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ABSTRACT 

 

Biological Functions of Galectin 15 (LGALS15) in the Ovine Uterus.  

(December 2008)  

Jennifer Lynn Farmer, B.S., Clemson University  

Co-Chairs of Advisory Committee: Dr. Fuller W. Bazer 
                                                               Dr. Thomas E. Spencer 

 

 Galectins are proteins with 15 known members found in nearly all living 

organisms.  They share a conserved CRD that binds beta-galactoside sugars, and 

functions to cross-link glycoproteins as well as glycolipid receptors on the surface of 

cells to initiate biological responses.  Functional studies on the extracellular and 

intracellular roles of galectins implicate them in cell adhesion, chemoattraction and 

migration as well as growth, differentiation and apoptosis.  Therefore, studies were 

conducted to identify functional roles of galectin 15 (LGALS15) during the peri-

implantation period of pregnancy in the sheep. 

 The first study was designed to develop and characterize primary ovine 

trophectoderm cell lines for the study of the biological functions of LGALS15.  Once 

characterized, these cell lines were used to investigate the role of LGALS15 in 

trophectoderm gene expression, development, growth, and survival.  Two primary 

trophectoderm cell lines (oTr1 and oTrF) were developed, and they had characteristics 

similar to in vivo conceptus trophectoderm relative to gene expression, morphology, and 
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migration and proved suitable as an in vitro model to investigate functional roles of 

LGALS15. 

 The second study investigated LGALS15 function in trophectoderm cell 

adhesion.  A dose-dependent increase in oTr cell attachment to LGALS15 was found 

that could be inhibited by cyclic GRGDS, but not GRADS, peptides.  Mutation of the 

LDVRGD integrin binding sequence of LGALS15 to LADRAD decreased its ability to 

promote oTr cell attachment, whereas mutation of the CRD had little effect.  LGALS15 

induced formation of robust focal adhesions in oTr cells that were abolished by mutation 

of the LDVRGD sequence.     

 The third study tested the hypothesis that LGALS15 is a secreted regulator of 

trophectoderm development and gene expression, as well as growth, migration, and 

apoptosis of trophoblast.  LGALS15 moderately increased cellular proliferation, partially 

inhibited staurosporine elicited apoptosis, stimulated migration that was dependent on 

Jun N-terminal kinase (JNK), and initiated differential gene expression of oTr cells.   

 Collectively, these results support the hypothesis that LGALS15 has a biological 

role in the peri-implantation stage of early pregnancy in the ovine uterus and stimulates 

trophectoderm cell gene expression, migration and attachment via integrin binding and 

activation which are critical to blastocyst elongation and implantation. 
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CHAPTER I 

INTRODUCTION 

 

The most important evolutionary advances in reproduction came with the 

development of viviparity and placental formation which permits vital stages of 

embryonic development to either begin or begin and be completed within a part of the 

parent’s body [1].  Yolk is the principal—and sometimes only—source of nutrition 

available to support embryogenesis in all non-mammalian vertebrates and is vital during 

the early stages of embryogenesis in monotremes and marsupials [2].  In Eutherian 

species, however, embryogenesis, from the time it hatches from the zona pellucida (ZP), 

is directly dependent on maternal nutrients.  In Eutherian mammals, including sheep, 

viviparity requires progesterone to maintain pregnancy, and the development of a 

trophoblast that expresses properties independent of the developing embryo.  The 

trophectoderm forms the outermost cell layer of blastocysts, which attaches to the 

uterine luminal epithelium (LE) and serves to transport nutrients to the conceptus 

(embryo/fetus and associated membranes) [3].   

 Prior to placental formation, the conceptus is dependent on endometrial 

secretions as its major source of nutrients.  Endometrial secretions, along with molecules 

selectively transferred from maternal circulation into the uterine lumen, collectively 

termed histotroph, regulate conceptus survival and growth during pregnancy [4-7].   

____________ 
This dissertation follows the style of Biology of Reproduction.  
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Components of histotroph play major roles in initiating conceptus development from a 

spherical blastocyst, to a tubular, and then filamentous conceptus.  These components 

also aid in conceptus attachment to the uterine LE.  The uterine gland knock out 

(UGKO) ewe, where endometrial glands fail to develop and there is a reduction in 

uterine LE to produce uterine secretions, cannot support conceptus development beyond 

Day 14 of pregnancy [6, 8].   

Superficial implantation is mediated through binding of bridging ligand secretory 

proteins from glandular epithelium (GE) and/or LE to receptors on the apical surface of 

the conceptus trophectoderm.  Guillomot and colleagues [9] proposed that the adhesion 

cascade followed by most mammalian blastocysts includes: 1) shedding of the zona 

pelucida; 2) precontact and blastocyst orientation; 3) apposition; 4) adhesion; and 5) 

endometrial invasion.  True endometrial invasion by blastocysts occurs in humans and 

mice, but not pigs or ruminants [9, 10].  For all species, however, adhesive proteins 

secreted from LE and/or GE, as components of histotroph, facilitate the initiation of 

conceptus adhesion and implantation.  

In sheep, secreted phosphoprotein one (SPP1) and glycosylated cell adhesion 

molecule one (GLYCAM-1) are secreted by uterine epithelia and bind to integrin 

subunits and L-selectin, respectively, to promote adhesion of conceptuses to uterine LE 

[11, 12].  Galectins are another family of proteins implicated in implantation.  Galectins 

are secreted animal lectins which contain a conserved carbohydrate recognition domain 

(CRD) responsible for binding beta-galactosides, thereby cross-linking glycoconjugate 

receptors on the surface of cells and initiating biological responses [13-15].  This ability 
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to bind various carbohydrates has implicated several members of the galectin family in 

cell-cell adhesion, and in some cases, adhesion between parasite/bacteria and host [16].  

Many galectins are expressed both intracellularly (cytoplasm and nucleus) and 

extracellularly (cell surface and secretions), and are often secreted and/or integrated into 

the extracellular matrix (ECM) [17].  Galectins lack known secretory signal peptide 

sequences and are secreted in a non-classical manner.  Functional studies on 

extracellular and intracellular roles of galectins have implicated them in cell growth, 

differentiation and apoptosis, in addition to adhesion, chemoattraction and migration 

[18].  All of these biological effects are critical for apposition, attachment and adhesion 

stages of conceptus implantation.  

The 15 known  members of the galectin family share a high level of evolutionary 

conservation [19] and can be divided into three groups: 1) prototype galectins (galectins-

1, 2, 5, 7, 10, 11, 13, 14, and 15) existing as monomers or noncovalent homodimers with 

one CRD; 2) chimera-type galectins (galectin-3) containing a nonlectin domain linked to 

a CRD; and 3) tandem-repeat-type galectins (galectins-4, 6, 8, 9, and 12) with two 

distinct CRDs [20].  Members of this gene family are present in species ranging from 

sponges to mammals. 

The most recently discovered member of the galectin family was first identified 

as being induced in the sheep intestine as part of the immune response to parasitic 

infection by Haemonchus contortus and initially given the name ovgal11 [21].  It was 

confirmed to be a novel member of the galectin family of proteins and was renamed 

LGALS15 [22].  Interestingly, LGALS15 is a component of the crystalline inclusions in 
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conceptus trophectoderm and uterine LE of ruminants [22, 23].  In addition to a 

conserved CRD, LGALS15 contains specific integrin recognition sequences (LDV and 

RGD) proven to mediate integrin binding in ECM proteins [24-26].  LGALS15 was 

found to be a major gene expressed by uterine LE and superficial ductal glandular 

epithelium (sGE) during the peri-implantation period and regulated by progesterone and 

interferon tau (IFNT) [22].  LGALS15 is abundant in histotroph and increases between 

Days 12 and 16 of pregnancy in association with conceptus adhesion, implantation and 

pregnancy recognition [22].  

 A primary cause of embryonic loss during early pregnancy is the inability of the 

conceptus to bind to LE and begin the delicate processes of implantation and 

development in species with invasive implantation [27, 28], whereas in sheep and other 

species with noninvasive implantation most embryonic loss occurs during the period 

when the spherical blastocysts must transition into filamentous conceptuses [29].  In 

sheep, this morphological transition corresponds to the time of onset of LGALS15 

expression.  

Knowledge of the complex and synchronized relationships between secretions of 

endometrial epithelia and trophectoderm that influence conceptus development could 

provide new targets to improve embryonic development in culture and diagnosis of 

endometrial dysfunction that leads to infertility.  Identification of useful molecular and 

cellular markers of uterine endometrial function and receptivity to implantation by the 

conceptus are of particular importance. 



 
 

 

5 

CHAPTER II 

LITERATURE REVIEW 

 

ESTABLISHMENT AND MAINTENANCE OF PREGNANCY 

Successful establishment of pregnancy requires a pregnancy recognition signal 

for the maintenance of a functional corpus luteum, endometrial differentiation that 

transforms the uterine environment into a receptive state, and proper attachment and 

adhesion of the conceptus trophectoderm to uterine LE to initiate implantation.  This 

review focuses on mechanisms for the establishment and maintenance of pregnancy in 

sheep including survival and implantation of the conceptus (embryo/fetus and associated 

extraembryonic membranes).  Particular focus will be placed on functions of adhesive 

proteins and galectin 15 (LGALS15). 

 

Luteolytic mechanism 

 Ruminants are spontaneous ovulators with an estrous cycle that includes 

proestrus, estrus, metestrus and diestrus with ovulation occurring late during estrus or 

early metestrus [30-32].  The ovulated follicle on the ovary goes through transformations 

during metestrus, diestrus and proestrus – first from corpus hemorrhagicum to a corpus 

luteum (CL) capable of secreting progesterone and oxytocin, then to corpus albicans 

following luteolysis.  Luteolysis is the functional and physical breakdown of the CL and 

is dependent on oxytocin (OXT) binding to its receptor to induce pulsatile release of the 

uterine luteolysin prostaglandin F2α (PGF) [33].  Regression of the CL allows the ewe to 
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return to estrus and begin a new estrous cycle.  The estrous cycle in ruminants is 

dependent on uterine secretion of luteolytic pulses of PGF by endometrial LE and sGE 

which express both oxytocin receptors (OXTR) and prostaglandin-endoperoxide 

synthase 2 (PTGS2), which is the rate limiting enzyme for production of PGF [34-36].   

  The process of luteolysis requires the sequential effects of estrogen (E2), OXT 

and progesterone (P4) acting through their respective receptors [30, 37].  At estrus, E2 

from the developing Graafian follicle stimulates an increase in expression of estrogen 

receptor alpha (ESR1), progesterone receptor (PGR) and OXTR in the uterus [31, 32].  

During diestrus, secretion of P4 increases as the CL develops.  P4 binds to PGR in 

endometrial LE/sGE and this inhibits ESR1 and OXTR expression for a period referred to 

as the “progesterone block” where P4 also acts on the uterine epithelium to increase 

phospholipid stores and PTGS2 expression for conversion of arachidonic acid to PGF 

[38], [30, 39].  The mechanism whereby P4 inhibits expression of ESR1 directly and 

OXTR either directly or indirectly is not well understood [30].  Continuous exposure of 

the uterus to P4 for 8 to 10 Days down regulates PGR expression in the LE/sGE after 

Days 11 to 12 of the cycle [39]. Thus, P4 loses its ability to block ESR1 and OXTR 

expression and endometrial epithelia become sensitive to the effects of E2 from 

developing follicles and to increases in abundance of ESR1 that induces OXTR 

formation.  This allows pulses of OXT from the posterior pituitary and/or CL to induce 

pulsatile release of PGF that culminates in luteolysis [39-41].   

 Loss of PGR from uterine epithelia during mid-diestrus and prior to implantation 

has been documented in sheep, cattle, pigs, monkeys, skunks, humans and mice [31, 42-
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47].  PGR down regulation in LE/sGE occurs prior to implantation in all species studied 

and correlates with a reduction in anti-adhesive mucin glycoprotein one (MUC1) and 

induction of LGALS15 and SPP1.  Thus, loss of epithelial PGR stimulates events 

necessary for an environment  conducive to implantation [48]. 

 

IFNT as the maternal recognition of pregnancy signal  

 In 1969, Roger Short introduced the idea that the conceptus secretes a molecular 

signal to sustain the CL and ensure its own survival and termed this phenomenon 

“maternal recognition of pregnancy” [33, 49].  In sheep, the maternal recognition of 

pregnancy signal was discovered to be a protein known as interferon tau (IFNT) [50, 

51].  Before the current nomenclature of IFNT was adopted, IFNT was originally known 

as Protein X, trophoblastin, and later as ovine trophoblast protein 1 (oTP-1) [52].  IFNT 

is expressed by the mononuclear cells of the trophectoderm of the elongating ruminant 

conceptus on Days 10 to 21-25 of pregnancy with maximal expression occurring on 

Days 14 to 16 [53-57].  It primarily functions as a secreted molecule from the conceptus 

that acts directly on the endometrium, but has also been shown to be present in the 

uterine vein, which induces interferon stimulated genes (ISGs) in extrauterine tissues 

such as the CL, and in circulating immune cells during the time of maternal recognition 

of pregnancy [58, 59].  In bovine in vitro derived embryos, IFNT was reported to be 

produced without maternal influence, but not to the extent that is observed in embryos in 

utero where it is about 1000-fold more abundant [60]. 
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 IFNT has been found in cattle, sheep, goats, musk oxen, gazelles, giraffes and 

deer [61].  The development of IFNT is thought to have originated when interferon 

omega (IFNW) underwent gene duplication that resulted in IFNT having a reorganized 

promoter and a novel 3’ end [61].  The expression of IFNT is unique in at least three 

aspects: lack of viral inducibility, restricted localization to embryonic trophectoderm, 

and sustained high-level synthesis over several days [61].  It is hypothesized to be 

upregulated by cytokines, granulocyte macrophage-colony stimulating factor (CSF2) and 

interleukin 3 (IL3), which are all produced by the endometrium and are readily available 

to the conceptus [62]. 

 The antiluteolytic function of IFNT was originally thought to involve the 

stabilization of PGR to maintain the progesterone block on ESR1 and OXTR expression 

or to inhibit expression of ESR1 and OXTR directly.  Available evidence now clearly 

indicates that IFNT acts in a paracrine fashion to suppress transcription of ESR1 directly 

and OXTR indirectly in the endometrial LE/sGE, thus abrogating the luteolytic 

mechanism to maintain secretion of P4 from the CL [63].  In addition IFNT affects 

cytokines important for inhibiting fetal rejection such as interferon gama (IFNG) and 

interleukin 4 (IL4) and also reduces the proliferative response of lymphocytes to IL2 

[58].  It also increases PTGS2 production of prostaglandin E2 (PGE2) in the 

endometrium, which is a putative luteotrophic agent [64]. 

 IFNT is a member of the Type I family of interferons that bind to Type 1 

receptors (IFNAR) present in all cells of the endometrium, with highest expression in the 

LE [65].  IFNAR subunits 1 and 2 (IFNAR1/IFNAR2) form a receptor complex on the 
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surface of cells and IFNT-mediated association of IFNAR subunits facilitates cross-

phosphorylation and activation of Janus kinase (JAK), which, in turn, phosphorylates the 

receptor and creates a docking site for signal transducers and activators of transcription 

(STAT) [66].   Using the JAK/STAT signaling pathway IFNT acts on uterine GE and 

stroma to regulate expression of ISGs [67].  ISGs are hypothesized to play roles in 

endometrial remodeling to the receptive state for implantation and conceptus 

development [37, 68-70].  IFNT induces expression of a wide variety of genes with 

various functions important for implantation including: interferon stimulated gene 15 

ubiquitin-like modifier (ISG15); oligoadenylate synthetase (OAS); ubiquitin-like 

modifier activating enzyme 7 (UBA7); interferon induced transmembrane proteins 1-3 

(IFITM1-3); myxovirus resistance protein 1 and 2 (MX1 and MX2); colony stimulating 

factor 1 (CSF1); interferon regulatory factor 1 and 2 (IRF1 and IRF2); STAT1 and 

STAT2, which are involved in signal transduction, cell metabolism, regulation of 

endometrial secretory activity, uterine remodeling, adhesion and other mechanisms 

important to successful pregnancy [71]. 

 Most classical ISGs are expressed in endometrial stroma and middle to deep 

glands with few IFNT-stimulated genes being expressed by LE and sGE [70, 72-75].  

Restrictions on expression of ISGs in the uterine LE and sGE by IFNT is due to 

expression of IRF2, a potent repressor of gene transcription, which is constitutively 

expressed in the LE and sGE and increases during early pregnancy [72].  There is also 

the lack of critical factors in the JAK–STAT–IRF signaling pathway important for IFNT 

signaling in LE and sGE (STAT1, STAT2 and interferon regulatory factor nine (IRF9)), 
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but these components of the JAK-STAT cell signaling pathway are present in GE and 

stromal cells. However, WNT7A, cathepsin L (CTSL), cystatin C (CST3), hypoxia-

inducible factor 2A (HIF2A) and LGALS15 are genes identified in endometrial LE and 

sGE that are induced by IFNT or induced by P4 and stimulated by IFNT through an 

unknown non-classical cell signaling pathway [22, 70, 76]. 

 

Uterine glands  

 Postnatal uterine morphogenesis includes development of glands, endometrial 

folds, organization of the intercaruncular stroma and growth of the caruncular areas and 

myometrium [77, 78].  Ovine uterine development is not completed until postnatal Day 

(PND) 56 with the completion of adenogenesis [79].  However, the glands may not be 

fully developed until they undergo puberty, and perhaps pregnancy induced glandular 

hypertrophy and hyperplasia [80, 81].  Events that occur during the developmental 

process of uterine adenogenesis in the neonatal period affect uterine capacity and 

embryotrophic potential of the adult uterus [82].  Possible regulators of adenogenesis 

include members of the WNT signaling pathway, fibroblast growth factors-7 and -10 

(FGF7 and FGF10), hepatocyte growth factor (HGF), insulin-like growth factors one and 

two (IGF1 and IGF2) and the activin-follistatin system [35, 83-85].  Adenogenesis is 

independent of ovarian influences, but does involve coordinated changes in epithelial 

phenotype and expression of ESR1 [77].  The ECM can also affect patterns of branching 

morphogenesis through control of the cell cycle, apoptosis and related changes in 

stromal and epithelial gene expression that define such developmental programs [82].  
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 Maternal uterine gland hyperplasia occurs between Days 15 to 50 of pregnancy, 

after which glands undergo hypertrophy leading to increased surface area and greater 

secretory capacity after Day 60 of pregnancy [80].  This functions to provide increased 

histotroph to support the developing conceptus.  A severvomechanism has been 

described in sheep for development of endometrial glands where sequential actions of 

ovarian steroid hormones, pregnancy recognition signals and lactogenic hormones from 

the pituitary and/or placenta act on receptors present on the endometrial GE to stimulate 

adenogenesis [82, 86].  During pregnancy, sequential exposure of the uterine GE to E2, 

P4, IFNT, chorionic somatomammotropin hormone one (CSH1) and placental growth 

hormone one (GH1) stimulates uterine gland morphogenesis and differential secretory 

functions [87, 88].   

 Ewes treated with exogenous non-metabolizable progestin from birth to PND 56 

fail to undergo normal adenogenesis and have a uterine gland knock out (UGKO) 

phenotype, [8, 82, 89].  UGKO ewes have an absence of uterine glands, smaller uteri, 

less LE and fewer endometrial folds [90].  Adults can become pregnant, but cannot 

maintain pregnancy past Day 14 [6, 8, 89], presumably due to the absence of histotroph 

to support conceptus development beyond the pre-implantation stage [8].  Conceptus 

recovered from UGKO ewes are retarded in development and produce little IFNT [8].  

 

Histotroph 

 Histotroph is a complex mixture of enzymes, growth factors, cytokines, 

lymphokines, hormones, nutrients, transport proteins and other substances secreted by 
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the uterus and used to nurture the preimplanted conceptus [4, 81].  Histotroph was first 

described by Aristotle in the 3rd century BC, later investigated by William Harvey in the 

17th century and, in 1882, by Bonnett who applied the concept to ruminants [82].  

Uterine factors involved in conceptus nutrition fall into two categories: 1) factors 

secreted from the uterine glands or LE as histotrophic nutrition; and 2) factors 

responsible for increasing number and size of uterine blood vessels for increased blood 

flow and increased hematotrophic nutrition [3].  In humans, histotroph appears to be a 

primary source of nutrition for conceptus development during the first trimester before 

mechanisms for hematotrophic nutrition are established [90, 91].  Evidence collected 

over the last century from studies of primate and sub-primate species verified the 

unequivocal role of uterine gland secretions in survival and overall health of the 

conceptus [6, 92].  In marsupials, carnivores and roe deer, the state of endometrial 

secretory activity is proposed to regulate the status of blastocysts in delayed implantation 

or become activated after termination of delayed implantation [93, 94]. 

 During ruminant pregnancy, the combined effects of histotrophic and 

hematotrophic nutrition support development of the conceptus, the onset of pregnancy 

recognition signaling and fetal-placental growth [3].  Uterine secretions are particularly 

important in ruminants, pigs and horses, which have prolonged preimplantation periods 

[95].  During later stages of pregnancy, uterine glands undergo extensive hyperplasia 

and hypertrophy that increases histotrophic support for the developing conceptus [3].  

  Histotroph is absorbed by the placenta, transported into fetal circulation and 

cleared by the kidney into the allantois via the urachus [4, 7].  The allantois was 



 
 

 

13 

historically thought to be a reservoir for waste; however,  it is now apparent that it plays 

an important role in fetal nutrition [96].  Histotroph is taken up by specialized areas of 

the placenta called areolae, developed from the chorioallantois, which form over the 

mouths of uterine glands and transport secretions by fluid-phase pinocytosis across the 

areolae and into the fetal circulation [3, 4].  In pigs, the number of areolae is related to 

the birthweight of the fetus [97].  In laboratory rodents, several components of uterine 

histotroph, including leukemia inhibitory factor (LIF) and calcitonin produced 

exclusively by uterine glands, are necessary for conceptus survival, growth and 

establishment of uterine receptivity to implantation [82, 92].   

 Histotroph is produced by both the GE and the LE, with GE production 

predominating due to its abundance [98].  The cell-type of origin determines the nature 

and role of the proteins being secreted.  For instance, secretions from the LE appear to 

have a larger role in implantation while secretions from the GE are involved in nutrition 

and early conceptus development [7].  Uterine milk proteins (SERPIN), SPP1, 

GLYCAM1, stanniocalcin one (STC1) and LGALS15 are major components of 

histotroph and are hypothesized to play major roles in stimulating conceptus elongation, 

adhesion and attachment [74, 88, 99-101] 

   

IMPLANTATION 

Overview of early events in ruminant conceptus implantation 

 Pregnancy in domestic ruminants (sheep, cattle, goats) begins at the blastocyst 

stage and involves coordinate pregnancy recognition signaling and conceptus 
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implantation (Figure 2.1).  Ruminants, unlike rodents and primates, have an extended 

pre-attachment phase lasting up to two weeks.  A variety of molecules important for 

adhesion, signaling, transcription, cell cycle progression and DNA replication coordinate 

conceptus and uterine development, differentiation and structural formation during this 

critical period [62].  Pre-implantation in ruminants consists of a highly coordinated and 

sequential number of events including shedding of the ZP, pre-contact and blastocyst 

orientation, apposition, adhesion and central or noninvasive superficial implantation [9].  

After fertilization, the ruminant zygote develops to the blastocyst stage while 

surrounded by the ZP.  The ZP is not critical to development progression as early 

removal of the ZP does not alter blastocyst survival, but the ZP does function to keep the 

embryo in a non-adhesive state, facilitating transport through the oviduct and into the 

uterus [92].  The preimplantation embryo migrates through the oviduct while undergoing 

several cell divisions to the morula stage before passing through the utero-tubal junction 

into the uterus.  Shortly thereafter, the blasocyst undergoes it first perceivable 

differentiation with formation of the trophectoderm cell layer and extra-embryonic 

endoderm.  The blastocyst consists of a fluid filled blastocoele, the outer trophectoderm 

cell layer with adhered extraembryonic endoderm, and the inner cell mass (ICM).  After 

differentiation of the ICM and trophoblast, the blastocyst hatches from the ZP and 

acquires the ability to implant.  The ICM will then become the embryo which gives rise 

to the yolk sac, allantois and amnion while the trophoblast becomes the chorion of the 

placenta.  The trophectoderm, along with the somatic mesoderm (the portion of the 

embryonic mesoderm associated with the body wall derived from splanchnic (visceral  
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FIGURE 2.1   

 

Schematic of events occurring during early pregnancy in sheep (Drawn by Dr. Greg A. 
Johnson, Texas A&M University).  Location in the reproductive tract and stages of 
development of embryos, blastocysts and conceptuses in ewes along with changes in 
concentrations of estradiol and progesterone in maternal blood.  After ovulation, oöcytes 
enter the oviduct, are fertilized at the ampullary-isthmic junction and enter the uterus 
around day 4 post-mating.  By day 9, blastocysts shed the zona pellucida and expand and 
elongate into tubular and filamentous conceptuses between days 12 and 16.  During 
elongation and implantation, IFNT is produced by mononuclear trophectoderm cells 
[102]. 
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mesoderm), forms the chorion.  The allantois originates as an evagination of the fetal 

hind gut starting on Day 16 of pregnancy and ultimately expands to fuse with the 

chorion to form the chorioallantois [103].  The vascularized chorioallantois is lined on 

its external surface by cells of the trophectoderm [58] that forms intimate contact with 

the maternal endometrial LE and sGE to create a functional placenta. 

In sheep, the conceptus remains free floating in the uterine environment for up to 

two weeks with rapid elongation occurring between Days 12 and 16 [29].  Superficial 

implantation begins on Days 13 to 14, but the process of placentation is not completed 

until Days 60 to 70 [9, 81].  Ruminant placentae exhibit discrete areas of increased 

attachment in the placentomes, formed by interaction of cotyledons of the 

chorioallantois with caruncles of the endometrium, which function as sites of 

hematotrophic nutrient exchange, while areas of more superficial attachment in the 

interplacentomal areas have areolae that function as sites for histotrophic nutrition [58]. 

 

Pre-contact 

 The pre-contact stage begins soon after the blastocyst hatches from the ZP and 

lasts until about Day 15.  Starting on day 12, the spherical or slightly tubular blastocyst 

begins to elongate.  By Day 13, it has elongated markedly, reaching a length of 10–22 

mm [104].  By Day 14, the filamentous conceptus is approximately 10 cm long and is 

loosely immobilized to the LE, but can still easily be flushed from the uterus.  The 

primitive streak appears at this stage and the somites soon thereafter [104].  By Day 15, 
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the conceptus is in contact with several developing caruncles in both uterine horns [10].  

The process of elongation of the ovine conceptus coordinates with production of IFNT.  

 

Apposition 

 During apposition, different types of cell contacts can be observed.  The most 

frequent involves the apical plasma membrane of trophectoderm cells, which line up 

against the apical surface of the microvilli of uterine LE [10].  The apical surface of the 

mononuclear trophectoderm cells is modified to form microvillar processes that 

interdigitate with similar structures on the maternal side creating an area of close contact 

between the maternal uterine LE and conceptus trophectoderm [105].  The second type 

of attachment involves areas of the LE and trophectoderm that lack microvilli, and in 

these areas the membranes are discontinuously apposed.  In sheep, apposition occurs first 

in the vicinity of the inner cell mass and spreads toward the extremity of the elongated 

conceptus [104].  Uterine glands are also sites of apposition as the trophoblast develops 

papillae that, between Days 15 and 20, extend into the mouths of uterine glands and 

function as anchors for attachment and elongation as well as sites for uptake of  

histotroph [106].   

 

Adhesion 

 Adhesion begins on Day 16 and continues to Day 22 of pregnancy in ewes [10].  

As the trophectoderm becomes more firmly attached to the uterine LE, expression of 

IFNT decreases in a coordinated manner with mononuclear cell attachment and removal 
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of the LE [107].  The trophoblast differentiates into giant binucleate cells (BNC) and 

mononuclear trophectoderm cells by Day 16, but only mononuclear trophectoderm cells 

are thought to adhere to the endometrial LE [104].  Binucleated cells make up 15 to 20% 

of the total trophectoderm cellular population [108].  Wimsatt (1951) and Greenstein 

(1958) were the first to observe that the trophectoderm is made up of mononuclear 

(involved in nutrient exchange) and BNC (involved in hormone production) [109].  Both 

cell types express features typical of classical epithelial cells.  They are located on a 

basal lamina and are connected to each other by junctional complexes including tight 

junctions [110].  The BNC are hypothesized to originate from cells that underwent 

mitosis without cytokinesis [105] and are not uniformly distributed, but tend to form in 

small clusters [111].  BNCs produce hormones that may play important roles in 

stimulating endometrial gland morphogenesis and differentiation during pregnancy to 

facilitate growth and development of the conceptus [58].  They produce prolactin in 

humans and rodents and prolactin-related protein one (PRP1), CSH1, pregnancy-

associated glycoproteins (PAGs), estradiol and progesterone in ruminants [58].  BNCs 

migrate across the trophectoderm-maternal interface to fuse with mononuclear LE cells 

to form trinucleate hybrid cells [111].  Large syncytial plaques occur when binucleate, 

and perhaps mononucleate, cells continue to merge with the trinucleate cells to form 

large syncytial plaques with as many as 20 to 25 nuclei [106, 112].  The syncytial 

plaques eventually cover the caruncular surface and aid in formation of the placentome 

[104].  As adhesion progresses and becomes more and more stable, and cells of the 

trophectoderm begin to fuse to each other and with the LE, they form multinucleated 



 
 

 

19 

syncytia that immobilize the conceptus to the uterine wall.  Wooding hypothesized in 

1984 that the purpose of syncytial plaques was to decrease the distance between fetal 

and maternal capillaries for increased efficiency for nutrient exchange [111].  A 

schematic illustration of the pre-attachment, apposition and adhesion stages of 

superficial implantation in sheep can be seen in Figure 2.2.  

 

Uterine receptivity and conceptus elongation 

 Most embryonic loss in sheep occurs due to failed fertilization (approximately 

10-15%) or failure of spherical blastocysts to make the transition to filamentous 

conceptuses during the preimplantation period (approximately 25%) [113].  Conceptus 

elongation corresponds to IFNT production and successful implantation.  Implantation 

deficiencies are also thought to be the main reason why artificial reproductive techniques 

(ART) only result in pregnancy 20-30% of the time despite high rates of success in 

creating fertilized embryos in vitro [114].  Despite improvement in techniques to achieve 

in vitro fertilization, pregnancy rates associated with ART have only improved 

marginally, thus there must be unrecognized factors specific to the uterine environment 

that are not well understood and are limiting [92].  The window of implantation is a 

period of time when molecular and hormonal conditions of the uterus are conducive to 

implantation of blastocysts [114].  The most fundamental feature of this process is 

synchrony between the developmental stage of the embryo/blastocyst and the uterus 

[114, 115].  Uterine receptivity is dependent on fetal-maternal crosstalk; however, 

mechanisms for two-way communication between blastocysts and the uterus are not well  
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FIGURE 2.2   
Schematic illustration of the pre-attachment, apposition, and adhesion stages of 
superficial implantation in sheep (Drawn by Dr. Greg A. Johnson, Texas A&M 
University).  Pre-attachment events involve shedding of the zona pellucida by 
blastocysts, followed by expansion and precontact orientation and expansion of 
blastocysts.  Prior to implantation, expression of MUC1 is down-regulated in LE to 
expose integrin subunits and/or carbohydrate receptors which facilitate adhesion.  
Apposition involves extension of conceptus trophoblast papillae into the necks of the 
uterine glands to act as anchors to aid in elongation of trophectoderm and to serve as 
sites for uptake of histotroph.  Adhesion between the apical surfaces of conceptus 
trophectoderm and LE is mediated by uterine secretory proteins, such as secreted 
phosphoprotein 1 (SPP1) and glycosylation-dependent cell adhesion molecule-1 
(GLYCAM1), binding to receptors and by LGALS15 which is proposed to cross-link 
beta galactosides on glycoproteins and glycolipids.  Trophoblast BNC fuse with uterine 
LE to form syncytial plaques, but are not invasive beyond this single cell layer [102]. 
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understood.  Hormones, growth factors, cytokines and modulators of cell adhesion have 

been implicated in implantation [114].   

 The process of blastocyst elongation and implantation is thought to require 

cellular growth and proliferation along with adhesion of the trophectoderm to the uterine 

LE, which acts as a scaffold, to allow the conceptus to transition from the spherical to 

the elongated filamentous form [3].  Elongation begins on Day 12 and is completed by 

Day 16 at which time implantation begins and secretion of IFNT is at a maximum [9, 

104].  Cross-communication between conceptus and uterus involves paracrine 

interactions between IFNT from conceptus trophectoderm on the endometrium, 

endothelial cells and immune cells [31].  Implantation is dependent on uterine receptivity 

and in sheep, several genes appear to play important roles in uterine receptivity such as 

IFNT, endogenous Jaagsiekte sheep retroviruses (enJSRVs), CTSL, CST3, SPP1, IRF1 

and 2, and LGALS15.  IFNT induces or stimulates expression of a number ISGs in the 

uterus that are hypothesized to play important biological roles in uterine receptivity and 

conceptus implantation.  Most of the classical ISGs are induced or increased only in 

stroma cells and the epithelia of middle to deep glands in the ovine uterus [48, 68]. 

However, several nonclassical ISGs such as WNT7A, CTSL, CST3, HIF2A and 

LGALS15, are induced by P4 and increased by IFNT specifically in LE and sGE of the 

endometrium and implicated in regulation of uterine receptivity and conceptus 

development [66].  
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MODULATORS OF IMPLANTATION  

Integrins 

 Integrins are glycoproteins that serve as receptors for extracellular matrix ligands 

that modulate cell functions. They are one of the best characterized 

immunohistochemical markers for uterine receptivity to implantation [116].  ECM and 

intergins are hypothesized to be responsible for conceptus attachment to the uterine wall.  

This effect is blocked during the non-receptive phase by the expression of mucins, which 

sterically hinder interaction of the trophectoderm with molecules of the ECM due to 

their large structure and extensive glycosylation [99, 117].  Integrin subunits αv, α4, α5, 

β1, β3 and β5 are constitutively expressed by conceptus trophectoderm and are localized 

to the apical surface of uterine LE in sheep [99].  The endometrium in humans and pigs 

has both constitutive and cycle-dependent expression of integrins and is the only tissue 

known with hormonal regulation of integrin expression [33].   

 Uterine receptivity in sheep does not appear to be dependent on the expression of 

integrins, but may be influenced more by expression of ECM proteins such as SPP1 and 

LGALS15, which are ligands for heterodimers of these integrin subunits [11].  Recently, 

human uterine Hoxa10 was demonstrated to induce the expression of uterine epithelial 

integrin subunit β3, and the lack of expression of this integrin subunit could explain 

sterility in Hoxa10 mutant mice [62].  The Arg-Gly-Asp (RGD) sequence present on 

many ECM proteins is a well known integrin recognition sequence and proteins 

expressing it have been implicated in trophoblast adhesion to the ECM.  In fact, studies 

in mice have shown that RGD peptide inhibitors reduce implantation as do injections of 
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a monoclonal antibody for αvβ3, but it is not known if the blastocyst or uterus or both is 

the source of these effects [92].  The αvβ3 integrin heterodimer has many functions 

including activation of matrix metalloprotein protein 2 (MMP2) and serves as a matrix 

destabilizer [92].  Although many integrin heterodimers are expressed in the uterus, the 

apical localization of αvβ3 and αvβ5 integrins in human, baboon, rabbit, pig and sheep 

uterine LE make them candidates for mediating trophectoderm-epithelial interactions 

[117-119].  Another piece of evidence for the important role of integrins during 

implantation is from studies of human, baboon and pig, where expression of integrin β3 

coincides with the window of uterine receptivity to implantation  [118, 119].   

 Since the blastocyst and LE both contain integrins on their respective apical 

surfaces, a reciprocal and cooperative role in attachment is suggested.  Relevant ligands 

for the integrins αvβ3 and αvβ5 may function as bridging ligands between the conceptus 

and maternal uterine LE [120].  Possible ligands for the integrins on the maternal surface 

include fibronectin, vitronectin, SPP1, laminin, thrombospondin, LGALS15 and 

perlecan.  In addition, αvβ3 may also interact and activate specific matrix 

metalloproteinases in the extracellular matrix of the uterus, thereby implicating integrins 

in the transition between attachment and epithelial cell penetration by trophectoderm of 

the blastocyst in species with invasive implantation [121].  

 Most integrins activate focal adhesion kinase (FAK) and thereby src family 

kinases (SFKs), causing phosphorylation and signaling from p130-CAS and paxillin.  A 

subset of integrins (α1β1, α5β1, and αvβ3) also activate the adaptor protein Shc [122].  

Activated FAK and SFKs along with receptor tyrosine kinases (RTKs) activate several 
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signaling cascades.  For example, actin polymerization occurs from downstream 

activation of Rac, Cdc42, p21-activated kinase (PAK), Wiskott–Aldrich syndrome 

protein (WASP)-family proteins, ARP2/3 complex and LIM kinase (LIMK).  Other 

signaling molecules include myosin light chain kinase (MLCK), Rho effectors Rho 

kinase (ROCK), and mammalian diaphanous (mDIA) to regulate bundling and 

contraction of actomyosin fibers; PAR6 and protein kinase C (PKC) and Cdc42 to 

control cell polarity during migration; Jun amino-terminal kinase (JNK) and 

extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) to 

promote cell migration [123].  

 

SPP1  

 Secreted phosphoprotein 1 (SPP1, also known as osteopontin) is an acidic single 

chain phosphorylated glycoprotein component of the ECM that ranges in length from 

264 to 301 amino acids [124].  SPP1 contains the well-characterized integrin recognition 

sequence (RGD) and other cryptic sequences that interacts with cell surface receptors, 

including integrins, to mediate cell adhesion, migration, differentiation, survival and 

immune function [124].  Expression of SPP1 has been found in uteri of sheep, goats, 

pigs, cows, mice, baboons and humans [100, 101, 119, 125-127].  Recent studies have 

focused on the role of SPP1 in sheep as a progesterone-induced secretory product and 

pigs as an estrogen-induced secretory product of the uterine GE that binds receptors on 

the apical surface of the uterine LE and conceptus trophectoderm to stabilize adhesion 

between the uterus and conceptus for implantation and stimulate changes in conceptus 
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morphology [126, 128, 129].  The expression pattern and abundance of SPP1 correspond 

to periods of conceptus growth and development [124].   

 

Focal adhesions 

 Focal adhesions are areas of close apposition and thus presumably anchorage 

points of the plasma membrane of a cell to the substratum over which it is moving.  

They are always associated with cytoplasmic microfilament bundles that are attached via 

several proteins to the plasma membrane.  Cells use integrins to adhere to the ECM and 

link to components of the actin cytoskeleton to form focal adhesions. Integrins are 

transmembrane molecules that make up the extracellular component associated with the 

ECM and the intracellular component that associates with adhesion complex proteins 

(viniculin, talin, paxillin, tensin and more than 150 other proteins which all associate 

with actin filaments) [130, 131].  There are several variations of focal adhesions based 

on size: small (0.5 – 1.0 µm) “dot like” adhesions known as focal complexes; elongated 

(3 – 10 µm), streak like complexes that associate with actin and myosin containing 

filament bundles (stress fibers) known as focal contacts or focal adhesions; and tensin-

enriched fibrillar adhesions involving fibronectin fibrillogenesis [130].   

 Focal adhesions not only anchor cells to a substrate, but are also involved in 

molecular cell signaling cascades [130] such as touch receptors that respond to 

mechanical stimuli to affect characteristics of the cellular microenvironment [130].  

They are individual mechanosensors and their elongation reveals the local balance 

between the force on the cell and the rigidity of the ECM [130].  Matrix adhesion 
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formation is regulated by signals from G-proteins of the Rho family.  However, 

formation of punctate focal complexes depends on Rac signaling [130] and activation of 

RhoA is required for formation of mature focal adhesion complexes and associated 

stress fibers.  RhoA triggers downstream activation of targets such as Rho associated 

kinase (ROCK) and forming homology protein, Dia 1 (a mammalian homolog of 

Drosophila Diaphanous protein) shown to mediate effects of Rho on matrix adhesions 

and the actin cytoskeleton [130].  Self-assembly of protein complexes are favored when 

the cell is under stress and not favored when the pulling forces are relaxed [130].  The 

force used to stimulate focal adhesion formation can come from inside the cell or from 

an extracellular source [130].  

 In the ruminant synepitheliochorial placenta, restricted trophoblast invasion 

requires complex interactions of integrins with proteins of the ECM and integrin 

receptors of neighboring cells for the formation of focal adhesions [132].  Conceptus 

elongation involves focal adhesion formation as it migrates and stretches along uterine 

LE. LGALS15 stimulates focal adhesion formation via its RGD integrin recognition 

sequence, where it binds to integrins expressed on the LE and conceptus trophectoderm, 

and thus functions as an adhesive protein important to conceptus development.  

 

GALECTINS 

Features of the galectin superfamily of proteins 

 Galectins are proteins with 15 known members found in nearly all living 

organisms, including mammals, drosophila, zebrafish, fungi and arabadopsis, but 
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mysteriously absent from yeast.  Candidate galectins have also been found in viruses 

such as lymphocystis disease virus and a few adenoviruses [18, 133].  They all share a 

conserved CRD that binds beta-galactoside sugars, and functions to cross-link 

glycoproteins as well as glycolipid receptors on the surface of cells to initiate biological 

responses [13, 15, 134].  Functional studies on the extracellular and intracellular roles of 

galectins implicate them in cell adhesion, chemoattraction and migration as well as 

growth, differentiation and apoptosis [135, 136].  The presence of galectins in so many 

evolutionarily divergent species suggests that they play a role in cell function, but, on the 

other hand, the presence of so many types in each species suggests that they have 

evolved to participate in a multitude of specific functions [133].   

 Lobsanov (1993) coined the term “galectin” and declared that “membership in 

the galectin family requires fulfillment of two criteria: affinity for beta galactosides and 

significant sequence similarity in the carbohydrate-binding site, the relevant amino acid 

residues of which have been identified by X-ray crystallography” [18].  In mammals, 

one can place proteins into families based on their sequence similarity to the canonical 

CRD with high accuracy.  This is not the case in non-mammalian species.  Thus it is best 

to keep both sequence motif and beta-galactoside binding in the definition and to use the 

term “galectin-like” for proteins that have a similar sequence motif but do not bind beta-

galactosides [18].  Galectin was a term meant to replace the previous category of “S-

type” lectins [18].  The S indicates the dependence on thiols (reducing conditions) for 

activity, which was a property of LGALS1, the first member discovered and the best 

studied, but this was not found to be the case for many of the subsequent members of the 
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family.  Now S-type is sometimes used to designate a larger protein family to which 

galectins belong or a subgroup of galectins; however, both are incorrect as no such group 

has been defined [18].  Other common characteristics of galectins are their localization 

to the cytosol of cells and their ability to be secreted, despite the absence of a known 

signaling peptide, through a non-classical pathway.  They can also be translocated to the 

nucleus or to other cellular compartments [137]. 

 All galectins have a core sequence of about 130 amino acids and many of them 

are highly conserved [133].  The CRD is usually contained between residues 30 and 90 

and encoded by one exon [133].  The CRD can act on its own or in conjunction with the 

CRD of another galectin, which is in contrast to other protein domains which often occur 

together with other domain types in the same peptide [138].  Hirabayashi and Kasai 

(1993) proposed the categorization of galectins, based on the CRD, into three groups: 1) 

prototype galectins (galectins-1, 2, 5, 7, 10, 11, 13, 14 and 15); 2) chimera-type galectins 

(galectin-3); and 3) tandem-repeat-type galectins (galectins-4, 6, 8, 9 and 12) [20].  

Prototype galectins exist as monomers or noncovalent homodimers with one CRD while 

chimera type galectins contain a non-lectin domain linked to a CRD and tandem-repeat-

type galectins have two distinct CRDs with distinct specificities [20].  Native galectins 

occur in monomer, dimer, or higher multimer forms depending on conditions such as 

concentration of ligand [18].   

 Galectins were first discovered through studies to test the hypothesis that cell-cell 

adhesion utilized carbohydrates.  Beta-galactosides were used initially due to the ease of 

obtaining them for biochemical experiments and their presence on the surface of cells.  
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Beta-galactoside affinity columns were used to screen cell lysates.  Bound proteins from 

tissue extracts eluted with lactose were analyzed and thus galectins were found [18].  

The CRD is composed mostly of beta chains; six strands form the concave side and five 

form the convex side.  Carbohydrates bind to the concave side to five distinct sites (A, B, 

C, D, E).  Subsite C is the defined beta-galactoside binding site and the most conserved.  

Site D is the disaccharide binding site and is the second most conserved, but the 

structural requirements are much less and can be fulfilled by a wider range of molecules 

and preference in this site is one source of variation among members of the family [18].  

A second source of variation is in their abilities to accommodate saccharides (GlcNAc, 

Gal, GalNAc, NeuAc), and this is handled by subsite B [18].  A few reports indicated 

that galectins can bind mannose [18].  This means galectins that show weak binding to 

beta-galactosides like LGALS10 and galectin-like proteins may have other specificities 

[18].  The amino acids found in the C and D subsites are the only residues highly 

conserved among members of the family.  Galectin CRDs are, on average, 80% 

conserved.  LGALS2 and LGALS9 are slightly more diverse and only about 70% 

conserved and LGALS1 and LGALS3 are slightly more conserved at 87% [18].  Other 

parts of the CRD may be conserved among species for particular galectins and have 

other interesting binding activities.  Galectin homologies are most present in mammals, 

but can be present in plants suggesting an ancient origin [139].  LGALS1, 2, 3, 4, 7, 8, 9, 

12, GRIFIN and HSPC159 have orthologues in humans, mice and rats, as well as other 

mammalian species.  They are different enough to indicate that they diverged well 

before mammals and can be regarded as separate galectins and galectin-like proteins.  
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However the remaining galectins and galectin-like proteins appear in only a few species 

[18].  LGALS10, LGALS13, and placental protein 13-like protein (PPL13) have only 

been identified in humans with no apparent orthologues in the mouse or rat and are about 

40% identical to LGALS15 [18].  

 Galectins have been adapted to interact with other proteins (not just beta-

galactosides) in a lectin-independent manner, thus increasing their diversity and 

influence on cellular mechanisms [139].  Galectins have properties typical of other 

cytosolic proteins: 1) synthesized on ribosomes; 2) lack of a signal peptide for secretion; 

and 3) acetylated N-termini [18].  LGALS3 may be able to be phosphorylated, but other 

than that no other post-translational modifications have been shown with certainty for 

any members of the galectin family.  

 Members of the galectin family are ones of multiplicity and diversity; the former 

from occurrences of common localization and functionality and the latter from the 

variety of participating cellular processes of each member.  They do not have a specific 

receptor, but recognize a group of proteins having oligosaccharides to allow them to 

interact with different cell types and cell surface proteins and to exert effects both extra- 

and intracellularly [139].  Two facts need to be considered regarding the extracellular 

function of galectins: 1) there is no evidence to suggest that any galectin is destined to be 

an extracellular molecule as none of them have a secretory signaling sequence; and 2) 

some appear to require reducing conditions to have a biological effect which raises the 

question of whether they can function in the oxidative extracellular environment [139].  

Their extracellular functions have been investigated and they can bridge cells 
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(heterotypic and homotypic bridging ligand) via cross-linking to glycoconjuagtes that 

contain beta-galactosides [133, 137].  Their intracellular functions may be the 

predominant site of action where they function in pre-mRNA splicing, which is 

dependent on the N-terminal domain rather than the CRD [140].  They also appear to 

interact with multiple proteins in the cytosol and perhaps play important roles in a 

variety of cell signaling cascades [139, 141].  The next question is how important is the 

CRD in those protein interactions and signaling cascades.  There is no evidence that 

galectins recognize intracellular glycoconjugates; however, saccharides (particularly O-

linked varieties) are present in the cytoplasm and may function as ligands for galectins 

[139].   

 There is significant interest in using galectins or galectin inhibitors in therapeutic 

and biomedical research, particularly in the cancer field [137].  Because galectins are 

involved in modulation of cell adhesion, growth, apoptosis, immune response and 

angiogenesis, their expression might have a critical role in tumor progression and 

immune evasion [137].  They are effector molecules in humoral innate immune 

responses [142] and in sponges and mammals, galectins are part of an alternate 

complement activation system that leads to opsinization and engulfment of microbes or 

formation of pores in the microbial membrane causing cell lysis [142].   

 Many of the well-documented functions of galectins in the immune system have 

strong similarities to events in blastocyst implantation.  Molecules involved in immune 

function stimulate a complex cell signaling network involving vascular dilation, 

increased permeability and blood flow, exudation of fluids and plasma proteins and 
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leukocyte migration into inflamed regions; all functions associated with members of the 

galectin family [143].  Similar functions (vascular dilation, increased permeability, 

chemotaxis, and increased secretory activity) are also required for implantation.  During 

inflammation the initial binding of leukocytes to the endothelium is mediated by 

galectins cross-linking of sialylated Lewis antigens present on the endothelium to 

molecules present on leukocyte membranes.  Lewis antigens are also present in uterine 

endometrium [143, 144].  Up-regulation of galectins during inflammation on both 

neutrophils and endothelium results in weak cell-cell interactions, slowing the speed of 

circulating neutrophils and allowing them to roll on the endothelium [142].  The rolling 

process is an initiation signal for firm, integrin-mediated cell attachment, which further 

slows the cell at the endothelial surface and allows it to flatten out.  This firm adhesion 

must be preceded by galectin-mediated rolling [143].  This bears a striking resemblance 

to the rolling, apposition and attachment phases of implantation which are also 

dependent on weak followed by strong attachment and integrin interactions [27, 145].  

 Genetically modified mice have allowed documentation of interesting roles for 

LGALS1 and LGALS3 in neural development and modulation of the immune system 

[142].  However, it has been difficult to ascertain functions for other galectins in mice in 

which specific galectin genes have been deleted due to the redundancy of functions 

among this family of genes.  Lgals1 and Lgals3 null mice do not exhibit defects in 

implantation, fertilization, or embryo survival under normal housing and husbandry 

conditions [18].  The two galectins do not substitute for one another since the double 

mutant mouse is viable; however, these mice have subtle defects in their immune and 
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olfactory systems [18].  There is no evidence for functional redundancy among members 

of the galectin family in vivo, perhaps due to their specificity in tissue localization and 

biochemical properties.  The fact that double or triple null mice survive suggests that 

galectins function as optimizing molecules that are not essential to development [18].   

 

LGALS1 and LGALS3 

 LGALS1 and LGALS3 are the most studied members of the galectin family and, 

while each family member is unique with specific functions, insights and similarities can 

be drawn from results of a few intensive studies that may apply to all members.  Their 

intracellular functions include regulation of cell proliferation, differentiation, apoptosis 

and RNA processing while their extracellular functions include activation of autocrine or 

paracrine mechanisms and/or direct mediation of homotypic and heterotypic cell 

interactions and adhesion to the ECM (Figure 2.3) [139].  LGALS1 and LGALS3 play a 

role in T-cell homeostasis and survival in T-cell mediated immune disorders, acute 

inflammation and microbial infections [146].  They may also have minor functions in 

implantation where LGALS1 and LGALS3 are expressed in the trophectoderm and have 

been implicated in the process of implantation in mice.  However, LGALS1 and 

LGALS3 null mice do not have an implantation defect although there are some 

developmental issues in the adult mice immune and olfactory systems [137].   

 LGALS1 can promote and/or inhibit cell growth in different cell types, which 

may or may not depend on its CRD [147].  It can function in a carbohydrate dependent 

or independent fashion and have positive or negative effects depending on cell type.  The  
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FIGURE 2.3   
Biological functions mediated by three of the most well characterized members of the 
galectin family; galectins-1, -3, and -8. Secreted LGALS1 promotes cell adhesion by 
binding to glycolipid and glycoprotein receptors to induce mitogenesis, cytostasis and 
apoptosis.  Secreted LGALS3 also binds to cell-surface glycoconjugates to promote cell 
adhesion, as well as induction of mitogenesis, chemotaxis and cell migration.  
Intracellular galectin-3 also promotes RNA processing and is anti-apoptotic.  Secreted 
LGALS8 binds to glycoconjugates to promote cell adhesion and apoptosis [139] 
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CRD is usually utilized when LGALS1 is in high concentrations, while the CRD 

independent functions occur at low concentrations of LGALS1.  LGALS1 is expressed 

in epithelia and connective tissue of the embryonic gonads [137].  It interacts with α7 

and β1 integrin subunits to inhibit cell adhesion through an interference mechanism, 

although cell survival was reported to be normal initially, the inability of the cell to 

adhere may have led to increased cell death via apoptosis [148-150].  Transcriptional 

regulation of LGALS1 includes both an upstream and downstream position-dependent 

cis-element [151].  It has one SP1 site and a consensus initiator element, which partially 

overlaps a non-canonical TATA box.  LGALS1 has two known start sites and there is 

direct initiation of transcription of RNA from both start sites [152].  The upstream 

transcription start site contributes more than one-half of the LGALS1 mRNA.  The 5’ end 

is very GC rich and formation of a hairpin structure which influences translation of the 

LGALS1 mRNA is possible [152].   

 The abilities of LGALS3 to stimulate or inhibit cell growth and promote 

angiogenesis in vivo are dependent on its CRD region [139, 153].  A role in 

transcriptional activity has also been described for LGALS3 in thyroid tissue [139].  An 

intracellular role in regulating apoptosis, perhaps through the use of B-cell lymphoma 

two (Bcl-2) in mitochondria has been reported [154], as has its ability to inhibit cell 

adhesion by interacting with laminin and other extracellular matrix proteins [139].  Over 

expression of LGALS3 in vitro resulted in loss of cell adhesion and G1 arrest without 

detectable cell death [139].  However, LGALS3 can stimulate adhesion of neutrophils to 

laminin in an integrin-independent manner and, at high concentrations, it induces 



 
 

 

36 

neutrophil adhesion to fibronectin that appears to be dependent on β2 integrin [143].  

LGALS3 is presumed to play a key role in the formation of tight junctions between the 

cells to maintain polarity and it has been directly implicated in terminal differentiation of 

epithelial cells where it binds to and polymerizes a high molecular weight glycoprotein 

known as hensin, which maintains polarity of cells in the differentiated state [155].  

LGALS3 is involved in the modulation of both weak and strong adhesion between cells 

and ECM and cell-cell interactions [155].  It can be internalized as well as externalized 

via a mechanism that can be inhibited by the antibiotic filipin, but not chlorpromazine, 

suggesting internalization via the caveolae membrane microdomains and not clathrin 

coated pits [155].  LGALS3 can also mediate integrin clustering on the surface of cells 

to increase binding [155].  (Figure 2.3).  

 

Other members of the galectin superfamily of proteins 

LGALS2.  LGALS1 and LGALS2 genes each contain 4 exons with similar intron 

placement; however, the genomic upstream region, which contains sequences 

characteristic of regulatory elements, is different [156].  LGALS2 promoter region 

contains few known regulatory elements [137].  One known recognition site is AML, a 

master regulator of hematopoiesis [137].  LGALS2 binds to lymphotoxin-alpha (LTA) 

and a single-nucleotide polymorphism in LGALS2 is significantly associated with 

susceptibility to myocardial infarction [157].  This genetic substitution affects 

transcription of LGLAS2 in vitro, potentially leading to altered binding affinity to LTA, 
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which affects degree of inflammation.  Smooth muscle cells and macrophages in human 

atherosclerotic lesions express both LGALS2 and LTA [157]. 

 

LGALS7.  This member of the galectin family is an early transcriptional target of the 

tumor suppressor protein p53 [158] which suggests a pro-apoptotic function shared by 

many of the other galectins.  It functions intracellularly upstream of JNK activation and 

cytochrome C release and might regulate expression of genes that modulate the redox 

status of cells to favor apoptosis [139].  LGALS7 affects proliferation and differentiation 

of epithelial cells [137] and has a role in reepithelialization of corneal wounds [159]. 

 

LGALS8.  LGALS8 induces apoptosis in human lung carcinoma cell lines [139].  It has 

six known isoforms with three belonging to the prototype group and three to the tandem 

repeat group [137].  Recombinant LGALS8 remains active even when extracted and 

purified in the absence of reducing agents which suggests that it can function 

extracellularly for prolonged periods of time in a non-reducing environment without 

being inactivated [160].  Cell adhesion stimulated by LGALS8 triggers integrin-

mediated cell signaling cascades such as tyrosine phosphorylation of FAK and paxillin 

[160].  In contrast, high concentrations of soluble LGALS8 interacts both with cell 

surface integrins and other soluble ECM proteins, to inhibit cell-matrix interactions 

[160].  Unlike fibronectin which will bind most integrins, LGALS8 is selective and 

interacts only with α3, α4, α6, β1 and β3 [161]. 
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LGALS9.  LGALS9 was recently shown to be a marker of human uterine endometrial 

function [162].  It is regulated during the menstrual cycle and the cells responsible for 

this regulation are the epithelial cells of the endometrial glands.  In human early-

pregnancy decidua, LGALS9 is also expressed abundantly in epithelial cells [162]. It 

induces apoptosis of thymocytes and melanoma cells, as in many other immune cells, 

such as T cells, B cells, and monocytes [163]. LGALS9 only acts as a proapoptotic agent 

on activated CD4+ and CD8+ T cells but not on inactivated ones [163]. 

  

LGALS10.  LGALS10, also known as Charcot-Leiden crystal (CLC) protein [137], was 

originally excluded from the family due to its inability to bind beta-galactosides, but 

changes in criteria now allow lectins, like LGALS10, which bind mannose instead of 

lactose to be included [137].  LGALS10 is an abundant lysophospholipase of eosinophils 

and it occurs naturally as hexagonal bipyramidal crystals in human tissues and 

secretions.  It is associated with increased numbers of peripheral blood or tissue 

eosinophils in parasitic and allergic responses [164].  LGALS15, which is closely related 

to LGALS10, also exists in crystals in ovine uterine LE and trophectoderm [22, 95, 165]. 

 

LGALS13. LGALS13, also known as placental protein 13 (PP13), was first cloned from 

human term placenta and is predominantly expressed by the syncytiotrophoblast [166, 

167].  It has demonstrated endogenous lysophospholipase activity [168, 169] and can 

elicit depolarization of trophoblasts as well as liberation of linoleic and arachidonic acids 

from the trophoblast membrane [170].  Maternal serum levels of LGALS13 during the 
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first-trimester appear to be a reasonable marker for risk assessment for preterm 

preeclampsia [167]  

 Over the whole family, galectin expression varies by tissue type, developmental 

stage and pathological condition (particularly with cancer) [137] and most galectins 

interact with integrins.  LGALS3 binds α1β1 [171]; LGALS1 and LGALS3 interact with 

α7β1 [149] and αmβ2 [160].  In addition to binding glycoconjugates, many members of 

the galectin family also share a key quality, they can be localized both intracellularly 

(cytoplasm and nucleus) and extracellularly (ECM and secreted) [172].  Nuclear 

localization of LGALS1, LGALS3, LGALS7, LGALS10, LGALS11, LGALS12, 

LGALS13 and LGALS14 has been reported [21, 172].   

 

LGALS15 

 LGALS15 was discovered in uteri of pregnant ewes by Gray [173] while 

identifying molecular and cellular markers of endometrial function using gene profiling 

techniques and an endometrial cDNA library from the uterus of Day 14 pregnant ewes.  

Interestingly, approximately 1.4% of the 5,000 ESTs sequenced from the cDNA library 

were highly similar to 
ovgal11, a previously uncharacterized member of the galectin 

family of secreted animal lectins [22].  OVGAL11 was originally described as being 

induced in gastrointestinal tissue and secreted into the intestinal lumen in response to 

inflammation and eosinophil infiltration after infection of sheep with the helminth 

Haemonchus
 
contortus [21].  Sequence analysis showed it to be a novel member of the 

galectin family and thus it was renamed LGALS15.  
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 The amino acid sequence of endometrial LGALS15 contains a CRD similar to 

members of the galectin superfamily [174] (Figure 2.4).  The CRD of other members of 

the galectin superfamily are composed of 13 amino acids, and 7 of these (H-N-R-------N-

-----W--E-R) play important roles in sugar binding [175, 176].  The putative CRD of 

LGALS15 has three of the seven amino acids important for sugar binding (N64, W71 

and E74) and two are conservatively substituted (R53 and K76).  Another amino acid of 

possible importance is C57, it is different from prototypical galectins but appears to 

allow for binding of mannose in LGALS10 [22, 177].  Similar to other galectins, 

LGALS15 does not have glycosylation sites, transmembrane domains, or predicted 

signal peptides for secretion; however, unlike other galectins,  LGALS15 contains two 

potential integrin-binding domains at positions 123 (LDV) and 126 (RGD) [178]. 

(Figure 2.4) 

 LGALS15 is expressed by LE and sGE of intercaruncular endometrium of 

pregnant ovine uteri from Day 10 of pregnancy to term, including periods of 

implantation, placentation and uterine involution post-partum [95].  Temporal and 

spatial expression profiling revealed that LGALS15 exhibits a similar expression pattern 

to other interferon stimulated genes in that it is detected only after Day 10 of the estrous 

cycle in LE and sGE coincident with the loss of PGR [22].  In cyclic ewes, expression 

decreased by Day 16 with re-emergence of PGR, but remained high in pregnant ewes in 

which PGR continues to be absent from LE and sGE throughout pregnancy [22].   
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FIGURE 2.4   
Amino acid sequence of LGALS15. The asterisks denote the conserved residues forming 
the carbohydrate recognition domain (CRD) found in prototypical galectin family 
members.  Amino acids highlighted in red are identical to those conserved in CRD of 
other members of the galectin family.  Residue C57 (highlighted in blue) is not well 
conserved, but is found in LGALS10, LGALS15’s closest relative, and is predicted to 
function in mannose binding.  Amino acids highlighted in yellow are predicted to be 
involved in integrin recognition and binding, a unique feature of LGALS15.  
 

 

 

 

 

 

 

 

 

1   MDSLPNPYLQ SVSLTVCYMV KIKANLLSPF GKNPELQVDF 40 

 

               * * *         *       *  * * 

41  GTGTGQGGDI PFRFWYCDGI VVMNTLKDGS WGKEQKLHTE 80 

 

 

81  AFVPGQPFEL QFLVLENEYQ VFVNNKPICQ FAHRLPLQSV 100 

 

 

101 KMLDVRGDIV LTSVDTL 137 LDVRGD 
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Studies of ovarectomized ewes treated with exogenous P4 and intrauterine IFΝΤ or P4 

and intrauterine control proteins and a PGR antagonist revealed that LGALS15 is a P4-

induced and IFΝΤ-stimulated gene [22].  This corresponds to temporal and spatial 

aspects of expression in pregnant ewes in which LGALS15 increases to Day 16 when 

IFΝΤ secretion by the conceptus is at a maximum.  Further, pregnant ewes treated with 

P4 prior to onset of endogenous P4 production showed accelerated growth of the 

conceptus and IFΝΤ secretion as well as LGALS15 expression [179].   

 Expression of LGALS15 is limited to LE and sGE during placentation in ewes 

when trophoblast giant BNCs begin to differentiate and fuse to LE to form 

multinucleated syncytia which replaces the LE.  During that time LGALS15 exhibits a 

variegated pattern of expression only in the remaining LE [81, 111].  The LE returns 

between Days 40 and 60 of pregnancy and LGALS15 expression increases [95].  

LGALS15 mRNA cannot be detected in the placentomes which are devoid of LE [95].  

Expression during uterine involution post-partum revealed that it takes at least four 

weeks to restore the LE and, during that time, LGALS15 expression is variable [95].  

LGALS15 protein has a nucleocytoplasmic distribution in LE and sGE, concentrated at 

the apical surface of these cells and is abundant in uterine secretions [22].  LGALS15 

protein was also found in trophectoderm and allantoic fluid and, since it is not produced 

by trophectoderm cells, it must be taken up from the uterine lumen during the peri-

implantation period and by both inter-placentomal chorion and chorionic areolae during 

later stages of gestation.  Studies of unilaterally pregnant ewes revealed that LGALS15 
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protein was present in secretions of both the gravid and the non-gravid uterine horns 

[95]. 

 LGALS15 is synthesized and secreted from the endometrial LE and sGE as a 

component of histotroph in ewes which accumulates between the fetal maternal interface 

and conceptus trophectoderm [23].  It was also found that LGALS15 was the previously 

unknown 14 kDa protein in intracytoplasmic crystalline inclusions in LE and 

trophectoderm cells [22, 23, 95].  These crystalline inclusions have been described for 

sheep [23, 180], mice [181], rabbits [182, 183] and humans [182].  Similar crystalline 

inclusions occur when Day 7 bovine blastocysts are transplanted into sheep uteri for 7 to 

9 days, but not naturally in bovine trophectoderm or endometrial epithelium [184].  

Crystalline inclusion bodies in trophectoderm increase in number and size between Days 

10 and 18 of pregnancy [95].  Biological roles of components of the crystalline inclusion 

bodies are believed to include modulation of cell growth, differentiation and apoptosis 

through actions as pre-mRNA splicing factors and interactions with specific intracellular 

ligands such as Ras and BCL-2 [185].  Other studies showed that galectins can form 

crystals while bound to a ligand and that the ligand will leach out of the crystal over 

time, so the crystalline inclusion may function to store and slowly release nutrients 

[186]. 

 Analysis of uterine flushings indicate that secreted LGALS15 binds to itself to 

form multimers similar to other members of the family and is most abundant in uterine 

flushings between Days 14 and 16 of pregnancy [95].  The role of multimerized 

LGALS15 is not known.  LGALS15 is hypothesized to be: 1) packaged as crystalline 
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inclusion bodies in LE; 2) secreted into the uterine lumen as a component of histotroph; 

and 3) taken up by conceptus trophectoderm and packaged into crystalline inclusion 

bodies [95].  It is also hypothesized that LGALS15 secreted by the LE and sGE 

accumulates in the uterine lumen, is absorbed by the placenta and transported to the fetal 

circulation from which it may be cleared by the kidney and enter the allantois via the 

urachus to be utilized there or recycled into the fetal circulation [4, 7].  LGALS15 is not 

found in amniotic fluid [95]. 

 Results of bioinformatic and RT-PCR analyses indicate that LGALS15
 is a unique 

member of the galectin family that is present in the genome of sheep and goats 

(Subfamily Caprinae) and cattle (Subfamily Bovinae), but not in pigs (Suborder Suina), 

which are Artiodactyls [187].  Outside of the Artiodactyls, LGALS15 was not detected in 

human, nonhuman primate, mouse, chicken, dog, or any other species with a sequenced 

genome [187]. Despite the presence of LGALS15 in the genome of cattle LGALS15 

mRNA was not found to be expressed in the uterus of cows, indicating the bovine 

LGALS15 gene may be a pseudogene [188].   

 Several functions for LGALS15 may exist.  Perhaps it has effects on the immune 

system during pregnancy to protect the conceptus, which may be similar to its role in 

Haemonchus contortus parasite infection by altering innate and/or adaptive immune 

functions [20].  LGALS15 may be a progesterone-induced and IFNT-stimulated factor 

that modulates and promotes placental growth [189].  Perhaps of greater interest, 

LGALS15 may mediate conceptus-endometrial interactions during implantation [22].  

This could occur due to binding and cross-linking between LGALS15 and beta 
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galactosides on glycoproteins and glycolipids, which stimulates cellular mechanisms and 

signaling cascades leading to adhesion of the conceptus to maternal uterine epithelia and 

conceptus survival and growth [104]. (Figure 2.2) 
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CHAPTER III 

EFFECTS OF GALECTIN 15 (LGALS15) ON AN OVINE PRIMARY 

TROPHECTODERM CELL LINE  

 

INTRODUCTION 

 In mammals, the trophectoderm is the earliest differentiating tissue and 

contributes to the formation of extraembryonic membranes that are necessary for 

embryonic implantation and survival [190].  In addition to its role in attachment and 

implantation, the trophectoderm is important for fluid transport into the internal 

membranes which form the developing blastocyst [191, 192]. From Days 9 to 20 of 

gestation the ovine embryo and trophectoderm will undergo dramatic growth and 

differentiation from a spherical blastocyst to tubular then filamentous conceptus 

phenotype [191].  During this time of rapid growth the trophectoderm cells begin to 

secrete IFNT, which functions as the pregnancy recognition signal in ruminants [74].  As 

embryonic development progresses, the mesoderm and endoderm associate with the 

ectodermal derived trophectoderm to form the chorion.  Ultimately, the chorion will 

become intimately associated with the allantois and the uterine epithelium to form the 

placenta [190, 193-195].  However, despite the important roles of the tropphectoderm in 

early embryonic survival and establishment of pregnancy there are many aspects of its 

physiology which remain unclear due to the difficulty of examining the trophectoderm in 

isolation from other extraembryonic tissues. 
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Recently, a new galectin family member and component of uterine histotroph, 

LGALS15, was discovered in the ovine endometrium [173]. LGALS15 was originally 

identified in ovine intestinal epithelium as being induced in response to infection by 

Haemonchus contortus, a nematode parasite [196]. LGALS15 mRNA is expressed in the 

uterine LE and sGE after Day 10 of pregnancy and is induced by P4 and stimulated by 

IFNT [173].  Stimulation of blastocyst growth and development in response to early 

exogenous P4 treatment was strongly associated with increases in endometrial 
LGALS15 

mRNA and LGALS15 protein in uterine flushings [197].  Although LGALS15 mRNA 

was found exclusively in the endometrial LE and sGE of the uterus, LGALS15 protein 

was detected predominantly in the chorion/trophectoderm of the placenta, as well as in 

the allantoic fluid.  However, the exact role of LGALS15 in trophectoderm function is 

unclear. 

 Galectins are a unique family of proteins with both intra- and extra-cellular 

functions including cell proliferation, differentiation, motility, adhesion, apoptosis and 

pre-mRNA splicing [13, 15, 134].  Extracellularly, LGALS15 is a potent stimulator of 

trophectoderm cell migration and adhesion in vitro via integrin binding and focal 

adhesion formation which are critical for successful conceptus implantation [198].  

Intracellularly, immunogold electron microscopy revealed that LGALS15 was localized 

to large, membrane-bound rhomboidal crystal structures of unknown function within the 

endometrial LE and conceptus trophectoderm [199]. LGALS15 has been proposed to 

stimulate the formation of crystals within the endometrial LE as well as be secreted into 

the uterine lumen as a part of histotroph. The conceptus trophectoderm then presumably 
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absorbs extracellular LGALS15 wherein it becomes a component of intracellular crystals 

[23].  In ovine conceptus trophectoderm, crystals were found to increase in number and 

size between Days 10 and 18 of pregnancy corresponding to times of highest LGALS15 

production, rapid growth and elongation of the conceptus and implantation [180].   

The presence of crystals in uterine histotroph between maternal and fetal 

intercotyledonary membranes, is well documented [200, 201].  The P4-induced crystal 

structures in the endometrium and/or conceptus trophectoderm have been described in 

sheep [23, 180, 200], mouse [181], rabbit [182, 183] and human [182]. The biological 

role(s) of crystals containing LGALS15 in uterine epithelia and conceptus 

trophectoderm is not known; however, the intracellular role of other galectins include 

modulation of cell growth, differentiation and apoptosis through functioning as pre-

mRNA splicing factors and interactions with specific intracellular ligands such as Ras 

and Bcl-2 [14, 185].   

  LGALS15 amino acid sequence has high homology to galectin 13 (LGALS13 

also known as placental protein 13, PP-13) [173].  LGALS13 is expressed in human 

placenta and is suggested to be a useful marker of pre-eclampsia since LGALS13’s 

intracellular roles include establishing the ratio of vasoconstriction/vasodilatation agents, 

and may function similarly in the placenta [168].  LGALS13 also elicits calcium 

depolarization in human trophoblast cell lines to stimulate a cascade of changes such as 

the liberation of fatty acids and the elevation of prostaglandin production [202].  

LGALS15 also shares high amino acid homology with galectin 10 (LGALS10 also 

known as Charcot Leyden Crystal protein) [173].  LGALS10 is a major autocrystallizing 
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constituent of human eosinophils and basophils, comprising approximately 10% of the 

total cellular protein in these granulocytes [168].  Interestingly, both LGALS10 and 

LGALS13 have lysophospholipase activity and promote strong cytolytic and membrane 

perturbing properties [203] which has been proposed to protect the trophectoderm during 

implantation [168]. 

 The goal of this study was to characterize a primary ovine trophectoderm cell 

line and then use it to investigate the role of LGALS15 in trophectoderm gene 

expression, development, growth, and survival. 

 

MATERIALS AND METHODS  

Isolation, culture and characterization of trophectoderm cells 

 All animal experiments were approved by the Institutional Animal Care and Use 

Committee of Texas A&M University. Mature Suffolk-type ewes (Ovis aries) were 

observed for estrus (designated as Day 0) in the presence of a vasectomized ram and used 

in experiments only after exhibiting at least two estrous cycles of normal duration (16 to 

18 days) as described previously [204, 205].  At estrus, ewes were mated to intact rams.  

The conceptuses were recovered by flushing the uterine lumen with 20 ml sterile PBS 

(pH 7.2) supplemented with 100 U/L penicillin and 100 µg/L streptomycin.  The inner 

cell mass was removed from the conceptuses whenever possible, and the remaining 

tissues were carefully minced, pooled, and placed in trophoblast growth medium, 

containing DMEM/F-12 supplemented with 10% fetal bovine serum, glutamine (2 mM), 

insulin (700 nM), pyruvate (1.0 mM), non-essential amino acids (0.1 mM), and 
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antibiotics (50 U/L penicillin, 50 µg/L streptomycin). Cells were maintained in a 5% 

CO2 environment at 37°C.  Two different ovine trophectoderm cell lines were 

established and designated as oTr1 and oTrF.  The oTr1 cell line was established from a 

Day 16 conceptus and maintained in tissue-culture in treated plastic dishes, whereas 

oTrF cell line was established from a Day 14 conceptus and maintained on collagen-

coated plastic dishes (Cohesion, Palo Alto, Ca).  Fluid-filled trophoblastic vesicles, 

which spontaneously developed in culture, were physically ruptured with sterile 28-

gauge needles to enhance the generation of a cellular monolayer.  This primary culture 

was propagated on the same support by serial trypsinizations.  Cells were transferred to 

tissue culture flasks and propagated for six passages prior to use.  

 

RNA extraction, reverse transcription, and polymerase chain reaction analysis  

 RNA extracted from oTr1 and oTrF primary ovine trophectoderm cell lines were 

converted to cDNA and analyzed by PCR for molecular markers found in trophectoderm 

cells in vivo.  Total cellular RNA was isolated from tissues using Trizol (Gibco-BRL, 

Bethesda, MD) according to the manufacturer's recommendations. The quantity of RNA 

was assessed spectrophotometrically, and the integrity of RNA was examined by gel 

electrophoresis in a denaturing 1% formaldehyde-agarose gel.  Expression of 

trophectoderm molecular markers was determined by reverse transcription-polymerase 

chain reaction (RT-PCR) using methods described previously [80].  Briefly, cDNA was 

synthesized from total oTr1 and oTrF RNA (5 µg) using random and oligo-dT primers 

and SuperScript II Reverse Transcriptase (Life Technologies, Gaithersburg, MD).  
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Newly synthesized cDNA was acid-ethanol precipitated, resuspended in 20 µl sterile 

water, and stored at –20°C. The cDNAs were diluted (1:10) with sterile water before use 

in PCR reactions. The PCR reactions were performed using AmpliTaq DNA polymerase 

(Perkin Elmer, Foster City, CA) according to manufacturers' recommendations.  The 

PCR conditions and amount of template cDNA used in each reaction were optimized for 

each primer set to ensure linear amplification of the target.  The PCR products were 

separated on a 1.5% agarose gel and visualized by ethidium bromide staining using an 

Alpha Innotech imaging system.  See Table 3.1 for primers and conditions.  As a control 

for genomic contamination, cDNA was produced with and without reverse transcriptase.  

Beta-actin was used as a loading control and cDNA made from a Day 16 conceptus 

functioned as a positive control. 

 

Production of rabbit antibodies to ovine LGALS15 

 Antibodies to the ovine LGALS15 protein in rabbits were commercially 

produced using the recombinant ovine LGALS15 protein as an immunogen.  Rabbit anti-

ovine LGALS15 IgG was purified from serum of immunized rabbits using an 

ImmunoPure (A/G) IgG Purification kit (PIERCE, Rockford, IL).     

 

Wound healing assay 

 The oTr1 cells were plated in 6-well plates (Corning Costar Corning, NY) with 

trophectoderm growth medium and allowed to grow to confluency.  A sterile pipette tip 

was used to remove cells by scratching a straight line down the center of each well.   
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TABLE 3.1 

PCR primers and conditions.  
 

 

 

 

 

 

 

 

 

27055AF129289
ATGAAGATCCTCACGGAACG

GAAGGTGGTCTCGTGAATGC

B-Actin

45049.5X56343
GGAAACTCATGCTGGATGC

AAGGTGGTTGATGAAGTGAGG

IFNT

72055.0AY508164 
GGCTGAGTTGGACAGAGAGG

TCATTGCGAGTCACTTCAGG

CDH1

28549.5M73961
TCACCAGTCTTCCACCTTCC

CTACCCCACCAAACATCACC

PAG1

50649.5NM001009309
AGGGCATAAACTCCGAATCC

CAGGGAGGACTGTTCTGACC

CSH1

47349.5XM001789148
ATGCCGAAGCGCCGCGCTGG

TCACGGGTCGTCCCCCGCAGC

ENV

22849.5DQ838494
GTTTTCCTCGCCACTACTCTTATT

AGTGTCTAATTCCTATGCCGATGTT

GAG

46060.0NM001009754
GAAGGGACACGTGGAACACT

TTTCGGGAGACCTCAACATC

HYAL2

44554.5CB465245 
TCCATTCCTTTGGAATCTGC

AGCAGACGGTACAAAGTGC

GSK3B

23054.5NM008056
GGCTGAAGGTCATTTCCAAG

TGAACAGGCAGAGATGTGGA

FZD6

30154.0BF107232 
CACTCCAGATTTTCGGAAGG

AAGTCAAGTGTGCACCAAGC

DKK1

Product size (bp)Annealing 

temperature (C)

GenBank

accession no.

Sequence of forward and reverse 

primers (5’-3’)

Primer
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Remaining cells were washed and incubated at 37 °C with fresh medium and monitored 

at 12 h intervals up to 72 h for cellular migration into the cleared area.  

 

LGALS15 uptake assay 

 Four-well chamber slides (Nunc, Rochester, NY) were seeded in triplicate with 

oTr1 cells at approximately 60% confluency in serum and insulin-free oTr growth 

medium and incubated for 24 h.  Fresh medium containing LGALS15 (1 µg/ml, 1 ml per 

well) was added and cultured for another 12 h.  Cells were then washed three times and 

fixed. Using methods described previously [72, 75], cells were fixed in –20°C methanol, 

permeabilized with 0.3% Tween 20 in 0.02 M PBS, blocked in antibody dilution buffer 

(two parts 0.02 M PBS, 1.0% BSA, and 0.3% Tween 20, and one part glycerol) 

containing 10% normal goat serum, and incubated overnight at 4°C with either rabbit 

anti-recombinant ovine LGALS15 polyclonal IgG or rabbit IgG at a dilution of 1:100 .  

Immunoreactive protein was detected using a fluorescein-conjugated goat anti-rabbit IgG 

(Molecular Probes, Eugene, OR).  Sections were then rinsed and overlaid with a 

coverslip and Prolong Antifade mounting reagent (Molecular Probes). 

 

RESULTS 

oTr1 and oTrF primary cell lines express genes characteristic of trophectodern cells in 

vivo. 

 Overall, expression of genes in both oTr1 and oTrF was similar to that of 

trophectoderm cells obtained from a Day 16 conceptus (Figure 3.1). In particular, oTr1  
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FIGURE 3.1
 

In vitro gene expression of in vivo trophectoderm cell markers.  E-cadherin (CDH1), 
interferon tau (IFNT), endogenous Jaagsiekte Sheep Retroviruses (enJSRVs) env and 
gag, HYAL2 receptor for enJSRVs Env, ovine placental lactogen (oPL), pregnancy 
associated glycoprotein 1 (PAG1) and other genes associated with the Wnt signaling 
pathway (FZD6, GSK3B, DKK1) mRNA in oTr cell lines.  Day 16 conceptus (16C) 
along with beta-actin was used as positive controls. 
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and oTrF expressed endogenous Jaagsiekte Sheep Retrovirus envelope and gag (enJSRV 

env and gag) genes, as well as its receptor Hyal2 which stimulate multinucleated 

syncituim formation in sheep [206].  Both cell lines also expressed ovine placental 

lactogen (CSH1) and pregnancy associated glycoprotein (PAG1) which are produced by 

giant binucleated cells of the trophectoderm in vivo [207-209]. Genes associated with the 

Wnt signaling pathway (frizzled homolog 6 (FZD6), glycogen synthase kinase 3 beta 

(GSK3B), and dickkopf 1 (DKK1)) which is an important regulator of uterine 

morphogenesis, uterine receptivity to the embryo, and blastocyst implantation were also 

expressed in oTr1 and oTrF [205].  However, only the oTr1 cell line expressed IFNT and 

neither cell line is expressing E-cadherin (CDH1). Since IFNT production is a hallmark 

of trophectoderm cell viability at the time of implantation only oTr1 cells were used for 

the remaining experiments.  

  

oTr1 cells migrate as single cells  

 oTr1 cells were seeded onto 6-well tissue culture treated plates and allowed to 

grow to 100% confluency. Following physical removal of cells from the bottom of cell 

culture dishes, single oTr1 cells were observed in open spaces starting at 12 h (Figure 

3.2). 

 

Uptake of LGALS15 by oTr1 cells 

Treatment of oTr1 cells with LGALS15 (10 µg/ml) resulted in uptake of this 

protein, as detected by indirect immunofluorescence, as punctate concentrations of  
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FIGURE 3.2 

Trophectoderm cell migration into open areas created for a wound healing assay. A) oTr 
cell migration into space created when 100% confluent cells were removed by scratching 
down the plate. B) Image highlighting single cell migration. 
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protein throughout the cytoplasm.  Control cells were not incubated with 

LGALS15 and, therefore, showed no immunostaining for this protein, confirming that 

oTr1 cells do not express endogenous LGALS15 (Figure 3.3). Colocalization 

experiments with anti-clathrin antibodies to determine the mechanism of LGALS15 

uptake into oTr1 cells were unsuccessful (data not shown).     

 

DISCUSSION  

 Results presented here describe a primary trophectoderm cell line derived from 

peri-implantation ovine conceptuses.  Due to the complex nature of the trophectoderm 

and its critical roles in implantation, growth and development of the conceptus, a 

primary cell line is a valuable resource for deciphering gene and protein expression in 

isolated trophectoderm cells in response to specific treatments.  Indeed, two 

trophectoderm cell lines (oTr1 and oTrF) had similar physiological properties and gene 

expression profiles to conceptus trophectoderm suggesting that they are suitable models 

for such investigations.  In the sheep conceptus, trophoblast giant binucleated cells 

(BNCs) first appear on Day 14 [111] and are thought to arise from mononuclear 

trophectoderm cells by consecutive nuclear divisions without cytokinesis [106].  BNCs 

produce CSH1 and PAG1 and, by Day 16 of pregnancy, represent 15-20% of 

trophectoderm cells [210].  The oTr cell lines displayed typical trophectoderm cell 

morphology with both mononuclear cells and a small population of BNC which 

persisted for more than 20 passages.  Furthermore, oTr cells expressed genetic markers 

of trophectoderm cells in vivo, such as IFNT, enJSRVs env and gag, HYAL2 receptor for  
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FIGURE 3.3 

Uptake of exogenous LGALS15 by trophectoderm cells.  Four-well chamber slides 
(Nunc, Rochester, NY) were seeded in triplicate with oTr1 cells at approximately 60% 
confluency in serum and insulin-free oTr growth medium and incubated for 24 h.  Fresh 
medium with no treatment or fresh medium containing LGALS15 (1 µg/ml, 1 ml per 
well) was added and cultured for another 12 h.  Slides were incubated with either rabbit 
anti-recombinant ovine LGALS15 polyclonal IgG or rabbit IgG at a dilution of 1:100.  
Immunoreactive protein was taken up by oTr1 cells in protein rich cytoplasmc vesicles 
when exposed to exogenous LGALS15.  Similar to trophectoderm cells in vivo, oTr1 
cells do not produce endogenous LGALS15.  
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enJSRVs Env, CSH1, PAG1 and genes associated with the Wnt signaling pathway 

(FZD6, GSK3B, DKK1). A major difference between the two lines was that IFNT was 

expressed in the oTr1, but not oTrF cell line.  Moreover, the oTrF had a slightly more 

fibroblastic morphology whereas oTr1 had the traditional cobblestone morphology 

characteristic of other epithelial cell types. The major difference between the two 

established cell lines is that oTrF cells were developed from a Day 14 conceptus and 

cultured on a collagen substrate whereas oTr1 cells were developed from a Day 16 

conceptus and cultured on tissue culture treated plastic.  In sheep, the mononuclear 

trophectoderm cells secrete IFNT, the maternal recognition signal of pregnancy, between 

Days 10 and 21-25 of pregnancy with maximal expression occurring on Days 14 to 16 

[53-55].  Thus both cell lines were established at the height of IFNT production, and the 

absence of IFNT expression and varied morphology of oTrF cell line is not well 

understood but may be due to the presence of collagen substrate on which the cells were 

grown.  Despite differences in morphology and IFNT production, both cell lines behaved 

similarly when treated with exogenous LGALS15 in both cellular adhesion and 

migration assays [198] suggesting that at least some physiological characteristics of 

trophectoderm cells were maintained in both cell lines.  

In ruminants, the conceptus remains unattached in the uterine luminal epithelium 

for up to two weeks [29] with superficial implantation beginning on Days 13 to 14, and 

continuing until Days 60 to 70 [9, 81].  Between Days 16 and 24 of pregnancy the 

uterine LE begins to fuse with BNCs to form trinuceate fetomaternal hybrid cells [111]. 

Continued fusion of BNCs with uterine LE gives rise to multinucleated syncytial plaques 
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with up to 25 nuclei that appear to be linked to surrounding cells by tight junctions [106, 

112]. The trophectoderm will not invade further into the endometrium presumably due to 

inhibitory factors such as tissue inhibitors of metalloproteinases (TIMPs) [211].  

However, if trophectoderm cells are transplanted to another part of the body individual 

cells will actively invade those tissues [212].  Invasion combines adhesion, migration 

and tissue remodeling and in the present study, a wound healing assay was used to 

ascertain migratory properties of oTr1 cells. Since epithelia form biological barriers in 

which individual cells must tightly associate with each other, typical epithelial cell 

migration in vitro is distinct from that of unattached/single cells due to the tendency of 

epithelial cells to migrate as a cohesive unit [213].  However, results of migration assays 

demonstrated that individual oTr1 cells can detach and migrate.  Invasion of individual 

cells would be more efficient than forcing cell sheets into a highly organized preexisting 

tissue such as the uterine endometrium.  

 Development and characterization of the oTr1 primary cell line has shown them 

to be highly similar to conceptus trophectoderm in gene expression, migratory properties 

and morphology.  Taken together these results indicate that the oTr1 primary cell line is 

an excellent model to study intracellular and extracellular roles of LGALS15 in 

conceptus trophectoderm.  LGALS15 mRNA is not expressed in the trophectoderm; 

however, LGALS15 protein secreted from the LE is present on the apical surface of 

trophectoderm cells, as well as internalized and packaged into crystalline structures 

within trophectoderm cells [173].  Support for this mechanism was obtained in the 

present study in which oTr1 cells were shown to accumulate exogenous LGALS15 
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protein in vitro.  Interestingly, studies with breast carcinoma cell lines showed that 

LGALS3 can be absorbed from the medium and packaged into vesicles within the 

cytoplasm [214] suggesting that patterns of LGALS15 secretion and uptake are 

conserved across galectin superfamily members.  

Historically, extracellular galectin functions have been the predominate subject 

of the literature leading to the classic definition of galectins as non-immunoglobulin, 

nonenzymatic carbohydrate-binding proteins [14].  However, recent studies have 

elucidated far more diverse roles of galectins than previously thought, including the 

discovery of distinct intracellular functions. With this increasing knowledge comes the 

difficulty of ascertaining the roles of different galectins and, in particular the role of 

galectins in complex tissues. However, by establishing primary cultures of individual 

cell types, such as ovine trophectoderm cells, specific assessments of the role of 

particular galectins in specific cells becomes possible, which may further clarify the 

importance of this superfamily of proteins. 
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CHAPTER IV 

GALECTIN 15 (LGALS15) FUNCTIONS IN OVINE 

TROPHECTODERM CELL ATTACHMENT* 

 

INTRODUCTION  

Maternal support of blastocyst growth and development into an elongated conceptus 

(embryo/fetus and associated membranes) is critical for pregnancy recognition signaling 

and implantation in ruminants [215, 216].  In sheep, morula-stage embryos enter the 

uterus on Day 4 and form blastocysts by Day 6 that contains a blastocoele or central 

cavity surrounded by a monolayer of trophectoderm [102, 217].  After hatching from the 

zona pellucida (ZP) on Day 8, the blastocysts develop into a tubular form by Day 11 and 

then elongate between Days 12 and 16 to a filamentous conceptus of 10 cm or more in 

length.  Blastocyst growth and elongation is crucial for pregnancy recognition signaling, 

which involves synthesis and secretion of IFNT from mononuclear trophectoderm cells 

of the elongating blastocyst that inhibits luteolysis [218, 219].  The factors supporting 

growth of peri-implantation blastocysts and elongating conceptuses are thought to be 

derived primarily from secretions of the uterus, collectively referred to as histotroph 

[220, 221].  This hypothesis is supported by failure of conceptus development in the 

uterine gland knockout ewe model [191, 222].   

____________ 
*Reprinted with permission from “Galectin 15 (LGALS15) functions in trophectoderm 
migration and attachment” by Farmer JL, Burghardt RC, Jousan FD, Hansen PJ, Bazer 
FW, and Spencer TE, 2007, Federation of American Societies for Experimental Biology, 
22, 548-560, 2008 
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The UGKO ewe experiences recurrent early pregnancy loss between Days 12 and  

14 due to inadequate histotroph from the endometrial LE and GE [191, 222].  In order to  

understand the peri-implantation pregnancy defect, the UGKO ewe model was used in a 

gene expression profiling project based on an endometrial cDNA library from uteri of 

Day 14 pregnant ewes [173, 223].  Interestingly, approximately 1.4% of the expression 

sequence tags sequenced from the cDNA library were highly similar to ovgal11, a novel 

member of the galectin family of secreted animal lectins [196].  OVGAL11 was 

originally shown to be induced in gastrointestinal tissue and secreted into the intestinal 

lumen in response to inflammation and eosinophil infiltration after infection of sheep 

with the helminth, Haemonchus contortus [196].  The sequence of OVGAL11 protein 

displayed the highest similarity to human LGALS10 (also known as Charcot-Leyden 

Crystal protein) [224, 225] and human LGALS13 (also known as placental tissue protein 

13 or PP13) [226].  Since ovgal11 does not have a known orthologue, it was designated 

as a new member of the galectin superfamily and renamed LGALS15.   

Galectins are proteins with a conserved CRD that bind beta-galactoside sugars, 

thereby cross-linking glycoproteins and glycolipid receptors on the surface of cells and 

initiating biological responses [13, 134, 227].  Functional studies of the extracellular and 

intracellular roles of galectins implicate them in cell adhesion, chemoattraction and 

migration as well as cell growth, differentiation and apoptosis [135, 228].  All of these 

biological roles are important for peri-implantation blastocyst growth and differentiation 

[102, 217].    
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In the ovine uterus, LGALS15 mRNA is detected in the endometrial LE and 

superficial ductal GE after Day 10 of pregnancy, and LGALS15 is induced by ovarian P4 

and stimulated by conceptus IFNT [173, 197].  In the endometrium, LGALS15 protein 

has a nucleocytoplasmic distribution within the LE and sGE and is also concentrated 

near and on the apical surface.  Secreted LGALS15 protein is abundant in histotroph 

recovered from the uterine lumen, where it exists in multimeric forms.  It is localized to 

the apical surface of conceptus trophectoderm and within intracellular crystals [173, 

199].  The ovine LGALS15 protein contains predicted CRD, LDV and RGD recognition 

sequences, which can bind and activate integrins [229].  The temporal and spatial 

alterations in abundance of LGALS15 mRNA and protein in uterine endometrial epithelia 

and lumen during the peri-implantation period of early pregnancy, combined with the 

known biological activities of other galectins, make it a candidate mediator of 

conceptus-endometrial interactions during implantation [199, 230].  Recently, advanced 

growth and development of blastocysts in response to early P4 treatment of ewes was 

associated with induction of LGALS15 in the endometrial epithelia [197].   

The working hypothesis for the present study was that LGALS15, synthesized 

and secreted by endometrial LE and sGE into the uterine lumen, functionally binds and 

crosslinks beta-galactosides on glycoproteins and glycolipids using the CRD and 

integrins through the LDV and RGD recognition sequences, to function as a heterotypic 

adhesion molecule bridging conceptus trophectoderm and endometrial LE for successful 

blastocyst elongation and conceptus implantation [102, 231].  Experiments to test this 

working hypothesis, using recombinant ovine LGALS15 and ovine mononuclear 
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trophectoderm cells in functional assays, indicated that LGALS15 primarily stimulates 

trophectoderm attachment via its RGD integrin recognition sequence.   

 

MATERIALS AND METHODS 

Preparation of recombinant ovine LGALS15 and mutants 

The entire coding sequence for ovine and caprine endometrial LGALS15 mRNAs 

[173] was used to produce recombinant ovine and caprine LGALS15 (both LDV and 

LVV polymorphic forms) in bacteria.  PCR reactions (50 µl) were conducted in 

Optimized Buffer F (Invitrogen, Carlsbad, CA) and contained 10 ng of ovine LGALS15 

cDNA from Day 14 pregnant endometrium, 0.5 mg/ml forward primer (5'- AGA TGA 

AGC CAT GGA CTC CTT GCC GAA CCC CTA CC-3'), 0.5 mg/ml reverse primer (5'- 

AGA GTA AGC TTT GAT AAC GTA TCC ACT GAA GTC AGC-3'), and 1 U ExTaq 

polymerase (Takara Bio USA) using an Eppendorf Mastercycler thermocycler with 

conditions of: 1) 95°C for 2 min; 2) 95°C for 30 sec, 54°C for 1 min, and 72°C for 1 min 

for 35 cycles; and 3) 72°C for 7 min.  The amplified LGALS15 cDNA was restricted 

with NcoI and HindIII enzymes and then directionally subcloned into the pET-28b (+) 

vector (Novagen, Madison, WI).  This cloning strategy mutated the stop codon of 

LGALS15 and placed a His•Tag sequence at the C-terminus for affinity purification 

(Figure 4.1).  The resulting plasmid was sequenced to ensure no mutations were present 

in the LGALS15 sequence. 

Mutation of the LDVRGD recognition sequence in LGALS15 to LAVRAD was 

conducted by PCR amplification using the ovine endometrial LGALS15 cDNA as             
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                ▼ ▼ ● 

LGALS15             1  MDSLPNPYLQSVSLTVCYMVKIKANLLSAFGKNPELQVDFGTGTGQGGNIPFRFWYCDG 

LAVRAD mutant       1  MDSLPNPYLQSVSLTVCYMVKIKANLLSAFGKNPELQVDFGTGTGQGGNIPFRFWYCDG 

CRD mutant          1  MDSLPNPYLQSVSLTVCYMVKIKANLLSAFGKNPELQVDFGTGTGQGGNIAFAFAYADG 

 

                        ▼  ▼      ▼  ▼ ▼ 

LGALS15            61 MVVMNTLKDGSWQKEEKVLTDAFVPGQPFELQFLVLEKEYQVFVKNKPICQFAHRLPLQS  

LAVRAD mutant      61 MVVMNTLKDGSWQKEEKVLTDAFVPGQPFELQFLVLEKEYQVFVKNKPICQFAHRLPLQS 

CRD mutant         61 MAVMATLKDGSAQKAEAVLTDAFVPGQPFELQFLVLEKEYQVFVKNKPICQFAHRLPLQS 

 

 

LGALS15            121 VKMLDVRGDIVLTSVDTLLAAALQHHHHHH  

LAVRAD mutant      121 VKMLAVRADIVLTSVDTLLAAALQHHHHHH 

CRD mutant         121 VKMLDVRGDIVLTSVDTLLAAALQHHHHHH 

 

 

 

FIGURE 4.1 

Alignment of the amino acid sequences of recombinant ovine LGALS15 and mutants.  The underlined residues denote the 
conserved LDV and RGD recognition sequences for integrin binding near the C-terminus in ovine LGALS15.  The arrows (▼) 
denote the conserved residues forming the carbohydrate recognition domain (CRD) in prototypical galectin family members.  
The circle (●) denotes a conserved C residue critical for mannose binding in LGALS10.  The shaded sequence at the C-
terminus contains the 6xHis tag used for affinity purification of the recombinant proteins. 
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described above, but with a different reverse primer (5’-CAG CAC GAT ATC TGC 

CCT CAC AGC CAG CAT TT-3’) and the following modifications.  PCR reactions 

were conducted with VENT polymerase buffer (New England BioLabs, Beverly, MA) 

and 1 U VENT Polymerase with conditions of: 1) 95°C for 2 min; 2) 95°C for 30 sec, 

60°C for 1 min, and 72°C for 1 min for 35 cycles; and 3) 72°C for 7 min.  The amplified 

LGALS15 cDNA was restricted with NcoI and EcoRV enzymes and then directionally 

subcloned into the pET-28b(+) vector (Novagen, Madison, WI).  The resulting plasmid 

was sequenced to ensure that targeted mutations translated into a LAVRAD mutant of 

the LDVRGD sequences in the C-terminus of wildtype LGALS15 (Figure 4.1). 

Mutation of the predicted CRD in ovine endometrial LGALS15 was conducted 

using two sets of nested internal primers for PCR amplification.  Set 1 mutated the first 

half of the CRD (forward 5’-CCA TTC GCT TTC GCG TAC GCC GAT GGC ATC 

GTG GCT ATG GCC ACT TTA AAG-3’ and reverse 5’-CTT TAA AGT GGC CAT 

AGC CAC GAT GCC ATC GGC GTA CGC GAA AGC GAA TGG-3’).  Set 2 mutated 

the second half of the CRD (forward 5’-GGG AGT GCG GGG AAG GCA CAG GCA 

CTG CAT ACT GAG GC-3’ and reverse 5’-GCC TCA GTA TGC AGT GCC TGT 

GCC TTC CCC GCA CTC CC-3’).  PCR reactions were conducted as described above 

to generate the LGALS15 LAVRAD mutant.  Partial cDNAs were gel purified and then 

used in a PCR reaction with primers to amplify the full coding sequence.  This cloning 

strategy mutated the predicted amino acids in the CRD to alanine in the LGALS15 and 

placed a His•Tag sequence at the C-terminus (Figure 4.1).  The insert of the resulting 
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plasmid was sequenced to ensure the targeted mutations were present in the CRD of the 

LGALS15 sequence. 

Wildtype and mutant forms of ovine endometrial LGALS15 protein were 

produced in BL21 bacteria according to the manufacturer’s suggestions.  Expression of 

His-glaectin15 fusion protein was induced with 5 mM isopropyl-beta-D-

thiogalactopyranoside (IPTG, Sigma, St.  Louis, MO).  Bacteria were lysed with 

Bugbuster (Invitrogen) supplemented with recombinant lysozyme and benzonase 

(Invitrogen).  Recombinant LGALS15 protein was isolated by affinity chromatography 

using a Ni-NTA His•Bind Resin purification kit (Invitrogen).  Elutions from the column 

were analyzed by 1D-SDS-PAGE followed by silver staining and western blot analysis 

using a rabbit anti-ovine LGALS15 antibody.  Fractions containing recombinant 

LGALS15 were dialyzed overnight in PBS (pH 7.2) at 4°C, concentrated using a spin 

column with a 3,500 MWCO (Vivaspin, Stonehouse, UK) and frozen in aliquots at          

-80oC.  Protein concentration was determined using a RC/DC Protein Assay (Bio-Rad 

Laboratories, Hercules, CA) with bovine serum albumin (BSA) as the standard.   

 

Isolation and culture of mononuclear ovine trophectoderm (oTr) cells 

All animal experiments were approved by the Institutional Animal Care and Use 

Committee of Texas A&M University.  As described previously [204, 205], mature 

Suffolk-type ewes (Ovis aries) were observed for estrus (designated as Day 0) in the 

presence of a vasectomized ram and used in experiments only after exhibiting at least 

two estrous cycles of normal duration (16–18 days).  At estrus, ewes were mated to 
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intact rams.  The conceptuses were recovered on Day 15 post-mating by flushing the 

uterus with 20 ml of sterile PBS (pH 7.2) supplemented with 100 U penicillin and 100 

µg streptomycin per liter.  The inner cell mass was removed from the conceptus 

whenever possible, and the remaining tissues were carefully minced, pooled, and placed 

in a trophoblast growth medium consisting of DMEM/F-12 supplemented with 10% fetal 

bovine serum, glutamine (2 mM), insulin (700 nM), pyruvate (1.0 mM), non-essential 

amino acids (0.1 mM), and antibiotics (50 U penicillin, 50 µg streptomycin).  The tissues 

were maintained in a 5% CO2 environment at 37°C.  Two different ovine trophectoderm 

cell lines were established and designated as oTr1 and oTrF.  The oTr1 cell line was 

established in tissue-culture treated plastic dishes, whereas the oTrF cell line was 

established on collagen-coated plastic dishes (Cohesion, Palo Alto, Ca).  Fluid-filled 

trophoblastic vesicles, which spontaneously developed in culture, were physically 

ruptured with sterile 28-gauge needles to enhance the generation of a cellular monolayer.  

This primary culture was propagated on the same support by serial trypsinizations. All 

experiments were performed with both oTr1 and oTrF cell lines unless otherwise 

indicated.  

 

Attachment assay 

Attachment assays were adapted from published procedures [232, 233].  Cell 

suspension plates with 24 wells (Greiner Multiwell Tissue Culture Plates, PGC 

Scientific Co, Monroe, NC) were coated with either BSA (Bovine Serum Albumin 

Fraction V, Pierce, Rockford, IL) as a negative control, bovine FN (Fibronectin 0.1% 
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solution from bovine plasma, Sigma, St. Louis, MO) as a positive control, or 

recombinant ovine LGALS15 protein (wildtype or mutants) in triplicate and allowed to 

dry overnight in a sterile hood at room temperature.  Wells were then blocked with 1 ml 

of BSA (10 mg/ml) in PBS for 1 h and rinsed three times with 1 ml serum and insulin-

free DMEM per well.  Equal numbers of freshly trypsinized oTr cells were seeded into 

each well and plates were incubated for 1.5 h.  In some experiments, a cyclic blocking 

peptide (GRDGS and TLKDGS; Peptides International, Inc., Louisville, KY) and cyclic 

control peptide (GRADS) were added to the wells.  Wells were washed three times with 

1 ml of serum- and insulin-free media to remove unattached cells.  Cell number was 

determined using a Janus Green assay.  The entire experiment was independently 

repeated at least three times with different passages of oTr cells. 

 

Janus green assay  

 Cell number was determined as described previously [234] for all attachment 

assays.  Briefly, DMEM was removed from cells by vacuum aspiration and cells were 

fixed in 50% ethanol for 30 min followed by vacuum aspiration of the fixative.  Fixed 

cells were stained with a Janus Green B in PBS (0.2% w/v) for 3 min at room 

temperature.  The stain was removed using a vacuum aspirator, and the whole plate was 

sequentially dipped in water and destained by gentle agitation.  The remaining water was 

removed by shaking.  The stained cells were immediately lysed in 0.5N HCl and 

absorbance readings were taken at 595 nm using a microplate reader.  As described 

previously [234], cell numbers were calculated from absorbance readings using the 
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formula [cell number = (absorbance-0.00462)/0.00006926].  The entire experiment was 

independently repeated at least three times with different passages of oTr cells. 

 

Focal adhesion formation assays 

The oTr cells were seeded into four-well Lab-Tek glass chamber slides (Nunc, 

Rochester, NY) coated with either recombinant LGALS15 (1 µg, 5 µg, 10 µg or 20 µg 

per well), bovine FN as a positive control, and either poly-L-lysine or no protein as 

negative controls.  After 1.5 h, cells were fixed in cold methanol (-20oC) for 10 min and 

air dried.  Fixed cells were rehydrated at room temperature with 0.3% Tween 20 in 0.02 

M PBS (rinse solution), blocked in antibody dilution buffer (2 parts 0.02 M PBS, 1.0% 

BSA, 0.3% Tween 20 [pH 8.0] and one part glycerol) containing 5% normal goat serum 

(v/v) for 1 h at RT, and incubated overnight at 4°C with a mouse monoclonal anti-talin 

antibody (1:1000) or mouse serum (1:1000) (Sigma T3287 Clone 8d4).  Immunoreactive 

protein was then detected using an Alexa Fluor 488-conjugated secondary antibody for 1 

h at RT.  Slides were overlaid with Prolong antifade mounting reagent with DAPI 

(Invitrogen-Molecular Probes, Eugene, OR, USA) and affixed with a coverslip.  The 

entire experiment was independently repeated at least three times with different passages 

of oTr cells. 

 

Statistical analyses 

All quantitative data were subjected to least-squares ANOVA using the General 

Linear Models (GLM) procedures of the Statistical Analysis System (SAS Institute, 
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Cary, NC).  Tests of significance were performed using the appropriate error terms 

according to the expectation of the mean squares for error.  A P-value of 0.05 or less was 

considered significant.  Data are presented as least-square means (LSM) with standard 

errors (SE).  Percentage data were transformed by arcsin transformation before analysis.  

Independent variables included the LGALS15 treatments and replicate.  Probability 

values for percentage data are based on analysis of arcsin-transformed data while least-

squares means are from analysis of untransformed data.   

 

RESULTS 

LGALS15 mediates attachment of ovine trophectoderm cells 

 Several members of the galectin family are involved in heterologous cell-cell 

adhesion mediated by CRD binding of beta-galactosides on glycoproteins that include 

integrins [135, 233].  In addition to a predicted CRD, LGALS15 also contains predicted 

LDV and RGD integrin recognition sequences in the C-terminus (Figure 4.1).  The 

RGD sequence is a well documented cell attachment site present in a large number of 

adhesive extracellular matrix, blood and cell surface proteins.  Nearly half of the over 20 

known integrins recognize this sequence in their adhesion protein ligands [229].  

Integrins are heterodimeric cell surface receptors that mediate adhesion between cells 

and the ECM by binding to ligands with an exposed RGD sequence.  These receptors 

also stimulate intracellular signaling and gene expression involved in cell growth, 

migration, and survival.  Integrin binding and activation is an essential element of 

conceptus-endometrial interactions, blastocyst implantation and trophoblast 
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differentiation in many species [235, 236].  Therefore, a series of studies were conducted 

to explore the attachment functions of LGALS15 using oTr cells.  

Recombinant ovine LGALS15 mediated attachment of oTr cells in a dose-

dependent manner (Figure 4.2 A and B).  Relative to wells coated with BSA as a 

negative control, there was an increase in oTr cell attachment in wells of non-adherent 

suspension plates coated with either 1 µg or 10 µg of recombinant ovine LGALS15.  

Moreover, the attachment function of LGALS15 was similar to that in response to 

bovine fibronectin (bFN), which was used as a positive control.  BSA did not mediate 

attachment of oTr cells (data not shown).  These results strongly support the hypothesis 

that LGALS15 contains an intrinsic attachment function and serves as a mediator of 

heterologous interactions between the conceptus trophectoderm and endometrial LE.           

 

LGALS15 mediates attachment of ovine trophectoderm cells that is LDV-independent 

 LGALS15 is expressed in the uterus of pregnant sheep and goats at the time of 

implantation.  In both species there is a common polymorphism in the integrin 

recognition sequence where the LDV sequence is converted to LVV.  Ovine LGALS15 

with the LDV sequence was shown to stimulate trophectoderm cell attachment.  To 

investigate if LGALS15 with the LVV polymorphism affects LGALS15 attachment 

function, each form of the protein was expressed and purified and an attachment assay 

was conducted.  BSA was used as a negative control for cellular attachment (data not 

shown) and bovine FN was used as a positive control.  A dose-dependent increase 

(P<0.01) in oTr1 cell attachment was induced with both ovine and caprine LGALS15  
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FIGURE 4.2 

Effects of ovine LGALS15 on attachment of ovine trophectoderm cells.  [A & B]  Wells 
of suspension culture plates were precoated overnight with recombinant ovine 
LGALS15, BSA as a negative control, or bovine FN (bFN) as a positive control.  Equal 
numbers of oTr cells were added to each well, and the number of attached cells 
determined after 1.5 h.  Data is presented as percent attachment relative to BSA-coated 
wells.  Note the dose-dependent increase in cell attachment mediated by LGALS15 that 
is similar to bFN. 
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indicating that the LDV sequence is not necessary for LGALS15 attachment function.  

LGALS15 and bovine FN induced similar increases in oTr1 cell attachment.  (Figure 

4.3) 

 

LGALS15 mediates attachment of ovine trophectoderm cells that is RGD-dependent 

 The integrin-binding activity of adhesion proteins can be achieved using short 

synthetic peptides containing the RGD sequence.  Such peptides promote cell adhesion 

when bound to the cell surface, and inhibit it when presented to cells in solution [229].  

Inclusion of a cyclic GRGDS peptide inhibited (P<0.01) LGALS15-mediated oTr cell 

attachment, whereas the control peptide (GRADS), which contains the conservative 

substitution of alanine for glycine, had no detectable inhibitory activity (Figure 4.4 A 

and B).  These results indicate that trophectoderm cells adhere to LGALS15 using 

receptors, such as integrins, that recognize a RGD sequence.   

 

LAVRAD mutated LGALS15 does not stimulate attachment of ovine trophectoderm cells  

 The LDV and RGD recognition sequences in ovine LGALS15 were mutated to 

LAV and RAD using a PCR-based mutagenesis strategy, and the recombinant protein 

was used for oTr cell attachment assays.  Wildtype LGALS15 increased attachment of 

oTr1 cells in a dose-dependent manner (Figure 4.5 A and B).  There was no difference 

in attachment functions of LGALS15 and the LGALS15 LAVRAD mutants in wells 

precoated with either 100 ng or 1 µg of protein.  However, there was a decrease (P<0.01) 

in oTr cell attachment in wells precoated with 10 µg LGALS15 LAVRAD mutant  
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FIGURE 4.3 

Attachment function assays of ovine and caprine LGALS15 using ovine trophectoderm 
cells.  Wells of suspension culture plates were coated with increasing amounts (0.1, 1 or 
10 µg) of recombinant ovine and caprine LGALS15, purified bovine fibronectin (bFN), 
or BSA.  Freshly prepared oTr1 cells were seeded into each well and allowed to attach 
for 1.5 h.  Unattached cells were washed off, and cell number in each well determined.  
Data are expressed as percentage of attached oTr1 cells relative to BSA.  The entire 
experiment was independently repeated at least three times with similar results. 
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FIGURE 4.4 

Effects of ovine LGALS15 on attachment of ovine trophectoderm cells. [A & B] Wells 
were precoated overnight with 1 µg of recombinant ovine LGALS15.  An equal number 
of oTr cells were added to each well along with increasing amounts of synthetic cyclic 
GRGDS or GRADS peptides.  The number of attached cells determined after 1.5 h.  
Data is presented as percent attachment relative to uncoated wells.  Note the dose-
dependent decrease in binding of oTr cells to LGALS15 elicited by the GRGDS but not 
the GRADS peptide.   
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FIGURE 4.5 

Effects of mutating the LDVRGD recognition sequence in ovine LGALS15 on 
attachment of ovine trophectoderm cells.  [A & B] Wells of suspension culture plates 
were precoated overnight with recombinant ovine LGALS15 or the LAVRAD mutant of 
LGALS15.  Equal numbers of oTr cells were added to each well, and the number of 
attached cells determined after 1.5 h.  Data is presented as percent attachment relative to 
uncoated wells.  Note the decrease in oTr cell attachment mediated by the 10 µg of the 
LAVRAD mutant of LGALS15 as compared to wildtype LGALS15. 
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compared to 10 µg wildtype LGALS15.  Collectively, these results indicate that cell 

attachment function of LGALS15 is not entirely dependent on the RGD sequence in the 

C-terminus, meaning that another recognition sequence may exist within the protein that 

recognizes a sequence similar to the RGD recognition sequence.   

 

LGALS15 mediates attachment of ovine trophectoderm cells that is CRD-independent 

 Other galectin family members that lack an RGD recognition sequence modulate 

cell adhesion by integrin binding via the CRD sequence [135].  Studies of other galectins 

have shown that ovine LGALS15 has a predicted CRD [173, 237].  The CRD is a 

consensus motif that consists of 13 amino acids [238], 8 of which (H.N.R..V.N..W..E.R) 

play a critical role in binding to sugars [239, 240].  Compared to the conserved CRD of 

other galectins, ovine endometrial LGALS15 has four residues that are identical (V62, 

N64, W71, E74) and three that are conservatively substituted (R54, W56, K76) (Figure 

4.1).  The C57 residue in ovine LGALS15 is different from prototypical galectins, but 

appears to allow binding of mannose in LGALS10 [241].  In order to determine if the 

CRD plays a role in the cell attachment function of LGALS15, each of the eight 

predicted residues forming the putative CRD in ovine LGALS15 were mutated to 

alanine using a PCR-based mutagenesis strategy.  The recombinant protein was used for 

oTr cell attachment assays.  In comparison to native LGALS15, there was an increase in 

oTr cell attachment in wells precoated with 100 ng LGALS15 CRD mutant, whereas 

there was a decrease in oTr cell attachment in wells precoated with 10 µg LGALS15 

CRD mutant compared to wildtype LGALS15 (Figure 4.6 A and B).  In order to 
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determine if the attachment function of the LGALS15 CRD mutant was dependent on 

integrin binding, competitive inhibition assays were conducted with a cyclic GRGDS 

peptide.  The GRGDS peptide inhibited the ability of both the recombinant native ovine 

LGALS15 and the LGALS15 CRD mutant to mediate oTr cell attachment, whereas the 

control peptide (GRADS) had no detectable inhibitory activity (Figure 4.6 C and D).  

These studies implicate integrin binding via the RGD recognition sequence in the 

attachment function of LGALS15 for adhesion of trophectoderm cells and suggest that 

the sugar binding activity of LGALS15 CRD is not a primary determinant of its cell 

attachment function.   

 

TLKDGS is not a candidate novel integrin recognition sequence responsible for 

LGALS15 attachment function 

 LGALS15 has two known functional domains - the CRD and LDVRGD integrin 

recognition sequences.  Mutation of either domain does not fully inhibit the cell 

adhesion function of LGALS15.  The LGALS15 amino acid sequence does not contain 

any other known integrin recognition sequences; however, the TLKDGS sequence may 

be novel.  To investigate if this sequence participated in cell adhesion, a cyclic peptide 

was constructed against the TLKDGS sequence and introduced during cell seeding in an 

attachment assay using oTr1 cells.  The potential inhibitory effects of the TLKDGS 

cyclic peptides were compared to all forms of roLGALS15, but there was no inhibitory 

effect on wild-type LGALS15 or the CRD mutant form of LGALS15.  There was,  
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FIGURE 4.6 
Effects of mutating the carbohydrate recognition domain (CRD) of ovine LGALS15 on attachment of ovine trophectoderm cells.  [A & B] Wells of suspension culture 
pates were precoated overnight with recombinant ovine LGALS15 or the CRD mutant of LGALS15.  Equal numbers of oTr cells were added to each well, and the 
number of attached cells determined after 1.5 h.  Data is presented as percent attachment relative to BSA-coated wells.  No difference in cell attachment function was 
noted between the CRD mutant of LGALS15 as compared to wildtype LGALS15.  [C & D] Wells were precoated overnight with 1 µg of recombinant ovine LGALS15 
or the LGALS15 CRD mutant.  An equal number of oTr cells were added to each well along with 5 g of synthetic cyclic GRGDS or GRADS peptides.  The number of 
attached cells determined after 1.5 h.  Data is presented as percent attachment relative to uncoated wells.  Note the inhibition of oTr cell attachment to both wildtype 
LGALS15 and the CRD mutant elicited by the GRGDS but not the GRADS peptide. 
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however, a decrease (P<0.01) in attachment in response to the LAVRAD mutated 

LGALS15 (Figure 4.7).  

 

LGALS15-mediated trophectoderm cell attachment causes formation of focal adhesions 

Results of the present studies indicate that LGALS15 possesses an intrinsic cell 

attachment function involving RGD-dependent binding of integrins on the 

trophectoderm.  Activation of integrins in the trophectoderm by cell adhesion molecules 

with a RGD integrin recognition sequence, such as SPP1 and FN, elicits formation of 

focal adhesions [242].  A dose-dependent increase in oTr cell attachment occurred when 

glass slides were coated with recombinant ovine LGALS15, whereas no difference in 

oTr cell attachment occurred between control glass slides precoated with either nothing 

or BSA (Figure 4.8 A).  Notably, there was an increase in oTr cell attachment and 

spreading on slides precoated with 10 µg compared to 1 µg LGALS15.   

Next, the formation of focal adhesions was studied by visualizing talin, a focal 

adhesion protein that aggregates in response to integrin binding and activation essential 

for the stable linkage of aggregating integrins to the actin cytoskeleton, the organization 

of actin and the contractile apparatus, and integrin signaling [243].  Focal adhesions, 

visualized by punctuate aggregates of talin protein, were detected in oTr cells attaching 

to glass slides precoated with LGALS15 or bovine FN in a dose-dependent manner 

(Figure 4.8 B).  Although some oTr cell attachment occurred on glass slides precoated 

with the LGALS15 LAVRAD mutant, the attached cells showed reduced spreading on 

the substrate and had few focal adhesions.  Moreover, focal adhesions were not detected  
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FIGURE 4.7 

 Effects of TLKDGS cyclic peptide on ovine LGALS15 trophectoderm cell attachment 
function.  Wells were precoated overnight with 1 µg of recombinant ovine LGALS15.  
An equal number of oTr cells were added to each well along with increasing amounts of 
synthetic cyclic TLKDGS peptide.  The number of attached cells was determined after 
1.5 h.  Data is presented as percent attachment relative to BSA coated wells (data not 
shown).  Note the lack of binding inhibition of oTr cells to LGALS15 elicited by the 
TLKDGS peptide for all treatment groups except for LAVRAD mutated LGALS15.   
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FIGURE 4.8 

Effects of ovine LGALS15 on ovine trophectoderm cell attachment and formation of 
focal adhesions.  [A] Glass slides were coated with recombinant ovine LGALS15 or 
BSA as a negative control.  An equal number of oTr1 cells were added to each slide, and 
the slides were gently washed to remove unattached cells after 1.5 h.  Note the increase 
in oTr1 cell attachment and spreading in wells coated with LGALS15 as compared to 
BSA.  [B] Glass slides were coated with bovine FN (bFN) as a positive control, wildtype 
LGALS15, or the LAVRAD mutant of LGALS15.  An equal number of oTr1 cells were 
added to each slide, and the slides were gently washed to remove unattached cells after 
1.5h. Cells were then fixed, and immunoreactive talin visualized by immunoflourescence 
(green). Nuclei were stained with DAPI (blue) before visualization.  Note that numerous 
aggregates of talin, an indicator of focal adhesion formation, was observed in cells 
attached to bFN and LGALS15, but not in cells attached to the LAVRAD mutant of 
LGALS15 or poly-L-lysine as a negative control. 
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in non-specifically attached oTr cells on glass slides coated with either nothing or poly-

L-lysine as a negative control.  The accumulation of talin indicates functional integrin 

activation as well as cytoskeletal reorganization in response to attachment of oTr cells to 

LGALS15 and recognition of the RGD sequence.     

 

DISCUSSION 

The results represent the first comprehensive analysis of the biological functions 

of LGALS15.  Ruminant blastocysts will not fully elongate in culture, but will elongate 

if transferred to the uterus in domestic animals [244].  Parallel increases in proliferation, 

migration and attachment of trophectoderm cells are presumed requirements for 

blastocyst elongation in uteri of ruminants [217, 245-247].  The onset of blastocyst 

elongation on Day 12 in sheep is correlated with the induction of LGALS15 in the 

endometrium by progesterone between Days 10 and 12.  The onset of conceptus 

implantation is correlated with further increases in LGALS15 by trophectoderm-derived 

IFNT and its presence within the uterine lumen between Days 14 and 16 [173].  Indeed, 

the total amount of LGALS15 protein recovered from the uterine lumen on Days 12 to 

16 of pregnancy in sheep ranges from 1 to 20 µg (J.L. Farmer and T.E. Spencer, 

unpublished result).  Results of the present study support the hypothesis that LGALS15 

possesses an intrinsic ability to bind and activate integrins on trophectoderm cells that, in 

turn, stimulates their attachment.  Further, the biological activities of LGALS15 are not 

mediated by the CRD sequence, but by integrin recognition sequences such as RGD in 

the C-terminus region of the protein.   
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In the present studies, LGALS15 mediated attachment of trophectoderm cells and 

formation of focal adhesions via binding and activation of integrins, which is an 

essential element of blastocyst implantation and trophoblast differentiation in many 

species [235, 236].  Integrins are proposed to be the dominant glycoproteins that regulate 

trophectoderm adhesion to endometrial LE during implantation in mammals [236, 248].  

During the peri-implantation period of pregnancy in sheep, integrin subunits αv, α4, α5, 

β1, β3 and β5 are constitutively expressed on apical surfaces of conceptus trophectoderm 

and endometrial LE [242].  Thus, conceptus implantation in sheep does not appear to 

involve temporal or spatial changes in integrin expression [242], but may depend 

primarily on changes in expression of secreted integrin ligands, such as LGALS15 and 

SPP1 [102, 249, 250].  Various adhesion molecules function sequentially, or in parallel, 

to stabilize adhesion of the trophectoderm to the endometrial LE [235, 242, 250]. 

 LGALS15 is a candidate integrin bridging ligand in the uterine lumen during the 

peri-implantation period [173, 199, 223].  Although trophectoderm cells do not express 

LGALS15 mRNA, LGALS15 protein accumulates in the uterine lumen and is present at 

the surface of these cells to act via integrin receptors [173, 199].  Within the uterine 

lumen, LGALS15 forms multimers on Days 14 and 16 of pregnancy, which could 

increase bridging of integrins expressed on endometrial LE and conceptus 

trophectoderm [199].  The cell attachment function of LGALS15 is due to sequences 

that mediate integrin recognition, such as the RGD, rather than the CRD.  In the present 

studies, mutation of the CRD had little effect on the cell attachment function of 

LGALS15, which remained RGD-dependent in the CRD mutant.  Other galectins, which 
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do not display a conserved RGD recognition sequence, can bind and activate integrins 

via their CRD sequence and bind fibronectin and laminin because these ECM proteins 

are modified with beta-galactoside sugars [13, 227].  Indeed, LGALS15 has little or no 

binding affinity for classical beta-galactosides (J.L. Farmer and T.E. Spencer, 

unpublished results).  Thus, the cell attachment function of LGALS15 is most dependent 

on RGD recognition sequences because the cyclic GRGDS peptide inhibits its cell 

attachment function.  Mutation of the LDVRGD recognition sequence in the C-terminus 

to LAVRAD did not affect LGALS15 cell attachment function when wells were coated 

with low amounts of LGALS15 protein, but did reduce trophectoderm attachment to 

wells coated with high amounts of LGALS15 protein.  Further, the LDV recognition 

sequence of LGALS15 is not likely important because natural polymorphic variants of 

LGALS15 with LVV instead of LDV sequences in the C-termini of sheep and goat 

LGALS15 did not alter cell attachment functions [187].   

One interpretation of results of the present studies is that LGALS15 has an 

integrin binding sequence(s) separate from the classical RGD sequence in the C-

terminus, but recognizes the same site on integrins as the RGD sequence.  This putative 

and unknown recognition sequence is functional in trophectoderm cell attachment assays 

using low amounts of LGALS15 LAVRAD mutant protein, but is inhibited when higher 

amounts of protein are used due to increased availability of the dysfunctional RAD 

sequence in the LGALS15 LAVRAD mutant.  The cyclic GRGDS peptide inhibited cell 

attachment function of the LGALS15 LAVRAD mutant, and cell attachment functions 

of both wildtype LGALS15 and LGALS15 CRD mutant were inhibited by the GRGDS 
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peptide, but not the GRADS peptide.  A candidate integrin binding site, TLKDGS, was 

investigated and cyclic peptides were made against this sequence, but addition of the 

cyclic peptides did not inhibit cell attachment.  Residual attachment may be due to an 

unknown integrin recognition sequence located elsewhere in LGALS15.  Although 

LGALS15 does not have another obvious conserved integrin recognition sequence, 

many cell adhesion molecules, such as SPP1 and FN [250, 251], have cryptic non-RGD 

integrin recognition sequences in addition to the conserved RGD recognition sequence 

[229]. 

Binding of integrins to ECM proteins promotes the aggregation of integrins and 

induces a hierarchical response leading to transmembrane accumulation of cytoskeletal 

proteins.  Over 150 signal transduction molecules may be recruited to the β-integrin 

subunit cytoplasmic domain [131, 252] for assembly into well-developed aggregates 

composed of ECM proteins, integrins, and cytoskeletal proteins known as focal 

adhesions [252, 253].  Attachment of the c-Src substrates, tensin and focal adhesion 

kinase can result from integrin aggregation alone, but aggregation of cytoskeletal 

proteins including talin, α-actinin, vinculin and F-actin requires ligand occupancy and 

integrin aggregation [252].  Therefore, immunodetection of aggregated integrins, talin or 

α-actinin at focal adhesions, provides a sensitive functional index of integrin activation 

and outside-in signaling.  The studies reported here exploited the ability of LGALS15 to 

induce focal adhesions by integrin-ECM interactions to demonstrate functional integrin 

activation and cytoskeletal reorganization in conceptus trophectoderm cells in response 

to LGALS15 binding.  Accumulation of talin was detected at the interface between 
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LGALS15-coated slides and ovine trophectoderm cells.  The focal adhesions resulted 

from RGD-integrin interactions because mutation of the LGALS15 RGD sequence 

clearly eliminated cytoskeletal aggregation of talin, although the identity of activated 

integrins remains unknown.  Interestingly, αv and β3 integrin subunits that form the 

αvβ3 receptor capable of binding multiple matrix proteins, including SPP1, vitronectin 

and fibronectin, aggregate at sites of cell anchorage to the substrate in both LE and 

trophectoderm cells, suggesting the presence of this versatile receptor at focal adhesion 

sites during the peri-implantation period [242].  It is, therefore, reasonable to predict that 

in the pregnant ovine uterus, LGALS15 binding to integrin heterodimers induces focal 

adhesion sites that promote trophoblast elongation and stabilize attachment of 

trophectoderm to LE for implantation.   

In summary, the temporal and spatial alterations in LGALS15 mRNA and protein 

in endometrial LE and lumen of the ovine uterus during pregnancy, combined with the 

functional aspects of LGALS15 discovered in the present studies, support the hypothesis 

that LGALS15 functions as a heterotypic cell adhesion molecule bridging integrins in 

the endometrial LE and conceptus trophectoderm.  These biological functions are 

undoubtedly required for growth and elongation of ruminant blastocysts/conceptuses 

prior to implantation in utero.  Of particular note, the LGALS15 gene is present in 

ruminants (cattle, sheep and goats) only, but is uniquely expressed in uterine endometria 

of members of the subfamily Caprinae (sheep and goats).  Other galectin family 

members are expressed in the endometria and placentae of other mammals where they 
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may affect endometrial differentiation as well as blastocyst implantation and trophoblast 

differentiation [162, 254, 255].   
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CHAPTER V 

GALECTIN 15 (LGALS15): A MULTIFUNCTIONAL PROTEIN 

 

INTRODUCTION 

 A new member of the galectin superfamily, LGALS15, was recently discovered 

in the ovine intestinal epithelium as being induced in response to infection by 

Haemonchus contortus, a common nematode parasite which infects ruminants [196].  

LGALS15 was later discovered to be a major component of histotroph in the ovine 

uterus which is a complex mixture of adhesion proteins, transport proteins, ions, growth 

factors, hormones, proteases, protease inhibitors, amino acids and other molecules [7, 

173, 220].  Histotroph is necessary for conceptus (embryo/fetus and associated placental 

membranes) survival, growth and implantation in mammals as seen in experiments 

utilizing the UGKO ewe which cannot maintain pregnancy past Day 14 due to the 

absence of uterine glands, reduced luminal epithelium (LE) and insufficient histotroph 

[7, 92, 119, 191, 220, 222].   

 Expression of LGALS15 is detected after Day 10 of pregnancy in the 

endometrial LE and sGE and was induced by P4 and stimulated by IFNT, the pregnancy 

recognition signal produced by the conceptus [50, 256].  In the endometrium, LGALS15   

____________ 
*Reprinted with permission from “Galectin 15 (LGALS15) functions in trophectoderm 
migration and attachment” by Farmer JL, Burghardt RC, Jousan FD, Hansen PJ, Bazer 
FW, and Spencer TE, 2007, Federation of American Societies for Experimental Biology, 
22, 548-560, 2008 
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has a nucleocytoplasmic distribution within the LE and sGE and was also concentrated 

near and on the apical surface of those cells [173].  Further, secreted LGALS15 is 

abundant in histotroph recovered from the uterine lumen and is immunologically similar 

to the previously unknown 14 kDa protein that is a component of crystalline inclusions 

in endometrial epithelia and conceptus trophectoderm [23, 173].   

 Galectins are small proteins, ranging from 14 to 35 kDa, which bind beta-

galactosides and functionally cross-link glycoprotein and glycolipid receptors on the 

surface of cells, to initiate biological responses that include cell proliferation, 

differentiation, motility, adhesion and apoptosis [13, 15, 134].  Most members of the 

galectin superfamily possess a CRD functional domain; however, ovine  LGALS15 has a 

CRD and both LDV and RGD functional integrin recognition sequences [173].  The 

temporal and spatial expression patterns for LGALS15 mRNA and protein in uterine 

endometrial epithelia and in the uterine lumen during the peri-implantation period of 

early pregnancy, combined with known biological activities of other galectins, make it a 

strong candidate mediator of conceptus–endometrial interactions during implantation 

[173].  In fact, LGALS15 stimulates ovine trophectoderm (oTr) cell adhesion via its 

RGD integrin recognition sequence and increases in size and number of focal adhesions 

[198].  Integrin subunits that form the αvß3 receptor, which has a high affinity for the 

RGD sequence and is capable of binding multiple matrix proteins including SPP1, 

vitronectin, and fibronectin, aggregate at sites of cell anchorage to the substrate in both 

LE and trophectoderm, suggesting the presence of this versatile receptor at focal 

adhesion sites during the peri-implantation period [242].  Therefore, it is reasonable to 
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predict that in the pregnant ovine uterus, LGALS15 binding to integrin heterodimers 

induces focal adhesion sites that promote trophoblast elongation and stabilize attachment 

of trophectoderm to the LE for implantation [198].   

 While LGALS15 appears to function primarily as an adhesive protein in the 

ovine uterus at the time of conceptus implantation, it likely has other biological 

functions important to conceptus growth and survival since all galectins have a variety of 

affects on cells depending on the cell type and circumstances.  For instance, galectin-1 

(LGALS1) can either stimulate or inhibit cell proliferation [257-259] in addition to 

stimulating or inhibiting cell adhesion to extracellular matrix [148, 260].  Glectins can 

also simultaneously mediate distinct intracellular and extracellular functions.  Indeed, 

over-expression of galectin-1 (LGALS1) in 293T cells increased membrane-associated 

Ras, Ras-GTP, and increased phosphorylation of ERK, resulting in cellular 

transformation [261]. Galectin 3 (LGALS3) also binds intracellular Ras to stimulate 

and/or inhibit ERK activation [261] which suggests that both Ras and ERK are potential 

targets of LGALS15.  Both LGALS1 and galectin-3 (LGALS3) have been implicated in 

pre-mRNA splicing and regulation of cellular apoptosis [15, 140, 262] and recent studies 

have focused attention on possible effects of galectin on immune responses.  For 

example, LGALS1 and galectin-9 (LGALS9) can induce apoptosis of activated T-cells 

by binding to cell surface oligosaccharides [263-267], LGALS3 can activate neutrophils 

[268, 269], and LGALS9 is a potent and specific chemoattractant for eosinophils [270].  

Galectin-10 (LGALS10, also known as Charcot Leyden Crystal protein) and galectin-13 

(LGALS13, also known as Placental Protein 13 and PP13), the closest family members 
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of LGALS15, have been implicated chemotaxis of immune cells to the uterus and 

placental development [164, 168].  Similar to LGALS15, LGALS10 exists in crystals in 

ovine uterine LE and trophectoderm [22, 95, 165].   

 The pleiotropic nature of members of the galectin family suggests that LGALS15 

may stimulate oTr cell adhesion and have other functional roles.  Results from the 

present studies indicate that LGALS15 affects oTr cell migration, proliferation, and 

apoptosis which are important for conceptus implantation, as well as hemagglutination, 

carbohydrate binding, and stimulation of differential gene expression; three functions 

common amongst galectin family members.  

 The current working hypothesis is that LGALS15 is secreted as a component of 

histotroph by LE and sGE throughout pregnancy in sheep where it functions to stimulate 

oTr cell migration, and proliferation, but inhibits oTr cell apoptosis in order to stimulate 

conceptus growth and elongation.  Additional studies investigated functions common to 

other member of the galectin superfamily to determine their ability to regulate ERK 

activation and stimulate erythrocyte hemagglutination as a defense mechanism against 

parasite infection.  In addition, possible roles of carbohydrate ligands were investigated 

through hybridization of recombinant LGALS15 protein to a glycan array and LGALS15 

effects on differential gene expression was investigated using a bovine oligo DNA array.   
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MATERIALS AND METHODS  

Preparation of recombinant ovine LGALS15 

The entire coding sequence for ovine and caprine endometrial LGALS15 mRNAs 

[173] was used to produce recombinant ovine and caprine LGALS15 (both LDV and 

LVV polymorphic forms) in bacteria.  PCR reactions (50 µl) were conducted in 

Optimized Buffer F (Invitrogen, Carlsbad, CA) and contained 10 ng of ovine LGALS15 

cDNA from Day 14 pregnant endometrium, 0.5 mg/ml forward primer (5'- AGA TGA 

AGC CAT GGA CTC CTT GCC GAA CCC CTA CC-3'), 0.5 mg/ml reverse primer (5'- 

AGA GTA AGC TTT GAT AAC GTA TCC ACT GAA GTC AGC-3'), and 1 U ExTaq 

polymerase (Takara Bio USA) using an Eppendorf Mastercycler thermocycler with 

conditions of: 1) 95°C for 2 min; 2) 95°C for 30 sec, 54°C for 1 min, and 72°C for 1 min 

for 35 cycles; and 3) 72°C for 7 min.  The amplified LGALS15 cDNA was restricted 

with NcoI and HindIII enzymes and then directionally subcloned into the pET-28b (+) 

vector (Novagen, Madison, WI).  This cloning strategy mutated the stop codon of 

LGALS15 and placed a His•Tag sequence at the C-terminus for affinity purification.  

The resulting plasmid was sequenced to ensure no mutations were present in the 

LGALS15 sequence. 

Recombinant ovine endometrial LGALS15 protein was produced in BL21 

bacteria according to the manufacturer’s suggestions.  Expression of His-glaectin15 

fusion protein was induced with 5 mM isopropyl-beta-D-thiogalactopyranoside (IPTG, 

Sigma, St.  Louis, MO).  Bacteria were lysed with Bugbuster (Invitrogen) supplemented 

with recombinant lysozyme and benzonase (Invitrogen).  Recombinant LGALS15 
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protein was isolated by affinity chromatography using a Ni-NTA His•Bind Resin 

purification kit (Invitrogen).  Elutions from the column were analyzed by 1D-SDS-

PAGE followed by silver staining and western blot analysis using a rabbit anti-ovine 

LGALS15 antibody.  Fractions containing recombinant LGALS15 were dialyzed 

overnight in PBS (pH 7.2) at 4°C, concentrated using a spin column with a 3,500 

MWCO (Vivaspin, Stonehouse, UK) and frozen in aliquots at -80oC.  Protein 

concentration was determined using a RC/DC Protein Assay (Bio-Rad Laboratories, 

Hercules, CA) with bovine serum albumin (BSA) as the standard.   

 

Isolation and culture of mononuclear ovine trophectoderm (oTr) cells 

All animal experiments were approved by the Institutional Animal Care and Use 

Committee of Texas A&M University.  As described previously [204, 205], mature 

Suffolk-type ewes (Ovis aries) were observed for estrus (designated as Day 0) in the 

presence of a vasectomized ram and used in experiments only after exhibiting at least 

two estrous cycles of normal duration (16–18 days).  At estrus, ewes were mated to 

intact rams.  The conceptuses were recovered on Day 15 post-mating by flushing the 

uterus with 20 ml of sterile PBS (pH 7.2) supplemented with 100 U penicillin and 100 

µg streptomycin per liter.  The inner cell mass was removed from the conceptus 

whenever possible, and the remaining tissues were carefully minced, pooled, and placed 

in a trophoblast growth medium consisting of DMEM/F-12 supplemented with 10% fetal 

bovine serum, glutamine (2 mM), insulin (700 nM), pyruvate (1.0 mM), non-essential 

amino acids (0.1 mM), and antibiotics (50 U penicillin, 50 µg streptomycin).  The tissues 
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were maintained in a 5% CO2 environment at 37°C.  Two different ovine trophectoderm 

cell lines were established and designated as oTr1 and oTrF.  The oTr1 cell line was 

established in tissue-culture treated plastic dishes, whereas the oTrF cell line was 

established on collagen-coated plastic dishes (Cohesion, Palo Alto, Ca).  Fluid-filled 

trophoblastic vesicles, which spontaneously developed in culture, were physically 

ruptured with sterile 28-gauge needles to enhance the generation of a cellular monolayer.  

This primary culture was propagated on the same support by serial trypsinizations. All 

experiments were performed with both oTr1 and oTrF cell lines unless otherwise 

indicated.  

 

Migration assay  

Migration assays were conducted as described previously with minor 

modifications [271].  Briefly, oTr cells (50,000 cells per 100 µl serum and insulin-free 

trophoblast growth medium) were seeded on 8 µm pore Transwell inserts (Corning 

Costar #3422, Corning, NY).  Treatments were then added to each well (n=3 wells per 

treatment) that included combinations of: (a) serum and insulin-free trophoblast growth 

medium (600 µl); (b) recombinant ovine LGALS15 at either 100 ng, 1 µg or 10 µg in 

serum and insulin-free trophoblast growth medium; (c) 1 µg/ml recombinant ovine 

LGALS15 with either 10, 50 or 100 µM 264 Y27632 (Rho-kinase inhibitor (ROCK) 

inhibitor, Catalog #688001, Calbiochem, San Diego, 265 CA) in serum and insulin-free 

trophoblast growth medium; (d) 1 µg/ml recombinant ovine LGALS15 with either 10, 50 

or 100 µM cell permeable JNK (c-Jun N-terminal kinase) inhibitor (JNKI1; Catalog 
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#159-600, Alexis, San Diego, CA) in serum and insuli-free trophoblast growth medium; 

or (e) complete trophoblast growth medium as a positive control.  After 12 h, cells on the 

upper side of the inserts were removed with a cotton swab.  For evaluation of cells that 

migrated onto the lower surface, inserts were fixed in 50% ethanol for 5 min.  The 

Transwell membranes were then removed, placed on a glass slide with the side 

containing cells facing up, overlaid with Prolong antifade mounting reagent with DAPI, 

and overlaid with a cover slip (Invitrogen-Molecular Probes, Eugene, OR, USA).  The 

migrated cells were systematically counted using a Zeiss Axioplan 2 fluorescence 

microscope with Axiocam HR digital camera and Axiovision 4.3 software (Carl Zeiss 

Microimaging, Thornwood, NY).  The entire experiment was repeated at least three 

times with different passages of oTr cells. 

 

Proliferation assay 

Trophectoderm proliferation assays were conducted as described previously with 

minor modifications [204].  Briefly, oTr cells were subcultured into 12-well plates 

(Corning Costar #3513, Corning, NY) to about 50% confluency in trophoblast growth 

medium for 6 to 8 h and then switched to serum and insulin-free trophoblast growth 

medium for 24 h.  After 24 h, the wells (n=4 per treatment) were treated with either 

increasing amounts of recombinant LGALS15 (10 ng, 100 ng, 1 µg, or 10 µg) in serum 

and insulin-free trophoblast growth medium, complete trophoblast growth medium as a 

positive control, or serum and insulin-free trophoblast growth medium alone as a 

negative control.  After 48 h of culture, cell numbers were determined as described 
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previously [234].  Briefly, medium was removed from cells by vacuum aspiration and 

cells were fixed in 50% (v/v) ethanol for 30 min followed by vacuum aspiration of the 

fixative.  Fixed cells were stained with Janus Green B in PBS (0.2% [w/v]) for 3 min at 

room temperature.  The stain was removed using a vacuum aspirator, and the whole 

plate was sequentially dipped into water and destained by gentle shaking.  The 

remaining water was removed by shaking, and stained cells were immediately lysed in 

0.5N HCl and absorbance readings taken at 595 nm using a microplate reader.  As 

described previously [234], cell numbers were calculated from absorbance readings 

using the formula [cell number = (absorbance-0.00462)/0.00006926].  The entire 

experiment was repeated at least three times with different passages of oTr cells. 

  

Apoptosis assays  

Four-well chamber slides (Nunc, Rochester, NY) were seeded in triplicate with 

oTr cells at approximately 60% confluency in serum and insulin-free trophoblast growth 

medium and incubated for 24 h.  Fresh serum and insulin-free trophoblast growth 

medium containing recombinant ovine LGALS15 (100 ng, 1 µg, or 10 µg) was added to 

each well and cultured for another 24 h.  After 24 h, the medium was removed and fresh 

serum and insulin-free trophoblast growth medium containing staurosporine and original 

amounts of LGALS15 was added to each well (LC Laboratories, Woburn, MA) and cells 

cultured for another 24 h [272].  Cells were then fixed in 4% (w/v) paraformaldehyde in 

PBS and analyzed for apoptosis using the In Situ Cell Death Detection Kit (Roche, 

Nutley, NJ).  Apoptotic nuclei were quantified using a Zeiss Axioplan 2 fluorescence 
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microscope with Axiocam HR digital camera and Axiovision 4.3 software (Carl Zeiss 

Microimaging, Thornwood, NY).  The entire experiment was repeated at least three 

times with different passages of oTr cells. 

 

Hemagglutination assays  

Hemagglutination assays were performed using 96-well conical microtiter plates 

as described previously [273, 274].  Briefly, blood samples from sheep, pig and mouse 

were collected into heparinized tubes.  Erythrocytes were isolated by centrifugation at 

16,000 x g for 10 min, serum removed, washed six times with sterilized phosphate 

buffered saline (PBS; pH 7.4) to remove traces of heparin, and resuspended in 1% (v/v).  

PBS.  Recombinant LGALS15 (100 µl of 1 µg/µl stock) was diluted (two-fold) in PBS 

(pH 7.4) to create serial dilutions ranging from 1:2 to 1:215.  Erthyrocyte suspensions 

(100 µl) were then added to each well and incubated overnight at room temperature.  

Wells containing only saline and erythrocytes, but no LGALS15 were used as the 

negative control.  Wells containing PBS, erythrocytes and 100 µl Concanavalin A (0.1% 

w/v), a well- established promoter of hemagglutination, served as the positive control. 

 

Production of rabbit antibodies to ovine LGALS15 

 Rabbit antisera to ovine LGALS15 were commercially produced using 

recombinant ovine LGALS15 protein as the antigen.  Rabbit anti-ovine LGALS15 IgG 

was purified from serum of immunized rabbits using an ImmunoPure (A/G) IgG 

Purification kit (PIERCE, Rockford, IL).     
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Western blot analyses 

 Ovine erythrocytes were incubated with LGALS15 (100 µl of 1 µg/µl stock) 

overnight at 4°C with gentle agitation.  Whole cell extracts were prepared as described 

previously [275].  Briefly, cells were rinsed with cold PBS and lysed by incubation in 

lysis buffer (1% Triton X-100, 0.5% Nonidet P-40, 150 mM NaCl, 10 mM Tris, 1 mM 

EDTA, 1 mM EGTA, 0.2 mM Na3VO4, 50 mM NaF, 30 mM Na4P2O7, 0.2 mM 

phenylmethylsulfonylfluoride, 1 µg/ml leupeptin, and 1 µg/ml pepstatin) for 30 min at 

4°C.  Cell lysates were passed through a 26-gauge needle and clarified by centrifugation 

(16,000 x g, 15 min, 4°C).  The protein content was determined using the RC/DC protein 

assay (Bio-Rad, Hercules, CA) with bovine serum albumin (BSA) as the standard.  

Proteins were denatured, separated using SDS-PAGE, and transferred to nitrocellulose.  

Blots were blocked for 1 h at room temperature with either 5% BSA-TBST (5% wt/vol 

BSA, Tris-buffered saline, 0.1% Tween-20) for phospho-specific antibodies or 5% 

nonfat milk-TBST for all other antibodies.  Primary antibodies were diluted in 2.5% 

nonfat milk-TBST and incubated at 4°C overnight.  Primary antibodies included rabbit 

anti-mouse ERK 1/2 polyclonal IgG (Santa Cruz, CA) rabbit anti-mouse phospho-

ERK1/2 monoclonal IgG (Santa Cruz, CA) at a 1:200 dilution and rabbit anti-ovine 

LGALS15 IgG at a 1:10,000 dilution.  Western blot analyses were performed as 

described previously [276] using enhanced chemiluminescence detection (Super Signal 

West Pico, Pierce, Rockford, IL) and X-OMAT AR X-ray film (Kodak, Rochester, NY) 

according to manufacturer’s recommendations.  Multiple exposures of each western blot 

were performed to ensure linearity of chemiluminescent signals.  Western blots were 
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quantified by measuring the intensity of light emitted from correctly sized bands under 

ultraviolet light using a ChemiDoc EQ system and Quantity One software (Bio-Rad, 

Hercules, CA).   

 

Carbohydrate array  

Recombinant LGALS15 (1 ml of 1 mg/ml stock) was sent to the Protein-

Carbohydrate Interaction Core at Emory University School of Medicine for analysis in 

with a carbohydrate array.  The Protein-Glycan Interaction Core (H) utilizes Consortium 

Printed Array Slides (Schott Cat. No. 1070936B) with 406 different glycans.  Glycan 

spotting concentration was at 100 µM per glycan with six replicate spots per glycan.  

Slides were printed at the Consortium Carbohydrate Synthesis/Protein Expression Core 

(D) located at the Scripps Research Institute.  Preprinted slides are soaked in deionized 

water for 5 min at room temperature and dried under a stream of nitrogen.  The galectin 

sample was diluted to assay concentration in binding buffer before 50 µl of FITC labeled 

lectin was applied to the printed surface and coverslipped. Slides were protected from 

light in a humidified chamber for 1 h at room temperature, washed and dried.  The 

binding image was read in a Perkin Elmer Microscanarray XL4000 scanner and image 

analysis performed using Imagene (V.6) image analysis software.  

 

LGALS15-induced gene expression in suspended versus attached oTr cells 

 Microarray analyses were conducted using trophectoderm cells that were either 

in suspension at the time of LGALS15 treatment or adhered at time of treatment. For 
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treatment of cells in suspension, oTr1 cells were incubated in sterile 50 ml glass bottles 

containing 35 ml trophoblast growth medium with either LGALS15 (1 µg/ml) or BSA 

(1µg/ml), as a negative control, for 12 h.  Cells were kept in suspension with gentle 

stirring until pelleted by centrifugation at 13,000 x g for 5 min at room temperature and 

isolation of total RNA as described previously.  The quantity and quality of total RNA 

was determined by spectrometry and denaturing formaldehyde-agarose gel 

electrophoresis, respectively.  For treatment of adhered cells, equal numbers of oTr cells 

were plated in 100 mm dishes with trophoblast growth medium and allowed to attach 

over night.  The following day the medium was removed and replaced with serum and 

insulin free trophoblast growth medium and incubated under cell culture conditions for 

an additional 24 h.  The medium was replaced with fresh serum and insulin free 

trophoblast growth medium supplemented with either 1 µg/ml recombinant LGALS15 or 

1 µg/ml BSA as a negative control and incubated under cell culture conditions for an 

additional 12 h.  Total cellular RNA was extracted as stated previously.  RNA extracted 

from oTr cells was reverse transcribed and used to screen a bovine oligo DNA array 

(University of Missouri) according to manufacturer’s instructions (Genishpere Inc, 

Hatfield, PA) and using methods described previously [223].   

 

Statistical analyses 

All quantitative data were subjected to least-squares ANOVA using the General 

Linear Models (GLM) procedures of the Statistical Analysis System (SAS Institute, 

Cary, NC).  Tests of significance were performed using the appropriate error terms 
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according to the expectation of the mean squares for error.  A P-value of 0.05 or less was 

considered significant.  Data are presented as least-square means (LSM) with standard 

errors (SE).  Percentage data were subjected to arcsin transformation before analysis.  

Independent variables included LGALS15 treatments and replicate.  Probability values 

for percentage data are based on analysis of arcsin-transformed data while least-squares 

means are from analysis of untransformed data.   

 

RESULTS 

LGALS15 increases migration of trophectoderm cells via JNK   

Several members of the galectin family stimulate migration of cells [227], and 

trophectoderm migration occurs during elongation of ruminant conceptuses [217].  

Therefore, effects of LGALS15 on migration of oTr cells were determined.  

Recombinant ovine LGALS15 dose-dependently increased (P<0.001) migration of both 

oTr1 and oTrF cells in serum- and insulin-free media (Figures 5.1 A and B).  Cell 

movement and migration can be stimulated by the planar cell polarity pathway involving 

activation of Rho-ROCK and JNK-JUN pathways [277].  Treatment of oTr cells with a 

ROCK (Rho-kinase) inhibitor, and JNK (JUN N-terminal kinase) inhibitor did not 

(P>0.10) affect basal rates of oTr1 or oTrF cell migration in the absence of LGALS15 

(data not shown).  However, the JNK inhibitor, but not the ROCK inhibitor, reduced 

(P<0.001) LGALS15-stimulated oTr1 and oTrF cell migration in a dose-dependent 

manner (Figures 5.1 C and D).  These results support the hypothesis that LGALS15  
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              A)                                                                             B)  

 

      
 

 
 
 
 
 
 
 
                        C)                     D)  
 

 
 
 
 
 
 
 
 
 
 
FIGURE 5.1 
Effects of ovine LGALS15 on migration of ovine trophectoderm cells.  [A] Cells were cultured in a Transwell plate in serum- and insulin-free media and treated with 
recombinant ovine LGALS15.  Cell migration was determined after 8 h of treatment and presented as percent migration relative to BSA controls.  An increase in oTr1 
cell migration was observed at all doses of recombinant ovine LGALS15.   [B] The oTr cells were cultured in a Transwell plate in serum- and insulin-free media and 
treated with recombinant ovine LGALS15, Y27632 (Rho-kinase (ROCK) inhibitor), a cell permeable JNK inhibitor (JNKI1), or their combination.  Cells grown in 
serum- and insulin-containing media served as a positive control.  Cell migration was determined after 8 h of treatment and expressed as percent migration relative to 
ovine LGALS15.  Statistically significant (P<0.001) differences in cell migration due to treatment with LGALS15 and inhibition of cell migration by the JNKI are noted. 
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from the endometrium acts in a paracrine manner on ovine conceptus to stimulate 

trophectoderm cell migration via activation of a signaling pathway involving JNK. 

 

Changes in ERK abundance in oTr1 cells in response to LGALS15 

Treatment of oTr1 cells with LGALS15 for 20 min had a dose-dependent effect 

to increase ERK 1/2 protein abundance. However, treatment with as much as 10 µg 

LGALS15 did not affect phospho-ERK 1/2 protein abundance (Figure 5.2).  

 

LGALS15 has moderate effects on trophectoderm proliferation 

 Several members of the galectin family affect proliferation of cells [227], and 

proliferation of trophectoderm cells is involved in elongation and differentiation of peri-  

implantation ruminant conceptuses [217].  This study determined effects of LGALS15 

on oTr1 and oTrF cell proliferation in serum- and insulin-free media (Figure 5.3).   

Recombinant ovine LGALS15 did not affect (P>0.10) proliferation of oTr1 cells, but did 

stimulate oTrF cell proliferation.  A 24% increase in oTrF cell numbers was detected at 

100 ng LGALS15, but not at other amounts (cubic effect, P<0.03).  In both types of oTr 

cells, BSA did not affect (P>0.10) cell number, whereas there was a 215% and 368% 

increase (P<0.01) in oTr1 and oTrF cell numbers, respectively, in response to serum- 

and insulin-containing trophoblast growth medium (data not shown).  These results 

suggest that effects of LGALS15 on trophectoderm cell proliferation were dose- and 

cell-type-dependent. 



 
 

 

107 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 5.2 

Effects of ovine LGALS15 treatment on total and phosphorylated ERK1/2 protein 
expression in ovine trophectoderm cells.  oTr cells cultured for 72 hours in serum free 
media with increasing amounts of LGALS15 prior to protein extraction. Protein extracts 
were subjected to western blot analysis for total and phosphorylated 42/44 mitogen 
activated protein kinase. 
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FIGURE 5.3 
Effects of ovine LGALS15 on proliferation of ovine trophectoderm cells.  Ovine 
trophectoderm (oTr) cells were treated with increasing amounts of recombinant ovine 
LGALS15 in serum- and insulin-free media.  Cell numbers were determined after 48 h, 
and data are expressed relative to untreated controls (100%).   
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LGALS15 does not induce apoptosis, but reduces staurosporine-induced apoptosis in 

trophectoderm cells  

 Several members of the galectin family have either negative or positive effects 

on cell apoptosis [227].  This study examined effects of LGALS15 on apoptosis in oTr1 

cells and determined that LGALS15 alone had no effect (P>0.10) on oTr1 cell apoptosis 

regardless of dose (data not shown).  Next, staurosporine (Streptomyces staurospores), a 

relatively non-selective protein kinase inhibitor, was used to induce apoptosis [278].  

Staurosporine induced apoptosis of oTr1 cells in a dose-dependent manner (Figure 5.4).  

Almost 100% of oTr1 cells were apoptotic at 3x10-4 M and 85% of oTr cells were 

apoptotic at 3x10-5 M, whereas only ~60% were apoptotic at 3x10-6 M staurosporine.  At 

high levels of staurosporine-induced apoptosis, preincubation of oTr1 cells with 

recombinant ovine LGALS15 had no effect (P>0.10).  In contrast, 10 µg LGALS15 

decreased (P<0.03) apoptosis by ~30% in oTr1 cells incubated with 3x10-6 M 

staurosporine.  Lower amounts of LGALS15 (100 ng or 1 µg) had no effect (P>0.10) on 

staurosporine-induced apoptosis.  These results suggest that LGALS15 alone does not 

cause apoptosis, but LGALS15 can inhibit trophectoderm cell apoptosis induced by 

staurosporine in a dose-dependent manner. 

 

Treatment of ovine and porcine erythrocytes with LGALS15 does not induce 

hemagglutination 

LGALS15 was unable to induce hemagglutination of either ovine, porcine or 

murine erythrocytes.  To determine if the lack of hemagluttination by LGALS15 was  
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FIGURE 5.4 

Effects of ovine LGALS15 on staurosporine-induced apoptosis of ovine trophectoderm 
cells.  The oTr1 cells were exposed increasing amounts of recombinant ovine LGALS15 
and then exposed to staurosporine, which is an inducer of apoptosis.  High amounts of 
staurosporine (3x10-4 and 3x10-5 M) induced considerable cell apoptotis that could not 
be inhibited by LGALS15.  At the 3x10-6 M concentration of staursporine, oTr cell 
apoptosis was reduced and considerably decreased in cells treated with 10 µg of 
LGALS15, but not 100 ng or 1 µg of LGALS15. 
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due to its inability to either bind or cross-link ovine erythrocytes, a 1% erythrocyte 

solution was incubated with LGALS15 (1 µg/µl) in TBS for 2 h at room temperature.  

Erythrocytes were then centrifuged (16,000 x g) and the supernatants collected.  Cell 

pellets were washed three times and protein was extracted as previously described [275].  

Western blot analysis revealed the presence of LGALS15 in the supernatant, but not 

erthyrocyte protein extracts, confirming that LGALS15 was unable to bind to ovine 

erythrocytes (Figures 5.5 A and B).   

 

LGALS15 binds multiple non-beta-galactoside carbohydrate ligands 

 Recombinant LGALS15 glycan binding affinity was analyzed against 406 

possible carbohydrate ligands.  The ligands for which roLGALS15 showed the highest 

affinity are listed in Table 5.1.  LGALS15, unlike many galectin family members, does 

not have high affinity for beta-galactosides, but does bind mannose based sugars, a 

characteristic of LGALS10.  Sugars of particular interest that bound to LGALS15 

include Fucα1-3GlcNAcβ, manose hybrid sugars (Mana1-2Mana1-2Mana1-3Mana-

Sp9), melibiose (Gala1-6Glcb-Sp8), transferrin, and ceruloplasmin. Transferrin, 

ceruloplasmin, and mannose hybrid sugars play important roles in iron transport in the 

uterus during pregnancy.  Melibiose is associated with microorganism infection [279].  

Fucα1-3GlcNAcβ associates with Lewis antigens present on the surface of uterine LE in 

sheep and goats [144].  Many sugars that bound to LGALS15, including Fucα1-

3GlcNAcβ, are polyfucosylated glycans that represent novel blood group active 

glycopeptides unique to the small intestine as compared with glycopeptides of other  
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FIGURE 5.5 

Effects of ovine LGALS15 on erythrocyte hemagglutination.  [A] LGALS15 (100 µl of 
1 µg/µl stock) was incubated overnight at room temperature with erythrocytes from 
sheep and pig.  In both cases LGALS15 was unable to stimulate hemagglutination. [B] 
Sheep erythrocytes were incubated with LGALS15 (100 µl of 1 µg/µl stock) and western 
blot analyses performed on cellular proteins and supernatants to determine the location 
of LGALS15 protein.   
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TABLE 5.1  

Binding affinities of different ligands to ovine LGALS15.  Ligands with the highest 
affinity for LGALS15 as measured by relative fluorescent units from FITC labeled 
LGALS15 are shown.  Standard deviation (STDEV), standard error of the mean (SEM) 
and the coefficient of variation (%CV) are shown.  
 

 

Glycan 

No. Glycan Name 

Ave. 

RFU
1
 

STDE

V SEM %CV 

76 Fucα1-3GlcNAcβ–Sp8 43118 16036 6547 37 

189 Mana1-2Mana1-2Mana1-3Mana-Sp9 42258 14008 5719 33 

113 Gala1-6Glcb-Sp8 26337 12732 5198 48 

6 Transferrin 24695 9790 3997 40 

4 Ceruloplasmin 24626 12285 5015 50 

196 Mana1-3(Mana1-2Mana1-2Mana1-6)Mana-Sp9 22981 13052 5328 57 

55 Fuca1-2Galb1-3GalNAcb1-3Gala-Sp9 22613 10707 4371 47 

81 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 21707 4408 1800 20 

82 GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAcβ–Sp8 19826 6802 2777 34 

168 GlcNAcb1-4MDPLys (bacterial cell wall) 19215 4193 1712 22 

140 Galβ1-4[6OSO3]Glcβ–Sp8 17543 17865 7293 102 

80 

GalNAca1-3(Fuca1-2)Galb1-4(Fuca1-

3)GlcNAcb-Sp0 16879 5547 2265 33 

83 GalNAca1-3(Fuca1-2)Galb1-4Glcb-Sp0 15865 9581 3911 60 

84 GalNAcα1-3(Fucα1-2)Galβ–Sp8 15643 4142 1691 26 

1 Alpha1-acid glycoprotein (AGP) 13632 1881 768 14 

79 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb-Sp0 13252 6587 2689 50 

3 AGP-B (AGP ConA bound) 12951 9593 3916 74 

182 G-ol-amine 12129 19315 7885 159 

2 AGP-A (AGP ConA flowthrough) 11925 4665 1905 39 

26 [3OSO3][6OSO3]Galb1-4[6OSO3]GlcNAcb-Sp0 11650 9495 3876 81 

1Relative Fluorescence Units 
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tissue sources and may be correlated with specialized functions of epithelial cells in the 

small intestine [280].   

 

LGALS15 gene regulation in suspended and adhered oTr1 cells  

 A bovine DNA array detected differences in gene expression in suspended oTr1 

cells compared to oTr1 cells adhered to a substrate following treatment with 1µg/ml 

LGALS15 (Table 5.2). Overall, LGALS15 affected a greater number of genes in 

suspended rather than adhered cells. Of the genes affected by LGALS15, a majority 

were increased several fold above baseline and were associated with vascular and 

immune function, adhesion and nutrient transport. 

 

DISCUSSION  

 A wide range of biological functions have been described for galectins, including 

regulation of cell adhesion, migration, cell growth, apoptosis, and pre-mRNA splicing.  

Extracellularly, they typically bind to beta-galactosides containing glycoconjugates of 

ECM components and cell surface adhesion molecules.  Interestingly, research over the 

past decade has identified a novel role for galectins as versatile regulators of cell-cell 

and cell-matrix interactions implicating galectins as a class of matricellular proteins 

[281, 282].  Matricellular proteins do not serve primarily structural roles as integral 

components of physical entities such as basement membranes or fibers.  Rather, they 

function contextually as adapters and modulators of cell- extracellular matrix 

interactions [283].  Based on established functions of galectins and functions of  
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TABLE 5.2 

Differential gene expression profiles for ovine trophectoderm cells exposed to 
exogenous ovine LGALS15 while in suspension [A] or while adhered to a substrate [B]. 
Total number of genes differentially expressed per treatment [C]. 
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LGALS15 based on the present studies, LGALS15 may be classified as a matricellular 

protein.  LGALS15 is a potent stimulator of oTr cell adhesion via its RGD integrin 

recognition sequence [198] and results of studies presented here focused on its 

agonistic/antagonistic roles in oTr cell migration, proliferation and apoptosis which 

influence trophectoderm survival and successful implantation.  The ability of LGALS15 

to stimulate hemagglutination, bind  to  numerous carbohydrates and regulate gene 

expression, as characteristic of the galectin superfamily members, was also investigated 

to understand pleiotropic functions of LGALS15.   

In contrast to humans and rodents, blastocysts of domestic ruminants must 

elongate prior to implantation, a process requiring cellular proliferation and migration 

[102, 217].  The noncanonical or planar cell polarity pathway is involved in cell 

movement and proliferation via activation of Rho-ROCK and JNK-JUN pathways [277]. 

The JNK-JUN pathway is involved in a number of cellular processes including epithelial 

sheet migration [284].  Results of the present studies indicate that LGALS15 stimulation 

of migration of oTr cells is dependent on JNK, but not ROCK cell signaling.  Indeed, 

JNK is a downstream target of integrin activation [285] involved in human trophoblast 

responses to placental growth factor [286].  Further, phosphorylated JNK and JUN 

proteins are present in ovine trophoblast cells (K. Hayashi and T.E. Spencer, 

unpublished result).  Future studies will focus on roles of the JNK-JUN cell signaling 

pathways in the ovine trophoblast.  Results of the present studies indicate that 

endometrial-derived LGALS15 acts in a paracrine manner to stimulate motility and 

migration of oTr cells.  Trophectoderm elongation involves cell migration and 
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proliferation and is required for formation of the conceptus and developmentally-

regulated production of IFNT for pregnancy recognition [217, 287].  In sheep, the 

approximately 200 µm spherical blastocyst on Day 7, begins elongation on Days 12 to 

13 to form a 19-20 cm filamentous conceptus by Days 16-18 that covers the entire length 

of the lumen of the uterine horn ipsilateral to the corpus luteum and extends through the 

common uterine body into the contralateral uterine horn.  Thus, blastocyst elongation 

undoubtedly requires an extraordinary amount of trophectoderm cell motility and 

migration.  In fact, blastocyst elongation is compromised in the uterine gland knockout 

ewe model which lacks endometrial glands and has a reduced amount of LE, little or no 

sGE and no LGALS15 [173, 191, 223].  Collectively, available results link the induction 

and increase in LGALS15 from the endometrial LE and sGE to stimulation of 

trophectoderm migration needed for peri-implantation blastocyst elongation and 

formation of a filamentous conceptus.     

 Intracellular effects of LGLAS1 and LGALS3 are to regulate many cell signaling 

pathways including the p42/44 mitogen activated protein kinases (ERK1/2), Ras, tumor 

necrosis factor (TNF), nuclear factor kappa B (NFkB), and Wnt signaling cascades [261].  

In the present study, treatment of oTr1 cells with LGAS15 increased the abundace of 

ERK 1/2, but not phospho-ERK 1/2. However, persistent activation of the p42/44 

mitogen activated protein kinases was detected after 72 h of serum starvation suggesting 

some level of constitutive activation of this protein in oTr1 cells. At present, the 

mechanism of this activation is unclear. 
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Death and lysis of some trophoblast cells occurs in ovine blastocysts from Days 

12 to 16 [288] and, interestingly, several members of the galectin family have both 

negative and positive effects on cellular apoptosis [227].  In the present study, LGALS15 

alone did not stimulate apoptosis, but did partially inhibit induction of apoptosis of 

trophectoderm cells induced by staurosporine.  Interestingly, focal adhesion kinase 

(FAK) dephosphorylation and focal adhesion disassembly is a very early event 

mediating the onset of staurosporine-induced endothelial cell apoptosis [278].  Thus, the 

ability of LGALS15 to counteract staursporine-induced apoptosis may be mediated its 

ability to bind and activate integrins involved in formation of focal adhesions [198].  

Although LGALS15 is abundant in the uterine lumen during early pregnancy [173, 199, 

223], it does not appear to inhibit other mechanisms leading to apoptosis of 

trophectoderm cells which is a common feature of conceptus development that depends 

on cell remodeling and/or removal of genetically deficient cells [288].      

 LGALS15, unlike many galectin family members, does not have high affinity for 

beta-galactosides.  Analyses of binding affinity of LGALS15 for over 400 glycans 

revealed that highest affinity was for Fucα1-3GlcNAcβ, manose hybrid sugars (Mana1-

2Mana1-2Mana1-3Mana-Sp9), melibiose (Gala1-6Glcb-Sp8), transferrin, and 

ceruloplasmin.  Fucα1-3GlcNAcβ is a carbohydrate present on the surface of various 

parasites, such as the helminth Schistosoma mansoni, and is one component of the Lewis 

X antigen (Gal beta 1-4(Fucα1-3)GlcNAc) and Lewis A antigen (Gal beta 1-4(Fuc alpha 

1-3)GlcNAc) [144, 289].  Lewis X is expressed in the LE on Days 15-17 of pregnancy  

and Lewis A is expressed in the endometrial stroma from Days 5 to 25 of pregnancy in 
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goats [144].  While it has not been shown that Haemonchus contortus expresses Fucα1-

3GlcNAcβ, one may hypothesize that the affinity of LGALS15 for Fucα1-3GlcNAcβ 

affects functional roles of LGALS15 in the intestine during parasite infection and as a 

ligand in the uterus during pregnancy.  Melibiose (Gala1-6Glcb-Sp8) is a disaccharide 

consisting of one galactose and one glucose moiety in an alpha (1-6) glycosidic linkage.  

Melibiose is a component of microorganisms known to infect the intestine and 

mammary glands of cattle [279].  This corresponds to possible roles for LGALS15 in the 

intestine of sheep infected with the helminth Haemonchus contortus where it was first 

discovered [196].  

 Ceruloplasmin is expressed in the liver, hypothalamus, spleen and uterus of 

sheep [290] and by uterine endometrium and placenta in humans and rats [291].  It has 

six atoms of copper in its structure and assists in copper-dependent oxidase activity, 

which is associated with oxidation of Fe2+ (ferrous iron) into Fe3+ (ferric iron), thereby 

assisting in iron transports in plasma by transferrin which requires iron in the ferric state 

[292]. Elevated levels of ceruloplasmin are associated with infection, pregnancy and 

postpartum events in cows and ewes [293].  Mannose hybrid sugars (Mana1-2Mana1-

2Mana1-3Mana-Sp9) are associated with transferrin receptors in sheep reticulocytes 

[294].  Transferrin is produced by developing embryos, most likely the rapidly 

disappearing yolk sac, and is detectable in uterine flushings and allantoic fluid on Day 

17 of pregnancy [295].  Transferrin is an iron-binding transport protein important for cell 

function, differentiation, and proliferation.  The yolk sac synthesizes transferrin from 

Day 15 of pregnancy in sheep, just before vasculogenesis, hematopoiesis and 
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differentiation and growth of the allantois, which demonstrates the importance of the 

yolk sac as a supplementary source for transferrin when the demand for iron is high 

[295].  LGALS15 also accumulates in allantoic fluid [173] and the C57 residue in the 

CRD sequence of LGALS15 CRD is also found in LGALS10 and thought to be 

responsible for mannose binding.  Bovine trophoblast primary cell lines cultured in 

medium supplemented with transferrin showed an enhanced rate of growth and were less 

likely to change morphologically from a polygonal cell to a spindle shaped cytokeratin-

positive cell [296].   

LGALS15 is abundantly expressed both before and after implantation.  Thus, 

trophectoderm cells are exposed to LGALS15 under two very different sets of 

circumstances; while they are in “suspension,” that is during the pre-implantation period, 

and while they are “adhered” to a substrate during the post-implantation period. 

Therefore, we examined whether or not exposure of oTr1 cells to LGALS15 under these 

two different conditions in vitro resulted in different patterns of gene expression. 

Although there were differences in gene expression between LGALS15- versus BSA- 

treated cells in both culture conditions, cells cultured in suspension were more sensitive 

to LGALS15 treatment.  In particular, cells in suspension showed an increase in integrin 

α2 and α5 monomeric proteins that play important roles in LGALS15 extracellular 

adhesion functions where it is hypothesized to function as a bridging ligand via integrins 

present on uterine LE and trophectoderm [198].  Another gene up-regulated in 

suspended cells include Rho Kinase 2.  Wnt5a stimulates oTr1 cell movement and 

migration via the Rho-ROCK pathway [205].  Interestingly, LGALS15 stimulated oTr 
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cell migration via the JNK signaling pathway, but it may also affect other mechanisms to 

promote oTr1 cell migration.  Overall, LGALS15 stimulated approximately 700 genes in 

suspended oTr1 cells with most associated with immune response, vasculogenesis, cell 

adhesion, transcription, proteases, and nutrient production which are very important for 

establishing a hospitable uterine environment for implantation.  On the other hand, 

LSGAL15 stimulated an increase in approximately 270 genes in adhered oTr cells that 

were associated with nutrient transport, cell growth and maintenance, cell cycle 

progression, transcription, implantation, and cell junction formation.  Examples of up-

regulated genes associate with LGALS15 treatment of adhered cells include 

sodium/glucose co-transporter 1, regulatory associated protein of mTOR, and LIF 

receptor.  Recent experiments with rodent fibroblast and epithelial cells revealed that 

signaling through the Akt-mTOR pathway is important for exogenous JSRV Env-

induced transformation [297].  The enJSRVs act on mononuclear trophectoderm cell to 

stimulate outgrowth and differentiation of trophoblast giant BNCs during the peri-

implantation period of pregnancy [204, 206].  These results suggest that during and after 

implantation the conceptus uses LGALS15 to stimulate expression of genes for nutrient 

exchange, cell growth and implantation. Overall, genes stimulated by LGALS15 in oTr1 

cells correspond to specific requirements for a particular cellular environment, such as 

preparing for implantation, as necessary for cells in suspension, as well as growth and 

differentiation, which are requisite for trophectoderm cells after implantation.   

 LGALS15 had a slight effect on proliferation of only oTrF cells at a dose of 100 

ng which suggests that this is not its main function.  LGALS15 also failed to stimulate 
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hemagglutination of sheep, pig, or mouse erythrocytes as characteristic of other 

members of the galectin superfamily.  Galectins produced by the helmith Haemonchus 

contortus induce hemagglutination of erythrocytes of mice, dogs, and chickens but not 

sheep [273].  Indeed, the absence of this function in LGALS15 may be beneficial in the 

uterus where hematopoeitic nutrient exchange is vital and erythrocyte agglutination 

would lead to clotating and reductions in blood flow.   

 In conclusion, results of these and previous studies clearly demonstrate that 

LGALS15 is involved in a number of critical processes including stimulation of cellular 

adhesion and migration, as well as inhibition of apoptosis.  Further, pleiotropic functions 

of LGALS15, based on potential effects on gene expression, include iron transport and 

immune functions.  Taken together, these findings provide strong support for LGALS15 

serving as an important intermediary in many physiological processes essential for ovine 

blastocyst growth, elongation and implantation in utero. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

SUMMARY 

Galectins are involved in cellular adhesion, growth, migration, apoptosis, and 

survival of several cell types and tissues.  LGALS15 is abundantly expressed by 

endometrial LE and sGE of the ovine uterus and is hypothesized to play an integral role 

in the growth and implantation of the conceptus. The described experiments were 

conducted to test this hypothesis and specifically to define the biological functions of 

LGALS15 in the ovine uterus during the peri-implantation stage of early pregnancy.  

The findings of these experiments advance our understanding of the biological roles of 

LGALS15 within the context of the overall relationship between the conceptus and 

maternal endometrium during early pregnancy. 

Previous studies indicated that endometrial secretions, collectively termed 

histotroph, are produced during pregnancy and are required to support ovine conceptus  

survival, growth and development beyond Day 14 of pregnancy [5, 7, 191, 220, 222].  

Additional studies revealed that LGALS15 is highly expressed by the uterine LE and sGE 

during the peri-implantation period where it is synthesized and secreted as a component 

of histotroph [23].  Secreted LGALS15 forms multimers and was discovered to be the 

previously unknown 14 kDa protein in intracytoplasmic crystalline inclusions in LE and 

trophectoderm cells [22, 23, 95, 173] (Figure 6.1).  LGALS15 is induced by P4 and 

further stimulated by IFNT and expression increases between Days 14 and 16 of  
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FIGURE 6.1 

Proposed mechanism for secreted ovine LGALS15 on the ovine endometrial LE and 
trophectoderm during the implantation period.  
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pregnancy in association with conceptus adhesion and implantation [173].  Pregnant 

ewes treated with exogenous P4 prior to onset of endogenous P4 production showed 

accelerated growth of the conceptus and IFΝΤ secretion as well as increased LGALS15 

expression [179].  In the present studies, the tested hypothesis was that LGALS15 acts 

on conceptus trophectoderm to stimulate proliferation, migration, growth, adhesion and 

survival of conceptus trophectoderm. 

 Chapter III focused on the development of a primary trophectoderm cell line that 

was used to determine LGALS15 function in vitro.  The oTr cell lines displayed typical 

trophectoderm epithelial cell morphology with both mononuclear cells and a small 

population of BNC which persisted for more than 20 passages.  Furthermore, oTr cells 

were shown to express genetic markers of embryonic trophectoderm cells in vivo, such 

as IFNT, enJSRVs env and gag, HYAL2 receptor for enJSRVs Env, CSH1, PAG1 and 

genes associated with the WNT signaling pathway (FZD6, GSK3B, DKK1).  Studies 

presented in this chapter showed that oTrF did not express IFNT like the oTr1 cells.   

Because both cell lines were developed from conceptus tissue at the height of IFNT 

production these differences presumably resulted from oTrF cells being cultured on a 

collagen substrate whereas oTr1 cells were developed and cultivated on tissue-culture 

treated plastic.   

 Migration of oTr1 cells described in Chapter III further demonstrated that 

individual cells are capable of detaching and migrating, indicating an invasive property.  

Sheep have a synepitheliochorial placentation with limited invasion, although the 

conceptus is invasive when it is transplanted outside of the uterus.  The present studies 
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also indicated that oTr1 cells were capable of accumulating exogenous LGALS15 

protein in vitro in a similar pattern as LGALS3 in breast carcinoma cell lines [214] 

suggesting that the observed patterns of LGALS15 secretion and uptake are conserved 

across galectin superfamily members.  Despite the differences in morphology and IFNT 

production both cell lines behaved similarly when treated with exogenous LGALS15 in 

both cellular adhesion and migration assays (Chapters IV and V), indicating that at least 

some physiological characteristics of trophectoderm cells were maintained in both cell 

lines.  Taken together these results indicate that the oTr primary cell lines are good in 

vitro models to study intracellular and extracellular roles of LGALS15 on the conceptus 

trophectoderm. 

Chapter IV investigated LGALS15 function in trophectoderm cell adhesion.  It 

was found that a dose-dependent increase in oTr cell attachment to LGALS15 was 

observed, which is inhibited by cyclic GRGD, but not GRAD, peptides.  Mutation of the 

LDVRGD integrin binding sequence of LGALS15 to LADRAD decreased its ability to 

promote oTr cell attachment, whereas mutation of the CRD had little effect.  Further, the 

LDV recognition sequence of LGALS15 is not likely to be important because natural 

polymorphic variants of LGALS15 with LVV instead of LDV sequences in the C-

terminus in sheep and goat LGALS15 do not alter their cell attachment function [187].  

LGALS15 induced formation of robust focal adhesions in oTr cells that was abolished 

by mutation of the LDVRGD sequence again indicating the importance of the integrin 

recognition sequence to its function.  LGALS15 was also found to mediate attachment of 

trophectoderm cells and formation of focal adhesions via binding and activation of 
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integrins, which is an essential element of blastocyst implantation and trophoblast 

differentiation in many species [235, 236]. 

Chapter V tested the hypothesis that LGALS15 is a secreted regulator of 

blastocyst development and gene expression, as well as growth, migration, and apoptosis 

of the trophoblast.  LGALS15 had a minimal effect on oTr cell proliferation with only 

the oTrF cell line showing an increase in proliferation following LGALS15 treatment 

suggesting that if LGALS15 functions to increase trophectoderm proliferation, it is 

likely not the main function.  LGALS15 also failed to stimulate hemagglutination of 

sheep, pig, or mouse erythrocytes.  The absence of this function for LGALS15 may be 

beneficial in the uterus where hematopoeitic nutrient exchange is vital and erythrocyte 

agglutination would function as a clot and prevent adequate blood flow.  It was also 

shown that LGALS15 stimulated migration of mononuclear trophectoderm cells in a 

manner dependent on the JUN-JNK signaling pathway but not the Rho-ROCK pathway 

utilized by WNT5a, another known stimulator of oTr cell migration.   

LGALS15 did partially inhibit the induction of trophectoderm cell apoptosis by 

staurosporine presumably by counteracting staurosporine’s break down of focal 

adhesions.  Although LGALS15 is abundant in the uterine lumen during early pregnancy 

[173, 199, 223], it does not appear to inhibit other mechanisms for trophectoderm 

apoptosis as it is a common feature of conceptus development that may be required for 

cell remodeling or removal of genetically deficient cells [288].   

Binding studies indicated that LGALS15, unlike many galectin family members, 

does not have high affinity for beta-galactosides.  Binding studies with LGALS15 using 
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over 400 glycans showed that Fucα1-3GlcNAcβ, manose hybrid sugars (Mana1-

2Mana1-2Mana1-3Mana-Sp9), melibiose (Gala1-6Glcb-Sp8), transferrin, and 

ceruloplasmin had the highest affinties indicating a role for LGALS15 in iron transport 

and immune function.  Furthermore, genes stimulated by LGALS15 treatment of oTr1 

cells are consistent with its purported function such as preparing for implantation, as is 

necessary for cells in suspension, as well as growth and differentiation, which is 

requisite of trophectoderm cells after implantation.  Taken together, these findings 

support the idea that LGALS15 is an important intermediary in many of the 

physiological processes essential for ovine blastocyst growth and elongation prior to 

implantation in utero. 

 

CONCLUSIONS 

 In conclusion, the temporal and spatial alterations in LGALS15 mRNA and 

protein in endometrial LE and lumen of the ovine uterus during pregnancy, combined 

with the functional aspects of LGALS15 discovered in the present studies, support the 

hypothesis that LGALS15 functions as a heterotypic cell adhesion molecule.  LGALS15 

functions by bridging integrins in the endometrial LE and conceptus trophectoderm to 

induce focal adhesions by integrin-ECM interactions and demonstrates functional 

integrin activation and cytoskeletal reorganization in conceptus trophectoderm cells in 

response to LGALS15 binding via its RGD site (Figure 6.2), as well as possible roles in 

cell migration, iron transport, and differential gene expression.  These biological  
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FIGURE 6.2 

Proposed signaling cascade for ovine LGALS15 via integrin binding by its RGD integrin 
recognition sequence in ovine trophectoderm cells during the implantation period. 
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functions are undoubtedly required for ruminant blastocyst growth and elongation prior 

to implantation in utero.   

 Of particular note, it was recently determined that the LGALS15 gene is present 

in ruminants (cattle, sheep and goats) only, but is uniquely expressed in uterine 

endometria of ruminants in the subfamily Caprinae (sheep and goats).  However, other 

galectin family members are expressed during implantation in many mammals.  LGALS9 

has recently been discovered to be an endometrial marker for the mid- and late-secretory 

phases of the menstrual cycle and decidual phases during pregnancy in humans [298].  

LGALS9 along with LGALS1 and LGALS3 have been implicated in uterine receptivity 

and decidualization in mice and humans where they are expressed in uterine stroma, 

epithelium and decidua [254, 298].  LGALS3 is expressed in trophoblast of cows, mice 

and humans [299] suggesting a role in embryo implantation and cell–cell and cell–

matrix interactions of trophoblast during placentation [300].  LGALS5 is also present in 

blastocysts at the time of implantation in the mouse [162].  Thus, galectin family 

members are commonly expressed in the endometria and placentae of many mammals, 

where they may also function in endometrial differentiation as well as blastocyst 

implantation, immune modulation and trophoblast differentiation [162, 254, 255]. 

 LGALS15 was first discovered in sheep abomasal tissue infected with the 

nematode parasite, Haemonchus contortus, and was shown to have both nuclear and 

cytoplasmic localization and is abundantly secreted into the surrounding mucus [196].  It 

is unclear if LGALS15 expression is induced by the presence of the parasite or if it is 

induced due to the tissue damage and inflammation that occurs with infection.   
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Interestingly, the embryo functions in much the same way as a parasite during 

pregnancy, causing alterations in tissue structure, stimulating inflammatory responses, 

and siphoning nutrients away from its host.  There are apparent similarities between 

implantation and immune cell infiltration including cellular apposition, adhesion and 

invasion of the embryo at the implantation site and rolling, adhesion and extravasation of 

immune cells at the site of inflammation.  It is well documented that galectins have 

many immune modulatory properties.  Perhaps LGALS15 evolved in the uterus as a way 

for the maternal system to cope with the embryo semi-allograft, thus linking galectin 

immune and reproductive functions.  

 Experiments in this dissertation have contributed toward the fundamental knowledge 

of LGALS15 function in the ovine uterus during implantation. These analyses have 

determined the effectiveness of LGALS15 to stimulate trophectoderm cell adhesion, 

migration, survival, and development in vitro and provide an opportunity for future studies 

in the sheep.  Future experiments must be directed toward determining the cellular and 

molecular mechanisms regulating successful conceptus survival and implantation involving 

this dynamic protein. These experiments include: (1) characterizing spatial and temporal 

expression for genes stimulated by LGALS15; (2) determining the role of LGALS15 in 

trophoblast immune evasion; (3) inactivating LGALS15 RNA in the LE and determining the 

consequences on conceptus development; (4) infusing recombinant LGALS15 into the 

uterus of UGKO ewes and the effect on conceptus elongation; (5) investigations into the role 

of LGALS15 crystals in the LE and conceptus; and (6) determining the function of 

LGALS15 in the allantoic fluid throughout gestation, whether related to prostaglandin 

production, metabolic regulation, iron transport or carbohydrate binding. 
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