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ABSTRACT 

 
Adaptive Mesh Refinement for a Finite Difference  

Scheme Using a Quadtree Decomposition Approach. (December 2006) 

Nandagopalan Auviur Srinivasa, B.Tech,  

Jawaharlal Nehru Technological University, Hyderabad, India 

Chair of Advisory Committee: Dr. Arun R. Srinivasa  

 
 

Some numerical simulations of multi-scale physical phenomena consume a 

significant amount of computational resources, since their domains are discretized on 

high resolution meshes. An enormous wastage of these resources occurs in 

refinement of sections of the domain where computation of the solution does not 

require high resolutions. This problem is effectively addressed by adaptive mesh 

refinement (AMR), a technique of local refinement of a mesh only in sections where 

needed, thus allowing concentration of effort where it is required. Sections of the 

domain needing high resolution are generally determined by means of a criterion 

which may vary depending on the nature of the problem. Fairly straightforward 

criteria could include comparing the solution to a threshold or the gradient of a 

solution, that is, its local rate of change to a threshold. While the former criterion is 

not particularly rigorous and hardly ever represents a physical phenomenon of 

interest, it is simple to implement. However, the gradient criterion is not as simple to 
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implement as a direct comparison of values, but it is still quick and a good indicator 

of the effectiveness of the AMR technique.  

 

The objective of this thesis is to arrive at an adaptive mesh refinement algorithm for 

a finite difference scheme using a quadtree decomposition approach. In the AMR 

algorithm developed, a mesh of increasingly fine resolution permits high resolution 

computation in sub-domains of interest and low resolution in others. In this thesis 

work, the gradient of the solution has been considered as the criterion determining 

the regions of the domain needing refinement. Initial tests using the AMR algorithm 

demonstrate that the paradigm adopted has considerable promise for a variety of 

research problems. The tests performed thus far depict that the quantity of 

computational resources consumed is significantly less while maintaining the quality 

of the solution. Analysis included comparison of results obtained with analytical 

solutions for four test problems, as well as a thorough study of a contemporary 

problem in solid mechanics. 
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CHAPTER I 

INTRODUCTION 

1.1 Numerical Analysis: Introduction and Applications 

Numerical analysis deals with the study of algorithms for the problems of continuous 

mathematics. These algorithms are routinely applied to many problems in science and 

engineering. Important applications include weather forecasting, climate models, the 

analysis and design of molecules, the design of structures like bridges and airplanes, 

locating oil reservoirs and the like (Wikipedia, Numerical Analysis). In addition to 

mathematical axioms, theorems and proofs, numerical analysis uses empirical results of 

computation runs to probe new methods and analyze problems.  

 

Some of the problems analyzed by numerical analysis can be solved exactly by an 

algorithm. These methods are called direct methods.  Significant examples of such 

algorithms are the simplex method in linear programming and the Gaussian elimination 

method for solving systems of linear equations. However, for a majority of the problems, 

direct methods do not exist. For such cases, iterative methods are usually employed. An 

iterative method begins with a guess and finds successive approximation that hopefully 

converges to a solution.  

 

This thesis follows the style and format of the International Journal of Applied 
Mechanics and Engineering.  
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The iterative procedures consume a lot of computational resources. As a consequence, 

efficiency plays a very significant role and a heuristic method may be preferred above a 

method with a solid theoretic foundation (Wikipedia, Numerical Analysis).    

 

1.2 Adaptive Mesh Refinement 

In numerical analysis, continuous problems must sometimes be replaced by a discrete 

problem whose solution is known to approximate that of the continuous problem. This 

process is called discretization. The manner of discretization of the domain of interest 

into a grid of many individual elements is of enormous significance and interest in 

numerical analysis. In discretizing a domain, consideration must be given to an accurate 

representation of the domain, point sources, distributed sources with discontinuities and 

material and geometric discontinuities.  Considerations such as the need to discretize the 

domain into sufficiently small elements so that steep gradients of the solution can be 

accurately calculated require some engineering judgement, which comes from both a 

qualitative understanding of the behavior of the solution and an estimate of the 

computational costs involved in the mesh refinement (Reddy, 2003). The grid generated 

by discretization can be static, established once and for all at the beginning of the 

computation, or it may be dynamic, tracking the features of the result as the computation 

progresses. If the computation has features which one wants to track, then the dynamic 

gridding scheme must be adopted. This dynamic gridding scheme is called adaptive 

mesh refinement.  
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A mesh refinement should meet the following conditions (Reddy, 2003): (1) all previous 

meshes should be contained in the refined mesh; (2) every point of the domain can be 

included within an arbitrarily small element at any stage of the mesh refinement; and (3) 

the same order of approximation for the solution may be retained through all stages of 

the refinement process. The words ‘coarse’ and ‘fine’ are relative. In any given problem, 

one begins with a mesh that is believed to be adequate to solve the problem at hand. 

Then, as a second choice, one selects a mesh that consists of a larger number of elements 

to solve the problem once again. If there is a significant difference between the two 

solutions, one sees the benefit of mesh refinement, and further refinements may be 

warranted. If the difference is negligibly small, further refinements may not be 

necessary. Such numerical experiments with mesh refinements are not always feasible in 

practice, mostly because of the computational costs involved (Reddy, 2003). In cases 

where computational cost is the primary concern, one must depend on one’s judgement 

concerning what is a reasonably good mesh, which is often dictated by the geometry and 

qualitative understanding of the variations of the solution and its gradient. One should 

not be overly concerned with the numerical accuracy of the solution since most practical 

problems are approximated in their engineering formulations. A decision on when to 

stop refining a mesh further can be reached by a feel for the relative proportions and 

directions of various errors introduced into the analysis. Scientific knowledge and 

experience with a given class of problems is an essential part of any approximate 

analysis (Reddy, 2003).  
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Most problems of elasticity usually require solution of certain partial differential 

equations with given boundary conditions. Very often, these equations can be treated in 

a rigorous manner only in the case of simple boundaries and domains. This leads one to 

resort to approximate methods. Numerical solution of partial differential equations 

(PDE’s) involves choosing a discrete domain on which algebraic approximations of the 

PDE’s are solved. Some of the approximation techniques are  

• The Finite Difference method 

• The Methods of Successive Approximation 

• The Relaxation Method 

 

1.3 The Finite Difference Method 

The finite-difference method is one of the oldest numerical methods known for solving 

PDE’s. The first application of the finite-difference equations in elasticity is believed to 

have been made by C. Runge, who used this method in solving torsional problems and 

reduced the problem to the solution of a system of linear algebraic equations 

(Timoshenko and Goodier, 1970). Further progress was made by L. F. Richardson who 

used a certain iterative procedure to solve these algebraic equations, and obtained 

approximate values of the stresses produced in dams by gravity forces and water 

pressure (Timoshenko and Goodier, 1970). Another iteration process and the proof of its 

convergence was given by H. Liebmann (Timoshenko and Goodier, 1970). 

Subsequently, the finite-difference method was applied successfully in the theory of 
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plates by H. Marcus before it found wide application in various publications 

(Timoshenko and Goodier, 1970).  

 

In the finite-difference approach, the continuous problem domain is discretized so that 

the dependent variables are considered to exist only at discrete points (Anderson et al., 

1984). The finite-difference approximations are developed from Taylor series and the 

derivatives are approximated by differences resulting in an algebraic representation of 

the partial differential equation (PDE). Thus, a problem involving calculus gets 

transformed into an algebraic problem. The nature of the resulting algebraic system 

depends on the character of the problem posed by the original PDE (Anderson et al., 

1984). Equilibrium problems usually result in a system of algebraic equations which 

must be solved simultaneously throughout the problem domain in conjunction with 

specified boundary values (Anderson et al., 1984).  

 

Three forms of finite-difference equations are very commonly used. The three forms are 

• Forward Difference 

• Backward Difference 

• Central Difference 

 

Let us assume a function f(x) discretized in space as shown in Fig.1.  
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Fig. 1. Spatial discretization of the function f(x). 

 
Forward Difference 

A forward difference is defined as the difference of the functional values at the 

subsequent and present spatial positions.  It is denoted generally by an expression of the 

form  

                                                  ( ) ( )f f x h f x∇ = + −                                                  (1.1) 

 

Backward Difference 

A backward difference is defined as the difference of the values of a function at the 

present and previous spatial positions.  It is denoted generally by an expression of the 

form  

                                                    ( ) ( )f f x f x h∇ = − −                                               (1.2) 

 

Central Difference 

A central difference is defined as the average of the forward and the backward 

differences.  It can be denoted by the following expression 

                                                     
( ) ( )

2
f x h f x hf + − −

∇ =                                        (1.3) 
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Using the three forms of the finite-difference equations, approximate expressions for the 

differential equations can be obtained in the form of equations of finite difference.  

Considering a rectangular boundary as shown in Fig.2, and a function w(x,y) of two 

variables, the first and second derivatives of the function can be approximated as 

follows: 

 

 

Fig. 2. Computation of derivatives at node 0. 

First derivative  

Considering central difference for the first derivatives both along x and y directions,  

                                     

1 0 0 3

1 3

2 2

w w w w
w ww

x
δ δ

δ

− −
+ −∂

≈ =
∂                                 (1.4) 

                                      

2 0 0 4

2 4

2 2

w w w w
w ww

y
δ δ

δ

− −
+ −∂

≈ =
∂

                               (1.5) 
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Second derivative 

 

                                              
2

1 0 3
2 2

2w w ww
x δ

− +∂
≈

∂                                                   (1.6) 

                                              
2

2 0 4
2 2

2w w ww
y δ

− +∂
≈

∂
                                                  (1.7) 

 

1.4 Discretization: Finite Difference Method vs. Finite Element Method 

It is generally convenient to let the mesh increments be constant throughout the 

computational domain. However, in many instances, this is not possible due to 

boundaries which do not coincide with the regular mesh or the need to reduce the mesh 

spacing in certain regions to maintain the desired level of accuracy. It can be 

cumbersome to apply the finite difference method over non uniform meshes. Generally 

speaking, the finite-difference method in its basic form is restricted to handling 

rectangular shapes and simple alterations thereof, while the finite-element method, 

which is a numerical technique that employs the philosophy of constructing piecewise 

approximations of solutions to problems described by differential equations (Reddy, 

2003), is flexible even with curved geometries. The piecewise approximation of the 

solution allows the inclusion of any discontinuous data, such as material properties 

(Reddy 2003).  Although finite element methods now seem to dominate the scene, they 

have not yet made the impact on hyperbolic and other time-dependent problems that they 
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have achieved with elliptic equations (Mitchell and Griffiths, 1980). Finite difference 

methods are widely used for mixed or parabolic / hyperbolic PDE’s (Anderson et al., 

1984) such as those found in compressible high speed / open flows, for time-dependent 

problems in CFD and for reaction diffusion type of problems. For time dependent 

problems in CFD, finite-element method needs to solve the mass matrix at each time 

step whereas only a simple update is required with the finite-difference method. 

However, finite difference method does not do well with particularly structured 

boundaries, especially those with variable boundary layers like an aircraft wing.  

 

1.5 State of the Art  

The literature for adaptive mesh refinement is extensive, dating back to approximately 

twenty years and continuing today as a rich field of research in a number of fields like 

computational fluid dynamics, computational astrophysics, structural dynamics, 

magnetics, thermal dynamics and microwave theory among others. Several approaches 

(Min et al., 2006) exist to solve the finite-difference equations on uniform grids in the 

case of regular domains, as well as in the case of irregular domains (Gibou and Fedkiw, 

2005), (Gibou et al., 2002), (Ceniceros et al., 2004), (Johansen and Colella, 1998), 

(LeVeque and Li, 1994), (Li, 1998), (Mayo, 1984), (McCorquodale et al., 2004), 

(McKenney and Greengard, 1995). The spacing of the grid points determines the local 

error and hence the accuracy of the solution. Many physical problems have variations in 

scale and when solving these problems numerically, high grid resolution in certain 



                      10 

 

portions is needed to adequately solve the equations. Uniform grids in such situations are 

inefficient in terms of storage and CPU requirements. Using a highly refined mesh in 

portions of the domain where high levels of refinement are not needed represents a waste 

of computational effort. Limitations on computational resources often force a 

compromise on grid resolution. By locally refining the mesh only where needed, 

adaptive mesh refinement allows concentration of effort where it is required, allowing 

better resolution of the problem (Min et al., 2006).  

 

Over the years, several approaches (Berger and Colella, 1989), (Berger and Oliger, 

1984) have been developed in order to realize adaptive mesh refinement. Though 

adaptive mesh strategies are becoming popular (Sussman et al., 1999), (Ham et al., 

2002), (Ceniceros and Roma, 2004), implementations based on recursive structures, such 

as quadtrees / octrees are less common (Min et al., 2006).   
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CHAPTER II 

OVERALL SCOPE AND OBJECTIVES 

2.1 Overall Scope 

Numerical simulations of physical phenomena require enormous computer resources, 

both in terms of memory storage and computing time, since their domains are discretized 

on high resolution meshes. Adaptive mesh refinement is a class of strategies which 

address this problem by performing high resolution computation only in regions that 

require it (Neeman, 1996). A couple of the major reasons to avoid uniformly high 

resolution meshes are:  

 

• Some regions have small gradients, so the solution can be computed with 

sufficient accuracy on a low resolution grid.  

• Some regions have very high gradient, the solution varies very rapidly among the 

neighboring regions. To predict the solution within a reasonable degree of 

accuracy, high resolution is required.  

 

An adaptive mesh refinement technique begins with a coarse base grid. As the solution 

proceeds, the regions requiring more resolution are identified by means of some 

parameter which characterizes the solution (for e.g. the magnitude of the gradient of the 

solution). Finer sub-grids are then superimposed only on these regions. Finer and finer 
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sub-grids get added recursively until either a specified maximum level of refinement is 

achieved or the parameter characterizing the solution fails to satisfy the criterion for sub-

division. One of the critical things the algorithm has to ensure is that abrupt transitions in 

the mesh are prevented. Thus, in an ‘adaptive’ mesh refinement technique, the grid 

spacing is fixed for the base grid alone, and is determined locally for the sub-grids 

according to the requirements of the problem. Adaptive mesh refinement algorithms are 

found suitable and useful for purposes like front-tracking. The current work focuses 

entirely on simply connected domains alone. 

 

2.2 Objectives 

The objective of this thesis is to arrive at an adaptive mesh refinement algorithm for a 

finite difference scheme using a quadtree decomposition approach. This thesis will deal 

with the solution of the torsion problem in elasticity as a test case. Analytical solutions 

for the torsion problem are available for a wide variety of cross-sections and in great 

detail. This makes comparison of the solutions easier, which influences its selection over 

others. We employ a hierarchical data structure called quadtree for domain 

discretization. Finite-difference codes require that a regular Cartesian grid be defined 

over the domain of the region to be modeled. Quadtree grids, which can be classified as 

a particular type of unstructured grid, consist of congruent but different sizes of square 

regions, which are constructed by recursive sub-division from an initial square according 

to prescribed yet flexible criteria. As a result, the grids generated from quadtrees are 

found to be very suitable for a finite-difference implementation. 
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CHAPTER III 

QUADTREE DECOMPOSITION: AN INTRODUCTION AND A 

BRIEF EXPLANATION OF THE APPROACH 

3.1 Quadtree Data Structure 

The term quadtree is used to describe a class of hierarchical data structures whose 

common property is that they are based on the principle of recursive decomposition of 

space (Samet, 1990). This data structure was named a ‘quadtree’ by Raphael Finkel and 

J.L. Bentley, professors in the Department of Computer Science at the University of 

Kentucky and Carnegie-Mellon University respectively, in 1974 (Wikipedia, Quadtree). 

Quadtrees can be differentiated on the following bases (Samet, 1990): (1) the type of 

data they are used to represent; (2) the principle guiding the decomposition process; (3) 

the resolution. Currently, they are used for point data, areas, curves, surfaces and 

volumes. The decomposition may be into equal parts on each level or it may be 

governed by the input. The resolution of the decomposition may be fixed beforehand, or 

it may be governed by properties of the input data. One of the widely used quadtree 

representation of data is concerned with the representation of two-dimensional binary 

region data. The most studied quadtree approach to region representation, called a region 

quadtree, is based on the principle of successive sub-division of a bounded image array 

into four-equal sized quadrants (Samet, 1990). The region quadtree is easily extended to 

represent three-dimensional binary region data, and the resulting data structure is called 

a region octree.  
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3.2 Quadtree Decomposition  

Quadtree decomposition is a domain discretization technique based on the principle of 

region splitting, a procedure that sub-divides a square domain into quadrants, provided 

the domain meets a certain pre-defined criterion. Each of these quadrants is then 

considered to be a ‘region’. The criterion is then applied to each of these regions. If a 

region does not meet the criterion, it is not divided any further. However, if a region 

meets the criterion, it is sub-divided again into four quadrants, and the test criterion is 

applied to those regions. This process is repeated iteratively until every region in the 

domain fails to meet the criterion. The result might have regions of several different 

sizes.  Though there are many planar decomposition methods (for e.g. triangular, 

hexagonal etc.), the use of a quadtree decomposition method into squares can be easily 

justified (Samet, 1990). Squares are used because the resulting decomposition satisfies 

the following two properties (Samet, 1990): 

1. It yields a partition that is an infinitely repetitive pattern so that it can be used for 

square domains of any size.  

2. It yields a partition that is infinitely decomposable into increasingly finer patterns 

(i.e. higher resolution). 

A quadtree-like decomposition into four equilateral triangles also satisfies these criteria. 

However, unlike the decomposition into squares, it does not have a uniform orientation 

(Samet, 1990), i.e. all tiles cannot be mapped into each other by translations of the plane 
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that do not involve rotation and reflection. In Fig.3, regions 1 and 3 can be mapped onto 

each other by pure translation whereas regions 1 and 2 can be mapped onto each other 

only by rotation or reflection.   

 

 

Fig. 3. Quadtree decomposition of an equilateral triangle. 

In contrast, decomposition into hexagons has a uniform orientation but it does not satisfy 

property 2 (Samet, 1990). Fig.4. represents an example of region discretization by 

quadtree decomposition and the corresponding quadtree representation has been shown 

in Fig 5. The quadtree grid generation is fast, robust and straight-forward in concept. 

Mesh information is stored in simple hierarchical data structures and it is easy to obtain 

high resolution, dynamically adaptive grid. This is ideal when simulating free surface 

flows containing zones of locally high hydrodynamic gradient such as fronts.  

 

In addition to the above, quadtrees have certain properties which are very suitable and 

convenient for implementation of finite-difference schemes. Finite-difference codes 

require that a regular Cartesian grid be defined over the domain of the region to be 
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modeled. Quadtree grids, which can be classified as a particular type of unstructured 

grid, consist of congruent but different sizes of square regions, which are constructed by 

recursive sub-division from an initial square according to prescribed yet flexible criteria. 

This makes the grids generated from quadtrees very viable for a finite-difference 

implementation.  

 

 

Fig. 4. A region after sub-division by quadtree decomposition. 

 

Fig. 5. The quadtree representation of Fig.4. 
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3.3 Finite Difference Scheme over Non Uniform Grids 

As mentioned previously, domain discretization based on quadtree decomposition 

technique generally yields regions of several different sizes. As a result, the mode of 

approximation for a partial differential equation based on the finite-difference scheme is 

quite different when compared to the case of uniform mesh increments. A brief 

description of the mode of approximation for 2φ∇  follows; starting with the 

computational stencil shown in Fig.6.  

 

 

Fig. 6. The computational stencil for the finite difference scheme. 

2
''1

1 1( , ) ( , ) '( , ) ( , ) ..... . .
2

hx h y x y h x y x y H O Tφ φ φ φ+ = + + +                            (3.1) 

 
2

''2
2 2( , ) ( , ) '( , ) ( , ) ..... . .

2
hx h y x y h x y x y H O Tφ φ φ φ− = − + −                         (3.2) 

2
''3

3 3( , ) ( , ) '( , ) ( , ) ..... . .
2

hx y h x y h x y x y H O Tφ φ φ φ+ = + + +                         (3.3) 

2
''4

4 4( , ) ( , ) '( , ) ( , ) ..... . .
2

hx y h x y h x y x y H O Tφ φ φ φ− = − + −                            (3.4) 
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From the four equations, 2 2φ∇ = −  becomes 

2 2
2

2 2

2 1
1 2

1 2 1 2 1 2

4 4
3 4

3 4 3 4 3 4

2 ( , ) ( , ) ( , )

2 ( , ) ( , ) ( , )

x y

h hx h y x y x h y
h h h h h h

h hx y h x y x y h
h h h h h h

φ φφ

φ φ φ

φ φ φ

∂ ∂
∇ = +

∂ ∂

⎡ ⎤
= + − + −⎢ ⎥+ +⎣ ⎦

⎡ ⎤
+ + − + −⎢ ⎥+ +⎣ ⎦

                (3.5) 

 

Consider a part of a domain as shown in Fig.7.  

 

 

Fig. 7. Configuration representing discretization at node 4. 

The discretization of 2 2φ∇ = −  at node 4 is given by the expression  

2 2
2

2 2

34 2 2
6 4 3 5 4 2

3 4 3 4 3 4 1 2 1 2 1 2

2 2

x y

hh h h
h h h h h h h h h h h h

φ φφ

φ φ φ φ φ φ

∂ ∂
∇ = +

∂ ∂

⎡ ⎤ ⎡ ⎤
= − + + − +⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦⎣ ⎦

   (3.6) 
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In addition to the general formulation, there could be specific regions in the domain 

which would need special considerations. The modes of approximation for some of these 

are shown below.  

 

Let the domain be defined as shown in the Fig.8.  

 

 

Fig. 8. Configuration illustrating discretization at nodes 4 and 19. 

A couple of the regions where the principle of discretization is different when compared 

to what was previously shown are: 

• Region 4 

Region 4 is found to have two neighbors along its right edge. The discretization 

for 2φ∇  at node 4 is given by the expression 
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2 2
2

2 2

8 8 7
11 13 4 3

7 8 7 8 7 8 7 8

6 5
6 4 2
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2( ) 2( )

2

x y

h h h
h h h h h h h h

h h
h h h h h h

φ φφ

φ φ φ φ

φ φ φ

∂ ∂
∇ = +

∂ ∂

⎡ ⎤
= + − +⎢ ⎥+ + +⎣ ⎦

⎡ ⎤
+ − +⎢ ⎥+ +⎣ ⎦

                 (3.7) 

 

• Region 19 

Region 19 is a boundary region with no neighbors along its right and bottom 

edge. The discretization for 2φ∇  at node 4 is given by the expression 

 

                 

2 2
2

2 2

3 2
19 18 19 17

3 4 3 4 1 2 1 2

2 2

x y

h h
h h h h h h h h

φ φφ

φ φ φ φ

∂ ∂
∇ = +

∂ ∂

⎡ ⎤ ⎡ ⎤
= − + + − +⎢ ⎥ ⎢ ⎥+ +⎣ ⎦⎣ ⎦

                  (3.8) 

 

3.4 A Brief Note on Center Based and Node Based Discretization 

There are generally two standard choices for sampling the solution of a partial 

differential equation: sampling at the nodes or at the center of each region. A node-based 

discretization generally leads to a non-symmetric system since the relation between 

neighbors is non-reflective, whereas a center-based discretization often leads to a 

symmetric linear system (Min et al., 2006). This is explained by means of Fig.9 and 

Fig.10.  
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Fig. 9. Center based discretization. 

 
 

Fig. 10. Node based discretization. 

Center based discretization is considered in the case depicted in Fig.9. The discretization 

at c4 can be defined in terms of c2, c3, c5 and c6. Similarly, the discretizations at c2, c3, c5 

and c6 all include c4. Node based discretization is depicted in Fig.10. Geometrically, the 

discretization at v1 can be defined in terms of v2, v3, v4, v5 and v6. The discretization at 
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v6 can be defined in terms of v4, v5 and v7. As a consequence, the equation for v1 

involves v6, but the discretization for v6 does not involve v1, and thus produces non-

symmetric discretizations.  The center-based discretization has been preferred in this 

study.  

 

3.5 MATLAB: Introduction and Applications 

MATLAB (an acronym for Matrix Laboratory) is a special-purpose computer program 

optimized to perform engineering and scientific calculations. It started out as a program 

designed to perform matrix mathematics (Chapman, 2000), and has grown over the years 

into a flexible computing system capable of solving a wide variety of technical 

problems. The MATLAB language provides a very extensive library of predefined 

functions to make technical programming tasks easier and more efficient. This 

exhaustive library makes MATLAB a preferred programming tool over other 

programming languages like FORTRAN and C (Chapman, 2000). For computations 

involving arithmetic mean, standard deviation and median, most languages would 

require the user to write subroutines and functions. However, MATLAB has these and 

hundreds of such other functions built right into its package. Furthermore, MATLAB has 

an extensive set of special-purpose toolboxes available to solve complex problems in 

specific areas. Some of these toolboxes serve the fields of Signal Processing, Control 

Systems, Communications, Image Processing and Neural Networks, among many others 

(Chapman, 2000).  
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The image processing tool box of MATLAB has an in-built function called ‘qtdecomp’ 

which performs the quadtree decomposition of images based on a certain predefined 

criteria. This function works by dividing a square image into quadrants. Each of these 

quadrants is referred to as a block, and each block is then tested to see if it meets some 

criterion of homogeneity. The blocks are further sub-divided based on whether or not the 

criterion is satisfied or not. This process is iteratively repeated until each block fails to 

meet or meets the criterion depending upon how the criterion is defined.  

 

The present work incorporates certain features of this pre-defined function in MATLAB 

which performs quadtree decomposition to build its own version of a function for 

accomplishing quadtree decomposition. Though the underlying concepts of the functions 

are the same, the present work is not involved with image processing. Consequently, the 

function developed in the present work is not involved with reading of images or 

operations based on pixel intensity values unlike the predefined function in MATLAB. 

Also, it is observed that a vast amount of computational resources is required for the task 

at hand which involves a huge amount of loop-based operations. As a result, it is desired 

to interface MATLAB with a low-level programming language to speed up the task and 

reduce the amount of resources required. In this work, MATLAB interacts with C to 

accomplish the same through a facility called MEX which is described next.  Through 

this interfacing, a significant amount of reduction in the computational resources has 

been noted. To cite an example, a code which takes about 11 hours to finish a certain 
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task when coded in MATLAB alone, requires about 33 seconds when the MATLAB 

code is interfaced with MEX, to accomplish the same.  

 

3.6 MEX: Introduction and Applications    

MEX stands for MATLAB executable. Though MATLAB provides a complete, self-

contained environment for programming and manipulating data, it is advantageous if it 

can interact with programs external to its environment. To be able to support these 

external interfaces, MATLAB provides an Application Program Interface (API). The 

functions supported by the API include (MATLAB API Guide, 1998):  

 

• Calling C or FORTRAN programs from MATLAB. 

• Importing and exporting data to and from the MATLAB environment. 

• Establishing client / server relationships between MATLAB and other software 

programs.  

 

MEX-files are MATLAB’s external interface which allows you to call C or FORTRAN 

subroutines from MATLAB. Further, certain functions which go by the name of MEX 

functions can be called from these invoked C or FORTRAN subroutines. These 

functions perform functions on data similar to the way MATLAB does. MEX-files are 

dynamically linked, and can be built either from the MATLAB command line or can be 

compiled the way C or FORTRAN programs are compiled, depending on the complexity 

of the function to be performed, and then called from within a MATLAB session. The 
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MEX-files themselves are invoked exactly the way the M-files are invoked, by 

referencing the name without the suffix (MATLAB API Guide, 1998).  

 

Some of the common applications are: 

• Large pre-existing C and FORTRAN programs can be called from MATLAB 

without having to be re-written as M-files.  

• Bottleneck computations (typically loop-based code) that do not run fast enough 

in MATLAB can be recoded in C or FORTRAN for efficiency.  

 

The MATLAB language works with only a single object type: the MATLAB array. All 

MATLAB variables, including scalars, vectors, matrices, cell arrays, structures and 

objects are stored as MATLAB arrays. The MATLAB array is declared to be of type 

‘mxArray’ in C. The ‘mxArray’ structure, among other useful details, contains: 

 

• The variable’s name 

• The dimensions of the array 

• The type (array, cell, structure) 

• If numeric, whether is variable is real or complex 

• If sparse, its indices and nonzero maximum elements 

• If a structure or object, the number of fields and field names 
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The mx and mex Prefixes 

A large set of functions and subroutines are provided by the MATLAB Application 

Program Interface for the purpose of manipulating a MATLAB array data structure. 

These functions and subroutines begin either with the prefix ‘mx’ or ‘mex’.  

 

• ‘mx’ Routines 

The array access and creation routines for manipulating MATLAB arrays always 

start with the prefix ‘mx’. For example, ‘mxGetPr’ retrieves the pointer to the 

real data inside the array.  

 

• ‘mex’ Routines 

Routines that perform operations back in the MATLAB environment begin with 

the prefix ‘mex’. Useful ones include  

 ‘mexPrintf’, which prints a string at the MATLAB prompt 

 ‘mexErrMsg’, which prints a string and then kills the Mex-file call 

 

The Components of a MEX-File 

 

The source code for a MEX-file consists of two distinct parts: 

• Computational Routine 

• Gateway Routine 
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Computational Routine 

A computational routine comprises the code for performing the computations that need 

to be implemented in the MEX file. These computations can be numerical computations 

as well as inputting and outputting data.  

 

Gateway Routine 

A gateway routine interfaces the computational routine with MATLAB by the entry 

point ‘mexFunction’ and its arguments. The arguments are 

• plhs, an array of left-hand output arguments 

• nlhs, the number of left-hand output arguments 

• prhs, an array of right-hand input arguments 

• nrhs, the number of right hand input arguments 

The data contained in the ‘mxArray’ structure can be accessed in the Gateway routine 

and can be manipulated in the computational routine.     

 

MEX – Grabbing workspace variables 

It is critical for the MEX-file to be able to access the variables stored in the MATLAB 

workspace, which have been computed by some sequence of operations in MATLAB, 

when the MATLAB prompt encounters the MEX command. For this, MEX provides a 

very convenient feature wherein a variable defined in the MATLAB workspace can be 

directly read by the MEX file without passing the variable as an input argument. To be 

able to do this, the computational function and the gateway function are mingled. 
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However, the function is still defined as ‘mexFunction’ following which the ‘mxArray’ 

can be grabbed from the MATLAB’s workspace just by knowing its name. The general 

syntax for grabbing a variable ‘A’ is: 

A_ptr = mexGetVariable (“A”, “base”); 

On encountering the argument “base”, the mxArray ‘A’ is looked for in the current 

MATLAB workspace.  

 

A potential area of confusion 

Sometimes, a MEX file and an M-file with the same name can exist in the same folder. 

This is a potentially confusing thing. In such a situation, when the MATLAB prompt 

encounters the function call, it calls the MEX-file. However, this rule applies only if the 

files are in the same directory. Otherwise, MATLAB stops looking in its search path as 

soon as it finds a file with the correct name with either a .mex or an .m suffix.  

 

Since MEX-files make a significant difference to the code in terms of the required 

computational resources, it is easy to feel fascinated and make extensive use of the MEX 

feature. However, it is important to understand that MEX-files are not appropriate for all 

applications. MATLAB is a high-productivity system whose specialty lies in eliminating 

time-consuming, low-level programming in compiled languages like FORTRAN or C. 

Consequently, in this thesis work, most of the programming has been done using 

MATLAB while the MEX facility has been utilized in those portions of the work where 

loop-based code is predominant.  
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3.7 A Quintessential Problem in Solid Mechanics 

Considering the goals of this thesis work, it was important to develop a mesh refinement 

algorithm, be able to test the algorithm developed for a variety of cases, and determine 

its effectiveness by comparing the results from the simulations with the analytical 

solutions. To accomplish this, we needed to select a physical problem for which  

 

• Analytical solutions are available for a variety of cross-sections 

• The governing differential equation is easy to model using finite difference method 

• The boundary conditions are easy to implement 

 

Keeping the above requirements in mind, the torsion problem in elasticity, which is a 

quintessential problem in solid mechanics, was identified as one which would serve the 

purpose well. The next chapter details how each of the needs are addressed by the 

torsion problem. Thus, the torsion problem in elasticity has been implemented as a test 

case in this thesis work.  
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CHAPTER IV 

THE TORSION PROBLEM     

4.1 Introduction to the Torsion Problem in Elasticity 

The torsion problem in elasticity deals with cylinders of any cross-section being twisted 

by couples applied at the ends. The shearing stress (Chou and Pagano, 1992) in a 

cylinder of circular cross-section under torsion is given by the elementary torsion 

formula in strength of materials. According to the elementary theory of twist of circular 

shafts, the shearing stress at any point of the cross-section (Fig.11) is perpendicular to 

the radius ‘r’; proportional to the length ‘r’ and to the angle of twist per unit length ‘α ’ 

of the shaft (Timoshenko and Goodier, 1970):  

                                                            rτ μα=                                                            (4.1) 

whereμ  is the modulus of rigidity.  

 

Resolving this stress into two components parallel to the x and y axes, we obtain 

                                                           32 xσ μα=                                                            (4.2) 

                                                          31 yσ μα=−                                                           (4.3) 

 

The elementary theory also assumes that  

                                                 11 22 33 12 0σ σ σ σ= = = =                                               (4.4) 
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Fig. 11. Twist of a shaft of circular cross-section. 

It can be shown that this elementary solution is the exact solution under certain 

conditions. To do this, it is important to give a brief explanation of the equations of 

equilibrium, the equations of compatibility and the boundary conditions. 

 

Equations of equilibrium 

To determine the equations of equilibrium, let us consider a small rectangular 

parallelepiped with the sides ,x yδ δ and zδ  as shown in Fig.12. In calculating the forces 

acting on the element, we consider the sides as very small, and the force is obtained by 
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multiplying the stress at the centroid of a side by the area of the side. Also, the body 

force acting on the element, which can be neglected as a small quantity of higher order 

in certain cases, must in this case be considered as significant since it is of the same 

order of magnitude as the terms due to the variations of the stress components. Let X, Y, 

Z denote the components of this force per unit volume of the element.  

 

 

Fig. 12. Rectangular parallelepiped of dimensions ,x yδ δ and zδ . 

Then, in Cartesian coordinates, the equations of equilibrium of elasticity are given by the 

equations:  

                                             

1311 12

2321 22

31 32 33

0

0

0
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x y z
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x y z

σσ σ

σσ σ

σ σ σ

∂∂ ∂
+ + + =

∂ ∂ ∂
∂∂ ∂

+ + + =
∂ ∂ ∂
∂ ∂ ∂

+ + + =
∂ ∂ ∂

                                           (4.5) 
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The equations of equilibrium must be satisfied at all points throughout the volume of the 

body. The stresses vary over the volume of the body, but at the surface they must be 

such as to be in equilibrium with the external forces on the surface of the body. The 

conditions of equilibrium at the surface can be obtained by considering a tetrahedron 

OBCD so that the side BCD coincides with the surface of the body as shown in Fig.13. 

 

Fig. 13. BCD coincides with the surface and OBCD forms a tetrahedron. 

Denoting the components of the surface forces per unit area, the equations become: 

                                           
11 12 13

21 22 23

31 32 33

X l m n
Y l m n
Z l m n

σ σ σ

σ σ σ

σ σ σ

= + +

= + +

= + +
                                 (4.6) 
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in which l, m, n are the direction cosines of the outward normal to the surface of the 

body at the point under consideration. To determine the state of stress in a body subject 

to the action of given forces, it is necessary to solve the equilibrium equations, and the 

solution must be such as to satisfy the boundary conditions. These equations, containing 

six components of the stress, are not sufficient for the determination of these 

components. The problem is a statically determinate one, and in order to obtain the 

solution, the equations of compatibility are considered.   

 

Equations of compatibility 

In Cartesian coordinates, the compatibility conditions are given by the following 

equations: 
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⎝ ⎠

                   (4.7) 

 

Since the stress components are all either linear functions of the coordinates or zero, the 

equations of compatibility are satisfied, and it is only necessary to consider the equations 

of equilibrium and the boundary conditions. Substituting the expressions for the circular 

shaft into the equilibrium equations, it is found that the equations are satisfied provided 

there are no body forces. The lateral surface of the shaft is free from forces, and the 

boundary conditions are satisfied in the case of a cylinder of circular cross-section. Since 
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the stresses satisfy the governing equations of elasticity as well as the boundary 

conditions, therefore they represent the exact solution for a circular cylinder. The 

behavior of a circular cylinder under torsion is such that all cross-sections normal to the 

axis remain plane and the radii remain straight (Chou and Pagano, 1992).  

 

For cylinders of other cross-sections subjected to torque, however, this condition does 

not prevail and warping occurs.  

 

4.2 Torsion of Cylinders of Non Circular Cross Section 

The exact solution for the problem of torsion of shafts of non-circular cross-section was 

first formulated by Saint-Venant by using the semi-inverse method (Chou and Pagano, 

1992). In the beginning, he made certain assumptions as to the deformation of the 

twisted bar and showed that with these assumptions he could satisfy Eqs (4.5) and (4.6) 

(Timoshenko and Goodier, 1970). Then, from the uniqueness of solutions of the 

elasticity equations, it was shown that the assumptions made by him are correct and the 

solution obtained is the exact solution of the torsion problem, provided that the torques 

on the ends are applied as shear stresses in exactly the manner required by the solution.  

 

Guided by the deformations which occur in a circular cylinder, Saint-Venant assumed 

that the displacements which occur in a twisted non-circular cylinder are of the 

following nature (Chou and Pagano, 1992), (Slaughter, 2002):  
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• Each cross-section’s projection onto the X1-X2 plane rotates, but remains 

undistorted.  

• The amount each cross-section rotates is proportional to its distance from the end 

of the cylinder; i.e. the twist of each cross-section is 3Xφ α= , where’α ’ is the 

twist per unit length. 

• Each cross-section’s out-of-plane distortion is the same, and the magnitude of the 

distortion is proportional to the twist per unit length’α ’. 

 

 

Fig. 14. In-plane displacement during torsion. 

 
From the first two assumptions, the in-plane components of the displacement can be 

written as:  
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1 1 2

2 1 2

cos( ) cos (cos 1) sin

sin( ) sin sin (cos 1)

u r r X X

u r r X X

φ θ θ φ φ

φ θ θ φ φ

= + − = − −

= + − = + −
                 (4.8) 

 

The out-of-plane displacement of each cross-section is given by the expression 

                                                        3 1 2( , )u X Xαψ=                                                 (4.9) 

 

1 2( , )X Xψ is called the ‘warping function’ and describes the out-of-plane distortion of 

each cross-section. If 3 1Xφ α= << , then the displacement components can be 

approximated as  

                          1 2 3 2 1 3 3 1 2( , )u X X u X X u X Xα α αψ≈− ≈ ≈          (4.10) 

 

The components of strain can be obtained from the general expressions for the 

displacements: 

                                                       , ,
1 ( )
2ij i j j iu uε = +                                                   (4.11) 

 

Hence, 

                                                    11 22 33 12 0ε ε ε ε= = = =                                                (4.12) 

 

                                      31 ,1 2 32 ,2 1( ) ( )
2 2

X Xα αε ψ ε ψ= − = +                 (4.13) 
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Further, the expressions for the components of stress can be obtained from the 

constitutive equations of elasticity given by Eq.(4.14). 

                                                     2ij ij kk ijσ με λε δ= +                                                  (4.14) 

 

Hence, 

                                               11 22 33 12 0σ σ σ σ= = = =                                                  (4.15) 

                                      31 ,1 2 32 ,2 1( ) ( )X Xσ μα ψ σ μα ψ= − = +                       (4.16) 

 

The warping function must now be determined in such a way that Eq.(20) is satisfied. 

Substituting Eqs (4.15) and (4.16) into Eq.(4.5) and neglecting the body forces, we find 

that the warping function must satisfy the equation  

                                                      
2 2

2 2
1 2

0
X X
ψ ψ∂ ∂

+ =
∂ ∂

                                                   (4.17) 

 

Considering Eq.(21), for the lateral surface of the bar, which is free from external forces 

and has normals perpendiculars to the z axes, we have X = Y = Z = 0 and cos (Nz) = n 

=0. The first two of Eq.(4.6) are identically satisfied and the third gives  

                                                            31 32 0l mσ σ+ =                                                  (4.18) 

 

This means that the resultant shearing stress at the boundary is directed along the tangent 

to the boundary.  
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Fig. 15. Infinitesimal element ‘abc’ at the boundary. 

Considering an infinitesimal element ‘abc’ at the boundary as shown in Fig.15 and 

assuming that‘s’ is increasing in the direction from ‘c’ to ‘a’, we have  

                           2 1
1 2cos cosdX dXl NX m NX

ds ds
= = = =−                   (4.19) 

 

and Eq (4.18) becomes 

                                        2 1
2 1

1 2

0dX dXX X
X ds X ds
ψ ψ⎛ ⎞ ⎛ ⎞∂ ∂

− − + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
                         (4.20) 

 

Thus, each problem of torsion is reduced to the problem of finding a function satisfying 

Eqs (4.17) and (4.20).  
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An alternative procedure has the advantage of leading to a simpler boundary condition. 

Assuming the body force field to be negligible, the equilibrium equations reduce to the 

form,   

                                                            31,1 32,2 0σ σ+ =                                                 (4.21) 

 

Accordingly, the Prandtl Stress Function can be defined by the relations  

                                                      31 ,2 32 ,1σ φ σ φ= = −                                       (4.22) 

 

Comparing Eqs (4.16) and (4.22), it is evident that 

                                      
,2 ,1

,1 2 ,2 1X X
φ φ

ψ ψ
μα μα

= + = − −                            (4.23) 

Using Eq.(4.22) and the Beltrami Mitchell equations, the compatibility conditions for 

‘φ ’are obtained as  

                                                      
( )
( )

2
,211 ,222 ,2

2
,111 ,122 ,1

0

0

φ φ φ

φ φ φ

+ = ∇ =

+ = ∇ =
                                      (4.24) 

 

Eliminating Ψ by differentiating the first part of Eq.(4.23) with respect to ‘X2’ and the 

second part of the same with respect to ‘X1’, the governing partial differential equation 

in the case of torsion of non-circular cylinders is obtained as  

                                                              2 2φ μα∇ =−                                                    (4.25) 

On introducing Eq.(4.22), Eq.(4.17) becomes  
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                                            2 1

2 1

0dX dX d
X ds X ds ds
φ φ φ∂ ∂

+ = =
∂ ∂

                                        (4.26) 

 

This shows that the Prandtl stress function must be constant along the boundary of the 

cross-section. In the case of singly connected domains, this constant can be chosen 

arbitrarily.  The value of ‘φ  ‘at the boundary has been considered to be zero in this 

thesis work. Thus, the determination of the stress distribution over a cross-section of a 

twisted bar involves finding the function that satisfies Eq.(4.25) and is zero at the 

boundary.  

 

Also, considering the conditions at the ends of the twisted bar, the normals at the end 

cross-sections are parallel to the z axis. Hence, 0, 1l m n= = =± and Eq.(4.5) become 

                                                13 23X Yσ σ=± =±                                                  (4.27)  

  

in which the +ve sign should be taken for the end of the bar for which the outward 

normal has the direction of the +ve z axis. It is observed that the shearing forces over the 

ends are distributed in the same manner as the shearing stresses over the cross-sections 

of the bar. It can be proved that these forces produce a torque.  

 

Substituting in Eq.(4.27) from Eq.(4.22), and observing that ‘φ ‘ at the boundary is zero, 

we obtain  
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1 2 13 1 2 1 2 1 2

2 2

1 2 23 1 2 1 2 2 1

0

0

X dX dX dX dX dX dX dX dX
X X

Y dX dX dX dX dX dX dX dX
x x

φ φσ

φ φσ

∂ ∂
= = = =

∂ ∂
∂ ∂

= =− =− =
∂ ∂

∫∫ ∫∫ ∫∫ ∫ ∫

∫∫ ∫∫ ∫∫ ∫ ∫
            (4.28) 

 

Thus, the resultant of the forces distributed over the ends of the bar is zero, and these 

forces represent a couple, the magnitude of which is  

                   1 2 1 2 1 1 2 2 1 2
1 2

( )T YX XX dX dX X dX dX X dX dX
X X
φ φ∂ ∂

= − =− −
∂ ∂∫∫ ∫∫ ∫∫       (4.29) 

 

Integrating this by parts, and observing that ‘φ ‘= 0 at the boundary, we obtain  

                                                            1 22T dX dXφ= ∫∫                                              (4.30) 

 

Each of the integrals in the last part of Eq.(4.29) contributes one-half of the torque. Thus, 

half of the torque is due to the stress component ‘ 13σ  ‘and the other half due to ‘
23σ  ‘. 

Further, the twist per unit length ‘α ’ is related to the applied torque by the relation 

                                                                    T Dα=                                                       (4.31) 

 

where D is defined as the torsional rigidity and given by the expression  

                                                                2
C

D dAμ φ= ∫                                                   (4.32) 

The torsional rigidity provides a measure of the rigidity of a beam subjected to torsion 

(Sokolnikoff, 1983). It depends on the modulus of rigidity and the shape of the cross-

section of the beam alone.    
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From the general theory of torsion, Eq.(4.26) is valid even for multiply connected cross-

sections. However, unlike in the case of simply-connected domains, the constants cannot 

be chosen arbitrarily. Some of the relevant details are explained in the next section.  

 

4.3 Multiply Connected Domains 

Cross sections with holes in them require special treatment since it cannot be assumed 

that the Prandtl stress function vanishes at all the boundaries. In other words, the values 

of the constants associated with the boundaries need to be determined. The reason for 

this is that the differential equations for the Prandtl stress function is derived using the 

compatibility equations, which assume that the region is simply connected.  

 

Consider a hollow shaft whose cross-section has two or more boundaries. The simplest 

example of this kind is a hollow shaft with an inner boundary coinciding with one of the 

stress lines of the solid shaft, having the same boundary as the outer boundary of the 

hollow shaft.  

 

Consider an elliptic cross-section as shown in Fig.16. The stress function for the solid 

shaft is  

                                                     
2 2 2 2

2 2 2 2 1
2( )

a b F x y
a b a b

φ
⎛ ⎞

= + −⎜ ⎟+ ⎝ ⎠
                                (4.33) 
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Eq.(49) represents an ellipse that is geometrically similar to the outer boundary of the 

cross-section.  

                                                       
2 2

2 2 1
( ) ( )

x y
ak bk

+ =                                                  (4.34) 

 

Along this ellipse, the stress function denoted by Eq.(4.33) remains constant, and hence, 

for ‘k’ less than unity, the ellipse is a stress line for the solid elliptic shaft. The shearing 

stress at any point of this line is in the direction of the tangent to the line.  

 

 

Fig. 16. Solid shaft of elliptic cross-section. 
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Suppose a cylindrical surface is generated by the stress line with its axis parallel to the 

axis of the shaft. Then, it can be concluded that there will be no stresses acting across 

this cylindrical surface (Timoshenko and Goodier, 1970). The material bounded by this 

surface can be imagined to be removed without changing the stress distribution in the 

outer portion of the shaft. Hence, the stress function given by Eq.(4.33) is applicable to 

the hollow shaft also.  

 

For a given angle ‘α ‘of twist, the stresses in the hollow shaft are the same as in the 

corresponding solid shaft. But, the torque will be smaller by the amount which in the 

case of the solid shaft is carried by the portion of the cross-section corresponding to the 

hole. The ratio of the torque carried by the part which is imagined to be removed to the 

total torque is determined to be 4 :1k . Hence, for the hollow shaft, the Prandtl stress 

function is given by the expression  

                                                
2 2

4 2 2 1
(1 )

tM x y
ab k a b

φ
π

⎛ ⎞
=− + −⎜ ⎟− ⎝ ⎠

                                  (4.35) 

 

Let us assume a case when the inner boundary which converts a simply connected 

domain into a multiply connected domain is no longer a stress line of the solid shaft. 

From the general theory of torsion, the stress function must be constant along each 

boundary, but these constants cannot be chosen arbitrarily unlike in the case of simply 

connected domains. By making some minor modifications to the expressions of 

displacements, the constants could be determined such that the displacements become 
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single-valued.  A sufficient number of equations for determining these constants will 

then be obtained.  

 

From Eqs (4.9), (4.15) and (4.16), we obtain 

                                3 3
13 23

u uy x
x y

σ μ α σ μ α
⎛ ⎞∂ ∂⎛ ⎞= − = +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

              (4.36) 

 

By calculating the value of the integral along ‘ dsτ∫ ‘each boundary by resolving the 

total stress into the components, we obtain 

                                            

( )

31 32

3 3

dx dyds ds
ds ds
u udx dy ydx xdy
x y

τ σ σ

μ μα

⎛ ⎞= +⎜ ⎟
⎝ ⎠
⎛ ⎞∂ ∂

= + − −⎜ ⎟∂ ∂⎝ ⎠

∫ ∫

∫ ∫
                   (4.37) 

 

The first part of the integral in Eq.(4.37) vanishes from the condition that the integration 

is taken round a closed curve and that ‘w’ is a single-valued function. Hence,  

                                                   ( )ds xdy ydxτ μα= −∫ ∫                                              (4.38) 

 

The integral on the right side in Eq.(4.38) is equal to double the area enclosed. Hence,  

                                                       2ds Aτ μα=∫                                                        (4.39) 

 

Thus, it is required to determine the constant values of the stress function along the outer 

and inner boundaries so as to satisfy Eq.(4.39) for each boundary.  
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4.4 Implementation of the Boundary Conditions by FEM vs. FDM 

From the theory presented in the previous two sections, it is observed that the value of 

the Prandtl stress function is constant along the boundary, irrespective of whether the 

domain is simply connected or multiply connected. However, it is crucial to recognize 

that a fundamental difference between the boundary conditions for the simply connected 

domains and the multiply connected domains exists. 

 

                        
(a) (b)  

 
Fig. 17. (a) Simply connected domain.             (b) Multiply connected domain. 

 
 

For simply connected domains (Fig.17(a)), the Prandtl stress function can be assumed to 

be zero all along the boundary. For multiply connected domains (Fig.17(b)), the constant 

values of the Prandtl stress function on each of the boundaries cannot be arbitrarily 

assumed to be zero, they need to be determined. The value of this constant can be 

arbitrarily set to zero for one of the boundaries, but then the constant value of the Prandtl 
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stress function is no longer arbitrary on the other boundary. This gives rise to non-

standard boundary conditions in the case of multiply connected domains.  

 

The implementation of the boundary conditions by FEM and FDM for the two cases is 

an interesting case study. While there is no significant difference in the case of simply 

connected domains, in the case of multiply connected domains, FDM certainly holds an 

edge over FEM. As a result of the non-standard boundary condition for multiply 

connected domains, it is impossible for FEM to model multiply connected domains 

using the Prandtl stress function. As a result, the warping function is considered in FEM.  

 

However, FDM can model multiply connected domains using the Prandtl stress function. 

Being able to model the domains using the Prandtl stress function is crucial since it 

allows the computation of parameters like torsional rigidity, which is defined as the 

factor by which the torque is divided to obtain the twist per unit length. The torsional 

rigidity can be expressed by means of an explicit expression in terms of the Prandtl 

stress function. In this thesis work, torsional rigidity is one of the factors based on which 

the effectiveness of the adaptive mesh refinement scheme has been determined. The next 

section details the computation of the analytical solution for a particular simply 

connected domain, a cylinder with a rectangular cross-section in this case. Based on the 

theory discussed in the previous two sections, it also discusses the method of 

computation of the constants at the boundary to satisfy the boundary conditions.   
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4.5 Analytical Solution for a Cylinder with a Rectangular Cross Section 

Consider a uniform cylinder with rectangular cross-section of sides ‘a’ and ‘b’ with b>a 

as shown in Fig.18. The series solution of the torsion problem for a cylinder with 

rectangular cross-section is as follows. Choosing the coordinate axes through the 

centroid of the rectangle, a series form of the Prandtl’s stress function can be assumed as  

                                          1 2 2 1
0

( , ) ( ) cos(2 1) /k
k

x x Y x k x aφ π
∞

=

= +∑                              (4.40) 

 

 

Fig. 18. Rectangular plate with sides a and b. 

Boundary Conditions  

                                                        10
2
aat xφ = = ±                                               (4.41) 

                                                         10
2
bat xφ = = ±                                               (4.42) 
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The assumed series form satisfies Eq.(4.41), Eq.(4.42) requires 

                                                   ( / 2) ( / 2) 0k kY b Y b= − =                                               (4.43) 

 

Substituting the series form of φ into the governing partial differential equation for the 

torsion problem 2 2φ∇ = − , we obtain 

                                
2

2
2 2 12

0
"( ) (2 1) ( ) cos(2 1) / 2k

k
Y x k Y x k x a

a
π π

∞

=

⎡ ⎤
− + + =−⎢ ⎥

⎣ ⎦
∑              (4.44) 

 

From the Fourier series expansion, 

                                                
0

4 ( 1) cos(2 1) / 1
2 1

k

k

k x a
k

π
π

∞

=

−
+ =

+∑                                (4.45) 

 

Comparing Eqs (4.44) and (4.45) gives,  

                                                   
2

" 2
2

8 ( 1)(2 1)
(2 1)

k

k kY k Y
a k
π

π
−

− + = −
+

                           (4.46) 

 

The solution of Eq.(4.46) is of the form shown in Eq.(4.47) with constants Ak and Bk to 

be determined from Eq.(4.41), 

                              
2

2 2
2 3

8 ( 1)cosh(2 1) sinh(2 1)
(2 1)

k

k k k
x x aY A k B k
a a k

π π
π

−
= + + + +

+
       (4.47) 

                             

2

3 3

8 ( 1)cosh(2 1)
2 (2 1)

0

k

k

k

b aA k
a k

B

π
π

−
+ = −

+

=

                                              (4.48) 
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Substituting the values obtained into the series form of Prandtl’s function, we obtain 

                        
2

2
13 3

0

cosh(2 1) /8 ( 1) 1 cos(2 1) /
(2 1) cosh(2 1) / 2

k

k

k x aa k x a
k k b a

πφ π
π π

∞

=

⎧ ⎫+−
= − +⎨ ⎬+ +⎩ ⎭

∑           (4.49) 

 

Calculation of the stresses and the torsional rigidity  

The non-zero stress components are given by the following expression: 

                                                    13 31 ,1 2( )Xσ σ μα ψ= = −                                      (4.50) 

                                                     23 32 ,2 1( )Xσ σ μα ψ= = +                                     (4.51) 

 

where, 

                             2
,1 1 22 2

0

sinh(2 1) /8 ( 1) cos(2 1) /
(2 1) cosh(2 1) / 2

k

k

k x aa k x a X
k k b a

πψ π
π π

∞

=

+−
= − + +

+ +∑      (4.52) 

                             2
,2 1 12 2

0

cosh(2 1) /8 ( 1) 1 sin(2 1) /
(2 1) cosh(2 1) / 2

k

k

k x aa k x a X
k k b a

πψ π
π π

∞

=

⎧ ⎫+−
= − + −⎨ ⎬+ +⎩ ⎭

∑     (4.53) 

 

The maximum shear stress occurs at the mid-points of the longer sides 1 2( , ) ( ,0)
2
ax x = ± , 

and its magnitude can be computed by considering Eqs (4.51) and (4.53) as, 

 

                                  max 2 2
0

8 1( ) sec (2 1) / 2
(2 1)s

k

aa h k b a
k

ματ μα π
π

∞

=

= − +
+∑                 (4.54) 
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The series converges rapidly and can be approximated by its first term with an error of 

less than 0.5%. Hence,  

                                    max 2 2

8 8( ) (1 sec )
2s

a ba h
a

μα πτ μα
π π

= − −                                   (4.55) 

 

The torsional rigidity is given by  

                                    
3

4 4 5
0

32 2 tanh(2 1) / 2
(2 1) (2 1)k

a b aD k b a
k k

μ π
π π

∞

=

⎧ ⎫
= − +⎨ ⎬+ +⎩ ⎭

∑           (4.56) 

 

On similar lines, the analytical solutions for the torsion problem are available for a wide 

variety of cross-sections.  

 

The next chapter presents the results obtained by implementing the adaptive mesh 

refinement algorithm on a few simply connected domains.  
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CHAPTER V 

 

RESULTS AND DISCUSSION 

5.1 Adaptive Mesh Refinement Algorithm 

The following algorithm outlines the general procedure followed, to accomplish adaptive 

mesh refinement, during the analysis of cylinders of different cross-section, in this thesis 

work.  

 

1. Test case: Cylinder of a particular cross-section  

a) 2 2φ μα∇ = −  is solved on a coarse uniform grid using central difference scheme. 

b) Plots for ‘φ ’ and ‘ φ∇ ’ are obtained. 

 

2. Adaptive mesh refinement code 

a) The values of ‘ φ∇ ’ are the ‘input’ for the adaptive mesh refinement code.  

b) Quadtree decomposition technique is used to split every element which meets all 

of the following three criteria:  

(i) The size of the element is greater than a particular specified ‘minimum 

dimension’. 

(ii) The average value of the ‘ φ∇ ’ over the element is greater than a 

‘specified’ value.  
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(iii) The element has more than two neighboring elements along any edge.  

c) Splitting of elements occurs until no element in the domain satisfies all the above 

criteria simultaneously. An example of how this algorithm works has been 

provided in the appendix.  

d) The new mesh generated is used to solve the Laplace equation.  

e) Plots for ‘φ ’ and the ‘ φ∇ ’ are obtained. 

 

3. Comparison of results  

The results obtained from a fine uniform mesh and non-uniform mesh is compared 

with the analytical solution.  

 

One of the primary parameters compared, to determine the effectiveness of the adaptive 

mesh refinement algorithm developed, is the torsional rigidity. Torsional rigidity is 

defined as the factor by which the torque is divided to obtain the twist per unit length.  

 

In this thesis work, the torsional rigidity computed by using a fine uniform mesh as also 

a non-uniform mesh produced by the mesh refinement algorithm is compared with the 

one available from the analytical solution. The difference between the values is 

expressed in the form of a ratio as shown below.  

                                            ( ) ( )
%

( )
Solutionbasis Analytical

Analytical

TR TR
Error

TR
−

=                                   (5.1) 

 
where TR = Torsional Rigidity 
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5.2 Rectangular Domains  

Test Case I: Cylinder of rectangular cross section  

 

 
Fig. 19. Coarse uniform mesh - rectangular cross section. 

 
Fig. 20. Refined mesh - rectangular cross section. 
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Fig. 21. ‘ φ∇ ’ - coarse uniform mesh – rectangular cross section. 

 
Fig. 22. ‘ φ∇ ’ - refined mesh – rectangular cross section.  
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Fig. 23. Surf of ‘ φ∇ ’ - fine uniform mesh – rectangular cross section. 

 

 
 

Fig. 24. Surf of ‘ φ∇ ’ - refined mesh – rectangular cross section. 
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Table 1. Tabulated results for the case of a cylinder of rectangular cross section. 

 

S. No 
Solution 

Basis 

Number of 

nodes 

Torsional 

Rigidity 
Error% 

 

1 

 

2 

 

 

3 

 

Analytical 

 

Fine Uniform 

Mesh 

 

Refined Non-

uniform Mesh 

using Mesh 

Refinement 

Algorithm 

 

- 

 

3600 

 

 

640 

 

2.2488 

 

2.2474 

 

 

2.2489 

 

 

Datum 

 

0.62 

 

 

0.04 

 
 

The coarse uniform mesh for the rectangular cross section is shown in Fig. 19. Fig. 20 

shows the refined non uniform mesh generated by the mesh refinement algorithm. Figs 

21 and 22 show the corresponding comparative plots of ‘ φ∇ ’. The surface plots 

generated for the fine uniform mesh and the refined mesh are shown in Figs 23 and 24.  

The relevant results have been tabulated in Tab.1.   
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Test Case II: Cylinder of ‘C’ shaped cross section 

 

 
 

Fig. 25. Coarse uniform mesh – ‘C’ cross section.  

 

Fig. 26. Refined mesh – ‘C’ cross section. 
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Fig. 27. ‘ φ∇ ’ - coarse uniform mesh – ‘C’ cross section.  

 

Fig. 28. ‘ φ∇ ’ - refined mesh – ‘C’ cross section. 
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Fig. 29. Surf of ‘ φ∇ ’ - fine uniform mesh – ‘C’ cross section. 

 
 
 

Fig. 30. Surf of ‘ φ∇ ’ - refined mesh – ‘C’ cross section. 
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Table 2. Tabulated results for the case of a cylinder of ‘C’ shaped cross section. 

 
S. No Solution 

Basis 

Number of 

nodes 

Torsional 

Rigidity 

Error% 

 

1 

 

2 

 

 

3 

 

Analytical 

 

Fine Uniform Mesh 

 

Refined Non-

uniform Mesh 

using Mesh 

Refinement 

Algorithm 

 

- 

 

3600 

 

 

461 

 

0.2083 

 

0.2028 

 

 

0.2043 

 

 

Datum 

 

2.64 

 

 

1.92 

 
 

The coarse uniform mesh for the ‘C’ cross section is shown in Fig. 25. Fig. 26 shows the 

refined non uniform mesh generated by the mesh refinement algorithm. Figs 27 and 28 

show the corresponding comparative plots of ‘ φ∇ ’. The surface plots generated for the 

fine uniform mesh and the refined mesh are shown in Figs 29 and 30.  

The relevant results have been tabulated in Tab.2. 
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5.3 Non Rectangular Domains 

Test Case III: Cylinder of circular cross section 

 

 

Fig. 31. Coarse uniform mesh – circular cross section. 

 
 

Fig. 32. Refined mesh – circular cross section. 
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Fig. 33. ‘ φ∇ ’ - coarse uniform mesh – circular cross section. 

 
 

Fig. 34. ‘ φ∇ ’ - refined mesh – circular cross section. 
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Fig. 35. Surf of ‘ φ∇ ’ - fine uniform mesh – circular cross section. 

 
 

Fig. 36. Surf of ‘ φ∇ ’ - refined mesh – circular cross section. 
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Table 3. Tabulated results for the case of a cylinder of circular cross section. 

 
S. No Solution 

Basis 

Number of 

nodes 

Torsional 

Rigidity 

Error% 

 

1 

 

2 

 

 

3 

 

Analytical 

 

Fine Uniform Mesh 

 

Refined Non-

uniform Mesh 

using Mesh 

Refinement 

Algorithm 

 

- 

 

3600 

 

 

496 

 

1.5707 

 

1.5839 

 

 

1.5424 

 

 

Datum 

 

0.08 

 

 

1.80 

 

 

The coarse uniform mesh for the circular cross section is shown in Fig. 31. Fig. 32 

shows the refined non uniform mesh generated by the mesh refinement algorithm. Figs 

33 and 34 show the corresponding comparative plots of ‘ φ∇ ’. The surface plots 

generated for the fine uniform mesh and the refined mesh are shown in Figs 35 and 36.  

The relevant results have been tabulated in Tab.3. 
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Test Case IV: Cylinder with elliptical cross section 

 

 

Fig. 37. Coarse uniform mesh – elliptical cross section. 

 
 

Fig. 38. Refined mesh – elliptical cross section.
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Fig. 39. ‘ φ∇ ’ - coarse uniform mesh – elliptical cross section. 

 
 

Fig. 40. ‘ φ∇ ’ - refined mesh – elliptical cross section.
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Fig. 41. Surf of ‘ φ∇ ’ - fine uniform mesh – elliptical cross section. 

 
 

Fig. 42. Surf of ‘ φ∇ ’ - refined mesh – elliptical cross section. 
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Table 4. Tabulated results for the case of a cylinder of elliptical cross section. 

 
S. No Solution 

Basis 

Number 

of nodes 

Torsional 

Rigidity 

Error% 

 

1 

 

2 

 

 

3 

 

Analytical 

 

Fine Uniform Mesh 

 

Refined Non-

uniform Mesh 

using Mesh 

Refinement 

Algorithm 

 

- 

 

3600 

 

 

856 

 

0.2701 

 

0.2595 

 

 

0.2612 

 

 

Datum 

 

3.92 

 

 

3.29 

 

 

The coarse uniform mesh for the elliptical cross section is shown in Fig. 37. Fig. 38 

shows the refined non uniform mesh generated by the mesh refinement algorithm. Figs 

39 and 40 show the corresponding comparative plots of ‘ φ∇ ’. The surface plots 

generated for the fine uniform mesh and the refined mesh are shown in Figs 41 and 42.  

The relevant results have been tabulated in Tab.4. 
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5.4 Multiply Connected Domains 

Test Case: Square cross section with a square hole at the centre 

 

 
 

Fig. 43. Coarse uniform mesh – square cross section with hole. 

 
 

Fig. 44. Refined mesh – square cross section with hole. 
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Fig. 45. ‘ φ∇ ’ - coarse uniform mesh – square cross section with hole. 

 

Fig. 46. ‘ φ∇ ’ - refined mesh – square cross section with hole.
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Fig. 47. Surf of ‘ φ∇ ’ - fine uniform mesh – square cross section with hole. 

 

Fig. 48. Surf of ‘ φ∇ ’ - refined mesh – square cross section with hole. 
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Table 5. Tabulated results for the case of a cylinder of square cross-section with a hole.  

 
S. No Solution 

Basis 

Number 

of nodes 

Torsional 

Rigidity 

Error% 

 

1 

 

2 

 

 

3 

 

Analytical 

 

Fine Uniform Mesh 

 

Refined Non-

uniform Mesh 

using Mesh 

Refinement 

Algorithm 

 

- 

 

3600 

 

 

644 

 

- 

 

2.1265 

 

 

2.104 

 

 

Datum 

 

- 

 

 

- 

 

 

The coarse uniform mesh for the square cross section with a hole is shown in Fig. 43. 

Fig. 44 shows the refined non uniform mesh generated by the mesh refinement 

algorithm. Figs 45 and 46 show the corresponding comparative plots of ‘ φ∇ ’. The 

surface plots generated for the fine uniform mesh and the refined mesh are shown in Figs 

47 and 48. The relevant results have been tabulated in Tab.5. 
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5.5 Discussion 

On the basis of his investigations, Saint Venant had drawn some conclusions of practical 

interest (Timoshenko and Goodier, 1970). The maximum stress in all cases analyzed by 

him was obtained at the boundary of the cross-section at the points which are nearest to 

the centroid of the cross-section. From Figs 22, 28 and 40, it is observed that the mesh is 

finer at the boundaries, which roughly corroborates these conclusions of Saint Venant. 

However, a more detailed investigation about Saint Venant’s conclusions was later made 

by Filon, which showed that there are cases where the points of maximum stress, 

although always at the boundary, are not the nearest points to the centroid of the cross-

section (Timoshenko and Goodier, 1970).   

  

It is evident from the tabulated results that, for each of the cross-sections for which the 

simulations have been run, the Error % are within a reasonable range of 2-4%. In 

addition to the Error%, lot of insight could also be gained by proper interpretation of 

some other parameters. In this work, the criterion for domain decomposition is the φ∇ . 

In Fig.34, it is observed that the mesh gets finer as we move radially outward, which is a 

consequence of an increase in the φ∇  as we move away from the centre. It is also 

observed that there is hardly any refinement near the centre of the circle where the 

Prandtl Stress Function is expected to be a maximum. There is no decomposition in this 

region because φ∇ is expected to be almost zero.  
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Some of the other conclusions of Saint Venant of enormous practical importance are: 

• In the case of simply connected domains, for a given cross-sectional area, the 

torsional rigidity increases if the polar moment of inertia of the cross-section 

decreases. Thus, for a given amount of material, the circular shaft gives the 

highest torsional rigidity.  

• For a given torque and cross-sectional area, the maximum stress is the smallest 

for the cross-section with the smallest polar moment of inertia.  

• The torsional rigidity for any singly connected cross-section can be approximated 

by replacing the given shaft by the shaft of an elliptic cross-section having the 

same cross-sectional area and the same polar moment of inertia as the given 

shaft.  
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CHAPTER VI 

 

CONCLUSION 

6.1 Future Work 

The results of this thesis work are a clear indication of the potential of the 

implementation of adaptive mesh refinement strategies based on recursive structures 

such as quadtrees and octrees. The present work was limited to simply connected 

domains. Future work could include implementation of the strategy for simply connected 

domains of more complex geometries and multiply connected domains.  

 

Further, the present work has been limited to spatial discretization. It would be 

interesting to introduce the aspect of discretization in time and verify the effectiveness. 

A simple application could be the implementation of the strategy for dynamic modeling 

of wave fronts. The solution at one time step could be used to refine the mesh at the 

wave front, and the refined mesh could be used to compute the solution at the next time 

interval. This method could turn out to be extremely effective with appropriate time 

intervals based on the type of system being modeled.  

 

Also, one of the significant features of this thesis work is the incorporation of MEX in 

the simulations. However, in this work, it has not been possible to use MEX for dynamic 
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memory allocation. Appending this feature could have a huge impact on the 

computational resources required for the simulations.     

 

6.2 Conclusion 

In summary, the following were the main objectives of this thesis work: 

• To produce an adaptive mesh refinement algorithm 

• To implement the algorithm on problems of solid mechanics 

• To determine its effectiveness by comparing the solutions obtained with the 

analytical solution  

 

The listed objectives have been achieved and the related documentation has been 

provided in the form of the plots and the tabulated results. It was proposed that this 

thesis work would be limited to simply connected domains.  
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APPENDIX 

 

In this section, an example of recursive domain discretization based on the criterions of 

‘ φ∇ ’ and ‘minimum dimension of the region’ is presented. We begin with a sample 

coarse domain and define the criterions for domain decomposition. The criterions are 

applied to each of the regions of the domain. Regions, which meet the criterions 

simultaneously, undergo quadtree decomposition. This process continues iteratively until 

no region in the domain satisfies the criterions simultaneously.  In this example, sub-

division should occur if both of the following conditions are satisfied: 

1. Mean > 0.38   2. Size of region > 0.125 

 

Let us now consider the sample domain shown in Fig.49 and the relevant tabulation 

shown in Table 5.   

 

 
 

Fig. 49. Domain: Stage-1.



 

 

83

Table 6. Tabulated Results from Stage-1 of quadtree decomposition. 

 

X coordinate Y coordinate Size  of 
region 

φ∇  (f) Area of region 
(A) Mean = fA / A 

Further sub-
division needed? 

YES / NO 

Region 
Number 

-0.5 0.5 1 0.32 1 0.32 NO 1 

-0.5 -0.5 1 0.40 1 0.40 YES 2 

0.5 0.5 1 0.40 1 0.40 YES 3 

0.5 -0.5 1 0.32 1 0.32 NO 4 
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From the tabular column, it is evident that regions 2 and 3 satisfy both the criterions 

specified. Hence, quadtree decomposition of these regions occurs. The resultant domain 

has been shown in the Fig. 50.  

 

One of the significant things to note is the way the regions are numbered. It is also 

interesting to note the way numbering proceeds when moving from one stage to another. 

In this work, the left top coordinates of the regions is the basis of numbering. All regions 

whose left top lies along one column are accessed before moving on to adjacent column 

of regions and the corresponding left tops. As a result, since any stage might involve 

decomposition of a particular region, no region has any fixed ‘region number’. These 

‘region numbers’ keep changing dynamically and have been shown in the last column of 

Table 6 and Table 7.  

 

 
 

Fig. 50. Domain: Stage-2.



 

 

85

Table 7. Tabulated Results from Stage-2 of quadtree decomposition. 

 

X coordinate Y coordinate Size of 
region 

φ∇  (f) Area of region 
(A) Mean = fA / A 

Further sub-
division 
needed? 

YES / NO 

Region Number 

-0.50 0.50 1.00 0.32 1.00 0.32 NO 1 

-0.75 -0.25 0.50 0.38 0.25 0.38 NO 2 

-0.75 -0.75 0.50 0.36 0.25 0.36 NO 3 

-0.25 -0.25 0.50 0.48 0.25 0.48 YES 4 

-0.25 -0.75 0.50 0.38 0.25 0.38 NO 5 

0.25 0.75 0.50 0.38 0.25 0.38 NO 6 

0.25 0.25 0.50 0.48 0.25 0.48 YES 7 

0.50 -0.50 1.00 0.32 1.00 0.32 NO 8 

0.75 0.75 0.50 0.36 0.25 0.36 NO 9 

0.75 0.25 0.50 0.38 0.25 0.38 NO 10 
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The mean of the regions 4 and 7 exceed the criterion set and the size of these regions 

exceeds the minimum limit set.  As a result, these regions can get sub-divided further. 

The domain after discretization is shown in Fig. 51. 

 

 

 
 

Fig. 51. Domain: Stage-3. 

The details relevant to this discretized domain are presented in Table 8. The regions 

requiring decomposition have been identified. 
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Table 8. Tabulated Results from Stage-3 of quadtree decomposition. 

X coordinate Y coordinate Size of 
region 

φ∇  (f) Area of region 
(A) Mean = fA / A 

Further sub-
division needed? 

YES / NO 
Region Number 

-0.500 0.500 1.00 0.32 1.00 0.32 NO 1 

-0.750 -0.250 0.50 0.38 0.25 0.38 NO 2 

-0.750 -0.750 0.50 0.36 0.25 0.36 NO 3 

-0.375 -0.125 0.25 0.37 0.0625 0.37 NO 4 

-0.375 -0.375 0.25 0.37 0.0625 0.37 NO 5 

-0.250 -0.750 0.50 0.38 0.25 0.38 NO 6 

-0.125 -0.125 0.25 0.37 0.0625 0.37 NO 7 

-0.125 -0.375 0.25 0.37 0.0625 0.37 NO 8 

0.250 0.750 0.50 0.38 0.25 0.38 NO 9 

0.125 0.375 0.25 0.37 0.0625 0.37 NO 10 

0.125 0.125 0.25 0.81 0.0625 0.81 YES 11 

0.500 -0.500 1.00 0.32 1.00 0.32 NO 12 
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Table 8. Continued. 

X coordinate Y coordinate Size of 
region 

φ∇  (f) Area of region 
(A) Mean = fA / A 

Further sub-
division needed? 

YES / NO 
Region Number 

0.375 0.375 0.25 0.37 0.0625 0.37 NO 13 

0.375 0.125 0.25 0.37 0.0625 0.37 NO 14 

0.750 0.750 0.50 0.36 0.25 0.36 NO 15 

0.750 0.250 0.50 0.38 0.25 0.38 NO 16 
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From the tabular column above, we can see that the mean of region 11 exceeds the mean 

specified and the size of the region is still greater than the minimum size allowed. As a 

result, region 11 will get sub-divided. The discretized domain is shown in Fig. 52.  

 

 
 

Fig. 52. Domain: Stage-4. 

The details pertaining to this domain have been listed in Table 9. It is interesting to note that 

none of these regions have been found to be requiring decomposition.  
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Table 9. Tabulated Results from Stage-4 of quadtree decomposition. 

X coordinate Y coordinate Size of 
region 

φ∇  (f) Area of region 
(A) Mean = fA / A 

Further sub-
division 
needed? 

YES / NO 

Region 
Number 

-0.5000 0.5000 1.00 0.32 1.00 0.32 NO 1 

-0.7500 -0.2500 0.50 0.38 0.25 0.38 NO 2 

-0.7500 -0.7500 0.50 0.36 0.25 0.36 NO 3 

-0.3750 -0.1250 0.25 0.37 0.0625 0.37 NO 4 

-0.3750 -0.3750 0.25 0.37 0.0625 0.37 NO 5 

-0.2500 -0.7500 0.50 0.38 0.25 0.38 NO 6 

-0.1250 -0.1250 0.25 0.37 0.0625 0.37 NO 7 

-0.1250 -0.3750 0.25 0.37 0.0625 0.37 NO 8 

0.2500 0.7500 0.50 0.38 0.25 0.38 NO 9 

0.1250 0.3750 0.25 0.37 0.0625 0.37 NO 10 

0.0625 0.1875 0.125 0.38 0.015625 0.38 NO 11 

0.0625 0.0625 0.125 2.1 0.015625 2.1 NO 12 
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Table 9. Continued. 

X coordinate Y coordinate Size of 
region 

φ∇  (f) Area of region 
(A) Mean = fA / A 

Further sub-
division 
needed? 

YES / NO 

Region 
Number 

0.5000 -0.5000 1.00 0.32 1.00 0.32 NO 13 

0.1875 0.1875 0.125 0.38 0.015625 0.38 NO 14 

0.1875 0.0625 0.125 0.38 0.015625 0.38 NO 15 

0.3750 0.3750 0.25 0.37 0.0625 0.37 NO 16 

0.3750 0.1250 0.25 0.37 0.0625 0.37 NO 17 

0.7500 0.7500 0.50 0.07 0.25 0.28 NO 18 

0.7500 0.2500 0.50 0.09 0.25 0.36 NO 19 
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In this case, it can be seen from the tabular column that the mean of region 12 far 

exceeds the value specified for quadtree decomposition. However, region 12 has reached 

the minimum allowed size of the regions. As a result, it shall not get discretized any 

further.  

 

After the domain has been discretized to an extent where no region in the domain 

satisfies the two criterions simultaneously any longer, regions of highly varying sizes 

can be found. However, abrupt transitions in the mesh are to be avoided. As a result, 

further domain discretization is desired. This is accomplished in this work by 

introducing another bunch of criterions.  

 

As an example, let the domain which is desired to be discretized be the one obtained 

from Stage-4. Now, sub-division of a region should occur if both of the following 

conditions are satisfied: 

1. Number of neighbors of any region along any of its edges > 2 

2. Size of region > 0.125 

 

With a change in the set of criterions, a different basis of numbering has also been 

introduced. Keeping this in mind, it is noted that Fig.53 is a modified form of the domain 

shown in Fig.52. Now, coming to the basis of numbering for this set of criterions, it is 

evident that in Stage-5, in addition to the previous basis, the regions have been 

numbered in the order of ascending order of ‘region sizes’.  
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Coming to why this has been done, let us consider Fig. 52. In this, the algorithm 

accesses region 2 before region 4. Let us suppose region 2 fails to satisfy the criterion set 

but region 4 satisfies the same. As a result, region 4 will get sub-divided and leave 

region 2 with three neighbors along its right edge. To avoid this, we access the regions in 

the order of increasing sizes. As a result, no regions other than the smallest sized ones 

get accessed until all the smaller sized regions have been sufficiently discretized.  

 

 

Fig. 53. Domain: Stage-5. 

The relevant details can be found in Table 10. The number of neighbors for each region 

along each of its edges has been listed. 
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Table 10. Tabulated Results from Stage-5 of quadtree decomposition. 

X coordinate Y coordinate Size of 
region 

No. of  
left 

neighbors 

No. of 
right 

neighbors 

No. of 
bottom 

neighbors 

No. of   
top 

neighbors 

Further 
sub-

division 
required 

YES / NO 

Region Number

0.0625 0.1875 0.125 1 1 1 1 NO 1 

0.0625 0.0625 0.125 1 1 1 1 NO 2 

0.1875 0.1875 0.125 1 1 1 1 NO 3 

0.1875 0.0625 0.125 1 1 1 1 NO 4 

-0.3750 -0.1250 0.25 1 1 1 1 NO 5 

-0.3750 -0.3750 0.25 1 1 1 1 NO 6 

-0.1250 -0.1250 0.25 1 1 1 1 NO 7 

-0.1250 -0.3750 0.25 1 1 1 1 NO 8 

0.1250 0.3750 0.25 1 1 2 1 NO 9 

0.3750 0.3750 0.25 1 1 1 1 NO 10 

0.3750 0.1250 0.25 2 1 1 1 NO 11 
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Table 10. Continued.  

X coordinate Y coordinate Size of 
region 

No. of  
left 

neighbors 

No. of 
right 

neighbors 

No. of 
bottom 

neighbors 

No. of   
top 

neighbors 

Further 
sub-

division 
required 

YES / NO 

Region Number

-0.7500 -0.2500 0.50 0 2 1 1 NO 12 

-0.7500 -0.7500 0.50 0 1 0 1 NO 13 

-0.2500 -0.7500 0.50 1 1 0 2 NO 14 

0.2500 0.7500 0.50 1 1 2 0 NO 15 

0.7500 0.7500 0.50 1 0 1 0 NO 16 

0.7500 0.2500 0.50 2 0 1 1 NO 17 

-0.5000 0.5000 1.00 0 4 3 0 YES 18 

0.5000 -0.5000 1.00 3 0 0 4 YES 19 
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From the tabular column, it can be seen that region 18 has 4 neighbors along its right 

edge and 3 along its bottom edge. Similarly, region 19 has 3 along its left edge and 4 

along its top edge. There are no other regions having more than two neighbors along any 

of their regions. As a result, regions 18 and 19 have been identified as the ones requiring 

decomposition and the discretized domain has been shown in Fig. 54.   

 

 

 
 

Fig. 54. Domain: Stage-6. 

Table-11 shows the related details. 
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Table 11. Tabulated Results from Stage-6 of quadtree decomposition. 

X coordinate Y coordinate Size of 
region 

No. of   
left 

neighbors 

No. of 
right 

neighbors 

No. of 
bottom 

neighbors 

No. of   
top 

neighbors 

Further sub-
division 
required 

YES / NO 

Region Number

0.0625 0.1875 0.125 1 1 1 1 NO 1 

0.0625 0.0625 0.125 1 1 1 1 NO 2 

0.1875 0.1875 0.125 1 1 1 1 NO 3 

0.1875 0.0625 0.125 1 1 1 1 NO 4 

-0.3750 -0.1250 0.25 1 1 1 1 NO 5 

-0.3750 -0.3750 0.25 1 1 1 1 NO 6 

-0.1250 -0.1250 0.25 1 1 1 1 NO 7 

-0.1250 -0.3750 0.25 1 1 1 1 NO 8 

0.1250 0.3750 0.25 1 1 2 1 NO 9 

0.3750 0.3750 0.25 1 1 1 1 NO 10 

0.3750 0.1250 0.25 2 1 1 1 NO 11 

-0.7500 0.7500 0.50 0 1 1 0 NO 12 
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Table 11. Continued.  

X coordinate Y coordinate Size of 
region 

No. of   
left 

neighbors 

No. of 
right 

neighbors 

No. of 
bottom 

neighbors 

No. of   
top 

neighbors 

Further sub-
division 
required 

YES / NO 

Region Number 

-0.7500 0.2500 0.50 0 1 1 1 NO 13 

-0.7500 -0.2500 0.50 0 2 1 1 NO 14 

-0.7500 -0.7500 0.50 0 1 0 1 NO 15 

-0.2500 0.7500 0.50 1 1 1 0 NO 16 

-0.2500 0.2500 0.50 1 3 2 1 YES 17 

-0.2500 -0.7500 0.50 1 1 0 2 NO 18 

0.2500 0.7500 0.50 1 1 2 0 NO 19 

0.2500 -0.2500 0.50 2 1 1 3 YES 20 

0.2500 -0.7500 0.50 1 1 0 1 NO 21 

0.7500 0.7500 0.50 1 0 1 0 NO 22 

0.7500 0.2500 0.50 2 0 1 1 NO 23 

0.7500 -0.2500 0.50 1 0 1 1 NO 24 
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Table 11. Continued.  

X coordinate Y coordinate Size of 
region 

No. of   
left 

neighbors 

No. of 
right 

neighbors 

No. of 
bottom 

neighbors 

No. of   
top 

neighbors 

Further sub-
division 
required 

YES / NO 

Region Number 

0.7500 -0.7500 0.50 1 0 0 1 NO 25 



                      100 

 

Regions 17 and 20 are identified as the ones requiring further decomposition. The 

domain after quadtree decomposition is shown in Fig. 55.  

 

 
 

Fig. 55. Domain: Stage-7. 
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Table 12. Tabulated Results from Stage-7 of quadtree decomposition. 

X coordinate Y coordinate Size of 
region 

No. of  
left 

neighbors 

No. of 
right 

neighbors 

No. of 
bottom 

neighbors 

No. of     
top 

neighbors 

Further sub-
division 
required 

YES / NO 

Region Number

0.0625 0.1875 0.125 1 1 1 1 NO 1 

0.0625 0.0625 0.125 1 1 1 1 NO 2 

0.1875 0.1875 0.125 1 1 1 1 NO 3 

0.1875 0.0625 0.125 1 1 1 1 NO 4 

-0.3750 0.3750 0.25 1 1 1 1 NO 5 

-0.3750 0.1250 0.25 1 1 1 1 NO 6 

-0.3750 -0.1250 0.25 1 1 1 1 NO 7 

-0.3750 -0.3750 0.25 1 1 1 1 NO 8 

-0.1250 0.3750 0.25 1 1 1 1 NO 9 

-0.1250 0.1250 0.25 1 2 1 1 NO 10 

-0.1250 -0.1250 0.25 1 1 1 1 NO 11 

-0.1250 -0.3750 0.25 1 1 1 1 NO 12 
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Table 12. Continued.  

X coordinate Y coordinate Size of 
region 

No. of  
left 

neighbors 

No. of 
right 

neighbors 

No. of 
bottom 

neighbors 

No. of     
top 

neighbors 

Further sub-
division 
required 

YES / NO 

Region 
Number 

0.1250 0.3750 0.25 1 1 2 1 NO 13 

0.1250 -0.1250 0.25 1 1 1 2 NO 14 

0.1250 -0.3750 0.25 1 1 1 1 NO 15 

0.3750 0.3750 0.25 1 1 1 1 NO 16 

0.3750 0.1250 0.25 2 1 1 1 NO 17 

0.3750 -0.1250 0.25 1 1 1 1 NO 18 

0.3750 -0.3750 0.25 1 1 1 1 NO 19 

-0.7500 0.7500 0.50 0 1 1 0 NO 20 

-0.7500 0.2500 0.50 0 1 1 1 NO 21 

-0.7500 -0.2500 0.50 0 2 1 1 NO 22 

-0.7500 -0.7500 0.50 0 1 0 1 NO 23 

-0.2500 0.7500 0.50 1 1 1 0 NO 24 
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Table 12. Continued.   

X coordinate Y coordinate Size of 
region 

No. of  
left 

neighbors 

No. of 
right 

neighbors 

No. of 
bottom 

neighbors 

No. of     
top 

neighbors 

Further sub-
division 
required 

YES / NO 

Region 
Number 

-0.2500 -0.7500 0.50 1 1 0 2 NO 25 

0.2500 0.7500 0.50 1 1 2 0 NO 26 

0.2500 -0.7500 0.50 1 1 0 1 NO 27 

0.7500 0.7500 0.50 1 0 1 0 NO 28 

0.7500 0.2500 0.50 2 0 1 1 NO 29 

0.7500 -0.2500 0.50 1 0 1 1 NO 30 

0.7500 -0.7500 0.50 1 0 0 1 NO 31 
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After the domain has been sufficiently discretized by using the second set of criterions, 

the neighboring regions of each region along each of its edges are identified. This 

information is both important and useful during the application of the locally consistent 

finite difference scheme discussed in Sec 3.3.   

 

Since the regions may have either one or two neighbors along their edges, provision is 

made to store the relevant information. The neighbors are abbreviated in the following 

way in Table 13 on the next page: 

 

1. LN-1  First Left Neighbor 

2. LN-2  Second Left Neighbor 

3. RN-1  First Right Neighbor 

4. RN-2  Second Right Neighbor 

5. BN-1  First Bottom Neighbor 

6. BN-2  Second Bottom Neighbor 

7. TN-1  First Top Neighbor 

8. TN-2  Second Top Neighbor 
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Table 13. Information about regions and the corresponding neighbors. 

X coordinate Y coordinate Size of 
region LN-1 LN-2 RN-1 RN-2 BN-1 BN-2 TN-1 TN-2 Region Number 

0.0625 0.1875 0.125 10 0 3 0 2 0 13 0 1 

0.0625 0.0625 0.125 10 0 4 0 14 0 1 0 2 

0.1875 0.1875 0.125 1 0 17 0 4 0 13 0 3 

0.1875 0.0625 0.125 2 0 17 0 14 0 3 0 4 

-0.3750 0.3750 0.25 21 0 9 0 6 0 24 0 5 

-0.3750 0.1250 0.25 21 0 10 0 7 0 5 0 6 

-0.3750 -0.1250 0.25 22 0 11 0 8 0 6 0 7 

-0.3750 -0.3750 0.25 22 0 12 0 25 0 7 0 8 

-0.1250 0.3750 0.25 5 0 13 0 10 0 24 0 9 

-0.1250 0.1250 0.25 6 0 1 2 11 0 9 0 10 

-0.1250 -0.1250 0.25 7 0 14 0 12 0 10 0 11 

-0.1250 -0.3750 0.25 8 0 15 0 25 0 11 0 12 
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Table 13. Continued.  

0.1250 0.3750 0.25 9 0 16 0 1 3 26 0 13 

0.1250 -0.1250 0.25 11 0 18 0 15 0 2 4 14 

0.1250 -0.3750 0.25 12 0 19 0 27 0 14 0 15 

0.3750 0.3750 0.25 13 0 29 0 17 0 26 0 16 

0.3750 0.1250 0.25 3 4 29 0 18 0 16 0 17 

0.3750 -0.1250 0.25 14 0 30 0 19 0 17 0 18 

0.3750 -0.3750 0.25 15 0 30 0 27 0 18 0 19 

-0.7500 0.7500 0.50 0 0 24 0 21 0 0 0 20 

-0.7500 0.2500 0.50 0 0 5 6 22 0 20 0 21 

-0.7500 -0.2500 0.50 0 0 7 8 23 0 21 0 22 

-0.7500 -0.7500 0.50 0 0 25 0 0 0 22 0 23 

-0.2500 0.7500 0.50 20 0 26 0 5 9 0 0 24 

-0.2500 -0.7500 0.50 23 0 27 0 0 0 8 12 25 
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Table 13. Continued.  

0.2500 0.7500 0.50 24 0 28 0 13 16 0 0 26 

0.2500 -0.7500 0.50 25 0 31 0 0 0 30 0 27 

0.7500 0.7500 0.50 26 0 28 0 29 0 0 0 28 

0.7500 0.2500 0.50 16 17 0 0 30 0 28 0 29 

0.7500 -0.2500 0.50 18 19 0 0 31 0 29 0 30 

0.7500 -0.7500 0.50 27 0 0 0 0 0 30 0 31 
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