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ABSTRACT 

 

The Day/Night Switch of the Circadian Clock of Synechococcus Elongatus and 

Hydrogen Bonds of DNA and RNA. (December 2008) 

Yong-Ick Kim, B.S., Sung Kyun Kwan University; 

M.S., Sung Kyun Kwan University 

Co-Chairs of Advisory Committee: Dr. Pingwei Li 
                                   Dr. Andy C. LiWang 

 

The circadian oscillator of the cyanobacterium Synechococcus elongatus is 

composed of only three proteins, KaiA, KaiB, and KaiC, which together with ATP can 

generate a self-sustained ~24 hour oscillation of KaiC phosphorylation for several days. 

KaiA induces KaiC to autophosphorylate whereas KaiB blocks the stimulation of KaiC 

by KaiA, which allows KaiC to autodephosphorylate. We propose and support a model 

in which the C-terminal loops of KaiC, the “A-loops”, are the master switch that 

determines overall KaiC activity. When the A-loops are in their buried state, KaiC is an 

autophosphatase. When the A-loops are exposed, however, KaiC is an autokinase. The 

data suggest that KaiA stabilizes the exposed state of the A-loops through direct binding. 

We also show evidence that if KaiA cannot stabilize the exposed state KaiC remains 

hypophosphorylated. We propose that KaiB inactivates KaiA by preventing it from 

stabilizing the exposed state of the A-loops. Thus, KaiA and KaiB likely act by shifting 

the dynamic equilibrium of the A-loops between exposed and buried states, which shifts 

the balance of autokinase and autophosphatase activities of KaiC. A-loop exposure 
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likely moves the ATP closer to the sites of phosphorylation and we show evidence in 

support of how this movement may be accomplished.  

Density functional theory calculations of isolated Watson–Crick A:U and A:T 

base pairs predict that adenine 13C2 trans-hydrogen bond deuterium isotope shifts due to 

isotopic substitution at the pyrimidine H3, 2hΔ13C2, are sensitive to the hydrogen-bond 

distance between the N1 of adenine and the N3 of uracil or thymine, which supports the 

notion that 2hΔ13C2 is sensitive to hydrogen-bond strength. Calculated 2hΔ13C2 values at 

a given N1–N3 distance are the same for isolated A:U and A:T base pairs. Replacing 

uridine residues in RNA with 5-methyl uridine and substituting deoxythymidines in 

DNA with deoxyuridines do not statistically shift empirical 2hΔ13C2 values. Thus, we 

show experimentally and computationally that the C7 methyl group of thymine has no 

measurable affect on 2hΔ13C2 values. Furthermore, 2hΔ13C2 values of modified and 

unmodified RNA are more negative than those of modified and unmodified DNA, which 

supports our hypothesis that RNA hydrogen bonds are stronger than those of DNA. It is 

also shown here that 2hΔ13C2 is context dependent and that this dependence is similar for 

RNA and DNA. 
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CHAPTER I 

INTRODUCTION  

 

Circadian Clocks 

 

Diverse organisms from bacteria to mammals display metabolic and behavioral 

rhythms with a circadian (~24 h) period that are matched to the earth’s day and night cycle 

(1, 2). These circadian rhythms are the result of an endogenous biological circadian clock. 

The evolutionary significance of circadian clock systems remains unclear but they have 

been found to be important for reproductive fitness in cyanobacteria (3), plants (4, 5), and 

flies (2). Their presence in virtually all light perceiving organisms strongly suggests that 

they have played and continue to play a fundamental role in evolution. In spite of the near-

universal importance of endogenous biological circadian clocks, the structural and 

biochemical bases of their function is unexplored territory. 

 

There are three essential and fundamental characteristics of circadian clocks (6-8). 

1. They continue to generate robust circadian rhythms in the absence of external time 

cues. This is the primary evidence showing that circadian rhythmicity is intrinsic. 

                                                 
This dissertation follows the style and format of the Proceedings of the National Academy of Science of the 
United States of America. 
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2. The phase of the clock is reset by external cues. The circadian clock can be 

entrained to appropriate environmental cycles such as light/dark and low/high 

temperature signals. 

3. The circadian clock shows temperature compensation. Unlike chemical reactions, 

the period of the clock is resistant to variations in temperature within physiological 

limits. 

 

All known circadian clocks are composed of at least three components. 

1. Input pathway: synchronizes biological time to external time. 

2. Central oscillator: generates the circadian rhythm. 

3. Output pathway: transmits the rhythm to downstream effectors. 

 

The motivation here is to significantly advance our understanding of the 

biochemical and structural bases of a central oscillator of Synechococcus elongatus PCC 

7942, a cyanobacterium and model organism.  

 

Cyanobacterial Circadian Clocks 

 

Cyanobacteria are among the oldest organisms and the only prokaryotes known that 

exhibit circadian rhythms (9-11). Clock genes are widely distributed in cyanobacteria (12) 

and are an outstanding model system for the circadian clock because of their simplicity (11, 

13, 14). Synechococcus RF-1 is the cyanobacterium first shown to exhibit a circadian 
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rhythm, where a rhythmic diurnal nitrogen fixation that persisted for at least 4 days could 

be entrained by a 12-hour dark/light pattern (15).  Thermosynechococcus elongatus BP-1 

(16) and Synechocystis sp. PCC 6803 (17) are used as model organisms, but the most 

studied and best understood circadian clock is that of Synechococcus elongatus PCC 7942 

(18), hereafter referred to simply as S. elongatus. In S. elongatus, the circadian clock 

imposes rhythmicity on cell division, nitrogen fixation, photosynthesis, amino acid uptake, 

carbohydrate synthesis, and respiration (10). Essentially all gene expression and 

chromosome compaction is rhythmically regulated by the circadian clock in the S. 

elongatus (19, 20).  

Circadian rhythms in S. elongatus PCC 7942 can be monitored by introducing the 

luciferase gene as a bioluminescence reporter for gene expression (18, 21). Many rhythmic 

phenotypes were isolated by monitoring bioluminescence from chemically mutagenized 

colonies of S. elongatus (22, 23). These mutations were mapped to only three genes shown 

to be essential for the generation of a circadian rhythm: kaiA, kaiB and kaiC, where kaiB 

and kaiC share a promoter (24). Nineteen mutations with distinct rhythm phenotypes and a 

wide range of period lengths or arrhythmia were mapped to kaiC (24). Thirty four mutants 

with long periods or arrhythmic phenotypes were mapped to kaiA (25), while most kaiB 

mutations showed a short period phenotype (24).  

The central oscillator of S. elongatus consists of three genes, kaiA, kaiB, and kaiC, 

with KaiA (284 residues), KaiB (102 residues), and KaiC (518 residues) (24). Although all 

three kai genes were shown to be necessary for the generation of circadian rhythms in S. 

elongatus (24, 26, 27), marine cyanobacteria Prochlorococcus lack the kaiA gene (12, 28, 
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29), indicating that cyanobacteria have evolved different circadian clock mechanisms. 

Indeed, P. marinus PCC 9511 displays robust 24-h rhythms of DNA replication and gene 

expression when it is incubated in alternating 12 h light:12 h dark periods, but unlike with 

S. elongatus, the rhythms rapidly damp out under continuous light (28). The central 

oscillator genes are not required for viability and do not affect growth rates of S. elongatus 

in non-competitive situations, but in a competition the S. elongatus strain with a free-

running rhythm most similar to that of the environmental light/dark cycle dominates (30, 

31). 

KaiA is a positive regulator of kaiC expression and KaiC suppresses its own 

(kaiBC) gene expression (24). These observations supported a model where the kai genes 

form an autoregulatory mechanism based on negative feedback. Originally, it was thought 

that these three genes formed a transcription-translation-derived oscillatory (TTO) feedback 

loop (24), as is still the currently accepted as the model for eukaryotic central oscillators 

(32-34). In this TTO model, rhythmic transcription is essential for producing and 

maintaining a self-sustaining circadian oscillation. Continuous overexpression of KaiC 

represses not only kaiBC expression but practically all promoter regions in the organism 

(35). Therefore, the rhythmic accumulation and the degradation rates of KaiC are thought 

to be important for circadian timing. Essentially, all the promoters in cyanobacteria are 

under circadian control (19, 36). Therefore, KaiC is thought to be a promoter-nonspecific, 

genome-wide gene expression regulator. A temporal increase in the amount of KaiC 

expression also resets the phase of the rhythm (24, 37). The mechanism of the 

transcriptional regulation of kaiBC is not fully understood yet, though many possible 
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mechanisms are proposed (38). One of the possible mechanisms is that global gene 

expression is regulated by rhythmic chromosome compaction (20).  

Yeast two-hybrid experiments showed that KaiA, KaiB, and KaiC interact with 

each other in S. elongatus (39). These experiments and an in vitro interaction assay 

revealed that polypeptide segments in the two domains of KaiC, termed CI and CII 

respectively, physically interact with KaiA (26). KaiC associates with KaiA during the 

subjective day and all three Kai proteins form large complexes with unknown 

stoichiometries during the subjective night (27, 40). This observation and the fact that 

several rhythm phenotypes are caused by mutations in the kai genes implies that the 

circadian cycle is driven by oscillatory interactions between the Kai proteins. 

ATP promotes hexamerization of KaiC with the self association of CI and CII 

domains forming a double doughnut shape for the KaiC particle (41-43). Each half of KaiC 

contains a Walker’s A motif that bind ATP, an imperfect Walker’s motif B and a conserved 

catalytic glutamate residue (E78 and E318 in the CI and CII halves, respectively), 

suggesting that KaiC has kinase and phosphatase activities (24, 43). Various mutations of 

these motifs abolish ATP binding and severely disrupt circadian function (44) indicating 

that the motifs are critical to clock function. The CI domain is responsible for 

hexamerization, whereas the CII domain is involved in KaiC autophosphorylation at S431 

and T432 (45-48). 

The phosphorylation of KaiC rhythmically oscillates between hypophosphorylated 

and hyperphosphorylated forms in vivo, setting the period of the clock (42, 44, 49). KaiC 

phosphorylation increases during the subjective day and decreases during the subjective 
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night with a circadian rhythm (27), and this phosphorylation in turn regulates KaiC’s 

activity (35). The KaiC hexamer has multiple possible phosphorylation states (212 = 4096). 

However, if phosphorylation is a cooperative process only a fraction of these states would 

be biologically relevant with distinct biochemical characteristics (41, 50). KaiA and KaiB 

modulate the phosphorylation of KaiC in vitro and in vivo: KaiA enhances KaiC autokinase 

activity and this effect is antagonized by KaiB (42, 49, 51, 52). KaiA has two domains and 

it is the C-terminal domain that is necessary and sufficient for interactions with KaiC (52) 

and inducing KaiC autophosphorylation, whereas the N-terminal domain alone has no 

effect (52). One or two KaiA dimers can interact with one KaiC hexamer (53). KaiB alone 

has no affect on KaiC phosphorylation but hinders KaiA stimulation of KaiC, thereby 

triggering autodephosphorylation (54). Circadian localization of KaiB to the soluble and 

insoluble fractions of S. elongatus suggests that subcellular localization is an important 

factor for KaiB function in vivo (51).  

Surprisingly, S. elongatus has a robust circadian rhythm and oscillation of KaiC 

phosphorylation in constant dark (in this condition transcription and translation are 

suppressed in cyanobacteria) or in the presence of translation inhibitors (55). This result 

suggested that TTO feedback process, which is considered essential for circadian timing for 

various eukaryotic systems (2), is not necessary to generate circadian rhythms in S. 

elongatus. This major discovery by the laboratory of Takao Kondo implied that the central 

oscillator of S. elongatus is completely proteinaceous. His laboratory then quickly showed 

that a robust self-sustained oscillation of KaiC phosphorylation can be reconstituted in a 

test tube with KaiA, KaiB, KaiC, and ATP (56). The ratio of phosphorylated KaiC (P-
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KaiC) and non-phosphorylated KaiC (NP-KaiC) in this system shows temperature-

compensated rhythms with a period of approximately 24 hours (56). Both S431 and T432 

of KaiC are required for circadian rhythm generation. When one of the two residues is 

mutated, the circadian rhythm is destroyed in vivo and the mutants no longer generate 

oscillatory phosphorylation in vitro (47, 57, 58). These results indicate that the 

phosphorylation cycle of KaiC is the central pacemaker of the cyanobacterial clock. 

Phosphorylation at these two sites should not be independent and the detailed mechanism 

of the correlation between the two sites has been proposed (57, 58). In this model proposed 

by the Kondo laboratory, the phosphorylation states in KaiC oppositely regulate the 

phosphorylation and dephosphorylation reactions at the adjacent residue (57, 58). 

Phosphorylation of T432 stimulates phosphorylation at S431. S431 phosphorylation is a 

cue to switch from phosphorylation to dephosphorylation. Subsequently, dephosphorylation 

occurs on the T432, resulting in a form of KaiC that is only serine-phosphorylated (S-

KaiC). S-KaiC recruits KaiB to the KaiA-KaiC complex and prevents KaiA from activating 

KaiC phosphorylation. Then, S431 dephosphorylates, KaiB dissociates, and KaiC returns to 

an unphosphorylated state to begin a new phosphorylation cycle (57, 58). Thus, the 

distribution of KaiC phosphoforms over a ~24 hour period proceeds as ST-KaiC 

(unphosphorylated) → SpT-KaiC (T432 phosphorylated) →  pSpT-KaiC (S431 and T432 

phosphorylated) → pST-KaiC (S431 phosphorylated) → ST-KaiC. In a significantly 

different model proposed by the laboratory of Erin O’Shea, phosphorylation at S431 does 

not change switch KaiC from an autokinase to an autophosphatase, but serves to recruit 

KaiB to inactivate KaiA (47, 57, 58). As will be shown in Chapter II, our results are more 
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consistent with this latter model. In addition to autokinase and autophosphatase activities, 

KaiC shows an extremely low and temperature compensated ATPase activity that has been 

proposed to define the period of the cyanobacterial circadian system (59). 

In vivo and in vitro rhythmic KaiC phosphorylation is macroscopic over several 

cycles, which is possible only if the ensemble Kai proteins are acting in synchrony (60). 

The mechanism of establishing and maintaining synchrony is likely central to all biological 

clocks and here is an outstanding opportunity to discover how one system accomplishes the 

task. Prior to any experimental data, it was demonstrated mathematically that monomer 

exchange or shuffling between KaiC hexamers would be sufficient to maintain synchrony 

(61), soon afterwards, monomer shuffling was observed experimentally (54, 62). Because 

shuffling of monomers was shown to be most frequent during the dephosphorylation 

period, KaiB may involve an important role to exchange monomers (54).  

The structures of the Kai proteins were unknown, but would clearly provide a 

wealth of functional insights. High-resolution structures for KaiA (40, 52, 63-65), KaiB 

(40, 66, 67) and KaiC (50) proteins are known. The X-ray crystal structure of KaiA of S. 

elongatus reveals a domain-swapped homodimer where the N-terminal domain of one 

subunit is packed against the C-terminal domain of the other subunit (65). The C-terminal 

domain, which is the dimerization domain, adopts a four-helix bundle fold (63, 68). The 

structure of KaiB from Anabaena sp. PCC7120 reveals a thioredoxin-like fold homodimer 

(40) while from Synechocystis PCC6803 and T. elongatus show formation of an unusual 

homotetramer, which are comprised of two asymmetrical dimers (66, 67). However, a KaiB 

appears to bind to KaiC as a dimer during the KaiC phosphorylation cycle (54). Thus, the 
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change of oligomeric states between tetramer and dimer may be important for proper clock 

function.  

The amino acid sequences of KaiC showed little similarities to proteins of known 

structure, thus thwarting structure prediction efforts at the time. Examination of the 

sequence of KaiC showed two similar domains of 260 residues each with similarities to 

bacterial helicases (69). A crystal structure of the KaiC homohexamer from S. elongatus 

has double-doughnut shape with a central pore and 12 ATP molecules bound at CI-CI and 

CII-CII interfaces (50). The N-terminal domain, CI, is responsible for the ATPdependent 

hexamerization of KaiC (70) whereas the C-terminal domain, CII, by itself is monomeric in 

solution even at high concentrations (Kim & LiWang, unpublished results). CII, 

additionally, has autokinase and autophosphatase activities at S431 and T432 (47, 50).  

The C-terminal 22 residues of KaiC, which directly bind to KaiA, were partly 

resolved in a recent crystal structure (71). The only high-resolution complex structure of 

KaiA and KaiC is the NMR solution structure of a complex between the dimeric C-terminal 

KaiA domain and two C-terminal 32-residue KaiC peptides from the cyanobacterium T. 

elongatus BP-1 (64). The peptides are bound inside the grooves on KaiA with mainly 

hydrophobic interaction (64) and contact both subunits of the dimer, thereby explaining the 

biological significance of KaiA dimerization. Recently, a model for the T. elongatus BP-1 

KaiA–KaiC (ThKaiAC) complex was derived by single-particle EM reconstruction (71). In 

this model, a KaiA dimer is tethered to a KaiC hexamer through binding to a single C-

terminal peptide of KaiC (71). The suggested mechanism of KaiC phosphorlyation is that 

the tethered KaiA dimer may have a transitory interaction with a KaiCII ATP binding cleft 
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and thusly enhance the autokinase activity (71). We will show in Chapter II that autokinase 

activity is not explained by this hypothetical interaction. Recently, a 3D model of a KaiB 

and KaiC complex was developed from negative-stain and cryo-electron microscopy in 

which two KaiB dimers are bound to the CII dome of a KaiC hexamer (72). It is proposed 

that a segment near the C-terminus of KaiC found looped in the X-ray crystal structure is 

extended in the KaiBC complex. We will show evidence in Chapter II that this is not the 

case. Still, structural details of the KaiA-KaiB-KaiC complex are unknown. Despite this 

progress in structural characterization, the biochemical and biophysical basis of the 

rhythmic assembly/disassembly dynamics and phosphorylation of KaiC are still poorly 

understood. Furthermore, rhythmic phosphorylation of KaiC may not be the only 

oscillatory mechanism in cyanobacteria. The phosphorylation cycle of KaiC is apparently 

integrated with a transcription-translation oscillator (73) to maintain stable 24-h cellular 

rhythms in S. elongatus genes (19, 35). 

This dissertation focuses on the question of how KaiA and KaiB switch KaiC from 

an autokinase to an autophosphatase, which is central to the generation of the circadian 

rhythm of this central oscillator of S. elongatus. It will be shown here that KaiA stabilizes a 

segment of KaiC in a position that likely moves bound ATP molecules close to the sites of 

phosphorylation whereas KaiB prevents KaiA from doing so. The N-terminal domain of 

KaiA regulates KaiA-KaiC affinity as well as being required by KaiB to block KaiA. The 

motivation for the work presented here arose from examination of the NMR and X-ray 

structures of circadian clock proteins of this organism.  
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Hydrogen bonds of DNA and RNA 

 

It is established that the hydrogen bond is of central importance in nucleic acid 

structure and function (74). The hydrogen bond allows nucleic acids to form a wide variety 

of structures in addition to the antiparallel double helix of Watson-Crick base pairs. DNA 

and RNA molecules can form hairpins, stable non-Watson-Crick base pairs, parallel 

stranded duplexes, triplexes, quadruplexes, junctions, hybrid duplexes, and a variety of 

folded tertiary structures (74-79). In addition, nucleic acids can form complexes with 

proteins, drugs, and metal ions through specific geometrically arranged patterns of 

hydrogen bonds (80-87). Their various structures modulate processes such as gene 

regulation, translation, mitosis, and chromosome stability (88-90). The large variety of 

structures and functions of DNA and RNA are achievable in large part because nucleosides 

contain several hydrogen bonding functional groups.  

Understanding DNA and RNA function, and malfunction, relies on a clear picture 

of the intricate hydrogen bonding interactions. Yet, the only method that will directly and 

quantitatively measure site-specific hydrogen bond length (not angle) is to measure scalar 

15N···15N trans-hydrogen bond couplings, 2hJNN (91, 92). This technique requires the 

uniform isotopic enrichment of nucleic acid polymer with 15N, which is expensive and 

technically difficult. Furthermore, 2hJNN is determined from peak intensities, which are 

determined not only by 2hJNN but also complicated by relaxation rates and noise, yielding 

uncertainties of several tenths of hertz. Most commonly, in hydrogen bonds are inferred 

from the spatial proximity of donor and acceptor atoms after the structure has been solved 
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by single crystal X-ray diffraction crystallography or NMR spectroscopy (93). This 

approach is indirect.  

NMR evidence for the presence of individual hydrogen bonds comes from 

protection of labile protons from hydrogen exchange with bulk solvent (94, 95). However, 

hydrogen exchange requires unfolding or breathing of the molecule and therefore is 

sensitive to numerous other factors as well (96-98). The proton chemical shift can be 

sensitive to hydrogen bonding (99), but is also influenced by ring current and other effects 

(100). As a result, “standard” hydrogen bond distances are routinely assumed and used in 

nucleic acid structure determination by NMR, and hydrogen bond parameters such as 

propeller twist are often poorly determined (101). Furthermore, current molecular 

biophysics techniques to study hydrogen bonding in biomolecules yield data which are not 

usually straightforward to interpretation (102). Thermal denaturation profiles yield bulk 

properties and a comparison of molecules differing at a single site can be complicated by 

non-local perturbing effects of the mutation. Infrared, raman, and solid state nuclear 

quadrupole resonance spectroscopy are excellent techniques for small molecules, but 

spectral resolution is a major problem when investigating nucleic acid polymers. 

As interactions with modified bases, proteins, drugs, nucleic acids, and metals are 

mediated by hydrogen bonds of varying angles and lengths, it is necessary to obtain 

quantitative parameters for a complete understanding of the relationship between the 

structure of DNA, RNA, their complexes, and function. Optimally, the technique should 

not require isotopic enrichment and yet allow exquisitely precise measurements.  
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It was recently shown that the 13C2 chemical shift of adenosine residues of A:T base 

pairs of double stranded DNA, measured at natural abundance 13C, experience a trans-

hydrogen bond isotope effect (2hΔ13C2) upon substitution of 1H for 2H at the imino site of 

the complementary thymine (103). This isotope effect is a direct gauge of the hydrogen 

bond interaction since it is transmitted through space from the hydrogen bond donor and 

detected at the hydrogen bond acceptor. The 2hΔ13C2 can be thought of as a two-bond 

deuterium isotope shift, with one covalent bond and one hydrogen bond. Theory based on 

small molecule experiments show that the two-bond deuterium isotope shift reflects the 

anharmonicity (asymmetry) of the, say, N–H vibrational potential, which increases in 

anharmonicity as the length of a weak hydrogen bond decreases (104). These 2hΔ13C2 

values were correlated with the isotropic chemical shift of the base paired imino proton, 

suggesting that 2hΔ13C2 are indeed a measure of the N–H···H hydrogen bond length. 

2hΔ13C2 is measured from DNA samples dissolved in a buffer of 50% H2O/50% D2O and is 

defined as the chemical shift difference δ13C2(H) – δ13C2(D),  and were found ranging 

from -55 to -42 ppb. The wide line widths resulting from 13C-decoupled HSQC or HMQC 

type experiments gave poor resolution of the 13C2(H) and 13C2(D) resonances, necessitating 

the use of the line-narrowing TROSY type NMR experiment (103). 

Interestingly, in 2004 it was still unknown whether there are differences between 

the hydrogen bonds of DNA and RNA, even though much is known about their structural, 

thermodynamic, and functional differences. Early NMR experiments showed that RNA 

protons in general relax much slower than those of DNA (105). However, a comparison of 

2hJNN values of non-isosequential DNA and RNA did not reveal any differences within the 
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experimental uncertainty of tenths of hertz (91, 92). A comparison of the highest resolved 

X-ray crystal structures of DNA and RNA showed their hydrogen bonds to be equal within 

the experimental uncertainty of several hundredths of an Angstrom (106). Thus, either 

DNA and RNA hydrogen bonds were the same, or differences would only be revealed by 

an exquisitely sensitive method. 

The advantage of 2hΔ13C2 was that it depended only on the determination of peak 

positions, which the most precisely determined observable of NMR, unlike peak intensities 

used for determination of 2hJNN. Measurements of a series of isosequential DNA and RNA 

oligomers showed that RNA consistently had larger 2hΔ13C2 magnitudes (106). Thus, it was 

concluded that the A:U hydrogen bonds of RNA are shorter than those of A:T hydrogen 

bonds of DNA.  

Differences in hydration between DNA and RNA may be the reason for this 

difference in 2hΔ13C2. Hydrogen bonds are stronger under conditions of low water activity 

(107), and RNA is less hydrated than DNA (108). Indeed, dehydration of DNA often 

changes it from the B-form conformation to the A-form conformation, the conformation of 

double helical RNA (74).  

However, a subsequent report showed computationally that differences between 

2hΔ13C2 of DNA and RNA could be explained simply by the chemical difference between 

thymine and uracil (109). Specifically, the calculations showed that the electron-donating 

character of the C7 methyl group of thymine reduces the magnitude of 2hΔ13C2 of DNA. 

This paper apparently invalidated the experimentally determined differences in 2hΔ13C2 

between DNA and RNA. The objective of the second part of this dissertation is to 
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determine experimentally the impact of the chemical difference between thymine and uracil 

on 2hΔ13C2. 
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CHAPTER II 

THE DAY/NIGHT SWITCH IN KAIC, A CENTRAL OSCILLATOR 

COMPONENT OF THE CIRCADIAN CLOCK OF CYANOBACTERIA* 

 

Introduction 

 

Virtually all light-perceiving organisms display circadian (≈24-h) rhythms in their 

gene activity, metabolism, physiology, and behavior in anticipation of and preparation for 

daily swings in sunlight and ambient temperature (2, 110). These robust biological rhythms 

are the result of an endogenous clock called the circadian clock and have been identified in 

cyanobacteria (9, 18). In the cyanobacterium Synechococcus elongatus, the clock is 

important for reproductive fitness (3, 31), and expression of the entire genome is under 

clock control (19, 35).  

Only three proteins make up the central oscillator of the S. elongatus clock (24): 

KaiA, KaiB, and KaiC. The high-resolution structures of all three proteins are known (40, 

50, 52, 64-66). Remarkably, the central oscillator can be reconstituted in a test tube (56). A 

simple mixture of the three proteins and ATP regenerates the sustained cellular ≈24-h 

rhythm of KaiC phosphorylation. Temperature compensation and mutant rhythm 

phenotypes observed in vivo are also reproduced by this clock-in-a-test tube.  

                                                 
* Reprinted with permission from “The day/night switch in KaiC, a central oscillator component of the 
circadian clock of cyanobacteria.” by Kim, Y.-I., Dong, G., Carruthers, C.W. Jr., Golden, S.S. LiWang, A.C. 
(2008) Proc Natl Acad Sci USA. 105, 12825-12830. Copyright 2008 National Academy of Sciences, U.S.A. 
All in vivo experiments were performed by Dr. Guogang Dong in the laboratory of Dr. Susan S. Golden 
(Texas A&M University, Department of Biology).  
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An ensemble of KaiC molecules exhibits both autokinase and autophosphatase 

activities (49, 51, 52). In S. elongatus, the balance between these two activities swings back 

and forth on a daily basis. In vivo, KaiC is hyperphosphorylated during the night and 

hypophosphorylated during the day (42, 55). There are two phosphorylation sites on KaiC, 

S431 and T432 (47, 48). The distribution of KaiC phosphoforms over a ≈24 h period 

proceeds as ST-KaiC (unphosphorylated) → SpT-KaiC (T432 phosphorylated) → pSpT-

KaiC (S431 and T432 phosphorylated) → pST-KaiC (S431 phosphorylated) → ST-KaiC 

(57, 58), although individual KaiC molecules do not necessarily go all of the way around 

the loop (58). Alone, the autophosphatase activity of KaiC is dominant; KaiA shifts the 

balance of activities from autophosphatase to autokinase (42, 49, 52). However, the pST-

KaiC phosphoform recruits KaiB, and, together, they inactivate KaiA in KaiABC 

complexes (57, 58, 60). With insufficient levels of active KaiA in solution, the ensemble of 

KaiC molecules begins to dephosphorylate. KaiA activity resumes once enough pST-KaiC 

has decayed to ST-KaiC [implying that not all KaiC molecules make it back to the ST-

KaiC state before being restimulated by KaiA to autophosphorylate (58)]. Monomer 

shuffling between KaiC hexamers may play a role in synchronization (62, 111). 

The phosphorylation cycle of KaiC is apparently integrated with a transcription-

translation oscillator (73) to maintain stable 24-h cellular rhythms in S. elongatus genes (19, 

35). Thus, it is of central importance to understand how KaiA and KaiB shift the relative 

autokinase and autophosphatase rates in KaiC. Here, we present evidence that a segment of 

residues near the C terminus of each KaiC subunit determines which activity is dominant. 

We propose that when these ‘‘A-loops’’ are buried, KaiC is an auto-phosphatase. However, 
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when the A-loops are exposed, KaiC is an autokinase. We suggest that there is a dynamic 

equilibrium between the buried and exposed states of the A-loops, so that an ensemble of 

KaiC molecules exhibits both activities simultaneously. In the absence of other proteins, 

KaiC is both an autokinase and autophosphatase, with the latter activity dominant over the 

former (42, 49, 52). In this case, according to our model the dynamic equilibrium favors the 

buried state of the A-loops. We propose that KaiA stabilizes the exposed state, thereby 

increasing the autokinase rate relative to that of the autophosphatase. We think that KaiB 

acts by preventing this KaiA-mediated stabilization. 

 

Results 

 

The Equilibrium Position of the A-Loop Determines the Steady-State Phosphor-

ylation Level of KaiC: Shown in Figure 2.1A  is the NMRstructure of the complex between 

the C-terminal domain of KaiA, KaiAC, and a peptide derived from C-terminal residues 

488–518 of KaiC, both from Thermosynechococcus elongatus (64). The x-ray crystal 

structure of S. elongatus KaiC (Figure 2.1B) shows that residues 488–497 (magenta) are 

buried in a looped conformation (50). Here, we refer to this stretch of residues as the A-

loop. ‘‘Tail’’ residues 498–519 are not resolved in this x-ray crystal structure but are seen 

to protrude from the top of KaiC in a later study (71). The homologous solvent-exposed tail 

residues from T. elongatus are colored yellow in Figure 2.1A. The A-loop + tail segment of 

KaiC (KaiCAL+ tail) from S. elongates and T. elongatus are 61% identical and 84% similar.  
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Figure 2.1. The NMR structure of the T. elongatus KaiAC– KaiCAL+tail complex (A) and x-
ray crystal structure of KaiC from S. elongatus (B). (A) The two subunits of the KaiAC 
dimer of the KaiAC–KaiCAL+tail complex (PDB ID code 1suy) are shown as black and gray 
ribbons. The two bound KaiCAL+tail peptides are shown as ribbons, with the A-loop segment 
colored magenta and the tail segment colored yellow. (B) The N- and C-terminal domains 
of five subunits of KaiC (PDB ID code 1tf7) are shown as gray surfaces, whereas those of 
the remaining subunit are shown as a blue ribbon. The polypeptide segment connecting the 
two domains is shown as a green ribbon. The A-loops are shown as magenta ribbons. The 
solvent-exposed C-terminal residues 498–519 are unresolved in this structure. ATP 
molecules are red and S431 and T432 are yellow. All figures of Kai protein structures were 
created using the program Chimera (112).  
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In addition, residues in T. elongatus KaiAC that interact with KaiCAL+ tail according to the 

NMR structure share a high level of identity with S. elongatus KaiAC (64). In the present 

study, all experiments were performed using S. elongatus proteins, except for one set of 

fluorescence anisotropy experiments shown in the figure on page 30. 

A comparison of Figure 2.1 A and B suggested that A-loops have two states, buried 

as seen in Figure 2.1B and exposed as implied by Figure 2.1A. In our model, the A-loops in 

an ensemble of KaiC molecules exist in a dynamic equilibrium between buried and exposed 

states, which determines the steady-state level of phosphorylation of KaiC. If the 

equilibrium favored the buried state, the rate of autodephosphorylation would have been 

faster than that of autophosphorylation. In contrast, if the exposed state were favored, then 

the autokinase rate would be faster, leading to a high steady-state phosphorylation level for 

KaiC. According to our model, KaiA increased KaiC phosphorylation levels by stabilizing 

the exposed state of the A-loops by directly binding to KaiCAL+ tail. 

As a test of our model, we made a variant of KaiC to mimic the exposed state of A-

loops. This variant, KaiC487, was truncated after residue 487 and, therefore, missing the 

KaiCAL+tail segment. As seen in Figure 2.2A (green ○), KaiC487 by itself was constitutively 

100% phosphorylated. A recent study has shown that the steady-state phosphorylation level 

for S. elongatus KaiC under increasing concentrations of KaiA does not exceed ≈85% (113). 

Another study has shown, for T. elongatus proteins, that a ratio of one KaiA dimer to one 

KaiC hexamer is enough to reach saturation level of phosphorylation, which is also <100% 

(53). KaiA cannot induce 100% phosphorylation of a population of KaiC molecules 
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because, even under saturating conditions, A-loops probably still sample the buried state to 

a minor extent. 

Our model predicted that reducing the ability of KaiA to stabilize the exposed state 

of the A-loops should lead to a lower steady-state level of KaiC phosphorylation. We, 

therefore, produced a KaiC variant, KaiC497, which was truncated after residue 497, so 

that it had the A-loop but was missing the solvent-exposed tail. The steady-state 

phosphorylation levels of KaiC497 alone and in the presence of KaiA were similarly low 

(Figure 2.2 A and B, black ▲ and ▼), which suggests that the dynamic equilibrium of the 

A-loop in both cases is shifted toward the buried state. A KaiC variant similar to KaiC497 

is unable to form a complex with KaiA, as determined by electrophoretic mobilityshift 

assays (71). Truncations partway into the A-loop resulted in KaiC variants that were 

hyperphosphorylated (Figure 2.2A, green ×, blue ■, and red ◇), although to a lesser extent 

than KaiC487 (green ○). To a minor extent, these truncated A-loops may still sample the 

buried state, thus leading to <100% steady-state phosphorylation levels. In addition to 

deletion experiments, KaiC variants containing point mutations in or bordering the A-loop 

were also made to test our model. In the structure of KaiC, the side chains of residues E487 

and T495 appeared to be hydrogen-bonded to each other (Figure 2.3), suggesting that the 

buried state of the A-loop was stabilized by this interaction. Indeed, the E487A substitution 

created a KaiC variant that was 100% constitutively phosphorylated, whereas the T495A 

variant was 80% constitutively phosphorylated (Figure 2.4). 
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Figure 2.2. Phosphorylation of KaiC and KaiC variants for KaiC alone (A), KaiC + KaiA 
(B), KaiC + KaiA + KaiB (C), and KaiC + KaiB (D). For all images: pink ●, KaiC; black ▼ 
and ▲, KaiC497; green ×, KaiC496; blue ■, KaiC495; red ◇, KaiC494; green ○, KaiC487. 
In A, green □ indicates KaiC + KaiCAL+tail (500 μM). In B, green □ indicates KaiC + 
KaiCAL+tail (500 μM) + KaiA; blue △, KaiC + KaiAN only; and orange ◆, KaiC + KaiAC 
only. In C, orange ◆ indicates KaiC + KaiAC + KaiB. Each data point is the mean of two 
independent experiments. Solid lines connect data points for visual clarity. Images of the 
stained polyacrylamide gels are shown in Appendix A. Assignment of phosphorylated and 
unphosphorylated KaiC bands resolved by PAGE was determined from lambda 
phosphatase assays (Appendix A). All KaiC samples were fresh or from freshly frozen 
samples except for data indicated by black ▲ symbols, which are from KaiC497 reaction 
mixtures after incubation at 30°C for 18 h ± KaiA ± KaiB. It should be noted that the 
phosphorylation levels of KaiC487, KaiC494, KaiC495, and KaiC496 after incubation at 
30°C for 18 h ± KaiA ± KaiB remained similar to those after the initial 12 h (data not 
shown). 
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Figure 2.3. Putative hydrogen bonds linking adjacent A-loops. (A) Top-down view of KaiC. 
The coloring scheme is identical to that in Fig. 1B.(B) Expansion of the A-loop region. 
Putative intersubunit hydrogen bonds involving A-loop residues are shown as green lines.  
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Figure 2.4. Phosphorylation kinetics of KaiC variants for KaiC alone (A), KaiC + KaiA (B), 
KaiC + KaiA + KaiB (C), and KaiC + KaiB (D). For all images: red □ indicates KaiC 
E487A; black ▲, KaiC D474A; red △, KaiC T495A; green ◇, KaiC W331A; black ●, 
KaiC E444D; blue ■, KaiC I472A. Solid lines connect data points for visual clarity. Images 
of the stained polyacrylamide gels are shown in Appendix A. All KaiC samples were fresh 
or from freshly frozen samples. Each data point is from a single experiment, except for 
those of T495A which are an average from two experiments.  
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KaiC487 and KaiC497 expressed in S. elongatus were, respectively, hyper- and 

hypophosphorylated as well (Figure 2.5); moreover, KaiC487 remained hyper-

phosphorylated even when KaiA was absent and KaiB was present (Figure 2.5A, lanes 4–6), 

and KaiC497 remained hypophosphorylated when KaiA was present and KaiB was absent 

(lanes 7–9). In addition, ectopic expression of either KaiC487 or KaiC497 in a WT S. 

elongatus background had a dominant negative effect, abolishing circadian rhythmicity 

(Figure 2.5B), even though they had opposite states of phosphorylation. In contrast, 

rhythmicity was preserved when WT KaiC was expressed in a WT background, with a 

slightly longer free-running period than normal (Figure 2.5B and Figure 2.6). 

KaiC497 and KaiC496, which differ only in the presence or absence of I497, had 

opposite steady-state levels of phosphorylation (Figure 2.2A, black ▲ and green ×). This 

result suggests that I497, the terminal residue of the A-loop, plays a critical role in 

stabilizing the buried position of the A-loop. It can be seen from the structure of KaiC 

(Figure 2.7) that I497 is apparently part of an intrasubunit hydrophobic cluster that includes 

residues V443, I445, I467, F483, F486, I489, I490, P494, and T495. Perhaps the removal of 

I497 in KaiC496 was sufficient to destabilize the cluster and thereby shift the dynamic 

equilibrium of the A-loop toward the exposed state. 
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Figure 2.5. Phosphorylation states and functional analysis of KaiC487 and KaiC497 in vivo. 
(A) KaiC487 and KaiC497 are, respectively, constitutively hyper- and hypophosphorylated 
independently of KaiA in S. elongatus. Immunoblots of KaiC and its truncated variants 
were detected in soluble protein extracts from strains that express: lane 1, WT KaiC; lane 2, 
no KaiB or KaiC; lane 3, WT KaiC from an ectopic site in a kaiBC null background (KaiA 
is present); lanes 4–6, KaiC487 from an ectopic site in a kaiA kaiC-null background (KaiB 
is present); lanes 7–9, KaiC497 in a kaiBC-null background (KaiA is present). The 
phosphorylation status of KaiC variants, whose mobility differs from WT was determined 
by λ phosphatase treatment with (lanes 6 and 9) or without (lanes 5 and 8) the inhibitor 
EDTA. Total cell extracts from 10 ml of OD750 = 0.5 cyanobacterial cultures were prepared 
and further analyzed by immunoblotting (114) with polyclonal KaiC antiserum (115) at 
1:2,000 dilution. Treatment with λ phosphatase was performed according to the 
recommendation of the manufacture (New England BioLabs). Briefly, 100 μg of total 
protein was incubated with 400 units of λ phosphatase in 50 μl of total volume at 30°C for 
30 min. EDTA was used at a final concentration of 50 mM to inhibit the phosphatase 
reaction. (B) Ectopic expression of KaiC487 or KaiC497 abolishes circadian rhythmicity in 
WT S. elongatus. WT KaiC, KaiC487, and KaiC497 are expressed from the native kaiBC 
promoter in a WT (Left) or kaiC null (Right) background. All strains harbor a 
bioluminescence reporter gene driven by the kaiBC promoter.  
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Figure 2.6. The circadian period of the gene expression rhythm correlates with intracellular 
KaiC abundance in S. elongatus. Immunoblots of KaiC (Upper) detected in soluble protein 
extracts from strains that express KaiC in the following backgrounds (with period values, n 
= 12): 1, WT KaiC (25.02 ± 0.05 h); 2, no KaiC (arrhythmic); 3, WT KaiC from an ectopic 
site in aWT background (25.43 ± 0.07 h); 4, WT KaiC from an ectopic site in a kaiC null 
(23.33 ± 0.09 h). KaiA (Lower) was detected in the same samples as an internal loading 
control. 
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Figure 2.7. Putative hydrophobic cluster at the A-loop. This partial view of the KaiC 
hexamer (PDB ID code 1tf7) has the A-loops colored magenta. The atoms of the side 
chains of residues of the putative hydrophobic cluster are colored black, except for I497 
which is red. 
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KaiA Activates KaiC Autophosphorylation by Directly Binding to the A-Loop + 

Exposed Tail Segment: The structure of the KaiAC–KaiCAL+tail complex has been solved for 

the polypeptides from the thermophilic species T. elongatus, which are more stable under 

NMR conditions (Figure 2.1A) (64). To test whether this interaction is similar for the S.  

elongatus homologs, we carried out fluorescence anisotropy assays. The fluorescence 

anisotropy of a fluorophore is sensitive to the size of the macromolecule to which it is 

attached. An increase in the fluorescence anisotropy of a labeled peptide after the addition 

of unlabeled protein can reflect the formation of complexes. As seen in Figure 2.8A, S. 

elongatus KaiA and KaiCAL+tail interacted, although to a weaker extent than for the T. 

elongatus proteins (Figure 2.8B). As a further test of the KaiA–KaiCAL+tail interaction, we 

added S. elongates KaiCAL+tail peptides to a mixture of S. elongatus KaiA + KaiC. As 

shown by the green □ symbols in Figure 2.2B, KaiCAL+tail blocked KaiA-induced KaiC 

autophosphorylation, which suggests that this peptide was competing with KaiC for KaiA 

binding. The KD values observed here were much higher than those reported for full-length 

KaiA and KaiC binding for S. elongatus (2.5 μM) (54) and T. elongatus (1.3 μM) (53). We 

think that these discrepancies arise from (i) the higher local concentration of KaiCAL+tail 

segments on a KaiC hexamer, and (ii) the possibility that the KaiA-KaiC interaction is 

more extensive than that observed in the NMR structure (Figure 2.1A). 
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Figure 2.8. Fluorescence anisotropy of 6-iodoacetamidofluorescein-KaiCAL+tail as a function 
of concentration of KaiA for (A) S. elongatus and (B) T. elongatus proteins. △, KaiA; □, 
KaiAC; ◇, KaiAN; and ○, KaiB. Fits of the data yielded the following KD values: 24.3 ± 0.5 
μM, S. elongatus KaiAC + KaiCAL+tail; 170 ± 13 μM, S. elongatus KaiA + KaiCAL+tail; 2.9 ± 
0.2 μM, T. elongatus KaiAC + KaiCAL+tail; 14.4 ± 1.1 μM, T. elongatus KaiA + KaiCAL+tail. 
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KaiAN Attenuates the KaiA–KaiC Interaction and Is Important for KaiB Function: 

The N-terminal domain of KaiA, KaiAN (residues 1–135), did not have any detectable 

affinity for KaiCAL+tail, as gauged by fluorescence anisotropy experiments (Figure 2.8A, ◇). 

In addition, KaiAN has no effect on the phosphorylation activity of KaiC (blue Δ, Figure 

2.2) (52). Thus, the KaiA–KaiC interaction probably involves only weak, if any, 

interactions between KaiAN and KaiC. However, full-length KaiA had a weaker affinity for 

KaiCAL+tail and enhanced KaiC autophosphorylation less than KaiAC (Figure 2.8A, Δ and □; 

Figure 2.2B, pink ● and orange ◆). KaiAN may attenuate the KaiA–KaiC interaction by 

affecting the structure of KaiAC (64). 

Apparently, KaiB inactivates KaiA in a complex with pSTKaiC, which allows the 

ensemble of KaiC proteins to autodephosphorylate (57, 58). We found that KaiAN was 

important for this KaiB function. As shown in Figure 2.2C(orange ◆), KaiB had little effect 

on KaiAC-induced KaiC autophosphorylation. The observation that S. elongatus clones 

that express KaiAC instead of KaiA generate very weak 40-h rhythms (63) may be 

attributable to the inability of KaiB to inactivate KaiAC in a complex with pST-KaiC. 

 

KaiB Does Not Interact with the A-Loop: It has been shown that the kinetic ordering 

of phosphorylation at S431 and T432 for an ensemble of KaiC proteins in the presence of 

KaiA and KaiB is as follows (57, 58): ST → SpT → pSpT → pST → ST. Apparently, the 

oscillation depends on the fast buildup of pSpT-KaiC under stimulation by KaiA, followed 

by the slow inactivation of KaiA on pST-KaiC by KaiB (58). How KaiB achieves this 
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inactivation is unclear. Does KaiB interact directly with the A-loop? Fluorescence 

anisotropy experiments did not detect any binding between KaiB and KaiCAL+tail in either S. 

elongatus (Figure 2.8A, ○) or T. elongatus (Figure 2.8B, ○). Furthermore, KaiB by itself 

does not affect the phosphorylation of KaiC (Figure 2.2D) (17, 18, 24). Thus, KaiB likely 

affects the dynamic equilibrium of the A-loop indirectly by hindering its interaction with 

KaiA. 

 

A-Loop Displacement Probably Moves ATP Closer to the Sites of Phosphorylation: 

To the best of our knowledge, the longest distance reported between the γ-phosphate group 

of ATP and an acceptor oxygen (serine hydroxyl group) is 5.3 Å in bovine cAMP-

dependent protein kinase (116), which has since been suggested to be an overestimate (117). 

In the crystal structure of KaiC, the A-loops are buried, and the γ-phosphate group of ATP 

is 8.5 and 6.6 Å from the hydroxyl oxygens of S431 and T432, respectively (Figure 2.9), 

which explains why KaiC by itself had a low level of autokinase activity (Figure 2.2A, pink 

●). It is, therefore, probable that A-loop exposure significantly repositions ATP closer to 

the sites of phosphorylation. 
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Figure 2.9. Putative interactions between ATP and KaiC as inferred from the X-ray crystal 
structure (50). Atoms are shown in ball and stick form (gray, carbon; red, oxygen; blue, 
nitrogen; cyan, phosphorus). The prime (’) is used to denote residues from an adjacent 
subunit. Green lines indicate potential hydrogen bonds and the distances between the γ- 
phosphorus atom of ATP and the hydroxyl oxygens of S431’ and T432’. (A) The structure 
of KaiC suggests that the position of ATP depends in part on interactions with 
I472, D474, and W331. (B) The position of the γ-phosphorus atom of ATP may be 
coupled to the interaction between E444 and the A-loop by way of the P-loop. The side 
chains of residues that may be part of this coupling are shown. 
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Putative interactions between the adenine base and residues I472 and D474, as 

inferred from the structure of KaiC (50), may help prevent ATP from approaching the sites 

of phosphorylation when A-loops are buried (Figure 2.9A). A D474A substitution 

attenuated the effect of KaiA and KaiB on KaiC phosphorylation kinetics (Figure 2.4, black 

▲). The variant I472A (Figure 2.4, blue ■), however, was constitutively 

hyperphosphorylated, suggesting that ATP could more closely approach T432 and S431. 

We think that exposure of A-loops weakens the interaction between I472 and ATP. The 

ATP seems to also be stabilized by W331 because a W331A substitution also created a 

constitutively hyperphosphorylated KaiC variant (Figure 2.4, green ◆). 

E444 apparently forms hydrogen bonds with A-loop residues and is part of a short 

segment (residues 438–444; blue ribbon, Figure 2.9B) that seems to interact with residues 

at or adjacent to the P-loop of the CII domain (residues 288–295; gold ribbon, Figure 2.9B). 

We anticipate that this chain of interactions couples the A-loop and γ-phosphate positions. 

A-loop exposure may disrupt its interaction with E444, causing the 438–444 segment to 

shift and thereby adjust the position of the P-loop, which, in turn, would move the γ-

phosphate closer to the hydroxyl groups of T432 and S431. As a test of this hypothesis, we 

introduced an E444D substitution to disrupt the interactions with the A-loop. We found that 

this KaiC variant was constitutively hyperphosphorylated at ≈100% in the presence or 

absence of KaiA and KaiB (Figure 2.4, black ●). L297A and L440A substitutions, which 

would be a good test of the proposed coupling between the A-loop and ATP position, 

yielded insoluble KaiC variants. 
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Discussion 

 

The A-loop Is the Master Switch That Determines KaiC Activities: KaiC is both an 

autokinase and an autophosphatase. The balance between these two activities is modulated 

by phosphoformdependent interactions between KaiC and KaiA and KaiB, and by the 

phosphoforms themselves, irrespective of KaiA and KaiB (57, 58). Here, we propose how 

KaiA and KaiB manipulate KaiC activity: the A-loop is the master switch and its dynamic 

equilibrium between buried and exposed states determines the levels of autokinase and 

autophosphatase activities (Figure 2.10); KaiA directly binds to and stabilizes the exposed 

state of the A-loop. KaiB does not directly interact with the A-loop; we predict that KaiB 

stabilizes the buried state of the A-loop indirectly by hindering its interaction with KaiA. 

Indeed, existing data suggest that KaiB does not affect KaiC activity directly but, rather, 

blocks KaiA stimulation of KaiC activity (Figure 2.2C, pink ●) (49, 51, 58). 

 

A-Loop Burial/Exposure May Be Cooperative: Each buried A-loop in the KaiC 

hexamer appears to make several hydrogen bonds with the adjacent A-loops (Figure 2.3). 

The implication is that exposure of one A-loop destabilizes the buried states of the adjacent 

ones and raises the possibility that the burial and exposure of A-loops are cooperative 

processes. However, the rate of ST-KaiC → SpT-KaiC has a hyperbolic, rather than 

sigmoidal, dependence on KaiA concentration (58), which argues against cooperativity.  



 36

 

 

 

 

 

 
 
Figure 2.10. A-loop model. The steady-state level of phosphorylation of KaiC is 
determined by the dynamic equilibrium of the A-loops (AL). If the buried state of the A-
loops (ALburied) is favored, then the steady-state phosphorylation level of KaiC is lowered; 
if the exposed state of the A-loops (ALexposed) is favored, the steady-state 
phosphorylation level is increased. KaiA stabilizes ALexposed, whereas KaiB prevents 
KaiA from doing so by immobilizing it on the pST-KaiC phosphoform. 
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We suggest that when a single KaiA binds to a KaiC hexamer (53, 71), it stabilizes the 

exposed state of the two A-loops to which it binds (Figure 2.1A), shifting the dynamic 

equilibrium of the four remaining A-loops toward the exposed state. This scenario could 

produce the hyperbolic dependence for ST-KaiC → SpT-KaiC, as demonstrated by Rust et 

al. (58). 

 

KaiB Inactivates KaiA by Hindering Its Interaction with A-Loops: Our data suggest 

that KaiB induces KaiC autodephosphorylation by hindering the interaction between KaiA 

and A-loops. There are two possible ways by which KaiB inactivates KaiA: either KaiB 

interacts directly with KaiA and thereby immobilizes it on pST-KaiC or the KaiB–pST-

KaiC interaction affects the pSTKaiC–KaiA interaction, such that KaiA is trapped by pST-

KaiC. Our observation that KaiAC-induced KaiC autophosphorylation was immune to KaiB 

suggests that KaiAN is necessary for KaiB activity. Whether the KaiA–KaiB interaction is 

direct or indirect is still unclear. 

 

Downstream Effects of A-Loop Exposure: The ATP bound in the CII domain is too 

far from S431 and T432 for phosphoryl transfer (Figure 2.9) and explains why KaiC by 

itself had a greater autophosphatase than autokinase activity (Figure 2.2A, pink ●). Our data 

suggest that I472 helps prevent ATP from approaching the sites of phosphorylation (Figure 

2.4), probably through direct interactions with ATP. A-loop exposure likely repositions the 

ATP closer to the sites of phosphorylation through weakening the I472–ATP interaction, 

and disrupting the E444–A-loop interaction, thereby shifting the P-loop. 



 38

  

Differences Between in Vitro and in Vivo Oscillations: The dominant negative 

effects of KaiC487 and KaiC497 expression in a WT background suggest that these KaiC 

variants, which are unable to restore rhythmicity to a kaiC-null strain, either participate in 

hexamer formation with WT KaiC monomers, rendering them nonfunctional, or compete 

with WT subunits for interaction with the circadian output pathways. The former possibility, 

supported experimentally in Figure 2.11, contrasts with in vitro data in which oscillation of 

WT KaiC phosphorylation is unaffected by addition of nonshuffling KaiC variants, KaiC-

AA (62). These data suggest that nascent proteins form mixed hexamers when both WT 

and mutant KaiC variants are coexpressed in the cell, such that protein dynamics of 

synthesis and degradation may play important roles in vivo that are not required for the 

basic oscillation in vitro. 

 

Suggested Mechanism for the KaiA-Lack Species: Some cyanobacteria such as 

Prochlorococcus marinus PCC 9511 possess kaiB and kaiC genes, but lack kaiA homologs 

(29, 118), indicating that a potential KaiC-based circadian oscillator would operate by a 

different mechanism than that described here. P. marinus PCC 9511 displays robust 24-h 

rhythms of DNA replication and gene expression when it is incubated in alternating 12 h 

light:12 h dark periods, but the rhythms rapidly damp under continuous light (28).  
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Figure 2.11. Expression of kaiC-AA in a WT background stops the phosphorylation cycle of 
KaiC. A WT strain (AMC541) and strains that carry kaiC-AA expressed in either the WT 
background (AMC1618) or ΔkaiC background (AMC1619) were subjected to two 
synchronizing light/dark cycles before being released in constant light. Samples were taken 
every 4 h and analyzed by immunoblot by using a KaiC antiserum. The KaiC 
phosphorylation state oscillates in AMC541, and no rhythm is observed with AMC1619, 
which expresses only the nonoscillating KaiC-AA. Oscillation of KaiC phosphorylation is 
still observable when AMC541 and AMC1619 samples are equally mixed in vitro, even 
though nonphosphorylated KaiC and KaiC-AA run as a single band. This figure 
demonstrates that oscillating phospho-KaiC would be observable above the background of 
nonphosphorylated KaiC in AMC1618 if WT KaiC continued to oscillate in the presence of 
KaiC-AA. AMC1618 shows no rhythm in KaiC phosphorylation, indicating that expression 
of KaiC-AA in the WT background has a dominant negative effect on the central oscillator. 
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These data suggest that P. marinus PCC 9511 uses an hourglass clock mechanism that 

requires daily resetting rather than a self-sustained circadian oscillator. We predict that 

KaiC phosphorylation is part of the timing mechanism in P. marinus PCC 9511 but that 

KaiC ensembles have a high steady-state level of phosphorylation as a result of a dynamic 

equilibrium that favors the exposed state of the A-loop. KaiB may stabilize the buried state 

of the A-loops for hyperphosphorylated KaiC and thereby stimulate autodephosphorylation. 

In this scenario, some physiological consequence of the diurnal cycle such as protein 

synthesis and degradation would provide a daily resetting of the phosphorylation state of 

KaiC.  

 

The Discrepancy Between KaiA Stimulation of WT pST-KaiC and DT-KaiC: It was 

recently proposed by Nishiwaki et al. (57) that the autokinase and autophosphatase 

activities of KaiC are strongly influenced by its state of phosphorylation, irrespective of 

KaiA and KaiB. Particularly, it was suggested that KaiC switches from an autokinase to an 

autophosphatase when phosphorylated at S431. Indeed, a KaiC variant containing the 

S431D phosphomimetic substitution, DT-KaiC, was mostly dephosphorylated at T432 even 

in the presence of KaiA. In our hands, DT-KaiC is ≈40% phosphorylated in the presence of 

KaiA (Figure 2.12B, ○), which is qualitatively consistent with the previous study (57). 

However, the DT-KaiC487 variant is 90% phosphorylated regardless of KaiA (Figure 

2.12A and B, Δ), indicating that more than S431 phosphorylation is involved in the switch.  
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Figure 2.12. Phosphorylation of DT-KaiC (○) and DT-KaiC487 (△) variants for (A) KaiC 
alone, (B) KaiC + KaiA, (C) KaiC + KaiA + KaiB, and (D) KaiC + KaiB. For DT-KaiC487 
each data point is the mean of two independent experiments; for DT-KaiC experiments 
were carried out only once. Solid lines connect data points for visual clarity. Images of the 
stained polyacrylamide gels are shown in Appendix A. Assignment of phosphorylated and 
unphosphorylated KaiC bands resolved by PAGE was determined from lambda 
phosphatase assays (Appendix A). All KaiC samples were fresh or from freshly frozen 
samples. 
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These observations in the context of our model suggest that the S431D substitution, and 

presumably pSpT and pST phosphoforms, make it more difficult for KaiA to stabilize the 

exposed state of the A-loop. However, Rust et al. (58) have evidence by using WT KaiC 

that the rate of pST-KaiC → pSpT-KaiC can be the fastest of the autophosphorylation 

reactions in the presence of KaiA and that the reaction is necessary for the generation of a 

self-sustained rhythm of KaiC phosphorylation. This observation by Rust et al. implies that 

stabilization of the exposed state of the A-loop by active KaiA is not inhibited by the pST-

KaiC phosphoform. The discrepancy between KaiA stimulation of WT pST-KaiC and DT-

KaiC could be attributable to an imperfect mimic of phosphoserine by aspartate at position 

431. 

 

Defects on thePphospho-Mimicking Mutants of KaiC: It was also observed by 

Nishiwaki et al. (57) that the T432E phosphomimetic variant of KaiC, SE-KaiC, incubated 

in isolation from the other Kai proteins, remains hyperphosphorylated at S431 with no sign 

of dephosphorylation after 20 h. Our model states that the dynamic equilibrium of the A-

loop favors the buried state unless KaiA stabilizes the exposed state. Hence, pSE-KaiC 

should, according to our model, autodephosphorylate. Recently, Rust et al. (58) have 

presented evidence that WT KaiC indeed does autodephosphorylate from pSpT → SpT at a 

finite rate, which is in contrast to the work by Nishiwaki et al. (57). Indeed, the model of 

the oscillator presented by Rust et al. (58) fails to generate a sustained rhythm of KaiC 

phosphorylation when the rate of pSpT → SpT is set to zero. These discrepancies with the 
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nondephosphorylating pSE-KaiC variant suggest that glutamate is not a perfect mimic of 

phosphothreonine in this instance. 

 

Materials and methods 

 

Cloning and Protein Purification of KaiA and KaiB: The genes encoding KaiA and 

KaiB from S. elongatus and T. elongatus were cloned into the pET32a+ vector (Novagen) 

between BamHI and NcoI sites, the resulting plasmids were used to transform Escherichia 

coli BL21(DE3), and sequences were confirmed (Gene Technologies Laboratory, Texas 

A&M University) (see Table 2.1). Transformed E. coli cultures in log phase in LB at 37°C 

were induced to overexpress recombinant KaiA or KaiB with 1 mM isopropyl β-D-

thiogalactopyranoside (Calbiochem). Cells were harvested after 6 h, and pellets were 

resuspended in 50 mM NaCl, 20 mM Tris-HCl, pH 7.0. Cell suspensions were passed twice 

through a chilled French press cell, and lysates were clarified by centrifugation at 20,000 × 

g for 60 min at 4°C. Tagged proteins were isolated on a Ni-charged chelating column. 

Proteases and ATPases were removed by anion-exchange chromatography (buffer A: 20 

mM NaCl, 20 mM Tris-HCl, pH 7.0; buffer B: 1 M NaCl, 20 mM Tris-HCl, pH 7.0; 

gradient: 0–80% buffer B over 16 times of 5-mL column volumes). The tagged proteins 

were dialyzed against enterokinase (EK) cleavage buffer (Novagen), and reactions with 1 

unit/ml EK were carried out at room temperature in 15–20 ml of ≈10 μM KaiA or ≈40 μM 

KaiB. Complete removal of the thioredoxin–His6 tag from KaiA took 36 h; KaiB cleavage 

reactions were terminated after 16 h to prevent protein precipitation.  
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Table 2.1. Details on Recombinant Kai Proteins.  

Protein Vector Insertion Site Non-native residuesa E. coli strain 

S.e. KaiA pET32a+ EcoRV – HindIII AMADI BL21(DE3) 

S.e. KaiAC pET32a+ NcoI – EcoRV AMA BL21(DE3) 

S.e. KaiAN pET32a+ BglII – EcoRV M BL21(DE3) 

S.e. KaiB pET32a+ NcoI – HindIII Ab BL21(DE3) 

S.e. KaiC pGEX-6P-2 BamHI – XhoI GPLGS DH5α 

S.e. KaiCAL+tail pET32a+ NcoI – BamHI AMCc BL21(DE3) 

T.e. KaiA pET32a+ NcoI – HindIII AMA BL21(DE3) 

T.e. KaiAC pET32a+ NcoI – EcoRI AMA BL21(DE3) 

T.e. KaiAN pET32a+ NcoI – HindIII AMA BL21(DE3) 

T.e. KaiB pET32a+ NcoI – BamHI AMA BL21(DE3) 

T.e. KaiCAL+tail pET32a+ NcoI – BamHI AMCc BL21(DE3) 
 

aNon-native residues are at the N-terminus of the recombinant proteins. The C-termini all 
end with native residues.  
bOriginally AMA, but changed to AMS using site-directed mutagenesis. The first two 
residues of KaiB are MS, and the only additional non-native residue here is A.  
cOriginally AMA, but changed to AMC using site-directed mutagenesis.  
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KaiA and KaiB were separated from thioredoxin–His6 tags and uncut proteins by a second 

passage through a Ni-charged chelating column. All proteins were analyzed for purity by 

SDS/PAGE and dialyzed against autophosphorylation assay buffer (20 mM Tris-HCl, 150 

mM NaCl, 0.5 mM EDTA, 5 mM MgCl2, 1 mM ATP, pH 8.0). Protein solutions were 

concentrated to ≈20 μM for KaiA and at least 60 μM for KaiB. Above ≈20 μM, KaiA 

started to precipitate from solution. The proteins were then passed through a sterile 0.2-μm 

filter and stored at -80°C. KaiA and KaiB did not lose function after repeated cycles of 

freezing and thawing. One liter of induced E. coli culture yields ≈220 nmol of KaiA and 

830 nmol of KaiB after purification. Protein concentrations for KaiA, KaiB, and KaiC were 

determined by using Coomassie Plus–The Better Method Assay Reagent (Pierce). 

 

Cloning and Protein Purification of KaiC: Genes encoding KaiC from S. elongatus 

and T. elongatus were cloned into the pGEX-6P-2 vector (GE Healthcare) between BamHI 

and XhoI sites, and the resulting plasmids were used to transform E. coli DH5α, which 

produced more soluble recombinant KaiC than did E. coli BL21(DE3). KaiC truncation 

variants KaiC487, KaiC494, KaiC495, KaiC496, and KaiC497 were constructed by 

inserting stop codons to terminate translation after residues 487, 494, 495, 496, and 497, 

respectively, using the QuikChange method from Stratagene. Protein purification, analysis, 

and storage were performed as for KaiA and KaiB with the following exceptions: 

transformed cultures of E. coli DH5α in LB were continuously shaken in 1-liter flasks at 

30°C for 2.5 days. Cell pellets were resuspended in 50 mM Tris-HCl at pH 7.3 with 150 

mM NaCl, 5 mM MgCl2, 1 mM EDTA, 1 mM DTT and 5 mM ATP. Tagged KaiC proteins 
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were separated from the supernatant fraction on a GSTrap HP column (GE Healthcare). 

Prescission Protease (GE Healthcare) was used (1 unit/ml in 12 ml) to cut the GST tag from 

5 μM tagged KaiC. KaiC was separated from the cleaved GST tag, tagged KaiC, and 

protease by passage a second time through a GSTrap HP column. Cycles of thawing and 

freezing did not affect KaiC activity. On average, 2 liters of E. coli culture yielded 75 nmol 

of purified KaiC and its variants. Table 2.1 lists the recombinant Kai proteins, their 

nonnative residues, vectors, cloning insertion sites, and strains of E. coli used for their 

overexpression. 

 

Preparation of the KaiCAL+tail Peptide Labeled with Fluorescein: The gene 

fragments encoding KaiCAL+tail peptides from S. elongatus (residues 488–519) and T. 

elongatus (488–518) and an added N terminal Cys codon were cloned into the pET32a+ 

vector between NcoI and BamHI sites, verified by sequencing, and introduced into E. coli 

BL21(DE3). Protein overexpression and purification were similar to methods for KaiA and 

KaiB. The tagged peptide was labeled with 6-iodoacetamidofluorescein according to the 

protocol of the manufacturer (Molecular Probes, Inc.). Samples were buffer exchanged into 

50 mM NaCl, 20 mM Tris-HCl, pH 7.4, and the thioredoxin-His6 tag was removed by using 

enterokinase. Cleavage by this enzyme results in three additional non-KaiC-derived 

residues (AMC) at the N terminus of the KaiCAL+tail peptides. Thus, the final sequences of S. 

elongatus and T. elongatus KaiCAL+tail peptides were 

‘‘AMCRIISGSPTRITVDEKSELSRIVRGVQEKGPES’’ and 

‘‘AMCGIISGTPTRISVDEKTELARIAKGMQDLESE’’, respectively. Labeled peptides 
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were resolved from unlabeled peptides and free fluorophore by reversed phase 

chromatography, and quantification was achieved by measuring the UV absorbance of 

fluorescein. Peptide identity and purity were confirmed by matrix-assisted laser desorption 

ionization-time-of-flight (MALDI-TOF) spectroscopy. Lyophilized fluorescein-labeled 

peptide was dissolved into autophosphorylation assay buffer without ATP. 

 

KaiC Phosphorylation Kinetics: Phosphorylation assays in sterile 1 ml tubes in a 

30°C water bath included KaiA and KaiB at 1.5 μM and 4.5 μM final concentrationsin the 

autophosphorylation assay buffer. A ‘‘time zero’’ sample was taken immediately after 

KaiC (3.4 μM) was added. Periodically, 38-μl aliquots were removed and denatured at 

60°C for 15 min with 6 μl of SDS/PAGE gelloading dye (100 mM Tris-HCl at pH 6.8 with 

4% SDS, 0.2% bromophenol blue, 20% glycerol, and 400 mM β-mercaptoethanol). A 

sample (10 μl) of each was loaded onto 9 × 10 cm SDS polyacrylamide gels (4% stacking, 

6.5% running) with 15 wells (10 × 3 × 0.75 mm). The stacking gel extended only 2 mm 

from the bottom of the wells to the running gel. Maximum resolution of the KaiC 

phosphoforms by PAGE by using our setup was achieved by (i) immersing the gel box in 

ice, (ii) filling the gel box with buffer (700 ml), (iii) removing all bubbles along the bottom 

of the gel plates, (iv) loading the first and last two lanes with loading buffer only, and (iv) 

running the experiments at constant voltage (140 V). Gels were stained with Coomassie 

brilliant blue, and the percentage of KaiC that was phosphorylated in each lane was 

determined by densitometric analysis by using Image J (National Institutes of Health) and 

PeakFit (SeaSolve Software, Inc.). Images of the stained gels are provided in Appendeix A. 
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Fluorescence Anisotropy Experiments: Fluorescence anisotropy experiments on the 

fluorescein-labeled KaiCAL+tail peptide were carried out with a PC1 photon counting 

spectrofluorometer (ISS) with a sample temperature of 25°C. The excitation wavelength 

was set to 487 nm, and orthogonal emission intensities, I║ and I┴, were measured at 523 

nm; fluorescence anisotropy, r, was determined using the equation: r = (I║ - I┴)/(I║ + I┴). 

The KaiCAL+tail peptide concentration in an initial volume of 1.8 ml was 100 nM. 

Fluorescence anisotropies were measured as a function of the concentrations of KaiA, KaiA 

variants, and KaiB. Dissociation constants were calculated by fitting anisotropy data using 

DYNAFIT (119) with a simple 1:1 binding model. 

 

Cyanobacterial Strains, Culture Conditions, and Bioluminescence Assays: WT S. 

elongatus PCC 7942 and its derivatives were propagated in BG-11 medium with 

appropriate antibiotics at 30°C, as described previously (21, 120). Ectopic alleles of various 

KaiC constructs, described in Table 2.2, were introduced into neutral site I of the S. 

elongatus chromosome (21, 120). Bioluminescence assays of these strains were performed 

on a Packard TopCount scintillation counter (PerkinElmer Life Sciences) according to a 

previous protocol (21). 
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  Table 2.2. Constructs and cyanobacterial strains used in this study. 

 

Plasmid Characteristics Source or 
reference 

pAM2302 WT kaiC driven by kaiBC promoter (115) 
pAM2596 WT kaiC driven by an IPTG-inducible trc promoter (49) 
pAM2969 KmR-Ω cassette in the BamHI site of kaiA (115) 
pAM3868 kaiC487 (based on pAM2302) This study 
pAM3871 kaiC487 (based on pAM2596) This study 
pAM3910 kaiC497 (based on pAM2302) This study 
pAM4047 kaiC497 (based on pAM2596) This study 

S. elongatus 
strain* Genetic background Ectopic kai 

plasmid 
Source or 
reference 

AMC541 WT none (9) 
AMC704 kaiC deletion none (115) 
AMC705 kaiB and kaiC deletion none (115) 
AMC1617 kaiA insertion and kaiC deletion none This study 
AMC1276 WT pAM2302 (115) 
AMC1274 kaiC deletion pAM2302 (115) 
AMC1620 WT pAM3868 This study 
AMC1621 kaiC deletion pAM3868 This study 
AMC1622 WT pAM3910 This study 
AMC1623 kaiC deletion pAM3910 This study 
AMC1624 kaiB and kaiC deletion pAM2302 This study 
AMC1625 kaiB and kaiC deletion pAM4047 This study 
AMC1626 kaiA insertion and kaiC deletion pAM3871 This study 

 
* All S. elongatus strains in this study carry a firefly luciferase gene (luc) driven by the 
kaiBC promoter.  
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CHAPTER III 

COMPUTATIONAL AND EMPIRICAL TRANS-HYDROGEN BOND 

DEUTERIUM ISOTOPE SHIFTS SUGGEST THAT N1–N3 A:U HYDROGEN 

BONDS OF RNA ARE SHORTER THAN THOSE OF A:T HYDROGEN BONDS 

OF DNA* 

 

Introduction 

 

It is well established that there are significant structural differences between RNA 

and DNA (121). However, it is still arguable whether there are any measurable differences 

in their hydrogen-bond lengths or strengths. Even a small difference in hydrogen-bond 

strength can have a significant cumulative effect. Comparisons of the highest resolved X-

ray crystal structures of RNA and DNA, however, revealed no differences within the 

experimental scatter of N1–N3 hydrogen-bond lengths of Watson–Crick A:U and A:T base 

pairs (106). It was shown in non-base paired mononucleotides that the difference in pKa 

values of rA and rU is less than that for dA and dT, from which it was inferred that RNA 

hydrogen bonds can be stronger than those of DNA (122). However, it has been shown that 

pKa values of nucleobases can shift significantly upon base pairing (123-125). 

                                                 
* Reprinted with permission from “Computational and empirical trans-hydrogen bond deuterium isotope 
shifts suggest that N1-N3 A:U hydrogen bonds of RNA are shorter than those of A:T hydrogen bonds of 
DNA.” by Kim, Y.-I., Manalo M.N., Perez L.M., LiWang, A.C. (2006) J Biomol NMR 34, 229-236. 
Copyright 2006 Kluwer Academic Publishers. All computational calculations were performed by Dr. Marlon 
N. Manalo in the laboratory of Dr. Andy C. LiWang (Texas A&M University, Department of Biochemistry 
and Biophysics). 
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Substitution of a proton for a deuteron changes the average bond lengths at and near 

the site of substitution, which in turn perturbs the nuclear shielding of nearby spins (126). 

The resulting change in chemical shift is called the deuterium isotope shift and is defined 

for 13C as nΔ13C = δ13C(1H) – δ13C(2H), where n is the number of bonds separating the 13C 

and the site of substitution, and δ13C(1H) and δ13C(2H) are the 13C isotropic chemical shifts 

of the two isotopomers. Studies of small molecules have shown that 2Δ13C are sensitive to 

hydrogen-bond strength (104). For weak hydrogen bonds, the normal-mode stretching 

vibrational potentials for N–H (or O–H) bonds become more anharmonic with increasing 

hydrogen-bond strength, which are reflected in larger 2Δ13C magnitudes.  

In DNA, deuterium substitution of the imino H3 of thymine produces a downfield 

shift of the 13C2 resonance of the Watson–Crick base-paired adenine (103), which is a 

through-space or trans-hydrogen bond isotope effect. In this case, the deuterium isotope 

shift is 2hΔ13C2 = δ13C2(1H3) – δ13C2(2H3). Recently, 2hΔ13C2 values of RNA Watson–

Crick A:U base pairs were found to be more negative than those of A:T base pairs of DNA, 

which suggests that RNA N1–N3 hydrogen bonds are shorter than those of DNA (106). 

However, investigators of a density functional theory (DFT) calculation study proposed that 

2hΔ13C2 of DNA are significantly affected by the electron-donating character of the C7 

methyl group of thymine (109), and that, importantly, the experimental differences 

observed between 2hΔ13C2 values in RNA and DNA A:U and A:T base pairs (106) do not 

reflect differences in hydrogen bond lengths but merely the absence or presence of the C7 

methyl group. Indeed, the utility of 2hΔ13C2 as a gauge of hydrogen-bond length is inferred 
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from small molecule studies and is an untested presumption for nucleic acids. Independent 

lines of evidence will be needed to establish 2hΔ13C2 as a measure of hydrogen-bond length 

for RNA and DNA. 

First, we will present DFT calculations of isolated A:U and A:T base pairs that 

suggest that 2hΔ13C2 is sensitive to hydrogen-bond length. Then, we will show using both 

computation and experimentation, that the C7 methyl group of thymine does not 

measurably influence 2hΔ13C2. We will finally show that 2hΔ13C2 has a context dependence 

that is similar in RNA and DNA. 

 

Results  

 

Studies have shown that2Δ13C2 is sensitive to hydrogen-bond strength in small 

molecules (104, 126). We showed previously that deuterium substitution at the uracil or 

thymine imino H3 site results in trans-hydrogen bond isotope shift of 13C2 of the Watson–

Crick base-paired adenine, 2hΔ13C2 (103). The notion that 2hΔ13C2 is measure of hydrogen-

bond length has been inferred from small molecule studies, but was never supported by 

independent lines of evidence for RNA and DNA. Thus, in an effort to estimate the 

sensitivity of 2hΔ13C2 to hydrogen-bond length in A:U/T Watson–Crick base pairs, we 

carried out a series of DFT calculations using the approach described by Abilgaard et al. 

(104). The 2hΔ13C2 was calculated using Equation 1: 2hΔ13C2 = – dσ/ dRNH × ΔR, where 

dσ/dRNH characterizes the conveyance of the isotope effect through the hydrogen bond.  
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Shown in Figure 3.1 is plot of 2hΔ13C2 calculated for isolated A:U and A:T base 

pairs as function of the hydrogen-bond distance between the N1 of adenine and the N3 of 

uracil or thymine. As the N1–N3 hydrogen-bond distance decreases, the calculated 2hΔ13C2 

becomes increasingly negative. Thus, our calculations support the notion that 2hΔ13C2 is 

sensitive to hydrogen-bond length. It can also be seen that isolated A:U and A:T base pairs 

have very similar 2hΔ13C2  values (within 1 ppb) at given N1–N3 distance, which suggests 

that the empirical difference between RNA and DNA 2hΔ13C2  values (106) is not due to 

the chemical difference between uracil and thymine, but shorter hydrogen bonds in double-

stranded RNA.  

In order to further assess the effect of the chemical difference between uracil and 

thymine on 2hΔ13C2 values, we measured 2hΔ13C2 on chemically modified RNA and DNA, 

in which the uridine residues of RNA were substituted with 5-methyl uridine and the 

deoxythymidine residues of DNA were replaced with deoxyuridine. We will refer to the 

chemically modified RNA and DNA as RNA5mU and DNAdU. Shown in Figure 3.2 are 

small regions of 1H, 13C TROSY-HSQC spectra of the RNA5mU dodecamer 

r(CGAAAAU5mU5mU5mU5mCG)2 and the isosequential DNAdU dodecamer 

d(CGAAAAUUUUCG)2 dissolved in 50% H2O, 50% D2O buffer. Due to slow exchange of 

the pyrimidine H3 with the solvent, there are two peaks for every adenine 1H2, 13C2 pair. 

The peak with the higher 13C2 frequency corresponds to the 2H3 isotopomer, and the lower 

frequency 13C2 peak arises from the 1H3 isotopomer. The 2hΔ13C2 values were determined 

from the difference in the peak positions: 2hΔ13C2 = δ13C2(1H3) – δ13C2(2H3). 
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Figure 3.1. The calculated dependence of 2hΔ13C2 on the distance between the N1 of 
adenine and N3 of uracil (solid circle) and thymine (open circle). From the points 
calculated near the fully optimized N1–N3 distance of 2.82 Å, a change in 2hΔ13C2 by 4 ± 3 
ppb corresponds to a 0.04 ± 0.03 Å change in N1–N3. 
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Figure 3.2. Small regions of 1H, 13C TROSY-HSQC spectra of (a) 
r(CGAAAAU5mU5mU5mU5mCG)2 and (b) d(CGAAAAUUUUCG)2 dissolved in 50% H2O, 
50% D2O at 25 ºC at 500 MHz proton frequency. The adenine 1H2, 13C2 correlations are 
labeled. Each spectrum took about 20 h to acquire. 
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The five pairs of chemically modified RNA5mU and DNAdU duplexes studied here 

are isosequential to the unmodified RNA and DNA duplexes whose 2hΔ13C2 values were 

reported earlier (103, 106). As can be seen in Figure 3.3, there is no systematic difference 

in 2hΔ13C2 values between RNA and RNA5mU 
or between DNA and DNAdU. Therefore, 

empirically there is no discernable effect of the C7 methyl group on 2hΔ13C2 values. The 

chemically modified RNA and DNA remained A-and B-form, respectively, as determined 

by circular dichroism (Figure 3.4). The scatter in Figure 3.3 is larger than the experimental 

uncertainty and reflects the perturbing effects of the chemical modifications, which can also 

be seen from the moderate differences in the CD spectra between the modified and 

unmodified duplexes. 

Shown in Figure 3.5 is a plot of 2hΔ13C2 values of DNA and DNAdU vs. those of 

RNA and RNA5mU. Here it can be seen that 2hΔ13C2 values of RNA and RNA5mU 
are 4 ± 3 

ppb more negative than those of DNA and DNAdU. On the basis of our DFT calculations 

near 2.82 Å
 
of isolated base pairs (Figure 3.1), this 4 ± 3 ppb difference is consistent with 

an N1–N3 hydrogen bond that is 0.04 ± 0.03 Å shorter in RNA than in DNA. It can also be 

seen from Figure that 2hΔ13C2 values have range of about 17 ppb, depend on sequence 

context, and that this dependence is the same for RNA and DNA. The 2hΔ13C2 values are 

most negative when the adenine intrastrand nearest neighbors are purines and least negative 

when the adenine is flanked by pyrimidines.  
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Figure 3.3. Effect of the C7 methyl group on empirical 2hΔ13C2 values. Correlations 
between RNA and RNA5mU and DNAdU and DNA values are shown using circles and 
squares, respectively. The dashed line is along the diagonal. A paired Student’s t-test yields 
a probability of p>>0.05, which shows that there is no statistically significant effect of the 
C7 methyl group on 2hΔ13C2 in the data presented here. Shown in the lower right is the 
average uncertainty in the measurements. The values used here are listed in the Appendix B. 
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Figure 3.4. Circular dichroism spectra. Spectra for RNA and RNA5mU are shown using solid 
and dashed black lines, respectively. Spectra for DNA and DNAdUare shown using solid 
and dashed red lines, respectively. Shown in each panel are overlays of CD spectra of 
RNA, RNA5mU, DNA, and DNAdU. Listing only the RNA sequences, the panels correspond 
to A) r(CGCGAAUUCGCG)2, B) r(CGUUUUAAAACG)2, C) r(CGAAAAUUUUCG)2, 
D) r(CGUAUAUAUACG)2, and E) r(CGCGUAUACGCG)2. The buffer condition 
was the same as that used for the NMR experiments.     
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Figure 3.5. Plot of 2hΔ13C2 values of DNA vs. those of RNA. Circles, squares, triangles, 
and ’’x’’s are used for DNA vs. RNA, DNA vs. RNA5mU, DNAdU vs. RNA, and DNAdU vs. 
RNA5mU, respectively. Green, red, and black colors are used to denote adenines with intra-
strand nearest neighbors that are both purines, a purine and a pyrimidine, and both 
pyrimidines, respectively. The dashed line is along the diagonal. The average uncertainty in 
the data is shown in the lower right corner of the plot. 
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Discussion  

 

The work presented here set out to test 2hΔ13C2  as measure of hydrogen-bond 

length and thereby test our hypothesis that RNA hydrogen bonds are shorter than those of 

DNA (106). Our DFT calculations predict that 2hΔ13C2 is indeed sensitive to the N1–N3 

hydrogen-bond length of A:U and A:T base pairs. Furthermore, they predict that 2hΔ13C2 is 

insensitive to the chemical difference between uracil and thymine, which is verified by our 

empirical results.  

Recently, investigators using DFT calculations suggested that 2hΔ13C2 values do not 

reflect hydrogen-bond length, but merely the presence or absence of the C7 methyl group 

(109). Swart et al. investigated the relationship between the NMR shielding of adenine 13C2 

and total hydrogen-bond energies of isolated A:U and A:T base pairs using a technique they 

call “crosscoupling”. They found that, unlike 13C2 shielding, hydrogen-bond energies are 

not completely recovered through cross-coupling and therefore, concluded that these two 

effects are separate and not correlated. As with Swart et al., we also find that the calculated 

13C2 chemical shifts of uracil and thymine differ by about 0.1 ppm as result of the C7 

methyl group of thymine (Figure 3.6). However, Swart et al. use this chemical shift 

difference as measure of 2hΔ13C2, whereas we find that using more rigorous approach 

2hΔ13C2 calculated for A:U and A:T base pairs differ by <1 ppb at given N1–N3 distance. 

Importantly, our calculations are supported by our empirical observation that the C7 methyl 

group has no impact on 2hΔ13C2 values.  
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Figure 3.6. Calculated dependence of the adenine 13C2 shielding constant, σ, as a function  
of the N1···N3 distance of isolated A:U (solid symbols) and A:T (open symbols) base pairs. 
Linear fits of the points yields σAT = –1.84 r + 49.92 ppm and σAU = –1.72 r + 49.67 ppm 
with R2 =1.00 and R2 = 0.99, respectively.  
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Instead, we think that the 4 ppb difference in 2hΔ13C2 values of RNA and DNA is 

because of stronger RNA N1–N3 hydrogen bond, which can arise from shorter distance (or 

differences in hydrogen-bond angles). Perhaps the shorter RNA hydrogen bonds are 

inherent to the A-form secondary structure. Alternatively, differences in hydration between 

RNA and DNA may play role in their different hydrogen-bond lengths. Although RNA has 

been shown to have more structured water molecules in the major and minor grooves and 

around the ribose O2′ (127), DNA is more hydrated overall (108, 128). In small molecules, 

hydrogen-bond strengths have been demonstrated to increase in non-aqueous solvents (107). 

Thus, the lower hydration of RNA may promote stronger hydrogen bonds. Our results are 

consistent with only 0.04 Å
 
shorter N1–N3 distance in RNA, which is difficult to discern 

from the larger scatter in the RNA and DNA X-ray crystal structures in the Protein Data 

Bank. A thermodynamic comparison of isosequential 12 base-pair duplexes found that 

RNA was more stable than DNAdU 
by 3.8 kcal/ mol and that RNA5mU 

was more stable than 

DNA by 4.7 kcal/mol, which gives an average of  0.4 kcal/mol more stabilization per base 

pair for RNA (129). Our calculated energies suggest that ~25% of the 0.4 kcal/mol arises 

from the shorter separation between the RNA A:U base pairs (data not shown).  

For both RNA and DNA, 2hΔ13C2 values are most negative when the adenine is 

flanked by purines and least negative when pyrimidines are the intrastrand nearest 

neighbors. It is tempting to postulate that hydrogen-bond strengths have sequence 

dependence such that they are strongest in polypurine:polypyrimidine tracts. This 

hypothesis predicts that hydrogen-bonding and base-stacking interactions are coupled, 

which would have implications for cooperativity and long-range structure and function. 
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Indeed, recent calculations have suggested that π–π interactions between aromatic 

heterocycles play significant role in the hydrogen-bonding potential of an aromatic nitrogen 

base (130). However, we recognize the distinct possibility that base-stacking interactions 

may modulate 2hΔ13C2 without affecting hydrogen-bond strengths. Thus, we are initiating 

extensive DFT calculations of 2hΔ13C2 of A:U base pairs in different sequence contexts in 

an effort to determine the effect of base-stacking interactions on 2hΔ13C2 and hydrogen-

bond strength.  

Calculations and empirical data on DNA have shown that not only are 2hJNN 

sensitive to the hydrogen-bond length, but 1JNH coupling constants of imino groups are as 

well (131). Specifically, as the N1–N3 distance decreases JNH is calculated to become less 

negative. The utility of one-bond scalar couplings as reporters of hydrogen-bond strength 

have also been demonstrated for amide 1JNH couplings in proteins (132, 133). Recent study 

found that in RNA 1JNH values were 0.4 ± 0.61 
Hz less negative than those of DNA (134), 

which according to calculations on DNA triplex (131) corresponds to an N1–N3 hydrogen 

bond that is 0.02 ± 0.03 Å shorter (at 2.80 Å). Thus, the 2hΔ13C2- and 1JNH-predicted 

differences between RNA and DNA hydrogen-bond lengths are similar. Furthermore, the 

1JNH values showed statistically significant correlation with the 2hΔ13C2 values (134).  

It should be noted that this study did not consider G:C base pairs. Furthermore, the 

N6–O4 hydrogen bond of A:U/T base pairs was not observed in our experiments and any 

                                                 
1 The 0.4 ± 0.6 Hz is reported in the paper by Manalo et al. (116) as 0.4 ± 0.4 Hz, which is an error. 

Student’s t-test calculation, which shows relevant difference between RNA and DNA 1JNH values, is reported 
correctly.  
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conclusions regarding differences in overall hydrogen-bond strengths require consideration 

of both A:U/T hydrogen bonds. However, a recent study has suggested that cooperativity 

between the N1–N3 and N6–O4 hydrogen bonds of an A:T base-pair contribute 31% to the 

overall stability(135), which raises the possibility that N6– O4 hydrogen bonds in RNA are 

stronger than those of DNA as well  

 

Materials and methods 

 

NMR Sample Preparation and Experiments: The DNA samples were purchased 

from Integrated DNA Technologies (Coralville, IA, USA) and the RNA samples were 

purchased from Dharmacon (Lafayette, CO, USA). The DNA sequences are 

d(CGCGAATTCGCG)2, d(CGTTTTAAAACG)2, d(CGAAAATTTTCG)2, 

d(CGTATATATACG)2, and d(CGCGTATACGCG)2. For each DNA sequence there are 

corresponding RNA, modified DNA, and modified RNA sequences. The modified DNAs 

contain deoxyuridine in place of deoxythymidine. The modified RNAs contain 5-methyl 

uridine instead of uridine. All NMR experiments described here were performed on natural-

abundance samples equilibrated in a solvent mixture of 50% H2O and 50% D2O as 

described previously (106). Proton resonance assignments were determined from 

WATERGATE NOESY spectra (136). All chemical shifts were referenced to internal DSS 

(137).  

To measure 2hΔ13C2, we acquired 1H, 13C gradient-enhanced TROSY–HSQC 

spectra correlating adenine 1H2 with 13C2, as described previously (103). All experiments 
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were conducted at either 11.7 or 14.1 T (500 or 600 MHz 1H frequency) and a sample 

temperature of 25 °C on Varian Inova NMR spectrometers. Chemical shift evolutions for 

the two-dimensional spectra were 50 ms along t2 and 181 ms along t1. An exponential 1.0 

Hz linenarrowing function was applied along the t1 dimension during processing. Final 

digital resolutions were 5.9 and 1.8 Hz along F2 and F1, respectively. Each spectrum was 

collected in approximately 20 h, used an interscan delay of 2.5 s, and a delay of 3.3 ms for 

each INEPT dephasing period. Sample concentrations varied between 1.4 and 3.2 mM 

duplex for the oligonucleotides. Buffer conditions were 125 mM NaCl, 50 mM NaH2PO4, 

0.75 mM EDTA, 0.2 mM DSS, 0.02% NaN3, pH 7, 50% H2O, and 50% D2O. Peak 

positions were determined using polynomial interpolation with the program PIPP (138). As 

exchange rates of RNA and DNA imino protons with the 50% H2O, 50% D2O solvent 

mixture are slow under the conditions used here, each adenine 1H2, 13C2 pair presents two 

peaks, one for each pyrimidine H3 isotopomer. It was determined earlier that 13C2(1H3) 

resonates upfield relative to 13C2(2H3) (103). The trans-hydrogen bond deuterium isotope 

effect is defined here as 2hΔ13C2 = δ13C2(1H3) – δ13C2(2H3) and is therefore, negative.  

It should be noted that 2hΔ13C2 values were previously published for the unmodified 

RNA and DNA sequences. However, only one spectrum was collected for each unmodified 

DNA sample. As such, one or two additional data sets were acquired on the unmodified 

DNA samples and the resulting 2hΔ13C2 values averaged with the original data set. 

Similarly, one additional data set was acquired on the unmodified RNA samples and the 

new 2hΔ13C2 values were averaged with the two original data sets. For the modified RNA 
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and DNA samples, reported 2hΔ13C2 values are the averages from two or three spectra 

(Appendix B).  

 

Density Functional Theory Calculations: A 13C nucleus two bonds from the site of 

deuterium substitution (C–A–H) experiences a frequency shift called the deuterium isotope 

shift, 2Δ13C = δ13C(1H) – δ13C(2H), and can be approximated by Equation 1 (104, 126):  

 

2Δ13C = – dσ/RAH × ΔR             (1)  

 

where σ is the 13C NMR shielding constant, and ΔR = RAH – RAD is the difference in the 

mean bond lengths of A─1H and A─2H, respectively.  

The DFT calculations are used to calculate dσ/RAH and ΔR. Specifically, in order to 

calculate 2hΔ13C2 using Equation 1, we need to calculate dσ/RAH, which is the first 

derivative of the NMR shielding constant of 13C2 of adenine with respect to the pyrimidine 

N3–H3 bond length, and ΔR = RAH – RAD, where RAH and RAD are the mean N3─1H3 and 

N3─2H3 bond lengths of the base-paired uracil or thymine. The DFT calculations of 

2hΔ13C2 were carried out on isolated A:U and A:T base pairs (Figure 3.7) according to the 

method of Abildgaard et al. (104), using Becke’s exchange (139) and Perdew and Wang’s 

correlation functional (140) (BPW91), as implemented in (141). Calculations were carried 

out on an SGI Altix 3700 supercomputer at the Texas A&M University Supercomputing 

Facility. Full geometry optimization of A:U and A:T base pairs were performed with the 
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Pople basis sets (142) 6-31G(d) on all heavy atoms (C, N, O) and hydrogen atoms bound to 

carbon, but with 6-31G(d, p) on hydrogen atoms bound to nitrogen (104).  

From Equation 1, calculation of 2hΔ13C2 requires the separate calculations of 

dσ/RAH and ΔR. The dσ/RAH is determined from the slope of calculated adenine 13C2 

shielding values, σ, as a function of the U/T N3–H3 bond length (Figure 3.8a): σ at the N3–

H3 bond length of fully optimized base pairs is calculated with the 6-31G(d) basis set using 

the Gauge-Independent Atomic Orbital (GIAO) method (143, 144). Then, the fully 

optimized N3–H3 bond length is shortened by 0.01 Å and the r is recalculated. These two 

points are used to calculate dσ/RAH as shown in Figure 3.8a for an isolated A:U base pair. It 

should be noted that r is linear within a 0.05 Å range (data not shown) and that DR is only 

~0.01 Å. 

The ΔR was determined from a potential energy surface scan along the pyrimidine 

N3–H3 bond in 0.05 Å increments around the fully optimized U/T N3–H3 bond lengths to 

produce a total of 18 points. The basis set used in these calculations was the same as that 

for geometry optimizations. Nine points surrounding the energy minimum were fit to the 

Morse potential function (145). Zeropoint energies were calculated using the reduced 

masses from frequency calculations of protonated (N3–1H3) and deuterated (N3–2H3) 

isotopomers of A:U and A:T base pairs. The mean pyrimidine N3–1H3 and N3–2H3 bond 

lengths RAH and RAD were then obtained from the Morse potential equation by using the fit 

parameters and zero-point energies (Figure 3.8b). 
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Figure 3.7. Model structures of A:U (X=H) and A:T (X=CH3) base pairs used in the DFT 
calculations. The ribose groups were replaced by methyl groups to reduce computational 
costs. 
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Figure 3.8. DFT calculations of (a) the 13C2 shielding of adenine and (b) the total energy 
change of a Watson–Crick A:U base pair as functions of the N3–H3 bond length of uracil. 
The two points in (a) correspond to N3–H3 bond lengths of 1.0682 and 1.0582 Å, which 
were used to determine that dσ/dRNH = 4.74 ppm/ Å. The nine calculated points in (b) were 
fit to the Morse potential function (Equation 2). The zero-point energies of the proton and 
deuteron are 3.3606 and 2.2572 kcal/mol, respectively, with mean N31H3 and N32H3 bond 
lengths of 1.0880 and 1.0809 Å , which yield ΔR=0.0071 Å . From (a) and (b), we get 
2hΔ13C2 = –dσ/dRNH × ΔR = –4.74 ppm/Å × 0.0071 Å = –33.7 ppb. 
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The Morse potential has the form given in Equation 2 (145): 

 

ΔE = D{1 – Exp[–a(R – Re)]}2,             (2) 

 

where R is the pyrimidine N3–H3 bond length, Re is the N3–H3 bond length at the 

potential minimum, D is the ‘depth’ of the potential energy function, a = [k/(2D)]1/2 

describes the ‘width’ of the potential, and k is the force constant of the bond. The permitted 

energy levels are given in Equation 3: 

 

ΔE = (υ + 1/2)hcυ̃ – (υ + 1/2)2χhcυ̃ ,            (3) 

 

where υ is the vibrational quantum number and can take the integer values 0, 1, 2, etc., χ is 

called the anharmonicity constant and is equal to hcυ̃ /(4D), υ̃  is the wave number, h is the 

Planck constant, and c is the speed of light. The wavenumber is defined as υ̃ = 

{1/(2πc)}(k/m)1/2, where m is the reduced mass. The zero-point energies, EZP, for the two 

isotopomers are calculated at υ = 0 : EZP = (hcυ̃ /2)(1 – χ/2). Fitting points such as those 

shown in Figure 3.8b to Equation 2 yields D, a, and Re, from which χ and υ̃  can be derived 

and used to determine EZP. The RNH is the average of the two N3─1H3 bond length 

solutions to the Morse potential function at EZP for the 1H3 isotopomer. The RND is 

determined analogously. 

The 2hΔ13C2 is calculated as the product of –dσ/dRNH and ΔR (104). Calculations of 

2hΔ13C2 were performed at the fully optimized A:U and A:T geometries and at different 



 71

(constrained) N1─N3 distances. In deriving ΔR for the structures with constrained N1─N3 

distances the reduced masses obtained from frequency calculations of the fully optimized 

base pairs were used since frequency calculations are valid only at stationary points on the 

potential energy surface (146). Energy corrections for basis set superposition error (BSSE) 

are very small (less than 0.0007% of the counterpoise-corrected energy of fully optimized 

A:U and A:T); hence all calculations were performed without BSSE correction). Several 

input files used in our Gaussian calculations are provided in the Appendix B. 
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CHAPTER IV 

CONCLUSION AND DISCUSSION 

 

The day/night switch of the circadian clock of Synechococcus Elongatus  

 

The work accomplished here shows that rhythmic phosphorylation of KaiC is 

determined in large part by the dynamic equilibrium of the A-loops. KaiA shifts the 

equilibrium towards the exposed state through direct interactions with the A-loop, thereby 

enhancing the autokinase activity over that of the autophosphatase of KaiC. In contrast, 

KaiB shifts the dynamic equilibrium of the A-loop towards the buried state not by directly 

interacting with it but rather through hindering KaiA. Work here also showed that the 

equilibrium position of the A-loop likely determines the position of ATP. When the A-

loops favor the buried state, the ATP is held far away from the sites of phosphorylation. 

However, when the exposed state is favored, ATP approaches T432 and S431 for 

phosphoryl transfer.  

The work presented here opens the following several important new questions that 

should be pursued with all due haste. 

1. How does the conformation of KaiC depend on A-loop position? 

The work presented here shows how the position of the dynamic equilibrium 

of the A-loop determines the relative activities of KaiC’s autokinase and 

autophosphatase activities. It is unknown how the position of the A-loop 

changes the conformation of KaiC to influence these activities. It is 
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proposed here that the A-loop position determines the conformation of the 

ATP binding pocket, but structural details are lacking. A primary future 

objective should be to elucidate such details. 

2. Does KaiA interact with more than just the 30 C-terminal residues of KaiC? 

Structural details are available only for a complex between the C-terminal 

domain of KaiA and a peptide of the 30 C-terminal residues of KaiC. KaiA 

interacts much more tightly with full-length KaiC than with just free C-

terminal peptides. The higher local concentration of C-terminal segments in 

the KaiC hexamer relative to free peptides in solution used in this study 

likely accounts for part of this discrepancy. It is unknown whether part of 

the tighter binding between full-length proteins arises from KaiA–KaiC 

interactions that do not include the 30 residue C-terminal segment. So far, 

there is only a partial accounting of the interactions between KaiA and KaiC. 

Structural details of the interactions between the full-length proteins is 

required to completely understand how KaiA induces KaiC 

autophosphorylation. 

3. How does the N-terminal domain of KaiA regulate the KaiA–KaiC 

interaction? 

The affinity of full-length KaiA for the C-terminal 30 residues of KaiC is 

several fold weaker than that of the truncated C-terminal domain of KaiA. 

Thus, the N-terminal domain of KaiA somehow weakens the affinity of 

KaiA for KaiC. Yet, the N-terminal domain of KaiA does not have any 
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detectable affinity for the C-terminal residues of KaiC. So, how is this 

attenuation achieved? Does the presence of the N-terminal domain of KaiA 

affect the structure of its C-terminal domain? A comparison of the NMR 

structure of the C-terminal domain of KaiA with the X-ray crystal structure 

of full-length KaiA hints at such an affection. What is missing in this 

comparison is a structure of full-length KaiA with the C-terminal KaiC 

peptide bound. Structural details of this complex can be obtained using 

state-of-the art NMR experiments. 

4. What are the different phosphorylation-dependent conformational states of 

KaiC? 

KaiA–KaiC, KaiB–KaiC, and KaiA-KaiB–KaiC interactions are driven by 

the phosphorylation states of KaiC. Reversible phosphorylation is a common 

strategy among proteins for switching conformational states (147). As the 

sites of phosphorylation of KaiC are at the hexameric subunit interfaces of 

the CII domains, it is proposed here that phosphorylation causes dramatic 

remodeling of KaiC. Structural details of KaiC in each of its 

phosphorylation states are needed to understand its phosphorylation-

dependent interactions with KaiA and KaiB. 

5. How do pST-KaiC and KaiB interact? 

The KaiB–KaiC interaction is important as it determines the reversal from 

KaiC autophosphorylation to autodephosphorylation. Yet high resolution 

structures of a KaiB-KaiC complex are lacking. KaiB interacts with a 
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specific phosphoform of KaiC, pST-KaiC, where only S431 is 

phosphorylated (57, 58). It was shown here that KaiB does not directly 

interact with the C-terminal tail of KaiC, and does not affect KaiC activity in 

the absence of KaiA. So KaiB’s affect on the dynamic equilibrium of the A-

loop is indirect. Electron microscopy experiments show that KaiB binds as a 

dimer to the top of the CII dome (72), but the resolution is 25Å, much too 

low to resolve the interactions important for stabilizing the KaiB–pST-KaiC 

complex. Structural details of this complex in comparison with the structures 

of the other phosphoforms of KaiC will reveal why KaiB as a particular 

affinity for pST-KaiC over KaiC, SpT-KaiC, and pSpT-KaiC. 

6. How does KaiB hinder KaiA? 

KaiB does not directly affect KaiC activity but exerts itself by blocking 

KaiA stimulation of KaiC, resulting in the autodephosphorylation half of the 

cycle of KaiC phosphorylation. Currently, how KaiB accomplishes this task 

is completely unknown. Any interactions between KaiA and KaiB have not 

yet been detectable in the absence of KaiC. However, KaiA and KaiB form 

large complexes with pST-KaiC (57, 58). The KaiA–KaiB interactions on 

pST-KaiC are unknown, but are critically important to the function of this 

circadian oscillator. 

7. Why does KaiB require the presence of the N-terminal domain of KaiA for 

its function? 
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It was shown here that the truncated C-terminal domain of KaiA is immune 

to KaiB. In other words, KaiB cannot stop the C-terminal domain of KaiA 

from stimulating KaiC in the absence of the N-terminal domain of KaiA. 

Mysteriously, the N-terminal domain plays a fundamental role in KaiB 

function. Do KaiB and the N-terminal domain of KaiA physically contact or 

is their interaction indirect?  

 

All of the questions posed above can be approached using NMR, even though the 

molecular weights of some of the complexes will be several hundreds of kilodaltons. 

Recent advances overcome the problems of fast signal relaxation and of overly complex 

spectra in large molecules, by combining selective labeling of proteins with a new type of 

NMR experiment (148, 149). The proteins of interest are expressed such that hydrogen sites 

are uniformly deuterated, except for a single methyl group in valine, leucine, and isoleucine 

residues (150). This dilution of hydrogen atoms with deuterium atoms reduces spectra 

complexity and increases signal strength by taking advantage of certain NMR relaxation 

phenomena (149). These methyl groups are uniformly spaced in proteins and serve as 

reporters of protein dynamics or of structural perturbations due to phosphorylation or 

protein-protein interactions.  

Even in the absence of specific assignments of these methyl resonances, spectra 

report on changes in the overall protein structure and dynamics under different sample 

conditions (151). For example, NMR can be used to determine the distinct spectral 

signatures for labeled KaiC in its different phosphoforms or, more likely, stable 
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phosphomimics (152) and in the presence and absence of unlabeled KaiB and/or KaiA. 

Indeed, several methyl groups accessible by this method are located along the subunit 

interfaces of KaiC and near the sites of phosphorylation, S431 and T432. This would allow 

the direct observation of changes as these proteins interact. Spectral assignments allow the 

mapping of observed structural and dynamic changes onto the available crystal structures. 

Recently, another large system, the 670 kD 20S proteasome of Archaea was studied (153) 

using methods that can probably be applied to the 350 kD KaiC hexamer and its complexes. 

 

Hydrogen bonds of DNA and RNA  

 

The work presented here shows for the first time that RNA hydrogen bonds are 

inherently shorter than those of DNA by a few hundredths of an Angstrom. The lateness of 

this discovery is rather remarkable in light of the extensive history of biophysical studies on 

nucleic acids and the 1150 DNA and 669 RNA structures deposited to date in the Protein 

Data Bank. The reason this difference was not discovered earlier was because previous 

NMR and X-ray experiments were not sensitive enough. 2hΔ13C2 is clearly the most 

sensitive gauge of DNA and RNA hydrogen bonds. It is demonstrated here that the 

chemical difference between uracil in RNA and thymine in DNA have no effect on 

hydrogen bond lengths.  

However, 2hΔ13C2 can in principle be affected by interactions other than hydrogen 

bonding, raising the possibility that the difference in DNA and RNA 2hΔ13C2 values is just 

a consequence of their respective B- and A-form conformations and not the result of 
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hydrogen bond differences. An independent line of evidence was needed. Calculations 

show that the one-bond scalar coupling constant of an 15N–1H pair,  1JNH, decreases in 

magnitude as the length of a N···1H–15N hydrogen bond decreases (131). 1JNH arises from 

the magnetic polarization of electrons by nuclear spins (154) whereas 2hΔ13C2 is vibrational 

in origin. Thus, they are mutually independent observables. It was shown by others in the 

LiWang laboratory that 1JNH values of RNA were indeed smaller in magnitude than those 

of DNA (134), enforcing our original conclusion that RNA hydrogen bonds are shorter. 

It was suggested here that the sequence dependence of 2hΔ13C2 reflects the sequence 

dependence of hydrogen-bond lengths in DNA and RNA.  However, the vibrational and 

shielding factors of 2hΔ13C2 can in principle be affected by interactions other than hydrogen 

bonding. Sequence-dependent base stacking may alter the vibrational and shielding factors 

to different extents independently of hydrogen bonding. Thus, the sequence dependence of 

2hΔ13C2 may be due to the sequence dependence of base stacking rather than to differences 

in hydrogen bond lengths. Others in the LiWang laboratory calculated that indeed 

sequence-dependent base stacking produces a sequence dependence in 2hΔ13C2 (155). 

These calculations predicted that base stacking contributes to hydrogen-bond strength and 

that the experimental sequence dependence of 2hΔ13C2 does in fact reflect sequence 

dependence in hydrogen-bond lengths and strengths. These calculations predict that the 

cooperativity of DNA and RNA structure arises at least in part from the coupling between 

hydrogen-bond and base stacking interactions. Experimentally weakening base stacking 

interactions was found to remove this coupling (155). Future work should test the 
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contribution of this coupling in DNA and RNA motifs that have been previously shown to 

have high or low cooperativity in their folding/unfolding behavior. 

The physicochemical basis for shorter hydrogen bonds in RNA with respect to 

DNA was proposed in the work presented to arise from differences in hydration (156). It 

was known already that 1) hydrogen bonds become stronger as water activity is reduced 

(107), and 2) RNA is less hydrated than DNA (108, 157). Indeed, the A-form conformation 

adopted by RNA is the conformation of dehydrated DNA (74). Others in the LiWang 

laboratory used dilute ethanol-water mixtures to reduce water activity and thus the water 

available for hydration of solutions of DNA and RNA (158). 1JNH magnitudes of DNA and 

RNA became smaller in 8 mol% ethanol, supporting the notion that dehydration decreases 

hydrogen-bond lengths. 1JNH values of DNA in 8 mol% ethanol were statistically equal to 

those of RNA in water, which is consistent with our original hypothesis that the reduced 

hydration of RNA with respect to DNA was a major factor in their hydrogen-bond length 

differences. A direct observation of hydrogen-bond length changes in a protein as water 

activity is decreased would show that this effect is general.  
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APPENDIX A 

 

  

Figure A.1. SDS/PAGE gels of KaiC and KaiC variants ± KaiA ± KaiB as a function of 
time. These images were quantitated by densitometry for Figure 2.2. All KaiC samples 
were fresh, except for the second set of experiments for KaiC497, which were incubated 18 
h at 30°C ± KaiA ± KaiB before data collection. 
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Figure A.2. Lambda phosphatase assays of KaiC and KaiC variants. KaiC protein (2.3 M) 
was incubated with λ-phosphatase (12000 U) in 50 L at 30 °C for six hours. λ−phosphatase 
inhibitor was a cocktail of 10 mM Na3VO4 + 50 mM NaF (final concentrations). Aliquots 
(14µL first and last lanes; 3µL middle lane) were loaded onto 6.5% SDS polyacrylamide 
gels. The gels were stained with Coomassie Brilliant Blue. The phosphorylated and 
unphosphorylated forms of KaiC are indicated as P and NP, respectively.  
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Figure A.3. SDS PAGE gels of KaiC D474A, KaiC I472A, KaiC W331A and KaiC E444D 
as a function of time ± KaiA ± KaiB. These images were quantitated by densitometry. Also 
shown are lambda phosphatase assays for KaiC D474A, KaiC I472A, KaiC W331A and 
KaiC E444D. The experiments and conditions used here are identical to those described 
earlier.  
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APPENDIX B 

 

Table B.1. 1H3 chemical shifts of RNA, DNA, RNA5mU, and DNAdU.a 
Base  Pair RNAb DNAb RNA5mU DNAdU 

1,  A5:U/T8 13.76 13.76 13.45 13.92 
1,  A6:U/T7 14.02 13.63 14.02 13.68 
2,  U/T3:A10 14.20 14.00 14.19 14.05 
2,  U/T4:A9 13.76 13.94 13.68 14.07 
2,  U/T5:A8 13.62 13.80 13.52 13.94 
2,  U/T6:A7 12.86 13.43 12.60 13.63 
3,  A3:U/T10 13.66 13.74 13.39 13.90 
3,  A4:U/T9 13.61 13.88 13.51 14.01 
3,  A5:U/T8 13.66 13.99 13.53 14.11 
3,  A6:U/T7 13.96 13.72 14.06 13.79 
4,  U/T3:A10 13.40 13.33c 13.14 13.45 
4,  A4:U/T9 13.12 13.26c 13.00 13.35 
4,  U/T5:A8 13.12 13.08c 12.92 13.24 
4,  A6:U/T7 13.11 13.11c 12.94 13.24 
5,  U/T5:A8 13.44 13.34 13.13 13.49 
5,  A6:U/T7 13.14 13.19 13.06 13.31 

 
   
aChemical shifts are given in parts per million relative to internal DSS. The 
five RNA, DNA, RNA5mU, and DNAdU sequences are 1 = r(CGCGAAUUCGCG)2, 2 = 
r(CGUUUUAAAACG)2, 3 = r(CGAAAAUUUUCG)2, 4 = r(CGUAUAUAUACG)2, and 5 
= r(CGCGUAUACGCG)2, where only the RNA sequences are given.   
 
bValues are averages from additional data sets and those of Vakonakis et al. (103, 106).   
   
cValues published earlier (106) were incorrectly assigned and are corrected here. 
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Table B.2. 13C2 chemical shifts of RNA, DNA, RNA5mU, and DNAdU.a 

Base  Pair RNAb DNAb RNA5mU DNAdU 

1,  A5:U/T8 153.65 154.75 153.83 154.79 
1,  A6:U/T7 154.42 155.32 154.30 155.23 
2,  U/T3:A10 154.71 155.61 154.74 155.45 
2,  U/T4:A9 153.54 154.52 153.61 154.26 
2,  U/T5:A8 153.36 154.41 153.46 154.23 
2,  U/T6:A7 152.62 154.42 152.81 154.57 
3,  A3:U/T10 153.59 155.04 153.77 154.96 
3,  A4:U/T9 153.38 154.38 153.45 154.23 
3,  A5:U/T8 153.52 154.22 153.53 154.06 
3,  A6:U/T7 154.44 155.29 154.14 155.14 
4,  U/T3:A10 154.13 155.35d 154.31 155.33 
4,  A4:U/T9 N.A.c 154.99d 153.71 155.11 
4,  U/T5:A8 N.A.c 154.76d 153.93 N.A.c 
4,  A6:U/T7 153.87 154.72d 153.83 N.A.c 
5,  U/T5:A8 154.03 155.14 154.23 155.16 
5,  A6:U/T7 153.84 154.89 153.80 155.03 

 
 aChemical shifts are given in parts per million and indirectly referenced to internal 
DSS (159). The sequences are defined in the caption of Table B.1.  
  
 bValues are averages from additional data sets and those of Vakonakis  et  al. (103, 106).   
   
cNot available due to resonance overlap.   
   
dValues published earlier (106) were incorrectly assigned and are corrected here.  
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Table B.3. 2hΔ13C2 values of RNA, DNA, RNA5mU, and DNAdU.a 

Base  Pair RNAb DNAb RNA5mU DNAdU 
1,  A5:U/T8 ‐53  ±  1.2 ‐54  ±  1.2 ‐52  ±  2.2 ‐52  ±  0.9 
1,  A6:U/T7 ‐51  ±  1.5 ‐48  ±  1.4 ‐47  ±  0.8 ‐49  ±  0.1 

2,  U/T3:A10 ‐49  ±  2.8 ‐47  ±  1.3 ‐53  ±  0.3 ‐46  ±  0.2 
2,  U/T4:A9 ‐52  ±  2.2 ‐47  ±  2.0 ‐61  ±  1.6 ‐55  ±  0.8 
2,  U/T5:A8 ‐56  ±  1.6 ‐53  ±  1.0 ‐55  ±  1.8 ‐52  ±  1.2 
2,  U/T6:A7 ‐53  ±  1.3 ‐49  ±  1.5 ‐49  ±  1.1 ‐44  ±  1.2 

3,  A3:U/T10 ‐58  ±  1.2 ‐52  ±  1.3 ‐57  ±  1.2 ‐49  ±  1.9 
3,  A4:U/T9 ‐52  ±  1.0 ‐50  ±  0.7 ‐61  ±  0.8 ‐55  ±  0.9 
3,  A5:U/T8 ‐63  ±  0.6 ‐53  ±  0.6 ‐57  ±  2.1 ‐55  ±  1.2 
3,  A6:U/T7 ‐51  ±  0.6 ‐46  ±  1.2 ‐52  ±  1.2 ‐50  ±  0.4 

4,  U/T3:A10 ‐44  ±  1.3 ‐42  ±  0.9d ‐44  ±  0.8 ‐40  ±  1.4 
4,  A4:U/T9 N.A.c ‐44  ±  0.3d ‐48  ±  0.6 ‐46  ±  0.7 
4,  U/T5:A8 N.A.c ‐42  ±  0.8d ‐45  ±  1.8 N.A.c 
4,  A6:U/T7 ‐49  ±  1.2 ‐44  ±  1.1d ‐47  ±  1.5 N.A.c 
5,  U/T5:A8 ‐51  ±  0.9 ‐45  ±  1.3 ‐47  ±  1.8 ‐45  ±  1.4 
5,  A6:U/T7 ‐50  ±  0.5 ‐43  ±  0.8 ‐46  ±  1.4 ‐43  ±  1.1 

 
   
a2hΔ13C2 values are given in parts per billion. Each value is the average of 2–3 independent 
measurements. The sequences are defined in the caption of Table B.1.   
   
bValues are averages from additional data sets and those of Vakonakis et al. (103, 106).   
   
cNot available due to resonance overlap.   
   
dValues published earlier (106) were incorrectly assigned and are corrected here.  
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For a general introduction to Gaussian and Gaussian input files, please see 
Exploring Chemistry with Electronic Structure Methods (Second edition) by James B. 
Foreman and Æleen Frisch; Copyright © 1993, 1995-96, Gaussian, Inc.: Pittsburgh, PA.   
 
1. Gaussian  input  file  for  full  geometry  optimization  of  an  AU  base  pair   
 
#p bpw91/gen opt pop=full gfinput  
 
AU opt  
 
0 1  
H  -0.000014  0.948603  -0.014271  
N  -0.000027  1.996855  0.033740  
C  -0.000011  2.638656  -1.186382  
N  -0.000022  4.043277  -1.108695  
C  -0.000029  4.685547  0.105936  
C  -0.000042  4.031024  1.288922  
C  -0.000037  2.578184  1.297593  
O  -0.000043  1.884663  2.318912  
H  -0.000057  4.557142  2.233148  
H  -0.000027  5.769283  0.047786  
O  0.000040  2.042769  -2.254344  
C  0.000060  4.811446  -2.353756  
H  -0.000332  4.099494  -3.176650  
H  0.893086  5.440561  -2.415084  
H  -0.892529  5.441207  -2.414759  
N  0.000009  -0.847272  -0.081598  
C  0.000032  -1.424063  -1.299529  
N  0.000041  -2.722694  -1.594075  
C  0.000049  -3.474845  -0.481708  
C  0.000029  -3.025339  0.841228  
C  0.000006  -1.623045  1.028449  
N  0.000014  -4.083791  1.730558  
C  0.000171  -5.143094  0.954999  
N  0.000004  -4.850603  -0.395128  
H  0.000214  -6.168162  1.302838  
C  -0.000101  -5.773879  -1.518171  
H  -0.892074  -6.406739  -1.501866  
H  0.891803  -6.406835  -1.501920  
H  -0.000100  -5.177638  -2.431470  
N  -0.000019  -1.042878  2.238681  
H  -0.000021  -1.631380  3.055732  
H  -0.000033  -0.024444  2.328057  
H  0.000018  -0.724561  -2.132376  
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C N O 0  
6-31g(d)  
****  
1 31 32  
6-31g(d,p)  
****  
9 10 13 14 15 25 27 28 29 33  
6-31g(d)  
****  
 
2. Gaussian input file for geometry optimization of an AU base pair with constrained 
N1···N3 distance    
 
#p bpw91/gen opt=modredund pop=full gfinput  
 
AU opt with N--N = 2.75 A  
 
0 1  
H  0.000043  1.137983  0.036121  
N  0.000053  2.169844  0.086076  
C  0.000133  2.817623  -1.137834  
N  -0.000001  4.235732  -1.051148  
C  -0.000026  4.874057  0.168258  
C  -0.000001  4.206089  1.356734  
C  0.000011  2.751572  1.359992  
O  -0.000013  2.049684  2.390515  
H  -0.000037  4.733929  2.308610  
H  -0.000084  5.965685  0.115479  
O  -0.000010  2.228289  -2.220472  
C  -0.000047  5.005501  -2.298036  
H  -0.000283  4.282968  -3.122844  
H  0.899711  5.638030  -2.361074  
H  -0.899602  5.638342  -2.360796  
N  0.000028  -0.577605  -0.032361  
C  0.000065  -1.164452  -1.253224  
N  0.000062  -2.473023  -1.549187  
C  0.000029  -3.219100  -0.425431  
C  -0.000009  -2.765675  0.906191  
C  -0.000011  -1.355251  1.089016  
N  -0.000012  -3.822333  1.804049  
C  -0.000010  -4.891761  1.022838  
N  -0.000034  -4.602526  -0.333884  
H  -0.000028  -5.922453  1.376725  
C  -0.000089  -5.526274  -1.461074  
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H  -0.898656  -6.162852  -1.445364  
H  0.898378  -6.162992  -1.445322  
H  -0.000023  -4.921954  -2.378497  
N  -0.000027  -0.764088  2.299421  
H  -0.000047  -1.352400  3.123967  
H  -0.000025  0.266340  2.381587  
H  0.000094  -0.464220  -2.094608  
*B  
1  
2 F  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16 F  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
C N O 0  
6-31g(d)  
****  
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1 31 32  
6-31g(d,p)  
****  
9 10 13 14 15 25 27 28 29 33  
6-31g(d)  
****  
  
3. Gaussian input file for a shielding calculation of the fully‐optimized AU base pair    
 
#p bpw91/6-31g(d) nmr pop=full gfinput  
scf=(conver=8)  
 
AU shielding at opt N-H  
 
0 1  
H  
N  1  B1  
C  2  B2 1   A1  
N  3  B3 2   A2 1   D1  
C  4  B4 3   A3 2   D2  
C  5  B5 4   A4 3   D3  
C  2  B6 1   A5 3   D4  
O  7  B7 2   A6 1   D5  
H  6  B8 5   A7 4   D6  
H  5  B9 4   A8 3   D7  
O  3  B10 2   A9 1   D8  
C  4  B11 3   A10 2   D9  
H  12  B12 4   A11 3   D10  
H  12  B13 4   A12 3   D11  
H  12  B14 4   A13 3   D12  
N  2  B15 3   A14 11  D13  
C  16  B16 2   A15 3   D14  
N  17  B17 16  A16 2   D15  
C  18  B18 17  A17 16  D16  
C  19  B19 18  A18 17  D17  
C  16  B20 2   A19 3   D18  
N  20  B21 19  A20 18  D19  
C  22  B22 20  A21 19  D20  
N  19  B23 18  A22 17  D21  
H  23  B24 22  A23 20  D22  
C  24  B25 19  A24 18  D23  
H  26  B26 24  A25 19  D24  
H  26  B27 24  A26 19  D25  
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H  26  B28 24  A27 19  D26  
N  21  B29 16  A28 2   D27  
H  30  B30 21  A29 16  D28  
H  30  B31 21  A30 16  D29  
H  17  B32 16  A31 2   D30  

B1  1.068193  
B2  1.384765  
B3  1.420756  
B4  1.376376  
B5  1.363326  
B6  1.400453  
B7  1.246846  
B8  1.088431  
B9  1.092903  
B10  1.232647  
B11  1.465358  
B12  1.096523  
B13  1.101649  
B14  1.101647  
B15  2.820248  
B16  1.354584  
B17  1.341624  
B18  1.348873  
B19  1.406702  
B20  1.364631  
B21  1.386606  
B22  1.324374  
B23  1.386452  
B24  1.089753  
B25  1.457350  
B26  1.101318  
B27  1.101318  
B28  1.098575  
B29  1.347054  
B30  1.012910  
B31  1.033699  
B32  1.094646  
A1  115.129235  
A2  114.392938  
A3  121.128790  
A4  123.031575  
A5  117.305327  
A6  121.197650  
A7  121.652836  
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A8  114.862772  
A9  123.547379  
A10  118.191194  
A11  107.092356  
A12  110.504448  
A13  110.503571  
A14  115.422567  
A15  118.141123  
A16  128.417055  
A17  110.836383  
A18  127.615294  
A19  122.271974  
A20  111.551040  
A21  103.497056  
A22  127.366652  
A23  124.902295  
A24  125.549129  
A25  110.816430  
A26  110.815803  
A27  107.291426  
A28  119.228715  
A29  118.461261  
A30  120.590020  
A31  114.558735  
D1  179.993481  
D2  0.008174  
D3  -0.003750  
D4  -179.998822  
D5  0.001276  
D6  -179.999041  
D7  179.997160  
D8  0.011187  
D9  -179.994776  
D10  0.017573  
D11  -119.303662  
D12  119.340205  
D13  0.011236  
D14  -0.001381  
D15  179.999989  
D16  -0.000690  
D17  0.000566  
D18  179.998159  
D19  -179.998985  
D20  -0.001534  
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D21  179.997364  
D22  -179.998900  
D23  -0.000486  
D24  -119.208360  
D25  119.213414  
D26  0.002594  
D27  -0.000502  
D28  -179.999395  
D29  0.000899  
D30  -0.000494  
 

4. Gaussian input file for an energy scan along the uracil imino N–H bond of the 
fully optimized AU base pair    
 
#p bpw91/gen scan gfinput  
 
AU scan  
 
0 1  
H  
N  1  B1  
C  2  B2 1   A1  
N  3  B3 2   A2 1   D1  
C  4  B4 3   A3 2   D2  
C  5  B5 4   A4 3   D3  
C  2  B6 1   A5 3   D4  
O  7  B7 2   A6 1   D5  
H  6  B8 5   A7 4   D6  
H  5  B9 4   A8 3   D7  
O  3  B10 2   A9 1   D8  
C  4  B11 3   A10 2   D9  
H  12  B12 4   A11 3   D10  
H  12  B13 4   A12 3   D11  
H  12  B14 4   A13 3   D12  
N  2  B15 3   A14 11  D13  
C  16  B16 2   A15 3   D14  
N  17  B17 16  A16 2   D15  
C  18  B18 17  A17 16  D16  
C  19  B19 18  A18 17  D17  
C  16  B20 2   A19 3   D18  
N  20  B21 19  A20 18  D19  
C  22  B22 20  A21 19  D20  
N  19  B23 18  A22 17  D21  
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H  23  B24 22  A23 20  D22  
C  24  B25 19  A24 18  D23  
H  26  B26 24  A25 19  D24  
H  26  B27 24  A26 19  D25  
H  26  B28 24  A27 19  D26  
N  21  B29 16  A28 2   D27  
H  30  B30 21  A29 16  D28  
H  30  B31 21  A30 16  D29  
H  17  B32 16  A31 2   D30  

B1  1.068193 S 9 0.05  
B2  1.384765  
B3  1.420756  
B4  1.376376  
B5  1.363326  
B6  1.400453  
B7  1.246846  
B8  1.088431  
B9  1.092903  
B10  1.232647  
B11  1.465358  
B12  1.096523  
B13  1.101649  
B14  1.101647  
B15  2.820248  
B16  1.354584  
B17  1.341624  
B18  1.348873  
B19  1.406702  
B20  1.364631  
B21  1.386606  
B22  1.324374  
B23  1.386452  
B24  1.089753  
B25  1.457350  
B26  1.101318  
B27  1.101318  
B28  1.098575  
B29  1.347054  
B30  1.012910  
B31  1.033699  
B32  1.094646  
A1  115.129235  
A2  114.392938  
A3  121.128790  
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A4  123.031575  
A5  117.305327  
A6  121.197650  
A7  121.652836  
A8  114.862772  
A9  123.547379  
A10  118.191194  
A11  107.092356  
A12  110.504448  
A13  110.503571  
A14  115.422567  
A15  118.141123  
A16  128.417055  
A17  110.836383  
A18  127.615294  
A19  122.271974  
A20  111.551040  
A21  103.497056  
A22  127.366652  
A23  124.902295  
A24  125.549129  
A25  110.816430  
A26  110.815803  
A27  107.291426  
A28  119.228715  
A29  118.461261  
A30  120.590020  
A31  114.558735  
D1  179.993481  
D2  0.008174  
D3  -0.003750  
D4  -179.998822  
D5  0.001276  
D6  -179.999041  
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D7  179.997160  
D8  0.011187  
D9  -179.994776  
D10  0.017573  
D11  -119.303662  
D12  119.340205  
D13  0.011236  
D14  -0.001381  
D15  179.999989  
D16  -0.000690  
D17  0.000566  
D18  179.998159  
D19  -179.998985  
D20  -0.001534  
D21  179.997364  
D22  -179.998900  
D23  -0.000486  
D24  -119.208360  
D25  119.213414  
D26  0.002594  
D27  -0.000502  
D28  -179.999395  
D29  0.000899  
D30  -0.000494  

 
C N O 0  
6-31g(d)  
****  
1 31 32  
6-31g(d,p)  
****  
9 10 13 14 15 25 27 28 29 33  
6-31g(d)  
****  
 
5. Gaussian input file for frequency calculation of the fully‐optimized AU base pair 
 
#p freq=(noraman,readisotopes) bpw91/gen pop=full gfinput  
 
AU freq  
 
0 1  
H  0.000043  1.137983  0.036121  
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N  0.000053  2.204935  0.087589  
C  0.000134  2.852715  -1.136321  
N  -0.000001  4.270824  -1.049636  
C  -0.000026  4.909148  0.169771  
C  -0.000000  4.241180  1.358247  
C  0.000011  2.786664  1.361504  
O  -0.000013  2.084776  2.392028  
H  -0.000037  4.769020  2.310122  
H  -0.000084  6.000776  0.116992  
O  -0.000010  2.263380  -2.218959  
C  -0.000046  5.040593  -2.296524  
H  -0.000283  4.318059  -3.121331  
H  0.899712  5.673121  -2.359561  
H  -0.899601  5.673434  -2.359283  
N  0.000028  -0.612696  -0.033873  
C  0.000065  -1.199543  -1.254737  
N  0.000061  -2.508115  -1.550700  
C  0.000029  -3.254191  -0.426943  
C  -0.000010  -2.800766  0.904678  
C  -0.000011  -1.390343  1.087503  
N  -0.000012  -3.857424  1.802536  
C  -0.000010  -4.926853  1.021326  
N  -0.000035  -4.637617  -0.335397  
H  -0.000029  -5.957545  1.375212  
C  -0.000089  -5.561365  -1.462587  
H  -0.898657  -6.197944  -1.446877  
H  0.898378  -6.198083  -1.446835  
H  -0.000023  -4.957045  -2.380010  
N  -0.000028  -0.799179  2.297908  
H  -0.000047  -1.387491  3.122454  
H  -0.000025  0.231249  2.380074  
H  0.000093  -0.499312  -2.096121  
 
298.15 1.0  
1  
14  
12  
14  
12  
12  
12  
16  
1  
1  
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16  
12  
1  
1  
1  
14  
12  
14  
12  
12  
12  
14  
12  
14  
1  
12  
1  
1  
1  
14  
1  
1  
1  
 
C N O 0  
6-31g(d)  
****  
1 31 32  
6-31g(d,p)  
****  
9 10 13 14 15 25 27 28 29 33  
6-31g(d)  
**** 
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