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I do not know what I may appear to the world, but to myself
I seem to have been only like a boy playing on the sea-shore,

and diverting myself in now and then finding a smoother pebble
or a prettier shell than ordinary, whilst the great ocean of truth

lay all undiscovered before me.

— Isaac Newton

Dedicated to my family and my closest friends.





A B S T R A C T

The fermion mass hierarchy is addresed from the framework of an abelian exten-
sion of the Standard Model U(1)X. By taking into account the cancellation of chiral
anomalies, a set of U(1)X charges is presented with extended scalar and fermionic
sectors. The scalar potential is shown, together with the scalar spectrum of the model
which includes the respective Goldstone bosons, new physical neutral and charged
scalars at TeV scale and the 125 GeV Higgs boson. Then, the mass acquisition in the
fermionic sector is studied in detail. The mass matrices present an specific texture
called suppresion square texture (SST) which suggests the mass hierarchy when they
are diagonalized by algebraic and numerical methods. The model turns out to be
consistent is consistent at 5σ and 3σ in the quark and lepton sectors, respectively,
without unpleasant fine-tuning procedures.

Keywords: Fermion masses, fermion mass hierarchy, extended scalar sector, ex-
tended fermionic sector, beyond the Standard Model, abelian extensions.

R E S U M E N

La jerarquía de masas de fermiones es abordada desde el marco de una extensión
abeliana del Modelo Estándar U(1)X. Teniendo en cuenta la cancelación de anoma-
lías quirales, un conjunto de cargas de U(1) es presentada con sectores escalares y
fermiónicos extendidos. Se muestra el potencial escalar junto con el espectro escalar
del modelo, el cual incluye los respectivos bosones de Goldstone, escalares físicos
cargados y neutros a escala de TeV y el bosón de Higgs de 125 GeV. Después, la
adquisición de masas en el sector de fermiones es estudiado en detalle. Las matrices
de masa presentan una textura específica llamada textura de cuadros de supresión, la
cual sugiere la jerarquía de masas cuando son diagonalizadas por métodos tanto al-
gebraicos como numéricos. El modelo resulta ser consistente a 5σ y 3σ en los sectores
de quarks y leptones, respectivamente, sin necesidad de usar ajustes finos indesea-
dos.

Palabras clave: Masas de fermiones, jerarquía de masas fermiónicas, sector escalar
extendido, sector fermiónico extendido, más allá del Modelo Estándar, extensiones
abelianas.

vii





P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following publications:

S. F. Mantilla and R. Martinez. “A U(1) non-universal anomaly-free model with three
Higgs doublets and one singlet scalar field.” In: arXiv 1704.04869 (2017).
url: https://arxiv.org/abs/1704.04869. Accepted in Phys. Rev. D.

S. F. Mantilla, R. Martinez, and F. Ochoa. “Neutrino and CP-even Higgs boson masses
in a nonuniversal U(1) extension.” In: Phys. Rev. D 95 (9 2017), p. 095037.
url: https://link.aps.org/doi/10.1103/PhysRevD.95.095037.
doi: 10.1103 / PhysRevD . 95 . 095037.

S. F. Mantilla, R. Martinez, F. Ochoa and C. F. Sierra. “Diphoton decay for a 750 GeV
scalar boson in a SU(6)⊗U(1)X model.” In: Nuclear Physics B 911 (2016), p. 338.
url: https://doi.org/10.1016/j.nuclphysb.2016.08.014

doi: 10.1016/j.nuclphysb.2016.08.014.

ix





A C K N O W L E D G E M E N T S

I would first like to thank my thesis advisor PhD. Roberto Enrique Martínez Martínez
of the Faculty of Physics at Universidad Nacional de Colombia. I express my grati-
tute for his continuous support, his patience and knowledge, completely essencial in
the development of the work through my learning process. He consistently encour-
aged me to improve this dissertation, which would had been impossible without his
engagement and support.

I am very grateful with El Patrimonio Autónomo Fondo Nacional de Financiamiento para
la Ciencia, la Tecnología y la Innovación Francisco José de Caldas programme of COL-
CIENCIAS in Colombia which supported the work presented in this thesis.

I would also like to acknowledge my colleagues and good friends, Carlos Eduardo
Díaz, Rodolfo Hernán Vargas and Rafael Andrey Vinasco of the Faculty of Physics at
Universidad Nacional de Colombia as permanent collaborators in the development
of this work and as second readers of this thesis. I am gratefully indebted to their for
their valuable opinions and comments on this thesis.

Finally, I must express my very profound gratitude to my parents, Luis Omar Man-
tilla and Deipsy Omed Serrano, to my brother Santiago Mantilla Serrano, to my
grandmother Myriam Noguera de Mantilla, and to my dear friends, Anamaría Gar-
cía and Santiago Rueda, for providing me with unfailing support and continuous en-
couragement throughout my years of study and through the process of researching
and writing this thesis. This accomplishment would not have been possible without
them. Thank you.

Sebastián Felipe Mantilla Serrano

xi





C O N T E N T S

1 introduction 1

1.1 Are there Physics Beyond the Standard Model? . . . . . . . . . . . . . 2

i general framework 5

2 theoretical background 7

2.1 Poincaré Group and Lorentz Invariants . . . . . . . . . . . . . . . . . . 7

2.1.1 Poincaré representations . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Yang-Mills fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Spontaneous Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 General scheme of SSB . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Goldstone theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Fermion masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 standard model of particle physics 19

3.1 SM gauge symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Electroweak Theory: Glashow-Salam-Weinberg . . . . . . . . . . . . . . 20

3.2.1 Electroweak SSB . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Fermion Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Gauge Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Low-energy limit: Fermi theory of β-decay . . . . . . . . . . . . . . . . 24

4 mass matrices and family mixing 27

4.1 SM families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Mass matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Flavor-Changing-Currents . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Neutral currents . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2 Charged currents . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 CKM matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 PMNS matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ii non-universal u(1)’ model 35

5 bosonic sector 37

5.1 Gauge bosons and masses . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Higgs potential and scalar masses . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Minimization of the potential . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Charged scalar boson masses . . . . . . . . . . . . . . . . . . . . 40

5.2.3 CP-odd boson masses . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.4 CP-even boson masses . . . . . . . . . . . . . . . . . . . . . . . . 42

6 fermionic sector 45

6.1 Chiral anomalies equations . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Suppression squares texture . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Mass matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Hadronic sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.1 Up-like quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xiii



xiv contents

6.4.2 Down-like quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4.3 Numerical exploration in the quark sector . . . . . . . . . . . . 54

6.5 Leptonic sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.5.1 Neutral leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.5.2 Charged leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5.3 Numerical exploration in the lepton sector . . . . . . . . . . . . 60

iii conclusions 65

7 concluding remarks 67

bibliography 71



L I S T O F F I G U R E S

Figure 6.1 Orders of magnitude of the SM fermion masses. It is easy to
realize about how the fermions get organized in four hierar-
chical groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 6.2 Quark masses and CKM mixing angles at 5σ obtained from
random mass matrices MU and MD with the VH of eq. (6). . 55

Figure 6.3 Dependeces of the angle differences αU − δU, βU − εU and
γU − εU on the magnitude of the moduli AU, BU and CU.
The fact that the larger the modulus the smaller the angle
difference shows the action of the SST on the mass eigenvalues
in order to get the hierarchy. . . . . . . . . . . . . . . . . . . . 55

Figure 6.4 Dependences of the angle differences αD − δD and βD − γD

on the magnitude of the moduli AD and BD. The modulus
AD shows the action of the SST on the d mass in order to
suppress it at unts of MeV, but the anomalous behavior of BD
is produced by the lack of suppression in the s mass since it
alredy is at hundreds of MeV. . . . . . . . . . . . . . . . . . . . 55

Figure 6.5 Lepton masses and PMNS mixing angles at 3σ according to
ref. [GGMS14] obtained from random mass matrices MN and
ME with the VH of eq. (6). . . . . . . . . . . . . . . . . . . . . . 61

Figure 6.6 Search of the best value of µN for MN consistent at 3σ with
the ref. [GGMS14]. . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 6.7 Sample of the parameter space available to reproduce neutrino
oscillation data in function of the Majorana mass scale µN.
From left to right the parameter space contracts, consistently
with the Fig. 6.6. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 6.8 Dependences of the angles αE1 , αE2 − γE2 and γE2 − εE2 on the
magnitude of the moduli AE and CE. The behavior of CE is
similar to CU in the Fig. 6.3 since the τ lepton, as well as the c
quark, gets supressed by the SST. However, the dependence on
AE, αE1 and αE2 − γ

E
2 offers an extended 3D parameter space. 62

xv



L I S T O F TA B L E S

Table 3.1 Representations and electroweak charges of SM-fermions. . . 20

Table 3.2 SM scalar and vector boson data[PG+16]. . . . . . . . . . . . . 25

Table 3.3 SM fundamental constants at low-energy and GeV scales[PG+16].
26

Table 4.1 SM-fermion flavor families. . . . . . . . . . . . . . . . . . . . . 28

Table 4.2 SM-fermion masses. The masses of the charged leptons are
determined further the fourth decimal position [PG+16]. . . . 29

Table 4.3 Three-flavor neutrino oscillation data. For NO ` = 1 while for
IO ` = 2[Est+17]. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 5.1 Scalar content of the model, non-universal X quantum number
and Z2 parity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 5.2 Summary of the bosonic mass eigenstates of the model. . . . 44

Table 6.1 Hadronic sector of the model, non-universal X quantum num-
ber and Z2 parity. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 6.2 Leptonic sector of the model, non-universal X quantum num-
ber and Z2 parity. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 7.1 Scalar content of the model, non-universal X quantum number
and Z2 parity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 7.2 Summary of fermion masses. . . . . . . . . . . . . . . . . . . . 68

Table 7.3 Fermionic content of the model, non-universal X quantum
number and Z2 parity. . . . . . . . . . . . . . . . . . . . . . . . 69

xvi



1
I N T R O D U C T I O N

Since the Antiquity there have been many models and ideas about the true nature
of matter and its fundamental components. Some ideas such as the atomic theory of
Ancient Greece started the road to the comprehension of the smallest pieces of matter.
The law of definite proportions of Louis Proust[Pro99], the first atomic theory after
John Dalton and Amadeo Avogadro, and the born of modern Chemistry gave the
evidence of the discreteness of matter in chemical reactions[Dat05].

In Physics, however, the first acceptable model about the existence of atoms is
due to Albert Einstein in his 1905 article about the Brownian Motion[Ein05], whose
proposal was the explanation of this random motion because the collisions between
water molecules and the pollen grains. Later, in 1908 Jean Perrin validated exper-
imentally this idea and consequently, the discrete nature of matter instead of the
continuous hypothesis[Per09].

Despite this successful discovery, it was the beginning of a new branch in Physics.
The discovery of subatomic systems such as the electron by J. J. Thompson[F.R97],
the atomic nucleus by Ernest Rutherford[Rut11] and the radioactivity by Marie and
Pierre Curie[Cur04] in the early 20th century provided new natural phenomena
which deserved a new theory of matter and its components. Moreover, the formu-
lation of the new Quantum Theory at that time supplied a new framework to be
employed in the search of satisfactory explanations of these discoveries.

One example of these new phenomena lies in the three kinds of radioactive decays:

• Alpha decay: A nucleus AZX transmutes into a new nucleus A−2
Z−2X through the

emission of an α-particle 42He. An example of this process is the nuclear reac-
tion present in the uranium decay chain

238
92U→ 234

90 Th + 4
2He.

• Beta decay: A nucleus AZX transmutes into a new nucleus A−1
Z+1X by emitting a

β-particle (identified with a fast electron) and after Pauli the electronic antineu-
trino. The quintessential beta decay is the carbon-14 reaction

14
6 C→ 14

7N + e+ ν̄e.

• Gamma decay: A heavier nucleus AZX
∗ transmutes into a lighter AZX through the

emission of a high-energy photon. An example of this process is the Technetium-
99m decay

99m
43 Tc→ 99

43Tc + γ.

Each one of these processes can be identified with the three fundamental forces of Na-
ture: the strong nuclear force, the weak nuclear force and the electromagnetic force,

1



2 introduction

respectively. The electromagnetic and weak interactions are already understood un-
der the unified Electroweak model, and the strong interaction is described by the
Quantum Chromodynamics, at least in its perturbative regime. The conjunction of
these schemes constitutes the Standard Model of Particle Physics (SM), the current
theory of the fundamental nature of matter.

are there physics beyond the standard model?

Nowadays, there are some non-explained phenomena by the SM. The nearest is the
neutrino mass and its oscillations, but further phenomena as the dark component of
the matter in the Universe, or the relation of these interactions with gravity, physical
information and entropy gives new theoretical and experimental phenomena to-be-
explained in the called Physics Beyond the SM (BSM). Some of these new schemes
are:

1. Abelian extensions U(1)’: These models introduce new abelian vector bosons.
The couplings of this new gauge boson to SM-fermions are determined by a
new set of charges in order to forbid unwanted couplings between light fer-
mions and scalar bosons whose VEVs are at GeV scale or above. The mass
of the lightest fermions can be obtain through radiative corrections of their
propagators or by Majorana masses and see-saw mechanisms in the case of
neutrinos[Mar+14b; MMO17].

2. Extended scalar sectors: From the fact that there are no theoretical constraints
related to the scalar spectrum, the addition of isospin singlet, doublet or triplet
scalar fields is possible. The quintessential theoretical framework is the 2-Higgs-
Doublet models (2HDM)[Mar+14a; Mar+15].

3. SU(3)⊗SU(3)⊗U(1) models (331): The enlargement of the weak isospin SU(2)
group allows the introduction of right-handed neutrinos among other fields
whose interactions with SM fermions are mediated by weak bosons W±3 and
Z ′ heavier than the current weak bosons[CMO12; PQ14; CHMO13].

4. Left-Right symmetry: The chiral symmetry between left- and right-handed sec-
tors can be accomplished by the introduction of the gauge group SU(2)R broken
at a higher energy scale than the electroweak. The right-handed neutrino could
be set at large energy scale by Majorana masses. This framework provides the
preferred Fritzsch ansatz mass matrices giving an explanation to the fermion
mass spectrum[Fri05; Fri78; FTY93].

5. Kaluza-Klein Theories (KK): Since the early 20th century the introduction of
tiny extra dimensions in the spacetime has given an interesting framework for
unifying the fundamental interactions. The KK modes could be observed at
particle accelerators providing information about the size of the new space di-
mensions and hints of quantum gravity. Sometimes, these dimensions are suit
at Planck length because the lack of observations of this extra modes[Kal21].

6. Large Extra Dimensions (LED): The Planck scale, considered as the quantum
gravity scale, is so far to be testable employing the current technology. The LED
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framework introduces extra dimensions with size of millimeter or micrometer
increasing the dimensions of space and changing the Newton gravitational con-
stant G. In this way, the new Planck scale could be at units or hundreds of TeV
and consequently bringing closer the quantum gravity to feasible experimental
corroboration[AHCG01].

7. Randall-Sundrum (RS): The hierarchy problem produced by the enormous dis-
tance between the electroweak and gravitational energy scales can be under-
stood in the framework of branes introduced in RS models. The RS-I model
proposes the universe has two branes (the electroweak scale and the Planck
scale) with the bulk between them which produces the energy hierarchy. On
the other hand, the RS-II model introduces only the electroweak scale[Cas+08].

There are more BSM proposals which are not reported here to make short the list.
All of these schemes should satisfy the correspondence principle at low energy limit
obtaining the SM as an effective theory in order to comply the current experimen-
tal constraints. Nevertheless, each one of them has its own traits which could be
observed gathering more data from different laboratories and techniques. Moreover,
some of these schemes can be obtained as low-energy effective theories, specially the
abelian extensions of the SM, the simplest BSM framework and the most falsifiable
among all of them.

The present work is devoted to present an abelian extension to the SM to address
the hierarchy observed in the SM fermions masses. The part i outline the general
framework for constructing abelian extensions. The chapter 2 brushes up the fun-
damental bases of spacetime symmetries, Yang-Mills scheme and Spontaneous Sym-
metry Breaking. After this, the chapter 3 reviews the most important properties of
the Standard Model and comes out the general tools presented in the previous chap-
ter. By last, to close this part the concept of fermion generation or family is studied
in chapter 4 embedded in the issue of mass matrices and mixing angles. Also the
charged- and neutral-current interactions involving flavor changing are reviewed.

The part ii presents the construction of an abelian extension of the Standard Model
whose aim is to obtain the mass spectrum of the SM fermions. The main proposal
of the work is presented in chapter 6, where the fermionic spectrum of the model is
shown together with the Yukawa Lagrangians of the quark and lepton sectors and
the mass matrices. The concept of suppression square texture is introduced, which is the
cornerstone of the model. Moreover, in this chapter the mass eigenvalues and mixing
angles are obtained, and the mass matrices were generated randomly by Montecarlo
procedures and diagonalized numerically in order to check the actual suitability of
the model to reproduce phenomenological data[PG+16].

Finally, the part iii closes the work with the chapter 7, where the results are dis-
cussed in the light of other abelian extensions.





Part I

G E N E R A L F R A M E W O R K

This part is devoted to review basic concepts and to establish the notation
before studying the new model, so this could be skipped without any
problem.

The fundamental concepts related to spacetime and internal symmetries,
as well as spontaneous symmetry breaking are reviewed in the chapter 2.
In chapter 3, it is presented also the Standard Model of Particle Physics,
the current theory about matter and fundamental interactions with exper-
imental corroboration. Finally, the concept of particle family is introduced
in chapter 4 with the mass matrices, and their corresponding rotation ma-
trices are studied in order to understand the charged and neutral flavor-
changing-currents.





2
T H E O R E T I C A L B A C K G R O U N D

Field theories are constructed using different physical ideas with their corresponding
mathematical tools. The symmetries of space and time describe the arena where
fields propagate and interact. Its analysis gives suited classifications of the fields
according to their mass and spin. Along with the rotations and translations described
by the Poincaré group, there are three important discrete transformations: the space
inversion or parity (t, x) → (t,−x), the time reversal (t, x) → (−t, x) and the charge
conjugation. These transformations are so important for describing chiral fermions or
asymmetries between matter and antimatter (CP violation). Moreover, the difference
between Dirac and Majorana fermions are important ir order to study neutrino mass
generation.

However, the Poincaré group does not predict any kind of interaction between the
fields described by its representations in disagree with the existence of three funda-
mental interactions. This problem is solved by the Yang-Mills scheme (YM). It begins
by proposing a global continuous symmetry in a set of fields described by a Lie
group. When the continuous symmetry becomes local it is necessary to correct the
derivative operator by adding a connection term which plays the role of the potential
or gauge boson of the interaction whose gauge symmetry is determined by the Lie
group. The electromagnetic, weak and strong interactions can be described in this
scheme by the special unitary Lie groups U(1), SU(2) ⊗ U(1) and SU(3), respectively.

Although the successful description of electromagnetic and strong nuclear inter-
actions in the YM scheme, the weakness of the weak interaction cannot be totally
understood in this frame. Moreover, the existence of a definite energy scale given by
the Fermi constant creates the necessity of another scheme. The introduction of scalar
fields which develop a vacuum-expectation-value (VEV) with a smaller Lie group as
its symmetry brings the spontaneous breaking of the original symmetry (SSB). An
important consequence of this process is the acquisition of masses by some gauge
bosons at the energy scale of the VEV. In effect, this scheme has been proven experi-
mentally with the discoveries of the weak bosonsW±[Arn+83a] and Z[Arn+83b], but
its final and definite corroboration was the detection of the Higgs boson[Aad+12].

Because this large set of methods and physical concepts, this chapter is devoted
to do a quick review about them. The section 2.1 presents the Lie algebra associated
to the Poincaré group and the set of representations with phenomenological interest.
The section 2.2 brushes up the Yang-Mills scheme in constructing field theories with
gauge symmetries based on Lie groups. Finally, the section 2.3 reviews a general
scheme of spontaneous symmetry breaking on special unitary groups SU(N).

poincaré group and lorentz invariants

Since the researches done by Galileo and Isaac Newton, it is known that Nature has
symmetries. The homogeneity and isotropy of space described by Newton in his

7



8 theoretical background

Principia can be described by the Lie group composed by the semidirect product
of the 3D translations R3 with the special orthogonal group SO(3) whose elements
are the 3D rotations, known as the 3D Euclidean group or inhomogeneous SO(3)
group[Gil12]

ISO(3) = R3 o SO(3). (2.1)

On the other hand, the Galilean relativity principle proposes the invariance under
3D boosts or changes between inertial frames. Finally, there is the invariance under
time translations finishing with a ten-parameter group known as the Galilean group.

The current theory of space and time is the scheme proposed by Albert Einstein,
where the 3D translations is unified with the time translation as 4D translations R3,1,
while 3D boosts with 3D rotations are unified in the 4D rotations with six parameters
described by the Lorentz group SO(3,1). The resulting group is the Poincaré group
or inhomogeneous Lorentz group

ISO(3, 1) = R3,1 o SO(3, 1). (2.2)

The Poincaré group ISO(3,1) has the associated Lie algebra iso(3, 1) composed by
the four generators of translations Pµ and the six generators of rotations Lµν = −Lνµ
where µ,ν = 0, 1, 2, 3. The Poincaré algebra is[Kak93]

[Pµ,Pν] = 0,

[Jµν,Pρ] = −i (ηµρPν − ηνρPµ) ,

[Jµν, Jρσ] = −i (ηµρJνσ − ηνρJµσ + ηµσJνρ − ηνσJµρ)

(2.3)

where [ηµν] = [ηµν] = diag (+,−,−,−) is the Minkowski metric which distinguishes
between time (+) and space (−). The explicit form of the Poincaré generators de-
pends on the representation where the transformation acts, but there is an orbital
representation which involves the spacetime coordinates and their derivative opera-
tors

Pµ = i∂µ,

Lµν = i (xµ∂ν − xν∂µ) .
(2.4)

The translation generator is the same for all representations, and in the same way the
orbital representation of the rotation generators. However, Jµν can be split into its or-
bital part Lµν and its spin or intrinsic part Sµν which depends on the representation
where it acts.

The Poincaré algebra can also be expressed in terms of 3D rotation scalars and
vectors (3-vectors). The generators of 3D boosts and rotations are, respectively,

Kk = −
1

2
ε0jkJ0j, Jk =

1

2
εijkJij, (2.5)

while the translations split them in P0 time translation and Pi space translations. The
Lie algebra turns out to be[

Ji, Jj
]
= +iεijkJ

k,
[
Ki,Kj

]
= −iεijkJ

k,[
Ji,Kj

]
= +iεijkK

k,
[
Ki,Pj

]
= +iδijP0,[

Ji,Pj
]
= +iεijkK

k,
[
Ki,P0

]
= +iPi,[

Ji,P0
]
= 0,

[
Pi,P0

]
= 0.

(2.6)
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Poincaré representations

The different forms of Sµν can be obtained if the Poincaré representations are deter-
mined. They can be labeled employing the Casimir operators of the Poincaré algebra:
P2 = PµP

µ = ηµνPµPν and W2 = WµW
µ where the latter is the Pauli-Lubanski

pseudovector[Ram97]

Wµ =
1

2
εµνρσPνJρσ =

1

2
εµνρσP

νSρσ (2.7)

whose orbital part vanishes because the antisymmetric symbol εµνρσ. Their corre-
sponding eigenvalues are

P2 = m2, W2 = m2s(s+ 1) (2.8)

where m is the proper mass of the field in which the Casimir operator acts and s is
its spin. There are two phenomenologically interesting cases depending on the m2

eigenvalue:

• Massive case: When a massive field is on rest its 4-momentum or translation
operator takes the form[Ryd96]

Pµ = (m, 0, 0, 0), (2.9)

in order to obtain the correct eigenvalue equation P2 = m2. Hence, its Pauli-
Lubanski pseudovector results with the components

W0 = 0, W = −mJ, (2.10)

where J are 3-vectors which generate the little group SO(3) of 3D rotations with
algebra so(3) = su(2) (see the first commutator of (2.6)), so the fields with mass
m can be classified by its spin (0, 12 , 1, etc.).

• Massless case: If the field is massless its 4-momentum must be[Ryd96]

Pµ = (ω, 0, 0,ω), (2.11)

obtaining P2 = 0. ω represents the frequency (energy) of the massless field. In
this conditions the Pauli-Lubanski pseudovector has the components

W0 = −ωP · S, W1 = −ω
(
L1 +K2

)
,

W3 = −ωP · S, W2 = −ω
(
L2 −K1

)
.

(2.12)

Their commutators are[
W1,W2

]
= 0,[

W2,W3
]
= −iωW1,[

W3,W1
]
= −iωW2,

(2.13)

and consequently the Lie algebra of the 2D Euclidean group ISO(2) is obtained,
so it is the little group for the massless representations. The suited eigenvalue
is the helicity operator

h =
P · S
|P|

, (2.14)
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which could be ±1. Consequently, the massless representation has only two
representations labeled by positive or negative helicity.

Now, inside the massive representations there are SO(3) representations. However,
they can be studied in a better way employing the homeomorphism between the Lie
algebras so(3, 1) ∼ su(2)⊗ su(2). Moreover, since su(2) = so(3) the massive represen-
tations of the Lorentz group can be labeled by two numbers corresponding to their
spin. The phenomenologically interesting representations are[Ram97]:

• (0, 0): The null spin number in both groups leads to the interpretation of this
representation as the scalar fields. In this representation Sµν = 0. Its evolution
is determined by the Klein-Gordon equation(

�+m2
)
Ψ = 0, (2.15)

obtained by optimizing the Klein-Gordon action

SKG =

∫
1

2

(
∂µΦ∂

µΦ+m2Φ2
)
d4x, (2.16)

and its corresponding propagator in momentum space is[Mar02]

G̃KG(p) = i
1

p2 −m2 + iε
. (2.17)

• ( 1
2 , 0): The representation carries one-half spin in the first SU(2), so that, it

represents a chiral or Weyl fermion. For convention these fermions are called
left-handed. Because the presence of spin, the intrinsic generators are not zero
but Sµν = i

4
[σµ,σν] where σµ =

(
1,σ1,σ2,σ3

)
and the latter three components

are the Pauli matrices.

• (0, 1
2): Concomitantly with the left-handed representation, the one-half spin

in the second SU(2) leads to the right-handed fermions. The corresponding
intrinsic rotation generators are Sµν = i

4
[σ̃µ, σ̃ν] where the tilde σµ are σ̃µ =(

1,−σ1,−σ2,−σ3
)
.

• ( 1
2 , 0) ⊕ (0, 1

2): The direct-sum of the two previous representations yields the
Dirac or Majorana fermion Ψ = (ψL,ψR)

T, depending on its behavior under
charge conjugation. In this representation σµ and σ̃µ are joint together in the
γµ matrices

γµ =

(
0 σµ

σ̃µ 0

)
, (2.18)

and consequently Sµν = i
4
[γµ,γν]. Its motion is dictated by the Dirac equation

(iγµ∂µ −m)ψ = (i�∂−m)ψ = 0, (2.19)

obtained from the Dirac action

SDirac =

∫
ψ (iγµ∂µ −m)ψd4x, (2.20)
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where ψ = ψ†γ0 is the Dirac adjoint of ψ and its corresponding propagator in
momentum space is

G̃Dirac(p) = i
1

�p−m+ iε
= i �p+m

p2 −m2 + iε
. (2.21)

It is remarkable that chiral or Weyl fermions are massless because the mass
term mixes left- and right-handed chiralities. In the case of m = 0 the Dirac
equation and action decouples in two independent terms of ψL and ψR defined
by the parity operators

ψL =
1− γ5

2
ψ, ψR =

1+ γ5

2
ψ, (2.22)

where γ5 = iγ0γ1γ2γ3 is the chiral matrix, and the Dirac Lagrangian becomes
in the Weyl Lagrangians

SWeyl =

∫
ψL (iσ

µ∂µ)ψL d
4x+

∫
ψR (iσ̃

µ∂µ)ψR d
4x, (2.23)

• ( 1
2 , 1

2): Finally, the existence of one-half spin in both SU(2) results in the vector
representation which can be represented by two spin indices or one vector
index Aµ = (σµ)

αα̇Aαα̇. Its spin generators can be expressed by

(Sµν)
ρ
σ = i

(
δρµηνσ − δ

ρ
νηµσ

)
. (2.24)

The motion of vector fields is determined by the Maxwell-Proca equation[Gre90]

∂µF
µν +m2Aν = 0, (2.25)

obtained from the Maxwell-Proca action

SMP =

∫
ψ̄
(
FµνF

µν −m2AµA
µ
)
ψd4x, (2.26)

where Fµν = ∂µAν − ∂νAµ is the exterior derivative of Aµ. In the next section
these entities will be interpreted as the strength field tensor and the field po-
tential, respectively. Its corresponding propagator in momentum space using
the unitary gauge is

G̃
µν
MP(p) = i

−gµν + pµpν

m2

p2 −m2 + iε
. (2.27)

yang-mills fields

In the same way as Galileo, Newton and Einstein proposed relativity principles
which can be associated to Lie groups as the Galilean or Poincaré group, the re-
searches done by Faraday, Maxwell and several physicists provided the electromag-
netic theory. Among its different characteristics, it was the first special relativistic
theory, even before the relativistic mechanics, but their main trait is its invariance
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under gauges of the electromagnetic scalar and vector potentials. The Maxwell equa-
tions in their covariant fashion are[Bar64]

∂µF
µν = jν

∂µ ? Fµν = 0
(2.28)

where Fµν = ∂µAν − ∂νAµ is the strength field tensor, the exterior derivative of the
electromagnetic potential Aµ, the fundamental field in the theory; ?Fµν is the Hodge-
dual of the strength tensor; and jµ is the source of electromagnetic field, the electric
current density.

When the electromagnetic potential (from now on gauge potential or gauge field)
is shifted in the following way

Aµ → Aµ − ∂µχ (2.29)

the Maxwell equations remain unchanged. This property is called the gauge invariance
of the electromagnetic theory, the simplest example of gauge theories.

This method could be extended to more complex fields whose gauge symmetry is
described by Lie groups. Even the electromagnetic theory has its own gauge group,
the unitary transformations in one dimension U(1), the simplest unitary group. For
larger groups, the field is described by a multiplet, one of the representations of
the Lie group. Without lose of generality the vector representation can be used for
constructing the scheme. The multiplet is represented by a column vector[Mar02]

Ψ(x) =
(
ψ1(x) · · · ψN(x)

)T
, (2.30)

which transforms under a gauge transformation in the following way

Ψ(x)→ Ψ ′(x) = UΨ(x), (2.31)

where U is an element of the SU(N) gauge group labeled by N2 − 1 continuous
parameters θα. It can be written using the exponential map

U(x, θ) = exp (igθαGα) ≈ 1 − igθαGα + · · · . (2.32)

The elements Gα are N×N matrices which span the Lie algebra su(N)[
Gα, Gβ

]
= ifγαβGγ, (2.33)

which is determined by the structure constants fγαβ.
This kind of gauge transformations does not affect the derivatives of Ψ because

they are global, act in the same way at every point in spacetime. If the transformation,
however, is performed locally, i.e., when the parameters depend on the spacetime
coordinates θα = θα(x) it is mandatory to include an affine connection Aµ = AαµGα
in order to keep the invariance of the derivative of Ψ. In this way it is obtained the
covariant derivative of the gauge group[PS95]

DµΨ = ∂µΨ− igAµΨ = ∂µΨ− igAαµGαΨ, (2.34)
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where the affine connection, also called the gauge potential, transforms in such a
way that it absorbs the derivatives of the group parameters

Aαµ → Aαµ +
1

g
∂µθ

α + fαβγA
βθγ. (2.35)

The affine connection (gauge potential) also has its associated curvature tensor or
strength field tensor, which is obtained trough the self-commutator of the covariant
derivative

[Dµ,Dν] = −igFµνΨ = −igFαµνGαΨ,

Fαµν = ∂µA
α
ν − ∂νA

α
µ + gfαβγA

β
µA

γ
ν.

(2.36)

This field could also be interpreted as the covariant exterior derivative of the affine
connection. Fαµν contains the electric-like and magnetic-like fields in analogy to elec-
trodynamics, but in this case there are N2− 1 fields for each kind. Moreover, in order
to give its own dynamics to the gauge potentials, Fαµν is suited for constructing its
corresponding kinetic term. In this way, the gauge field Lagrangian is

LYM = Tr (FµνFµν) . (2.37)

The interaction term depends on the Lorentz representation in which Ψ belongs.
If Ψ is a Lorentz scalar field Φ, its coupling with the gauge fields is introduced by
replacing each one of the coordinate derivatives ∂µ by its gauge covariant version
Dµ obtaining

LKG,YM =
1

2
DµΦ

†DµΦ+
m2

2
Φ2 =

1

2
∂µΦ

†∂µΦ+
m2

2
Φ2

+
ig

2

(
Φ†
←→
∂ µGαΦ

)
Aαµ +

g2

2
Φ†AµAµΦ,

(2.38)

where A
←→
∂ µB = A(∂µB) − (∂µA)B, but if Ψ is a Dirac field, the new Dirac covariant

Lagrangian is

LDirac,YM = Ψ̄ (iγµDµ −m)Ψ = Ψ̄ (iγµ∂µ −m)Ψ+ gΨ̄γµGαΨAαµ . (2.39)

In this way, the total covariant Lagrangian can be expressed in terms of the gauge
kinetic term, the free KG and Dirac Lagrangians and the interaction terms JµαAαµ
where Jµα are the gauge current densities, sources of the gauge fields. It receives
contributions from scalar and fermion fields

Jµα =
ig

2

(
Φ†
←→
∂ µGαΦ

)
+ gΨ̄γµGαΨ. (2.40)

Note that although any mass term quadratic in Aµ is forbidden because it breaks
the gauge symmetry, the covariant scalar Lagrangian contains a quadratic term and
so the gauge field acquires an effective mass depending on the magnitude of the
scalar field. The consequences of this term when the scalar field does not vanishes in
spacetime are reviewed in the next section.
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spontaneous symmetry breaking

The previous two sections were devoted for reviewing Poincaré and gauge symme-
tries, as well as some of their physical consequences as the spin classification of the
fields and the existence of gauge fields spanning on the Lie algebra of the local inter-
nal symmetries. Nevertheless, the weakness of the weak nuclear interaction and the
existence of a characteristic energy scale in the Fermi constant

√
2GF = (246GeV)−2

suggest that there is an additional mechanism besides the symmetries: the symmetry
breaking.

There are different examples of symmetry breaking in Physics. One of the most
important is superconductivity[PS95]. Above the critical temperature Tc the electrons
inside the material have the gauge symmetry U(1) of the electromagnetic interaction,
but below Tc the electrons reconfigure into Cooper pairs described by a scalar field
φ which develop a background non-zero vacuum energy 〈φ〉0 6= 0 bringing the
consequence of the emergence of a non-vanishing photon mass because the U(1)
symmetry breaking inside the material. In effect, this scheme is adequate to describe
how some gauge symmetry reduces to a smaller one.

General scheme of SSB

The general treatment with non-abelian groups is done as follows. The physical
system is constituted by Φ(x) = [φa(x)], a multiplet of N scalar bosons lying in
the vector representation of the gauge group and the associated gauge fields Aαµ .
Their Lagrangian is

L = −
1

4
FαµνF

µν
α +

1

2
(DµΦ)† (DµΦ) − V(Φ†Φ), (2.41)

where DµΦ = ∂µΦ− igAαµGαΦ and V(Φ†Φ) is the Higgs potential[Mar02]

V(Φ†Φ) = µ2Φ†Φ+
λ

2

(
Φ†Φ

)2
, (2.42)

in which λ > 0 in order to keep the potential bounded from below. These parameters
determine some scalar field configurations Φ0 at which the potential is minimized.

The optimized field configurations can be calculated by differentiating the Higgs
potential respect to Φ† = [φa] (Φ†Φ = φaφ

a)

∂V

∂φa
= µ2φa + λ

(
Φ†Φ

)
φa = 0. (2.43)

This equation has two solutions depending on the sign of µ2:〈
Φ†Φ

〉
0
= 0 , µ2 > 0,〈

Φ†Φ
〉
0
= −

µ2

λ
, µ2 < 0.

(2.44)

The latter corresponds to a field configuration with non-vanishing VEV 〈Φ〉0 = Φ0.
However, only one of these infinite configurations can be chosen, triggering the SSB
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mechanism. Meanwhile, the scalar field is redefined to describe field excitations over
VEV

Φ(x)→ Φ(x) +Φ0, (2.45)

where the new Φ(x) has no VEV and acts as small oscillations about Φ0. Conse-
quently, the Lagrangian becomes

L = −
1

4
FαµνF

µν
α − V(Φ†Φ) +

1

2
(∂µΦ)† (∂µΦ)

+
ig

2

(
Φ†Gα

↔
∂µΦ

)
Aαµ +

ig

2
Φ
†
0GαAαµ∂

µΦ

+
g2

2

(
Φ†GαGβΦ0 +Φ

†
0GαGβΦ

)
AαµA

βµ

−
ig

2
∂µΦ

†AαµGαΦ0 +
g2

2
Φ
†
0GαGβΦ0AαµA

βµ.

(2.46)

When the VEV is activated, the last term of the Lagrangian corresponds to an
effective mass term associated to gauge fields

M2
αβ =

g2

2
Φ
†
0GαGβΦ0, (2.47)

which has vanishing and non-vanishing eigenvalues determining the new vector
mass spectrum. If the vacuum does not remain invariant under the action of some
generator, it is said that is a broken generator, and there will be a massless Golstone
boson with an associated massive gauge boson. On the contrary, if the vacuum re-
mains invariant, it is said that is a non-broken generator, and there will be a massive
Higgs boson with a massless gauge boson.

• Broken generator:

(Gα)
a
b (Φ0)

b 6= 0 → mΦa = 0 , mAα 6= 0 (2.48)

• Non-broken generator:

(Gα)
a
b (Φ0)

b = 0 → mΦa 6= 0 , mAα = 0 (2.49)

Finally, the number of broken generators fix the number of new massive gauge fields
and Goldstone bosons[Gol61; GSW62], and from the original number of generators is
fixed the number of Higgs bosons and massless gauge fields which span the remnant
symmetry.

Goldstone theorem

The last procedure associated to SSB scheme is to obtain the mass matrix for scalar
fields, which is done employing the Goldstone theorem. It begins expanding the Higgs
potential up to second order in the scalar fields[Mar02]

V(Φ) = V(Φ0) +
1

2

(
∂2V

∂φa∂φb

)
Φ0

(φa −φa0 )(φ
b −φb0 ) + · · · (2.50)
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where the second term is interpreted as the effective mass matrix:

M2
ab =

(
∂2V

∂φa∂φb

)
Φ0

(2.51)

whose diagonal elements are not negative because prior minimizing potential.
To evaluate how each group generator acts on the VEV, the scalar fields are phase-

shifted under the gauge group

φa → φa + δφa, (2.52)

where

δφa =
∂φa

∂θα
δθα = iδθα

(
(Gα)

a
bφ

b
)

, (2.53)

which results in some variation on the potential

V(Φ)→ V (Φ) + δV (Φ) (2.54)

δV (Φ) =
∂V

∂φa
δφa = iδθα

∂V

∂φa

(
(Gα)

a
bφ

b
)

(2.55)

Now, differentiating δV respect to φc

∂

∂φc
δV = δθα

∂V

∂φa
∂

∂φc

(
(Gα)

a
bφ

b
)

+ δθα
∂2V

∂φa∂φc

(
(Gα)

a
bφ

b
) (2.56)

and setting Φ = Φ0 the optimized potential gives

0 =

(
∂2V

∂φa∂φc

)
Φ0

(
(Gα)

a
bφ

b
0

)
=M2

ac

(
(Gα)

a
bφ

b
0

)
(2.57)

This condition gives two different options. In the one hand, if the generator anni-
hilates the VEV, its symmetry remains intact and the scalar field φb acquires mass
becoming into a Higgs boson. On the other hand, if the generator is broken, the scalar
field φb remains massless as a Goldstone boson and the unbroken generators span
a new smaller symmetry from the remnant gauge group with the massless gauge
bosons.

Fermion masses

The SSB is not only useful for explaining the gauge boson masses, but also the fer-
mion masses. The Weyl Lagrangian

LWeyl = ψL�∂ψL +ψR�∂ψR, (2.58)

describe massless fermions with definite helicity, i.e., the left- and right-handed com-
ponents evolve independently. In the case of massive fermions, the Weyl Lagrangian
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includes the Lorentz invariant bilinear forms ψLψR and ψRψL such that there appear
mass terms

ψL�∂ψL +ψR�∂ψR −m(ψLψR + h.c.). (2.59)

In effect, the mass term couples fermions of different chiralities. However, chiral
gauge theories (as SM) which describes different interactions between left- and right-
handed fermions does not admit this term because it explicitly breaks the gauge
symmetry.

In order to solve this drawback, instead of adding explicit mass terms, the La-
grangian contains interaction terms between fermions and scalar bosons, known as
Yukawa couplings which are weighted by the Yukawa coupling constant h

LWeyl = ψL�∂ψL +ψR�∂ψR − h(ψLΦψR + h.c.). (2.60)

This interaction term shows that the emission of a scalar boson switches the chirality
of the fermion. Moreover, if the scalar field Φ acquires a non-vanishing VEV the last
term will behave like an effective mass term

LWeyl = ψL�∂ψL +ψR�∂ψR − hψLΦψR −mψLψR + h.c., (2.61)

where m = hΦ0 is the mass term associated with the Dirac spinor Ψ = (ψR,ψL)T.
Hence, the SSB of gauge chiral symmetries also implies the acquisition of masses by
the former chiral fermions.

In this way, the synthesis of spacetime symmetries described by the Poincaré
group, the internal symmetries and the Yang-Mills scheme, as well as the sponta-
neous symmetry breaking mechanism constitute the framework for constructing the-
ories about the microscopical nature of matter. The next chapter presents a quick re-
view of the SM as a phenomenological application of the physical principles brushed
up in the present chapter.





3
S TA N D A R D M O D E L O F PA RT I C L E P H Y S I C S

Along the development of science there were different theories about matter and
its interactions, which have been improved with each one of new experimental dis-
coveries or theoretical frameworks as the first detection of subatomic particles or
the formulation of the theory of relativity or the quantum mechanics. Every one of
these progresses and discoveries are condensed in the Standard Model of Particle
Physics[Gla61; Sal67; Wei67] (SM), the current theory of matter. A huge number of
its predictions have been corroborated experimentally, from the extremely precise
prediction of the gyromagnetic factor of the electron until the detection of the Higgs
boson in 2012[Aad+12].

Although there are natural phenomena which cannot be framed in the SM without
important modifications or unpleasant fine-tuning of the parameters of the model,
it still is the current paradigm for understanding fundamental interactions and par-
ticles. For this reason, this chapter is devoted to review the main aspects of the SM.
First, the section 3.1 describes the gauge structure of the SM and proposes the funda-
mental features to classify the particle content. Second, the Glashow-Salam-Weinberg
electroweak theory is reviewed employing the concepts of Yang-Mills fields and SSM
in the section 3.2. Finally, it is presented the low-energy limit of the SM, correspond-
ing to the Fermi model for weak interactions in the section 3.3.

sm gauge symmetries

The SM fundamental gauge group GSM is constituted by the direct product of three
special unitary groups, each one associated to a fundamental force

GSM = SU(3)C ⊗ SU(2)L ⊗U(1)Y . (3.1)

The first group SU(3)C comprises the strong interaction phenomena whose gauge
bosons are the eight gluons Gµ. This group gives the first benchmark to classify
SM particles. Fermions which interact strongly are called quarks q, belonging to the
vector 3C representation of SU(3)C and so existing in three different species or colors.
On the other hand, fermions which do not interact strongly are leptons `, belonging
to the singlet 1C representation and so blind to gluons. Moreover, the number of
quarks or leptons is a conserved quantity; there is the baryon number which assigns
1/3 for each quarks (and −1/3 for antiquarks), and the lepton number which assigns
+1 for each lepton (and −1 for antileptons).

The second group SU(2)L describes the weak isospin gauge symmetry, useful for
describing β−decays and in conjunction with the last weak hypercharge group U(1)Y
constitutes the electroweak gauge group SU(2)L ⊗U(1)Y . Its gauge bosons are Wµ =

Wα
µTαL and Bµ, respectively, where TαL for α = 1, 2, 3 are the three generators of

SU(2)L.

19
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The L subscript of the weak isospin group points out that Wµ interact only with
left-handed fermions. In this way, every left-handed fermion lies in an isospin dou-
blet 2L representation of SU(2)L while right-handed fermions are singlets 1L, en-
suring the parity violation of weak interactions. On the other hand, both left- and
right-handed fermions have weak hypercharges in such a way that their electromag-
netic charges are obtained with the Gell-Mann - Nishijima relation

Q = T3L + Y (3.2)

where T3L = diag (1/2,−1/2) is the diagonal generator of the isospin group, i.e., it
acts only on left-handed fermion doublets. As a consequence, the weak hypercharges
of right-handed fermions are equal to their electric charges.

The last feature of a fermion which also determines its name is its electric charge.
The up quark u has +2/3 and the down quark d has −1/3, while the electron has −1

and the neutrino has 0. These features are summarized in table 3.1.

SU(3)C SU(2)L T3L Y Q

uL 3C 2L +1/2 +1/6 +2/3

dL 3C 2L −1/2 +1/6 −1/3

uR 3C 1L 0 +2/3 +2/3

dR 3C 1L 0 −1/3 −1/3

νL 1C 2L +1/2 −1/2 0

eL 1C 2L −1/2 −1/2 −1

eR 1C 1L 0 −1 −1

Table 3.1: Representations and electroweak charges of SM-fermions.

Moreover, this set of fermions is duplicated twice, resulting with three copies of
fermions with the same charges. These sets are called families or generations which
will be studied in detail in chapter 4.

electroweak theory : glashow-salam-weinberg

The electroweak sector of SM can be described by the following Lagrangian

LEW = LGauge +LFermion +LHiggs +LYukawa (3.3)

which has been divided in four different terms useful for their analysis. It is im-
portant to note that LFermion and LYukawa have baryon and lepton sectors because
SM does not mix quarks and leptons. Each one of these Lagrangians are reviewed
in the following subsections except LYukawa which is reviewed in the chapter 4. It
is important to note that because the gauge symmetry, the normal derivative have
to be replaced by the covariant derivative. For weak isospin doublets the covariant
derivative is

Dµ = ∂µ − igWµ − ig ′YBµ, (3.4)

and for singlets Dµ = ∂µ − ig ′YBµ. g and g ′ are the dimensionless coupling con-
stants for weak isospin and hypercharge interactions, respectively.
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Electroweak SSB

The origin of the electromagnetic interaction and the weakness of the weak inter-
actions are described by the Higgs Mechanism applied to the electroweak group
SU(2)L ⊗ U(1)Y . This procedure is done by introducing an isospin scalar doublet
hypercharged once Y = +1

Φ =

(
φ+

φ0

)
, (3.5)

whose superscripts indicate the electric charges of the components. Its dynamics is
described by the Higgs Lagrangian

LHiggs =
1

2
(DµΦ)† (DµΦ) − V(Φ†Φ), (3.6)

where the Higgs potential is

V(Φ†Φ) = µ2Φ†Φ+ λ
(
Φ†Φ

)2
. (3.7)

The electroweak SSB follows the same procedure shown in subsection 2.3.1. Thus,
evaluating the Higgs Lagrangian at the vacuum expectation value (VEV) when µ2 <
0 the gauge boson mass terms are obtained

LVEV
Higgs =

g2

2
Φ
†
0W†µWµΦ0 +

gg ′

2
Φ
†
0W†µB

µΦ0

+
gg ′

2
Φ
†
0BµWµΦ0 +

g ′2

2
BµB

µΦ
†
0Φ0.

(3.8)

On the other hand, the structure of the VEV is chosen in such a way that it would
be electrically neutral, i.e., QΦ0 = (T3L + Y)Φ0 = 0. Hence, T1L, T2L and T3L −

Y become broken generators and their corresponding gauge bosons acquire mass.
Consequently, the Higgs field can be expressed as

Φ =

 φ+

h+v+iη√
2

 , (3.9)

where v2 = −µ2/λ, and the expanded mass terms are

LVEV
Higgs =

g2v2

8
W+†

µW
+µ +

g2v2

8
W−†

µW
−µ +

g2v2

8
W3
µW

3µ

+
gg ′v2

8
W3
µB
µ +

gg ′v2

8
BµW

3µ +
g ′2v2

8
BµB

µ.

(3.10)

The first two terms are the W±µ mass terms, and the other describe the mixing
between Bµ and W3

µ which can be condensed in the following matrix

v2

8

(
Bµ W3

µ

)( g2 −gg ′

−gg ′ g ′2

)(
Bµ

W3µ

)
. (3.11)
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The mass matrix is diagonalized by the following rotation on the plane (Bµ,W3
µ)(

Bµ

W3
µ

)
=

(
cW −sW

sW cW

)(
Aµ

Zµ

)
(3.12)

where tW = g ′/g defines the Weinberg angle. It yields the massive Zµ and the
massless Aµ identified with the photon. In this way, the gauge bosons acquire masses

LVEV
Higgs = m

2
WW

+†
µW

−µ +
1

2
m2ZZµZ

µ +
1

2
m2AAµA

µ. (3.13)

where mW = gv/2, mZ = gv/2cW = mW/cW and mA = 0.
As a final procedure, according to the Goldstone theorem, reviewed in subsection

2.3.2, the existence of three massive and one massless gauge bosons implies the
existence of three massless and one massive scalar fields. These are obtained by
calculating the Hessian matrix for the minimized Higgs potential:

m2φ± =

(
∂2V

∂φ+∂φ−

)
Φ0

= 0,

m2η =

(
∂2V

∂2η

)
Φ0

= 0,
(3.14)

the scalar charged bosons φ± and the pseudoscalar η remains massless and get eaten
by W±± and Zµ, respectively. On the opposite, the even scalar boson acquires mass

m2h =

(
∂2V

∂2h

)
Φ0

= −µ2 = λv2. (3.15)

This is identified with the 125 GeV scalar boson discovered in 2012.

Fermion Lagrangian

The interactions between fermions and gauge bosons can be obtained from the Weyl
Lagrangian for chiral femions

LFermion = i`L��D`L + ieR��DeR + iqL��DqL + iuR��DuR + idR��DdR, (3.16)

where the minimal coupling has been applied with the covariant derivatives. By
expanding the kinetic and interactions terms the Lagrangian is

LFermion = iqL�∂qL + iuR�∂uR + idR�∂dR + i`L�∂`L + ieR�∂eR

+ gqL��WqL +
g ′

6
qL�BqL +

2

3
g ′uR�BuR −

g ′

3
dR�BdR

+ g`L��W`L −
g ′

2
`L�B`L − g

′eR�BeR,

(3.17)
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where the interaction terms of the doublets can be expressed in terms of the gauge
bosons W±µ = (W1

µ ∓ iW2
µ)/
√
2. The interaction terms for the quark sector are

qL��WqL +
g ′

6
qL�BqL

=
1

2
uL

(
g��W

3 +
g ′

3
�B

)
uL +

g√
2
uL��W

+dL

+
g√
2
dL��W

−uL −
1

2
dL

(
g��W

3 −
g ′

3
�B

)
dL,

(3.18)

and for leptons

`L��W`L −
g ′

2
`L�B`L

=
1

2
νL
(
g��W

3 − g ′�B
)
νL +

g√
2
νL��W

+eL

+
g√
2
eL��W

−νL −
1

2
eL
(
g��W

3 + g ′�B
)
eL.

(3.19)

Since the electroweak interaction contains the electromagnetic force, it is possible
to obtain it with the rotation shown in eq. (3.12) and by defining e = gsW = g ′cW , the
electromagnetic coupling constant. Replacing it into the fermion Lagrangian yields

LFermion = iqL�∂qL + iuR�∂uR + idR�∂dR + i`L�∂`L + ieR�∂eR

−
g

cW
J
µ
NC,ZZµ − eJµNC,AAµ −

g√
2
J
µ
CC,WW

+
µ −

g√
2
J
†µ
CC,WW

−
µ ,

(3.20)

where the corresponding interaction currents are

J
µ
NC,Z =

(
1

2
− 0s2W

)
νLγ

µνL

−

(
1

2
− 1s2W

)
eLγ

µeL − eRγ
µeR

+

(
1

2
+
2

3
s2W

)
uLγ

µuL +
2

3
s2WuRγ

µuR

−

(
1

2
−
1

3
s2W

)
dLγ

µdL −
1

3
s2WdRγ

µdR,

J
µ
NC,A =

2

3
uLγ

µuL −
1

3
dLγ

µdL − eLγ
µeL

+
2

3
uRγ

µuR −
1

3
dRγ

µdR − eRγ
µeR,

J
µ
CC,W = νLγ

µeL + uLγ
µdL.

(3.21)

J
µ
NC,Z and J

µ
NC,A are the neutral currents which conserve fermion electric charges,

while JµCC,W is the charged current where the interchange of electric charges happens
due to W±µ . It is important to say that the electric charges are obtained using the
Gell-Mann - Nishijima relation.
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Gauge Lagrangian

The dynamics of the gauge bosons is described by the YM scheme. In this way, the
gauge Lagrangian is

LGauge = −
1

4
Tr (WµνWµν) −

1

4
BµνBµν (3.22)

where Wµν and Bµν are the strength-field tensors for weak isospin and hypercharge
potentials

Wµν = ∂µWν − ∂νWµ − gWµ ×Wν

Bµν = ∂µBν − ∂νBµ.
(3.23)

After the substitution of the physical gauge bosons obtained from eq. (3.12) the
resulting gauge Lagrangian is

LGauge = −
1

2
W+µνW−

µν −
1

4
FµνFµν −

1

4
ZµνZµν

+LWW +LAWW +LZWW +LAZWW

(3.24)

where the new kinetic terms are

W±µν = ∂µW
±
ν − ∂νW

±
µ ,

Fµν = ∂µAν − ∂νAµ,

Zµν = ∂µZν − ∂νZµ,

(3.25)

and the interactions among them are

LWW = −
g2

2

{
W+µW−µW+νW−ν −W+µW+µW−νW−ν

}
,

LAWW = ie
{
∂µAν

(
W+µW−ν −W−µW+ν

)
+ Aµ

(
W+
ν ∂
µW−ν −W−

ν ∂
µW+ν

)
+ Aµ

(
W+
ν ∂
νW−µ −W−

ν ∂
νW+µ

)}
,

LZWW = igcW
{
∂µZν

(
W+µW−ν −W−µW+ν

)
+ Zµ

(
W+
ν ∂
µW−ν −W−

ν ∂
µW+ν

)
+ Zµ

(
W+
ν ∂
νW−µ −W−

ν ∂
νW+µ

)}
,

LAZWW = −W+
µW

−
ν

{
g2c2WZ

µZν + egcW (ZµAν +AµZν) + e2AµAν
}

−W+
µW

−µ
{
g2c2WZνZ

ν + egcW (ZνA
ν +AνZ

ν) + e2AνA
ν
}

.

(3.26)

low-energy limit : fermi theory of β-decay

The weakness of the weak nuclear force may be understood from the fact that its
gauge bosons W±µ and Zµ had acquired masses because the electroweak VEV. Their
propagators in the unitary gauge are (subsec. 2.1.1)

G̃Wµν(p) = i
−gµν + pµpν

m2
W

p2 −m2W + iε
, G̃Zµν(p) = i

−gµν + pµpν

m2
Z

p2 −m2Z + iε
, (3.27)
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Boson Spin P Q Mass (GeV) Width (GeV) Feature

φ± 0 + ±1 0 0 Goldstone

h 0 + 0 125 .09 ± 0 .24 < 1 .7 Higgs

η 0 − 0 0 0 Goldstone

Aµ 1 − 0 < 10−27 0 Photon U(1)Q

W±µ 1 − ±1 80 .385 ± 0 .015 2 .085 ± 0 .042 Weak CC

Zµ 1 + 0 91 .1876 ± 0 .0021 2 .4952 ± 0 .0023 Weak NC

Gµ 1 − 0 0 0 Gluons SU(3)C

Table 3.2: SM scalar and vector boson data[PG+16].

where the gauge boson masses are reported in table 3.2.
However, since there are other particles whose masses lie far below the gauge

boson masses but are not the lightest masses, e.g., d quark, the associated momenta
p2 of the process are small compared to m2W or m2Z, allowing approximate the
propagators by

lim
p�mW

G̃Wµν(p) = i
gµν

m2W
, lim

p�mZ

G̃Zµν(p) = i
gµν

m2Z
, (3.28)

and the SM fermion Lagrangian in eq. (3.20) becomes a current-current interaction
Lagrangian

LFermion = iqL�∂qL + iuR�∂uR + idR�∂dR + i`L�∂`L + ieR�∂eR

− eJµNC,AAµ −
g2

8c2Wm
2
Z

J
†µ
NC,ZJNC,Zµ −

g2

8m2W
J
†µ
CC,WJCC,Wµ.

(3.29)

Such interaction terms were considered in Fermi theory of β-decay whose interac-
tion term is[GK07; Gri87]

Leff = −
GF√
2
J
†µ
CC,WJCC,Wµ. (3.30)

which can be compared to eq. (3.29) and so finding the correspondence of Fermi
constant in terms of SM parameters

GF√
2
=

g2

8c2Wm
2
Z

=
g2

8m2W
=

1

2v2
. (3.31)

It is remarkable that the Fermi constant is proportional to the electroweak VEV, but
also that GF does not depend on g and mW . Moreover, since mW = mZcW , the
effective four-fermion coupling constant for NC is indeed the Fermi constant again

Consequently, for processes whose energies lies below electroweak energy scale,
the effective low-energy SM fermion Lagrangian is

LFermion = iqL�∂qL + iuR�∂uR + idR�∂dR + i`L�∂`L + ieR�∂eR

− eJµNC,AAµ −
GF√
2
J
†µ
NC,ZJNC,Zµ −

GF√
2
J
†µ
CC,WJCC,Wµ.

(3.32)
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Constant Q2 = 0 Q2 ≈ m2Z
α 1/137.035 999 139(31) 1/128

GF/( hc)
2 1.166 378 7(6)× 10−5GeV−2

αS > 1 0.1182(12)

s2W 0.23155(5) 0.231 29(5)

Table 3.3: SM fundamental constants at low-energy and GeV scales[PG+16].

The measured value of the Fermi constant is (tab. 3.3)[PG+16]

GF = 1.1663787(6)× 10−5GeV, (3.33)

implying in such a way that the value of the electroweak VEV is

v ≈ 246GeV. (3.34)

Moreover, by replacing mW and GF in eq. (3.31) and solving for g, the electroweak
isospin coupling constant. Its found value is

g ≈ 0.66, (3.35)

and defining the isospin fine structure constant

αg =
g2

4π
≈ 1

29
, (3.36)

the remarkable result that the weak interaction is actually stronger than the elec-
tromagnetic ones appears. This conclusion shows how the weakness of the weak
interaction is due to the large masses of W±µ and Zµ masses, but not to a small
coupling constant.

It is worth mentioning that, for BSM extensions involving new gauge bosons like
Z ′µ or W3±

µ obtained from U(1) or SU(3)L gauge groups, new interactions are in-
cluded involving SM but also non-SM fields not discovered yet. Although these
gauge bosons have not been observed since they are more massive than experimental
energies achieved, their effects could be detected in a similar way than β-decays at
the beginning of 20th century, and so they can be studied using Fermi-like theories
involving the new SSB energy scale.

Summarizing the present chapter, the SM were briefly presented. The particle con-
tent and the different parts of the SM Lagrangian were reviewed with exception
of the Yukawa Lagrangian introduced in chapter 4. The Higgs Lagrangian yields
the electroweak SSB with the emergence of a non-vanishing VEV and consequently
the majority of particles in the model acquire mass. The fermion Lagrangian was
presented before and after SSB and the charged and neutral currents were defined.
The gauge Lagrangian contains all the possible interactions among gauge bosons,
and again it was presented before and after SSB. Finally, the low-energy limit was
brushed up arriving at the Fermi theory. The next chapter finishes the review of
general framework in part i presenting the fermion mass acquisition and the family
mixing.



4
M A S S M AT R I C E S A N D FA M I LY M I X I N G

One of the best predictions of the SM, but in some way one of its greatest prob-
lems comprises the mass acquisition of chiral fermions. From the fact that the Weyl
Lagrangians describe massless chiral fermions (subsec. 2.1.1) and the SM is a chi-
ral gauge theory whose left- and right-handed fermions transform under different
representations of GSM in eq. (3.1), explicit fermion mass terms are forbidden and
should be generated, for example, spontaneously.

This achievement was done by the SM with the electroweak SSB and Yukawa cou-
plings among fermions and the Higgs doublet. These couplings mix both chiralities
and require a very special order on its components. Since the Higgs field is described
by an electroweak isospin doublet 2L, in order to ensure SU(2)L gauge invariance it
have to be contracted with the conjugate 2L of the left-handed fermions qL or `L. The
invariance under the hypercharge gauge group U(1)Y is accomplished by adding up
an isospin singlet 1L in such a way that −YL + YΦ + YR = 0.

The SM fermion and scalar sectors have the suited charges for carrying out this
program in the SM Yukawa Lagrangian

−LYukawa = huqLΦ̃uR + h
dqLΦdR + h

e`LΦeR + h.c., (4.1)

where Φ̃ = iσ2Φ
∗

Φ̃ =

h+v−iη√
2

−φ−

 , (4.2)

and hu, hd and he are the Yukawa coupling constants between the Higgs scalar and
the SM fermions. It is important to remark the lack of the right-handed species for
neutrinos, and consequently the absence of neutrino Yukawa coupling in the SM.

The acquisition of masses is done by the electroweak VEV. By evaluating the
Yukawa Lagrangian at the vacuum state it becomes

−LVEV
Yukawa =

huv√
2
uLuR +

hdv√
2
dLdR +

hev√
2
eLeR + h.c., (4.3)

where Dirac mass terms had appeared by mixing left- and right-handed chiralities.
This procedure yields the acquisition of masses by three of the four SM fermions

mu =
huv√
2

, md =
hdv√
2

, me =
hev√
2

. (4.4)

Moreover, if the Higgs boson h is included the remarkable conclusion that fer-
mions couple to Higgs boson proportionally to their masses appears (h.c. terms have
been summed up f = fL + fR)

−LYukawa =muuu+mddd+meee

+
mu

v
huu+

md
v
hdd+

me

v
hee.

(4.5)

27
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sm families

The SM classifies the different fermions observed in Nature between quarks and
leptons, but the fermionic spectrum is not composed only by one up quark, one
down quark, one electron and one neutrino. Indeed, the SM proposes this spectrum
is repeated thrice in Nature constituting the three families or generations of the SM
which are shown in table 4.1.

First family Second family Third family

q1L =

(
u1

d1

)
L

q2L =

(
u2

d2

)
L

q3L =

(
u3

d3

)
L

u1R u2R u3R

d1R d2R d3R

`eL =

(
νe

ee

)
L

`
µ
L =

(
νµ

eµ

)
L

`τL =

(
ντ

eτ

)
L

eeR e
µ
R eτR

Table 4.1: SM-fermion flavor families.

Nowadays, the main difference among families are their mass scales: masses of
the first family lies at units of MeV, the second at hundreds of MeV and the third at
units of GeV (table 4.2). The origin of this hierarchy and also why fermions acquire
these masses are not well understood yet, but they could give some hints about the
physics beyond the SM, specially neutrino oscillation data which are consistent with
massive neutrinos with so light masses.

Notice the different symbols employed in both tables. Actually, the fermions listed
in table 4.1 do not have definite masses because they are superpositions of the fer-
mions listed in the table 4.2. This fact is reviewed in the next section in the context
of mass and mixing matrices.

mass matrices

The SM Yukawa Lagrangian shown at the beginning of this chapter in eq. (4.1) does
not correspond to the observed phenomenology because the existence of three gen-
erations. Thus, the complete Yukawa Lagrangian has to contain the three types of
fermions. Additionally, the right-handed counterpart of neutrinos has been included
for completeness of the mass acquisition of fermions.

The three-family Yukawa Lagrangian can be expressed by

−LYukawa = q ′LΦ̃H
uu ′R +q

′
LΦH

dd ′R + ` ′L Φ̃H
νν ′R + `

′
LΦH

ee ′R + h.c., (4.6)

where the bold spinors are strings in the family space. In the flavor basis the isospin
doublets are

q ′L =

q
1
L

q2L

q3L

 , ` ′L =

`
e
L

`
µ
L

`τL

 , (4.7)
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Family Particle Mass

1

u

d

e

2.2+0.6
−0.4 MeV

4.7+0.5
−0.4 MeV

0.511 MeV

2

c

s

µ

1.27± 0.03 GeV

96+8−4 MeV

105.7 MeV

3

t

b

τ

173.21± 0.71 GeV

4.18+0.04
0.03 GeV

1.776 GeV

Table 4.2: SM-fermion masses. The masses of the charged leptons are determined further the
fourth decimal position [PG+16].

and also the isospin singlets are

u ′R =

u
1
R

u2R

u3R

 , d ′R =

d
1
R

d2R

d3R

 , ν ′R =

ν
e
R

ν
µ
R

ντR

 , e ′R =

e
e
R

e
µ
R

eτR

 . (4.8)

In the same way, the new Yukawa couplings Hu, Hd, Hν and He are matrices in the
family space which connect fermions across the three families.

Again, by evaluating the Yukawa Lagrangian at the electroweak VEV the mass
matrices are obtained

−LYukawa = u ′LM
u ′u ′R +d

′
LM

d ′d ′R

+ ν ′LM
ν ′ν ′R + e

′
LM

e ′e ′R + h.c.,
(4.9)

which have to be diagonalized in order to obtain the translation, physical or mass
eigenstates given by

u =

uc
t

 , d =

ds
b

 , ν =

ν
1

ν2

ν3

 , e =

eµ
τ

 . (4.10)

The corresponding mass matrices obtained from the electroweak SSB are

Mu = diag
(
mu,mc,mt

)
, Md = diag

(
md,ms,mb

)
,

Mν = diag
(
m1,m2,m3

)
, Me = diag

(
me,mµ,mτ

)
.

(4.11)
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Since the mass matrices are not necessary symmetric, they have to be diagonalized
by a biunitary transformation in the following way

u ′L = VUL uL, u ′R = VUR uR, Mu = VU†L Mu ′VUR ,

d ′L = VDL dL, d ′R = VDR dR, Md = VD†L Md ′VDR ,

ν ′L = VνLνL, ν ′R = VνRνR, Mν = Vν†L M
ν ′VνR ,

e ′L = VELeL, e ′R = VEReR, Me = VE†L M
e ′VER .

(4.12)

The new states u, d, ν and e are the physical states of the SM fermions, and
consequently they have to be substituted in LFermion shown in eq. (3.20). The most
important consequences of these replacements are studied in the next section.

flavor-changing-currents

The unitary transformations proposed in eq. (4.12) yield flavor mixing. Their off-
diagonal elements induce transitions across families in such a way that the mass
eigenstates turn out to be linear combinations or superpositions of the three fermion
families. These transitions trigger radioactive decay chains of massive leptons or
hadrons into the first and also lightest family, e.g., the charmed and strange hadrons
decays. These processes are predicted when the mixing matrices (which actually
have diagonalized the mass matrices) are replaced into the fermionic currents in eq.
(3.21).

Neutral currents

When physical fermion states are replaced in the neutral current, it remains invariant,

J
µ
NC,Z =

(
1

2
− 0s2W

)
νLV

ν†
L γ

µVνLνL

−

(
1

2
− 1s2W

)
eLV

E†
L γ

µVELeL − eRV
E†
R γ

µVEReR

+

(
1

2
+
2

3
s2W

)
uLV

U†
L γµVUL uL +

2

3
s2WuRV

U†
R γµVUR uR

−

(
1

2
−
1

3
s2W

)
dLV

D†
L γµVDL dL −

1

3
s2WdRV

D†
R γµVDR dR,

(4.13)

J
µ
NC,A =

2

3
uLV

U†
L γµVUL uL −

1

3
dLV

D†
L γµVDL dL − eLV

E†
L γ

µVELeL

+
2

3
uRV

U†
R γµVUR uR −

1

3
dRV

D†
R γµVDR dR − eRV

E†
R γ

µVEReR.
(4.14)

It is observed how mixing matrices cancel out because their unitarity V†V = 1 in both
neutral currents. This result is known as the Glashow-Iliopoulos-Maiani (GIM) mech-
anism[GIM70] which ensures the absence, or at least suppression of flavor changes
by emitting Z bosons or trough electromagnetic interactions called flavor-changing-
neutral-currents (FCNC). It is worth mentioning this procedure requires the existence
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of left-handed doublets in each family, and at that moment it implied the prediction
of c quark. Until now there are no observed events consistent with FCNC, and so any
BSM scheme should predict them so suppressed to be consistent with experiments.

Charged currents

On the other hand, the charged current does change when physical fermion states
are replaced in it

J
µ
CC,W = uLV

U†
L γµVDL dL + νLV

ν†
L γ

µVELeL. (4.15)

From the fact that mixing matrices of different flavors do not match and cancel
together like the previous neutral current cases, there appears a new kind of mixing
matrix which allows transitions among families only by emission ofW gauge bosons,
yielding flavor-changing through charged-currents. By defining these matrices as

V = VU†L VDL , U† = VE†L V
ν
L , (4.16)

the charged current becomes

J
µ
CC,W = uLγ

µVdL + νLγ
µU†eL. (4.17)

The former matrix V is called the Cabbibo-Kobayashi-Maskawa matrix (CKM) which de-
scribes flavor changes among quarks, while the latter U is known as the Pontecorvo-
Maki-Nakagawa-Sakata matrix (PMNS) which does the same as CKM but among lep-
tons.

Both matrices are parametrized as[CK84; PG+16]1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

(4.18)

where cij and sij refer to i− j family mixing, and δmodules CP asymmetries between
matter-antimatter processes. In the next two sections CKM and PMNS matrices are
quickly reviewed.

ckm matrix

Since the discovery of the pions, there have been detected a lot of different hadrons
and then their decays. The non-conservation of strangeness by ∆S = ±1, e.g., in
the kaon decays, and the different rates respect to ∆S = 0 decays brought the idea
of flavor changing and also mixing proposed by Nicola Cabibbo[Cab63]. After the
detection of c quark the mixing could be modeled by a unitary 2× 2 matrix. How-
ever, the discovery of b and according to GIM mechanism, there had to exist the t
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quark and the mixing matrix became 3× 3. The last proposal was done by Makoto
Kobayashi and Toshihide Maskawa[KM73] obtaining in such a way the well-known
CKM matrix

V =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (4.19)

The CKM matrix is parametrized by the angles shown in eq. (4.18), but it is usually
common to express the CKM matrix using the Wolfenstein parametrization

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2

s23 = Aλ
2 = λ

∣∣∣∣VcbVus
∣∣∣∣

s13e
iδ = V∗ub = Aλ3(ρ+ iη) =

Aλ3(ρ+ iη)
√
1−A2λ4√

1− λ2 [1−A2λ4(ρ+ iη)]

(4.20)

The current absolute values of the CKM matrix are[PG+16]

V =

 0.97434+0.00011
0.00012 0.22506± 0.00050 0.00357± 0.00015

0.22492± 0.00050 0.97351± 0.00013 0.0411± 0.0013
0.00865+0.00032

0.00033 0.0403± 0.0013 0.99915± 0.00005

 . (4.21)

They can be computed either by employing the parametrization of eq. (4.18) with the
following three mixing angles and CP phase

θ12 = 13.04± 0.05o, θ23 = 2.38± 0.06o,

θ13 = 0.201± 0.011o, δ = 69± 5o.
(4.22)

or by using the Wolfenstein parametrization with the following values

λ = 0.22506± 0.00050, A = 0.811± 0.026,
ρ = 0.124+0.019

−0,018, η = 0.356± 0.011.
(4.23)

The actual matrix elements are reported on [PG+16] and the precision achieved on
determining them is remarkable. It is also important to note the strong hierarchy
among the mixing angles. The first and also original Cabibbo angle θ12 lies near 15o,
but θ23 and specially θ13 are too small such that mixing elements involving the third
generation are below 10−1 order.

This hierarchy is fundamentally related to the large mass hierarchy in the quark
sector (see table 4.2) which spans all the explored range of energies, from units of
MeV to hundreds of GeV.

pmns matrix

The mixing in the lepton sector was studied under a quite different light than quark
sector. First, the lack of knowledge about the neutrino masses and their shocking
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NO IO

∆m221/meV2 75.0+1.9
−1.7 75.0+1.9

−1.7

∆m23`/meV2 2524+3940 −2514+3841

θ12/
o 33.56+0.77

−0.75 33.56+0.77
−0.75

θ23/
o 33.56+0.77

−0.75 33.56+0.77
−0.75

θ13/
o 8.46+0.15

−0.15 8.49+0.15
−0.15

δ/o 261+51−59 277+40−46

Table 4.3: Three-flavor neutrino oscillation data. For NO ` = 1 while for IO ` = 2[Est+17].

weak interactions difficulted their study in the first half of 20th century. However, the
outstanding Homestake experiment, directed by Raymond Davis[DJHH68] brought
the first evidence of what would be known later as neutrino oscillations. An impor-
tant lack of neutrinos (actually νe) from the sun was detected, where two thirds of
predicted neutrinos arrived at the chlorine tank. This fact constitutes one of the new
hints about contemporary neutrino physics.

Bruno Pontecorvo proposed that neutrino and antineutrinos could oscillate be-
tween them in a very special way that it could explain the lack of neutrinos. Notwith-
standing, matter-antimatter oscillations were not observed and new proposals ap-
peared. Ziro Maki, Masami Nakagawa and Shoichi Sakata were who proposed the
PMNS matrix[MNS62]

U =

Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3

 , (4.24)

where the subscripts of each component show the mixing between charged and neu-
tral leptons. The magnitudes of the PMNS components at 3σ are[Est+17]

V =

0.800→ 0.844 0.515→ 0.581 0.139→ 0.155

0.229→ 0.516 0.438→ 0.699 0.614→ 0.790

0.249→ 0.528 0.462→ 0.715 0.595→ 0.776

 . (4.25)

The principal data source for determining PMNS matrix elements are neutrino
oscillation experiments. Thus, the different experiments around the world study the
three main sources of neutrinos to measure each one of the mixing angles using the
parametrization in eq. (4.18): solar neutrinos for θ12, atmospheric neutrinos for θ23
and reactor/beam neutrinos for θ13. In the same way, since neutrino oscillations do
not give information about the individual masses of each mass eigenstate, but about
squared mass differences ∆m2ij = m2i −m

2
j , the neutrino mass hierarchy remains

unknown and two schemes are considered: the normal ordering (NO) in which m1 <
m2 < m3 while the opposite is the inverse ordering (IO) where m3 < m1 < m2. The
neutrino oscillation parameters are shown in the table 4.3.





Part II

N O N - U N I V E R S A L U ( 1 ) ’ M O D E L

A new model is built starting from the claim that there exists a new
nonuniversal abelian interaction U(1)X in addition to the strong, weak
and electromagnetic forces. The scalar sector is extended in order to break
the new symmetry. IN chapter 5, the Higgs potential es minimized, and
thereafter the mass matrices and mixin angles of scalars bosons are ob-
tained. Then, the fermion sector is introduced in chapter 6. The mass
matrices are obtained from the Yukawa Lagrangians, and the mass eigen-
values, as well as the fermion mixing angles are gotten. Next, by employ-
ing Montecarlo procedures, the mass matrices were generated randomly
and diagonalized numerically so as the fermion mass hierarchy can be
obtained by algebraic and numerical procedures.





5
B O S O N I C S E C T O R

One of the most preferred extensions to the SM employs the enlargement of the
scalar sector by adding new Higgs doublets (and also Higgs singlets) in order to un-
derstand some facts such as the top/bottom mass ratio or to provide the SSBs of new
gauge symmetries. In particular, the abelian extensions GSM ⊗U(1)X are extensively
employed since it corresponds to the simplest extensions of the SM. These schemes
introduce a new gauge boson called Z ′µ which should acquire mass at a higher scale
than the electroweak ones, usually at TeV. Consequently, there must be a scalar field
with non-zero X-quantum number such that U(1)X gets broken. The scalar sector
of the model satisfies this condition by introducing three Higgs doublets with two
Higgs singlets, each one of them characterized by a quantum number and a sup-
plemental parity Z2 for distinguishing between doublets with the same X quantum
number. The notation employed to indicate the X charge and the Z2 parity is X±,
and the corresponding charges of the scalar sector are shown in the table 5.1.

This chapter presents the bosonic sector of the model. First, the gauge sector of
the model is studied, the masses of the gauge bosons and their mixing are obtained.
Second, the Higgs potential is presented with its minimization and the resulting
masses and mixing in the scalar sector.

gauge bosons and masses

The gauge bosons of the model comprises the vector sector of the SM plus the addi-
tional Ξµ gauge boson of the abelian extension U(1)X. The Gauge Lagrangian is

LGauge = −
1

4
Tr (WµνWµν) −

1

4
BµνBµν −

1

4
ΞµνΞµν (5.1)

where Z ′µν is the strength-field tensor of the Z ′µ gauge boson

Ξµν = ∂µΞν − ∂νΞµ. (5.2)

Doublets X± Singlets X±

Φ1 =

(
φ+
1

h1+v1+iη1√
2

)
+ 2/3+ χ =

ξχ + vχ + iζχ√
2

+ 1/3+

Φ2 =

(
φ+
2

h2+v2+iη2√
2

)
+ 2/3− ψ =

ξψ + vψ√
2

0−

Φ3 =

(
φ+
3

h3+v3+iη3√
2

)
+ 1/3+ σ + 1/3−

Table 5.1: Scalar content of the model, non-universal X quantum number and Z2 parity.
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The gauge boson masses, on the other hand, come from the kinetic part of the
Higgs Lagrangian

LKin
Higgs =

1

2

∑
1,2,3

(DµΦi)
† (DµΦi) +

1

2
(Dµχ)∗ (Dµχ) +

1

2
(Dµψ) (Dµψ) , (5.3)

where de covariant derivatives are

DµΦi = ∂µΦi − igWµΦi − ig
′YBµΦi − igXXiΞµΦi, (5.4a)

Dµχi = ∂µχi −
igX
3 Ξµχi, Dµψi = ∂µψi. (5.4b)

By evaluating the Higgs fields at their VEVs the gauge boson masses appear. The
mass of the W±µ is

m2W =
g2

4

(
v21 + v

2
2 + v

2
3

)
=
g2v2

4
(5.5)

where v is the complete electroweak VEV. In order to simplify the notation, each one
of the electroweak VEVs are defined as fractions of v

v1 = vρ1, v2 = vρ2, v3 = vρ3, (5.6)

and the coefficients ρi satisfy the contraint

ρ21 + ρ
2
2 + ρ

2
3 = 1. (5.7)

This parametrization will be employed in the following sections. Regarding to the
neutral gauge bosons, the mass matrix in the basis W0

µ = (Bµ,W3
µ,Ξµ) is

M2
W0 =

 g2Yv
2 −ggYv

2 2
3gYgχv

2
(
2− ρ23

)
ggYv

2 g2v2 2
3gv

2gχ
(
2− ρ23

)
2
3gYgχv

2
(
2− ρ23

)
2
3gv

2gχ
(
2− ρ23

)
4
9g
2
χ

((
4− 3ρ23

)
v2 + v2χ

)
 (5.8)

Its determinant is null as it is hoped because the existence of a massless gauge boson,
the photon Aµ. In addition, there are two massive gauge bosons, the electroweak Zµ
at GeV scale, and the new Z ′µ at TeV

m2Z ≈
g2 + g ′2

4
v2 =

g2v2

4c2W
, (5.9)

m2Z ′ ≈
g2Xv

2
χ

9
−
g2Xρ

2
3v
2

3
+
4g2Xv

2

9
. (5.10)

The mass eigenstates Zµ = (Aµ,Zµ,Z ′µ) are obained as Zµ = RW0W0
µ through the

mixing matrix RW0 . In the CKM-parametrization (eq. (4.18)) its angles are

tan θW0

12 =
g ′

g
, tan θW0

23 =
3g

2cWgX

((
2− ρ23

)
v2
)

v2χ
, tan θW0

13 = 0. (5.11)

The first angle turns out to be the well-known Weinberg angle, while the second one
describes the Zµ −Z ′µ mixing.
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higgs potential and scalar masses

The scalar potential of the model is stablished according to the U(1)X charges and
Z2 parities shown in the table 7.1. So, the most general potential invariant under the
GSM ⊗U(1)X ⊗Z2 symmetry is

VH = µ21Φ
†
1Φ1 + µ

2
2Φ
†
2Φ2 + µ

2
3Φ
†
3Φ3 + µ

2
χχ
∗χ+ µ2ψψ

2

−
fχ√
2

(
Φ
†
3Φ1χ+ h.c.

)
−
fψ√
2

(
Φ
†
3Φ2ψ+ h.c.

)
+ λ11

(
Φ
†
1Φ1

)2
+ λ12

(
Φ
†
1Φ1

)(
Φ
†
2Φ2

)
− λ ′12

(
Φ
†
1Φ2

)(
Φ
†
2Φ1

)
+ λ22

(
Φ
†
2Φ2

)2
+ λ23

(
Φ
†
2Φ2

)(
Φ
†
3Φ3

)
− λ ′23

(
Φ
†
2Φ3

)(
Φ
†
3Φ2

)
+ λ33

(
Φ
†
3Φ3

)2
+ λ13

(
Φ
†
1Φ3

)(
Φ
†
3Φ1

)
− λ ′13

(
Φ
†
1Φ3

)(
Φ
†
3Φ1

)
+ λ1χ

(
Φ
†
1Φ1

)
(χ∗χ) + λ2χ

(
Φ
†
2Φ2

)
(χ∗χ) + λ3χ

(
Φ
†
3Φ3

)
(χ∗χ)

+ λ1ψ

(
Φ
†
1Φ1

) (
ψ2
)
+ λ2ψ

(
Φ
†
2Φ2

) (
ψ2
)
+ λ3ψ

(
Φ
†
3Φ3

) (
ψ2
)

+ λχχ (χ
∗χ)2 + λχψ (χ∗χ)

(
ψ2
)
+ λψψ

(
ψ4
)

.

(5.12)

Minimization of the potential

The previous potential is minimized by differentiating it respect to each one of the
VEVs and isolating the quadratic constants µi where i = 1, 2, 3,χ,ψ. Thus, the fol-
lowing constants are obtained

−µ21 = λ11v
2
1 +Λ12v

2
2 +Λ13v

2
3 +

λ1χv
2
χ

2
+
λ1ψv

2
ψ

2
−
fχρ3vχ

2ρ1
(5.13a)

−µ22 = λ22v
2
2 +Λ23v

2
3 +Λ12v

2
1 +

λ2χv
2
χ

2
+
λ2ψv

2
ψ

2
−
fψρ3vψ

2ρ2
(5.13b)

−µ23 = λ33v
2
3 +Λ13v

2
1 +Λ23v

2
2 +

λ3χv
2
χ

2
+
λ3ψv

2
ψ

2
−
fχρ1vχ + fψρ2vψ

2ρ3
(5.13c)

−µ2χ = λχχv
2
χ +

λχψv
2
ψ

2
+
v21λ1χ

2
+
v22λ2χ

2
+
v23λ3χ

2
−
fχv1v3

2vχ
(5.13d)

−µ2ψ = λψψv
2
ψ +

λχψv
2
χ

2
+
v21λ1ψ

2
+
v22λ2ψ

2
+
v23λ3ψ

2
−
fψv2v3

2vψ
(5.13e)

where Λij = (λij − λ
′
ij)/2.
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Charged scalar boson masses

The mass matrix of the charged bosons is obtained by calculating the Hessian ma-
trix respect to the charged components of the Higgs doublets. In the basis φ± =

(φ±1 ,φ±2 ,φ±3 ) it turns out to be

M2
C =

1

4


fχvχρ3
ρ1

+ λ ′11v
2 −ρ1ρ2λ

′
12v

2 −ρ1ρ3λ
′
13v

2 − fχvχ

−ρ1ρ2λ
′
12v

2 fψvψρ3
ρ2

+ λ ′22v
2 −ρ2ρ3λ

′
23v

2 − fψvψ

−ρ1ρ3λ
′
13v

2 − fχvχ −ρ2ρ3λ
′
23v

2 − fψvψ
ρ1fχvχ+ρ2fψvψ

ρ3
+ λ ′33v

2

 (5.14)

where λ ′11 = λ ′12ρ
2
2 + ρ

2
3λ
′
13, λ ′22 = λ ′12ρ

2
1 + ρ

2
3λ
′
23 and λ ′33 = λ ′13ρ

2
1 + ρ

2
2λ
′
23. Its

determinant is null as it is hoped because the existence of G±W , the Goldstone bosons
of W±µ . Additionally there exist two physical charged bosons H±1 and H±2 which
acquire mass at TeV scale with contributions at hundreds of GeV.

The masses of the physical charged bosons are (at order O(v2))

m2
H±1,2

≈
fχ
(
ρ21 + ρ

2
3

)
vχ

8ρ1ρ3
+
fψ
(
ρ22 + ρ

2
3

)
vψ

8ρ2ρ3
(5.15)

±
√
fχ
2(ρ21+ρ23)2v2χ
64ρ21ρ

2
3

+
fχfψ(ρ21ρ22−ρ43)vχvψ

32ρ1ρ2ρ
2
3

+
fψ
2(ρ22+ρ23)2v2ψ
64ρ22ρ

2
3

.

It is straightforward to see two limit cases in this expression. The first one comprises
fχ = 0 which implies an extra charged boson h± at GeV scale and other H± at TeV
scale

mH±1
≈

λ ′22v
2

4
(
ρ21 + ρ

2
3

) , mH±2
≈
fχ
(
ρ21 + ρ

2
3

)
vχ

4ρ1ρ3
.

The opposite case is fψ = 0, and yields similar results than the previous one

mH±1
≈

λ ′11v
2

4
(
ρ21 + ρ

2
3

) , mH±2
≈
fψ
(
ρ22 + ρ

2
3

)
vψ

4ρ2ρ3
.

The mixing matrix RC diagonalizes the mass matrix M2
C obtaining the mass eigen-

states H± = RCφ
± which are expressed in the basis H± = (G±W ,H±1 ,H±2 ). Its corre-

sponding mixing angles in the CKM parametrization (eq. (4.18)) are

tan2 θC12 =
ρ22
ρ21

, (5.16a)

tan2 θodd
23
∝
∼

g(fχ, fψ) −
√
g(fχ, fψ)2 − 4fχfψρ1ρ2ρ23vχvψ

g(fχ, fψ) +
√
g(fχ, fψ)2 − 4fχfψρ1ρ2ρ23vχvψ

, (5.16b)

tan2 θC13 =
ρ3

ρ21 + ρ
2
2

. (5.16c)

where g(fχ, fψ) = fχρ2
(
ρ21 + ρ

2
3

)
vχ + fψρ1

(
ρ22 − ρ

2
3

)
vψ. Similarly, the two previous

limit cases give the angles
tan2 θC12 = 0, tan2 θC23 = 0, tan2 θC13 =

ρ3

ρ21
if fψ = 0,

tan2 θC12 =∞, tan2 θC23 = 0, tan2 θC13 =
ρ3

ρ22
if fχ = 0.

(5.17)
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CP-odd boson masses

The mass matrix of the CP-odd (pseudoscalar) bosons is obtained by calculating the
Hessian matrix respect to the CP-odd components of the Higgs doublets. In the basis
η = (η1,η2,η3, ζχ) it turns out to be

M2
odd =

1

4


fχvχρ3
ρ1

0 −fχvχ vfχρ3

0
fψvψρ3
ρ2

−fψvψ 0

−fχvχ −fψvψ
fχvχρ1
ρ3

+
fψvψρ2
ρ3

−vfχρ1

vfχρ3 0 −vfχρ1
v2fχρ1ρ3
vχ

 (5.18)

Its determinant is null as it is hoped because the existence of GZ and G ′Z, the Gold-
stone bosons of Zµ and Z ′µ, respectively. Additionally there exist two physical pseu-
doscalar bosons A1 and A2 which acquire mass at TeV scale with contributions at
hundreds of GeV.

The masses of the physical pseudoscalar bosons are (at order O(v2))

m2A1,2
=

fχ
(
ρ21 + ρ

2
3

)
vχ

8ρ1ρ3
+
fψ
(
ρ22 + ρ

2
3

)
vψ

8ρ2ρ3
(5.19)

±
√
fχ
2(ρ21+ρ23)2v2χ
64ρ21ρ

2
3

+
fχfψ(ρ21ρ22−ρ23)vχvψ

32ρ1ρ2ρ
2
3

+
fψ
2(ρ22+ρ23)2v2ψ
64ρ22ρ

2
3

,

which are slightly different of m±C, the charged bosons masses. Thus, the two limit
cases of the masses expression outlined in the previous section are similar here, with
the exception that there appears an extra massless pseudoscalar boson since there
are no λ ′ij terms in M2

odd.
The mixing matrix Rodd diagonalizes the mass matrix M2

odd obtaining the mass
eigenstates A = Roddη which are expressed in the basis A = (GZ,A1,A2,G ′Z). More-
over, the diagonalization in this case is a little more complicated because there are
four bosons instead of three in comparison with the charged scalar boson sector. So,
it was implemented an extended-CKM parametrization which includes mixings with
a fourth component

c14 0 0 s14

0 1 0 0

0 0 1 0

−s14 0 0 c14



1 0 0 0

0 c23 s23 0

0 −s23 c23 0

0 0 0 1



c13 0 s13 0

0 1 0 0

−s13 0 c13 0

0 0 0 1



c12 s12 0 0

−s12 c12 0 0

0 0 1 0

0 0 0 1



=


c12c13c14 c13c14s12 c14s13 s14

−c23s12 − c12s13s23 c12c23 − s12s13s23 c13s23 0

s12s23 − c12c23s13 −c23s12s13 − c12s23 c13c23 0

−c12c13s14 −c13s12s14 −s13s14 c14

 . (5.20)
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Thereby, the corresponding mixing angles are

tan2 θodd
12 =

ρ22
c214ρ

2
1

, (5.21a)

tan2 θodd
23
∝
∼

g(fχ, fψ) −
√
g(fχ, fψ)2 − 4fχfψρ1ρ2ρ23vχvψ

g(fχ, fψ) +
√
g(fχ, fψ)2 − 4fχfψρ1ρ2ρ23vχvψ

, (5.21b)

tan2 θodd
13 =

ρ23
c214ρ

2
1 + ρ

2
2 + ρ

2
3

, (5.21c)

tan2 θodd
14 =

vρ1
vχ

, (5.21d)

where g(fχ, fψ) = fχρ2
(
ρ21 + ρ

2
3

)
vχ + fψρ1

(
ρ22 − ρ

2
3

)
vψ. Similarly, the two previous

limit cases give the angles
tan2 θodd

13 =
ρ3

c214ρ
2
1

, tan2 θodd
14 =

vρ1
vχ

, θodd
12 = θodd

23 = 0, if fψ = 0,

tan2 θodd
12 =∞, tan2 θodd

13 =
ρ3

ρ22
, θodd

23 = θodd
14 = 0, if fχ = 0.

(5.22)

CP-even boson masses

The mass matrix of the CP-even (true scalar) bosons is obtained by calculating the
Hessian matrix respect to the CP-even components of the Higgs doublets. In the
basis h = (h1,h2,h3, ξχ, ξψ) the CP-even mass matrix is

M2
even =

(
Mhh Mhξ

MT
hξ Mξξ

)
, (5.23)

where the blocks are defined as

Mhh =


λ11v

2ρ1
2 +

fχvχρ3
4ρ1

Λ12v
2ρ1ρ2 Λ13v

2ρ1ρ3 −
fχvχ
4

Λ12v
2ρ1ρ2 λ22v

2ρ2
2 +

fψvψρ3
4ρ2

Λ23v
2ρ2ρ3 −

fψvψ
4

Λ13v
2ρ1ρ3 −

fχvχ
4 Λ23v

2ρ2ρ3 −
fψvψ
4 λ33v

2ρ3
2 +

fχvχρ1+fψvψρ2
4ρ3



Mhξ =


1
2λ1χvχvρ1 −

1
4vfχρ3

1
2λ1ψvψvρ1

1
2λ2χvχvρ2

1
2λ2ψvvψρ2 −

1
4vfψρ3

1
2λ3χvχvρ3 −

1
4vfχρ1

1
2λ3ψvvψρ3 −

1
4vfψρ2

 (5.24)

Mξξ =

λχχv2χ + fχρ1ρ3v
2

4vχ
Λχψvχvψ

Λχψvχvψ λψψv
2
ψ +

fψρ2ρ3v
2

4vψ

 .

The mixing matrix Reven which diagonalizes the mass matrix M2
even gives the mass

eigenstates H = Revenh which are expressed in the basis H = (h,H1,H2,H1,H2).
Moreover, Reven splits in a see-saw rotation RSS

even and a block-diagonal rotation RBeven
such that Reven = RB

evenR
SS
even.

Since |Mhh| < |Mhξ| < |Mξξ| the see-saw procedure will be implemented by fol-
lowing the reference [MMO17] which block-diagonalizes Mhh such that the h scalars
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get separated from the ξ ones. The following approximations are made on the blocks
in order to avoid cumbersome expressions after rotating out the ξ scalars:

Mhξ ≈


1
2λ1χvχvρ1

1
2λ1ψvψvρ1

1
2λ2χvχvρ2

1
2λ2ψvvψρ2

1
2λ3χvχvρ3

1
2λ3ψvvψρ3

 , Mξξ ≈

(
λχχv

2
χ 0

0 λψψv
2
ψ

)
. (5.25)

The see-saw rotation Reven,SS and its angle Θeven are

RSS
even =

(
1 −Θ†even

Θeven 1

)
, Θ†even = M−1

ξξMhξ =


λχvρ1
2vχλχχ

λψvρ1
2vψλψψ

λ2χvρ2
2vχλχχ

λ2ψvρ2
2vψλψψ

λ3χvρ3
2vχλχχ

λ3ψvρ3
2vψλψψ

 . (5.26)

The block-diagonalization acts in the following way

RSS
evenMhh

(
RSS

even
)T

=

(
M2
hh 0

0 M2
ξξ

)
. (5.27)

where the new blocks are

M2
hh ≈Mhh −MhξM

−1
ξξM

T
hξ, M2

ξξ ≈Mξξ (5.28)

The resulting matrix Mhh has the same algebraic structure of Mhh with new defi-
nitions of the constants Λij’s, where i, j = 1, 2, 3. The matrix turns out to be

M2
hh ≈Mhh −MhξM

−1
ξξM

T
hξ (5.29)

=


Λ̃11v

2ρ1
2 +

fχvχρ3
4ρ1

Λ̃12v
2ρ1ρ2 Λ̃13v

2ρ1ρ3 −
fχvχ
4

Λ̃12v
2ρ1ρ2 Λ̃22v

2ρ2
2 +

fψvψρ3
4ρ2

Λ̃23v
2ρ2ρ3 −

fψvψ
4

Λ̃13v
2ρ1ρ3 −

fχvχ
4 Λ̃23v

2ρ2ρ3 −
fψvψ
4 Λ̃33v

2ρ3
2 +

fχvχρ1+fψvψρ2
4ρ3


where the tilde constants are

Λ̃11 = λ11 −
λ21ψ

4λψψ
−
λ21χ

4λχχ
, Λ̃12 = Λ12 −

λ1ψλ2ψ

4λψψ
−
λ1χλ2χ

4λχχ
,

Λ̃22 = λ22 −
λ22ψ

4λψψ
−
λ22χ

4λχχ
, Λ̃23 = Λ23 −

λ2ψλ3ψ

4λψψ
−
λ2χλ3χ

4λχχ
,

Λ̃33 = λ33 −
λ23ψ

4λψψ
−
λ23χ

4λχχ
, Λ̃13 = Λ13 −

λ1ψλ3ψ

4λψψ
−
λ1χλ3χ

4λχχ
.

(5.30)

Although the characteristic equation of M2
hh is difficult to solve, the matrix sug-

gests the same structure of M2
C. Therefore, M2

hh should have two mass eigenvalues
m2H1,2

at TeV scale and a third one m2h at hundreds of GeV which would be zero if
the electroweak vacuum v is neglected. Indeed, the eigenvalues of

M2
hh =


fχvχρ3
4ρ1

0 −
fχvχ
4

0
fψvψρ3
4ρ2

−
fψvψ
4

−
fχvχ
4 −

fψvψ
4

fχvχρ1+fψvψρ2
4ρ3

+O(v2) (5.31)
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are the same ofM2
C. However, the non-vanishing determinant ofM2

hh shows the exis-
tence of the smallest eigenvalue, which can be obtained by dividing the determinant
of M2

hh by the product of the two largest eigenvalues

mh ≈
Det[M2

hh]

m2H1m
2
H2

= Λhhv
2 (5.32)

where Λhh is the effective coupling constant of the 125 GeV Higgs boson

Λhh = Λ̃11ρ
4
1 + Λ̃22ρ

4
2 + Λ̃33ρ

4
3 + 2Λ̃12ρ

2
2ρ
2
1 + 2Λ̃13ρ

2
3ρ
2
1 + 2Λ̃23ρ

2
2ρ
2
3. (5.33)

Regarding to RBeven

RBeven =

(
Rhheven 0

0 Rξξeven

)
, (5.34)

Rhheven and Rξξeven diagonalize M2
hh and M2

ξξ, respectively. The mixing matrix Rhheven can
be approximated to RC because the method employed in the eigenvalue search. Thus,
the corresponding mixing angles of Rhheven are

tan2 θhh12 ≈
ρ22
ρ21

, (5.35a)

tan2 θhh23 ∝∼
g(fχ, fψ) −

√
g2(fχ, fψ) − 4fχfψρ1ρ2ρ23vχvψ

g(fχ, fψ) +
√
g2(fχ, fψ) − 4fχfψρ1ρ2ρ23vχvψ

, (5.35b)

tan2 θhh13 ≈
ρ3

ρ21 + ρ
2
2

. (5.35c)

On the other hand, Rξξeven is parametrized by the two-dimensional rotation matrix. Its
angle is proportional to Λχψ and gives the largest eigenvalues of M2

even,

m2H1
= λχχv

2
χ, m2H2

= λψψv
2
ψ. (5.36)

Summary of masses of the scalar and gauge sector

Boson Spin Mass Boson Spin Mass Boson Spin Mass

Gauge SM Scalar Non-SM Scalar

Aµ 1 0 h 0 mh H1,2 0 mH

W±µ 1 mW G±W 0 0 H±1,2 0 mH

Zµ 1 mZ GZ 0 0 A1,2 0 mH

Z ′µ 1 mZ ′ GZ ′ 0 0 H1,2 0 mH

Table 5.2: Summary of the bosonic mass eigenstates of the model.



6
F E R M I O N I C S E C T O R

The set of fermions of the models is determined by three different principles: the chi-
ral anomalies coming from the non-universal U(1)X quantum numbers, the suited
mass textures and the minimal number of exotic fermions. Nevertheless, before
addressing the fermionic sector, it is important to do some observations on the
fermionic spectrum of the SM (see figure 6.1).

There exist four hierarchical groups: (e,u,d) at units of MeV, (s,µ) at hundreds of
MeV, (c, τ,b) at units of GeV and t at hundreds of GeV (see Fig. 6.1). These groups
may suggest similar mass acquisition mechanisms among them, for example, the
mass acquisition of the u quark could be similar to the d quark and the electron.
On the other hand, the mixing angles of the quark sector are remarkably different
than the lepton sector. The CKM angles are hierarchical too, the Cabbibo angle θ12 =
13.04o is one order of magnitude larger than the θ23 = 2.3o, which is also larger than
θ13 = 0.2o. This behavior is not observed in lepton mixing where θ12 = 33o and
θ23 = 45

o lie at the same order of magnitude, while θ13 = 8o is the only small angle.
The references [Mar+14b], [MMO17] and [MM17] present some models where

the first family acquires mass through radiative corrections done by the new exotic
fermions together with the scalar σ which does not have VEV. On the contrary, the
model presented here does not require any kind of radiative corrections in order to
get the phenomenological spectrum of fermion masses. Furthermore, this chapter
presents how the model can be consistent with the aforementioned observations
without unpleasant fine-tuning procedures. The mass matrices suggest the mass and
CKM angle hierarchies in a natural manner, while the PMNS angles can also be
obtained because of the existence of Majorana fermions in the neutral sector, which
allow larger mixings among active neutrinos after performing the seesaw with the
heavier neutrino species.
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Figure 6.1: Orders of magnitude of the SM fermion masses. It is easy to realize about how
the fermions get organized in four hierarchical groups.
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chiral anomalies equations

The most important constrains on the X-charges of the fermions are the scalar sector
and the cancellation of chiral anomalies. Since the Higgs doublets and singlets are
U(1)X-charged (see Tab. 5.1), the Yukawa coupling constants require the left- and
right-handed fermions with different U(1)X quantum numbers and the posibility to
obtain chiral anomalies in the model appears. Thus, in order to cancel such anomalies
from the very beginning, the non-universal X charges must vanish the following
equations which comprise the different chiral anomalies in the model[Mar+14b]:

[SU(3)C]
2U(1)X → AC =

∑
Q

XQL −
∑
Q

XQR

[SU(2)L]
2U(1)X → AL =

∑
`

X`L + 3
∑
Q

XQL

[U(1)Y ]
2U(1)X → AY2 =

∑
`,Q

[
Y2`LX`L + 3Y

2
QL
XQL

]
−
∑
`,Q

[
Y2`RXLR + 3Y

2
QR
XQR

]
U(1)Y [U(1)X]

2 → AY =
∑
`,Q

[
Y`LX

2
`L

+ 3YQLX
2
QL

]
−
∑
`,Q

[
Y`RX

2
`R

+ 3YQRX
2
QR

]
[U(1)X]

3 → AX =
∑
`,Q

[
X3`L + 3X

3
QL

]
−
∑
`,Q

[
X3`R + 3X

3
QR

]
[Grav]2U(1)X → AG =

∑
`,Q

[
X`L + 3XQL

]
−
∑
`,Q

[
X`R + 3XQR

]
(6.1)

These equations get cancelled by the fermionic spectrum shown in tables 6.1 and
6.2. It includes the three families of the SM, two up-like quarks T1,2, two down-like
quarks J1,2 and three charged leptons E1,2,3. These fields were added to cancel chiral
anomalies, but they turned out to be really important in understanding the fermion
mass hierarchy. Moreover, there were also included three Majorana fermions N1,2,3

R

which do not contribute to chiral anomalies but play an important role in neutrino
mass acquisition.

suppression squares texture

The majority of textures propose finite and null components of the mass matrices
in order to get the suited mass eigenvalues and mixing angles. However, the finite
components should be at the same order of magnitude. A new extension of this con-
cept may be the existence of two or three orders of magnitude in the finite elements
produced through the Yukawa couplings with more than one Higgs doublet whose
VEVs have a vaccum hierarchy (VH), their VEVs are at different orders of magnitude.
In this way, the cornerstone of the model to achieve in a natural way the fermionic
mass hierarchy is the concept of suppression squares texture (SST), which proposes the
existence of elements at two different orders of magnitude in a very special location
inside the mass matrix.

The simplest example of the SST comprises two fermions f and F coupled by two
Higgs scalars φ1,2 with the VH v1 < v2. The Yukawa Lagrangian is

−LY =AeiafLφ1 (sαfR + cαFR) +Be
ibfLφ2

(
sβfR + cβFR

)
. (6.2)
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where the Yukawa coupling constants are parametrized in polar coordinates, i.e., the
coupling constant among fL, FR and φ1 is Aeiacα. This parametrization not only
simplifies the algebra, but also helps to realize how the SST works and suggests
relations among Yukawa coupling constants. The corresponding mass matrix after
evaluating at the VEVs is

Msupp =

(
Aeiav1 sinα Aeiav1 cosα

Beibv2 sinβ Beibv2 cosβ

)
. (6.3)

The diagonalization may be done on either MM† or M†M. Both matrices give the
mass eigenvalues

m2f ≈ A2v21 sin2(α−β), (6.4)

m2F ≈ B2v22 +A2v21 cos2(α−β), (6.5)

and the mixing angles of the left- and right-handed fermions are

tan θL ≈
Av1
Bv2

cos(α−β)ei(a−b), (6.6)

tan θR ≈ tanβ. (6.7)

There are some remarkable features in the expressions obtained above. The first
and most important is the suppression in the first eigenvalue of the matrix through
the sine of the difference between α and β. Similarly, the left-handed mixing angle
is also suppressed because of the VH. On the other hand, the second eigenvalue is
not supressed but enhanced by the addition of the complementary function of the
first eigenvalue, and the right-handed mixing angle turns out to be the angle β in
the second row of the matrix, i.e., the angle associated to the largest VEV.

The model implements extensively the SST such that the mass hierarchy can be
obtained without any kind of assumption on Yukawa coupling constants. Moreover,
some suppression squares involve also the exotic fermions which have been added
to cancel chiral anomalies, so they play an important role in obtaining the fermionic
mass hierarchy. The next sections present the mass acquisition of the fermionic sector
of the model from the SST in the mass matrices, and after showing the mass eigenval-
ues and mixing angles, the suppression squares of each mass matrix are explained
in detail.

mass matrices

Before addressing the fermionic spectrum of the model, this section shows the gen-
eral procedure to obtain the fermion masses and mixing angles. The fermions of
each sector are described employing two bases: the flavor basis F and the mass basis
f. Thus, once the Yukawa Lagrangian is evaluated at VEVs, the mass terms can be
expressed as

−LF = FLMFFR + h.c. (6.8)
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Since the mass matrix MF is not Hermitian, it has to be diagonalized by the biunitary
transformation

M
diag
F =

(
VFL
)†

MFVFR, (6.9)

and consequently the mass and flavor bases will be related via the mixing matrices
VFL and VFR in the following way

FL = VFLfL, FR = VFRfR. (6.10)

In particular, the left-handed mixing matrix can be expressed as the product of
two mixing matrices

VFL = VFL,SSVFL,B. (6.11)

The former matrix rotates out the exotic fermions with a see-saw procedure by taking
advantage of the VH. The procedure begins by splitting by blocks the whole sym-
metric mass matrices (MFM

†
F for charged fermions and MN for neutrinos)[GL01]

M
sym
F =

(
Mf
3×3 MfF

3×n

MFf
n×3 MF

n×n

)
, (6.12)

where MFf =
(
MfF

)T and n is the number of exotic fermions for each sector (2 for
up- and down-like quarks, 3 for charged leptons, and 6 for neutrinos). The see-saw
rotation matrix is

VFL,SS =

(
1 Θ

F†
L

−ΘFL 1

)
, (6.13)

where ΘFL =
(
MF

)−1
MFf. The resulting block-diagonalized mass matrix is

(
VFL,SS

)T
M

sym
F VFL,SS =

(
m

sym
F,SM 03×n

0n×3 M
sym
F,exot

)
, (6.14)

where msym
F,SM is the SM mass matrix given by

m
sym
F,SM ≈Mf −MfF

(
MF

)−1
MFf (6.15)

and Msym
F,exot ≈ MF is the mass matrix of the exotic species. The latter matrix in eq.

(6.11), VFL,B describes the diagonalization of msym
F,SM and Msym

F,exot. It has the structure

VFB =

(
VFSM 03×n

0n×3 VFexot

)
(6.16)

where VFSM is parametrized by

VFSM = R13(θ
F
13, δF13)R23(θ

F
23, δF23)R12(θ

F
12, δF12) (6.17)
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and the matrices Rij are

R12(θ
F
12, δF12) =

 cF12 sF12e
−iδF12 0

−sF12e
iδF12 cF12 0

0 0 1

 , (6.18a)

R23(θ
F
23, δF23) =

1 0 0

0 cF23 sF23e
−iδF23

0 −sF23e
iδF23 cF23

 , (6.18b)

R13(θ
F
13, δF13) =

 cF13 0 sF13e
−iδF13

0 1 0

−sF13e
iδF13 0 cF13

 , (6.18c)

where cFij = cos θFij and sFij = sin θFij. The angles θFij are specified by their tangents
tFij = tan θFij which could be calculated exactly or approximately by taking advantage
of VH. On the other hand, the Dirac phases δFij can be chosen in such a way that they
correspond to the experimental measurements.

In the following subsections the mass matrices, mass eigenvalues and mixing an-
gles (involving SM and exotic fermions) are obtained using the previous procedure
by taking advantage of the VH established by the following VEVs

vχ = 2.5TeV, v1 = 245.7GeV,

vψ = 1.0TeV, v2 = 12.14GeV,

µN ∼ 1 keV, v3 = 250MeV.

(6.19)

where µN is the mass scale of the Majorana fermions N1,2,3
R . These values of VEVs

are employed to do numerical explorations by Montecarlo procedures on the mass
matrices in order to test their suitability to address fermion mass hierarchy and
mixing angles. The results of these searches are shown after the algebraic treatment
of the mass matrices.

hadronic sector

The hadronic sector of the model contains the SM fields with four exotic chiral
quarks: two up-like quarks T1, T2 and two down-like quarks J1, J2. The non-universal
quantum numbers and parities are shown in table 6.1, and the Lagrangians under
the symmetry U(1)X ⊗Z2 in the quark sector are

−LY,U =AUe
iaUq1LΦ̃3

(
sUαu

1
R + c

U
αu

3
R

)
+BUe

ibUq1LΦ̃2
(
sUβu

2
R + c

U
βT

1
R

)
+CUe

icU q2LΦ̃1
(
sUγu

2
R + c

U
γ T

1
R

)
+DUe

idUq3LΦ̃1
(
sUδ u

1
R + c

U
δ u

3
R

)
+EUe

ieUT1Lχ
∗ (sUε u2R + cUε T1R)+ FUeifUsUζ2T2Lχ (sUζ1u2R + cUζ1T1R)

+ FUe
ifUcUζ2T

2
Lχ
∗T2R

(6.20)
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Left-handed X± Right-handed X±

SM Quarks

q1L =

(
u1

d1

)
L

0+
u1R

d1R

+ 2/3+

− 2/3+

q2L =

(
u2

d2

)
L

+ 1/3−
u2R

d2R

+ 2/3−

− 1/3−

q3L =

(
u3

d3

)
L

+ 1/3+
u3R

d3R

+ 2/3+

− 1/3−

Non-SM Quarks

T1L

T2L

+ 1/3−

+1−
T1R

T2R

+ 2/3−

+ 4/3−

J1L

J2L

− 1/3+

0+
J1R

J2R

− 2/3+

+ 1/3+

Table 6.1: Hadronic sector of the model, non-universal X quantum number and Z2 parity.

−LY,D =ADe
iaDq1LΦ3

(
sDα d

1
R + c

D
α J
1
R

)
+BDe

ibDq2LΦ3
(
sDβ d

2
R + c

D
β d

3
R

)
+CDe

icD q3LΦ2
(
sDγ d

2
R + c

D
γ d

3
R

)
+DDe

idDJ1Lχ
(
sDδ d

1
R + c

D
δ J
1
R

)
+EDe

ieDJ1Lψ
(
sDε d

2
R + c

D
ε d

3
R

)
+ FDe

ifDJ2Lχ
∗J2R

(6.21)

Next, the Yukawa Lagrangian of the quark sector evaluated at the VEVs yield the
mass matrices of the up-like and down-like quarks. Their eigenvalues, as well as their
mixing angles and the results of the numerical diagonalization are shown below.

Up-like quarks

The up-like quark sector is described in the bases U and u, where the former is the
flavor basis while the latter is the mass basis

U = (u1,u2,u3,T1,T2),

u = (u, c, t, T1, T2).
(6.22)

The mass term in the flavor basis turns out to be

−LU = ULMUUR + h.c., (6.23)

where MU is the up-like quarks mass matrix

MU =

(
MSM,Φ
U MEx,Φ

U

M
SM,χ
U M

Ex,χ
U

)
(6.24)

and the blocks are

MSM,Φ
U =

AUe
iaUsUαv3 BUe

ibUsUβv2 AUe
iaUcUαv3

0 CUe
icUsUγ v1 0

DUe
idUsUδ v1 0 DUe

idUcUδ v1

 (6.25)
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MEx,Φ
U =

BUe
ibUcUβv2 0

CUe
icUcUγ v1 0

0 0

 (6.26)

M
SM,χ
U =

(
0 EUe

ieUsUε vχ 0

0 FUe
ifUsUζ1s

U
ζ2vχ 0

)
(6.27)

M
Ex,χ
U =

(
EUe

ieUcUε vχ 0

FUe
ifUcUζ1s

U
ζ2vχ FUe

ifUcUζ2

)
(6.28)

Since the determinant of MU is non-vanishing, the up-like quarks acquire mass.
It was assumed ζU2 = 0 to simplify algebraic expressions without spoiling the sup-
pression mechanisms. Then, the mass eigenvalues corresponding with the SM quark
masses are

m2u ≈ A2U sin2
(
αU − δU

) v23
2

,

m2c ≈ B2U sin2
(
βU − εU

) v22
2

+C2U sin2
(
γU − εU

) v21
2

,

m2t ≈ D2U
v21
2

+A2U cos2
(
αU − γU

) v23
2

,

(6.29)

while the masses of the exotic up-like quarks are

m2T1 ≈ E2U
v2χ

2
+B2U cos2

(
βU − εU

) v22
2

+C2U cos2
(
γU − εU

) v21
2

,

m2T2 ≈ F2U
v2χ

2
.

(6.30)

The corresponding left-handed rotation matrix can be expressed by

VUL = VUL,SSVUL,B, (6.31)

where the see-saw angle is

Θ
U†
L =


Bv2
Fvχ

cUβ−εe
i(bU−eU) 0

Cv1
Fvχ

cUγ−εe
i(cU−eU) 0

0 0

 (6.32)

while VUL,B diagonalizes only the SM-up quarks. Its angles are given by

tan θU,L
13 ≈

AUv3
Duv1

cUα−δe
i(aU−dU)

tan θU,L
23 ≈

AUBUCUv3v2

D3Uv
2
1

cUα−δs
U
β−εs

U
γ−εe

i(aU−bU+cU−dU)

tan θU,L
12 ≈

BUv2 s
U
β−ε

CUv1 s
U
γ−ε

ei(bU−cU)

(6.33)
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The exotic species T1 and T2 got masses through vχ at units of TeV. The SM t

quark has acquired mass with v1 without any suppression, so its mass remains at
the scale of v1, hundreds of GeV. On the contrary, the c quark have acquired mass
with v1 and v2 but through the rectangular SSTBUe

ibUsUβv2 BUe
ibUcUβv2

CUe
icUsUγ v1 CUe

icUcUγ v1

EUe
ieUsUε vχ EUe

ieUcUε vχ

 ,

yielding the suppressed mass of the c quark because of T1,

m2c ≈ B2U sin2
(
βU − εU

) v22
2

+C2U sin2
(
γU − εU

) v21
2

m2T1 ≈ E2U
v2χ

2
+B2U cos2

(
βU − εU

) v22
2

+C2U cos2
(
γU − εU

) v21
2

Finally, the u quark has acquired mass through v3 with a similar suppression but
with the t quark instead of T1,(

AUe
iaUsUαv3 AUe

iaUcUαv3

DUe
idUsUδ v1 DUe

idUcUδ v1

)
.

Consequently, the mass of the u quark gets suppressed by t,

m2u ≈ A2U sin2
(
αU − δU

) v23
2

,

m2t ≈ D2U
v21
2

+A2U cos2
(
αU − γU

) v23
2

.

Down-like quarks

The down-like quarks are described in the bases D and d, where the former is the
flavor basis while the latter is the mass basis

D = (d1,d2,d3, J1, J2),

d = (d, s,b, J1, J2).
(6.34)

The mass term in the flavor basis is

−LD = DLMDDR + h.c., (6.35)

where MD turns out to be

MD =

(
MSM,Φ
D MEx,Φ

D

M
SM,χ
D M

Ex,χ
D

)
(6.36)

with the blocks given by

MSM,Φ
D =

ADe
iaDsDα v3 0 0

0 BDe
ibDsDβ v3 BDe

ibDcDβ v3

0 CDe
icDsDγ v2 CDe

icDcDγ v2

 (6.37)
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MEx,Φ
D =

ADe
iaDcDα v3 0

0 0

0 0

 (6.38)

M
SM,χ
D =

(
DDe

idDsDδ vχ EDe
ieDsDε vψ EDe

ieDcDε vψ

0 0 0

)
(6.39)

M
Ex,χ
D =

(
DDe

idDcDδ vχ 0

0 FDe
ifDvχ

)
(6.40)

Thus, the mass eigenvalues of the SM quarks are

m2d ≈ A2D sin2(αD − δD)
v23
2

,

m2s ≈ B2D sin2(βD − γD)
v23
2

,

m2b ≈ C2D
v22
2

+B2D cos2(βD − γD)
v23
2

,

(6.41)

and the masses of the exotic species are given by

m2J1 ≈ D2D
v2χ

2
+ E2D

v2ψ

2
+A2D cos2

(
αU − δU

) v23
2

,

m2J2 ≈ F2D
v2χ

2
.

(6.42)

The corresponding left-handed rotation matrix is

VDL = VDL,SSVDL,B, (6.43)

where the see-saw angle which rotates out the species J1,2 is

Θ
D†
L =



ADv3
DDvχ

cDα−δ 0

BDEDv3vψ

D2Dv
2
χ

cDβ−ε 0

CDEDv2vψ

D2Dv
2
χ

cDγ−ε 0

 , (6.44)

and the SM angles of VDL,B are given by

tan θD,L
13 ≈

ADEDv3vψ

CDDDv2vχ
cDα−δc

D
γ−ε,

tan θD,L
23 ≈

BDv3
CDv2

cDβ−γ

tan θD,L
12 ≈

ADEDvψ

BDDDvχ

sDγ−ε

sDβ−γ
cDα−δ.

(6.45)
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The heaviest quarks J1 and J2 acquired mass at TeV scale due to vχ, while the b
quark obtained its mass through v2 at units of GeV. The s quark has acquired its
mass through v3 at hundreds of MeV with the suppression due to the b quark in the
SST (

BDe
ibDsDβ v3 BDe

ibDcDβ v3

CDe
icDsDγ v2 CDe

icDcDγ v2

)
,

yielding the masses

m2s ≈ B2D sin2(βD − γD)
v23
2

,

m2b ≈ C2D
v22
2

+B2D cos2(βD − γD)
v23
2

.

Similarly, the quark d got its mass through the SST with the exotic species J1(
ADe

iaDsDα v3 ADe
iaDcDα v3

DDe
idDsDδ vχ DDe

idDcDδ vχ

)
,

whose associated masses are

m2d ≈ A2D sin2(αD − δD)
v23
2

,

m2J1 ≈ D2D
v2χ

2
+A2D cos2

(
αU − δU

) v23
2

.

Numerical exploration in the quark sector

In order to test the suitability of MU and MD to achieve the fermion mass hierar-
chy, such matrices were generated with random coupling constants by Montecarlo
procedures and then diagonalized numerically such that they can reproduce the
phenomenological data of quark masses and CKM mixing angles. The results in re-
producing such data at 5σ are presented in Fig. 6.2, showing that the model is able
to generate mass and mixing angle hierarchies.

However, the absence of unpleasant fine-tunings is shown in Figs. 6.3 and 6.4. The
first one shows how the angle differences αU − δU, βU − εU and γU − εU observed
in the masses of eq. (6.29) get smaller as the magnitude of the moduli AU, BU and
CU get larger. This behavior is produced by the SST present in MU which acts on
the masses of the u and c quarks to supress them from hundreds to units of GeV and
MeV, respectively. The second one, instead, shows similar results in the dependence
of αD − δD on AD of eq. (6.29), but βD − γD does not depend on BD as αD − δD.
Such an anomalous behavior is produced because the mass of the s quark does not
need any suppression because it actually lies at hundreds of MeV, so the SST cannot
act in the same way.

The numerical exploration by Montecarlo procedures presents how the SST deals
with the fermion mass hierarchy by matching the angles involved in the suppression
squares as the moduli increase. This result suggests the posibility of correlations
among the coupling constants in each one of the suppression squares without im-
posing too small couplings by hand.
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Figure 6.2: Quark masses and CKM mixing angles at 5σ obtained from random mass matri-
ces MU and MD with the VH of eq. (6).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

AU

0.0

0.2

0.4

0.6

0.8

1.0

|si
n
(α

U
−
δ
U
)|

|sin(αU − δU)| vs. AU

0.0 0.2 0.4 0.6 0.8 1.0 1.2

BU

0.0

0.2

0.4

0.6

0.8

1.0

|si
n
(β

U
−
εU

)|

|sin(βU − εU)| vs. BU

0.0 0.2 0.4 0.6 0.8 1.0 1.2

CU

0.0

0.2

0.4

0.6

0.8

1.0
|si

n
(γ

U
−
εU

)|
|sin(γU − εU)| vs. CU

Figure 6.3: Dependeces of the angle differences αU − δU, βU − εU and γU − εU on the mag-
nitude of the moduli AU, BU and CU. The fact that the larger the modulus the
smaller the angle difference shows the action of the SST on the mass eigenvalues
in order to get the hierarchy.
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Figure 6.4: Dependences of the angle differences αD − δD and βD − γD on the magnitude
of the moduli AD and BD. The modulus AD shows the action of the SST on the d
mass in order to suppress it at unts of MeV, but the anomalous behavior of BD is
produced by the lack of suppression in the s mass since it alredy is at hundreds
of MeV.
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Left-handed X± Right-handed X±

SM Leptons + RH neutrinos

`eL =

(
νe

ee

)
L

− 2/3+
νeR

eeR

+ 1/3+

− 4/3+

`
µ
L =

(
νµ

eµ

)
L

− 1/3−
ν
µ
R

e
µ
R

0−

−1−

`τL =

(
ντ

eτ

)
L

−1+
ντR

eτR

− 1/3−

− 4/3+

Non-SM Leptons

E1L

E2L

E3L

+1−

−1+

+ 5/3−

E1R

E2R

E3R

+ 4/3−

− 4/3+

+ 4/3−

Majorana Fermions
N1R

N2R

N3R

0+

0−

0+

Table 6.2: Leptonic sector of the model, non-universal X quantum number and Z2 parity.

leptonic sector

The leptonic sector of the model contains the SM fields with three exotic chiral
charged leptons E1,E2,E3 and three Majorana fermions NR = (N1,N2,N3R). The non-
universal quantum numbers and parities are shown in table 6.2, and the Lagrangians
under the symmetry U(1)X ⊗Z2 in the lepton sector are

−LY,N =BN1`
2
LΦ̃2ν

e
R +DNν

e
R
CχNR+

+AN1`
1
LΦ̃2ν

µ
R +BN2`

2
LΦ̃1ν

µ
R + E ′Nν

µ
R
C
ψNR+

+AN2`
1
LΦ̃1ν

τ
R +CN`

3
LΦ̃3ν

τ
R + FNν

τ
R
CχNR+

+
µN
2

NCRGNNR + h.c.

(6.46)

while the Yukawa Lagrangian of the charged leptons can be expressed as

−LY,E =AEe
iaE`1LΦ3

(
sEα1s

E
α2e

e
R + c

E
α1s

E
α2e

τ
R + c

E
α2E

2
R

)
+

+CEe
icE`3LΦ1

(
sEγ1s

E
γ2e

e
R + c

E
γ1s

E
γ2e

τ
R + c

E
γ2E

2
R

)
+ +BEe

ibE`2LΦ3e
µ
R +DEe

idEE1Lχ
(
sEδE

1
R + c

E
δE
3
R

)
+

+EEe
ieEE2Lχ

(
sEε1s

E
ε2e

e
R + c

E
ε1s

E
ε2e

τ
R + c

E
ε2E

2
R

)
+ + FEe

ifEE2Lψe
µ
R +GEe

igEE3Lχ
(
sEζE

1
R + c

E
ζE
3
R

)
+ h.c.

(6.47)
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Neutral leptons

Neutrinos involve Dirac and Majorana masses in their Yukawa Lagrangian. Since NiR
are Majorana fermions, the bases are chiral and the mass basis describes Majorana
neutrinos. The flavor and mass bases are, respectively,

NL = (νe,µ,τ
L , (νe,µ,τ

R )C, (Ne,µ,τ
R )C),

nL = (ν1,2,3
L , (N1,2,3

R )C, (Ñ1,2,3
R )C).

(6.48)

The mass term expressed in the flavor basis is

−LN =
1

2
NCLMNNL, (6.49)

where the mass matrix has the following block structure

MN =

 0 MT
ν 0

Mν 0 MT
N

0 MN MN

 , (6.50)

with Mν as the Dirac mass matrix between νL and νR

Mν =
1√
2

 0 AN1v2 AN2v1

BN1v2 BN2v1 0

0 0 CNv3

 , (6.51)

MN the Dirac mass matrix between νCR and NR

MN =
vχ√
2

DN1 DN2 DN3

EN1 EN2 EN3

FN1 FN2 FN3

 , (6.52)

where EN1 = ρψE
′
N1 with ρψ = vψ/vχ, and MN = GNµN is the Majorana mass of

NR.
By employing the inverse SSM because of the VH in eq. (6.19), it is found that

(
VNL,SS

)†
MNVNL,SS =

mν 0 0

0 mN 0

0 0 mÑ

 (6.53)

where the new 3× 3 blocks are[CMO12; Dia+12]

mν = MT
ν

(
MT

N

)−1
MN (MN)−1Mν,

MN ≈MN −MN, MÑ ≈MN +MN.
(6.54)

It was assumed MN diagonal and

GN =

GN1 GN4 0

GN4 GN2 0

0 0 GN3

 (6.55)
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so as it can yield the adequate mixing angles to fit PMNS matrix. By rejecting terms
proportional to v3 in mν, the neutrino ν1L turns out to be massless, the masses of the
other two neutrinos are

m2ν2 ≈
B2N2GN2

E2N2

µNv
2
1

v2χ
−

2AN1B
3
N2EN1GN2GN4

GN2(A
2
N2E

2
N2GN1 −B

2
N2D

2
N1GN2)

µNv1v2
v2χ

,

m2ν3 ≈
A2N2GN1

D2N1

µNv
2
1

v2χ
+

2AN1A
2
N2BN2GN2GN1GN4

EN1(A
2
N2E

2
N2GN1 −B

2
N2D

2
N1GN2)

.
µNv1v2
v2χ

(6.56)

and the masses of the exotic species are

N1R = D1N
vχ√
2
−
GN1µN
2

, Ñ1R = D1N
vχ√
2
+
GN1µN
2

,

N2R = E2N
vχ√
2
−
GN2µN
2

, Ñ2R = E2N
vχ√
2
+
GN2µN
2

,

N3R = F3N
vχ√
2
−
GN3µN
2

, Ñ3R = F3N
vχ√
2
+
GN3µN
2

.

(6.57)

The left-handed rotation matrix can be expressed by

VEL = VEL,SSVEL,B, (6.58)

where the see-saw angle is

Θ
N†
L =


BN1GN4v2
DN1EN2

BN2GN4v1
DN1EN2

+ AN1GN1v2
DN12

AN2GN1v1
DN12

BN1GN2v2
EN22

BN2GN2v1
EN22

+
AN1GN4v2
DN1EN2

AN2GN4v1
DN1EN2

0 0
CNGN3v3
FN32

 (6.59)

and VEL,SM, contained in the block-diagonal mixing matrix VEL,B after rotating out the
heavy species has the angles

tan θE,L
13 ≈

AN1BN1v
2
2

AN2BN2v
2
1

,

tan θE,L
23 ≈

AN2BN1DN1EN2GN4

A2N2E
2
N2GN1 −B

2
N2D

2
N1GN2

v2
v1

tan θE,L
12 ≈

BN1v2
BN2v1

.

(6.60)

Charged leptons

The charged leptons are described in the bases E and e, where the former is the flavor
basis while the latter is the mass basis

E = (ee, eµ, eτ,E1,E2),

e = (e,µ, τ,E1,E2).
(6.61)

The mass term obtained from the Yukawa Lagrangian is

−LE = ELMEER + h.c. (6.62)
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where ME turns out to be

ME =

(
M

SM,Φ
E M

Ex,Φ
E

M
SM,χ
E M

Ex,χ
E

)
(6.63)

and the blocks are

M
SM,Φ
E =

AEe
iaEsEα1s

E
α2v3 0 AEe

iaEcEα1s
E
α2v3

0 BEe
ibEv3 0

CEe
icEsEγ1s

E
γ2v1 0 CEe

icEcEγ1s
E
γ2v1

 (6.64)

MEx,Φ
E =

0 AEe
iaEcEα2v3 0

0 0 0

0 CEe
icEcEγ2v1 0

 (6.65)

M
SM,χ
E =

 0 0 0

EEe
ieEsEε1s

E
ε2vχ FEe

ifEvψ EEe
ieEcEε1s

E
ε2vχ

0 0 0

 (6.66)

M
Ex,χ
E =

DEe
idEsEδvχ 0 DEe

idEcEδvχ

0 EEe
ieEcEε2vχ 0

GEe
igEsEζvχ 0 GEe

igEcEζvχ

 (6.67)

The determinant of ME is non-vanishing ensuring that all charged leptons acquire
mass. In order to simplify the algebraic expressions, ε1 was set equal to γ1. Thus,
the eigenvalues of the mass matrix yields the masses of the SM leptons

m2e ≈ A2E sin2
(
αE1
)

sin2
(
αE2 − γ

E
2

) v23
2

,

m2µ ≈ B2U
v23
2

,

m2τ ≈ C2E sin2
(
γE2 − ε

E
2

)
,
v21
2

(6.68)

and the masses of the new exotic charged leptons

m2E1 ≈ D2E
v2χ

2
,

m2E2 ≈ E2E
v2χ

2
+C2E cos2

(
γE2 − ε

E
2

) v21
2

,

m2E3 ≈ G2E
v2χ

2
.

(6.69)

The left-handed rotation matrix can be expressed by

VEL = VEL,SSVEL,B, (6.70)
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where the see-saw angle is

Θ
E†
L =


0 AEEEv3

E2Ev
2
χ+F

2
Ev
2
ψ

cEα2−ε2e
i(aE−eE) 0

0
BEFEv3vψ
E2Ev

2
χ+F

2
Ev
2
ψ

ei(bE−fE) 0

0
CEEEv1vχ
E2Ev

2
χ+F

2
Ev
2
ψ

cEγ2−ε2e
i(cE−eE) 0

 , (6.71)

and VEL,SM, contained in VEL,B has the mixing angles

tan θE,L
13 ≈

AEv3s
E
α2−ε2

CEv1s
E
γ2−ε2

ei(aE−cE)

tan θE,L
23 ≈ −

BEEEFEv3vψvχ

CEv1

(
F2Ev

2
ψ + E2Ev

2
χs
E
γ2−ε2

)
tan θE,L

12 ≈
AEvψs

E
α2−γ2

EEvχs
E
γ2−ε2

BEFEe
i(aE−bE−eE+fE)

B2E −A
2
E

(
sEα2s

E
α1−γ1

)2
(6.72)

The exotic charged leptons E1,2,3 have acquired mass at TeV scale. Due to the
existence of the SST (in this case extended in a rectangle)

MSM,Φ
E =

(
CEe

icEsEγ1s
E
γ2v1 CEe

icEcEε1s
E
γ2v1 CEe

icEcEγ2v1

EEe
ieEsEγ1s

E
ε2vχ EEe

ieEcEγ1s
E
ε2vχ EEe

ieEcEε1s
E
ε2vχ

)
, (6.73)

the heaviest SM lepton τ acquired a supressed mass at GeV scale through v1 so as
it does not acquire mass at hundreds of GeV, but at units of GeV. The lepton µ has
acquired mass through v3 without any suppression, so its mass remains at hundreds
of MeV. Finally, the lightest lepton, e, got its mass through the largest SST involving
the half of the mass matrix

MSM,Φ
E =


AEe

iaEsEα1s
E
α2v3 AEe

iaEcEα1s
E
α2v3 AEe

iaEcEα2v3

CEe
icEsEγ1s

E
γ2v1 CEe

icEcEγ1s
E
γ2v1 CEe

icEcEγ2v1

EEe
ieEsEγ1s

E
ε2vχ EEe

ieEcEγ1s
E
ε2vχ EEe

ieEcEε2vχ

 (6.74)

and yielding three masses of the charged leptons,

m2e ≈ A2E sin2
(
αE1
)

sin2
(
αE2 − γ

E
2

) v23
2

,

m2τ ≈ C2E sin2
(
γE2 − ε

E
2

) v21
2

,

m2E2 ≈ E2E
v2χ

2
+C2E cos2

(
γE2 − ε

E
2

) v21
2

.

(6.75)

Numerical exploration in the lepton sector

Similarly with the quark sector, the lepton mass matrices MN and MN were explored
numerically in order to test their suitability and consistency with current neutrino
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Figure 6.5: Lepton masses and PMNS mixing angles at 3σ according to ref. [GGMS14] ob-
tained from random mass matrices MN and ME with the VH of eq. (6).

oscillation data[GGMS14]. The numerical results in reproducing such data at 3σ are
presented in Fig. 6.5, so that the model is consistent with charged lepton masses
and neutrino oscillation data. It is important to remark on the massless neutrino ν1L
which determines, with the squared-mass differences, the masses of the neutrinos
ν2L and ν3L.

The VH presented in eq. (6.19) fixes all the VEVs, but the Majorana mass scale µN
was only constraint about the scale of units of keV because it only fixes the mass scale
of active neutrinos ν1,2,3

L . Therefore, in order to determine which is the best value
of µN, the matrix MN was generated with a Montecarlo procedure with different
values of µN, from 10−5 to 102 keV by exponential steps of 10+0.5 and ten million
trials per step. Thereafter, the number of solutions consistent at 3σ with the data
reported by ref. [GGMS14] were counted. Finally, such results were plotted in the
Fig. 6.6 such that the maximum of solutions points to the best value of µN near to
10−1.5 keV.
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Figure 6.6: Search of the best value of µN for MN consistent at 3σ with the ref. [GGMS14].

The neutral sector of the model shows a large variety of behaviors among the
Yukawa coupling constants of the matrix MN in order to reproduce neutrino oscil-
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Figure 6.7: Sample of the parameter space available to reproduce neutrino oscillation data in
function of the Majorana mass scale µN. From left to right the parameter space
contracts, consistently with the Fig. 6.6.
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Figure 6.8: Dependences of the angles αE1 , αE2 − γE2 and γE2 − εE2 on the magnitude of the
moduli AE and CE. The behavior of CE is similar to CU in the Fig. 6.3 since
the τ lepton, as well as the c quark, gets supressed by the SST. However, the
dependence on AE, αE1 and αE2 − γE2 offers an extended 3D parameter space.
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lation data. Specially, when the Majorana mass scale changes the parameter space
expands and contracts about the value µN = 10−1.5. A sample of this observation
is shown in figure 6.7, in which the plane EN2 vs. BN1 presents how the parameter
space gets contracted as the Majorana scale diminishes.

On the other hand, the charged sector appears more similar to the quarks than neu-
trinos but new elements are introduced. First, the dependence of the angle difference
γE2 − ε

E
2 on the modulus CE in the mass of the τ lepton is similar to the dependence

given in the c quark mass. This can be interpreted as both fermions present the
same suppression mechanism such that τ and c turned out to be in the same mass
scale, units of GeV. Nevertheless, the mass of the electron presents a completely new
behavior. Since me depends on AE, αE1 and αE2 − γE2 , the actual parameter space is
tridimensional, and 2D scatter plots would not show the action of the SST on the
electron. In fact, the numerical diagonalization reveals that me is suppressed by the
angle difference αE2 − γE2 and, at the same time, by the angle αE1 , a new behavior
not observed before in the model. Consequently, the results of the numerical explo-
ration of the mass matrix ME does show how the SST acts, consistently with the
approximated algebraic results outlined above.

The algebraic expressions, as well as the Montecarlo procedures of generating ran-
dom mass matrices in the quark and lepton sectors has shown the suitaility of the
model in addressing the fermion mass hierarchy without unpleasant fine-tunings.
Even more, the model suggests relations among different parameters, specially mod-
uli and angle differences in the polar parametrization of the Yukawa coupling con-
stants. Furthermore, the mass matrices in the quark sector are able to reproduce the
angle hierarchy and CP-phase in the CKM mixing matrix. Reciprocally, the existence
of Majorana fermions in the neutral lepton sector makes MN able to deal with the
large angles θL12 and θL23 of the PMNS matrix. Finally, the fermionic sector of the
model has shown that an abelian extension to the SM, together with a discrete sym-
metry and the suited set of X-charges and new exotic fields might present a new
framework to understand the fermion mass hierarchy and mixing angles.
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C O N C L U D I N G R E M A R K S

The SM of particle physics has been a successful framework to understand from
atomic physics to high-energy phenomena. Virtually, the SM has not changed since
its original formulation[Gla61; Sal67; Wei67] because of its remarkable agreement
with the majority of phenomenology. Nevertheless, the existence of some unexplained
facts such as fermion mass hierarchy might not be approachable from the original
SM. In this way, models BSM propose new scenarios by extending the current model
in so many ways, from extra dimensions to abelian extensions U(1)X in order to
explain such observations. The present work is focused on the latter, abelian exten-
sions of the SM, in which a nonuniversal set of U(1)X charges is found such that
every kind of chiral anomaly gets cancelled identically. This requirement implies to
extend the scalar and fermionic sectors.

The scalar sector, presented in chap. 5 of the model includes three Higgs doublets
Φ1,2,3 and two singlets χ and ψ (see tab. 7.1). The scalar singlets introduce the scale
of units of TeV, while the VEVs of doublets constitute the electroweak scale

v21 + v
2
2 + v

2
3 = (246GeV)2 . (7.1)

The singlet χ spontaneously breaks the group U(1)X by giving mass to the gauge
boson Z ′µ, while the doublets Φ1,2,3 perform the electroweak symmetry breaking,
yelding the photon Aµ and the weak bosons W±µ and Zµ. Concomitantly, the scalar
potential gives the respective Goldstone bosons G ′Z, G±W and GZ, four charged H±1,2,
two CP-odd A1,2 and five CP-even physical bosons, H1,2, H1,2 and h. The last boson,
h, is associated with the Higgs boson of 125 GeV detected at the LHC.

An important feature of the model comprises the vacuum hierarchy (VH) among
the VEVs of the scalar fields to obtain suited algebraic expressions and numerical
results consistent with the fermion mass hierarchy. The numerical values are

vχ = 2.5TeV, v1 = 245.7GeV,

vψ = 1.0TeV, v2 = 12.14GeV,

µN ∼ 1 keV, v3 = 250MeV.

(7.2)

Doublets X± Singlets X±

Φ1 =

(
φ+
1

h1+v1+iη1√
2

)
+ 2/3+ χ =

ξχ + vχ + iζχ√
2

+ 1/3+

Φ2 =

(
φ+
2

h2+v2+iη2√
2

)
+ 2/3− ψ =

ξψ + vψ√
2

0−

Φ3 =

(
φ+
3

h3+v3+iη3√
2

)
+ 1/3+ σ + 1/3−

Table 7.1: Scalar content of the model, non-universal X quantum number and Z2 parity.

67



68 concluding remarks

The fermionic sector is composed by the three families of SM fermions and new ex-
otic species, three right-handed neutrinos νe,µ,τ

R , two up-like quarks T1,2, two down-
like quarks J1,2, three charged leptons E1,2,3 and three Majorana fermions N1,2,3

R (see
tab. 7.3). This particle content allows the cancellation of chiral anomalies, together
with the posibility to obtain nonuniversal set of U(1)X charges in order to build
suited Yukawa Lagrangians and mass matrices.

The exotic species get heavy because all of them couple with χ and ψ, while the SM
fermions couple with the doublets in a very special way so as the fermion mass hier-
archy can be achieved. The central concept to deal with it is the concept of suppression
square texture (SST), which based on the VH, yields eigenvalues from the mass matri-
ces that suggest the hierarchy in their algebraic expressions and numerical behavior
with random Yukawa coupling constants.

Family Mass Mass

Quarks

1 u AUsαU−δU
v3√
2

d ADsαD−δD
v3√
2

2 c CUsγU−εU
v1√
2

s BDsβD−γD
v3√
2

3 t DUv1√
2

b CDv2√
2

Leptons

1 ν1L 0 e AEsαE−δE
v3√
2

2 ν2L
B2N2GN2
E2N2

µNv
2
1

v2χ
µ BEv3√

2

3 ν3L
A2N2GN1
D2N1

µNv
2
1

v2χ
τ CEsγE−εE

v1√
2

Exotic Quarks

1 T1
EUvχ√
2

J1
DDvχ√
2

2 T2
FUvχ√
2

J2
FDvχ√
2

Exotic Leptons

1 N1R
D1Nvχ√

2
E1

DEvχ√
2

2 N2R
E2Nvχ√
2

E2
EEvχ√
2

3 N3R
F3Nvχ√
2

E3
FEvχ√
2

Table 7.2: Summary of fermion masses.

The chapter 6 presents in detail the fermionc mass acquisition with the different
SSTs present in the mass matrices of each sector: up-like quarks, down-like quarks,
neutral, and charged leptons. Regarding neutral sector, active neutrinos νL acquire
light masses by the inverse seesaw mechanism (ISS) with νR and NR. Now, the
charged sector presents different kinds of SSTs which yields suppressed masses such
that the actual mass turns out to be smaller than its VEV. The masses are summarized
in tab. 7.2.

The mass matrices were not only diagonalized algebraically, but also numerically.
Each one of the matrices were generated with random coupling constants by Mon-



concluding remarks 69

Left-handed X± Right-handed X±

SM Quarks

q1L =

(
u1

d1

)
L

0+
u1R

d1R

+ 2/3+

− 2/3+

q2L =

(
u2

d2

)
L

+ 1/3−
u2R

d2R

+ 2/3−

− 1/3−

q3L =

(
u3

d3

)
L

+ 1/3+
u3R

d3R

+ 2/3+

− 1/3−

SM Leptons + RH neutrinos

`eL =

(
νe

ee

)
L

− 2/3+
νeR

eeR

+ 1/3+

− 4/3+

`
µ
L =

(
νµ

eµ

)
L

− 1/3−
ν
µ
R

e
µ
R

0−

−1−

`τL =

(
ντ

eτ

)
L

−1+
ντR

eτR

− 1/3−

− 4/3+

Non-SM Quarks

T1L

T2L

+ 1/3−

+1−
T1R

T2R

+ 2/3−

+ 4/3−

J1L

J2L

− 1/3+

0+

J1R

J2R

− 2/3+

+ 1/3+

Non-SM Leptons

E1L

E2L

E3L

+1−

−1+

+ 5/3−

E1R

E2R

E3R

+ 4/3−

− 4/3+

+ 4/3−

Majorana Fermions
N1R

N2R

N3R

0+

0−

0+

Table 7.3: Fermionic content of the model, non-universal X quantum number and Z2 parity.

tecarlo procedures and diagonalized numerically in order to test the suitability of
the model in achieving the fermion mass hierarchy without unpleasant fine-tuning
procedures.

In both sectors, quarks and leptons, the model reproduces the phenomenological
data at 5σ and 3σ, respectively. In the quark sector, the CKM mixing angles and
CP-violating phase, as well as the masses were found, while in the lepton sector
the masses of charged leptons and neutrino oscillation data were obtained. Such
searchings reveal numerical relations among Yukawa coupling constants which can
be interpreted by the results with the approximate algebraic methods in table 7.2.
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