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Abstract 

Currently diverse forecasting methodologies emerge, based on the empirical 

knowledge, innovative methods, individual or combined, demonstrating 

optimal results. This document is derived from a research process, and presents 

alternatives related to forecast combinations, using metaheuristics, for example, 

by using Tabu search and Evolutive programing to optimize forecasting. One 

of the designed process consists of creating combination forecasts based on 

evolutionary programming using, first, a mixture of Bayesian regression models 

and, second, a mixture of the classical linear regression model, the 

autoregressive integrated moving average model, exponential smoothing and 

Bayesian regression.  

This is document presents two papers derived from the research about forecast 

combination and optimization techniques based on simulation and statistical 

processes. The first research compares the novel combined algorithm with the 

individual results of these individual models and with the Bates and Granger 

combination using an error indicator and the symmetrical mean absolute error 

value. Those models and the novel design were applied to time series simulation 

and to a real case of dairy products sales, thus generating multiproduct 

combination forecasts for both the simulation and the real case. The novel 

combination combined with the evolutionary metaheuristic showed better 

results than those of the others that were used. The second research uses 

simulated time series and other metaheuristic that learns from the data and 

statistical behavior, comparing the combined forecasts with individual 

prediction results. 
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ABSTRACT 

This research proposes an evolutionary programming algorithm to perform combination forecasts for 

multi-item time series responses based on individual forecasts. The designed process consists of 

creating combination forecasts based on evolutionary programming using, first, a mixture of Bayesian 

regression models and, second, a mixture of the classical linear regression model, the autoregressive 

integrated moving average model, exponential smoothing and Bayesian regression. This research 

compares the novel combined algorithm with the individual results of these individual models and 

with the Bates and Granger combination using an error indicator and the symmetrical mean absolute 

error value. Those models and the novel design were applied to time series simulation and to a real 

case of dairy products sales, thus generating multiproduct combination forecasts for both the 

simulation and the real case. The novel combination combined with the evolutionary metaheuristic 

showed better results than those of the others that were used. The research facilitates a novel and 

practice form of the forecasting process for the industry, students, or research community who require 

multiproduct planning of demand. The research value is the novel accurate combination of Bayesian 

models and other mixtures of classical and Bayesian methods with the individual results applied for 

multi-item or multiproduct forecast generation. In addition, the program is designed based on the R 

software packaged, and it can also be reproduced using any other statistical programming software. 

                                                           
1 Author for correspondence: Marisol Valencia Cárdenas. mvalencia@unal.edu.co. 
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1. Introduction 

 

Forecast communities, academics and companies are seeking more accurate alternatives that make 

good predictions, such as for multiple product demands in order to better plan inventories. The final 

sales are a determinant variable for the storage of manufacturing companies, and the variable can be 

found to be both deterministic and stochastic. Currently, more industries that use inventory controls 

also use statistical models to predict sales to improve the efficiency of production, as has been shown 

by different authors (Valencia, Díaz, & Correa 2015); in addition, statistical models can represent the 

uncertainty of these variables in inventory models to produce orders and stocks to correctly assess 

supply and try to cover market needs (Simchi-Levi, Kaminski, & Simchi-Levi, 2008). 

 

Uncertainty is frequent due to many kinds of variations that occur in industrial processes due to, e.g., 

internal logistics, and these variations can affect the service. In this sense, when the data are not well 

fit with a normal distribution, such as for countable responses, there are few statistical models that 

provide acceptable predictions, and some of them are based on the Poisson distribution (Kolassa, 

2016). Appropriate forecast models are important to make accurate projections of variables in 

different kinds of areas besides industry final demands, including population increases, flow growth, 

and energy prices, among others, and innovative forms that do this analysis are always valuable. 

There are two methods to perform forecasts: (i) an individual forecast and (ii) a combination of 

individual forecasts (Guo et al. 2017).  

 

Classical regression with time series components, autoregressive integrated moving average 

(ARIMA) models and exponential smoothing are some of the most-used models for individual 

forecasts, but there are other techniques, such as neural networks and other more recent models based 

on Bayesian techniques that are also useful for forecasts (Petris, Petrone, & Campagnoli, 2009).  

 

Bayesian forecasting models are often used by starting with the definition of a data distribution and 

prior distributions for the parameters, and not much data should be used to estimate models with these 

theories (Valencia-Cárdenas, 2016); these techniques have been proved to be accurate in comparison 

with other classical models, and they are applicable to practical fields, such as the agro-industrial 

sector. Agarwal et al., (2005) proposed a Bayesian regression in order to make better decisions 
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regarding deforestation practices. Ferragina et al. (2015) designed a prediction of fatty acids in the 

dairy sector with Bayesian models.  

 

Dynamic updating is frequent in statistical forecasting models, such as dynamic linear Bayesian 

models (Valencia et al., 2015) and other Bayesian techniques. Valencia (2016) presented an updating 

process for the design matrix of a Bayesian regression model (BRM) for every forecasted period, and 

comparison with other models using a simulation showed that the proposed method was more 

accurate than classical regression, ARIMA, exponential smoothing, and the dynamic Bayesian 

models defined by Petris, Petrone and Campagnoli (2009). 

 

Forecast combinations are based on individual models that do not always follow the same theoretical 

assumptions for estimations. A forecast combination based on individual models, such as ARIMA, 

neural networks, and regressions, was presented in Melo, Loaiza and Villamizar-Villegas (2016); the 

authors designed a combination Bayesian technique that improved the accuracy of the other models, 

and since neural networks are not based on the normal distribution assumption, as with ARIMA and 

Gaussian regression, the method has flexibility in the individual model that can be incorporated into 

the combination.  

 

This flexibility in a forecast combination method helps improve the accuracy of the estimations, as 

has been shown in recent years. Combination techniques to perform forecasts are beginning to show 

increasing success (Cang & Yu, 2014) in looking for better accuracy in the predictions of different 

kinds of variables. Barrow and Kourentzes (2016) affirm that such techniques have applications in 

multiple fields, such as the forecasts for sales products to be considered in this work.  

 

Different structures of forecast combinations are found in the literature (Hyndman, Ahmed, 

Athanasopoulos, & Shang, 2011; Miller, Berry, & Lai, 2007; Zotteri & Kalchschmidt, 2007). These 

combinations use weights such as the inverse of the root mean square error (RMSE) or random 

variables that are found after an optimization problem’s formulation, and the weights are used in order 

to apply a linear combination of individual forecasts. These random variables can also be estimated 

with Bayesian techniques, such as by using the posterior Bayesian distribution presented by Li, Shi 

and Zhou (2011). 

 

Many authors use Bayesian theory to improve the accuracy of the forecasts, thus creating innovative 

methods in order to find more precision (Cang & Yu, 2014; Hsiao & Wan, 2014; Kociecki, Kolasa, 
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& Rubaszek, 2012). Changing the prior distribution in the Bayesian method is also possible, and 

expert judgement can be added to a forecasting approach when there are no historical data (Kociecki 

et al., 2012).   

 

The application of heuristic methods to build combination forecasts that find optimal weights can also 

provide more accurate results, according to Cang and Yu, (2014), because it can search the most 

approximate values of these in order to minimize an indicator, such as the RMSE. 

 

These mixed techniques are associated with Salas (2008), who used a Bayesian mixed model based 

on alfa-stable distributions. The author affirms that the mixture requires independent and identically 

distributed random variables. Moreover, the Gaussian is among the most-used mixed models, but the 

weights must equal 1, which is a constraint that is not always considered in a metaheuristic process. 

 

Chahkoutahi & Khashei (2017) and Gao, Sarlak, Parsaei, & Ferdosi (2017) propose the use of 

heuristics and metaheuristics in combination forecasts and affirm that a heuristic provides a 

reasonable solution to a problem (Silver, 2004); however, the authors do not guarantee that the 

heuristic will produce a mathematically optimal solution. A metaheuristic is an iterative master 

process that guides and modifies heuristic operations to produce efficient solutions. It means that 

metaheuristic processes use heuristics and other techniques, such as simulation or mathematics, to 

produce better solutions than those of a simple heuristic process. 

 

There are many articles associated with metaheuristics applications (Silver, 2004), and among the 

most-used techniques are particle swarm optimization (PSO), the genetic algorithm (GA), ant colony 

optimization (ACO), the artificial bee colony (ABC), and differential evolution (DE). Successful 

applications of these techniques in combination forecasts use time series information and searching 

strategies, along with different kinds of models for the individual predictions to find better solutions 

(Chahkoutahi & Khashei, 2017; Gao et al., 2017). 

The load forecast combination is another technique consisting of the formulation or searching process 

of weighted random values in a linear combination with the forecasted values. Nowotarski, Liu, 

Weron, and Hong (2016) affirm that this area requires more attention and development. Chahkoutahi 

and Khashei (2017) present some recent works related to hybrid techniques that are used to find the 

weights of a combination technique and affirm that one of the disadvantages of these methods is that 

they find a local optimum that is not always the real one. The authors use models such as multilayer 

perceptron (MLP) neural networks, adaptive network-based fuzzy inference systems (ANFIS), and 
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the seasonal autoregressive integrated moving average (SARIMA) to design the combination based 

on the individual models, thus creating a novel direct optimum parallel hybrid (DOPH) as the 

metaheuristic for the optimization. Other metaheuristics such as the genetic algorithm process are 

used in Sermpinis et al. (2015), and they produced accurate results for the forecast combination.   

This paper presents a novel forecasting combination model that uses a metaheuristic technique based 

on evolutionary programming. In addition, it also uses the evolutionary programming metaheuristic 

proposal (EVOL) for multi-item time series, which is tested by comparing an EVOL combination of 

the Bayesian regression model developed by Valencia-Cárdenas (2016) to perform individual 

forecasts that consider the seasonal behaviour of the time series. The EVOL combination is then 

applied by using the individual models of linear regression, exponential smoothing, ARIMA, and the 

Bates and Granger (BG) combination result, thus finding the best possible model. In this sense, this 

research compares the novel algorithm with the results of all these individual forecasts by using an 

error indicator called the symmetrical mean absolute percentage error (SMAPE) value. The EVOL 

first applies the forecast combination to multivariate simulated time series data by using a non-normal 

distribution and non-stationary behaviour, but with a seasonal pattern and autocorrelation. Second, 

the method is applied to a real case consisting of three dairy product sales of a Colombian company, 

thus providing the forecasting combination for multiple products.  

 

2. Methods 

 

2.1. Bayesian process 

Bayesian analysis uses Bayes’ theorem to make inferences. It assumes some probability distributions 

for the implicit parameters in order to provide estimations for these or forecasts for the response, as 

in this case. The assumptions of these techniques are different with respect to classical models since 

the incorporation of prior information is quantified in a probability distribution (Gill, 2007). 

The data information must assume other probability distributions, which are represented by y1,…, yn. 

This information is included in the likelihood function L(y1,…, yn, βj), which is calculated with the 

product of the probability distribution of the data. 

The form to estimate the posterior distribution is explained as follows. The prior distribution times 

the likelihood equals the posterior distribution. Then, the predictive distribution results from an 

integral of the distribution of the variable to be predicted times the posterior (Gill, 2007). Then, the 

forecast values are calculated with this function. 

Bayesian inference requires the use of prior information for the parameter(s) and a probability 

distribution for the data, but there is often insufficient information, which is the reason that expert 
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knowledge is sometimes required. Valencia et al. (2015) presented a review of the use of dynamic 

demands in inventory planning, and they mention the application of Bayesian analysis in the ARIMA, 

state-space models, and regression models, among others. 

 

2.2. Forecast combination 

The combination establishes a new forecast based on individual forecasts of other models. As is 

explained in Chan et al. (1999), the forecast combinations begin with Bates and Granger (Weiss & 

Roetzer, 2016), starting from two individual forecasts. The authors show that an adequate linear 

combination of these two sets can yield a better result than that of the individuals because they found 

a lower variance error in the combination. This study has also motivated many other works with linear 

and nonlinear combinations (Chen, 2011). 

 

The classic form of the Bates and Granger combination (BG) is found using an R software package 

called GeomComb (Weiss & Roetzer, 2016), which uses the weights equation given by (1). 

 

𝑊𝑖
𝐵𝐺 =

𝜎̂−2(𝑖)

∑ 𝜎̂−2(𝑖)𝑘
𝑖=1

            (1) 

 

where 𝜎̂−2 = 𝑀𝑆𝐸, and the final combined forecast 𝑓 is given by (2). 

Moreover, the combined final forecast 𝑓 will be given by the following:  

𝑓 = ∑ 𝑊𝑖
𝐵𝐺𝑌𝑖̂

𝑘
𝑖=1   (2) 

𝑌𝑖̂ is the vector of individual forecasted data, and k is the number of models used in the combination. 

 

2.3. Heuristic and metaheuristic algorithms to perform forecast combination 

Metaheuristic approaches facilitate the combination of different techniques, such as Tabu list with 

the Nelder Simplex (Chelouah & Siarry, 2005; Valencia, González, & Cardona, 2014). Guerrero et 

al. (2016) present a comparison among three techniques, including ant colony optimization (ACO), 

the genetic algorithm (GA) and the evolutionary programming (EP) metaheuristic, and they design 

an algorithm applied to an inventory problem; the authors obtain good performance with the ACO 

technique. 

The evolutionary programming metaheuristics are a class of algorithms based on iterative evaluation 

of a large set of solutions that are continuously improved through local and global optimization 

techniques. According to Allahverdi and Al-Anzi (2006), an example of this class is the GA, but it 

has differences from EP. For example, EP does not use binary variables, but it combines the 
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populations of parents and sons (Guerrero et al., 2016). These algorithms have a simulation 

exploration that will be applied to the combination process of this research and find the appropriate 

weights to generate the combined forecast. 

 

2.4. Linear regression model  

The linear model (LM) is based on a univariate continuous response, and it uses the lm function in 

the R software package in this research (R Core Team, 2017). The linear model for the time series is 

also considered econometric because it uses chronological variables, and the covariables are 

incorporated as autoregressive endogenous, as are others with time dependence (Bowerman, Koehler, 

& O’Connell, 2007; Caridad-y-Ocerin, 1998); this research considers equation (3). 

𝑧𝑡 = 𝛽0 + ⋯ 𝛽𝑘𝑧𝑡−𝑘 + ⋯ 𝛽𝑖𝑋𝑖 + 𝜀                (3) 

This permits one to analyse the relations among the response zt with covariables in the dependent 

variables of a lag of the series zt-1, due to the autocorrelation on the time series simulation, the time 

and the indicators for the seasonality. 

 

2.5. Exponential smoothing 

Bowerman et al. (2007) illustrate simple exponential smoothing for the fitting process; here, the alpha 

parameter α is a constant between 0 and 1 and is susceptible to change according to an optimization 

of the sum of squared errors of prediction (SSE). This model facilitates the univariate estimation 

according to equation (4). 

𝑌̂𝑡 = 𝛼𝑌𝑡 + (1 − 𝛼)𝑌̂𝑡−1          (4) 

 

where 

 

 𝑌̂𝑡 = forecast for the next period 

 𝛼 = smoothing constant 

 𝑌𝑡= real value of the time series for period t 

 𝑌̂𝑡−1 = forecast of t-1 period 

  

 

2.6. Autoregressive integrated moving average (ARIMA) models 

Traditional forecasting models have been used for the decision-making process in production 

enterprises. ARIMA models were developed in the seventies by George Box and Gwilym Jenkins 

and were used by other authors, such as Meinhold and Singpurwalla (1983); accuracy comparisons 
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among different models have also been performed (Wang & Hu, 2015). A variation of these models 

that incorporates the characteristics from the endogenous response is the seasonal ARIMA 

(SARIMA) model, but these models require large amounts of data to perform a correct estimation. 

An ARIMA model will be used in this work, according to the Wang and Hu (2015) formulation, and 

with the arima function provided in the R software package. 

 

2.7. Generalized linear mixed model (GLMM) 

GLMM is a classical model that considers a fixed and a random component, such as that expressed 

in the equation (5), that presents both components for every individual i-th (Gómez-Restrepo & 

Cogollo-Flórez, 2012). 

𝑦𝑖 = 𝑥𝑖𝜷 + 𝑧𝑖𝛼𝑖 + 𝜀𝑖   (5) 

Here, 𝒚𝒊 is the response vector for i-th individual, β is a parameter vector px1 corresponding to the 

fixed effects, 𝒙𝒊 is the covariables matrix, 𝜶𝒊 is the i-th individual effect, 𝒛𝒊 are the covariables of the 

random effect, and 𝜺𝒊 is intra-individual error. The package lme4 from the R software package 

estimates this model. The GLMM performs an estimation that facilitates the exploration of the 

behaviours of the multivariate responses for the application of dairy products, but not for the 

simulated data due to the continuous nature of the simulated response. 

 

2.8. Bayesian regression model (BRM) 

This is a regression model with a univariate natured response. The BRM has very similar equations 

to the classical regression model, but its response forecasts use a predictive Bayesian distribution. 

The BRM for this research was shown to yield good performance in Valencia (2016) compared to 

that of other models, such as the classical regression, ARIMA, exponential smoothing and the 

Bayesian dynamic linear model, based on a simulation process. The process to build the BRM begins 

with assigning the normal as the priori distribution (an informative distribution) for the parameter 

vector , but it constitutes a joint distribution with the standard deviation parameter. The normal is 

also the distribution for the data. The model follows a dynamic updating process for the initial 

parameter vector 𝜷𝟎 as an innovation process, but the initial variance is fixed to 0 = 1/σ.  

The product of the multiple normal distributions of the independent responses generates the likelihood 

function of the data, as shown in equation (6); the a priori distribution of the normal for the  

parameter vector is shown in equation (7), and the posteriori distribution is shown in (8). The 

distributions are obtained after the product of the a priori times the likelihood and the algebraic 

process. Here, 𝐴 = 𝛽′0𝜏0𝛽0 + 𝑌′𝑌, and 𝛽̃ = (𝑋′𝑋 + 𝜏0)−1(𝑋′𝑋𝛽̂ + 𝛽0𝜏0). 
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𝐿(𝑦𝑡|𝑦0, 𝛽) 𝜏𝑇 𝑒𝑥𝑝−
𝜏

2
(𝑌−𝑋𝛽)′(𝑌−𝑋𝛽)

 (6) 

(𝛽, 𝜏)𝜏 𝜏0 𝑒𝑥𝑝−
𝜏 𝜏0

2
(𝛽−𝛽𝑜𝑖)′(𝛽−𝛽𝑜𝑖)

             (7) 

(𝛽, 𝜏|𝛽0, 𝜏0, 𝑦0, 𝑦𝑡)  𝜏
𝑇+1

2  𝑒𝑥𝑝
−

𝜏 

2
[𝐴(𝛽−𝛽̃)

′
𝐴−1(𝑋′𝑋−𝜏0)(𝛽−𝛽̃)+1]

                     (8) 

As previously stated, the predictive distribution is the integral of the product between the posterior 

and future distribution for the data (Valencia, 2016). The final result is presented in equation (9): 

𝑓(𝒀+|𝑦0, 𝒀) = [((𝒀+ − 𝒀𝒏)′𝑨−𝟏(𝒀+ − 𝒀𝒏) + 1)𝑨]
−

𝑇+4

2       (9) 

 

The mean is 𝒀𝒏 = 𝑿+𝜷̃, and it has  degrees of freedom. The variance is given by (10):  

𝑉 =


−2 
 𝑨 =



−2
(𝒀+ − 𝒀𝒏)′(𝒀+ − 𝒀𝒏)         (10) 

 

Finally, the forecast combination process includes the individual models that are estimated for 

simulated time series, a process that constitutes one of the principal differences from Valencia’s work 

since there is not a combination application. 

 

2.9. First comparative approach 

The designed process creates functions using the R programming language by following the steps of 

Figure 1. The process starts by reading the data. 

 

Figure 1. Second process. The selection of the best model for every seasonal period. 

The simulated data consider a seasonal pattern and autocorrelation with the order one. Then, the 

seasonal variables are the trigonometrical 𝑺𝒊𝒏 (
𝟐𝝅𝒕

𝑳
) and the indicators 𝑰𝒊. BRM1, BRM2, BRM3, are 

models according to the equations (11), (12), (13), respectively. 
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1. 𝒚𝒕 = 𝜷𝟎 + 𝜷𝟏𝒚𝒕−𝟏 + 𝜷𝟐𝑺𝒊𝒏 (
𝟐𝝅𝒕

𝑳
) + ∑ 𝜸𝒊𝑰𝒊

𝑳−𝟏
𝒊=𝟏    (11) 

2. 𝒚𝒕 = 𝜷𝟎 + 𝜷𝟏𝒚𝒕−𝟏 + 𝜷𝟐𝒕 + ∑ 𝜸𝒊𝑰𝒊
𝑳−𝟏
𝒊=𝟏     (12) 

3. 𝒚𝒕 = 𝜷𝟎+𝜷𝟏𝒚𝒕−𝟏 + ∑ 𝜸𝒊𝑰𝒊
𝑳−𝟏
𝒊=𝟏      (13) 

 

where 𝒚𝒕−𝟏 is a lag with order one of the time series, t is the time, I i is an indicator variable according 

to the seasonal periods, 𝜷𝟎 is the intercept for every model, 𝜷𝒊 (i=1, 2) are the effects applied to 

specific covariables, and 𝜸𝒊 are the effects applied to indicator variables. The variable selection 

process considers Valencia’s (2016) equations, which exhibited good performance in representing 

the seasonal patterns. 

 

The BRM estimation applies for every time series simulated, as was illustrated in Figure 1, and uses 

every one of the three equations proposed (11, 12, and 13). After this, the algorithm finds the fourth 

model according to the selection of the best model for every seasonal period with the minimum 

SMAPE value. This algorithm was designed using the R programming language (R-Development-

Core-Team, 2014). The last step is a summary for the EVOL process, explained as follows.  

 

2.9.1. Evolutionary programming metaheuristic proposal (EVOL) 

The combination method designed in this research starts by reading the forecasted data from every 

individual model. Then, a simulation process creates a population of five hundred (500) parents and 

two hundred fifty (250) sons of weights. Every vector of parents has four components that are 

simulated by using a trapezoidal distribution with no binary variables, and the sons are mixtures of 

every two parents (2 for 1). The final population consists of seven hundred fifty (750) individuals, 

but it adds a selection of the best two vectors of the population in order to create new sons for every 

population. If the algorithm finds negative vectors of adjusted values, it creates a mutation of new 

weights with the normal distribution to estimate the positive adjusted and forecasted values. The 

combination forecasts use equation (14) to calculate the linear combination among the individual 

forecasts and the weights. 

𝑌𝑖 = ∑ 𝑤𝑖𝑌𝑖̂
𝑛
𝑖=1    (14) 

A selection of the best weights is performed to produce another son, and the new vectors of the 

weights are aggregated to the population of all the weights. The algorithm is repeated iteratively until 

it reaches the minimum possible SMAPE with a convergence criterion. 
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After finding the best 𝑌𝑖 with the minimum SMAPE values of the forecasts, it generates all the results. 

The algorithm repeats the simulations of the weights by estimating the adjusted and forecasted values 

of the time series and the SMAPE of the respective type of values. Every time, the algorithm compares 

the solution and provides the best possible solution.  

 

The SMAPE indicator is the measure to evaluate the different models that will be used, searching for 

the minimum possible value, equation (13). Here, 𝐹𝑡 is the observed value for every product in the 

time t, 𝐴𝑡 is the forecasted value by the respective model or the forecast combination, and n is the 

number of data. 

 

𝑆𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝐹𝑡−𝐴𝑡|

((𝐴𝑡+𝐹𝑡)/2)
𝑛
𝑡=1        (13) 

 

2.9.2. Bates and Granger combination (BG) 

The BG is found in an R software package called GeomComb (Weiss & Roetzer, 2016), which uses 

the individual forecasts and the weights as it was explained before, where 𝜎̂−2 = 𝑀𝑆𝐸, and the final 

combined forecast 𝑓 is given by (2). 

 

2.10. Second comparative approach 

The second approach is a programming algorithm designed in R that compares the univariate LM, 

ARIMA model, exponential smoothing (SE), the Bayesian regression model (BRM) (Valencia-

Cárdenas, 2016), and the result of the forecast combination Bates and Granger used in Valencia, 

Osorno, and Salazar (2017) with the novel EVOL combination designed in this research. 

The algorithm comprises the following steps. 

• Partition the response for every simulation of the time series, cut n-k periods for an 

adjustment, and forecast the other k periods. 

• Estimate the individual models for the simulated data: the LM, ES, ARIMA and BRM. 

Keep the adjusted, forecasted data for every model and their respective SMAPE values. 

• Estimate the EVOL combination with the LM, ES, ARIMA, and BRM individual 

adjustment and forecasts. 

• Estimate the Bates and Granger combination technique (BG) with the GeomComb 

package (Valencia et al. 2017) and estimate SMAPE. 
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• Compare and select the best model for every time series among the individual models 

and the BG and EVOL combinations according to the minimum SMAPE value of the 

forecasted values. 

 

2.11. Time series simulation 

The simulation of the time series permits an efficiency comparison of the algorithms. The simulation 

applies here for data that do not follow the normal distribution and that can represent a non-stationary 

process that happens in many real situations. The distribution for the simulation is a skewed normal 

(Valencia & Bedoya, 2014) with the skew parameter =2 as a low level and =30 as a high level. 

The simulation of the three time series introduces random fluctuations, seasonal behaviours, and 

significant autocorrelation. Figures 2 and 3 shows the behaviours of one case simulation and the 

respective autocorrelation. 

 

Figure 2. Simulated time series. The X-axis is the time, and the Y-axis is the values of the time 

series. 

 

Figure 3 shows the autocorrelation function (ACF) and the partial autocorrelation function (PACF), 

where the blue dotted lines represent the normal bands to test if the autocorrelation values are 

significant in the case that they are outside of them. In the simulated case, the vertical lines outside 

the blue dotted horizontal exhibit significant dependence in a seasonal order since the autocorrelations 

are outside the bands every seven periods.  
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Figure 3. Autocorrelation of the time series simulation. The X-axis is the lag order.  

 

 

Table 1. Autocorrelation tests for the simulated time series with the skewed normal distribution. 

Box-Pierce test 

data:  series 1 

X-squared = 68.61 df = 7 p-value = 2.82e-12 

data:  series 2 

X-squared = 71.713 df = 7 p-value = 6.652e-13 

data:  series 3 

X-squared = 39.753 df = 7 p-value = 1.404e-06 

 

 

Table 1 presents the significance of the autocorrelation of the simulated time series. Since the p-

values are less than 5%, the null hypothesis about no correlation is rejected. It means that the 

dependence simulation process of time series is correct. 

 

Figure 3 also shows that the time series are non-stationary and exhibit high variations. The skewed 

normal distribution was fixed to have two skew parameters, 2 and 30, in order to prove the behaviour 

of the combination proposal in a low and a high value of the skewedness. The other two simulated 

time series data have similar behaviours.   
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The seasonal behaviour and autocorrelation demonstrated before with the ACF and PACF show that 

the explanatory variables to incorporate in the BRM are the one lag order of the same time series, 

𝒚𝒕−𝟏, and an indicator or dummy variable for the seasonal periods, 𝑰𝒊. 

 

3. Results 

3.1. Results of the first comparative approach 

 

After simulating the time series data once with skewed normal distribution, and after calculating the 

forecasts for the BRM, the BG combination, and the EVOL combination, the EVOL showed a better 

performance according to the comparison of the SMAPE values of the forecasts (Tables 2 and 3). 

 

Table 2. SMAPEs for one replication of a skewed normal time series with skew=2. 

Time Series BRM BG EVOL Combination 

1 3.85% 3.78% 3.49% 

2 8.34% 8.54% 8.24% 

3 7.99% 7.97% 7.86% 

 

According to the results, the proposed evolutionary algorithm EVOL that uses the seasonal 

information of the time series and that performs a simulation for the weights with the trapezoidal 

distribution searches for the best solution after creating the population of parents and sons. The results 

of that algorithm are better than the individual results of the Bayesian regression model (BRM) and 

the Bates and Granger combination (BG) in almost all the cases, as indicated in Tables 2 and 3, when 

the simulation was run once. 

 

Table 3. SMAPEs for one replication of the skewed normal time series, with skew=30. 

Time Series BRM BG EVOL Combination 

1 3.96% 3.96% 3.87% 

2 4.00% 4.03% 3.98% 

3 10.11% 9.98% 9.93% 

 

In Figure 4, the blue dotted line is the EVOL combination forecast, the black line corresponds to the 

real data, and the red represents the BG combination. This figure shows that the EVOL combination 

is close to the direction of the data.  
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Figure 4. Simulated data vs combination techniques for one run of the time series with the SN and 

skew=2. 

 

The simulation is applied 2000 times, and all the techniques are compared; the best performance is 

obtained with the EVOL technique (Table 4). The selection was deducted since EVOL is found as 

the best 100% of the times for series 2, and the lower quantity was found 94% of the times when 

EVOL was better than BG. The comparison of the respective SMAPE forecasting values was 

performed using a population of 100 vectors of weights and a cut of 2 seasonal periods of forecast 

(14 periods). 

Table 4. Frequency of EVOL selection compared to that of BRM and BG. 

 

 

 

 

 

 

Table 5 presents the differences between the proposed EVOL algorithm and the BRM model on the 

first line and between EVOL and the Bates and Granger combination on the second line. 

 

 

 

 

 

Model Distribution Series 1 Series 2 Series 3 

BRM Skewed Normal S=2 98.78% 100% 100% 

Skewed Normal S=30 98.78% 100% 100% 

BG Skewed Normal S=2 100% 100% 94% 

Skewed Normal S=30 99% 100% 100% 
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Table 5. Differences in SMAPE values. 

 

 

The proposed combination yields more accurate results than those of the BG combination for more 

distances than those for the BRM. This result means that despite the combination being better 

designed, the BRM still provides a good alternative for forecasting. 

 

3.2. Results of the second comparative approach 

 

The forecasted SMAPE values for the LM, ES, ARIMA, BRM, and the combination BG models and 

EVOL for the simulated time series are presented in Table 6. 

 

Table 6. SMAPE comparisons among individual LM, ES, ARIMA, BRM, the BG and the EVOL 

combination. 

   LM   ETS   AR   BRM   BG   EVOL  

 Time 

series 1  8.15% 10.30% 10.30% 3.05% 3.69% 2.44% 

 Time 

series 2  7.86% 15.51% 15.51% 7.08% 5.88% 5.03% 

 Time 

series 3  7.08% 12.60% 12.60% 4.01% 4.70% 3.44% 

 

Table 6 indicates that the SMAPE values for the EVOL combination are less than those for the other 

models, even the combination BG. The BRM shows also an acceptable performance that is not far 

from that of the EVOL combination. 

 

After 1000 repetitions of the simulations, the EVOL presents a better performance than those of the 

others by taking the average SMAPEs of the three models. EVOL is chosen as the best 80% of the 

time, the BG combination was the best 20% of the time, and no other model yielded a better SMAPE 

mean, as can be observed in Table 7.  

 

 Mean of differences 

EVOL Better than BRM 3.19% 3.51% 0.60% 

EVOL Better than BG 3.96% 4.74% 2.74% 
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Table 7. Selection of the best method with the minimum mean of SMAPE. 

COMB_BG EVOL 

20% 80% 

 

3.3. Application of EVOL to a real case 

A Colombian dairy company provided the data that consists of three time series data with daily sales, 

non-stationary behaviours and seasonal behaviours. Table 8 presents the Box and Pierce test about 

the autocorrelation of the time series, thus confirming that the behaviours are not stationary. 

 

Table 8. Autocorrelation tests for the real time series data. 

Box-Pierce test 

data:  Y1 

X-squared = 172.52 df = 7 p-value < 2.2e-16 

data:  Y2 

X-squared = 350.98 df = 7 p-value < 2.2e-16 

data:  Y3 

X-squared = 269.51 df = 7 p-value < 2.2e-16 

 

 

Figure 5 shows the autocorrelation values in the ACF and PACF functions for the three time series 

data. Figure 5 confirms that there is a seasonal pattern of order 7 for every time series because of the 

values outside the limits. 
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Figure 5. ACF and PACF functions for the real data. Y1, Y2 and Y3 are the sales of three dairy 

products. 

 

The weights that can be found for every model and time series simulation are reported in Table 9. 

Table 9. Weights for the final combination forecasts for the real case. 

  Time series 

  1 2 3 

Model 1 0.4199 0.02151 -0.00217 

Model 2 0.21348 1.04577 0.343396 

Model 3 0.4644 0.02201 -0.0796 

Model 4 -0.1125 -0.06351 0.71161 

 

Table 10 presents the results after the estimation of every model, beginning with a generalized linear 

mixed model (GLMM), a conventional model estimated with the R software package that uses the 
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function glmer. However, the GLMM’s performance was the worst of all the models, and the EVOL 

combination technique yielded the best accuracy. 

 

Table 10. SMAPE comparisons among individual BRM with the BG and EVOL combination for 

the real case. 

  

TIME 

SERIES 

MODEL  

GLMM BRM 1 BRM 2 BRM 3 MODEL 4 BG EVOL 

1 26.08% 24.023% 22.089% 22.305% 22.481% 22% 22.022% 

2 26.6% 27.668% 33.513% 22.803% 27.554% 25.84% 22.156% 

3 21.6% 19.980% 21.300% 20.678% 20.508%   20.37% 19.401% 

 

The EVOL combination performs better than the other models for both the simulations and also for 

the real case. Despite this, the BG is still a good alternative to perform forecasts. The GLMM has 

generally poor performance. This result can lead us to infer that the designed EVOL technique is a 

very good alternative to elaborate forecasts, and therefore its use is recommended to improve 

predictions.  

 

The algorithm provides multiproduct forecasts and adjusted values that facilitate forecasting in many 

fields, especially for planning sales and inventories in industry. 

 

 

4. Discussion 

 

The EVOL combination technique yielded the best performance for simulated data and the real case, 

thereby confirming similar results from authors such as Cang and Yu (2014), who express that 

combination techniques improve individual forecasts.  

 

This result is important given that the simulated data were not stationary because the data exhibited 

seasonal patterns, non-normal fluctuations and autocorrelation, which are components that not all 

statistical models consider in their theoretical assumptions. Additionally, the combination is useful 

for multiproduct or multi-item approaches, thus facilitating the forecasting purposes and their 

probable inherence in planning processes or financial aspects. These aspects make the proposed 

EVOL a methodological approach that facilitates the difficult problem of forecasting. 
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The Bates and Granger combination and Bayesian regression are also adequate alternatives because 

their results do not differ so much from the EVOL result. These approaches generate other 

possibilities for multi-item forecasts. 

 

The performance of the BRM is also good to estimate predictions for multiple variables for both the 

simulated time series data and for the real case. In this sense, the BRM also exhibited some of the 

advantages of Bayesian inferences. In this sense, other Bayesian alternatives can also be tested, or 

there can be a change in the distribution parameters, as is stated in Valencia (2016). 

 

A novel algorithm based on evolutionary programming (EVOL) designed in the R programming 

language provides a more accurate forecast technique useful to many kinds of variables in addition 

to a multiple set of them. The algorithm can also be reproduced in any other programming language. 
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Abstract 

Forecasting with combination of individual models has improved the results or future predictions, 

using one approach like the search of weights as the decision variables of a programming model, 

coordinated with techniques as statistical bases applied to a database. The algorithm includes a search 

based on different probability distributions, to generate the decision variables optimizing the error 

indicator for a forecasting combination process and cluster analysis, to include other quantitative 

parameter to improve predictions.  

 

Keywords: Forecast Combination, metaheuristics. 

 

1. Introduction 

 

Statistical and mathematical models are helpful for decision making process, for example in 

forecasting, optimization strategies, or decision making process, reaching objectives as reducing 

errors in forecasting, reducing costs, among others (Riedl, Kaufmann, Zimmermann, & Perols, 2013; 

Valencia Cárdenas, Díaz Serna, & Correa Morales, 2015). Statistical modeling, mathematical 

procesing data are related to optimization processes, requiring information, as the strategies of Big 

Data Analysis do (Wolfert, Ge, Verdouw, & Bogaardt, 2017), using conectivity in order to facilitate 

the flow of information to share among partners involved in the operations relation. Stochastic models 

are common for many decision making processes, when probability distribution must be used, for 

example, industry (Sarimveis, Patrinos, Tarantilis, & Kiranoudis, 2008), or also, to do politics about 

the environment.  

mailto:mvalencia@unal.edu.co
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Also for pollution variables, researchers associate the relation among this and diseases, establishing 

reasons to increase politics against air contamination, and create some forecasts related (Dos-Santos, 

Constantino, & Lucio, 2018; Nascimento, Pompeo-Ferreira, & Cota, 2016) 

Fluctuations and extreme dynamics in some random variables, frustrate the estimation for long trend 

forecasting affecting the performance of operations or decision making processes (Valencia-

Cárdenas, Díaz-Serna, & Correa-Morales, 2016), generating mistakes around inferences for 

predictions. Constant terms are not enough to deal with many kind of dynamics caused by the high 

fluctuation of random variables (Fúquene, Álvarez, & Pericchi, 2015). None of these techniques have 

perfect fit, they fail in the goodness-of-fit or significance of variables and factors, perhaps influenced 

by the periodicity, the sample, seasonality, among others (Chen, 2011; Liu, Peng, Bai, Zhu, & Liao, 

2014). Uncertainty in forecasts has been studied in the literature for many kind of variables, in 

especial, continuous time series data with autocorrelation or other components as the trend, 

seasonality, randomness, stationary process, among others, and according to these, the precision 

varies. Mistakes introduced by wrong decision-making in forecasting, causes problems in many areas, 

for example, in inventories coordination (Cai, Chen, Xiao, Xu, & Yu, 2013; Jedermann, Nicometo, 

Uysal, & Lang, 2018), but also, forecasting of air pollution has been of paramount importance 

recently.  

This kind of forecast is the basis for taking pollution control measures, leading the topic to increase 

attention in accurate forecasting. The methods of air pollution forecasting consider different type of 

models, as classical statistical forecasting methods, artificial intelligence methods, and numerical. 

More recently, some hybrid models have been proposed, to improve accuracy, as other areas do (Bai, 

Wang, Ma, & Lu, 2018).  

Improvement of forecasting can also be obtained with Bayesian Methods (Petris, 2010). Dynamic 

Linear Models consider variations in parameters across time, and other kind of theories for their 

estimations. Other models are Bayesian regression (Min & Zellner, 1993; Zellner, 1996), considering 

the relation among a response variable and covariables, with similar equation than the classical 

regression model (Ferragina, de los Campos, Vazquez, Cecchinato, & Bittante, 2015), with 

probability distributions that can have flexible modifications in the estimation process. 

Efficiency of models is a high interest to forecasters, but it is not very common to find good accuracy 

when the response variables have special scale or behaviour (Wallström & Segerstedt, 2010). 

However, there are successful findings if it is used an approximation to the Normal distribution when 

the values have a high scale (Valencia, Vanegas, Correa, & Restrepo, 2017), a very known and used 
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distribution with many applications and accuracy results. Other lines conduce to find also efficiency 

in forecasting process, with statistical learning applications, that comprehends development process 

designing algorithms that can learn from the data (Bensoussan, Çakanyıldırım, Li, & Sethi, 2014; 

Bensoussan et al., 2014; Debnath & Mourshed, 2018; Puchalsky, Trierweiler, Pereira, Zanetti, & 

Coelho, 2018).  

Forecast combination shows more accurate results than individual models (Barrow & Kourentzes, 

2016), and also, because it can be also used for demand prediction, for example of food sales.  Guo 

et al. (2017) affirm that there are two forms to make forecasts: one individual and the other, by 

combination of different models, and those aspects are applied by different authors (Hyndman, 

Ahmed, Athanasopoulos, & Shang, 2011; Miller, Berry, & Lai, 2007; Zotteri & Kalchschmidt, 2007). 

Combination can also be applied with the minimization of the error variance, or optimization of least 

squares, or Bayesian probabilities (Barroy, 2016), (Andersson & Karlson, 2007; Kociecki, Kolasa, & 

Rubaszek, 2012).  

Melo et al. (2016) realizan una propuesta de combinación de pronósticos para tasas de inflación en 

bancos, usando una aproximación bayesiana para el banco central de Colombia, con estimaciones de 

la inflación. En sus resultados muestran que la combinación propuesta mejora los pronósticos 

individuales en cualquier horizonte de planeación. Dichas aproximaciones bayesianas de 

combinación de pronósticos están siendo utilizadas cada vez más (Bergman, Noble, Mcgarvey, & 

Bradley, 2017; Guo et al., 2017; Kociecki et al., 2012; Melo et al., 2016), pero no ha sido muy común 

el uso de modelos clásicos junto con bayesianos dentro de este tipo de mezclas, como se muestra en 

éste trabajo. 

Forecast combinations (Barrow & Kourentzes, 2016; Hibon & Evgeniou, 2005), are recent 

alternatives created by the join of other individual models, as literature presents (L. Gao, 2015; W. 

Gao, Sarlak, Parsaei, & Ferdosi, 2018; Hsiao & Wan, 2014). These alternatives use individual 

forecasts in a linear combination equation, in order to produce a forecast, expected to generate one 

value better to the real one. Some authors have used also some special Metaheuristics (Gao et al., 

2018) in the forecast combination, by the use of a set of operations directed to optimize an objective 

value, searching decision variables, by the use of methods as algorithms working on some statistical 

or mathematical language, as R (R Core Team, 2017). This paper establishes a comparison among 

different predicting models, a Bayesian Regression Model, and a forecasting combination model, 

designed by Bates and Granger, by using an algorithm designed in that program R (Weiss & Roetzer, 

2016). Bayesian techniques and forecast combinations is also a recent method to  improve forecasts 

(Andersson & Karlson, 2007; Melo et al., 2016, 2016; W. J. Wang & Xu, 2014).  
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The use of combinatorial techniques to make forecast have been growing due to their impact in 

precision (Kociecki et al., 2012; Nowotarski, Liu, Weron, & Hong, 2016), because they could provide 

better accuracy of predictions than other kind of individual models (Cang & Yu, 2014). 

The rest of the document will be organized as follows. Section two addresses the methodologies, 

models and variables used, and a short explanation of the models. The designed algorithm applies to 

a study of case that consists in the estimation of the models Classical linear regression, exponential 

smoothing, ARIMA, a Bayesian regression model used in Valencia (2016) and a combination of such 

methods: Bates and Wranger, using R program. After this, the results of section 3 show the most 

relevant results. Finally, a discussion will be drawn.  

2. Methods 

The algorithm designed in R, compares the individual and univariate models: Linear Model (LM), 

Autorregressive Integrated Moving Average (ARIMA), Exponential Smoothing (SE), Bayesian 

Regression Model (BRM) (Valencia-Cárdenas et al., 2016) with the combination alternatives: the 

classical forecast combination by Bates & Granger (Weiss & Roetzer, 2016) using the R package 

called GeomComb, and TABUPRO metaheuristic designed in this document, using a process which 

is differenced in the cluster variable aggregated. 

A summary of the process used is: 

 

Figure 1. Summary explanation of the hole process. 

2.3. Bayesian Regression Model (BRM) 

The Bayesian Regression Model (BRM) works in univariate form, however Valencia-Cárdenas 

(2016)  showed a better performance compared to linear mixed model, and better than a Bayesian 

dynamic linear model. In this work. the forecasts are estimated according with the next rules: For the 

BRM model, the process is: i) The Normal is the prior distribution for the parameters b and a non-

informative for variance, being 1/s. ii) Fix Normal distribution for data. iii) Use Regression equation:  

Simulation

•Three time series 
data

Models Estimation

•Individual 
adjustment and 
forecasting
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combination applied

- BG  and 
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𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑡 + 𝛽3𝑆𝑖𝑛 + ∑ 𝛽𝑖𝐼𝑖

𝑘

𝑖=4

 

iv) The predictive distribution depends on a prior vector parameter bo that is updated for every period, 

this is T student distribution. 

2.4. BG Combination 

Bates and Granger (Bates & Granger, 1969), has designed in the R program, is based on the inverse 

of the RMSE indicator that every individual model has. The equations (2) and (3), show the 

application of the BG Combination. 

𝑓𝑡 = ∑ 𝑊𝑖
𝐵𝐺𝑌𝑖̂

𝑘
𝑖=1     (2) 

𝑊𝑖
𝐵𝐺 =

𝜎̂−2(𝑖)

∑ 𝜎̂−2(𝑖)𝑘
𝑖=1

          (3) 

Where: i is the i-th model, and i=1,2, … k, there are the k models used (k=4). Yi are the forecasts of 

the models. For every individual model, the SMAPE and a RMSE are also calculated and for 

combinations. In this work, the RMSE indicators of the forecasts will be used to compare.  

2.5. Algorithm - Part I 

 

Figure 2. Part I- Algorithm. 

2.6. Algorithm - Part II 

The designed combination consists on a sum of weights per the predicted variables, according to 

equation (1):      𝑓𝑡 = ∑ 𝑊𝑖𝑌𝑖̂
𝑘
𝑖=1   (1) 

Where: i is the i-th model, and i=1,2, … k.  𝑌𝑖̂ are the forecasts of the individual models. The 𝑊𝑖 are 

the decision variables to be found according to the simulation from the algorithm. 

Read simulated data Estimate Individual models: LM, 
ETS, ARIMA; BRM 

Define the Objective Function: 
SMAPE value

Estimate SMAPE for adjusted
data

Estimate the SMAPE values for
forecasted data

Send the estimated values: fitted
and tests to the combinations
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After this, the error indicator called SMAPE is calculated with the real and forecasted data, with:  𝒀𝒕 

and 𝒀̂𝒕 are, the vector of the real values, and the forecasted, according to equation (2):  

𝑆𝑀𝐴𝑃𝐸 =
1

𝑀
∑

|𝑌𝑡−𝑌̂𝑡|

(𝑌𝑡+𝑌̂𝑡)/2
𝑀
𝑇=1  (2) 

Here M is the total of periods considered in the adjustment or the tests; 𝒀𝒕 and 𝒀̂𝒕 are, the vector of 

the real values, and the adjustments.  

Figure 3 shows a syntaxes of the process. 

 

Figure 3. TABUPROC process explanation. 

After SMAPE estimations, the algorithm aggregates a cluster grouping variable, applied to the 

adjusted values, and it eliminates the worst model. Then, it starts the exploitation points from every 

distribution simulation of the weights applied to the predicted data from every model, finding the best 

in order to incorporate them to the list. 

3. Simulation results 
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Figure 4. Time series autocorrelations-Skew Nomal distribution simulation. 

The time series presents autocorrelation, as the outside lines from the bands indicates. 

Case 2. Time series with Skew Normal distribution simulation. 

For the Skew Normal distribution simulations, the Box pierce tests were applied, checking the correct 

autocorrelation dependence, temporal depending, the P values are ranging from 1.8x10^(-7) to 4.11 

x10^(-8), proximately.  
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Figure 5. Time series autocorrelations – Skew Normal distribution simulation. 

 

3.1.  Comparison results 

The SMAPE results are shown in table 1, where every column represents the results from every model 

and the last three, the BG combination, the metaheuristic without clusters (M), and the last one, the 

metaheuristic with the cluster variable (MV). 

Simultaneusly the algorithm projects the results for all the time series simulated, in this case, three 

results by every individual or combinated method. The best results can are the BRM, the BG 

combination, and the metaheuristics combinations. 
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Table 1. Results by time series simulation. 

SKEW NORMAL DISTRIBUTION 

  lm ETS AR BRM COMB_BG COMB_M COMB_MV 

SERIE1 6,6% 9,0% 8,2% 5,0% 6,4% 6,5% 5,4% 

SERIE2 4,0% 8,5% 7,9% 4,3% 4,1% 4,9% 4,9% 

SERIE3 8,7% 10,3% 10,2% 6,0% 7,7% 7,6% 6,4% 

NORMAL DISTRIBUTION 

  lm ETS AR BRM COMB_BG COMB_M COMB_MV 

SERIE1 8,0% 8,6% 8,3% 5,0% 6,4% 4,4% 6,4% 

SERIE2 4,0% 8,5% 7,9% 4,3% 4,1% 5,1% 4,8% 

SERIE3 9,1% 9,9% 9,8% 6,0% 7,7% 8,8% 5,7% 

 

The figure 6 shows the real data, forecasted in blue and red for metaheuristics, which seems to be 

close to the black line (real). 
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Figure 6. Real and Forecasted data. 

 

The metaheuristics using statistical learning programing, find adequate forms to do predictions, by 

using statistical learning, aspects that are being programmed in R program. 

Discussion 

The proposed work compared Individual models with forecast combinations, finding good 

alternatives to do forecasting, as the BRM and also, the Metaheuristic with cluster analysis. 

Better alternatives are found with the forecast combinations, using metaheuristics. 

It was possible to apply Tabu Search, but also, an exploitation process around the simulated points, 

finding a good approximation to the objective function. 

The algorithm created is also flexible, in order to select different simulation number, and some 

parameters of the metaheuristics. 
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