
Brain activity reconstruction from
non-stationary M/EEG data using

spatiotemporal constraints

Reconstrucción de la actividad
cerebral desde datos de M/EEG no
estacionarios usando restricciones

espacio temporales

Fily Mateos Grisales Franco

Universidad Nacional de Colombia

Faculty of Engineering and Architecture

Department of Electrical, Electronic and Computer Engineering

Manizales, Colombia

2016





Brain activity reconstruction from
non-stationary M/EEG data using

spatiotemporal constraints

Reconstrucción de la actividad
cerebral desde datos de M/EEG no
estacionarios usando restricciones

espacio temporales

Fily Mateos Grisales Franco

Thesis presented as partial requirement to obtain the degree:

Master of Engineering

Advisor:

Ph.D. Germán Castellanos Domı́nguez

co-Advisor:

M.Sc. Juan David Mart́ınez Vargas

Research Area:

Digital Signal Processing

Research Group:

Processing and Recognition Signal Group

Universidad Nacional de Colombia

Faculty of Engineering and Architecture

Department of Electrical, Electronic and Computer Engineering

Manizales, Colombia

2016





I’m just a link in the chain that drives this

work.





Acknowledgements

Thanks to the writer of life for taking me to the right places at the right moment, because

in the path traveled these places and moments have represented people, dreams, times, falls.

In short, everything that has built me and visualized here.

I am especially grateful with my advisor Germán Castellanos and co-advisor Juan David

because without their knowledge, experience, guide, dedication and understanding every

thought and written word would be only a disorder, an incomprehension; and also, I always

understood between the lines that they believed in me. Likewise, express my gratitude to all

members of the Processing and Recognition Signal Group, for enriching my academic and

personal life. And with great affection to that little group of friends who toured and made

with me the university life.

Finally, I thank my parents, brothers, family, and friends that become family. For believing in

me unconditionally and supporting me every step that I give, since they are my foundation

my greatest personal achievement. I hope someday give them as much as they give me

because I recognize their struggles, efforts, love in general.

For all “Gracias Totales”

Fily Mateos

This research was carried out under the projects:

• Project: Evaluación asistida de potenciales evocados cognitivos como marcador del

trastorno por déficit de atención e hiperactividad (TDAH)-Código: 1119-569-3352.
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ix

Abstract
Magneto/Electroencephalography (M/EEG)-based neuroimaging is a widely used noninva-

sive technique for functional analysis of neuronal activity. One of the most prominent advan-

tages of using M/EEG measures is the very low implementation cost and its height temporal

resolution. However, the number of locations measuring magnetic/electrical is relatively

small (a couple of hundreds at best) while the discretized brain activity generators (sources)

are several thousand. This fact corresponds an ill-posed mathematical problem commonly

known as the M/EEG inverse problem. To solve such problems, additional information must

be apriori assumed to obtain a unique and optimal solution. In the present work, a methodol-

ogy to improve the accuracy and interpretability of the inverse problem solution is proposed,

using physiologically motivated assumptions. Firstly, a method constraining the solution to

a sparse representation in the space-time domain is introduce given a set of methodologies

to syntonize the present parameters. Secondly, we propose a new source connectivity ap-

proach explicitly including spatiotemporal information of the neural activity extracted from

M/EEG recordings. The proposed methods are compared with the state-of-art techniques in

a simulated environment, and afterward, are validated using real-world data. In general, the

contributed approaches are efficient and competitive compared to state-of-art brain mapping

methods.

Keywords: M/EEG, inverse problem, brain mapping, source connectivity.

Resumen
El mapeo cerebral basado en señales de magneto/electroencefalograf́ıa (M/EEG), es una

técnica muy usada para el análisis de la actividad neuronal en forma no invasiva. Una

de las ventajas que provee la utilización de señales M/EEG es su bajo costo de imple-

mentación además de su sobresaliente resolución temporal. Sin embargo el número de posi-

ciones magnéticas/eléctricas medidas son extremadamente bajas comparadas con la cantidad

de puntos discretizados dentro del cerebro sobre los cuales se debe realizar la estimación de

la actividad. Esto conlleva a un problema mal condicionado comúnmente conocido como el

problema inverso de M/EEG. Para resolver este tipo de problemas, información apriori debe

ser supuesta para aśı obtener una solución única y óptima. En el presente trabajo investiga-

tivo, se propone una metodoloǵıa para mejorar la exactitud e interpretación a la solución del

problema inverso teniendo en cuenta el contexto fisiológico del problema. En primer lugar se

propone un algoritmo en el cual se representa la actividad cerebral a través de un conjunto de

funciones espacio-temporales dando metodoloǵıas para sintonizar los parámetros presentes.

En segundo lugar, proponemos un nuevo enfoque mediante conectividad en fuentes que

expĺıcitamente incluye información espacial y temporal de la actividad neuronal extráıda del

M/EEG. Los métodos propuestos son comparados con métodos del estado del arte usando

señales simuladas, y finalmente son validados usando datos reales de M/EEG. En general, los

métodos propuestos son eficientes y competitivos en comparación a los métodos de referencia.

Keywords: EEG, problema inverso, mapeo cerebral, conectividad en fuentes.
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1 Preliminaries

1.1 Introduction

The human brain study is an important and exciting area due to its complexity and func-

tionality. Consequently, a better understanding of these facts may lead to the treatment of

brain diseases or even to interpret the human cognitive processes. So, the principal aim is to

study the brain behavior to identify areas corresponding to certain pathologies or cognitive

processes (i.e., information extraction in the spatial domain) and at the same time, identi-

fying and characterizing temporal brain activation patterns, to explain how the brain areas

are related to each other and how the brain works as a whole.

Nevertheless, one of the problems to be faced in the brain study is information sensing and

extraction. Hence, Noninvasive techniques for functional analysis of neuronal activity have

recently been developed to give the best interpretation of electrophysiological, hemodynamic,

metabolic and neurochemical processes that describe the functionality of the human brain

associated with disease states, alterations, or human behavior [1]. Such non-invasive medi-

cal techniques include Single Photon Emission Computer Tomography (SPECT), Positron

Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI), Magnetoen-

cephalography (MEG) and Electroencephalography (EEG) [2]. In any case, these techniques

include variant resolution measures, both in time and space, depending on the particular

application. Thus, the fMRI has a great spatial resolution, allowing to precisely identify

active areas related to certain brain states [3]. Nevertheless, such method is expensive and

do not offer a good temporal resolution. On the other hand, MEG and EEG are techniques

with high temporal but low spatial resolution. Particularly, EEG is preferable in our con-

ditions mainly because of its very low implementation cost compared to other options for

medical image analysis. As a result, the EEG signals have wide applications in the direct and

real-time monitoring of brain activity, for instance identifying and analyzing neural rhythms,

Evoked Potential Responses (ERPs), epileptic spikes, among other applications.

The reconstruction of neural activity from M/EEG recordings begins with the acquisition of

the signal through the electrodes placed on the scalp. Notice that M/EEG recordings also

have spatial information because they are usually measured over the entire head surface,

consequently, they have been used as a neuroimaging tool. Thereby, possible current sources

within the brain are associated with the sensor measurements using a structural model of

the head, whose complexity usually affects the reconstruction of neuronal activity [4]. Then,

the acquired M/EEG recordings and the defined head model are used to reconstruct the
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sources of neuronal activity [5]. However, this step leads to an issue that is the estimation

of the location and distribution of these current sources responsible for the electromagnetic

activity in the brain from the acquired information. Because the number of locations mea-

suring magnetic/electrical activity is relatively small (a couple of hundreds at best) while the

discretized brain activity generators (sources) reaches as much as several thousand. This fact

corresponds an ill-posed mathematical problem due to the number of variables (parameters

to be determined) is larger than the number of known parameters (available information)

resulting in a not unique solution [5]. This problem is commonly referred to as the M/EEG

inverse problem (IP-M/EEG).

In the IP-M/EEG, the estimation model could be assumed as a linear relationship between

the M/EEG measurements on the scalp (M/EEG potential vectors) with current sources

within the brain (current density vectors) through a transformation operator (field electric

conduction array), adding the inherent noise in the M/EEG signals (noise vector). This

estimation model generates non-uniqueness of solutions because it is ill-posed, i.e., small

variations in the measured data lead to solutions with completely different configurations

of the current sources. To reduce this effect of non-uniqueness is necessary that more in-

formation about neural structure and dynamics are available in order to get a unique and

optimal solution [5]. Thus, the model inference should be provided with more information

extracted from the data itself (prior information or just the priors). This information may

reflect anatomical, physical and/or mathematical properties of the currents within the brain.

Current solution methods of the IP-M/EEG are: dipole solutions, which assume current

densities as a set of current dipoles; and distributed inverse solutions, assuming that the

current density is widely distributed in the brain. The first model is appropriate in cases

where it is presumed that small surface areas are activated, but the estimation is biased

by the number of dipoles arranged in the solution. The latest solution model has been

more widely employed in tasks that assume abrupt and sparse neuronal activity [6]. The

different methods of solution proposed for the distributed model usually can be interpreted

as a penalized regression framework, in which the estimated current densities corresponds

to the minimization coefficients of a penalized least squares regression and the penalty term

varies depending on the prior assumptions.

Mainly, these assumptions are considered in the spatial (by inserting an a priori covariance

matrix) or temporal (through state space models) domains.

In the first case (spatial constraints), classic mapping strategies are based on the simplest

Minimum Norm Estimates (MNE) [7], and/or the spatiality smoothest like LOw REsolu-

tion TomogrAphy (LORETA) [8]. Such methods are implemented using L2-norm penalty

terms, and they choose the covariance matrix as the identity matrix and the discrete Lapla-

cian operator, respectively. Although these conventional mapping methods have benefits

in implementation and robustness to noise, they do not take into account physiologically

meaningful properties of the brain activity and make assumptions that tend to blur activity

across the cortex, resulting in diffused solutions even for focal sources, causing the presence of
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so-called ghost sources [9]. On the other hand, it has also been argued that small fractions of

the brain should be consistently activated, so methods based on the minimization of L1-norm

that assuming sparsity in the spatial domain have been proposed [10, 5], but while being

physiologically motivated, these solutions suffer of instability and spatial scattering [11].

To overcome these issues, some approaches assume brain activity represented by a small-

sparse set of spatial basis functions (termed spatial blobs or patches). Thus, brain activity

is represented as linear combination of several predefined spatial patches. The following

patch-based approaches are the most representative: Automatic Relevance Determination

(ARD), Greedy Search (GS), Multiple Sparse Priors (MSP) [12, 13], Sparse Basis Field

Expansion (S-FLEX) [11]. However, the spatial distribution of those methods states that

the active brain patches remain the same throughout the entire solution interval [9]. Such

an assumption is far from being totally realistic in many practical tasks where brain activity

may have strong spatiotemporal dynamics and non-stationarities [14].

On the other hand, prior information can also be included in the form of temporal constraints

describing the temporal dynamics of neural activity. In this regard, from a general point

of view, two approaches have been presented: The first one deals with the inclusion of

autoregressive (AR) models to explicitly constraint estimated brain activity time series. The

most naive approach (it can be seen as the time-domain equivalent of LORETA) is to model

brain activity through a random walk model [15, 16], thereby, encouraging the smoothest

time series. A more elaborate approach was introduced in [17] and further analyzed in [18],

here, a second order linear model explicitly holding temporal resonance is used. However,

sophisticated tuning along with an increased computational burden make those methods

infeasible when the number of brain activity generators becomes large enough.

In contrast, the second approach to include apriori information in the time domain is to

automatically identify the main dynamics of available data and use such components as

implicit constraints. For example, in [19, 20] the temporal components are identified through

an SVD decomposition of the temporal covariance matrix of the data and the solution is

found using only the most relevant time-domain components. Nevertheless, the correct

identification of the brain dynamics highly depends on of the noise power. Consequently,

there is a growing necessity for developing methods of neural activity reconstruction including

spatial prior information adjusted to the non-stationary structure of EEG data.

On the last decade a ‘paradigm shift’ has appeared in functional brain imaging [21]. Nowa-

days researchers seek to elucidate spatial patterns of temporal covariation between brain

regions based on noninvasively obtained electrophysiological measures of neural activity,

instead of studying the activity and function of brain regions in isolation [22, 23]. Never-

theless, the interpretation of estimated connectivity from sensor level recordings (M/EEG)

is not straightforward, as effects of field spread severely corrupt these recordings. A partial

solution to these difficulties is to apply connectivity methods to brain sources reconstructed

from M/EEG signals [24, 25, 26, 22, 27, 23, 28]. However, the spatiotemporal properties

of the employed inverse method critically bound the source connectivity assessment and
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interpretation [29].

From this review, two main problems must be addressed: i) How to properly include and

combine spatial and temporal penalties in the solution of the M/EEG inverse problem, and

ii) How to use such enhanced brain activity estimation to improve further learning stages,

specifically functional connectivity analysis.

1.2 Objectives

1.2.1 General Objective

To develop a framework that improves the accuracy and interpretability of the brain activity

reconstruction using constraints with spatial coherence considering at the same time the non-

stationarity of M/EEG.

1.2.2 Specific Objectives

1. To develop a methodology that allows including spatial and temporal constraints re-

lated to the dynamics of the brain activity, to get the neural activity reconstruction

with temporal homogeneity and spatial sparsity.

2. To develop an optimization strategy for tuning the parameters present in the spatial-

temporal restrictions of linear regression methods for mapping the neural activity.

3. To develop a methodology of source connectivity analysis that allows estimating con-

nectivity measures from remaining parameters in time.

1.3 Outline

The present research work can be read as follows: In Chapter 2 a review of the M/EEG

inverse problem solution is presented. Chapter 3 is devoted to introducing a methodology

to solving the M/EEG inverse problem including spatiotemporal constraints. Finally, in

Chapter 4, a source connectivity methodology is presented based on the characteristics of

the source estimation method introduced.

In Chapter 3, we present a new method that allows including spatial and temporal constraints

directly in the source space. Moreover, the spatial accuracy is improved by including a basis

set describing smooth localized areas of potentially active brain regions. Consequently, the

reconstruction of non-stationary brain activity reaches a trade-off between temporal and

spatial resolutions controlled by different tunning methodologies propose. To validate the

proposed method, we use two simulated database and two real databases and compare with

methods establish in the state-of-art.
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In Chapter 4, we present a methodology of source connectivity analysis that exploits the most

remarkable features of the proposed brain activity estimation approach. To this end, the

methodology explicitly including spatiotemporal information of the neural activity extracted

from M/EEG recordings, carrying out three stages what includes the Region of Interest

(ROI) identification, estimation of ROI time courses, and finally the functional connectivity

measure computed between a pair of ROIs. The proposed source connectivity methodology

is validated discriminating emotional stages.

Finally, general conclusions and main contributions of this research work are presented in

Chapter 5.

1.4 Academic Discussion

J. D. Mart́ınez-Vargas, F. M. Grisales-Franco, E. Giraldo-Suarez, G. Castellanos-Dominguez.

“Enhanced spatio-temporal resolution using Dynamic Sparse Coding for solving the EEG

inverse problem”, submitted to Journal of Neural Engineering - IOPscience. 2016.

Juan-David Martinez-Vargas, Fily-Mateos Grisales-Franco, Gregor Strobbe, Pieter van Mierlo,

German Castellanos-Dominguez. “Assessment of dynamic source connectivity using tempo-

ral constraints for localization of epileptogenic foci”, submitted to Journal: NeuroImage.

2016.

F. M. Grisales-Franco, F. Vargas, A.A. Orozco, M.A. Alvarez, G. Castellanos-Dominguez.

“Fall detection algorithm based on thresholds and residual events”, in Iberoamerican Congress

on Pattern Recognition. Springer International Publishing. November 2015, Pages 575-583.

J. D. Mart́ınez-Vargas, F. M. Grisales-Franco, G. Castellanos-Dominguez,“Estimation of

M/EEG Non-stationary Brain Activity Using Spatiotemporal Sparse Constraints”, Artifi-

cial Computation in Biology and Medicine: International Work-Conference on the Interplay

Between Natural and Artificial Computation, IWINAC 2015, Elche, Spain, June 1-5, 2015,

Proceedings, Part I, Pages 429-438, ISBN 978-3-319-18914-7.

Castro-Hoyos, C., Grisales-Franco, F. M., Mart́ınez-Vargas, J. D., Acosta-Medina, C. D.,

Castellanos-Domı́nguez, G. “Stationary Signal Separation Using Multichannel Local Seg-

mentation”, in Iberoamerican Congress on Pattern Recognition. Springer International Pub-

lishing. November 2014, Pages 183-190.

F. M. Grisales-Franco, C., J. D. Mart́ınez-Vargas, L.M. Sepulveda-Cano, J. D., G. Castellanos-

Dominguez. “Signal Phonocardiographic Analysis based on Wavelet Packets to Detect Heart
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2 MEG/EEG inverse problem

formulation

2.1 Introduction

In this chapter, an illustrative explanation of several methods for solving the M/EEG in-

verse problem is introduced. In the first part we present the formulation of the inverse

problem followed by the explication of different methods that select the prior information

in the spatial domain, discriminated as follows: methods with simple spatial structure like

Minimum Norm Estimation (MNE) and Low-Resolution Brain Electromagnetic Tomography

(LORETA), methods with sparse spatial structure like the Least Absolute Shrinkage and Se-

lection Operator (LASSO), and finally more elaborated methods based on smooth and focal

spatial structure known as Multiple Sparse Priors (MSP) and Sparse Basis Field Expansion

(S-FLEX).

The mathematical framework presented here is focused on solving the M/EEG inverse prob-

lem on a single trial, subject, and modality, with the objective of providing a background

for the remaining of this thesis. Group based inversions, fusing modalities, introduction of

functional MRI (fMRI) data, and advanced de-noising techniques are out of the scope of this

work and have been well reviewed elsewhere [30, 31, 32].

2.2 Formulation of the MEG/EEG inverse problem

With the aim to represent the electromagnetic field magnitude measured by the scalp, we

assume the following linear model [1]:

Y = LJ + Ξ, (2-1)

where Y ∈RC×T is the M/EEG data measured by C∈N sensors at T∈N time samples,

J∈RD×T is the amplitude of D∈N current dipoles (or sources), distributed through the cor-

tical surface with a fixed orientation perpendicular to it, and L∈RC×D (commonly termed

lead field matrix ) is a gain matrix representing the relationship between the dipoles and

M/EEG data. Also, the noisy nature of the M/EEG recordings is explicitly taken into ac-

count through the error matrix Ξ∈RC×T , where the uncorrelated noise is assumed to be

Gaussian with zero mean and covariance matrix QΞ∈RC×C .
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This linear model in Eq. (2-1) is ill-posed because the transformation operator L, (which

physically corresponds to the conduction array of the field electric) is non-invertible and the

dipoles outnumber the sensors (D � C), consequently, small variations in the measured

data Y lead to solutions with completely different configurations of the current sources J .

Therefore, the M/EEG inverse problem may be formulated as a maximum a-posteriori

(MAP) estimation procedure by finding the most probable estimation Ĵ regarding to the

measured M/EEG data and a priori considerations. Although there are several distributed

inverse solutions by this MAP through the minimization of a particular cost function, a gen-

eral formulation of this problem as a Multiple Penalized Least Squares Model is presented as

follows [6]:

Ĵ = argmin
J
{||Y −LJ ||2F +

∑
m∈M

λmΘm(J)}, (2-2)

where {λm∈R+} is the regularization parameter set, {Θm(J)∈R} is a penalty function set,

and notation || · ||F stands for the Frobenius norm. Note that the first quadratic term

in Eq. (2-2) is the log-likelihood, and the second term holds all prior information through

the M∈N regularized penalty functions.

2.3 Selection of prior information in the spatial domain

2.3.1 Simple spatial structure

Several inverse solutions are found through the selection of the priors (second term in Eq. (2-

2)), which are generally based on convex functions that carry to convex optimization prob-

lems, given that they include benefits such as a global (unique) minimum, and reliable and

efficient numerical solution methods [33]. So, several of the most common inverse solutions

are based on the convex function formed for the squared Frobenius norm establishing the

following minimization problem:

argmin
J
{||Y −LJ ||2F + λ||QJ ||2F}, (2-3)

this functional Eq. (2-3) known in the linear regression field as Ridge Regression, is inter-

preted as a penalized least squares regression with the penalty restriction (prior) represented

as a Gaussian distribution with zero mean and covariance matrix Q, which admits a closed-

form solution to estimate the brain activity Ĵ , as follows:

f(Q,Y ) : Ĵ = QL>(QΞ +LQL>)−1Y . (2-4)

Here, different prior assumptions are given by choice of Q greatly affecting the solution.

Therefore, its selection is an issue of great interest.
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Into the multiple forms to select the prior source covariance matrix Q there are two impor-

tant and popular cases with a simple spatial structure known as Minimun Norm Estimated

(MNE) [7] and Low Resolution Electromagnetic Tomographic (LORETA) [8]. In the simplest

approach, MNE minimizes the overall power of the sources assuming that all dipoles have

approximately the same prior variance and no covariance, by defining Q = ID. And with

a more elaborate approach, LORETA explicitly enforces spatial smoothness of the sources

assuming that neighboring voxels should be similarly active, by defining Q =
(
∆>∆

)−1
,

being ∆∈RD×D the spatial Laplacian operator.

2.3.2 Sparse spatial structure

These conventional methods have benefits in implementation and robustness to noise, but

they do not take into account the natural assumption that only a few brain regions are typ-

ically active during a cognitive task [9]. Consequently, methods which can produce sparsity

in the spatial domain and more concentrated solutions have been proposed. These meth-

ods usually based on their L1-norm, assume the prior information according to the Laplace

distribution with zero mean and identity matrix covariance with a non-quadratic penalty

function of the coefficients J , This assumption is equivalent to fix Θ(J) = ‖J‖1, where ‖ · ‖1

is the L1-norm. Consequently, the optimization problem in Eq. (2-2) is redefined as the Least

Absolute Shrinkage and Selection Operator (LASSO) problem [34]:

argmin
J
{||Y −LJ ||2F + λ‖J‖1}, (2-5)

Also, know as Minimun Current Estimate (MCE) by the M/EEG inverse problem [35]. The

LASSO reduces the variability of the estimates by shrinking the sources and at the same

time produces interpretable models by shrinking some sources to exactly zero, i.e., a sparse

estimation.

2.3.3 Smooth and focal spatial structure

Although the above methods are motivated by neurophysiological arguments, in practice

these solutions have undesirable and non-realistic results of spatial neural activity, such as:

the smooth solutions tend to estimate spatially blurred sources that spread over a consid-

erable part of the brain appearing ghosts sources; and sparse solutions tend to estimate

unstable and scattered sources around the real sources [36, 11, 5]. So, to better manage

localization of active sources, more elaborate state-of-art methods [12, 11] have assumed

that the brain activity can be expressed through a small/sparse set of space basis functions

describing smooth localized patches of potentially active brain regions, as follows:
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Multiple Sparse Priors (MSP)

Making more flexible the definition of Q in Eq. (2-4), as discussed in [12, 13], the matrix

Q is expressed in terms of a linear combination of a fixed, but known set of components

contained in the columns of a given matrix Φ∈RD×S as follows:

Q =
∑
i∈S

hiDiag(Φ(·, i)) (2-6)

where Diag(Φ(·, i))∈RD×D is a diagonal matrix formed by the i−th column of Φ and hold-

ing to a given prior component; hi∈R is a weithing hyperparameter, which is commonly

calculated based on the M/EEG data covariance [13]. Given the brain activity is expected

to happen in sparse and locally smooth brain areas (referred as spatial coherence), the set

Φ can be extended by defining each column of Φ as a potentially active cortex area (termed

cortical or spatial patch), as illustrated in Fig. 2-1. The use of an extended set Φ that is

formed by a set of cortical patches is the main idea behind Automatic Relevance Determi-

nation (ARD), Greedy Search (GS), and by extension the Multiple Sparse Priors (MSP),

presented in [12] and explored to a greater extent in [37, 13]. In all of these algorithms, the

estimation problem is further constrained by assuming that a small set of spatial patches

is enough to explain observed data, i.e., there is a sparsity assumption in the estimation

of the coefficients set {hi} which is achieved by assuming that such parameters follow the

Laplacian distribution.

(a) Small. (b) Medium. (c) Large.

Figure 2-1: Example of spatial patches, with different sizes, used in ARD/GS/MSP and

S-FLEX. Each column of Φ corresponds to a single cortical patch.

Sparse Basis Field Expansion (S-FLEX)

From another perspective the Sparse Basis Field Expansion (S-FLEX) algorithm is devel-

oped in [11], where the current density is expressed as a linear combination of locally smooth,
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but spatially confined spatial basis functions:

J = ΦH , (2-7)

where H∈RS×T contains the weightings coefficients that are assumed to have a Laplacian

prior distribution. According to the aforementioned representation, and to obtain spatially

sparse solutions, the following objective function is derived:

argmin
H
{||Y −LΦH||2F + λ‖H‖1,2} (2-8)

where the notation ‖ · ‖1,2 stands for the L1,2-norm that is the L1-norm grouping each vector

dipole component under the L2-norm to avoid orientation bias [11].

Once the matrixH has been estimated, then the neural activity is recovered by using Eq. (2-

7). Furthermore, temporal inconsistencies produced by instantaneous S-FLEX solution

that assumes M/EEG observations as independent at each time sample, temporal coher-

ence (smooth time series) may be improved by accepting activation of the same brain areas

during the entire M/EEG segment. Bearing this in mind, Eq. (2-8) is rewritten to group each

dipole time series under the L1,2-norm, considering that brain activity remains stationary

for the whole analyzed time windows, as usually assumed by brain mapping methods [9, 5],

However, it is commonly accepted that brain activity has non-stationary nature. Therefore,

stationarity assumption may hinder brain mapping accuracy.



3 Reconstruction of neural activity from

M/EEG data using dynamic

spatiotemporal constraints

3.1 Introduction

In this chapter, the spatial and temporal dynamics inherent to neural processes are considered

within the inverse problem solution framework, based on the assumption that brain activity

appears in localized brain regions that can vary along time, yielding spatial and temporal

non-stationary activity. Therefore, we propose a constrained M/EEG inverse solution namely

Dynamic Sparse Coding (DSC), based on the fused lasso penalty, first introduced in [38]. The

DSC reconstructs the brain activity as dynamic small and locally smooth spatial patches,

leading to a solution with spatial coherence, but considering at the same time the non-

stationarity of M/EEG recordings.

We validate the proposed approach in two different ways: i) Using artificial M/EEG data

when we have previous knowledge of spatial and temporal signal dynamics, simulating event-

related potential (ERP) and epileptic seizures onset. And ii) Using real M/EEG data,

particularly we use two databases one with relation to the attention-deficit/hyperactivity

disorder (ADHD), and other based on emotions analysis using physiological signals. In the

first, the task is to localize the generators of visual and auditory evoked potentials recorded

during an oddball experiment and in the second the task is the localization of emotion related

brain activity. As a result, the proposed DSC is a promising method for improving the

accuracy of brain activity reconstruction with spatial coherence and temporal homogeneity.

3.2 Methods

3.2.1 M/EEG inverse problem

To represent the electromagnetic field magnitude measured by the scalp, we assume the

following linear model [1]:

Y = LJ + Ξ, (3-1)



12
3 Reconstruction of neural activity from M/EEG data using dynamic spatiotemporal

constraints

where Y ∈RC×T is the M/EEG data measured by C∈N sensors at T∈N time samples,

L∈RC×D is the lead field matrix that represents the relationship between D distributed

sources inside the brain and the sensor M/EEG activity, J∈RD×T is the cortical source

activity, and Ξ∈RC×T is the observation noise measured with spatial covariance QΞ∈RC×C .

With the aim to estimate the source amplitude J through the minimization of a particular

cost function, we present a general formulation of this problem as a Multiple Penalized Least

Squares Model as follows:

Ĵ = argmin
J
{||Y −LJ ||2F +

∑
m∈M

λmΘm(J)}, (3-2)

where {λm∈R+} is the regularization parameter set, {Θm(J)∈R} is a penalty function set,

and notation || · ||F stands for the Frobenius norm. Note that the first quadratic term

in Eq. (3-2) is the log-likelihood, and the second term holds all prior information through

the M∈N regularized penalty functions. Several inverse solutions are found by the choice of

the prior information encoded by constraints established in the model.

3.2.2 DSC for encouraging sparsity and temporal homogeneity

In practice, methods promoting at the same time more focal solutions and spatially smooth

current distributions yield a better source reconstruction than other approaches, which are

either purely smoothed or grounded only on sparse representations [39]. Consequently, the

current density can be expressed as a linear combination of S∈N locally smooth, but spatially

confined spatial basis functions Φ∈RD×S, as described below:

J = ΦH , (3-3)

where H∈RS×T are the weights computed for the spatial basis set.

In Eq. (3-3), each column of the spatial basis matrix draws a single distributed pattern with

compact spatial support. In particular, the spatial extent of each element is extracted from

a smoothing operator derived from the Green function as G=exp{σΛ}, where the matrix

Λ∈R[0, 1]D×D encodes all neighborhood relationships between the nodes of the cortical mesh

belonging to the solution space that is delimited by the spatial extent of the active regions

σ∈R+ [40].

In the cases when the spatial profile of the source activity of interest changes within a

given analysis window, the non-stationary source activations can be modeled by enforcing

a temporal structure over the set of parameters H . Consequently, we include both, spatial

and temporal, constraints through the following regularized penalty function:

Θ(J , λs, λt) = λs||H||1 + λt
∑
t∈T−1

||ht+1 − ht||1 (3-4)

where λs and λt∈R+ are the spatial and temporal regularization parameters, respectively,

and vector ht∈RC×1 holds the t-th column of H . Notation || · ||p stands for the Lp-norm.
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As a result, the objective function takes the form:

Ĥ = argmin
H
{||Y −LΦH||2F + λs||H||1 + λt

∑
t∈T−1

||ht+1 − ht||1}, (3-5)

Note that the sparseness is encouraged by the first penalty term that assigns a large cost to

matrices with the large absolute values, and thus effectively shrinking elements towards to

zero. This situation means that just a few basis of the spatial dictionary will explain the

main brain activity. In turn, the second penalty term encourages temporal homogeneity by

penalizing the difference between consecutive time points, yielding a smooth solution over

time. Therefore, the estimation of the neural activity in Eq. (3-3) is accomplished as follows:

J = ΦĤ (3-6)

3.2.3 Optimization strategy of the regularized penalty function

Generally speaking, the high-dimensional and large scale problem posed in Eq. (3-5) is

convex. However, this optimization task is not trivial because the non-smooth penalty

function introduced in Eq. (3-4). Consequently, to reformulate the non-smooth penalty

term, we make use the smooth proximal gradient algorithm that allows rewriting the fusion

penalty term using an introduced vertex-edge incident matrix P∈RT×(T−1), encoding the

signal structure as follows [41]:∑
t∈T−1

||ht+1 − ht||1 = ||HP ||1.

Furthermore, by making
∼
P=λtP , the temporal regularization parameter λt is also included

into the term as ||H∼
P||1.

With the purpose of further computation of the smooth proximal gradient, we rewrite the

overall penalty relying on the fact that the dual norm of the entry-wise matrix L∞ is the

L1-norm, yielding:

||H∼
P||1 ≡ argmax

||A||∞≤1

〈A,H∼
P〉, (3-7)

whereA∈RS×(T−1) is an auxiliary matrix associated with ||H∼
P||1, 〈·〉 denotes the matrix inner

product, and ‖ · ‖∞ is the matrix entry-wise L∞-norm, defined as the maximum absolute

value of all entries of the matrix.

Nonetheless, the formulation of the penalty in Eq. (3-7) does not provide an enough smooth

function over H . Aiming to have an adequately smooth approximation of Eq. (3-4), we

propose the following auxiliary function that is strongly convex [42]:

fµ(H) = argmax
||A||∞≤1

{〈A,H∼
P〉 − µd(A)} (3-8)
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where µ∈R+ is a smoothness parameter and d(A) ≡ 1
2
‖A‖2

F is an arbitrary smooth strongly-

convex function. From the Nestrov’s theorem, it follows that fµ(H) is convex and continu-

ously differentiable in H , i.e., fµ(H) is smooth and ∇fµ(H) is Lipchitz continuous, so that

the gradient of fµ(H) with respect to H takes the following form [43]:

∇fµ(H) = Â
∼
P
>

(3-9)

where Â is the optimal solution forA obtained in Eq. (3-8) and expressed like Â=S{H∼
P/µ},

S{·} is the shrinkage operator that is defined for each entry ξ∈R as:

S{ξ} =

{
ξ, |ξ| < 1

sgn(ξ), otherwise

Provided in terms of the smoothing approximation fµ(H), the minimization problem in Eqs. (3-

2) and (3-4) results in the next smooth optimization problem:

Ĵ = argmin
H
{||Y −LΦH||2F + λs||H||1 + fµ(H)} (3-10)

with the smooth part f̃(H)=||Y −LΦH||2F + fµ(H) for which the gradient in Eq. (3-9) is

defined as below:

∇f̃(H) = (LΦ)>(LΦH − Y ) + Â
∼
P
>

(3-11)

It is worth noting that the optimization of Eqs. (3-10) and (3-11) is carried out employing

the Fast Iterative Shrinkage-thresholding algorithm (FISTA) [41].

3.2.4 Tunning of regularization parameters

As a rule, optimal model tuning poses a difficult task, becoming more complicated as the

number of parameter increases. Thus, a critical issue for solving the Dynamic Sparse Cod-

ing is the adjustment of the spatial (λs) and temporal (λt) regularization parameters that

influence the most the quality of neural activity reconstruction. To this end, we adjust their

ratio, reaching a trade-off between the spatial resolution (provided by the Lasso scheme)

and the temporal resolution (by the Fusion strategy). Like in [39], we study three different

distributed fixed ratios λs/λt=90/30, 90/90, 30/90. For the sake of comparison, we also

consider the asymptotic values: λs 6= 0 and λt=0 (only spatial regularization) and λt 6= 0

and λs=0 (only temporal regularization). With the purpose of further simplification, we use

two optimization strategies, which are:

Sparsest possible solution:

In this first case, we reduce the searching set of the optimal values using the heuristic

approach performed in [44] that fixes λs as a fraction of the critical value of λmax, i.e.,
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λopt
s =βλmax, where β∈[0, 1]. Thus, if β=1, the source activity Ĵ is filled with zeros, meaning

that there are no active sources (or the sparsest possible solution). In the opposite case,

β=0, no sparse restriction is imposed. Here, we set λmax=‖Y ‖F (the data magnitude), and

β=α/‖L>Y ‖F with α∈[0, 1]. Finally, we use the fixed ratio λs/λt to obtain λt.

Residual norm criterion:

In this second case, we adjust the tradeoff between data fidelity and complexity terms in

the cost functions in accordance with the Residual norm criterion used on [39] defined as

follows:

ρ =
||Y −LĴ ||2F
||Y ||2F

(3-12)

where Ĵ stated as ground truth is a different estimated brain activity derived from the data

and ρ ∈ R+ is the ideal residual norm. The aim is to adjust the regularization parameters

until to achieve the same average residual norm of the Ĵ ground truth, therefore, using the

fixed ratio λs/λt the regularization parameters are iteratively calculated to get reconstruc-

tions with the closest residual norm to the ideal one in each run.

3.3 Experiments

3.3.1 Illustration

Fig. 3-1 illustrates the sparsity patterns obtained for the tested inverse methods in a simu-

lation experiment. To this regard, a simulated EEG with 32 electrodes and 60 sources was

modeled using a random lead field matrix.

To investigate to which extent our Dynamic Sparse Coding (DSC) based approach can

achieve a compromise between the solely spatial regularization (Lasso), and the entirely

temporal structure reconstruction (Fusion), we fixed several fixed ratios λs : λt = 90 : 0

(Lasso), 90 : 30, 90 : 90, 30 : 90, 0 : 90 (Fusion). Syntonization of the regularization pa-

rameters is carried out with the sparsets possible solution. Finally, we compared our results

against two state-of-art methods designed to encourage sparse solutions, namely Multiple

Sparse Priors (MSP) [12] and Sparse Basis Field Expansion (S-FLEX) [11].

As expected, even MSP and S-FLEX (Fig. 3.1(c) and Fig. 3.1(b), respectively), fostered

sparse patterns, neither approach was able to correctly group variables along the temporal

dimension. As a consequence, these methods may accurately spatially locate the sparsity

pattern but without decoding the temporal structure of the sources.

Furthermore, the sparse reconstruction -Lasso- (Fig. 3.1(d)) achieved similar results to MSP

and S-FLEX, accomplishing a coherent spatial sparse pattern without any temporal struc-

ture. Moreover, the purely temporal constraint -Fusion- (Fig. 3.1(h)) does not decode any
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spatiotemporal information of the reconstructed source. Apparently, the lack of spatial res-

olution difficult the decoding of the temporal dynamics.

Lastly, the DSC based approach accurately reconstructs the spatiotemporal patterns of the

simulated activity. When the spatial regularization parameter λs is higher than the temporal

regularization parameter λt (Fig. 3.1(e)), the performed reconstruction is spatially enhanced,

but some temporal patterns are lost. In the opposite cases shown in Fig. 3.1(f) and Fig. 3.1(g)

(λs ≤ λt), the temporal structure of the reconstructed sources is closer to the simulation,

but some blurred sources appear in the spatial domain.
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Figure 3-1: Time-space representation of reconstruction accomplished by various inverse

methods compared to the simulated ground truth

3.3.2 Simulated EEG data

The most common approach to assessing the EEG inverse solution is the validation of a

simulated set of recordings where the brain activity is already known so that the estimation

quality can be objectively verified. In this regard, we created 128-channels EEG data,

reproducing the pseudo-EEG at positions defined by the extended international BIOSEMI

system. Validation is carried out by changing the noise conditions and testing the influence

of non-stationary brain activity on the algorithm performance. Thus, two experiments are

designed. In the first one (noted as SD-1 ), the activity is simulated in time-locked as usually

observe in ERP studies involving one, three, and five active dipoles, respectively, having a

random location in each case (see top row of Fig. 3-2). The non-stationary EEG activity of

active dipoles is generated using a set of time series created by a real Morlet wavelet that

lasts one-second length, sampled at 250 Hz, and having the following parameters:
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Figure 3-2: Example of the simulated sources for one, three, and five active dipoles: Top row

displays the data for the first experiment Bottom row for the second experiment,

showing the mean values fixed for each case of the simulated Morlet wavelets.

• Random central frequency with a mean of 9 Hz and standard deviation of 2 Hz, sampled

from a Gaussian distribution.

• Random time shift generated by the normal distribution with standard deviation of

0.05 s and mean value selected as shown in Fig. 3-2 (bottom row).

In the second experiment that is carried out as in [45], the time-courses of active dipoles

resemble an epileptic seizure onset (SD-2 ). Bottom row of Fig. 3-2 displays the simulations

for one, three, and five active sources, also holding a random location. The background

noise is configured to have 1/f spectral behavior, and the seizure activity is modeled by

a sinus with a frequency content varying within the range 12 to 8 Hz, where the seizure

starts at t=0.5 s, representing the onset of the epileptogenic activity. Note that the seizure

is propagated among the active sources with a delay of two samples in the cases of modeling

three or five sources.

Besides, we fix the location of active dipoles randomly from trial to trial. Then, simulated

time courses are assigned to distributed, but neighboring nodes on the computed cortical

mesh centered at the fixed random location, yielding the known activity J .
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The simulated source activity is mapped to EEG sensor space through a realistic volume

conductor model of the human head that is obtained from a tessellated surface in the gray-

white matter interface with D=8196 vertices (i.e., the number of feasible source localizations)

with source orientations fixed orthogonally to the surface. Also, the lead fields are computed

using a BEM volume conductor model with a mean distance between neighboring vertices

adjusted to 5 mm.

Finally, we add measurement noise to achieve the following SNR levels: −5, 0, 10, and 15 dB.

As a result, a testing set holding 30 trials for every SNR value and each simulation setting

is produced.

3.3.3 Application of source reconstruction algorithms

We implement our proposal with the two strategies for syntonization of the regularization

parameters explained above and compare to several inverse methods regarding their ability

to reconstruct the locations and time courses of the simulated EEG activity. The considered

methods are S-FLEX [11] and MSP [12]. For all tested methods, the localization is carried

out using the same head model for which the data is generated. Also, the same spatial basis

Φ is employed, comprising S=512 (256 per hemisphere) that are designed to cover the entire

cortical surface.

Aiming to decrease the computational burden of the optimization task, the linear model

in Eq. (3-1) is reduced by the spatial projector U , defined as follows:

∼
L= U>L,
∼
Y= U>Y ,

where U∈RC′×C holds the C ′ most significant singular values (spatial modes larger than

some tolerance) of the lead field matrix. Note that this preprocessing stage, commonly

considered for inversion schemes, does not affect the number of parameters to be estimated.

3.3.4 Evaluation of source reconstruction accuracy

The accuracy performed by each compared source reconstruction algorithm is assessed for

the spatial and temporal domains by using the following measures, respectively:

Earth-Movers Distance: εs∈R+ that estimates the spatial distribution of the dipole-wise

power like the rate between the neural activity to the true power of the simulated sources.

Consequently, the index εs measures the needed effort to transform the estimated power

distribution into the actual distribution by transporting the probability mass [36]. Thus, the

lower the εs value, the better the performed reconstruction.
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Temporal Accuracy Index: εt∈R[0, 1], that quantifies the correlation between each of the

simulated time series and the reconstructed signals at all dipoles. For each simulated source,

the maximum correlation is computed across all dipoles and spatial orientations. Also,

the maximum values are averaged across the simulated sources to give an average maximum

correlation [39]. As a result, higher values of εt imply to better reconstruction of the temporal

domain.

3.3.5 Localization of visual and auditory evoked potentials-related

brain activity

The first real EEG data used in this study was selected from 30 children in the age ranges

from 5 to 16 years belonging to two sociocultural levels (high medium and low medium).

The sample was randomly selected from preschool, elementary, and secondary courses at

private and public schools in the city of Manizales. Also, written permission was requested

from children parents for participation in the research.

The following exclusion criteria were used: mental retardation, neurological antecedents

(history of head trauma, epilepsy, and related) and psychiatric (psychiatric hospitalizations

history, autism, and related) of importance according to the history data supplied by chil-

dren’s parents.

The Neuropsychological Assessment of Children (NAC) was applied to each child in two

sessions of about an hour and a half. Sections of NAC were were randomly altered to

monitor the effects of fatigue and order in the application of the subtests. Also, the Wechsler

Intelligence Scale for Children was applied, to calculate the validity of the NAC.

Finally, experts rated the results in different cognitive and academic abilities and then a

systematized database was created, including the results of children in the various tests.

As a result, 20 children in the ADHD group and 10 children in the control group were

obtained.

Experimental paradigm of cognitive evoked potentials: After the neuropsychological

test, we proceeded to take EEG data from all participants using an oddball paradigm,

consisting of two stages, the first with visual stimuli and the second with auditory stimuli.

In each condition, the stimulus lasts 130 ms, while the waiting time between two consecutive

stimuli is 1 s. During each stage, the subjects had to pay attention to a pre-defined (target)

stimulus and count their occurrence, ignoring the presentation of other stimuli (non-targets).

The non-target stimulus was presented by 80% of the trials, while the target occurred for

the 20% remaining, resulting in approximately 160 non-target stimuli and 40 target stimuli.

EEG recordings were taken symmetrically using 19 electrodes with standard international

system positions 10-20. Data were sub-sampled at 250 Hz and segmented in 1 s epochs. The

resulting epochs were averaged separately for each subject, stimulation condition targets and

non-targets.
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Source localization and statistical analysis: The DSC method considered in this work

was applied to the pre-processed EEG recordings using the ratio 30 : 90 and the parameters

syntonization with the Sparsest possible solution like in the simulation experiments. So, for

each subject and experimental condition, the dipole-wise source power was calculated and

averaged in the time range from 227 to 383 ms, wich corresponds to the P300 component of

ERP, as in [46]. Then, we compared the response to target stimuli between groups (ADHD

vs. Control). Therefore, the potential difference of the power was evaluated between two

cases: visual target ADHD group vs. visual target control group and auditory target ADHD

group vs. auditory target control group. The comparison was carried out using a two-

sided pairwise Student-t test. Significant differences in power were assumed for brain areas

achieving t-scores with absolute values greater than 2.0639, corresponding to alpha levels

p < 0.05, uncorrected.

3.3.6 Localization of emotion-related brain activity

The second real EEG data used in this study was obtained from the publicly available dataset

for emotion analysis using physiological signals (DEAP) [47]. Thirty-two healthy participants

(50% females and 50% males aging in average 26.9 years) who agreed to participate in the

study were recorded using thirty-two-channel EEG data was recorded using a BIOSEMI

Active Two system.

All participants were presented with forty one-minute long music videos with varying emo-

tional content. Before every video, there was a baseline period of five seconds so that each

participant was asked to concentrate at a cross in the middle of the screen. Following the

presentation of each video, the participants were asked to rate the music videos on a discrete

9-point scale for valence, arousal, dominance, and liking. Valence, arousal, and dominance

dimensions were scored using the self-assessment manikins (SAM) to gauge user emotional

states [48]. The liking rate was used to inquire about the subject’s tastes and not their

feeling per se, and relied on a 9-point scale placed under thumbs down/up symbols.

Data were acquired at a 512 Hz sampling rate, placing the electrodes according to the in-

ternational 10-20 system. Pre-processing included the following steps: common referencing,

down sampling to 128 Hz, high-pass filtering from 4 Hz, and eye blink artifact removal using

independent component analysis.

Source localization and statistical analysis: The DSC method considered in this work

was applied to the pre-processed EEG recordings using the ratio 30 : 90 and the parameters

syntonization with the Sparsest possible solution like in the simulation experiments. Later,

the subject’s subjective scores were thresholded at the mid-point of the 9-points scale, i.e.,

at 5, in order to configure low and high classes for each emotion. An illustration of the

classes is depicted in Fig. 3-3. Afterward, We computed the dipole-wise source power from

the estimated brain activity of all the recordings available on the DEAP database. More-
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over, taking as reference the thresholded scores, we compared two conditions for each sub-

ject and emotion, namely: Valence (negative-positive), Arousal (passive-active), Dominance

(dominated-dominant), and Liking (dislike-like). The comparison was carried out using a

two-sided pairwise Student-t test. Significant differences in power were assumed for brain

areas achieving t-scores with absolute values greater than 2.0244, corresponding to alpha

levels p < 0.05, uncorrected.

Valence (negative-positive).

Arousal (passive-active).

Dominance (dominated-dominant).

Liking (dislike-like).

1 2 3 4 5 6 7 8 9

Figure 3-3: The Self-assessment manikins scales [1, 9] for the levels of valence, arousal, and

dominance; and the thumbs down/thumbs up symbols for the liking scale [1, 9]
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3.4 Results

3.4.1 Simulated data

The spatial and temporal reconstruction performance of DSC with several ratios and the

two strategies for syntonization, S-FLEX, and MSP, on ERP simulated data is depicted

in Figs. 3-4 and 3-6 for DSC with Sparsest possible solution and in Figs. 3-5 and 3-7 for

DSC with Residual norm criterion. We observe that DSC(Lasso) and DSC(90:30) yield

the lowest spatial accuracy (higher εs values) for all the number of active sources and SNR

values. In contrast, DSC(90:90) and DSC(30:90) yield better spatial accuracy, which increase

as the number of active sources becomes greater. These results make clear that the non-

stationary temporal dynamics of the simulated EEG recordings clearly affect the performance

of the proposed algorithms. Nevertheless, when only the temporal dynamics are considered,

as in DSC(Fusion), the spatial accuracy decrease significantly. Results behave the same

across all the tested SNR values. Finally, as expected, S-FLEX and MSP yield high spatial

performance when temporal dynamics are soft (one active source), and decrease as the non-

stationary activity augment. We observe a similar behavior regarding the temporal accuracy.

In this case, as expected, methods that do not include temporal information, as DSC(Lasso),

S-FLEX and MSP achieve the lowest temporal accuracies. Nevertheless, when only temporal

constraints are included, as in DSC(Fusion), the temporal performance is low. Consequently,

methods encouraging a compromise between spatial and temporal resolution, as DSC(90:30),

DSC(90:90) and DSC(30:90) yield the higher average maximal correlation. This behavior

on the spatial and temporal performance is extended to the epilepsy simulated data, which

results are depicted in Figs. 3-8 and 3-10 for DSC with the Sparsest possible solution and

in Figs. 3-9 and 3-11 for DSC with the Residual norm criterion

Summarizing, In both experiments SD-1 and SD-2 the DSC has similar behavior with the

two tuning methods, however, it is preferable the Sparsest possible solution for though it is

more heuristic has lower computational cost. In both tuning methods adjusting the spatial-

to-temporal regularization ratio λs : λt, DSC can be tuned to emphasize either the spatial

or temporal reconstruction, depending on the requirements for the specific data in hand.

3.4.2 Visual and auditory evoked potentials-related brain activity

Fig. 3-12 shows the sensor-space data, as well as the results of the source reconstruction

using DSC with ratio 30 : 90 and syntonization strategy the sparsest possible solution, for the

visual ( Figs. 3.12(a) to 3.12(d)) and auditory (Figs. 3.12(e) to 3.12(h)) evoked potentials

elicited by the target stimuli for representative subjects. Likewise, Fig. 3-13 shows the

corresponding results for the non target stimuli. In the first subfigures ((a),(e)), the trial-

wise stimulus-locked EEG time series are shown, the red vertical lines at 227 ms and 383 ms.

In the second ((b),(f)), time series of the reconstructed activity. In the third subfigures

((c),(g)) the average scalp topography from 227 ms to 383 ms. The last subfigure ((d),(h))



3.4 Results 23

−5
0.4

0.6

0.8

  1

SNR (dB)

ε s

(a) One active source.

−5
0.4

0.6

0.8

  1

SNR (dB)

ε s

(b) Three active sources.

−5
0.4

0.6

0.8

  1

SNR (dB)

ε s

(c) Five active sources.

0
0.4

0.6

0.8

  1

SNR (dB)

ε s

(d) One active source.

0
0.4

0.6

0.8

  1

SNR (dB)

ε s

(e) Three active sources.

0
0.4

0.6

0.8

  1

SNR (dB)

ε s

(f) Five active sources.

10
0.4

0.6

0.8

  1

SNR (dB)

ε s

(g) One active source.

10
0.4

0.6

0.8

  1

SNR (dB)

ε s

(h) Three active sources.

10
0.4

0.6

0.8

  1

SNR (dB)

ε s

(i) Five active sources.

15
0.4

0.6

0.8

  1

SNR (dB)

ε s

(j) One active source.

15
0.4

0.6

0.8

  1

SNR (dB)

ε s

(k) Three active sources.

15
0.4

0.6

0.8

  1

SNR (dB)

ε s

(l) Five active sources.

Figure 3-4: Spatial reconstruction accuracy according to εs in SD-1 for the following

mappings methods: DSC(Lasso) DSC(90 : 30) DSC(90 : 90) DSC(30 : 90)

DSC(Fusion) S-FLEX MSP. The DSC uses the Sparsest possible solution
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Figure 3-5: Spatial reconstruction accuracy according to εs in SD-1 for the following

mappings methods: DSC(Lasso) DSC(90 : 30) DSC(90 : 90) DSC(30 : 90)

DSC(Fusion) S-FLEX MSP. The DSC uses the Residual norm criterion
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Figure 3-6: Temporal reconstruction accuracy according to εt in SD-1 for the following

mappings methods: DSC(Lasso) DSC(90 : 30) DSC(90 : 90) DSC(30 : 90)

DSC(Fusion) S-FLEX MSP. The DSC uses the Sparsest possible solution
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Figure 3-7: Temporal reconstruction accuracy according to εt in SD-1 for the following

mappings methods: DSC(Lasso) DSC(90 : 30) DSC(90 : 90) DSC(30 : 90)

DSC(Fusion) S-FLEX MSP. The DSC uses the Residual norm criterion
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Figure 3-8: Spatial reconstruction accuracy according to εs in SD-2 for the following

mappings methods: DSC(Lasso) DSC(90 : 30) DSC(90 : 90) DSC(30 : 90)

DSC(Fusion) S-FLEX MSP. The DSC uses the Sparsest possible solution
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Figure 3-9: Spatial reconstruction accuracy according to εs in SD-2 for the following

mappings methods: DSC(Lasso) DSC(90 : 30) DSC(90 : 90) DSC(30 : 90)

DSC(Fusion) S-FLEX MSP. The DSC uses the Residual norm criterion
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Figure 3-10: Temporal reconstruction accuracy according to εt in SD-2 for the following

mappings methods: DSC(Lasso) DSC(90 : 30) DSC(90 : 90) DSC(30 : 90)

DSC(Fusion) S-FLEX MSP. The DSC uses the Sparsest possible solution
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Figure 3-11: Temporal reconstruction accuracy according to εt in SD-2 for the following

mappings methods: DSC(Lasso) DSC(90 : 30) DSC(90 : 90) DSC(30 : 90)

DSC(Fusion) S-FLEX MSP. The DSC uses the Residual norm criterion



3.4 Results 31

shows the corresponding source reconstruction in the same time range. The time range

227 ms to 383 ms was selected for presentation, since it corresponds to the P300 component

of ERP [46]. For both visual and auditory stimulation, DSC localizes components of the P300

in the prefrontal cortex coinciding with studies which suggest that deficits or dysregulation in

subregions of the prefrontal cortex may carry to the spectrum of ADHD symptoms [49, 50, 51]

as follows: the dorsolateral prefrontal cortex regulates attention, and its impairment may

lead to symptoms of inattention and distraction, the right inferior prefrontal cortex regulates

behavior, and its impairment may carry to symptoms of impulsivity and hyperactivity, and

finally, the ventromedial prefrontal cortex regulates emotions responses. Particularly, in the

case of visual stimulation is seen actives areas in the neighborhood of the occipital cortex,

which it is consistent with stimulation produced. In the case of auditory stimulation there are

actives zones near the superior parietal lobule associated to functions related to the memory

like the working memory and visuospatial memory which coincides with types of ADHD and

its association with spatial working memory deficits [52], also there are minimum actives

areas in the temporal lobe associated with the stimulus. In all cases, the reconstructed time

series draws a clean representation of the dynamics found in the original ERP responses, and

the cortical reconstruction shows actives areas proximate to the actives zones in the scalp

map. Generally, we observe that target stimuli lead to more local regions of estimated brain

activity, while non-target stimuli the activity seems to be more dispersed.

Source localization and statistical analysis: Fig. 3-14 shows the results of dipole-wise

Student-t test for differences in power between groups (ADHD vs. Control) for visual and

auditory target stimuli respectively. Here, dark blue color denotes higher activity in the

condition mentioned first, while dark red color denotes higher activity in the condition men-

tioned second. In both cases, significant differences (red areas of higher intensity) were found

in brain areas nearby attention networks ventral and dorsal. This is consistent with studies

that have found reduced activity in these attention networks in children with ADHD, like

in [53, 54, 55]. Particularly, with the visual stimuli there are active areas by the posterior

cingulate gyrus that has associated functions with the memory like topographic and topoki-

netic memory, and functions with the high-demand visual processing, and by the posterior

inferior temporal gyrus associated with the visual fixation and sustained attention to color

and shape. For the auditory stimuli, we found actives areas in the gyrus rectus involve in

auditory non-speech processing, the temporal pole that response to auditory stimulation,

and in the middle temporal gyrus relate to processing complex sounds. Also, it is noted that

in both conditions of stimulation, the significant differences are given only to positive val-

ues. This means that the amplitude of the activity related to P300 has a greater amplitude

in control subjects than in subjects ADHD. In both stimuli, these differences are seen in

the network of frontoparietal attention. The results are consistent with recent studies that

show in this network reductions in the amplitude of P300 in areas surrounding this region

in children with ADHD.
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Visual stimuli, target (Subject 8).
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Auditory stimuli, target (Subject 3).
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Figure 3-12: Sensor-space EEG data and DSC source reconstruction of visual and auditory

evoked potentials elicited by target stimuli for representative subjects.
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Visual stimuli, non-target (Subject 22).
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Auditory stimuli, non-target (Subject 23).
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Figure 3-13: Sensor-space EEG data and DSC source reconstruction of visual and auditory

evoked potentials elicited by non-target stimuli for representative subjects.
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Visual stimuli (ADHD vs. Control).
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Figure 3-14: Differences in source power estimated by DSC for ERPs analysis with visual

and auditory stimuli between groups (ADHD vs. Control).
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3.4.3 Emotion-related brain activity

Source localization and statistical analysis: Figs. 3-15 and 3-16 show examples of the

dipole wise Student-t test results for differences in power between classes, namely, high/low

valence, high/low arousal, high/low dominance, high/low liking, respectively. Dark blue

color denotes higher activity in the low classes, while dark red color denoted higher activity

in the high classes. Results were obtained using DSC(30:90) and syntonization strategy the

sparsest possible solution as it was the source reconstruction algorithm that achieved better

results with simulated data. However, in the next chapter, a comparison of all the tested

methods for the emotion-based database is carried out.

For valence emotion, cerebral regions showing statistically significant differences (darker blue

and red areas) are found near to the default-mode network. For positive valence (darker red),

differences were found in the medial frontal and prefrontal cortex associated with pleasant

and unpleasant emotions, and the posterior cingulate gyrus area involved in emotions, indeed,

there is a close association between emotion/motivation and memory. Whereas for negative

valence (darker blue), differences were found in the inferior parietal lobule region related to

the retrieval of unpleasant experiences, the somatosensory cortex and the frontal eye field

related to processing emotions. For arousal, regions showing significant differences were

observed mainly for active activity (higher arousal rates). For instance, there is a high

active area near to the ventral anterior cingulate gyrus area, which is related to the sexual

arousal to visual stimuli in males, also, the temporal pole related with visual processing

of emotional images, and the gyrus rectus related to emotional components of behavior

are active. For passive activity (lower arousal rates) significant differences were found in

the posterior cingulate gyrus associated with the process of semantic emotional information

and the action of passively listening to different sentences, similarly, several areas related

to visual stimuli processing were found active during this kind of activity like the middle

occipital gyrus that response to emotions.

When the subject felt dominant (high dominance values), the superior parietal lobule, re-

lated to processing emotions and self-reflections during decision making, shows high activity.

Also, the posterior cingulate gyrus, related to fear conditioning and evaluative judgment

shows significant differences. And when the subject felt dominated (low dominance values)

part of the prefrontal cortex related to pleasant and unpleasant emotions and the attribution

of intention of others shows high activity. Finally, for liking, regions related to evaluative

judgment, as the posterior cingulate gyrus were found active when the subject dislike the

video, likewise, the inferior parietal lobule associated with retrieval of unpleasant experi-

ences was active. In contrast, areas as the inferior frontal gyrus, which is related to music

enjoyment was found active when the subject liked the video.

Finally, for all emotions, an active brain area around the secondary visual cortex was found.

This is expected because this area is highly related with response to emotion/attention in

visual processing.
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Valence (Negative vs. Positive).

(a) Outside right. (b) Top. (c) Outside left.

(d) Inside right. (e) Bottom. (f) Inside left.

Arousal (Passive vs. Active).

(g) Outside right. (h) Top. (i) Outside left.

(j) Inside right. (k) Bottom. (l) Inside left.

−2 −1 0 1 2t-
sc

or
e

Figure 3-15: Differences in source power estimated by DSC for Valence (Negative vs. Posi-

tive) subject 12 and for Arousal (Passive vs. Active) subject 29.
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Dominance (Dominated vs. Dominant).

(a) Outside right. (b) Top. (c) Outside left.

(d) Inside right. (e) Bottom. (f) Inside left.

liking (Dislike vs. Like).

(g) Outside right. (h) Top. (i) Outside left.

(j) Inside right. (k) Bottom. (l) Inside left.

−2 −1 0 1 2t-
sc

or
e

Figure 3-16: Differences in source power estimated by DSC for Dominance (Dominated vs.

Dominant) subject 15 and for Liking (Dislike vs. Like) subject 20.
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3.5 Discussion

In this chapter, we proposed a regularized method for neural activity reconstruction that

explicitly included both (space and time) constraints on the solution of the M/EEG inverse

problem. The main goal is to reach a suitable trade-off between the corresponding space

and time resolutions, aiming to improve the estimation of the active sources with powerful

non-stationary brain activity. By the above-obtained results, the following findings are worth

mentioning.

We fostered the enhancement of the spatial resolution by representing the brain activity as

the sum of a small number of space basis functions, describing smooth localized patches of

potentially active brain regions [12, 11, 39]. Additionally, we incorporated a spatial con-

straint expressed in terms of the L1-norm. This norm fostered the solution to be sparse,

making the estimated brain activity be represented mainly by the concentrated sources. Be-

sides, the influence of the spatial constraint on the estimated solution was ruled by increasing

or decreasing the regularization parameter λs. Furthermore, we included a temporal regular-

ization term that encourages the inverse problem solution to improve the temporal accuracy

of the accomplished neural activity reconstruction. This term that penalizes the difference

between consecutive time points yields a smooth solution over time.

We expected that in the asymptotic cases (λs = 0, or λt = 0), the spatial or temporal

resolution of our DSC based approach would achieve the better results, respectively. Never-

theless, we were surprised that the behavior was completely opposite, i.e, in both asymptotic

cases we found the worst results. However, we achieved outstanding results when a proper

compromise between both regularization parameters was defined. As a result, we found that

depending on the dynamic of the data in hand; we could set a proper regularization ratio

between the spatial and temporal parameter to enhance the performance of our DSC based

approach.

One of the most crucial stages for DSC to achieve a good performance is the syntonization of

the regularization parameters. In this regard, we have used two different strategies, namely,

the Sparsest possible solution, and the Residual norm criterion. Although the later strat-

egy may achieve better results, it is necessary to compute several solutions with different

parameters, which is an exhaustive search, and it demands high computational cost just for

one recording. On the other hand, we have shown empirically that the Sparsest possible

solution also achieves a good performance, and it does not demand an exhaustive computa-

tional cost. Consequently, we recommend this approach as a good alternative for tuning the

regularization parameters.



4 Source connectivity analysis to

emotion classification

4.1 Introduction

In the previous chapter, we have proposed an approach to solve the M/EEG inverse problem.

Several approaches to solve the M/EEG inverse problem in order to localize and reconstruct

sources of brain activity by taking advantage of the spatiotemporal properties of brain dy-

namics. Nevertheless, in the last decades, neuroimaging techniques have also been widely

used to identify brain networks involved in normal brain functions [22, 23], as well as in

neurological disorders such as epilepsy, autism, among others [28, 56], and even in analyzing

how those networks behave in emotional states [57, 58].

As a first approach, connectivity measures have been applied to the sensor level recordings.

Nevertheless, their interpretation is not straightforward as these recordings suffer from a

low spatial resolution and are severely corrupted by effects of field spread [59]. One promis-

ing alternative to cope with these issues is the M/EEG source connectivity analysis that

quantifies the activity interactions between distant brain areas. Connectivity source anal-

ysis comprises three main steps: i) Source estimation from scalp M/EEG measurements,

ii) Identification of Regions of Interest (ROIs) and their respective time courses, and iii)

Assessment of the connectivity between pairs of ROIs, measuring the interactions between

separated brain areas. In this regard, it is expected that the final result, i.e., the identified

networks, will directly depend on the chosen methods in each step. Consequently, the choice

of the best combination of methods is crucial to reveal the actual networks that are active

during a considered brain process.

In this chapter, we show how our DSC based brain mapping method could be easily extended

as a source connectivity approach. To this end, we take advantage of the spatial basis used

to reconstruct the brain activity to define the ROIs describing brain areas with compact

neighboring regions. In this regard, the estimated time courses of each spatial basis will

correspond to the time course of each ROI. Finally, the Magnitude Square Coherence (MSC)

is computed between pairs of ROIs to determine their connectivity.

We validate the proposed approach of source connectivity analysis for discriminating emo-

tional states, where the results are promising, making the proposed methodology a suitable

alternative to support many neurophysiological applications.
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4.2 Methods

The proposed methodology for source connectivity assessment using spatiotemporal con-

straints involves these three stages: i) Identification of regions of interest (ROIs), ii) Esti-

mation of ROI time courses from the scalp M/EEG measurements, and iii) Assessment of

the pairwise connectivity between all selected ROIs.

4.2.1 ROI identification

As a rule, M/EEG source connectivity analysis demands an accurate identification of the

ROI set, because the quality of the estimation of their time courses is a critical issue to

describe the information flow inside the brain [22]. Here, we solve this problem by setting

each column of the spatial basis set Φ, defined in Eq. (3-3) as an individual ROI. In this way,

the set of ROIs are designed to cover the entire cortical surface, and each ROI is described

by a compact neighboring region.

4.2.2 Estimation of ROI time courses

In order to assess the connectivity between pairs of distant brain regions, M/EEG recordings

Y must be evaluated in the source space J , i.e., the scalp neural field data should be

projected through the lead field matrix L into the brain volume by solving an inverse problem

(see Eq. (3-1)). Additionally, given that the quality of connectivity analysis is very influenced

by the adequate extraction of the ROI time courses, the temporal non-stationarity inherent

to brain activity must be carefully considered. Here, we solve both problems by estimating

the brain activity inside predefined spatial patches (ROIs), using the DSC based approach,

as follows:

Ĥ = argmin
H
{||Y −LΦH||2F + λs||H||1 + λt

∑
t∈T−1

||ht+1 − ht||1}, (4-1)

Consequently, each row vector hr∈RT ,∀r = 1 : R of the matrix H holds the time course

of its corresponding ROI, and their estimation holds the spatiotemporal dynamics of brain

activity, as explained above.

4.2.3 Assessment of functional connectivity between pairs of ROIs

To assess the connectivity between each pair of ROIs, we use the Magnitude Square Coherence

(MSC) that is a large-scale measure of the underlying dynamic neural interactions, where

higher coherence values indicate greater functional interplay between the two underlying

neural networks [58]. Consequently, the pair-wise MSC between two ROIs r and r′ can be

computed as [60]:

γhr,hr′
(f) =

|Shrhr′
(f)|2

Shrhr(f)Shr′hr′
(f)

, γhr,hr′
(f) ∈ R+ (4-2)
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where hr∈RT is the r-th ROI time course, Shrhr′
(f)∈R+ is the cross-spectral density between

ROIs r and r′ at the frequency f , and Shrhr(f)∈R+ and Shr′hr(f)∈R+ are the auto-spectral

density of hr and hr′ , respectively. Moreover, to quantify the dependencies, the averaged

MSC, γhr,hr′
∈R+, is computed over a predefined frequency rank f∈[f1, f2].

4.3 Experiments

4.3.1 Source connectivity analysis to emotion classification

Here, we use the proposed source connectivity analysis method as a feature extraction ap-

proach to classify emotional states. We use the EEG data described in the previous chapter

for emotion analysis using physiological signals (DEAP). Consequently, obtained connec-

tions are used to solve four different binary classification problems, namely low/high valence,

low/high arousal, low/high dominance, low/high liking. The proposed source connectivity

analysis approach to classify emotional states is depicted in Fig. 4-1.

EEG
ROI 

identification
Functional 

Connectivity

Y H ϛrr'Estimation of 
ROI time courses

φ Emotion 
Classification

Figure 4-1: Illustration of the proposed source connectivity analysis steps.

Estimation of ROIs: We selected the ROIs as each element of the spatial basis Φ. Con-

sequently, the associated time course to each ROI corresponds to the row vectors of matrix

H denoted as hr∈R1×T , ∀r = 1 : 512. This procedure holds for our DSC based approach

and for S-FLEX. To MSP, all dipoles belonging to each element of the spatial basis were

averaged in order to obtain a single time course representing the ROI temporal structure.

Finally, to avoid biased connectivity estimation between ROIs that are not actually active,

and for computing the same number of features than for the sensor space based connectivity,

we selected the R′ = 32 most powerful ROIs.

Estimation on connectivity between pairs of ROIs: Once the set of ROIs is selected,

we proceeded to estimate their connections using the Magnitude Squared Coherence (MSC)

metric that allows to quantify linear synchrony in different frequency bands, as MSC has been

shown to be associated with information regarding emotions [58]. The MSC was applied to

each possible pair of ROIs (and pairs of channels for the comparing sensor based approach)

by splitting the 1-minute time courses into thirty 2-second long epochs without overlap. The

obtained MSC values were averaged over epochs to get a more trustworthy metric. Before
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computing the MSC metric, to obtain a holistic view of the information transfer using this

linear metric MSC was calculated for the frequency range 4− 45 Hz, comprising information

of the theta (θ = 4 − 8Hz), alpha (α = 8 − 12Hz), beta (β = 12 − 30Hz), and gamma

(γ = 30 − 45Hz) frequency bands. As a result, a connectivity matrix Γ∈[0, 1]R×R was

computed.

Finally, as the coherence is a measure that assumes linear relationships, meaning that the

square matrix Γ becomes symmetric with ones on the main diagonal, only their upper

diagonal values are contemplated to create the feature representation matrix Υ∈RNtr×Q with

the minimum possible redundant information. As a result, each row vector of Υ comprises

Q = R′(R′ − 1)/2 features, corresponding to the R′(R′ − 1)/2 connections over the studied

frequency rank of interest.

Statistical analysis: Based on the ROI-wise source connectivity, we searched for networks

presenting significant differences between two different conditions per emotion (low/high

classes), using a two sided Student-t test, individually for each subject. Once again, signifi-

cant differences were assumed for connections between ROIs featuring t-scores with absolute

values greater than 2.0244 (alpha level p < 0.05, uncorrected).

Classification training and validation: Additionally, towards classifying various emotional

dimensions, each participant’s subjective ratings were used as the ground truth values, and

high and low classes were created as explained above. Afterward, emotion classification is

performed individually per subject, using the feature matrix Υ to feed a soft-margin Support

Vector Machine (SVM) classifier. This classifier was trained under the following leave-one-

out cross-validation methodology: i) From the Ntr = 40 trials per subject, 39 were used

to train the SVM classifier, while the remaining sample was left for testing, ii) Repeat the

preceding stage until all samples have been used as a test sample. The reason for using

a leave-one-out cross-validation scheme was that the number of samples per subject is not

enough for generating significant training and testing sets. Furthermore, this strategy is the

most used for emotion discrimination using the DEAP database [61].

Finally, as the imposed threshold used to configure the high/low classes generated unbalanced

classes for each subjective rating, the F1 score was employed to describe reliably the results

of classifier performance while tackling the class unbalance, as suggested in [58]. However,

accuracy rates were also computed to compare against some state-of-art methods facing the

same problem.

4.4 Results

Statistical analysis: Figs. 4-2 to 4-8 show networks presenting significant differences be-

tween high/low classes for all the tested source localization methods. We observe that for
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valence, arousal, and dominance, all tested methods find several significant connections re-

lated to the brain areas that presented higher activity in the experiment explained above. For

instance, in valence emotion, several connections between the secondary visual cortex and

the default mode network were found. Furthermore, in arousal, several connections between

the temporal pole and the ventral anterior cingulate area were drawn. For dominance, we

found very interesting that connections were found mostly between parts of the same brain

hemisphere, mainly between the secondary visual cortex and the prefrontal cortex, which

is related to pleasant and unpleasant emotions. This prefrontal cortex was also connected

with the superior parietal lobe. Finally, we were surprised that liking almost not presented

significant connections.

(a) Valence. (b) Arousal. (c) Dominance. (d) Liking.

Figure 4-2: Source connectivity based on the DSC(Lasso) mapping

(a) Valence. (b) Arousal. (c) Dominance. (d) Liking.

Figure 4-3: Source connectivity based on the DSC(90 : 30) mapping

Emotion classification: Finally, Table 4-1 reports the F1-score and classification accuracy

averaged across subjects for the valence, arousal, dominance and liking categories. We ob-
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(a) Valence. (b) Arousal. (c) Dominance. (d) Liking.

Figure 4-4: Source connectivity based on the DSC(90 : 90) mapping

(a) Valence. (b) Arousal. (c) Dominance. (d) Liking.

Figure 4-5: Source connectivity based on the DSC(30 : 90) mapping

(a) Valence. (b) Arousal. (c) Dominance. (d) Liking.

Figure 4-6: Source connectivity based on the DSC(Fusion) mapping
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(a) Valence. (b) Arousal. (c) Dominance. (d) Liking.

Figure 4-7: Source connectivity based on the S-FLEX mapping

(a) Valence. (b) Arousal. (c) Dominance. (d) Liking.

Figure 4-8: Source connectivity based on the MSP mapping

EEG
DSC

Sflex MSP
Spa 90:30 90:90 30:90 Tem

Ac

V 65.7± 10.9 63.7± 11.0 59.0± 10.5 63.6± 10.8 66.1± 10.1 65.2± 11.5 50.4± 15.9 58.1± 10.5

A 53.5± 13.5 57.0± 11.8 58.0± 11.3 58.0± 13.1 56.0± 11.8 55.1± 12.8 54.3± 13.2 56.9± 12.9

D 59.5± 11.5 60.2± 13.2 57.9± 12.3 60.2± 12.1 56.7± 15.1 56.0± 15.3 52.2± 14.1 55.3± 14.2

L 59.0± 13.3 58.1± 14.7 59.0± 14.9 56.1± 18.7 58.0± 15.0 58.4± 16.0 55.4± 13.9 55.1± 13.0

F1

V 66.7± 11.9 64.2± 13.3 61.2± 9.7 65.5± 10.9 66.9± 12.1 65.7± 14.2 52.0± 19.0 59.6± 12.0

A 55.3± 14.6 59.3± 14.2 61.3± 14.2 60.3± 15.4 57.7± 14.8 57.1± 14.6 52.8± 21.7 57.5± 15.9

D 62.8± 11.3 63.8± 13.9 61.8± 13.3 64.3± 11.8 59.9± 15.0 58.4± 14.7 53.9± 19.0 57.7± 16.7

L 64.4± 14.8 63.1± 17.5 64.4± 16.7 60.3± 21.4 63.2± 16.8 63.5± 16.3 61.8± 17.3 60.8± 14.1

Table 4-1: Results in F1-score (F1) and classification accuracy (Ac) average across subjects

for the Valence (V), Arousal (A), Dominance (D) and Liking (L) categories.
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serve that generally, our DSC based approach reaches higher accuracy and F1 score than

S-FLEX and MSP, with differences between 5 and 10 points. Nevertheless, both performance

measures vary according to the used λs/λt ratio, which could be an indicator of the implicit

spatiotemporal dynamics of the brain networks that appear under each emotional stimuli.

For instance, liking reaches the maximum F1 and accuracy rate when the spatial param-

eter has a greater weight (90:30), which corresponds to just a few significant connections

(see Fig. 4-3). In the other hand, Valence achieves the maximum performance scores when

the temporal parameter is greater than the spatial one (30:90), which could indicate that

this emotional state present brain connections with strong temporal dynamics. However,

for those emotional states (Liking and Valence), the achieved DSC based results do not

overcome the EEG-based results, reaching similar accuracy and F1 score values.

In the remaining classes, namely Arousal and Dominance, the proposed approach clearly

exceeds the comparing approaches. Specifically, DSC achieves 5 points greater than EEG in

Arousal both in 90:30 and 90:90 ratios. This could be an indicator that there is a compromise

between spatial and temporal dynamics present under this emotional stimuli, as can be seen

in Figs. 4-3 and 4-4. Finally, for Dominance, our approach with 90:90 ratio overcomes the

EEG-based results for 2 points.

Summarizing, the DSC(90:90) based approach reaches the better results. In this regard,

although for some cases this ratio does not achieve the maximum accuracy and F1 score

values, this compromise between the spatial and temporal patterns of brain activity always

is close to the higher values.

4.5 Discussion

We proposed a new source connectivity approach explicitly including spatiotemporal infor-

mation of the neural activity extracted from M/EEG recordings. Particularly, the proposed

source connectivity approach is an extension of our DSC based brain mapping approach,

hence it allows to encode the source non-stationarities to improve the source connectivity

performance. Our approach comprises three critical stages: i) ROI identification, ii) Esti-

mation of ROI time courses, and iii) Assessment of functional connectivity between pairs of

ROIs.

ROI identification: As a rule, the estimated source activity spreads over the entire cortical

mesh so that the identification of spatially neighboring regions (that is, the ROI set) must

be carefully performed. In turn, all ROIs must be densely allocated within small clusters to

encode the spatial inhomogeneity of brain activity so that they can be extracted by applying,

at least, one of the following principles: By incorporating the prior knowledge of their well-

studied participation in experimental tasks [26], or by tracking the structural connectivity

networks [62]. Here, unlike traditional source connectivity methods that first estimate the

cortical sources and then define the set of ROIs to estimate their time courses, our approach
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first define ROIs, which are compact neighboring regions, through all the cortical surface to

later estimate the activity inside each ROI based on the measured EEG data. Consequently,

the active ROIs are estimated based solely in the available data. The main advantage of

this strategy is that allows selecting compact shape clusters as ROIs, which are more similar

to real scenarios. However, if needed, this approach also allows creating ROIs as predefined

Brodmann areas, or as areas based on fMRI studies.

Estimation of ROI time courses: There are several strategies to compute the time course

that define the activity inside each individual ROI. The most used strategies are i) To

average the time courses of all the dipoles belonging to a specific ROI, or ii) To select the

time course of the dipole with the highest energy [28]. Nevertheless, each ROI may contain

dipoles with different dynamics, so that the average may yield a blurred or noisy time course

representing the temporal behavior of such region. Additionally, the dipole with the highest

energy will not correctly comprise the temporal dynamic of the entire region.

To cope the above-mentioned issues, we proposed a new approach for estimating the partic-

ular dynamics of each ROI, in such a way, that a single time-courses can capture the time

variant information of each particular area. In this regard, the estimation of the time vary-

ing parameters proposed in the DSC source estimation approach (see Eq. (4-1)), provides

an estimation of the ROI time courses taking into account the spatiotemporal dynamics

of M/EEG data. Furthermore, the ratio between the spatial and temporal regularization

parameters helps to syntonize the algorithm depending on how strong are the temporal dy-

namics of the data. For instance, we have shown that equating both parameters, we are able

to correctly identify the dynamics of emotional states.

Finally, comparing the obtained results with all the tested methods, this step has been the

most determining one to correctly perform the source connectivity analysis. This can be

evidenced due to all the tested methods use the same ROIs, hence, variations in connectivity

patterns, and consequently, in the performance of the emotion classification are directly

related to the accurate estimation of the ROI time courses.

Assessment of pairwise connectivity between ROIs: Several measures have been de-

signed to measure the interaction between distant brain areas [22]. Here, all the effort was

carried out in the previous steps, hence, we have used one of the most common functional

connectivity measures, namely, the Magnitude Squared Coherence. We have selected this

measure because it allows computing interactions over predefined frequency ranks and it

also has been used before for emotional states processing [58]. Although we have reached

good performance results, one of the promising alternatives of improvement is to employ a

connectivity measure that allows describing with more confidence the time-varying dynamics

of the brain networks.
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Emotion discrimination based on source connectivity analysis: Lastly, we used the con-

nectivity patterns as features to discriminate between emotions. To carried out a fair com-

parison, we compute connectivity patterns from all the tested brain mapping methods, but

also from raw EEG data, as proposed in [58]. Then, the discrimination was done in two

different ways: i) By looking for the most significant connections to discriminate between

classes, and ii) By training an SVM classifier. We have shown that although all tested

methods find similar significant connections, differences in classification accuracies and F1

scores reach up to ten points.

In most of the cases, our DSC(90:90) based method reached outstanding results. In this

regard, comparing this method against S-FLEX and MSP, results are significantly greater

for all the tested emotions. Additionally, although the EEG-based connectivity also reaches

good classification performance, the DSC(90:90) is, in the worst case, equal, but also in some

cases (Arousal and Dominance, specifically) better.

Finally, notice that we carried out the binary classification as the only one reported in

the literature for emotion recognition. However, the use of hard thresholding algorithms

for binarizing a label set leads to losing most of the emotional richness. Moreover, the

scores near the midpoints and extreme values may have different implications. Therefore,

other strategies of labeling should be considered to capture better the richness of emotion

dimensions (like the use of regressions).
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5.1 General Conclusions and Main Contributions

Design of a brain activity estimation algorithm including

spatiotemporal constraints

In Chapter 3 we introduced a constrained M/EEG inverse solution namely Dinamic Sparse

Coding (DSC) that includes spatiotemporal constraints for improving the reconstruction ac-

curacy of neural activity obtained from M/EEG recordings through a dynamic small and

locally smooth spatial patches that vary smoothly over time, yielding sparse and time ho-

mogeneous brain activity reconstructions. We tested the DSC in several simulated and

real-world applications. For simulations, in the two experiments designed we have shown

that DSC improves the temporal accuracy of brain activity reconstruction whereas the spa-

tial accuracy is comparable with state of the art algorithms. For real data we tested our

approach on ADHD data. As a result, our proposed method is suitable for reconstruct-

ing Evoked Response Potentials, and yields physiologically meaningful solutions: spatially

coherent activity and smooth time series. Also, we tested our approach in DEAP data re-

sulting in that our method leads to find significant differences in the low and high values of

the considered emotion(valence, arousal, dominance, liking). In general, the implementation

of DSC promotes focal and spatially smooth solutions being able to describe non-stationay

brain activations.

As future work, we will consider introducing a weighing in the fusion restriction of the DSC

to keep track of the dynamics in the latent states.

Tunning of regularization parameters

In Chapter 3 we introduced two optimization strategies for tunning of regularization pa-

rameters in DSC, namely, the Sparsest possible solution and the Residual norm criterion,

these optimization methods based their operation on the selection of different ratios reach-

ing a trade-off between the spatial resolution and the temporal resolution, we tested the

syntonization of the regularization parameters in the DSC approach in two ways. First, we

set different ratios from the solely spatial regularization (Lasso) until the entirely temporal

structure reconstruction (Fusion) given as results suitable accuracy with the two optimiza-

tion strategies in the DSC considering at the same time spatial and temporal restrictions
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compared with methods in the state-of-art. Second, we compared the DSC with the Spars-

est possible solution and different ratios against several inverse method in the emotion-base

database resulting in a DSC competitive with the state-of-art algorithms. In general, the

two restrictions in DSC give us the freedom to move between the spatial and temporal re-

constructions, which is of great importance depending on the application chosen and the

specific data in hand. Also, the two tunning methods boost the competitiveness of DSC

allowing seek the best possible parameters for implementation given a plus to the Sparsest

possible solution due to lower computational cost.

As future work, the discussion of the tuning of the parameters in regularization methods

is not an easy task which remains open, for this reason, it is necessary to deepen the issue

further and try to find better methods.

Development of a source connectivity analysis method

Finally, in Chapter 4 we introduced a source connectivity method that explicitly includes the

spatiotemporal dynamics of brain activity. Unlike most of the state-of-art source connectivity

methods, we emphasize in estimating the ROIs time courses, as they are the basis of the

further connectivity analysis. We tested the proposed method discriminating emotional

stages in the emotion-base database. Results showed that the discussed DSC based approach

improve the source connectivity based on the state-of-art methods with performance variable

depending the spatial-temporal ratio. Additionally, the proposed method either overcomes

or al least reach similar results compared against the ones obtained with sensor level based

connectivity, depending on the spatiotemporal dynamics of brain activity.

As future work, we plan to employ other connectivity measures that allow describing with

more confidence the time-varying dynamics of the brain networks, also, use other strategies

to labeling the DEAP database.

5.2 Future work

Besides the method-specific analyses proposed above as future work, more general topics

should also be consider:

Non-Gaussian assumptions: The mathematical framework presented in this thesis was

grounded on Gaussian assumptions. Nevertheless, though this assumption showed to be

enough to achieve outstanding results, some studies in the last years suggest that data

recorded from M/EEG follows non-Gaussian distributions [63]. In this regard, the math-

ematical formulation in Chapter 3 could be easily extended and implemented with non-

Gaussian assumptions using Information Theoretic Learning (ITL) [64]. In this way, the

cost function of Eq. (3-2), which uses only second order statistics could be modified by more
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robust functionals as the Information Potential or even the correntropy. Also, the regular-

ization terms, specifically the one encouraging sparsity, could be smoothed with divergences

to facilitate its optimization.

Interpretability of the M/EEG inverse problem solution: Typically, M/EEG-based brain

mapping solutions provide valuable information about active brain areas. In this regard,

one of the contributions of this thesis was to analyze the temporal information provided by

M/EEG signals could be used to improve the decoding of the spatiotemporal dynamics of

neural activity. Also, we introduced how such temporal information could also improve a

further connectivity analysis, which is highly influenced by the decoded neural dynamics.

In this regard, we also propose as future work to use the proposed connectivity analysis

technique to elucidate differentiable patterns between controls and subjects suffering from

several neurological disorders, as middle cognitive impairment, Alzheimer, among others.
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“Emotions promote social interaction by synchronizing brain activity across individu-

als,” Proceedings of the National Academy of Sciences, vol. 109, no. 24, pp. 9599–9604,

2012.

[58] R. Gupta, Y.-J. Hur, and N. Lavie, “Distracted by pleasure: Effects of positive versus

negative valence on emotional capture under load.” Emotion, vol. 16, no. 3, p. 328,

2016.

[59] S. Haufe, V. V. Nikulin, K.-R. Müller, and G. Nolte, “A critical assessment of connec-

tivity measures for EEG data: A simulation study,” NeuroImage, vol. 64, pp. 120 – 133,

2013.

[60] N. Srinivasan, “Cognitive neuroscience of creativity: Eeg based approaches,” Methods,

vol. 42, no. 1, pp. 109–116, 2007.

[61] J. I. Padilla-Buritica, J. D. Martinez-Vargas, and G. Castellanos-Dominguez, “Emotion

discrimination using spatially compact regions of interest extracted from imaging eeg

activity,” Frontiers in Computational Neuroscience, vol. 10, p. 55, 2016.

[62] J. A. Pineda-Pardo, R. Bruña, M. Woolrich, A. Marcos, A. C. Nobre, F. Maestú, and
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