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I do not know what I may appear to the world, but to myself
I seem to have been only like a boy playing on the sea-shore,
and diverting myself in now and then finding a smoother pebble
or a prettier shell than ordinary, whilst the great ocean of truth
lay all undiscovered before me.

— Isaac Newton

Dedicated to my family and my closest friends.






ABSTRACT

The fermion mass hierarchy is addresed from the framework of an abelian exten-
sion of the Standard Model U(1)y. By taking into account the cancellation of chiral
anomalies, a set of U(1)y charges is presented with extended scalar and fermionic
sectors. The scalar potential is shown, together with the scalar spectrum of the model
which includes the respective Goldstone bosons, new physical neutral and charged
scalars at TeV scale and the 125 GeV Higgs boson. Then, the mass acquisition in the
fermionic sector is studied in detail. The mass matrices present an specific texture
called suppresion square texture (SST) which suggests the mass hierarchy when they
are diagonalized by algebraic and numerical methods. The model turns out to be
consistent is consistent at 50 and 30 in the quark and lepton sectors, respectively,
without unpleasant fine-tuning procedures.

Keywords: Fermion masses, fermion mass hierarchy, extended scalar sector, ex-
tended fermionic sector, beyond the Standard Model, abelian extensions.

RESUMEN

La jerarquia de masas de fermiones es abordada desde el marco de una extensién
abeliana del Modelo Estandar U(1)y. Teniendo en cuenta la cancelacién de anoma-
lias quirales, un conjunto de cargas de U(1) es presentada con sectores escalares y
fermidnicos extendidos. Se muestra el potencial escalar junto con el espectro escalar
del modelo, el cual incluye los respectivos bosones de Goldstone, escalares fisicos
cargados y neutros a escala de TeV y el bosén de Higgs de 125 GeV. Después, la
adquisicion de masas en el sector de fermiones es estudiado en detalle. Las matrices
de masa presentan una textura especifica llamada fextura de cuadros de supresion, la
cual sugiere la jerarquia de masas cuando son diagonalizadas por métodos tanto al-
gebraicos como numéricos. El modelo resulta ser consistente a 50 y 30 en los sectores
de quarks y leptones, respectivamente, sin necesidad de usar ajustes finos indesea-

dos.

Palabras clave: Masas de fermiones, jerarquia de masas fermiénicas, sector escalar
extendido, sector fermidnico extendido, mdés alld del Modelo Estdndar, extensiones
abelianas.
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INTRODUCTION

Since the Antiquity there have been many models and ideas about the true nature
of matter and its fundamental components. Some ideas such as the atomic theory of
Ancient Greece started the road to the comprehension of the smallest pieces of matter.
The law of definite proportions of Louis Proust[Prog9], the first atomic theory after
John Dalton and Amadeo Avogadro, and the born of modern Chemistry gave the
evidence of the discreteness of matter in chemical reactions[Datos].

In Physics, however, the first acceptable model about the existence of atoms is
due to Albert Einstein in his 1905 article about the Brownian Motion[Einos], whose
proposal was the explanation of this random motion because the collisions between
water molecules and the pollen grains. Later, in 1908 Jean Perrin validated exper-
imentally this idea and consequently, the discrete nature of matter instead of the
continuous hypothesis[Perog].

Despite this successful discovery, it was the beginning of a new branch in Physics.
The discovery of subatomic systems such as the electron by J. J. Thompson[F.R97],
the atomic nucleus by Ernest Rutherford[Rut11] and the radioactivity by Marie and
Pierre Curie[Curo4] in the early 20th century provided new natural phenomena
which deserved a new theory of matter and its components. Moreover, the formu-
lation of the new Quantum Theory at that time supplied a new framework to be
employed in the search of satisfactory explanations of these discoveries.

One example of these new phenomena lies in the three kinds of radioactive decays:

¢ Alpha decay: A nucleus ZX transmutes into a new nucleus % 7_ ZZX through the
emission of an «-particle JHe. An example of this process is the nuclear reac-
tion present in the uranium decay chain

238U N 234Th +

* Beta decay: A nucleus 2 X transmutes into a new nucleus % +11 X by emitting a
B-particle (identified with a fast electron) and after Pauli the electronic antineu-
trino. The quintessential beta decay is the carbon-14 reaction

1UC o UN+e+ve.
* Gamma decay: A heavier nucleus 2 X* transmutes into a lighter 2 X through the

emission of a high-energy photon. An example of this process is the Technetium-
99m decay

WmTe — 25T+ .

Each one of these processes can be identified with the three fundamental forces of Na-
ture: the strong nuclear force, the weak nuclear force and the electromagnetic force,
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respectively. The electromagnetic and weak interactions are already understood un-
der the unified Electroweak model, and the strong interaction is described by the
Quantum Chromodynamics, at least in its perturbative regime. The conjunction of
these schemes constitutes the Standard Model of Particle Physics (SM), the current
theory of the fundamental nature of matter.

ARE THERE PHYSICS BEYOND THE STANDARD MODEL?

Nowadays, there are some non-explained phenomena by the SM. The nearest is the
neutrino mass and its oscillations, but further phenomena as the dark component of
the matter in the Universe, or the relation of these interactions with gravity, physical
information and entropy gives new theoretical and experimental phenomena to-be-
explained in the called Physics Beyond the SM (BSM). Some of these new schemes
are:

1. Abelian extensions U(1)": These models introduce new abelian vector bosons.
The couplings of this new gauge boson to SM-fermions are determined by a
new set of charges in order to forbid unwanted couplings between light fer-
mions and scalar bosons whose VEVs are at GeV scale or above. The mass
of the lightest fermions can be obtain through radiative corrections of their
propagators or by Majorana masses and see-saw mechanisms in the case of
neutrinos[Mar+14b; MMO17].

2. Extended scalar sectors: From the fact that there are no theoretical constraints
related to the scalar spectrum, the addition of isospin singlet, doublet or triplet
scalar fields is possible. The quintessential theoretical framework is the 2-Higgs-
Doublet models (2HDM)[Mar+14a; Mar+15].

3. SUB)®@SU(3)®@U(1) models (331): The enlargement of the weak isospin SU(2)
group allows the introduction of right-handed neutrinos among other fields

whose interactions with SM fermions are mediated by weak bosons W3jE and
Z' heavier than the current weak bosons[CMO12; PQ14; CHMO13].

4. Left-Right symmetry: The chiral symmetry between left- and right-handed sec-
tors can be accomplished by the introduction of the gauge group SU(2)r broken
at a higher energy scale than the electroweak. The right-handed neutrino could
be set at large energy scale by Majorana masses. This framework provides the
preferred Fritzsch ansatz mass matrices giving an explanation to the fermion
mass spectrum[Frios; Friy8; FTY9g3].

5. Kaluza-Klein Theories (KK): Since the early 2oth century the introduction of
tiny extra dimensions in the spacetime has given an interesting framework for
unifying the fundamental interactions. The KK modes could be observed at
particle accelerators providing information about the size of the new space di-
mensions and hints of quantum gravity. Sometimes, these dimensions are suit
at Planck length because the lack of observations of this extra modes[Kal21].

6. Large Extra Dimensions (LED): The Planck scale, considered as the quantum
gravity scale, is so far to be testable employing the current technology. The LED



1.1 ARE THERE PHYSICS BEYOND THE STANDARD MODEL?

framework introduces extra dimensions with size of millimeter or micrometer
increasing the dimensions of space and changing the Newton gravitational con-
stant G. In this way, the new Planck scale could be at units or hundreds of TeV
and consequently bringing closer the quantum gravity to feasible experimental
corroboration AHCGo1].

7. Randall-Sundrum (RS): The hierarchy problem produced by the enormous dis-
tance between the electroweak and gravitational energy scales can be under-
stood in the framework of branes introduced in RS models. The RS-I model
proposes the universe has two branes (the electroweak scale and the Planck
scale) with the bulk between them which produces the energy hierarchy. On
the other hand, the RS-II model introduces only the electroweak scale[Cas+08].

There are more BSM proposals which are not reported here to make short the list.
All of these schemes should satisfy the correspondence principle at low energy limit
obtaining the SM as an effective theory in order to comply the current experimen-
tal constraints. Nevertheless, each one of them has its own traits which could be
observed gathering more data from different laboratories and techniques. Moreover,
some of these schemes can be obtained as low-energy effective theories, specially the
abelian extensions of the SM, the simplest BSM framework and the most falsifiable
among all of them.

The present work is devoted to present an abelian extension to the SM to address
the hierarchy observed in the SM fermions masses. The part i outline the general
framework for constructing abelian extensions. The chapter 2 brushes up the fun-
damental bases of spacetime symmetries, Yang-Mills scheme and Spontaneous Sym-
metry Breaking. After this, the chapter 3 reviews the most important properties of
the Standard Model and comes out the general tools presented in the previous chap-
ter. By last, to close this part the concept of fermion generation or family is studied
in chapter 4 embedded in the issue of mass matrices and mixing angles. Also the
charged- and neutral-current interactions involving flavor changing are reviewed.

The part ii presents the construction of an abelian extension of the Standard Model
whose aim is to obtain the mass spectrum of the SM fermions. The main proposal
of the work is presented in chapter 6, where the fermionic spectrum of the model is
shown together with the Yukawa Lagrangians of the quark and lepton sectors and
the mass matrices. The concept of suppression square texture is introduced, which is the
cornerstone of the model. Moreover, in this chapter the mass eigenvalues and mixing
angles are obtained, and the mass matrices were generated randomly by Montecarlo
procedures and diagonalized numerically in order to check the actual suitability of
the model to reproduce phenomenological data[PG+16].

Finally, the part iii closes the work with the chapter 7, where the results are dis-
cussed in the light of other abelian extensions.






Part1

GENERAL FRAMEWORK

This part is devoted to review basic concepts and to establish the notation
before studying the new model, so this could be skipped without any
problem.

The fundamental concepts related to spacetime and internal symmetries,
as well as spontaneous symmetry breaking are reviewed in the chapter 2.
In chapter 3, it is presented also the Standard Model of Particle Physics,
the current theory about matter and fundamental interactions with exper-
imental corroboration. Finally, the concept of particle family is introduced
in chapter 4 with the mass matrices, and their corresponding rotation ma-
trices are studied in order to understand the charged and neutral flavor-
changing-currents.






THEORETICAL BACKGROUND

Field theories are constructed using different physical ideas with their corresponding
mathematical tools. The symmetries of space and time describe the arena where
fields propagate and interact. Its analysis gives suited classifications of the fields
according to their mass and spin. Along with the rotations and translations described
by the Poincaré group, there are three important discrete transformations: the space
inversion or parity (t,x) — (t,—x), the time reversal (t,x) — (—t,x) and the charge
conjugation. These transformations are so important for describing chiral fermions or
asymmetries between matter and antimatter (CP violation). Moreover, the difference
between Dirac and Majorana fermions are important ir order to study neutrino mass
generation.

However, the Poincaré group does not predict any kind of interaction between the
fields described by its representations in disagree with the existence of three funda-
mental interactions. This problem is solved by the Yang-Mills scheme (YM). It begins
by proposing a global continuous symmetry in a set of fields described by a Lie
group. When the continuous symmetry becomes local it is necessary to correct the
derivative operator by adding a connection term which plays the role of the potential
or gauge boson of the interaction whose gauge symmetry is determined by the Lie
group. The electromagnetic, weak and strong interactions can be described in this
scheme by the special unitary Lie groups U(1), SU(2) ® U(1) and SU(3), respectively.

Although the successful description of electromagnetic and strong nuclear inter-
actions in the YM scheme, the weakness of the weak interaction cannot be totally
understood in this frame. Moreover, the existence of a definite energy scale given by
the Fermi constant creates the necessity of another scheme. The introduction of scalar
tields which develop a vacuum-expectation-value (VEV) with a smaller Lie group as
its symmetry brings the spontaneous breaking of the original symmetry (SSB). An
important consequence of this process is the acquisition of masses by some gauge
bosons at the energy scale of the VEV. In effect, this scheme has been proven experi-
mentally with the discoveries of the weak bosons W*[Arn+83a] and Z[Arn+83b], but
its final and definite corroboration was the detection of the Higgs boson[Aad+12].

Because this large set of methods and physical concepts, this chapter is devoted
to do a quick review about them. The section 2.1 presents the Lie algebra associated
to the Poincaré group and the set of representations with phenomenological interest.
The section 2.2 brushes up the Yang-Mills scheme in constructing field theories with
gauge symmetries based on Lie groups. Finally, the section 2.3 reviews a general
scheme of spontaneous symmetry breaking on special unitary groups SU(N).

POINCARE GROUP AND LORENTZ INVARIANTS

Since the researches done by Galileo and Isaac Newton, it is known that Nature has
symmetries. The homogeneity and isotropy of space described by Newton in his
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Principia can be described by the Lie group composed by the semidirect product
of the 3D translations R® with the special orthogonal group SO(3) whose elements
are the 3D rotations, known as the 3D Euclidean group or inhomogeneous SO(3)
group[Gil12]

ISO(3) = R3 % SO(3). (2.1)

On the other hand, the Galilean relativity principle proposes the invariance under
3D boosts or changes between inertial frames. Finally, there is the invariance under
time translations finishing with a ten-parameter group known as the Galilean group.

The current theory of space and time is the scheme proposed by Albert Einstein,
where the 3D translations is unified with the time translation as 4D translations R3'',
while 3D boosts with 3D rotations are unified in the 4D rotations with six parameters
described by the Lorentz group SO(3,1). The resulting group is the Poincaré group
or inhomogeneous Lorentz group

ISO(3,1) = R*! % SO(3, 1). (2.2)
The Poincaré group ISO(3,1) has the associated Lie algebra iso(3,1) composed by
the four generators of translations P,, and the six generators of rotations L,y = —Ly
where 1, v =0,1,2,3. The Poincaré algebra is[Kakg3]
[Pu/ PV] - 0/
qu/ Pp] =—i (nuva *HVpPp), (2-3)

Up\// Ipcr] =—i (nupIVG _T]vp]pcr +T]pclvp _T]vcr]pp)

where n,v] = M"Y] = diag (+, —, —, —) is the Minkowski metric which distinguishes
between time (+) and space (—). The explicit form of the Poincaré generators de-
pends on the representation where the transformation acts, but there is an orbital
representation which involves the spacetime coordinates and their derivative opera-
tors
P, =iy,
: (2.4)
Lyv =1(xu0v —%0p) .
The translation generator is the same for all representations, and in the same way the
orbital representation of the rotation generators. However, J,,- can be split into its or-
bital part L, and its spin or intrinsic part S,.» which depends on the representation
where it acts.
The Poincaré algebra can also be expressed in terms of 3D rotation scalars and
vectors (3-vectors). The generators of 3D boosts and rotations are, respectively,
1 1 ..
k k k k
Kk = —Eeol Joj, J&= Ee” Jij, (2.5)
while the translations split them in P° time translation and P! space translations. The
Lie algebra turns out to be

U4 7] = +ielJx, K K] = —ief g%,

%, K] = +ieb KK, K P] = +isY PO, e
%, P)] = +ieT K", K, PO] = +iPt,

Ui, PO] — 0, [Pi, PO] —
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Poincaré representations

The different forms of S, can be obtained if the Poincaré representations are deter-
mined. They can be labeled employing the Casimir operators of the Poincaré algebra:
P2 = P, P* = n*VP, P, and w2 = W, WH where the latter is the Pauli-Lubanski
pseudovector[Ramg7]

1 1
WH = ZeMYPP Jop = S euvpoP V'SP (2.7)

whose orbital part vanishes because the antisymmetric symbol €y ,s. Their corre-
sponding eigenvalues are

P2 = m?, W2 =m?s(s+1) (2.8)

where m is the proper mass of the field in which the Casimir operator acts and s is
its spin. There are two phenomenologically interesting cases depending on the m?
eigenvalue:

* Massive case: When a massive field is on rest its 4-momentum or translation
operator takes the form[Rydg6]

Pp. = (m/ 0/ 0/ O)/ (29)

in order to obtain the correct eigenvalue equation P? = m?2. Hence, its Pauli-
Lubanski pseudovector results with the components

wo = 0, W =-—-m]j, (2.10)

where J are 3-vectors which generate the little group SO(3) of 3D rotations with
algebra so(3) = su(2) (see the first commutator of (2.6)), so the fields with mass
m can be classified by its spin (0, %, 1, etc.).

* Massless case: If the field is massless its 4-momentum must be[Rydg6]
PH* = (w,0,0, w), (2.11)

obtaining P? = 0. w represents the frequency (energy) of the massless field. In
this conditions the Pauli-Lubanski pseudovector has the components

WO =—wP-S, W =-w(L'+K?),
3 2 2 1 (2.12)
W? = —wP-S, W =—w (L*—K").
Their commutators are
W w?] =o,
(W2, W3] = —ioW!, (2.13)

W3, W' = —iwW?,
and consequently the Lie algebra of the 2D Euclidean group ISO(2) is obtained,
so it is the little group for the massless representations. The suited eigenvalue
is the helicity operator

_P-S

h="pr (2.14)

9
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which could be £1. Consequently, the massless representation has only two
representations labeled by positive or negative helicity.

Now, inside the massive representations there are SO(3) representations. However,
they can be studied in a better way employing the homeomorphism between the Lie
algebras so(3,1) ~ su(2) ® su(2). Moreover, since su(2) = so(3) the massive represen-
tations of the Lorentz group can be labeled by two numbers corresponding to their
spin. The phenomenologically interesting representations are[Ramgy]:

¢ (0,0): The null spin number in both groups leads to the interpretation of this
representation as the scalar fields. In this representation S, = 0. Its evolution
is determined by the Klein-Gordon equation

(O+m?) ¥ =0, (2.15)

obtained by optimizing the Klein-Gordon action
1
Ska :Jz (3, D@ + m?@?) d*x, (2.16)

and its corresponding propagator in momentum space is[Maroz]

~ . 1

Gxa(p) = (2.17)

T mTiie

* (3,0): The representation carries one-half spin in the first SU(2), so that, it
represents a chiral or Weyl fermion. For convention these fermions are called
left-handed. Because the presence of spin, the intrinsic generators are not zero
but S,v = % [0y, 0v] where o™ = (1 ,o' o2, 03) and the latter three components
are the Pauli matrices.

* (0,3): Concomitantly with the left-handed representation, the one-half spin
in the second SU(2) leads to the right-handed fermions. The corresponding

intrinsic rotation generators are S,y = % [6, 6] where the tilde o, are 6% =
(1 ,—0!,—0?, —03).

* (3,0) ® (0,3): The direct-sum of the two previous representations yields the

Dirac or Majorana fermion ¥ = (Ib]_,II)R)T, depending on its behavior under
charge conjugation. In this representation o* and &* are joint together in the
Y* matrices

0 o*
Y = , (2.18)

and consequently S,y = + [y, v+]. Its motion is dictated by the Dirac equation

iy —m)p = (i@ —m)p =0, (2.19)

obtained from the Dirac action

Soime = | B (1740, —m) p a'x, (2.20)
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where 1 = Ty? is the Dirac adjoint of { and its corresponding propagator in
momentum space is

s 1 s p+m
 p-m+ie  pZ-m?+ie

GDirac(p) (2-21)
It is remarkable that chiral or Weyl fermions are massless because the mass
term mixes left- and right-handed chiralities. In the case of m = 0 the Dirac
equation and action decouples in two independent terms of {1 and P defined
by the parity operators

__ A5 5
T ) (2.22)

Pr =

where v° = 1y°%y'y2y3 is the chiral matrix, and the Dirac Lagrangian becomes
in the Weyl Lagrangians

Syt = [P (100, dx+ | G 1640, b ', (2.23)

11

* (3,3): Finally, the existence of one-half spin in both SU(2) results in the vector
representation which can be represented by two spin indices or one vector
index Ay, = (0,)** Axq. Its spin generators can be expressed by

(Suv)pg =1 (6ﬁnva - 65” ucr) . (2.24)

The motion of vector fields is determined by the Maxwell-Proca equation[Grego]

duF*™Y +m?AY =0, (2.25)
obtained from the Maxwell-Proca action
Smp = Jq‘) (FunF*Y —m?A L AF) ¥, (2.26)

where F,,, = 90,A, —0yA,, is the exterior derivative of A . In the next section
these entities will be interpreted as the strength field tensor and the field po-
tential, respectively. Its corresponding propagator in momentum space using
the unitary gauge is

KV
T

= 1—p2 "l tie (2.27)

YANG-MILLS FIELDS

In the same way as Galileo, Newton and Einstein proposed relativity principles
which can be associated to Lie groups as the Galilean or Poincaré group, the re-
searches done by Faraday, Maxwell and several physicists provided the electromag-
netic theory. Among its different characteristics, it was the first special relativistic
theory, even before the relativistic mechanics, but their main trait is its invariance

11
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under gauges of the electromagnetic scalar and vector potentials. The Maxwell equa-
tions in their covariant fashion are[Bar64]

0,

- (2.28)
O xF*Y' =0

where F ., = 0,A, —0yA,, is the strength field tensor, the exterior derivative of the
electromagnetic potential A, the fundamental field in the theory; xF,,- is the Hodge-
dual of the strength tensor; and j* is the source of electromagnetic field, the electric
current density.

When the electromagnetic potential (from now on gauge potential or gauge field)
is shifted in the following way

Ap— Ap—0uX (2.29)

the Maxwell equations remain unchanged. This property is called the gauge invariance
of the electromagnetic theory, the simplest example of gauge theories.

This method could be extended to more complex fields whose gauge symmetry is
described by Lie groups. Even the electromagnetic theory has its own gauge group,
the unitary transformations in one dimension U(1), the simplest unitary group. For
larger groups, the field is described by a multiplet, one of the representations of
the Lie group. Without lose of generality the vector representation can be used for
constructing the scheme. The multiplet is represented by a column vector[Maroz2]

T
V) = (pIx) - oN) (2.30)
which transforms under a gauge transformation in the following way
Y(x) = ¥'(x) =UV¥(x), (2.31)

where U is an element of the SU(N) gauge group labeled by N2 — 1 continuous
parameters 0%. It can be written using the exponential map

U(x,0) =exp (ig8*Gy) 1 —1g0* Gy + - - - . (2.32)
The elements G are N x N matrices which span the Lie algebra su(N)
[GOUGB] = ifyoqsGw (233)

which is determined by the structure constants fyaﬁ.

This kind of gauge transformations does not affect the derivatives of ¥ because
they are global, act in the same way at every point in spacetime. If the transformation,
however, is performed locally, i.e., when the parameters depend on the spacetime
coordinates 0% = 0%(x) it is mandatory to include an affine connection A, = A{G«
in order to keep the invariance of the derivative of V. In this way it is obtained the
covariant derivative of the gauge group[PSg5]

D¥W=0,¥—1igA,¥ =0,¥Y—igA G.Y, (2.34)
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where the affine connection, also called the gauge potential, transforms in such a
way that it absorbs the derivatives of the group parameters

1
AS — AY + 6aue"‘ + 1%, APOY. (2.35)

The affine connection (gauge potential) also has its associated curvature tensor or
strength field tensor, which is obtained trough the self-commutator of the covariant
derivative

Dy, Dyl = —igF ¥ = —igF, GaY, (2.36)
Firy = 0uAS —d A +gf%  ARAY. '
This field could also be interpreted as the covariant exterior derivative of the affine
connection. FiY,, contains the electric-like and magnetic-like fields in analogy to elec-
trodynamics, but in this case there are N2 —1 fields for each kind. Moreover, in order
to give its own dynamics to the gauge potentials, F}, is suited for constructing its
corresponding kinetic term. In this way, the gauge field Lagrangian is

Lym = Tr (F*VFy ). (2.37)

The interaction term depends on the Lorentz representation in which ¥ belongs.
If ¥ is a Lorentz scalar field @, its coupling with the gauge fields is introduced by
replacing each one of the coordinate derivatives 0, by its gauge covariant version
D, obtaining

2 2
LxGym = 1DHQDTD”CD + T2 12)“(1)*6“(1) FRLLLINGE
' 2 2 2 2
ig - . (2.38)
+ - (0194Ga0) AL + T-0TAA D,
where A?“B = A(0"*B) — (0*A)B, but if ¥ is a Dirac field, the new Dirac covariant
Lagrangian is

Lbiracym = ¥ (iy"Dy —m) ¥ =¥ (iy"0, —m) ¥ + gPy* G VAT, (2.39)

In this way, the total covariant Lagrangian can be expressed in terms of the gauge
kinetic term, the free KG and Dirac Lagrangians and the interaction terms ]&A&
where Jk are the gauge current densities, sources of the gauge fields. It receives
contributions from scalar and fermion fields

o ]
M — %9 (cDT d HG(xcb) + gUYRG V. (2.40)

Note that although any mass term quadratic in A, is forbidden because it breaks
the gauge symmetry, the covariant scalar Lagrangian contains a quadratic term and
so the gauge field acquires an effective mass depending on the magnitude of the
scalar field. The consequences of this term when the scalar field does not vanishes in
spacetime are reviewed in the next section.

13
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SPONTANEOUS SYMMETRY BREAKING

The previous two sections were devoted for reviewing Poincaré and gauge symme-
tries, as well as some of their physical consequences as the spin classification of the
fields and the existence of gauge fields spanning on the Lie algebra of the local inter-
nal symmetries. Nevertheless, the weakness of the weak nuclear interaction and the
existence of a characteristic energy scale in the Fermi constant v2Gf = (246 GeV) 2
suggest that there is an additional mechanism besides the symmetries: the symmetry
breaking.

There are different examples of symmetry breaking in Physics. One of the most
important is superconductivity[PSg5]. Above the critical temperature T the electrons
inside the material have the gauge symmetry U(1) of the electromagnetic interaction,
but below T, the electrons reconfigure into Cooper pairs described by a scalar field
¢ which develop a background non-zero vacuum energy (¢), # 0 bringing the
consequence of the emergence of a non-vanishing photon mass because the U(1)
symmetry breaking inside the material. In effect, this scheme is adequate to describe
how some gauge symmetry reduces to a smaller one.

General scheme of SSB

The general treatment with non-abelian groups is done as follows. The physical
system is constituted by ®(x) = [$%(x)], a multiplet of N scalar bosons lying in
the vector representation of the gauge group and the associated gauge fields A}.
Their Lagrangian is

1 1

L= _ZFOLHVF‘XHV + 5 (DuQD)T (DMD) — V(0T D), (2.41)

where D, ® =09,® —igAJG«® and V(OTO) is the Higgs potential[Maroz]

2
V(o) = ﬁp*qu% ((DTcD) , (2.42)

in which A > 0 in order to keep the potential bounded from below. These parameters
determine some scalar field configurations @ at which the potential is minimized.

The optimized field configurations can be calculated by differentiating the Higgs
potential respect to Of = [bo] (PTD = pad?)

oV 2. a
= AOTD) b =o0. :
sp. ~ WOt HA(0fe) o (2.43)
This equation has two solutions depending on the sign of p?:
<cDT<D>0=o . w20,
| u2 5 (2.44)
<<D q>>0 -—£ . u2<o.

The latter corresponds to a field configuration with non-vanishing VEV (®), = ®o.
However, only one of these infinite configurations can be chosen, triggering the SSB
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mechanism. Meanwhile, the scalar field is redefined to describe field excitations over
VEV

O (x) — O(x) + o, (2.45)

where the new ®(x) has no VEV and acts as small oscillations about ®,. Conse-
quently, the Lagrangian becomes

1 1
L= 2P R = V(010) + 5 (2,0) (24 )

. o .
+- <CDTG“ 0 an) A%+ D 0fGaAgH
5 (2.46)

+ 2 (07GaGp®o + O{GuGy®) AZAPH

_ig 9
2 2

When the VEV is activated, the last term of the Lagrangian corresponds to an
effective mass term associated to gauge fields

0, OTAMG @ + Z- O GoGp DoATAPH,

2
M2, = %ogcacgq)o, (2.47)

which has vanishing and non-vanishing eigenvalues determining the new vector
mass spectrum. If the vacuum does not remain invariant under the action of some
generator, it is said that is a broken generator, and there will be a massless Golstone
boson with an associated massive gauge boson. On the contrary, if the vacuum re-
mains invariant, it is said that is a non-broken generator, and there will be a massive
Higgs boson with a massless gauge boson.

¢ Broken generator:

(Ga)$ (@0)° #0 = mea=0 , maa#0 (2.48)

* Non-broken generator:

(Go)§ (@0)* =0 — mee#0 , max=0 (2.49)

Finally, the number of broken generators fix the number of new massive gauge fields
and Goldstone bosons[Gol61; GSW62], and from the original number of generators is
fixed the number of Higgs bosons and massless gauge fields which span the remnant
symmetry.

Goldstone theorem

The last procedure associated to SSB scheme is to obtain the mass matrix for scalar
fields, which is done employing the Goldstone theorem. It begins expanding the Higgs
potential up to second order in the scalar fields[Maroz]

V(®) = V(® )+1<a2v> (6% — 6S)(¢° — ) + - (2.50)
oJt5 3PP o, 0 0 -5

15
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where the second term is interpreted as the effective mass matrix:

2V
M2, = <> .
b dbpaopP ®, (2.51)

whose diagonal elements are not negative because prior minimizing potential.
To evaluate how each group generator acts on the VEV, the scalar fields are phase-
shifted under the gauge group

¢ — ¢+ 80, (2.52)
where
5p% = gg’: 50% =180 ((Gw)$ °), (253)

which results in some variation on the potential

V(®) - V(D)+dV (D) (2.54)
()Y o OV a
SV (@) = 55ad0% =180% 7g ((Ga)% ¢°) (2.55)

Now, differentiating 8V respect to ¢

) oV d
85V = 50% — ((Gx)% P
a(bc ad)a ad)c (( )b d) ) (2 6)
22V >

a b
W ((Goc)bd) )

and setting ® = @, the optimized potential gives

+00%

2
0= (55 (G203 88) = M (Gt o) (257)
This condition gives two different options. In the one hand, if the generator anni-
hilates the VEV, its symmetry remains intact and the scalar field ¢* acquires mass
becoming into a Higgs boson. On the other hand, if the generator is broken, the scalar
field ¢® remains massless as a Goldstone boson and the unbroken generators span
a new smaller symmetry from the remnant gauge group with the massless gauge
bosons.

Fermion masses

The SSB is not only useful for explaining the gauge boson masses, but also the fer-
mion masses. The Weyl Lagrangian

Lweyt = WAL + Drdbr, (2.58)

describe massless fermions with definite helicity, i.e., the left- and right-handed com-
ponents evolve independently. In the case of massive fermions, the Weyl Lagrangian
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includes the Lorentz invariant bilinear forms \{; g and P such that there appear
mass terms

YW + Ppbr —m(Pp g +hoc.). (2.59)

In effect, the mass term couples fermions of different chiralities. However, chiral
gauge theories (as SM) which describes different interactions between left- and right-
handed fermions does not admit this term because it explicitly breaks the gauge
symmetry.

In order to solve this drawback, instead of adding explicit mass terms, the La-
grangian contains interaction terms between fermions and scalar bosons, known as
Yukawa couplings which are weighted by the Yukawa coupling constant h

Lweyl = VAL + VPR — h(P PR +hc.). (2.60)

This interaction term shows that the emission of a scalar boson switches the chirality
of the fermion. Moreover, if the scalar field ® acquires a non-vanishing VEV the last
term will behave like an effective mass term

Lweyl = VoL + PP — hpp g —mipp g +hec, (2.61)

where m = h®, is the mass term associated with the Dirac spinor ¥ = (Pg, P )7.
Hence, the SSB of gauge chiral symmetries also implies the acquisition of masses by
the former chiral fermions.

In this way, the synthesis of spacetime symmetries described by the Poincaré
group, the internal symmetries and the Yang-Mills scheme, as well as the sponta-
neous symmetry breaking mechanism constitute the framework for constructing the-
ories about the microscopical nature of matter. The next chapter presents a quick re-
view of the SM as a phenomenological application of the physical principles brushed
up in the present chapter.
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STANDARD MODEL OF PARTICLE PHYSICS

Along the development of science there were different theories about matter and
its interactions, which have been improved with each one of new experimental dis-
coveries or theoretical frameworks as the first detection of subatomic particles or
the formulation of the theory of relativity or the quantum mechanics. Every one of
these progresses and discoveries are condensed in the Standard Model of Particle
Physics[Gla61; Sal67; Wei67] (SM), the current theory of matter. A huge number of
its predictions have been corroborated experimentally, from the extremely precise
prediction of the gyromagnetic factor of the electron until the detection of the Higgs
boson in 2012[Aad+12].

Although there are natural phenomena which cannot be framed in the SM without
important modifications or unpleasant fine-tuning of the parameters of the model,
it still is the current paradigm for understanding fundamental interactions and par-
ticles. For this reason, this chapter is devoted to review the main aspects of the SM.
First, the section 3.1 describes the gauge structure of the SM and proposes the funda-
mental features to classify the particle content. Second, the Glashow-Salam-Weinberg
electroweak theory is reviewed employing the concepts of Yang-Mills fields and SSM
in the section 3.2. Finally, it is presented the low-energy limit of the SM, correspond-
ing to the Fermi model for weak interactions in the section 3.3.

SM GAUGE SYMMETRIES

The SM fundamental gauge group Gsy is constituted by the direct product of three
special unitary groups, each one associated to a fundamental force

Gsm = SU(3)c ®SU(2); ® U(1)y- (3.1)

The first group SU(3)c comprises the strong interaction phenomena whose gauge
bosons are the eight gluons G,. This group gives the first benchmark to classify
SM particles. Fermions which interact strongly are called quarks q, belonging to the
vector 3¢ representation of SU(3) ¢ and so existing in three different species or colors.
On the other hand, fermions which do not interact strongly are leptons {, belonging
to the singlet 1¢ representation and so blind to gluons. Moreover, the number of
quarks or leptons is a conserved quantity; there is the baryon number which assigns
1/3 for each quarks (and —1/3 for antiquarks), and the lepton number which assigns
+1 for each lepton (and —1 for antileptons).

The second group SU(2); describes the weak isospin gauge symmetry, useful for
describing 3—decays and in conjunction with the last weak hypercharge group U(1)y
constitutes the electroweak gauge group SU(2); ® U(1)y. Its gauge bosons are W, =
WiTaL and By, respectively, where Ty for o = 1,2,3 are the three generators of
SU(2); .
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The L subscript of the weak isospin group points out that W, interact only with
left-handed fermions. In this way, every left-handed fermion lies in an isospin dou-
blet 21 representation of SU(2); while right-handed fermions are singlets 11, en-
suring the parity violation of weak interactions. On the other hand, both left- and
right-handed fermions have weak hypercharges in such a way that their electromag-
netic charges are obtained with the Gell-Mann - Nishijima relation

Q=T +Y (3-2)

where T31 = diag(1/2,—1/2) is the diagonal generator of the isospin group, i.e., it
acts only on left-handed fermion doublets. As a consequence, the weak hypercharges
of right-handed fermions are equal to their electric charges.

The last feature of a fermion which also determines its name is its electric charge.
The up quark u has +2/3 and the down quark d has —1/3, while the electron has —1
and the neutrino has 0. These features are summarized in table 3.1.

SUQB)c SU2)L Tar Y Q

ur 3c 2r +1/2 +1/6 +2/3
d. 3¢ 2t —1/2 +1/6 —1/3
UR 3C 1L 0 +2/3 +2/3
dg 3c 1L 0 -1/3 -1/3
Vi 1C 2r +1/2 —1/2 0
er 1c 2r -1/2 —-1/2 -1
er 1c 1 0 —1 —1

Table 3.1: Representations and electroweak charges of SM-fermions.

Moreover, this set of fermions is duplicated twice, resulting with three copies of
fermions with the same charges. These sets are called families or generations which
will be studied in detail in chapter 4.

ELECTROWEAK THEORY: GLASHOW-SALAM-WEINBERG

The electroweak sector of SM can be described by the following Lagrangian

Lew = LGauge + LFermion + LHiggs + Lyukawa (33)

which has been divided in four different terms useful for their analysis. It is im-
portant to note that Lgermion and Lyykawa have baryon and lepton sectors because
SM does not mix quarks and leptons. Each one of these Lagrangians are reviewed
in the following subsections except Lyykawa Which is reviewed in the chapter 4. It
is important to note that because the gauge symmetry, the normal derivative have
to be replaced by the covariant derivative. For weak isospin doublets the covariant
derivative is

D, =3, —igW, —ig’YB,, (3-4)

and for singlets D, = 9,, —ig’YB,. g and ¢’ are the dimensionless coupling con-
stants for weak isospin and hypercharge interactions, respectively.
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Electroweak SSB

The origin of the electromagnetic interaction and the weakness of the weak inter-
actions are described by the Higgs Mechanism applied to the electroweak group
SU(2); ® U(1)y. This procedure is done by introducing an isospin scalar doublet
hypercharged once Y = +1

.
@ = (‘io> , 55)

whose superscripts indicate the electric charges of the components. Its dynamics is
described by the Higgs Lagrangian

1
Lriggs = 5 (D*0)" (D, @) — V(0T D), (3.6)

where the Higgs potential is
2
V(oto) :uz(DT(D—i-?\(q)T(D) . (3.7)

The electroweak SSB follows the same procedure shown in subsection 2.3.1. Thus,
evaluating the Higgs Lagrangian at the vacuum expectation value (VEV) when n? <
0 the gauge boson mass terms are obtained

2 /
VEV _ 9 pt 99 ot
L = 7q>OwLw”cDo - TcDOWLBHcDO
» E: (3-8)
+ T(D(T)BHW“CDO + TBHB“(D(T)CDO.

On the other hand, the structure of the VEV is chosen in such a way that it would
be electrically neutral, i.e., Q®y = (Tar +Y) Do = 0. Hence, Ty, Tor and T3 —
Y become broken generators and their corresponding gauge bosons acquire mass.

Consequently, the Higgs field can be expressed as

bt
= h+v+in | 7 (3-9)
V2
where v = —u? /A, and the expanded mass terms are
2,2 2.2 2.2
VEV _ IV v+t wumt L 9V v —twu—r . 9V 131430
gg/vz gg/vz gzzvz (3.10)
+ 55 W3BH + TBHW” + 5 BuB".

The first two terms are the Wf mass terms, and the other describe the mixing
between B, and Wf’L which can be condensed in the following matrix

2

2 /
v g —g9 B
— (B W3 . (3'11)
s (o w2) (—99’ 9" ) <W3”>
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The mass matrix is diagonalized by the following rotation on the plane (B u,Wi)

BH _ cCw —Sw AH (3.12)
WE’L Sw Cw ZH

where tw = g’/g defines the Weinberg angle. It yields the massive Z,, and the
massless A, identified with the photon. In this way, the gauge bosons acquire masses

L = m3wHiwH %m%ZHZ” + %mf\AHA”. (3.13)
where my = gv/2, mz = gv/2cw = myw/cw and ma = 0.

As a final procedure, according to the Goldstone theorem, reviewed in subsection
2.3.2, the existence of three massive and one massless gauge bosons implies the
existence of three massless and one massive scalar fields. These are obtained by
calculating the Hessian matrix for the minimized Higgs potential:

2V
2 pr— ———— pr—
Mox = <a¢+a¢)®0 O

62V>

2

= —_— = O’
m'Tl (azn ®,

the scalar charged bosons ¢+ and the pseudoscalar n remains massless and get eaten
by WE and Z,,, respectively. On the opposite, the even scalar boson acquires mass

(3.14)

22V
2 2 a2
mp = (azh>®o = —u = Av-. (315)
This is identified with the 125 GeV scalar boson discovered in 2012.

Fermion Lagrangian

The interactions between fermions and gauge bosons can be obtained from the Weyl
Lagrangian for chiral femions

Lrermion = UL + iegPer +iq P qr + itgPug +idgPdg, (3.16)

where the minimal coupling has been applied with the covariant derivatives. By
expanding the kinetic and interactions terms the Lagrangian is

LFermion = 1qLqL + iUrdug + idrddg + 0 + iegder

3
/
+ oUWt — T TLBU — g'eRBer,

_ g __ __ g —
+quWq[_+€qLBqL+ gluRBuR—ngBldR (3.17)
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where the interaction terms of the doublets can be expressed in terms of the gauge
bosons WjE (W1 T iWﬁ) //2. The interaction terms for the quark sector are

qUNqL + %WBOIL
- <gW3 - H) up + \7

ur W dL (3.18)
AW — ECTL (9W3 - BB> de,

QN\

S

and for leptons

!
TLWe — %eLBeL

= T (WP —g'B)vi +

99— T 3 ’
+7€M VL — z€L + B eL
V2 7 (gw*° +g'B)

Since the electroweak interaction contains the electromagnetic force, it is possible
to obtain it with the rotation shown in eq. (3.12) and by defining e = gsw = g’cw, the
electromagnetic coupling constant. Replacing it into the fermion Lagrangian yields

\%VTW Ter (3.19)

£Fermion = 1qil_/aql_ + iu7]2)51112 + lTRﬂdR + 1@&_ + imeR

T (320)
ey INCZ4r ~eINc AR~ \[ICCW M \[ICCW
where the corresponding interaction currents are
|5 1 2 ~—A, 1
INc,z = E_OSW VLY"VL
1 2 ) ey M e
- §_1Sw ey eL —erY €r
12 2
+ 5+ st ) vt e+ ISty uR
2 3 3
T T \— . 15— . (3.21)
<2 3sw> dryrde 3SWdRY dg,

1T—— .
ytur — gdLYHdL —eryter
27 88 ]7 28 S/ M
+ FURY UR — ngY dr —erv"eg,
Jecw = VivMer +uryHdr.

JNc 7z and JNc A are the neutral currents which conserve fermion electric charges,
while Jecw is ‘the charged current where the interchange of electric charges happens
due to Wff It is important to say that the electric charges are obtained using the
Gell-Mann - Nishijima relation.
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Gauge Lagrangian

The dynamics of the gauge bosons is described by the YM scheme. In this way, the
gauge Lagrangian is
1

1
[JGauge = _ZTI' (Wukuv) - ZBHVBuV (3~22)

where W, and B, are the strength-field tensors for weak isospin and hypercharge
potentials

Wiy = 0,Wy — 3, W, — gW, x W,

(3-23)
B,y = 0By — 0B, 323

After the substitution of the physical gauge bosons obtained from eq. (3.12) the
resulting gauge Lagrangian is

1 _ 1 1
LGauge = _EWJFPWWHV - ZFLWFLW - ZZMVZHV

+Lww +Laww +Lzww + Lazww

(3-24)

where the new kinetic terms are
+ + +
Wiy =0, W5 — o W,
Fuv = auAv - avAur (325)
Ly =02y —0Z,,

and the interactions among them are

Lww = —922 {WHrWEWHYW Y —wHewrhw YWY L
Laww = ie {0 Ay (WTHWTY — W HWTY)
+ Ap (WSorw =Y —wotwtY)
+ Ap (WFoYW—H —wW oYW},
Lzww =igew {duZy (WTHW ™Y — W HrwHY) (326)
+Z, (WHorw Y —w arwHY)
+ Zy (WiYwH —wiavwii) 1,
Lazww = -WIW, {g*c{ZHZY + egew (ZHAY + ARZY) + 2 AFAY}
—WiW H {g?c{y Z\ Z¥ + egew (ZyAY + AyZY) + A AV},

LOW-ENERGY LIMIT: FERMI THEORY OF [3-DECAY
The weakness of the weak nuclear force may be understood from the fact that its

gauge bosons Wf and Z,, had acquired masses because the electroweak VEV. Their
propagators in the unitary gauge are (subsec. 2.1.1)

~W 9t ni\ZNv nz _—Q”V‘f‘P—L;zV
Guv(p)zl Guv(p) =1 (3-27)

pZ—mg, +1ie’ pZ—m2 +1ie’
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Boson Spin P Q Mass (GeV) Width (GeV) Feature
d* 0 == 0 0 Goldstone
0 + 0 125.09 +0.24 < 1.7 Higgs
| 0 - 0 0 0 Goldstone
Ay 1 - 0 <10=27 0 Photon U(1) o
Wff 1 — +£1 80.385 +0.015 2.085 +0.042 Weak CC
Z, 1 + 0 91.1876 +£0.0021 2.4952+0.0023 Weak NC
G, 1 - 0 0 0 Gluons SU (3) ¢

Table 3.2: SM scalar and vector boson data[PG+16].

where the gauge boson masses are reported in table 3.2.

However, since there are other particles whose masses lie far below the gauge
boson masses but are not the lightest masses, e.g., d quark, the associated momenta
p? of the process are small compared to mg, or m3, allowing approximate the

propagators by

: AW _ Lg% : ~Z _ .9
p£<l£1r1.lw Guv(p) - 1m\z/vl ‘pl<ir1?12 Gu‘v(p) - lm% ’ (328)

and the SM fermion Lagrangian in eq. (3.20) becomes a current-current interaction
Lagrangian

£Fermion = 1qil_/aql_ + iu7]2)51112 + lTRﬂdR + 1@&_ + imeR

2

g9 e R

T Q.2 zINC,zINC,Zu_ 2 ]cc,w]CC,Wu-
8cyyms dmy,,

(3-29)
- eH\LIC,AAu

Such interaction terms were considered in Fermi theory of 3-decay whose interac-
tion term is[GKo7; Gri87]

G
Leff = —élé%,wkcwu« (3-30)

which can be compared to eq. (3.29) and so finding the correspondence of Fermi
constant in terms of SM parameters

E — 92 — 92 - L (3.31)
V2 8cg,mZ  8mi, 2v2 3-3

It is remarkable that the Fermi constant is proportional to the electroweak VEV, but
also that Gr does not depend on g and my,. Moreover, since my = mzcw, the
effective four-fermion coupling constant for NC is indeed the Fermi constant again

Consequently, for processes whose energies lies below electroweak energy scale,
the effective low-energy SM fermion Lagrangian is

LFermion = 1qLdqrL + iurdug + idrddg + ol + iegder

Gr Gr (3-32)
- eH\LIC,AAH - ﬁIL%,zINC,Zu - \TZJ&L:,WJCC,WLL'
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Constant Q%2=0 Q? ~m?
x 1/137.035999 139(31) 1/128
Gr/(hc)? 1.1663787(6) x 107° GeV 2
xs > 1 0.1182(12)
%, 0.23155(5) 0.23129(5)

Table 3.3: SM fundamental constants at low-energy and GeV scales[PG+16].

The measured value of the Fermi constant is (tab. 3.3)[PG+16]
Gr = 1.1663787(6) x 107> GeV, (3-33)

implying in such a way that the value of the electroweak VEV is
v =~ 246 GeV. (3-34)

Moreover, by replacing my, and Gr in eq. (3.31) and solving for g, the electroweak
isospin coupling constant. Its found value is

g ~ 0.66, (3.35)
and defining the isospin fine structure constant

2
Xg = 27( aTY (3.36)
the remarkable result that the weak interaction is actually stronger than the elec-
tromagnetic ones appears. This conclusion shows how the weakness of the weak
interaction is due to the large masses of Wf and Z,, masses, but not to a small
coupling constant.

It is worth mentioning that, for BSM extensions involving new gauge bosons like
Z) or Wai obtained from U(1) or SU(3); gauge groups, new interactions are in-
cluded involving SM but also non-SM fields not discovered yet. Although these
gauge bosons have not been observed since they are more massive than experimental
energies achieved, their effects could be detected in a similar way than (3-decays at
the beginning of 20th century, and so they can be studied using Fermi-like theories
involving the new SSB energy scale.

Summarizing the present chapter, the SM were briefly presented. The particle con-
tent and the different parts of the SM Lagrangian were reviewed with exception
of the Yukawa Lagrangian introduced in chapter 4. The Higgs Lagrangian yields
the electroweak SSB with the emergence of a non-vanishing VEV and consequently
the majority of particles in the model acquire mass. The fermion Lagrangian was
presented before and after SSB and the charged and neutral currents were defined.
The gauge Lagrangian contains all the possible interactions among gauge bosons,
and again it was presented before and after SSB. Finally, the low-energy limit was
brushed up arriving at the Fermi theory. The next chapter finishes the review of
general framework in part i presenting the fermion mass acquisition and the family
mixing.



MASS MATRICES AND FAMILY MIXING

One of the best predictions of the SM, but in some way one of its greatest prob-
lems comprises the mass acquisition of chiral fermions. From the fact that the Weyl
Lagrangians describe massless chiral fermions (subsec. 2.1.1) and the SM is a chi-
ral gauge theory whose left- and right-handed fermions transform under different
representations of Ggy in eq. (3.1), explicit fermion mass terms are forbidden and
should be generated, for example, spontaneously.

This achievement was done by the SM with the electroweak SSB and Yukawa cou-
plings among fermions and the Higgs doublet. These couplings mix both chiralities
and require a very special order on its components. Since the Higgs field is described
by an electroweak isospin doublet 21, in order to ensure SU(2); gauge invariance it
have to be contracted with the conjugate 21 of the left-handed fermions qr or ¢;.. The
invariance under the hypercharge gauge group U(1)y is accomplished by adding up
an isospin singlet 11 in such a way that —Y; +Yg + Yg =0.

The SM fermion and scalar sectors have the suited charges for carrying out this
program in the SM Yukawa Lagrangian

—Lyukawa = N GrOug + hGr@dg + hel Deg + h.c,, (4.1)
where © = io, O*
h+v—in
o= V2 |, (4-2)
—$
and h*, h¢ and h€ are the Yukawa coupling constants between the Higgs scalar and
the SM fermions. It is important to remark the lack of the right-handed species for
neutrinos, and consequently the absence of neutrino Yukawa coupling in the SM.
The acquisition of masses is done by the electroweak VEV. By evaluating the
Yukawa Lagrangian at the vacuum state it becomes
_pVEV h'*v__ hdy_— ¢

h
Yukawa = 75 ULUR + —=drdr +  Verer +he, (4-3)
V2 V2 V2

where Dirac mass terms had appeared by mixing left- and right-handed chiralities.

This procedure yields the acquisition of masses by three of the four SM fermions

I I o T i
\/z s d \/z ’ e \/Z .
Moreover, if the Higgs boson h is included the remarkable conclusion that fer-

mions couple to Higgs boson proportionally to their masses appears (h.c. terms have

been summed up f = f{ + fg)

My (4-4)

—Lyukawa =My uu + mdad + meee

M+ Mg 4+ M pee, 4-5)
v A% A%
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SM FAMILIES

The SM classifies the different fermions observed in Nature between quarks and
leptons, but the fermionic spectrum is not composed only by one up quark, one
down quark, one electron and one neutrino. Indeed, the SM proposes this spectrum
is repeated thrice in Nature constituting the three families or generations of the SM
which are shown in table 4.1.

First family = Second family Third family

1 2 3
1 u 2 uw 3 uw
CIL:<1> qL:<2> qL:<3>
'/, d*/ d’/
Ug ug uR
dj dz s
e w T
e€ et e’
L L L
eR ex eR

Table 4.1: SM-fermion flavor families.

Nowadays, the main difference among families are their mass scales: masses of
the first family lies at units of MeV, the second at hundreds of MeV and the third at
units of GeV (table 4.2). The origin of this hierarchy and also why fermions acquire
these masses are not well understood yet, but they could give some hints about the
physics beyond the SM, specially neutrino oscillation data which are consistent with
massive neutrinos with so light masses.

Notice the different symbols employed in both tables. Actually, the fermions listed
in table 4.1 do not have definite masses because they are superpositions of the fer-
mions listed in the table 4.2. This fact is reviewed in the next section in the context
of mass and mixing matrices.

MASS MATRICES

The SM Yukawa Lagrangian shown at the beginning of this chapter in eq. (4.1) does
not correspond to the observed phenomenology because the existence of three gen-
erations. Thus, the complete Yukawa Lagrangian has to contain the three types of
fermions. Additionally, the right-handed counterpart of neutrinos has been included
for completeness of the mass acquisition of fermions.

The three-family Yukawa Lagrangian can be expressed by

—Lyukawa = qi]/_&)Huullz +q7],_(DHdd]/3 + QEIV)HVV]/Q + QCDHee{Q +h.c,, (46)

where the bold spinors are strings in the family space. In the flavor basis the isospin
doublets are

qr tf
ai=|af |, w=|¢] (4-7)
qi (



4.2 MASS MATRICES

Family Particle Mass
u 22735 Mev
1 d 4.7783 MeV
e 0.511 MeV
c 1.27 £0.03 GeV
2 s 9678 MeV
n 105.7 MeV
t 173.21 £0.71 GeV
3 b 4185391 Gev
T 1.776 GeV

Table 4.2: SM-fermion masses. The masses of the charged leptons are determined further the
fourth decimal position [PG+16].

and also the isospin singlets are

1 1 e e
Ug dg VR eR
/ /o /o I
uR - qu ’ d — dzR 2 VR — 'VEL ’ eR — eg . (48)
3 3 T T
Uy dg Ve e

In the same way, the new Yukawa couplings HY, H4, HY and H€ are matrices in the
family space which connect fermions across the three families.

Again, by evaluating the Yukawa Lagrangian at the electroweak VEV the mass
matrices are obtained

YR VT FIEVI P
_EYukawa:uLM uR+dLM dR

— — (4-9)
+ v{ MY'vi + e{ M®'ef +h.c,

which have to be diagonalized in order to obtain the translation, physical or mass
eigenstates given by

v e
u= cl, d= S , vV = '\/2 , e = w- (4.10)
v T

The corresponding mass matrices obtained from the electroweak SSB are

M" = diag <mu, me,mt) , Md = diag <md, ms/mb> , i)
MY = diag (m1,m2,m3) , M€ = diag (me,mw mT> . *
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MASS MATRICES AND FAMILY MIXING

Since the mass matrices are not necessary symmetric, they have to be diagonalized
by a biunitary transformation in the following way

w =Viu,  uh=Viug, MU =VIIMEVE
d =VPd;, di=VRdr, MI=VPTMIVP,
vi=Wvi,  vkR=V¥vg, MY =V'TMY'Vy,

E
el =Vier, ep=Vier, M°=VMe'VE

(4.12)

The new states u, d, v and e are the physical states of the SM fermions, and
consequently they have to be substituted in Lrermion Shown in eq. (3.20). The most
important consequences of these replacements are studied in the next section.

FLAVOR-CHANGING-CURRENTS

The unitary transformations proposed in eq. (4.12) yield flavor mixing. Their off-
diagonal elements induce transitions across families in such a way that the mass
eigenstates turn out to be linear combinations or superpositions of the three fermion
families. These transitions trigger radioactive decay chains of massive leptons or
hadrons into the first and also lightest family, e.g., the charmed and strange hadrons
decays. These processes are predicted when the mixing matrices (which actually
have diagonalized the mass matrices) are replaced into the fermionic currents in eq.

(3.21).
Neutral currents

When physical fermion states are replaced in the neutral current, it remains invariant,

1 .
Nz = <2 - OS%/V) VLVETY”VE/VL

1
- <2 - 1S\2/v> erVilyrvier —er Vi 'y Vier
T 5 (4.13)
+ <2 - 3s%\/> TV AV U+ S iR Ve v VR ur
11 — 1o+
_ <2 _ 35\2,\/) AV IV HVP AL — 3l dr VY YR VR di,
2 1— o
JNca = guLVEJTY”VLuuL — gdLVLDTYHVP di — eLVLETVHVLEeL (4.14)
414

2__ 1 _
+ guRv,‘;vaguR —~ ngVETy”VE dg — erVy Y"VEex.

It is observed how mixing matrices cancel out because their unitarity VIV = 1 in both
neutral currents. This result is known as the Glashow-Iliopoulos-Maiani (GIM) mech-
anism[GIM7o] which ensures the absence, or at least suppression of flavor changes
by emitting Z bosons or trough electromagnetic interactions called flavor-changing-
neutral-currents (FCNC). It is worth mentioning this procedure requires the existence



4.4 CKM MATRIX

of left-handed doublets in each family, and at that moment it implied the prediction
of ¢ quark. Until now there are no observed events consistent with FCNC, and so any
BSM scheme should predict them so suppressed to be consistent with experiments.

Charged currents

On the other hand, the charged current does change when physical fermion states
are replaced in it

Jecw =urVE yMVP AL + vV Ty Ve (4.15)

From the fact that mixing matrices of different flavors do not match and cancel
together like the previous neutral current cases, there appears a new kind of mixing
matrix which allows transitions among families only by emission of W gauge bosons,
yielding flavor-changing through charged-currents. By defining these matrices as

v=v'vP,  uf=viTwy, (4.16)
the charged current becomes
JEcw =ury*vdr + viy*Uuler. (4.17)

The former matrix V is called the Cabbibo-Kobayashi-Maskawa matrix (CKM) which de-
scribes flavor changes among quarks, while the latter U is known as the Pontecorvo-
Maki-Nakagawa-Sakata matrix (PMNS) which does the same as CKM but among lep-
tons.

Both matrices are parametrized as[CK84; PG+16]

1 0 0 Ci3 0 8136_15 ci12 s12 O
0 C23 S23 0 1 0 —S12 C12 ol =
0 —S23 (€23 —S1gei6 0 C13 0 0 1
(4.18)
€12€13 $12€13 s13e” 0
—512023—0125235136ié C12<323—S12523513€16 $23C13 |~

i5 i5
$12523 —C12€23513€"°  —C12523 —S712€23513€"°  C23C13

where cij and syj refer to i —j family mixing, and  modules CP asymmetries between
matter-antimatter processes. In the next two sections CKM and PMNS matrices are
quickly reviewed.

CKM MATRIX

Since the discovery of the pions, there have been detected a lot of different hadrons
and then their decays. The non-conservation of strangeness by AS = =+1, e.g., in
the kaon decays, and the different rates respect to AS = 0 decays brought the idea
of flavor changing and also mixing proposed by Nicola Cabibbo[Cab63]. After the
detection of ¢ quark the mixing could be modeled by a unitary 2 x 2 matrix. How-
ever, the discovery of b and according to GIM mechanism, there had to exist the t
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quark and the mixing matrix became 3 x 3. The last proposal was done by Makoto
Kobayashi and Toshihide Maskawa[KM73] obtaining in such a way the well-known
CKM matrix

Vud Vus Vub
V= Vcd vcs Vcb : (4'19)
Via Vis Vie

The CKM matrix is parametrized by the angles shown in eq. (4.18), but it is usually
common to express the CKM matrix using the Wolfenstein parametrization

o [Vas|
s12=A=
|Vud|2 + |vus|2
2 vcb
$23 = AN =A V.. (4.20)
us

AN (P +im)V1 — A2\4
VI=A2[1—-A2\*(p+1in)]

The current absolute values of the CKM matrix are[PG+16]

313616 =V = A)\3(p+in) =

0.974345 399011 0.22506 £ 0.00050  0.00357 = 0.00015
V=10.22492+£0.00050 0.97351£0.00013  0.0411+£0.0013 | - (4.21)
0.00865§ Sosss>  0.0403£0.0013  0.99915 £ 0.00005

They can be computed either by employing the parametrization of eq. (4.18) with the
following three mixing angles and CP phase

012 =13.04 £0.05°, 023 = 2.38 £0.06°,

o 0 (4.22)
013 =0.201 £0.011°, 5 =69+5°
or by using the Wolfenstein parametrization with the following values
A = 0.22506 + 0.00050, A =0.811£0.026,
+0.019 (4-23)

p= 0-12470,01 8/ 1 =0.356 £ 0.011.

The actual matrix elements are reported on [PG+16] and the precision achieved on
determining them is remarkable. It is also important to note the strong hierarchy
among the mixing angles. The first and also original Cabibbo angle 01, lies near 15°,
but 0,3 and specially 013 are too small such that mixing elements involving the third
generation are below 10~ order.

This hierarchy is fundamentally related to the large mass hierarchy in the quark
sector (see table 4.2) which spans all the explored range of energies, from units of
MeV to hundreds of GeV.

PMNS MATRIX

The mixing in the lepton sector was studied under a quite different light than quark
sector. First, the lack of knowledge about the neutrino masses and their shocking
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NO 10

Am3,/meV? 750117 750117
Am3,/meV? 2524137 251438
012/° 33.5619:77  33.567977

023/° 33.5679:72  33.567977
013/° 8467312 8497512
51 40
5/° 261725 277440

Table 4.3: Three-flavor neutrino oscillation data. For NO { = 1 while for IO ¢ = 2[Est+17].

weak interactions difficulted their study in the first half of 20th century. However, the
outstanding Homestake experiment, directed by Raymond Davis[DJHH68] brought
the first evidence of what would be known later as neutrino oscillations. An impor-
tant lack of neutrinos (actually v¢) from the sun was detected, where two thirds of
predicted neutrinos arrived at the chlorine tank. This fact constitutes one of the new
hints about contemporary neutrino physics.

Bruno Pontecorvo proposed that neutrino and antineutrinos could oscillate be-
tween them in a very special way that it could explain the lack of neutrinos. Notwith-
standing, matter-antimatter oscillations were not observed and new proposals ap-
peared. Ziro Maki, Masami Nakagawa and Shoichi Sakata were who proposed the
PMNS matrix[MINS62]

Ve] Vez VeS
u= Vm VHZ Vug ’ (4-24)
Vﬂ VTZ VT3

where the subscripts of each component show the mixing between charged and neu-
tral leptons. The magnitudes of the PMNS components at 30 are[Est+17]

0.800 — 0.844 0.515 — 0.581 0.139 — 0.155
V=10.229 - 0516 0438 — 0.699 0.614 — 0.790 | - (4-25)
0.249 — 0.528 0.462 — 0.715 0.595 — 0.776

The principal data source for determining PMNS matrix elements are neutrino
oscillation experiments. Thus, the different experiments around the world study the
three main sources of neutrinos to measure each one of the mixing angles using the
parametrization in eq. (4.18): solar neutrinos for 61,, atmospheric neutrinos for 6,3
and reactor/beam neutrinos for 013. In the same way, since neutrino oscillations do
not give information about the individual masses of each mass eigenstate, but about
squared mass differences Amizj = mi2 — mjz, the neutrino mass hierarchy remains
unknown and two schemes are considered: the normal ordering (NO) in which m; <
m, < m3 while the opposite is the inverse ordering (I0) where m3 < m; < m;. The
neutrino oscillation parameters are shown in the table 4.3.
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Part 11

NON-UNIVERSAL U(1)" MODEL

A new model is built starting from the claim that there exists a new
nonuniversal abelian interaction U(1)y in addition to the strong, weak
and electromagnetic forces. The scalar sector is extended in order to break
the new symmetry. IN chapter 5, the Higgs potential es minimized, and
thereafter the mass matrices and mixin angles of scalars bosons are ob-
tained. Then, the fermion sector is introduced in chapter 6. The mass
matrices are obtained from the Yukawa Lagrangians, and the mass eigen-
values, as well as the fermion mixing angles are gotten. Next, by employ-
ing Montecarlo procedures, the mass matrices were generated randomly
and diagonalized numerically so as the fermion mass hierarchy can be
obtained by algebraic and numerical procedures.






BOSONIC SECTOR

One of the most preferred extensions to the SM employs the enlargement of the
scalar sector by adding new Higgs doublets (and also Higgs singlets) in order to un-
derstand some facts such as the top/bottom mass ratio or to provide the SSBs of new
gauge symmetries. In particular, the abelian extensions Ggy ® U(1)y are extensively
employed since it corresponds to the simplest extensions of the SM. These schemes
introduce a new gauge boson called Z|, which should acquire mass at a higher scale
than the electroweak ones, usually at TeV. Consequently, there must be a scalar field
with non-zero X-quantum number such that U(1)y gets broken. The scalar sector
of the model satisfies this condition by introducing three Higgs doublets with two
Higgs singlets, each one of them characterized by a quantum number and a sup-
plemental parity Z; for distinguishing between doublets with the same X quantum
number. The notation employed to indicate the X charge and the Z; parity is X,
and the corresponding charges of the scalar sector are shown in the table 5.1.

This chapter presents the bosonic sector of the model. First, the gauge sector of
the model is studied, the masses of the gauge bosons and their mixing are obtained.
Second, the Higgs potential is presented with its minimization and the resulting
masses and mixing in the scalar sector.

GAUGE BOSONS AND MASSES

The gauge bosons of the model comprises the vector sector of the SM plus the addi-
tional =, gauge boson of the abelian extension U(1)y. The Gauge Lagrangian is

1 1 T e
LGauge = —ZTr (W”VWuV) — ZBHVBHV — Z;HV;PLV (51)

where Z| , is the strength-field tensor of the Z gauge boson

Zuv = 0=y — 042y (5.2)
Doublets X+ Singlets X+
CbT + E, +v —I—iC +
0y = < hq+vq+ing 2/ x== \% RERVE
V2
b7 - Ep +Vy _
D, = i +2/3 PY="— 0
h2+\2f2+ n2 ﬁ
d3 _
Q3 = h3+v33+in3 /57T o 1/
V2

Table 5.1: Scalar content of the model, non-universal X quantum number and Z; parity.
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The gauge boson masses, on the other hand, come from the kinetic part of the
Higgs Lagrangian

1

Km_
_ZZDQD (D, @) + 3

1
LHiggs (D"X)* (Dux) + 7 (D) (D), (5:3)
123

where de covariant derivatives are
D, ®; =03,®; —igW, @i —ig'YB, @i — igxXiZ, D, (5.4a)
Duxi = 0uxi — %~uX1/ Dy = 0ps. (5-4b)

By evaluating the Higgs fields at their VEVs the gauge boson masses appear. The
mass of the Wff is
2,2

2
.
mdy = - (v +viaad) = (5.5)

where v is the complete electroweak VEV. In order to simplify the notation, each one
of the electroweak VEVs are defined as fractions of v

Vi =Vp1, V2 =Vp2, V3 =Vp3, (5.6)

and the coefficients p; satisfy the contraint

pT+p3+p3 =1 (5.7)

This parametrization will be employed in the following sections. Regarding to the
neutral gauge bosons, the mass matrix in the basis W0 = (By Wi, Zu)is

gyv? —ggyv? $9vaxv? (2—03)
M%ve = ggyv? gv? %gvzgX (2 — p%) (5.8)
59v0xv? (2= 03) 39v70x (2-03) 505 ((4—303)v2 +5)
Its determinant is null as it is hoped because the existence of a massless gauge boson,

the photon A ,,. In addition, there are two massive gauge bosons, the electroweak Z,
at GeV scale, and the new ZL at TeV

2
m Sy = o 59)
2.2 2.2.2 2.2
IxVx  9xP3V- | 4gxv
mzz/ R~ 5 X _2X 33 + >9< . (5.10)

The mass eigenstates Z, = (A, Zy, Z,,) are obained as Z, = RWoWSL through the
mixing matrix Ryo. In the CKM-parametrization (eq. (4.18)) its angles are

wo_ 9 39 ((2—03)v?)
chgx vZ

, tn613 =0. (5.11)

The first angle turns out to be the well-known Weinberg angle, while the second one
describes the Z,, — Z|, mixing.
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HIGGS POTENTIAL AND SCALAR MASSES

The scalar potential of the model is stablished according to the U(1)y charges and
Z., parities shown in the table 7.1. So, the most general potential invariant under the
Gsm @ U(1)y ® Z, symmetry is

Vit = 13 0] 01 + 30 s + 30 @3 + p2xx + i’

- f% (@@ +he) - 3"2 (@@ +h.c)

+ Ao (XX + A (XX (02) + Ay ($7).

Minimization of the potential

The previous potential is minimized by differentiating it respect to each one of the
VEVs and isolating the quadratic constants p; where i = 1,2,3,x,1. Thus, the fol-
lowing constants are obtained

A]XV)Z( n 7\111,\)%1, B pr3VX

—uf = Avi+ Arav 4 Aavi + > > 20, (5.13a)
7\2 vz }\211,\)2 f p3V
—u% = ?\zzv% —|—/\23V% —|—/\12v% 4 XX LANL Lchd (5.13b)
2 2 202
AsxVE  AsyVi,  fyprvy o+ Ty p2v
—u% :?\33\)%—1-/\13\)%—1—/\23\)%—1— XX 4 LRSS ddle SBLL LEAL (5.13¢)
2 2 2p3
ApVi, VA 2 sy T
2 2 XWYp | ViAlx | VaA2x | V3A3x - TxV1V3 d
M = MoVt 7 2 2 7 Iy (5-13d)
Ay | VIA 2\ M3p
2 2 xbVx | ViAyp | VoA V3A3yp  TyV2V3
Wy = 7\11)11,\)11, + 7 5 + 5 5 vy, (5.13€)

where /\1)' = (Aij - }\{)- )/2
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Charged scalar boson masses

The mass matrix of the charged bosons is obtained by calculating the Hessian ma-
trix respect to the charged components of the Higgs doublets. In the basis ¢p* =
(d)?—L, d)zi, ¢3i) it turns out to be

: 7]("‘5’]‘93 +7\{1v2 —p1p27\{2v2 —p1p3?\{3v2—fva
2 f
M¢ = 4 —p1p2A7 v %}bps +Av? —p203A53vE — fyvy, (5.14)
f +pof )
—p1 pg?\{sz — fy vy —p2p3)\§3v2 —fyvy w +7\§3v2

where Aj; = A,p3 + p3Ai5, Ay, = A,p% + p3A; and AS3 = Af5pg + p3AS;. Its
determinant is null as it is hoped because the existence of G $V, the Goldstone bosons
of Wﬁf Additionally there exist two physical charged bosons Hf and Hit which
acquire mass at TeV scale with contributions at hundreds of GeV.

The masses of the physical charged bosons are (at order O(v?))

2, 42 2, 42
2 I (Pi+e3)vx | fu (P3+03) vy
mis = + (5.15)
12 8p1p3 8p2p3
4 BC(etred)vy | fefulefed—pl)vive | Fu(e3to3)*vg
64p7p3 3201p2p3 64p3p3

It is straightforward to see two limit cases in this expression. The first one comprises
fy = 0 which implies an extra charged boson h* at GeV scale and other H* at TeV
scale

s o (PTE03) Ve

/4,2

N A%V
mHiN

2 4p1p3

b 4(eite3)’
The opposite case is fy, = 0, and yields similar results than the previous one
AV _ fy (3 +03) vy

m ~
Hy 4p2p3

Myt R —F— 5,
T4 (pd +03)
The mixing matrix Rc diagonalizes the mass matrix M2 obtaining the mass eigen-
states HT = Rc cbi which are expressed in the basis H = (G\fV,H?E,Hzi). Its corre-
sponding mixing angles in the CKM parametrization (eq. (4.18)) are

2
p
tan? 05, = —%, (5.16a)

1

9Ty, fp) = 1/9(fx, T} — 4Ty Ty 10203 vyvy,

tan? 9539 x

, (5.16b)

g(fX/ fll)) + \/9(le fl]) )2 - 41:)(1:11) P1P2 p%"wi
P3

tan? 9]C3 = .
P +p3

(5.16¢)

where g(fy, fy) = fyp2 (pF + p3) vy + fyp1 (p5 — p3) Vyp. Similarly, the two previous
limit cases give the angles

D3 i

tan? 61C2 =0, tan? 62C3 =0, tan? 6% fy =0,

2
(5.17)
B2 fe=o.

2

tan? 0%, =00, tan?05; =0, tan?6%;



5.2 HIGGS POTENTIAL AND SCALAR MASSES

CP-odd boson masses

The mass matrix of the CP-odd (pseudoscalar) bosons is obtained by calculating the
Hessian matrix respect to the CP-odd components of the Higgs doublets. In the basis
1 = (n1,M2,M3, () it turns out to be

f’“;i’;m 0 —fy vy vy p3
fy vy P3
My = 21 ° S v ;flpvfivu,pz X (5.18)
—fyvy —fyvy = pé + 53 —viyp1
vfyp3 0 —vfyp1 7\}2%:] =

Its determinant is null as it is hoped because the existence of Gz and G/, the Gold-
stone bosons of Z,, and Z|,, respectively. Additionally there exist two physical pseu-
doscalar bosons A; and A, which acquire mass at TeV scale with contributions at
hundreds of GeV.

The masses of the physical pseudoscalar bosons are (at order O(v?))

2, 2 2, 2
m2 = fx(eites)ve fy(p3+e3)vy (5.19)
12 8p1p3 8p2p3
i fxz(p%+p§)ZV§+fxfw(p%o%—p§)vww fy?(p3+03)v]
64p2p2 32p1p203 64p305 '

which are slightly different of m%, the charged bosons masses. Thus, the two limit
cases of the masses expression outlined in the previous section are similar here, with
the exception that there appears an extra massless pseudoscalar boson since there
are no Aj; terms in M2,

The mixing matrix R,qq diagonalizes the mass matrix M2,, obtaining the mass
eigenstates A = R,gqn which are expressed in the basis A = (Gz,A1,A,, G%). More-
over, the diagonalization in this case is a little more complicated because there are
four bosons instead of three in comparison with the charged scalar boson sector. So,
it was implemented an extended-CKM parametrization which includes mixings with
a fourth component

Ci14 0 0 S14 1 0 0 0 C13 0 S$13 0 Ci12 S12 0 0
0 1 0 0 0 C23 $23 0 0 1 0 0 —S12 Cq2 0 0
0 0 1 0 0 —S$23 (€23 0 —S$13 0 Ci13 0 0 0 1 0
—s14 0 0 cyg 0 0 0 1 0 o 0 1 0 0 0 1
C12€13C14 €13C14812 C14813  S14
—C23812 —C12813523  €12€23 — 8512513523 C13823 0
= . (5.20)

$12823 —C12€23813  —C€23512813 —C€12823 C13C23 0

—C12€C13S814 —C13812514 —S13814 Ci4
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Thereby, the corresponding mixing angles are

2
Y
tan? 9994 = . sz, (5.21a)
14P7
9lf, Fu) — /9y, )2 — 4y Ty, 010203 vycv3p
tan GOdd X , (5.21b)
9lfy, fp) +1/9(fx, fip)? — 4Ty Fy10203vyvy,
2
R 210
CT4PT T P2 +P3
tan? g9dd — YP1 (5.21d)
4= 5

where g(fy, fy,) = fxp2 (p7 + p3) vy + fyp1 (p3 — p3) vy Similarly, the two previous
limit cases give the angles

2 nodd P3 2 qodd _ VP1 dd dd .
tan® 093" = 5——, tan“ 093" = —, 0997 =035 =0, if fy =0,
C14p1 VX (5 22)
tan? 0999 = oo, tan? 9994 = p;/ 9534 — g9dd — o, if fy,=0.
P32

CP-even boson masses

The mass matrix of the CP-even (true scalar) bosons is obtained by calculating the
Hessian matrix respect to the CP-even components of the Higgs doublets. In the
basis h = (hj, hy, h3, &, &y) the CP-even mass matrix is

MZ o Mhh Mhi
even — T , (523)
Mg Mee
where the blocks are defined as
f f
v +%1p3 A12v?p102 A13viprps — 29X
Mhpn = Aq2v2 P1P2 A2ovZ pz + tb:‘;bzps /\23v2p2p3 B M
A13v2p1p3 — B9 Agsv2paps — T Ag3vps? + w
%A]vavp1 - %fop3 %?\wvva]
Mha = %}\ZXVXVpZ %}\zwww P2 — %Vfﬂ) 03 (524)
N3V VP35 — 2VFyp1 AWy p3 — 2VFyp2
2, fxpip3v?
Meg AxxVx T % AspVx Vi
B 2, fypapsv?
A VxV App vy, + %

The mixing matrix Reven Which diagonalizes the mass matrix M2, gives the mass
eigenstates H = Reyenh which are expressed in the basis H = (h,Hj,H,, Hy,H>).
Moreover, Reven splits in a see-saw rotation Reven and a block-diagonal rotation RB
such that Reyen = RevenRg‘S,en

Since [Mnph| < [Mne| < [Mgg| the see-saw procedure will be implemented by fol-
lowing the reference [MMO17] which block-diagonalizes My, such that the h scalars

even
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get separated from the & ones. The following approximations are made on the blocks
in order to avoid cumbersome expressions after rotating out the & scalars:

ALV FAT VYT Aoy 0
XX

Mhe ~ %?\zxvxvpz %Azwvvlp p2 |- Mg ~ 0 X A2 . (5-25)

Al

%7\3XVXVQ3 %7\311,\)\)1], P3 v

The see-saw rotation Reyenss and its angle Oeyen are

)\va] ?\\bvm
1 2vidx 2VpAgy
RSS _ 1 —Oeven @T _ M—] Mis — AaxVvpP2  AzypVvp2 ( 6)
even — o) 1 ’ even — Ylgg JVLhE — Zvidex 2vephrge | 5.2
even A3xVvP3  A3ypVps

ZVX)\XX 2\)‘_1, }\ww
The block-diagonalization acts in the following way
T (M2 0
Rg\slethh (Rg\szen) = hh 2 . (527)
0 Mg,
where the new blocks are
My & Mpn — Mpe Mg Mg, Mz ~ Mee (5.28)

The resulting matrix My, has the same algebraic structure of My with new defi-
nitions of the constants Aj;’s, where 1,j = 1,2, 3. The matrix turns out to be

My ~ Mun — Mue Mg My, (5.29)
Ar1v2pr? + 2pPs A12v?0102 A13vip1p3 — 2
X X fyvy X fyvy
= A12v? 0102 A2avipy? 4 “LrePs A23vZpaps — i
~ f ~ f ~ f f
A13vip1p3 — 9% Agzvipops — -5 Azzvips? + W
where the tilde constants are
~ A A - AwA Ay A
/\1127\11—4111) —41X, A2 =N2— ;rlb 2 j‘x =9
Ay Axx A Axx
_ M, A - ApAsy Az
P 2x 293P 2x/M\3x
Az = Aoz — CTX Ry = Ags— - , 30
22 =A22 Doy g 23 23 Moy My (5-30)
A, M - AMoAsy  Aigh
P 3x 1PpA3Y 1xA3x
Asz = A3z — _X A=A — - .
>3 >3 4)‘11)11) 4}‘xx '3 " 4)‘11)11) 4)\XX

Although the characteristic equation of M2, is difficult to solve, the matrix sug-
gests the same structure of M% Therefore, Mﬁh should have two mass eigenvalues
m,z11 , at TeV scale and a third one m? at hundreds of GeV which would be zero if

the electroweak vacuum v is neglected. Indeed, the eigenvalues of

fxvxps3 0 _ fxvx
4p] 4
2 fyvyP3 fyv 2
M%, = 0 el — e +0(v7) (5-31)
_fx"'x _fq,vll, fxvyp1+fyvyp2
q q 405
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are the same of M%. However, the non-vanishing determinant of I\/l}z1h shows the exis-
tence of the smallest eigenvalue, which can be obtained by dividing the determinant
of MZ, by the product of the two largest eigenvalues

My~ ———5~ = AppV (5.32)

where Apy, is the effective coupling constant of the 125 GeV Higgs boson
Ann = A1107 + A2203 + A33p% + 2120507 +2A130307 + 2A230303.  (5.33)

Regarding to RE .,

R 0
B _ even
Reven = ( o REE > (5-34)

even

RhM and REE, diagonalize MZ, and M2 2 ¢, respectively. The mixing matrix R, can

be approximated to Rc because the method employed in the eigenvalue search. Thus,
the corresponding mixing angles of Rt are

03
tan” 077 ~ ?z (5.35a)
1

g(fy, fy) — \/9 (fyx, Ty) —4f flbmprstVlb

tan th X , (5.35b)

g(fy, fy) —l—\/g (fy, fyp) —4f f¢p1p2p3vxv¢
P3

2 ghh
tan® 073 ~ ———.
pi+p3

(5-35¢)

On the other hand, R, is parametrized by the two-dimensional rotation matrix. Its

angle is proportional to A, and gives the largest eigenvalues of M2,

m%_f] — )\XXV)Z(’ m%_cz = }\1])11)\}121;- (536)

Summary of masses of the scalar and gauge sector

Boson Spin Mass ‘ Boson Spin Mass Boson Spin Mass
Gauge SM Scalar Non-SM Scalar
Ay 1 0 h 0 mh Hi. 0 my
Wt 1 om G HY
m w w 0 0 1,2 0 mMH
Z, 1 my Gz 0 o] A1 0 my
Z;L 1 mz: G VAl (0} (0} H 1,2 (6} mMagc

Table 5.2: Summary of the bosonic mass eigenstates of the model.



FERMIONIC SECTOR

The set of fermions of the models is determined by three different principles: the chi-
ral anomalies coming from the non-universal U(1)y quantum numbers, the suited
mass textures and the minimal number of exotic fermions. Nevertheless, before
addressing the fermionic sector, it is important to do some observations on the
fermionic spectrum of the SM (see figure 6.1).

There exist four hierarchical groups: (e, u, d) at units of MeV, (s, 1) at hundreds of
MeV, (c,T,b) at units of GeV and t at hundreds of GeV (see Fig. 6.1). These groups
may suggest similar mass acquisition mechanisms among them, for example, the
mass acquisition of the u quark could be similar to the d quark and the electron.
On the other hand, the mixing angles of the quark sector are remarkably different
than the lepton sector. The CKM angles are hierarchical too, the Cabbibo angle 01, =
13.04° is one order of magnitude larger than the 6,3 = 2.3°, which is also larger than
013 = 0.2°. This behavior is not observed in lepton mixing where 07, = 33° and
023 = 45° lie at the same order of magnitude, while 673 = 8° is the only small angle.

The references [Mar+14b], [MMO17] and [MM17] present some models where
the first family acquires mass through radiative corrections done by the new exotic
fermions together with the scalar o which does not have VEV. On the contrary, the
model presented here does not require any kind of radiative corrections in order to
get the phenomenological spectrum of fermion masses. Furthermore, this chapter
presents how the model can be consistent with the aforementioned observations
without unpleasant fine-tuning procedures. The mass matrices suggest the mass and
CKM angle hierarchies in a natural manner, while the PMNS angles can also be
obtained because of the existence of Majorana fermions in the neutral sector, which
allow larger mixings among active neutrinos after performing the seesaw with the
heavier neutrino species.

Family
e 4 >
o T o -

<4 >
»

1 10 100 1000 104 105 A U
Mass (MeV) vd

Figure 6.1: Orders of magnitude of the SM fermion masses. It is easy to realize about how
the fermions get organized in four hierarchical groups.
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CHIRAL ANOMALIES EQUATIONS

The most important constrains on the X-charges of the fermions are the scalar sector
and the cancellation of chiral anomalies. Since the Higgs doublets and singlets are
U(1)x-charged (see Tab. 5.1), the Yukawa coupling constants require the left- and
right-handed fermions with different U(1) quantum numbers and the posibility to
obtain chiral anomalies in the model appears. Thus, in order to cancel such anomalies
from the very beginning, the non-universal X charges must vanish the following
equations which comprise the different chiral anomalies in the model[Mar+14b]:

SU(3) P Ul1)x = Ac= ZXQL ZXQR

[SU(2) *U(1)y — AL = ZXzL—i-?)ZXQL

U(1)y*U(1)y = Ayz = Z[YELXeL+3YQLXQL]—Z[YEZRXLR—I—.%Y(ZQRXQR]
6Q 6Q

Uy D07 = Av= 3 (VX + 300G = 3 M, +3¥00%,
£Q

Uy = Ax = ZX +3X4, ] =D [Xi, +3X%,]
£,Q

LQ
Grav]’U(1)x = Ac= Y [Xe +3Xq. ] =D [Xex +3Xqy] (6.1)
,Q 6Q

These equations get cancelled by the fermionic spectrum shown in tables 6.1 and
6.2. It includes the three families of the SM, two up-like quarks T2, two down-like
quarks J'? and three charged leptons &%, These fields were added to cancel chiral
anomalies, but they turned out to be really important in understanding the fermion
mass hierarchy. Moreover, there were also included three Majorana fermions N]]Q’Z’3
which do not contribute to chiral anomalies but play an important role in neutrino
mass acquisition.

SUPPRESSION SQUARES TEXTURE

The majority of textures propose finite and null components of the mass matrices
in order to get the suited mass eigenvalues and mixing angles. However, the finite
components should be at the same order of magnitude. A new extension of this con-
cept may be the existence of two or three orders of magnitude in the finite elements
produced through the Yukawa couplings with more than one Higgs doublet whose
VEVs have a vaccum hierarchy (VH), their VEVs are at different orders of magnitude.
In this way, the cornerstone of the model to achieve in a natural way the fermionic
mass hierarchy is the concept of suppression squares texture (SST), which proposes the
existence of elements at two different orders of magnitude in a very special location
inside the mass matrix.

The simplest example of the SST comprises two fermions f and J coupled by two
Higgs scalars ¢4, with the VH vy < v;. The Yukawa Lagrangian is

—Ly =Ae'fLd1 (safr +caTR) +BePf 2 (spfr +cpTR) - (6.2)



6.3 MASS MATRICES

where the Yukawa coupling constants are parametrized in polar coordinates, i.e., the
coupling constant among fi, Fg and ¢ is Ae'®cy. This parametrization not only
simplifies the algebra, but also helps to realize how the SST works and suggests
relations among Yukawa coupling constants. The corresponding mass matrix after
evaluating at the VEVs is

M _ [Aet%visinax Ae'®vycosa 63)
PP Betbv,ysin  Betbvycosf/ '

The diagonalization may be done on either MM or MTM. Both matrices give the
mass eigenvalues

m% ~ sz% sin(a— B), (6.4)

m% ~ B%v3 + A%v? cos? (a — B), (6.5)

and the mixing angles of the left- and right-handed fermions are

A )
tan 0 ~ Bi\‘:; cos(ax— B)et(a?), (6.6)
tanOg ~ tan . (6.7)

There are some remarkable features in the expressions obtained above. The first
and most important is the suppression in the first eigenvalue of the matrix through
the sine of the difference between o and {3. Similarly, the left-handed mixing angle
is also suppressed because of the VH. On the other hand, the second eigenvalue is
not supressed but enhanced by the addition of the complementary function of the
tirst eigenvalue, and the right-handed mixing angle turns out to be the angle 3 in
the second row of the matrix, i.e., the angle associated to the largest VEV.

The model implements extensively the SST such that the mass hierarchy can be
obtained without any kind of assumption on Yukawa coupling constants. Moreover,
some suppression squares involve also the exotic fermions which have been added
to cancel chiral anomalies, so they play an important role in obtaining the fermionic
mass hierarchy. The next sections present the mass acquisition of the fermionic sector
of the model from the SST in the mass matrices, and after showing the mass eigenval-
ues and mixing angles, the suppression squares of each mass matrix are explained
in detail.

MASS MATRICES

Before addressing the fermionic spectrum of the model, this section shows the gen-
eral procedure to obtain the fermion masses and mixing angles. The fermions of
each sector are described employing two bases: the flavor basis F and the mass basis
f. Thus, once the Yukawa Lagrangian is evaluated at VEVs, the mass terms can be
expressed as

—LfF = KMFFR +h.c. (6.8)
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Since the mass matrix IMF is not Hermitian, it has to be diagonalized by the biunitary
transformation

M = (V) MpVE, (6.9)

and consequently the mass and flavor bases will be related via the mixing matrices
VI and V¥ in the following way

F]_ = WEf}_, FR = W};f]{ (6.10)

In particular, the left-handed mixing matrix can be expressed as the product of
two mixing matrices

Vi =V{gVig (6.11)

The former matrix rotates out the exotic fermions with a see-saw procedure by taking
advantage of the VH. The procedure begins by splitting by blocks the whole sym-
metric mass matrices (]M]:IM}LE for charged fermions and My for neutrinos)[GLo1]

Miym: M§><3 M.ﬁu&;n , (6.12)
MIf, M
nx3 nxmn

where M7 = (Mfg)T and n is the number of exotic fermions for each sector (2 for
up- and down-like quarks, 3 for charged leptons, and 6 for neutrinos). The see-saw
rotation matrix is

1 el
F prl L ’ (6'1 )
V L,SS (—@f : ) 3

where O = (M7 )71 M. The resulting block-diagonalized mass matrix is

sym
T m 03
(Vigs) My"Vigg= | ™M Syxn? , (6.14)
On><3 MF,exot

where miygfv[ is the SM mass matrix given by
—1
mPoy ~ M =M (W) (6.15)

and MPL  ~ M7 is the mass matrix of the exotic species. The latter matrix in eq.

(6.11), VEB describes the diagonalization of miyérg/[ and Miylemxot. It has the structure

F
VE = (VSM °3FX“> (6.16)
On><3 V,

exot

where V{,, is parametrized by

Vi = Ri3(6%5,873)R23(055,855)R12(6Y5,675) (6.17)



and the matrices Ry; are

6.4 HADRONIC SECTOR

chs sie iz 0
R12(075,87,) = | —sF,eish ch 0 (6.18a)
0 0 1
1 0 0
Ra3(033,803) = |0 by shye o (6.18b)
0 —sheith
ci3 0 shye i
R13(0%3,875) = 0 1 0 (6.18¢)
—s}3etis 0 e
where cf) = cos GF and sF = sin GF The angles SF are specified by their tangents

t]E = tan SF wh1ch could be calculated exactly or approx1mately by taking advantage
of VH. On the other hand, the Dirac phases 511' can be chosen in such a way that they
correspond to the experimental measurements.

In the following subsections the mass matrices, mass eigenvalues and mixing an-
gles (involving SM and exotic fermions) are obtained using the previous procedure
by taking advantage of the VH established by the following VEVs

vy = 2.5TeV, vy = 245.7 GeV,
vy = 1.0TeV, vy = 12.14GeV, (6.19)
un ~ 1keV, vz = 250 MeV.

where py is the mass scale of the Majorana fermions N]L’Z’s . These values of VEVs
are employed to do numerical explorations by Montecarlo procedures on the mass
matrices in order to test their suitability to address fermion mass hierarchy and
mixing angles. The results of these searches are shown after the algebraic treatment
of the mass matrices.

HADRONIC SECTOR

The hadronic sector of the model contains the SM fields with four exotic chiral
quarks: two up-like quarks T', 72 and two down-like quarks g, §%. The non-universal
quantum numbers and parities are shown in table 6.1, and the Lagrangians under
the symmetry U(1)y ® Z; in the quark sector are

—Lyu =Aue®uql @3 (sYuk + clul) + Buettuq @
+Cue'u g7 @y (sYug +cUTh) + Duetdug?
+EyeteuT x* (stud +cUTh) + Fuelfuscz‘.T%x (s}

+ Fyetfu c]glzﬂ'%x* ‘J’%

2 (spug +cgTx)

(Sé LLR + C5 uR) (6‘20)
|uR +CC1(‘TR)
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Left-handed X+ Right-handed X+
SM Quarks
qi = u i ug vt
L d] L d]]2 — 2/3+
(v $1/57 uR v
a /), 3 —137
q; = u? +1/57 uR v
& ) a3 —1/37
Non-SM Quarks

711_ +1/37 ‘I]]2 +2/37
I7 +1- T3 +4/37
at —1sT i “25"
i o* Ix st

Table 6.1: Hadronic sector of the model, non-universal X quantum number and Z, parity.

—Ly,p =Ape'®Pq] @3 (s5dg +cdg) +Bpe®Pqf @3 (sgdi +cp di)
+Cpeie® g3 @, (sDdg +cPd3) + Dpeldrglx (sPdk +cDdk)  (6.21)
+Epetrglyp (sPdd + cPa3) + Fpel™™gZy g2

Next, the Yukawa Lagrangian of the quark sector evaluated at the VEVs yield the

mass matrices of the up-like and down-like quarks. Their eigenvalues, as well as their
mixing angles and the results of the numerical diagonalization are shown below.

Up-like quarks

The up-like quark sector is described in the bases U and u, where the former is the
flavor basis while the latter is the mass basis

U= (u,u?ud 7,79,

6.22
u:(u,c,t,T1,T2). ( )

The mass term in the flavor basis turns out to be
—Ly =UMyUg +h.ec, (6.23)

where My is the up-like quarks mass matrix
SM, ® Ex,®
My = (MlSJMX MEXX) (6.24)
My My
and the blocks are
Ayetau sg\g Bueibus}gl\)z Ayetau cg\g
MiM’QD = 0 Cyeteu sfylw 0 (6.25)

Dueidus}f\)] 0 Dueiduc}f\)]
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Bueibucgvz 0

M}Ej('q): CueiCUc%}w 0 (6.26)
0 0
ieu u
oo (0 Futnbn o
0 Fue'™szissv O

ey .U

Ex, EyetCicsv 0

MGx = iy U €uX ify .U (6.28)
FueUcgysovy  Fuetes,

Since the determinant of My is non-vanishing, the up-like quarks acquire mass.
It was assumed (' = 0 to simplify algebraic expressions without spoiling the sup-
pression mechanisms. Then, the mass eigenvalues corresponding with the SM quark
masses are

2
mi ~ Aﬂ sin? (ocu 6u) %,
V2 V2
mZ ~ Bf sin? (BY — ") 72 + Cfsin? (YY —eY) 71, (6.29)
V2
m? ~ D, 2 ~|—Aucos (ocu—yu) 73,
while the masses of the exotic up-like quarks are
2 2 V& u_u v3 u_uyvi
m%,; ~ Ef = + B{ cos? (B4 — )f—i-Cucos (v" =€) =,
2 2 2 G
V2 30)
mi, ~ Fﬁjx
The corresponding left-handed rotation matrix can be expressed by
Vi = VlLi,SSWlLl,B/ (6.31)
where the see-saw angle is
Ecﬁ_eel u—eu 0
@ET — | C» Cu_eei(cu—eu) 0 (6.32)
Fv, ¥
0 0
while VEB diagonalizes only the SM-up quarks. Its angles are given by
Auv .
urL  7‘uv3 u —d
tan 0k ~ Doy, C“,(;el(au u)
AuBuCuvsv ;
urL _ rubuvL-uvivz u u u (ay—byu+cu—dy)
tan923 ~ Wco‘,5sﬁfesyfeel au u+cu u (633)

Bqu S _ .
tan 9%12’1‘ ~ —— — Boeifbu—cu)

u
Cuvi sy
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The exotic species T! and T? got masses through v, at units of TeV. The SM t
quark has acquired mass with v without any suppression, so its mass remains at
the scale of vi, hundreds of GeV. On the contrary, the ¢ quark have acquired mass

with vy and v; but through the rectangular SST

Bueibus};‘vz Bueibuc%vz
Cue'cusilvy  Cyetcuclvy |,
u

Eyeteustlv, Eyeteuctlvy

yielding the suppressed mass of the ¢ quark because of T,
v3 V2
mZ ~ Bf sin? (B! — u) >+ Cisin? (YY —eY) 7‘

u

z V2
Uy X | Bf, cos? (Bu— u)——FCucos (v

mi; ~ Ef >

2

2
V1

e

Finally, the u quark has acquired mass through v3 with a similar suppression but

with the t quark instead of T,

tay U i u

Ayetsgvsy Ayet@icgvs
idy U idy .U )

Dye'“Usgvy Dye'“Ucs vy

Consequently, the mass of the u quark gets suppressed by t,

V2
Ausm (ot —38) 73,

2V u_uy V3
mZ~D 7+Aucos (™ —y )?

Down-like quarks

The down-like quarks are described in the bases D and d, where the former is the

flavor basis while the latter is the mass basis
D=(d',d2 a3 g",9?),
d=(d,sb,J,J%).
The mass term in the flavor basis is
—Lp =D MpDg +h.ec,
where Mp turns out to be

MSDM’(D M%(,d)
MD - SM, x Ex,x
MD JvtD

with the blocks given by
ApetaprsDys 0 0
MP® = 0 BpeltrsPvs BpelPPelvs

0 CDeiCDSEVZ CDeiCDCEVZ

(6.34)

(6.35)

(6.36)

(6.37)



ApetercPys 0
Mp® = 0 0
0 0

idp (D i D i D
MSM’X i DD et D85 Vx ED ewDS€ Vy ED €1eDC€ Vy
D =
0 0 0

M%’X _ DpetdocPv, 0
0 Fp elfo Vy
Thus, the mass eigenvalues of the SM quarks are

2
v
2( D_6D)73

m(zizAIZ)sin o >
2 2 2/aD D V%
mg ~ Bpsin® (B —vy )7,
2 2
2 . ~2 V2 2 2/aD D\ V3
my NCD7+BDCOS (B~ —v )7,

and the masses of the exotic species are given by

2 2
v v
mf; ~ Df —X+E1237¢ + A} cos? (ot —§4) 73,

The corresponding left-handed rotation matrix is
VP = VPss Vg,

where the see-saw angle which rotates out the species J1 is

Apv
2 3Clo?fzs 0
DDVX
@?T: BDE;jV;VII) Eie 0 ,
Dpvy

and the SM angles of WEB are given by

- AD EDV3V11) D D

D,L
tan0,; =~ _5Cv_
13 CDDDVZVX x—dry—es

BDV
tan 912)3’L ~ 3 cgﬂ,
Cpwvz

D
taneD’L - ADEDV1]) Sy_€ D
~ -

2 " BpDpvysh_,

6.4 HADRONIC SECTOR

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)
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The heaviest quarks J' and J? acquired mass at TeV scale due to v,, while the b
quark obtained its mass through v, at units of GeV. The s quark has acquired its
mass through vz at hundreds of MeV with the suppression due to the b quark in the
SST

D

BDe“’Dsg\)g BDeibDCE\)g
. . 7
Cpe'PsDv, CpetercDv,

yielding the masses

2
. v
mgmBzDsmz(BD yD) 23,
2 2"% 2 2/aD D v3
mb%CD7+BDcos B” —v )73.

Similarly, the quark d got its mass through the SST with the exotic species '
Apet®rsDvs  ApetarcDy;
Dpetdp 35DvX Dpetdp cSDvX ’

whose associated masses are

2
Vv
m(zi =~ AZD sin?(aP — SD)f,
V2 v2
mf; ~ DzD?X + A} cos? (ot —§4) 73

Numerical exploration in the quark sector

In order to test the suitability of My and IMp to achieve the fermion mass hierar-
chy, such matrices were generated with random coupling constants by Montecarlo
procedures and then diagonalized numerically such that they can reproduce the
phenomenological data of quark masses and CKM mixing angles. The results in re-
producing such data at 50 are presented in Fig. 6.2, showing that the model is able
to generate mass and mixing angle hierarchies.

However, the absence of unpleasant fine-tunings is shown in Figs. 6.3 and 6.4. The
first one shows how the angle differences o% — 8", Y% — e and y" — €Y observed
in the masses of eq. (6.29) get smaller as the magnitude of the moduli Ay, By and
Cu get larger. This behavior is produced by the SST present in My which acts on
the masses of the u and ¢ quarks to supress them from hundreds to units of GeV and
MeV, respectively. The second one, instead, shows similar results in the dependence
of «P — 8P on Ap of eq. (6.29), but BP —yP does not depend on Bp as «P —8P.
Such an anomalous behavior is produced because the mass of the s quark does not
need any suppression because it actually lies at hundreds of MeV, so the SST cannot
act in the same way.

The numerical exploration by Montecarlo procedures presents how the SST deals
with the fermion mass hierarchy by matching the angles involved in the suppression
squares as the moduli increase. This result suggests the posibility of correlations
among the coupling constants in each one of the suppression squares without im-
posing too small couplings by hand.
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Figure 6.2: Quark masses and CKM mixing angles at 50 obtained from random mass matri-
ces My and Mp with the VH of eq. (6).
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Figure 6.3: Dependeces of the angle differences a% — &4, Y — e and y" — e on the mag-
nitude of the moduli Ay, By and Cyy. The fact that the larger the modulus the
smaller the angle difference shows the action of the SST on the mass eigenvalues
in order to get the hierarchy.
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Figure 6.4: Dependences of the angle differences «P — 8P and BP —yP on the magnitude
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mass in order to suppress it at unts of MeV, but the anomalous behavior of Bp is

produced by the lack of suppression in the s mass since it alredy is at hundreds

of MeV.
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Left-handed X+ Right-handed X+
SM Leptons + RH neutrinos
+
oY) v 1/
e ). eR —4/3t
w _
QIL_L _ vH s Vi 0
et ) ek —1-
T vt + VF]% B 1/37
i = . —1 b n
e L ex —4/3
Non-SM Leptons
el +1- e} +4/37
et —1+ &% —4/5"
& +5/37 & +4/37
1
Ng ot
Majorana Fermions N % 0~
3
Nz ot

Table 6.2: Leptonic sector of the model, non-universal X quantum number and Z, parity.

LEPTONIC SECTOR

The leptonic sector of the model contains the SM fields with three exotic chiral
charged leptons el &2 &3 and three Majorana fermions Ng = (NT, N2, N3R). The non-
universal quantum numbers and parities are shown in table 6.2, and the Lagrangians
under the symmetry U(1)y ® Z; in the lepton sector are

—Ly N :BN1E&)2\/€R + DNV}%CXNR-F

+AN]ECT)2VE+BNzga)f\/E—i-E{\,\/ECIbNR-F (6.46)
iy . - 4
+ ANzell_(D]VE + CNE%q)gVE + FNVECXNR—F

+ “Z—NJ\T%GNNR +he.

while the Yukawa Lagrangian of the charged leptons can be expressed as

—Lye =Ape ] O3 (shyshoef +chyshoek + choER) +
+ Ceel®e (3 0, (sSisaeR +clishrer +cbyER)
+ +Bee'P 2 0zel + Deetdee]y (sEek +cbed) + (6-47)
+Eget°celx (sEyshyeq +clysbrek +c5hER)

+ +Feetee2pel + Gee'9eedx (sEeh +cEeR) +he.
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Neutral leptons

Neutrinos involve Dirac and Majorana masses in their Yukawa Lagrangian. Since N
are Majorana fermions, the bases are chiral and the mass basis describes Majorana
neutrinos. The flavor and mass bases are, respectively,

NL = (VE/H’/T, (VE’HIT)C, (NE/H/T)C)’

- (6.48)
np = (v, (Ng)S, (Ng22)9).
The mass term expressed in the flavor basis is
LN = zNiflMNNL, (6.49)
where the mass matrix has the following block structure
o ML, o
Mn=| M, 0o ML |, (6.50)
0 My My
with M, as the Dirac mass matrix between v| and vg
: 0 Aniv2 Anzawi
My=—18B B , 6.51
V=5 | Bvivz Bav 0 (6.51)
0 0 Cnvs
My the Dirac mass matrix between v% and Ng
N Dn1 Dnz Dws
My = = , 6.52
N \ﬁ EN1 EN 2 EN3 ( 5 )
Fnr Fnz Fas
where En1 = pyEL; with py, = vy /vy, and My = Gy is the Majorana mass of
Ng.
By employing the inverse SSM because of the VH in eq. (6.19), it is found that
my O 0
T
(VEss) MnVigs=| 0 mn 0 (6.53)

0 0 mg
where the new 3 x 3 blocks are[CMO12; Dia+12]

my = M5 (ML) ™ Mo (V) ™' M,

(6-54)
MN %MN—MN, MN %MN—FMN.
It was assumed My diagonal and
Gn1 Gng O
GN=|Gns Gn2 O (655)

0 0 Gns

57



58 FERMIONIC SECTOR

so as it can yield the adequate mixing angles to fit PMNS matrix. By rejecting terms
proportional to v3 in m., the neutrino v{ turns out to be massless, the masses of the

other two neutrinos are

m2, ~ B2,,GNz2 UNVE - 2AN1B3,EN1GN2GNa UNVIV2
Y Bz vk GN2(ARRER2GNt —BR,DRgGN2) vk (6.56)
m2, ~ AR2GNT NVE 2ANTAZH,BN2GN2GNTGNg UNVIV2
N Dy Vi Ent(AR2ER2GNT —BR,DRiGr2) vk
and the masses of the exotic species are
v GNTHN 41 Vx , GNi1uN
Nk =Dy — ZNEN N =Dy X 4 2NN
R \/Z 2 R \/Z 2
v GrN2UN - v GN2ZUN
NR=Ean e SRR, R =Ean S SN, (6.57)
v GN3HN 43 v GN3HN
N3 =F3n—% — , Ng=Fn—%+
V2 2 R V2 2
The left-handed rotation matrix can be expressed by
Vi =VigVig, (6.58)
where the see-saw angle is
BniGrgva  Bn2GnyVi | ANiGnivz An2Gapvi
N Dni1Enz Dni1Enz A Dglz A Dglz
— Bni1GNe Bn2GNe v v
®L B T\Ill—l\lzl\lzv2 NéNzNzw + S;lg:zz S’lfllEN:IZI (6'59)
O O C]\IJ:GN23V3
N3

and WESM, contained in the block-diagonal mixing matrix VEB after rotating out the
heavy species has the angles

2
el AN1BNnVS
tan0yy ~ ————3,
An2BN2Vi
EL AN2BN1DN1EN2GN4
tan 023~ A2 ,E2,Gn — BZ,DZ,Gra v1
N2EN29NT N2VUN1BN2 VI

Y2 (6.60)

Bni1va
Bn2vi

EL _
tan0;; ~

Charged leptons
The charged leptons are described in the bases E and e, where the former is the flavor

basis while the latter is the mass basis

E=(ef et em el e?),
1 2 (6.61)
e=(e w1k, E).
The mass term obtained from the Yukawa Lagrangian is
(6.62)

—Lg =E MgEg +h.c
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where IM¢ turns out to be

MSM’(D MEX,G)
Mg = <MEM,X M]Ex,x (663)
E E

and the blocks are

iag E E ia E E
MM = 0 BeetPevs 0 (6.64)
icg oE E icg ~E E
Cee'Esyys oV 0 Cee'Feyqsy,v

0 Aget%tct,vz 0
MEY® = |0 0 0 (6.65)

icg oE
0 CEe‘CEcyzw 0

0 0 0
MEMX — | g piergE GE Frelfe EreteecE gE (6.66)
E E€ Se15e2Vx E€ "Vy E€ Ce18e2Vx :
0 0 0
; DEeidEsgvX 0 DEeidEcgvX
MEX,X — 0 EEeIeECEZVX 0 (667)
Geel9tsfvy 0 Geel9tctvy

The determinant of Mg is non-vanishing ensuring that all charged leptons acquire
mass. In order to simplify the algebraic expressions, €1 was set equal to y;. Thus,
the eigenvalues of the mass matrix yields the masses of the SM leptons

2
v
m2 ~ A% sin? (oqE) sin? (ch— —yg‘) 73,
2 2 V3
2~ B, (6.68)
V2
m R~ CE sin? (y% — e%) , 71

and the masses of the new exotic charged leptons

V2
+ Cf cos? (v§ —€5) 7‘ (6.69)

The left-handed rotation matrix can be expressed by

VE = Vg Vi, (6.70)
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where the see-saw angle is

AgEevs L E ilag—eEg)
0 E2v2+F2 2 CocZ eZe 0
Et _ BEFE‘BW i(bg—Tg)
®L = 0 We ETTE 0 , (671)
0 SeBevivy (E i(ce—ee) o

EZvi+FEv] CYZ e2€'
E . . E o .
and V7 g, contained in V[ ; has the mixing angles

Agvsst

tanG%L ~ 3 cxz e2 jilag—ce)
EVI Syzfez
tan 95’31' - BeEeFEv3vy vy
Cevi <FEv¢ +EZvEsE sS2 e2> (6.72)

E b
0EL A, AEVySs) v BeFgell®e—Pe—eetfe)

tan ~ T T 5
EVxSy2— 2 2 ((E GE
XTy2—e2 BE _AE (Soczsocl—y1>
The exotic charged leptons E'?3 have acquired mass at TeV scale. Due to the
existence of the SST (in this case extended in a rectangle)

(6.73)
E E ieg ~E E
Vx EF—e CelsezvX

MM _ (CEeiCEsE]sEz\n CEeiCEcE1sE2v1 CEeiCECE/Zv] )
E - 7
v1 Se2

EEeie‘ESE1 Ez"x Epelcec
the heaviest SM lepton T acquired a supressed mass at GeV scale through v; so as
it does not acquire mass at hundreds of GeV, but at units of GeV. The lepton p has
acquired mass through vz without any suppression, so its mass remains at hundreds
of MeV. Finally, the lightest lepton, e, got its mass through the largest SST involving
the half of the mass matrix

AEeiaESE]SEZ\G AEelaEC 1 oc2v3 AEeiaECEZ\Jg

E E

SM, @ ; )
Mg = CEelcEsy]syzw CEe‘CEcy] E2v1 CEeICEC$2v1 (6.74)

ieEE E ieEE E ieEE
Epe'®ts sV Eee' feyscovy EeetRegvy

and yielding three masses of the charged leptons,

2
mZ ~ A sin? (af) sin? (a5 —v5) %,
V2
~ C¢sin? (v5 —€5) 71 (6.75)
v E_E vi
mé, ~ EZ > X + Cg cos? (v5 — 2)7.

Numerical exploration in the lepton sector

Similarly with the quark sector, the lepton mass matrices My and My were explored
numerically in order to test their suitability and consistency with current neutrino
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Figure 6.5: Lepton masses and PMNS mixing angles at 30 according to ref. [GGMS14] ob-
tained from random mass matrices My and Mg with the VH of eq. (6).

oscillation datal GGMS14]. The numerical results in reproducing such data at 3o are
presented in Fig. 6.5, so that the model is consistent with charged lepton masses
and neutrino oscillation data. It is important to remark on the massless neutrino v{
which determines, with the squared-mass differences, the masses of the neutrinos
vZ and V3.

The VH presented in eq. (6.19) fixes all the VEVs, but the Majorana mass scale pn
was only constraint about the scale of units of keV because it only fixes the mass scale
of active neutrinos v{’z’s. Therefore, in order to determine which is the best value
of un, the matrix My was generated with a Montecarlo procedure with different
values of py, from 107> to 102 keV by exponential steps of 107%-5 and ten million
trials per step. Thereafter, the number of solutions consistent at 30 with the data
reported by ref. [GGMS14] were counted. Finally, such results were plotted in the
Fig. 6.6 such that the maximum of solutions points to the best value of un near to
1071 keV.

Number of solutions per 10 million trials

104 T T T T T T
172}
g
g 10° | 3
v—i: . ]
3 . .

2 * .

< 10 E . 4
ES ] ]
2 .41 ¢ .
g 10 . 4
3 . .
Z o. ..

100 -5 I-4 I3 I2 I-l I0 I1 2
10 10 10” 107 10 10 10 10
Majorana mass scale uy (keV)

Figure 6.6: Search of the best value of puyn for My consistent at 30 with the ref. [GGMS14].

The neutral sector of the model shows a large variety of behaviors among the
Yukawa coupling constants of the matrix My in order to reproduce neutrino oscil-
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Figure 6.7: Sample of the parameter space available to reproduce neutrino oscillation data in
function of the Majorana mass scale py. From left to right the parameter space
contracts, consistently with the Fig. 6.6.
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Figure 6.8: Dependences of the angles of, af —vyF and yv§ — €5 on the magnitude of the

moduli Ag and Cg. The behavior of Cg is similar to Cy in the Fig. 6.3 since
the T lepton, as well as the c quark, gets supressed by the SST. However, the
dependence on Ag, af and o5 — ¥ offers an extended 3D parameter space.
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lation data. Specially, when the Majorana mass scale changes the parameter space
expands and contracts about the value un = 1071, A sample of this observation
is shown in figure 6.7, in which the plane En vs. BN presents how the parameter
space gets contracted as the Majorana scale diminishes.

On the other hand, the charged sector appears more similar to the quarks than neu-
trinos but new elements are introduced. First, the dependence of the angle difference
vE — €5 on the modulus Cg in the mass of the T lepton is similar to the dependence
given in the ¢ quark mass. This can be interpreted as both fermions present the
same suppression mechanism such that T and c turned out to be in the same mass
scale, units of GeV. Nevertheless, the mass of the electron presents a completely new
behavior. Since m, depends on Ag, oc1E and oc% —y%, the actual parameter space is
tridimensional, and 2D scatter plots would not show the action of the SST on the
electron. In fact, the numerical diagonalization reveals that m. is suppressed by the
angle difference ocE —ylzi and, at the same time, by the angle oc%:—, a new behavior
not observed before in the model. Consequently, the results of the numerical explo-
ration of the mass matrix Mg does show how the SST acts, consistently with the
approximated algebraic results outlined above.

The algebraic expressions, as well as the Montecarlo procedures of generating ran-
dom mass matrices in the quark and lepton sectors has shown the suitaility of the
model in addressing the fermion mass hierarchy without unpleasant fine-tunings.
Even more, the model suggests relations among different parameters, specially mod-
uli and angle differences in the polar parametrization of the Yukawa coupling con-
stants. Furthermore, the mass matrices in the quark sector are able to reproduce the
angle hierarchy and CP-phase in the CKM mixing matrix. Reciprocally, the existence
of Majorana fermions in the neutral lepton sector makes My able to deal with the
large angles 0%, and 655 of the PMNS matrix. Finally, the fermionic sector of the
model has shown that an abelian extension to the SM, together with a discrete sym-
metry and the suited set of X-charges and new exotic fields might present a new
framework to understand the fermion mass hierarchy and mixing angles.
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CONCLUDING REMARKS

The SM of particle physics has been a successful framework to understand from
atomic physics to high-energy phenomena. Virtually, the SM has not changed since
its original formulation[Gla61; Sal67; Wei67] because of its remarkable agreement
with the majority of phenomenology. Nevertheless, the existence of some unexplained
facts such as fermion mass hierarchy might not be approachable from the original
SM. In this way, models BSM propose new scenarios by extending the current model
in so many ways, from extra dimensions to abelian extensions U(1)y in order to
explain such observations. The present work is focused on the latter, abelian exten-
sions of the SM, in which a nonuniversal set of U(1)y charges is found such that
every kind of chiral anomaly gets cancelled identically. This requirement implies to
extend the scalar and fermionic sectors.

The scalar sector, presented in chap. 5 of the model includes three Higgs doublets
@1, 3 and two singlets x and 1 (see tab. 7.1). The scalar singlets introduce the scale
of units of TeV, while the VEVs of doublets constitute the electroweak scale

Vi 4+v3 +v3 = (246 GeV)?. (7.1)

The singlet x spontaneously breaks the group U(1)yx by giving mass to the gauge
boson Z},, while the doublets @13 perform the electroweak symmetry breaking,
yelding the photon A, and the weak bosons Wff and Z,,. Concomitantly, the scalar
potential gives the respective Goldstone bosons G7%, G\jfv and Gz, four charged Hfz,
two CP-odd A1 > and five CP-even physical bosons, H1 >, H1 2 and h. The last boson,
h, is associated with the Higgs boson of 125 GeV detected at the LHC.

An important feature of the model comprises the vacuum hierarchy (VH) among
the VEVs of the scalar fields to obtain suited algebraic expressions and numerical
results consistent with the fermion mass hierarchy. The numerical values are

vy = 2.5TeV, vy = 245.7 GeV,
vy = 1.0TeV, vy = 12.14GeV, (7.2)
un ~ 1keV, vz = 250 MeV.
Doublets X+ Singlets X+
¢)+ + a +v +lc +
D, = < h1+V1]+im ) +2/3 X = % +1/3
V2
¢ _ Ep +Vy _
O, = . +2/3 v Y 0
2 hz+\\z/zz+mz / 11) \/z
¢3 _
03 = h3+v33+in3 /57" o 13
V2

Table 7.1: Scalar content of the model, non-universal X quantum number and Z; parity.
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The fermionic sector is composed by the three families of SM fermions and new ex-
otic species, three right-handed neutrinos vi*", two up-like quarks 72, two down-
like quarks J', three charged leptons £'-*3 and three Majorana fermions N]]z’z’g' (see
tab. 7.3). This particle content allows the cancellation of chiral anomalies, together
with the posibility to obtain nonuniversal set of U(1)y charges in order to build
suited Yukawa Lagrangians and mass matrices.

The exotic species get heavy because all of them couple with x and 1, while the SM
fermions couple with the doublets in a very special way so as the fermion mass hier-
archy can be achieved. The central concept to deal with it is the concept of suppression
square texture (SST), which based on the VH, yields eigenvalues from the mass matri-
ces that suggest the hierarchy in their algebraic expressions and numerical behavior
with random Yukawa coupling constants.

Family Mass Mass
Quarks
V3 3
1 U Ausau-surs  d  ApSap-sD 5
v V3
2 ¢ Cusyu-eus5 S Bosppyp 5
Duyv; Cpvy
3 t V2 b V2
Leptons
! 0 A 2
1 Yo € ESchfﬁEﬁ
5 v2 BR,Gn2 Unvi m Bevs
s AL vz
3 N2ONT BNV AN
3 Vi DIZ\H V2 T CESyEfeEﬁ

1 Euv 1 Dpv
1 T ﬁx ] ﬁx

2 Fuv 2 Fpv
2 T ﬁx ] \/ZX

Exotic Leptons

1 Dinv 1 Dgv
1 Ny A X E Eﬁx

2 Eanvy 2 EVX
2 Nz v, E 2

3 Fanvy 3 FEVX
3 N R V2 E \/z

Table 7.2: Summary of fermion masses.

The chapter 6 presents in detail the fermionc mass acquisition with the different
SSTs present in the mass matrices of each sector: up-like quarks, down-like quarks,
neutral, and charged leptons. Regarding neutral sector, active neutrinos vy acquire
light masses by the inverse seesaw mechanism (ISS) with vg and Ng. Now, the
charged sector presents different kinds of SSTs which yields suppressed masses such
that the actual mass turns out to be smaller than its VEV. The masses are summarized
in tab. 7.2.

The mass matrices were not only diagonalized algebraically, but also numerically.
Each one of the matrices were generated with random coupling constants by Mon-
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Left-handed X+ Right-handed X+
SM Quarks
a=(u) e oW
/. dg —2/3
a-(s), e
e /. dg —1/3
a-(2) e oW
e/ dy -1/3
SM Leptons + RH neutrinos
= ( Ve> -2t vk s
e )y S ~4y5*
e-(z), v E S
e L ep —1
ef_(VT) 1+ vk Gl
v & ~4t
Non-SM Quarks
7! +1/37 Th +2/37
J7 +1- T2 +4/37
al VC % —2/3"
3 or Iz /57
Non-SM Leptons
&l +1- &k +4/37
et —1+ &% —4/5"
& +5/37 & +4/37
Nk ot
Majorana Fermions N 0~
N3 ot

Table 7.3: Fermionic content of the model, non-universal X quantum number and Z; parity.

tecarlo procedures and diagonalized numerically in order to test the suitability of
the model in achieving the fermion mass hierarchy without unpleasant fine-tuning
procedures.

In both sectors, quarks and leptons, the model reproduces the phenomenological
data at 50 and 30, respectively. In the quark sector, the CKM mixing angles and
CP-violating phase, as well as the masses were found, while in the lepton sector
the masses of charged leptons and neutrino oscillation data were obtained. Such
searchings reveal numerical relations among Yukawa coupling constants which can
be interpreted by the results with the approximate algebraic methods in table 7.2.
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