 percent of their actual values. In other words, a 

good effort prediction model should have PRED (0.25) ≥ 0.75. As we can observe from 

the results shown in Tables 9 to 16, the required condition is satisfied for most of the 

derived models. PP2 clearly outperforms PP1. The exceptions where PRED (0.25) < 0.75 

lie in the models derived from training set 2 and 4 in both PP1 and PP2, and in the 

models derived from training sets 1 and 3 for PP1.  

Once accuracy has been separately calculated for each test set, the resulting 

values have been aggregated across all eight sets. Table 26 reports the results of such 

analysis. The aggregate MMRE and aggregate PRED (0.25) suggests that PP2 is good for 

estimating the development effort but PP1 falls just short at a mean PRED (0.25) value 

of 0.71. PP2 exhibits a better performance, thus confirming our intuition that the PC 

metric may contribute, together with the DD and SC measures, to predict the 

development effort of object-oriented systems. Nevertheless, the knowledge of the # of 

Pattern Concrete classes may not be very accurate early in the development process, 

whereas the DD and SC metrics are usually available earlier than the PC metric. This 

suggests the use of the PP1 measure at the beginning of the development process, in 

order to obtain a preliminary effort estimation, which can be refined by employing PP2 

when the number of Pattern Concrete classes is known. As a matter of fact, PP2 is 

 (5.4) 



 89

strongly correlated to PP1 (Figure 10), as shown by the OLS regression carried out on 

the 78 projects. 

 

Table 18: The validation results for test set 1 

EFD = 4.486 + 0.223 PP1 EFD = 5.84 + 0.129 PP2  EFDreal 

PP1 EFDpred MRE PP2 EFDpred MRE 

1 13 25.938 11.845 0.089 34.584 11.519 0.114 

2 4 0 4.486 0.122 0 5.843 0.461 

3 20.5 61.308 21.88 0.067 85.674 19.904 0.029 

4 39 129.69 41.281 0.058 225.582 42.866 0.099 

5 18 63.666 22.549 0.253 125.76 26.483 0.471 

6 16 49.518 18.535 0.158 88.032 20.291 0.268 

7 28 73.098 25.225 0.099 142.266 29.192 0.043 

8 7 11.790 7.831 0.119 14.148 8.165 0.166 

9 28 75.456 25.894 0.075 145.41 29.708 0.061 

10 13 37.728 15.19 0.168 51.876 14.357 0.104 

MMRE 0.121 MMRE 0.182   

PRED (0.25) 0.9 PRED (0.25) 0.8 
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Table 19: The validation results for test set 2 

EFD = 4.647 + 0.219 PP1 EFD = 5.873 + 0.125 PP2  EFDreal 

PP1 EFDpred MRE PP2 EFDpred MRE 

1 35 97.464 31.679 0.095 220.080 40.873 0.168 

2 46 70.740 24.267 0.472 110.040 23.373 0.492 

3 4 11.790 7.917 0.979 14.148 8.123 1.031 

4 15 35.370 14.457 0.036 46.374 13.248 0.117 

5 4 11.790 7.917 0.979 14.148 8.123 1.031 

6 24 61.308 21.651 0.098 88.032 19.873 0.172 

7 22 58.950 20.997 0.046 82.530 18.998 0.136 

8 13 35.370 14.457 0.112 46.374 13.248 0.019 

9 18 37.728 15.111 0.161 43.230 12.748 0.292 

10 10 11.790 7.917 0.208 14.148 8.123 0.188 

MMRE 

 0.319 

MMRE 

0.365 

  

PRED (0.25) 0.7 PRED (0.25) 0.6 
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Table 20: The validation results for test set 3 

EFD = 4.13 + 0.225 PP1 EFD = 5.709 + 0.127 PP2  EFDreal 

PP1 EFDpred MRE PP2 EFDpred MRE 

1 4 11.790 7.505 0.876 12.576 7.741 0.935 

2 7 0.000 4.130 0.410 0.000 5.709 0.184 

3 9 11.790 7.505 0.166 12.576 7.741 0.140 

4 17 54.234 19.655 0.156 89.604 20.187 0.187 

5 22 68.382 23.705 0.078 91.962 20.568 0.065 

6 10 11.790 7.505 0.250 14.148 7.995 0.201 

7 30.5 75.456 25.730 0.156 166.632 32.633 0.070 

8 7 0.000 4.130 0.410 0.000 5.709 0.184 

9 27 47.160 17.630 0.347 96.678 21.330 0.210 

10 18 48.732 18.080 0.004 55.020 14.599 0.189 

MMRE 0.285 MMRE 0.237   

PRED (0.25) 0.6 PRED (0.25) 0.9 
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Table 21: The validation results for test set 4 

EFD = 4.877 + 0.221 PP1 EFD = 6.512 + 0.124 PP2  EFDreal 

PP1 EFDpred MRE PP2 EFDpred MRE 

1 10 35.370 14.822 0.482 38.514 12.588 0.2588 

2 55 98.250 32.502 0.409 159.558 31.684 0.424 

3 31 100.608 33.165 0.070 152.484 30.568 0.014 

4 7 30.654 13.496 0.928 33.798 11.844 0.692 

5 4 11.790 8.192 1.048 14.148 8.744 1.186 

6 17 58.950 21.452 0.262 84.888 19.904 0.171 

7 18 37.728 15.485 0.140 51.876 14.696 0.184 

8 7 11.790 8.192 0.170 12.576 8.496 0.214 

9 28.5 113.970 36.922 0.296 168.99 33.172 0.164 

10 3 0.000 4.877 0.626 0 6.512 1.171 

MMRE 0.443 MMRE 0.448   

PRED (0.25) 0.3 PRED (0.25) 0.6 
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Table 22: The validation results for test set 5 

EFD = 4.144 + 0.228 PP1 EFD = 5.572 + 0.129 PP2  EFDreal 

PP1 EFDpred MRE PP2 EFDpred MRE 

1 20 47.160 17.824 0.109 65.238 16.279 0.186 

2 13 0.000 4.144 0.681 0.000 5.572 0.571 

3 22 68.382 23.980 0.090 132.048 27.244 0.238 

4 16 37.728 15.088 0.057 51.876 14.086 0.120 

5 39 122.616 39.712 0.018 215.364 40.918 0.049 

6 31 80.958 27.628 0.109 146.982 29.695 0.042 

7 20 51.876 19.192 0.040 63.666 16.021 0.199 

8 17 61.308 21.928 0.290 85.674 19.633 0.155 

9 7 37.728 15.088 1.155 47.160 13.312 0.902 

10 6 0.000 4.144 0.623 0.000 5.572 0.071 

MMRE 0.317 MMRE 0.253   

PRED (0.25) 0.6 PRED (0.25) 0.8 
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Table 23: The validation results for test set 6 

EFD = 4.343 + 0.226 PP1 EFD = 6.063 + 0.124 PP2  EFDreal 

PP1 EFDpred MRE PP2 EFDpred MRE 

1 23 60.522 21.745 0.055 86.460 19.703 0.143 

2 19.5 63.666 22.649 0.161 102.180 22.183 0.138 

3 8 0.000 4.343 0.457 0.000 6.063 0.242 

4 16 51.876 19.259 0.204 78.600 18.463 0.154 

5 21 75.456 26.039 0.240 116.328 24.415 0.163 

6 21 58.950 21.293 0.014 111.612 23.671 0.127 

7 7 11.790 7.733 0.105 14.148 8.295 0.185 

8 24 68.382 24.005 0.000208 92.748 20.695 0.138 

9 27 71.526 24.909 0.077 133.620 27.143 0.005 

10 19 48.732 18.355 0.034 55.020 14.743 0.224 

MMRE 0.135 MMRE 0.152   

PRED (0.25) 0.9 PRED (0.25) 1 
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Table 24: The validation results for test set 7 

EFD = 4.299 + 0.220 PP1 EFD = 5.970 + 0.121 PP2  EFDreal 

PP1 EFDpred MRE PP2 EFDpred MRE 

1 27 84.888 28.059 0.039 111.612 23.152 0.143 

2 10 11.790 7.599 0.240 14.148 8.148 0.185 

3 7 0.000 4.299 0.386 0.000 5.970 0.147 

4 31 83.316 27.619 0.109 164.274 31.259 0.008 

5 20 56.592 20.139 0.007 69.168 16.618 0.169 

6 36 73.098 24.759 0.312 139.122 27.387 0.239 

7 5 0.000 4.299 0.140 0.000 5.970 0.194 

8 4 0.000 4.299 0.075 0.000 5.970 0.493 

9 25 66.024 22.779 0.089 91.962 20.127 0.195 

10 28 71.526 24.319 0.131 132.834 26.419 0.056 

MMRE   0.153 MMRE   0.183   

PRED (0.25) 0.8 PRED (0.25) 1 
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Table 25: The validation results for test set 8 

EFD = 4.648 + 0.221 PP1 EFD = 6.265 + 0.121 PP2 

 EFDreal 

PP1 EFDpred MRE PP2  EFDpred MRE 

1 22 63.666 22.549 0.025 100.608 21.758 0.011 

2 25 63.666 22.549 0.098 103.752 22.242 0.110 

3 0 11.790 7.963 0.000 13.362 8.327 0.000 

4 15 51.876 19.234 0.282 58.164 15.224 0.015 

5 5 0.000 4.648 0.070 0.000 6.270 0.254 

6 22 51.876 19.234 0.126 102.180 22.000 0.000 

7 39 128.118 40.671 0.043 183.138 34.463 0.116 

8 27 78.600 26.748 0.009 114.756 23.936 0.113 

MMRE 0.082 MMRE 0.078 

  

PRED (0.25) 0.875 PRED (0.25) 1 

 

Table 26: Aggregate accuracy evaluation 

 Aggregrate MMRE Aggregrate PRED (0.25) 

PP1 0.232 0.709 

PP2 0.237 0.874 
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Figure 10: Results of the OLS regression analysis with PP1 as independent variable and 

PP2 as dependent variable 
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6. COMPARISON ANALYSIS 

6.1 Single Measures and Their Sums 

Courtney et al. [71] report that researchers who set out to learn empirical relationships 

by experimenting with different combinations of measures and functional forms before 

choosing the one with the highest correlation tend to make a good model with small data 

sets. A comparative study was conducted with respect to each of the single measures 

employed in the Pattern Point approach (i.e., DD, SC, and PC), and with respect to the 

measures obtained by summing them. The results of the study are presented in this 

section. An 8-fold cross validation technique similar to that used in the empirical 

validation process of the PP1 and PP2 measures was again used in this study. An 

Ordinary Least Squares regression was carried out on the training sets after removing the 

influential outliers. Then, the performance of the derived models for all considered 

measures was evaluated using the data coming from the corresponding testing sets. 

Table 27 shows a summary descriptive statistics of the measures considered. We recall 

that data about DD, SC, and PC for the 78 use cases are listed in Table 6. For the sake of 

simplicity, only the aggregate MMRE and PRED (0.25) resulting from the cross 

validation, for each of the considered measures is shown in Table 28.  

Among the single measures, the best performance is gained by SC+PC, for 

which we have acceptable MMRE values, and PRED (0.25) values that surpass the 

indicated threshold. An acceptable MMRE value and corresponding PRED (0.25) value 

also results for SC, DD+SC, DD+SC+PC, which shows that the SC metric is very 

strongly correlated with effort. In fact, all the measures with SC fair slightly better than 
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the PP1 metric. Even though the SC+PC and DD+SC+PC measures are expected to 

perform better because the PC metric is a part of these measures, SC by itself also faired 

slightly better: an aggregate PRED (0.25) of 0.75 VS an aggregate PRED (0.25) of 0.71 

for PP1. This leads to the conclusion that the SC metric can be used interchangeably with 

the PP1 metric at the early analysis stage. The PP2 metric outperformed all the other 

measures. 

 

Table 27: Descriptive statistics of the measures considered for the comparison analysis 

 Obs. Min Max Mean Median Mode Std Dev. 

DD 78 0 100 37.641 41 11 25.265 

SC 78 0 147 51.436 53 31 37.374 

PC 78 0 122 33.397 24.5 0 33.880 

DD + SC 78 0 244 88.910 92.5 24 62.332 

DD + PC 78 0 219 70.872 68 0 56.647 

SC + PC 78 0 269 84.833 83 0 68.750 

DD + SC + PC 78 0 366 122.308 127.5 0 92.961 
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Table 28: Aggregate accuracy evaluation of the prediction models derived from basic 

and combined size measures 

 Aggregate MMRE Aggregate PRED (0.25) 

DD 0.37 0.23 

SC 0.23 0.75 

PC 0.36 0.56 

DD+SC 0.23 0.74 

DD+PC 0.26 0.79 

SC+PC 0.25 0.80 

DD+SC+PC 0.24 0.78 

 

Comparing the above results with the ones of Section 6.7, we may derive two 

main conclusions. First, the PP2 metric is better correlated to effort than any single 

measure composing it. Second, the mere sum of the single measures is sufficient to 

enhance the performance of its prediction model as can been seen in DD+PC.  Lastly, 

the PP1 metric can be used interchangeably with SC metric at the early analysis stage. 

6.2 Multivariate OLS Regression 

In order to complete the analysis, a multivariate OLS regression using as independent 

variables the basic measures of the Pattern Point approach, was carried out. Again, the 

8-fold cross validation technique was applied by carrying out a multivariate OLS 

regression on the eight training sets, and then evaluating the performance of the derived 
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models, using the data coming from the corresponding testing sets. Table 29 reports the 

aggregate MMRE and PRED (0.25) resulting from this analysis. Compared with the 

values reported in Table 26, it can be deduced that the PP2 measure exhibits a more 

accurate predictive capability. In any case, this study has confirmed once again that the 

use of the PP2 measure may yield a better predictive accuracy in models, which are 

based on a multivariate regression as well. 

 

Table 29: Aggregate accuracy evaluation of the prediction models derived from 

multivariate OLS regression analyses 

 Aggregate MMRE Aggregate PRED (0.25) 

Multivariate DD_SC 0.24 0.74 

Multivariate DD_SC_PC 0.23 0.78 
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7. CONCLUSIONS AND FUTURE EXTENSIONS 

7.1 Conclusions 

There are several models in existence that are used to estimate the size of software 

systems. System-level measures are especially important for project managers who could 

benefit from an overall view of the system [32]. As a matter of fact, activities such as 

software development planning, and particularly the tasks of estimating cost and effort, 

are more effectively performed when a size estimate of the whole system is available.  

The object-oriented development paradigm warrants a re-thinking of the way 

estimation models are contrived because of the unique characteristic of the OO 

paradigm; namely, that the same artifacts are systematically realized and refined. The 

definition of a common, structured modeling framework like OMG SysML and the 

availability of the artifacts in the CASE tools present an opportunity for a holistic 

modeling approach that can leverage these artifacts. The SysML Point model was 

presented to take advantage of these factors. Of the estimation techniques that constitute 

the SysML Point approach, only the Pattern Point model was yet to be defined. 

Among system level measures, the Function Point count has achieved 

international acceptance as a size estimate of business systems and in predicting the 

effort, cost and duration of projects [30], [33], [34]. The methodology provides an 

estimate of software size by measuring the functionality of the system to be developed. 

Despite the fact that the FP method was originally conceived to be independent of the 

methodology used to develop the system under measurement, the application of the FP 

method turns out to be rather unnatural when applied to object-oriented systems [34, 35]. 
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Kemerer and Porter concluded their empirical study on improving the reliability of FP 

measurement with the statement: “The advent of event driven, object-oriented systems ... 

may require redefinition of FP’s or the development of one or several new measures to 

identify system size” [34]. 

Many researchers are in agreement that the FP method can be generalized in 

order to be successfully used for other types of systems (e.g. engineering, scientific and 

real-time systems) and for different programming paradigms [17], [33], [36]-[39]. This 

is the case as seen in Object-oriented Function Point [10], Use Case Point [9] and Class 

Point models [29] in estimating object-oriented projects. Verner and Tate suggest a 

general FP-like model for a more objective and accurate size estimation, which can be 

tailored to any specific software development environment [117]. 

The Pattern Point approach reflects the main features of the FP-like general 

model proposed by Verner and Tate, namely, the partitioning of a system into different 

component types with different sizing criteria for each type, the sizing of the individual 

components, the sum of the component sizes and an overall system adjustment to allow 

for global factors. The proposed partitioning of the design patterns into different types, 

which are sized with different rules is not tailored to a specific application environment 

and this provides a high level of flexibility of the method.  

The Pattern Point model provides a system-level size measure using the design 

patterns from object interaction analyses in the late OOA phase of development. Two 

measures are defined within the Pattern Point method; these are the PP1 and PP2 

metrics. PP1 is useful as a size measure earlier in than PP2 because it does not require 
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the number of pattern concrete (PC) classes metric, which is typically available later in 

OOA. 

The empirical study shows that Pattern Point measure can be effectively used 

during the OOA phase to predict the effort values with a high degree of confidence. In 

particular, the PP2 measure outperformed PP1, supporting the intuition that the PC 

measure can be profitably exploited in the estimation of system size. The empirical study 

presented in the dissertation has suggested that the PP1 measure may have an equal or 

lesser predictive capability than its constituent SC metric. Moreover, the proposed 

aggregation and multivariate models turns out to be quite effective; however the PP2 

measure outperformed all others measures in the comparison analyses.  

In conclusion, further investigation is needed for assessment of the Pattern Point 

method. A preliminary empirical evaluation, based on data coming from 78 use cases, 

developed in the IBM Lotus Quickr 8.0 release prove that a model based on the design 

patterns from object interaction modeling is effective in estimating size and remaining 

development effort. However, a multi-project study is desired to assess the possible 

effects of the   Technical Complexity Factors and Environmental Factors in the Pattern 

Point method. 
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7.2 Future Extensions 

In the SysML Point approach, since a Pattern Point Model has been defined, the next 

step would be for an analysis of the complete methodology to be conducted. It would be 

particularly beneficial to perform an empirical study in an iterative development project 

environment such as the Unified Process [99] where OO artifacts would likely be at 

different levels of realizations.  

 

Function Point → Use case Point → Pattern Point → Class Point 

 

 

 

 

Figure 11: Object-oriented development stages and corresponding effort estimation 

models 

Also of interest is the development of a conversion mechanism from one metric 

to another. For example, converting Function Points to Pattern Points and vice versa. 

This might not be completely necessary because each of the measures already have a 

conversion to a time value such as hours, days or months. 

 A software architectural pattern expresses a fundamental structural organization 

schema for a software system, which consists of subsystems, their responsibilities and 

interrelations. In comparison to design patterns, architectural patterns are larger in scale 

Requirements 

Analysis 

Design 
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and operate at a higher level [103]. Examples include, Model-view-controller, Peer-to-

peer and Presentation and Presentation-abstraction-control. A study on the possible 

effects of these architectural patterns on size and effort estimates would be of interest. 

However since they operate at a much higher level they are more likely to be included as 

a Technical Complexity Factor (TCF) or Environmental Adjustment Factor (EAF). 
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APPENDIX A 

 

Figure 12: Structural diagram of the Composite pattern 

 

 

Figure 13: Structural diagram of the Decorator pattern 

 

 

Figure 14: Structural diagram of the Factory pattern 
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Figure 15: Structural diagram of the Flyweight pattern 

 

 

Figure 16: Structural diagram of the Interpreter pattern 

 

 

Figure 17: Structural diagram of the Memento pattern 
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Figure 18: Structural diagram of the Observer pattern  

 

 

Figure 19: Structural diagram of the Prototype pattern  

 

 

Figure 20: Structural diagram of the Singleton pattern  
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Figure 21: Structural diagram of the Strategy pattern 

 

 

Figure 22: Structural diagram of the Abstract Factory pattern 

 

 

Figure 23: Structural diagram of the Bridge pattern 
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Figure 24: Structural diagram of the Builder pattern 

 

 

 

Figure 25: Structural diagram of the Template Method pattern 
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Figure 26: Structural diagram of the Visitor pattern 

 

 

Figure 27: Structural diagram of the State pattern 
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Figure 28: Structural diagram of the Façade pattern 

 

 

Figure 29: Structural diagram of the Proxy pattern 

 

 



 127

 

Figure 30: Structural diagram of the Mediator pattern 

 

 

 

Figure 31: Structural diagram of the Iterator pattern 
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Figure 32: Structural diagram of the Adapter pattern 

 

 

Figure 33: Structural diagram of the Chain Of Responsibility pattern 
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