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Abstract
In this document, we analyze the performance of the Schwarz two-levels preconditioners applied to
the topology optimization problem for the heat equation. We discretize the topology optimization
problem using the finite element method and apply an optimization method that requires, in each
iteration, the solution of the heat equation. For the topology optimization problem, we use the
density based formulation which has been actively developed in the last 30 years. Due to the nature
of the optimization problem, it yields a high-contrast multiscale coefficient for the heat equation and
therefore designing efficient solution methods is a challenging task that we approach by designing
and testing several preconditioners. These preconditioners are built using a domain decomposition
method and the generalized multiscale finite element method (GMsFEM) recently introduced. It is
known that for a good performance of the preconditioner it is important the design of the basis
functions. In this document, the calculation of multiscale basis functions uses the solution of carefully
selected local eigenvalue problems as usual in the GMsFEM. We also propose the approximation of
the local eigenvalues using a randomized algorithm to obtain an overall less expensive methodology.
Topology optimization experiments are presented in which the good performance of the proposed
methods is verified.

Keywords: heat equation, finite element method, multiscale method, domain decomposition,
two-levels Schwarz preconditioner, topology optimization.

Resumen
En este trabajo, analizamos el rendimiento de los precondicionadores de dos niveles de Schwarz
aplicados al problema de optimización topológica para la ecuación de calor. Discretizamos el problema
de optimización topológica utilizando el método de elementos finitos y aplicamos un método de
optimización que requiere, en cada iteración, la solución de la ecuación de calor. En el problema
de optimización topológica utilizamos la formulación basada en densidad que se ha desarrollado
activamente en los últimos 30 años. Debido a la naturaleza del problema de optimización, este
produce un coeficiente multiescala de alto contraste para la ecuación de calor y, por lo tanto, diseñar
métodos de solución eficientes es una tarea desafiante que abordamos al diseñar y probar varios
precondicionadores. Estos precondicionadores se crean utilizando un método de descomposición
de dominios y el método generalizado de elementos finitos multiescala (GMsFEM) recientemente
introducido. Se sabe que para el buen desempeño del precondicionador es importante el diseño de
las funciones base. En este trabajo, el cálculo de las funciones base multiescala utiliza la solución de
problemas de valores propios locales seleccionados cuidadosamente como es habitual en el GMsFEM.
También proponemos la aproximación de los valores propios locales utilizando un algoritmo aleatorio
para obtener una metodología general menos costosa. Se presentan experimentos de optimización
topológica en los que se verifica el buen desempeño de los métodos propuestos.

Palabras clave: ecuación del calor, método de elementos finitos, método multiescala, descomposición
de dominios, precondicionador de dos niveles de Schwarz, optimización topológica.
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Introduction

Understanding heat conductivity is very important for many practical applications such as the
design of composite materials with specific conducting properties, among many other applications.
There are several aspects related to heat conduction that shall be taking into account when dealing
with such applications. Roughly speaking, heat flows from hotter to colder parts of a body, which
is known as Fourier’s law. More precisely, the heat conduction law states that heat flux transfer
through a material is proportional to the negative of the temperature gradient. This proportion is
given by a coefficient called thermal conductivity that depends on the material. In some applications,
it is important to design a material with optimal thermal conductivity. In this case, the optimal
design problem can be modeled using optimization methodologies where the cost functional is
computed over solutions of the heat equation with the actual proposed design.

In topology optimization problems it is usual to obtain designs with a multiscale structure for the
high-conductivity part of the material and also a high-contrast property is present due to the density
formulation. These problems make the linear system hard to solve via direct methods, especially if
we have large domains, see more in [30].

In this work, we analyze the performance of the two-levels preconditioners applied to the topology
optimization problem for the heat equation. This study will lead to an application of heat pre-
conditioners in the more computationally expensive elasticity equation case, see [35] and [36]. We
review the mathematical and numerical tools concerning topology optimality problems related to
the thermal conductivity design of materials.

We begin with a review of the finite element method including the most relevant aspects. We also
present an example of the finite element method applied to a two-dimension problem. Finally, we
present a comparison between heat and elasticity equations to see how simpler heat calculations
can be applied to elasticity. This is explored in the sister master thesis [35] where using the results
presented here they design preconditioners for elasticity topology optimization.

The second and third chapters are devoted to the study of the two-levels preconditioner for the
heat equation, based on [17, 16, 21]. We give a short review of classical MsFEM and then we focus
on GMsFEM, and we make a description of a randomized algorithm to calculate the coarse basis
elements as in [8, 25].

Then we review the domain decomposition methods, used to build the two-levels preconditioner.
We show that one can obtain preconditioners that yield a contrast-independent condition number,
as in [39, 14, 22, 23, 19].



In Chapter 4 we address the main concepts in topology optimization, based in the works of [3, 2, 1, 31].
We present a simple example of the minimum compliance design for the heat equation in two
dimensions, which include the FEM discretization on a squared mesh.

In Chapter 5, we give two examples of topology optimization problems with the heat equation. We
compare the iteration count of the PCG method when using the preconditioner and when directly
solving the system. To reduce computational costs we use a randomized approach to solve the
eigenvalue problem as in [8, 25]. To further reduce the computational cost, we also present results
of iterations if we reuse the coarse basis for some optimization steps, thus avoiding the calculation
of eigenvalue problems in all the optimization iterations.
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Chapter 1

The Finite Element Method

The Finite Element Method (FEM) is a procedure that allows us to numerically solve a partial
differential equation over a domain, often with complex geometries, by simply solving a matrix
equation. In this chapter, we shortly describe the abstract formalism for the method, following [29,
26, 4, 5, 6, 28], and then present an example using the heat equation in two dimensions. The finite
element method will be used later to obtain a discrete version of the topology optimization problem
for the heat equation that is the main topic of this dissertation.

1.1 FEM Fundamental Concepts

The finite element method is a procedure that allows us to solve boundary value problems numerically
on a domain that can have a rather complex geometry. The method allows us to transform the
problem defined on function spaces to a matrix problem that is possible to solve using a computing
system. Next, we describe in a very brief way the abstract formulation of the method, we follow [29].

Let us define a trial function space V and a test function space V̂ . These spaces are chosen according
to a particular problem to be addressed. Let a : V × V̂ → IR be a bilinear form and l : V̂ → IR a
bounded linear functional. We consider the variational problem: find u ∈ V such that

a(u, v) = l(v) for all v ∈ V̂ .
We can discretize this variational problem by searching solutions over a finite-dimensional subspace
V h ⊂ V . Now, the discretized problem is to find uh ∈ V h such that

a(uh, v) = l(v) for all v ∈ V̂ h,

over an appropriate V̂ h ⊂ V̂ . Let {φi}ni=1 be a basis of V h and {φ̂i}ni=1 a basis of V̂ h, we can write
uh as a linear combination,

uh =
n∑
j=1

αjφj ,

also, lets take v = φ̂i for i = 1, 2, . . . , n. It follows that
n∑
j=1

αja(φj , φ̂i) = l(φ̂i) for i = 1, 2, . . . , n.
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The weights in the finite element solution uh can be computed by solving the linear system A~α = ~b,
where

aij = a(φj , φ̂i), i, j = 1, 2, . . . , n and bi = l(φ̂i), i = 1, 2, . . . , n.

From here on we adopt the following definitions and conventions, let (H, 〈·, ·〉) a Hilbert space over
IR with ‖ · ‖H the associated norm, f ∈ H∗ and a : H×H → IR is a continuous and coercive bilinear
form, i.e.:

• The form a is continuous if |a(v, w)| ≤ γ‖v‖ ‖w‖ for some γ > 0 and for all v, w in H.

• The form a is coercive in V or V -elliptic if a(v, v) ≥ α‖v‖2 for some α > 0 and all v in H.

1.2 Existence and Uniqueness of the Solution

Let us consider the following minimization problem: find u ∈ H such that

F (u) = min
v∈H

F (v), (1.1)

where
F (v) = 1

2a(v, v)− f(v),

with a : H×H → IR a symmetric bilinear form. Consider also the variational problem: find u ∈ H
such that

a(u, v) = f(v) for all v ∈ H. (1.2)

Now we show that both problems are equivalent, the uniqueness of the solution is verified later
using the Lax-Milgram theorem.

Let v ∈ H and ε > 0, then (u+ εv) ∈ H and since u is a minimum of F , we have that for all ε > 0

F (u) ≤ F (u+ εv).

Let g(ε) = F (u+ εv), thus
g(0) ≤ g(ε) for all ε > 0.

Then, g reaches a minimum when ε = 0. Now we show that y′(0) exists and it vanishes. Observe
that

g(ε) = 1
2a(u+ εv, u+ εv)− f(u+ εv)

= 1
2a(u, u) + ε

2a(u, v) + ε

2a(v, u) + ε2

2 a(v, v)− f(u)− εf(v),

and since a(·, ·) is symmetric we have,

= 1
2a(u, u)− f(u) + εa(u, v)− εf(v) + ε2

2 a(v, v),

whence,
g′(ε) = a(u, v)− f(v) + εa(v, v),
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and since g′(0) = 0,
0 = g′(0) = a(u, v) = f(v).

To prove the other equivalence, we proceed similarly.

As suggested in the previous section, we can discretize the problem (1.2) by looking for uh in V h

which is a finite dimension subspace of H such that

a(uh, vh) = f(vh) for all vh ∈ V h. (1.3)

For a Hilbert space H let H∗ be defined as the linear space of all bounded linear functionals
f : H → IR with the norm

‖f‖H∗ = sup
x6=0

|f(x)|
‖x‖H

.

Note that H∗ is itself a Hilbert space.

Now we need to recall a well-known theorem in the scope of Hilbert spaces.

Theorem 1 (Riesz representation). Let H be a Hilbert space over IR. The mapping

γ : H → H∗

ξ 7→ γξ,

where γξ(η) = 〈ξ, η〉, for all η ∈ H is an isometric isomorphism.

By the Riesz representation theorem we have that every f ∈ H∗ has a unique representation

f(v) = 〈u, v〉,

for some u ∈ H. Also ‖f‖ = ‖u‖.

First, we deal with symmetric variational problems, that is, the case where the bilinear form a(·, ·)
is symmetric.

Proposition 1. Let H be a Hilbert space, and a(·, ·) a continuous symmetric bilinear form that is
coercive in V , being V a closed subspace of H. Then (V, a(·, ·)) is a Hilbert space.

Proof. To verify that a(·, ·) defines an inner product, it is enough to see that if v ∈ V and a(v, v) = 0
then v = 0. This follows immediately from the fact that a(·, ·) is coercive since 0 = a(v, v) ≥ α‖v‖2,
yields v = 0.

Now, the norm induced by the bilinear form is ‖v‖V =
√
a(v, v) and let {vn} a Cauchy sequence in

(V, ‖ · ‖V ). Since a(·, ·) is coercive

‖vn − vm‖2H ≤
1
α
a(vn − vm, vn − vm) = ‖vn − vm‖2V ,

where α > 0 is the coercivity constant. Then {vn} is a Cauchy succession in (H, ‖ · ‖H) and since
H is complete, there is v ∈ H such that vn −→ v in the norm ‖ · ‖H. Since V is closed in H, then
v ∈ V . Using that a(·, ·) is bounded we have ‖v − vn‖V ≤ C‖v − vn‖H, from where we deduce that
vn −→ v in the norm ‖ · ‖V . Therefore (V, a(·, ·)) is a Hilbert space. �
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If the following conditions are fulfilled:

• The pair (H, 〈·, ·〉) is a Hilbert space.

• The subspace V is closed in H.

• The bilinear form a(·, ·) is symmetric, bounded and coercive in V .

Now the symmetric variational problem (1.2) is well posed.

Theorem 2. If the above conditions are fulfilled, then exists a unique solution u ∈ V that solves
problem (1.2).

Proof. From Proposition 1, we know that a(u, v) = f(v) define an inner product in V and that
(V, a(·, ·)) is a Hilbert space. Then, by Theorem 1 we have that for all f ∈ V ∗ exist an unique u ∈ V ,
that solves (1.2). �

Definition 1 (Ritz-Galerkin approximation problem). Given a finite dimensional subspace V h ⊂ V
y f ∈ V ∗, find uh ∈ V h such that a(uh, v) = f(v) for all v ∈ V h.

Theorem 3. Let us suppose valid the tree conditions from the variational symmetric problem, then
there exists a unique uh that solves Ritz-Galerkin approximation.

Proof. Since (V h, a(·, ·)) is a Hilbert space and f |V h ∈ V h∗, by Theorem 1 follows that exists a
unique uh ∈ V h that solves the Riesz-Galerkin approximation. �

Proposition 2 (Galerkin fundamental orthogonality). Let u and uh be solutions of problems (1.2)
and (1.3), respectively. Then a(u− uh, v) = 0 for all v ∈ V h.

Proof. It is obtained simply by subtracting equations (1.2) and (1.3). �

Corolary 1. Let u and uh be as in last proposition, then

‖u− uh‖H = min
v∈V h

‖u− v‖H.

We have considered so far that a(·, ·) is symmetric, which is not always true. Lets consider the
non-symmetric variational problem, for which we assume that the following conditions are valid,

• The pair (H, 〈·, ·〉) is a Hilbert space.

• The subspace V is a closed subspace of H.

• The bilinear form a(·, ·) is not necessarily symmetric.

• The bilinear form a(·, ·) is bounded and coercive in V .

Then the possibly non-symetric variational problem yields: given f ∈ V ∗, find u ∈ V such that

a(u, v) = f(v) for all v ∈ V.
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The Galerkin approximation is: given a finite dimensional subspace V h ∈ V y f ∈ V ∗, find uh ∈ V h

such that
a(uh, v) = f(v) for all v ∈ V h.

We want to know if there are solutions for this case, also if they are unique and what is the error
estimate for u − uh. Here the Lax-Milgram theorem guarantees the existence and uniqueness of
solutions for the non-symmetric variational problem.
Theorem 4 (Lax-Milgram theorem). Let a : H ×H → IR be a continuous and coercive bilinear
form, and f ∈ H∗. Then exists a unique element u ∈ H such that

a(u, v) = 〈f, v〉 for all v ∈ H.

Proof. If we fix u ∈ H, the map v 7→ a(u, v) is a linear functional in H. By Ritz representation
theorem exist a unique element w ∈ H such that

a(u, v) = 〈u, v〉, for all v ∈ H. (1.4)
We write Tu = w if equation (1.4) is fulfilled. Then

a(u, v) = 〈Tu, v〉, for u, v ∈ H. (1.5)
Lets verify that T : H → H is linear, one-to-one and that Im(T ) is a closed subset in H. Let λ ∈ IR,
u1, u2 ∈ H, for all v ∈ H

〈T (λu1 + u2), v〉 = a(λu1 + u2, v)
= λa(u1, v) + a(u2, v)
= λ〈Tu1, v〉+ 〈Tu2, v〉
= 〈λTu1 + Tu2, v〉,

which means that T is linear. Since
‖Tu‖2 = 〈Tu, Tu〉 = a(u, Tu) ≤ α‖u‖‖Tu‖,

hence T is bounded. Since a(·, ·) is coercive and by Cauchy-Swarz inequality,
γ‖u‖2 ≤ a(u, u) = 〈Tu, u〉 ≤ ‖Tu‖‖u‖,

hence T is one-to-one and Im(T ) is closed. Lets suppose that Im(T ) 6= H, then as Im(T ) is closed
there exists an element w ∈ H non-null such that w ∈ Im(T )⊥. Since a(·, ·) is coercive,

γ‖w‖2 ≤ a(w,w) = 〈Tw,w〉 = 0,
yielding a contradiction. Hence Im(T ) = H.

By the Riesz representation theorem we see that for w ∈ H,
〈f, v〉 = 〈w, v〉, for all v ∈ H,

nevertheless since the operator T is bijective, we can find u ∈ H such that Tu = w. Then,
a(u, v) = 〈Tu, v〉 = 〈w, v〉 = 〈f, v〉, for all v ∈ H,

which completes the proof. �

The Lax-Milgram theorem assures us that the non-symmetric variational problem has a unique
solution. If we apply this theorem to the discrete non-symmetric variational problem, we can
conclude that this also has a unique solution in V h. Note that V h does not necessarily need to be
finite dimensional, it just needs to be closed.
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1.3 FEM Error - Lemma of Céa

To estimate the error ‖u− uh‖ we need the next lemma:

Lemma 1 (Lemma of Céa). Let u ∈ H be the solution of (1.2) and uh ∈ V h with V h ⊂ H. Then

‖u− uh‖H ≤ min
v∈V h

γ

α
‖u− vh‖H,

where γ is the continuity constant and α is the coercivity constant of a(·, ·) in V .

Proof. We have that a(u, v) = f(v) for all v ∈ V and a(uh, v) = f(v) for all v ∈ V h, if we subtract
the two equations get

a(u− uh) = 0 for all v ∈ V h.

For all v ∈ V h, a(·, ·) is coercive,

α‖u− uh‖2V ≤ a(u− uh, u− uh)
= a(u− uh, u− uh + v − v)
= a(u− uh, u− v) + a(u− uh, v − uh),

since v − uh ∈ V h,

= a(u− uh, u− v),

and since a(·, ·) is continuous,

≤ γ‖u− uh‖V ‖u− v‖V .

Which gives,
‖u− uh‖V ≤

γ

α
‖u− v‖V , for all v ∈ V h.

The previous inequality is valid for all v ∈ V h, and therefore,

‖u− uh‖V ≤
γ

α
inf
v∈V h

‖u− v‖V = γ

α
min
v∈V h

‖u− v‖V ,

since V h is closed. �

The lemma of Céa gives us a bound for the error of our discretized problem. We can notice that the
error is almost optimal, since the error is proportional to the best bound that can be obtained using
the subspace V h. In the case in which the bilinear form is symmetric, it was shown that

‖u− uh‖V = min
v∈V h

‖u− v‖V .

For instance, let us take the heat equation over Ω ⊂ IRn, with Dirichlet boundary conditions,

−∆u = f in Ω, u|∂Ω = 0.
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We can rephrase last equation as a variational problem over V =
{
v ∈ H1(Ω) : v|∂Ω = 0

}
. The

problem is to find u ∈ V such that∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx, for all v ∈ V.

Recall that we can get this equivalent problem, know as variational formulation, by multiplying a
test function v and integrating, then we use Green identity to reduce derivative order on u. Using
the boundary condition we ditch the integral term over ∂Ω.

If we define the bilinear form a(u, v) =
∫

Ω∇u · ∇v dx and the functional f(v) =
∫

Ω fv dx, then we
can write the problem in abstract form such as: find u ∈ V such that

a(u, v) = f(v), for all v ∈ V. (1.6)

We can verify that the bilinear form and the functional both fulfill the conditions from Lax-Milgram
theorem, then we know that problem (1.6) has a unique solution called ũ. We can apply the
Galerkin method to approximate ũ and estimate the errors made using the lemma of Céa. To apply
the Galerkin method we take the finite dimension subspace V h ⊂ Ω, generated by a set of basis
functions and we solve then the variational problem of Galerkin: find uh ∈ V h such that

a(uh, v) = f(v), for all v ∈ V h. (1.7)

Let {φi}ni=1 be a basis of V h and {φ̂i}ni=1 a basis of V̂ h, we can write uh as a linear combination,

uh =
n∑
j=1

αjφj ,

also, lets take v = φ̂i for i = 1, 2, . . . , n. It follows that
n∑
j=1

αja(φj , φ̂i) = f(φ̂i) for i = 1, 2, . . . , n.

The weights in the finite element solution uh can be computed by solving the linear system A~α = ~b,
where

aij = a(φj , φ̂i), i, j = 1, 2, . . . , n and bi = f(φ̂i), i = 1, 2, . . . , n.

To get A and ~b we usually do not compute the exact value of the integrals involved, we instead
approximate the value of the integrals using numerical methods such as quadratures. It is here that
we begin to generate extra errors that is known as a variational crime.

1.4 The Strang Lemmas

Solving problem (1.7) usually requires the use of some numerical approximation to compute the
integrals involved. We are approximating the bilinear form a(·, ·) by a discrete version called ah(·, ·).
In the same way we define a discrete functional fh(·) over V h. Note that here we should also consider
precision errors due to the computer calculations, see [27].
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On the other hand, if the domain Ω is not polygonal, it cannot be triangulated in an exact way.
Then the triangulation of the finite element method is only an approximation of Ω. Here the
functions are defined in spaces V h that are different from the space V and such that V h 6⊂ V , we
are again generating more approximation errors in these calculations, see [27].

Being the finite element method one of the most popular choices to solve partial differential equations
in applied problems, it is common not to take these errors into consideration. That is, not taking
care of the difference between using the discrete analogs of the bilinear and functional forms when
applying the Galerkin method. Then, the error analysis showed previously for this method is no
longer valid.

Now we show the Strang lemmas, in which these errors are taken into account in the calculation
of the error bound for the method. The Strang lemmas are a generalization of the lemma of Céa,
under the same conditions of the problems (1.2) and (1.3). For the first lemma, it is not necessary
for ah to be defined for all the functions in H, in particular, we can evaluate ah using quadrature
methods for example. In this case, it is still necessary that V h ∈ H.

Definition 2 (Uniform V h-ellipticity). The sequence {ah(·, ·)} with h ∈ H (H a positive real
number sequence that converges to zero) of discrete bilinear forms ah(·, ·) : V h × V h → IR is called
uniformly V h-elliptic, if there exist a positive constant α̂ such that,

ah(uh, uh) ≥ α̂‖uh‖2H uh ∈ V h,

uniformly for all h ∈ H. See [26].

If we assume the uniform V h-ellipticity, the variational equation (1.3) admits unique solutions
u− h ∈ V h. The First lemma of Strang gives us a bound for the generalized error from the lemma
of Céa, see more in [26].

Lemma 2 (First lemma of Strang). Assume that {ah(·, ·)} is a uniformly V h-elliptic family of
bilinear forms. Let u ∈ H and uh ∈ V h with h ∈ H be the unique solutions of (1.2) and (1.3)
respectively. Then exists a constant C ∈ IR+, independent of h ∈ H such that

‖u−uh‖H ≤ C
(

inf
vh∈V h

(
‖u− vh‖H + sup

wh∈V h

|a(vh, wh)− ah(vh, wh)|
‖wh‖H

)
+ sup
wh∈V h

|f(wh)− fh(wh)|
‖wh‖H

)
.

Proof. Let vh ∈ V h, and take uh − vh = wh, given that ah(·, ·) is coercive

α‖uh − vh‖2 ≤ ah(uh − vh, uh − vh)
= ah(uh − vh, wh)
= ah(uh, wh)− ah(vh, wh)
= ah(uh, wh)− ah(vh, wh) + a(u− vh, wh)− a(u− vh, wh)
= a(u− vh, wh) + [a(vh, wh)− ah(vh, wh)] + [ah(vh, wh)− a(u,wh)]
= a(u− vh, wh) + [a(vh, wh)− ah(vh, wh)] + [fh(wh)− f(wh)]
≤ |a(u− vh, wh)|+ |a(vh, wh)− ah(vh, wh)|+ |f(wh)− fh(wh)|

and since a(·, ·) is bounded,

≤ γ‖u− vh‖‖wh‖+ |a(vh, wh)− ah(vh, wh)|+ |f(wh)− fh(wh)|,
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dividing by α‖uh − vh‖, we get that

‖uh − vh‖ ≤
γ

α
‖u− vh‖+ 1

α

|a(vh, wh)− ah(vh, wh)|
‖wh‖

+ 1
α

f(wh)− fh(wh)
‖wh‖

.

Since vh is an arbitrary element of V h, and using triangular inequality

‖u− uh‖ ≤ ‖u− vh‖+ ‖uh − vh‖,

it follows that,

‖u− uh‖ ≤
(

1 + γ

α

)
‖u− vh‖+ 1

α

|a(vh, wh)− ah(vh, wh)|
‖wh‖

+ 1
α

f(wh)− fh(wh)
‖wh‖

.

Since vh is arbitrary, we take each element bound as the worst case scenario, hence,

‖u−uh‖H ≤ C
(

inf
vh∈V h

(
‖u− vh‖H + sup

wh∈V h

|a(vh, wh)− ah(vh, wh)|
‖wh‖H

)
+ sup
wh∈V h

|f(wh)− fh(wh)|
‖wh‖H

)
.

�

The next lemma, often referred to as the second lemma of Strang, gives us a bound for the error if
the conditions for the first lemma are fulfilled, but V h 6⊂ H. This is the case of non-conforming
finite elements.

Since V h 6⊂ H we cannot use the induced norm of H in all the elements of V h, so it is convenient to
use mesh-dependent norms, which are denoted as ‖ · ‖h, see [26].

Definition 3 (Mesh-dependent norm). Given τh a partition of Ω, we define

‖v‖h =
√ ∑
Qj∈τh

‖v‖2Qj
.

Lemma 3 (Lemma of Berger, Scott and Strang). Assume that {ah(·, ·)} is a family of uniformly
V h-elliptic of bilinear forms. Let u ∈ H and uh ∈ V h with h ∈ H unique solutions from (1.2) and
(1.3). There exists a constant C ∈ IR+ independent of h ∈ H such that

‖u− uh‖h ≤ C
(

inf
vh∈V h

‖u− vh‖h + sup
wh∈V h\{0}

|ah(u,wh)− fh(wh)|
‖wh‖h

)
.

Proof. Following [26], let vh ∈ V h,

α‖u− uh‖h ≤ ‖u− vh‖h + ‖vh − uh‖h,
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since ah(·, ·) is coercive,

α‖u− uh‖h ≤ ‖u− vh‖h + 1
γ

sup
wh∈V h\0

|ah(vh − uh, wh)|
‖wh‖h

= ‖u− vh‖h + 1
γ

sup
wh∈V h\{0}

|ah(vh − uh, wh)|
‖wh‖h

= ‖u− vh‖h + 1
γ

sup
wh∈V h\{0}

|ah(vh − uh, wh) + ah(u,wh)− ah(u,wh)|
‖w‖h

= ‖u− vh‖h + 1
γ

sup
wh∈V h\{0}

|ah(vh, wh)− ah(uh, wh) + ah(u,wh)− ah(u,wh)|
‖w‖h

= ‖u− vh‖h + 1
γ

sup
wh∈V h\{0}

|ah(vh − u,wh) + ah(u− uh, wh)|
‖wh‖h

= ‖u− vh‖h + 1
γ

sup
wh∈V h\{0}

|ah(vh − u,wh)|
‖wh‖h

+ 1
γ

sup
wh∈V h\{0}

|ah(u− uh, wh)|
‖wh‖h

because ah(·, ·) is continuous,

α‖u− uh‖h ≤ ‖u− vh‖h + α

γ
sup

wh∈V h\{0}

‖vh − u‖h‖wh‖h
‖wh‖h

+ 1
γ

sup
wh∈V h\{0}

|ah(u− uh, wh)|
‖wh‖h

≤ ‖u− vh‖h + α

γ
‖vh − u‖h + 1

γ
sup

wh∈V h\{0}

|ah(u− uh, wh)|
‖wh‖h

=
(

1 + α

γ

)
‖u− vh‖h + 1

γ
sup

wh∈V h\{0}

|ah(u− uh, wh)|
‖wh‖h

.

Thus for an arbitrary vh,

‖u− uh‖h ≤
(

1 + α

γ

)
inf

vh∈V h
‖u− vh‖h + 1

γ
sup

wh∈V h\{0}

|ah(u− uh, wh)|
‖wh‖h

≤ C
(

inf
vh∈V h

‖u− vh‖h + sup
wh∈V h\{0}

|ah(u− uh, wh)|
‖wh‖h

)
.

�

Lemma 4. If the conditions of the previous lemma are fulfilled with dim V h < ∞ and also the
bilinear form ah(·, ·) is positive-definite, with

‖v‖a :=
√
ah(v, v),

then we can improve last bound as,

‖u− uh‖a ≤ inf
vh∈V h

‖u− vh‖a + sup
wh∈V h

|ah(u− uh, wh)|
‖wh‖a

.

In equation (3), the first term is known as the approximation error, while the second term is known
as the consistency error, for more details see [26].
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The approximation error comes from the discretization of the function space. This error is the
distance between u, which is the exact solution of the original variational problem, to V h space.
This error comes from the construction of the finite dimensional space and measures how well this
space captures the solution u. The consistency error comes from the discretization of the variational
equation. When working on the space V h we actually use the discrete analogs of the bilinear form
a(·, ·) and the functional f . This is why in general the exact solution of the variational equation
is not a solution to the discrete variational problem. This error measures how well the solution u
satisfies the discrete variational problem, from [40].

1.5 The Heat Equation

Understanding heat conductivity is very important for many practical applications such as the design
of composite materials, among many others. There are several aspects related to heat conduction
that shall be taking into account when dealing with applications. Roughly speaking, heat flows
from hotter to colder parts of a body, which is known as Fourier’s law. More precisely, the heat
conduction law states that heat flux transfer through a material is proportional to the negative of
the temperature gradient. This proportion is given by a coefficient called thermal conductivity that
depends on the material. In some applications, it is important to design a material with optimal
thermal conductivity. Also important in many applications is the understanding and efficient design
of material with optimal elastic properties. In both cases, these optimal design problems can be
modeled by using optimization methodologies where the cost functional is computed over solutions
of partial differential equations.

In this section, we review the mathematical and numerical tools concerning some optimality problems
related to the design of thermal conductivities which are similar to the tools used for the design of
elasticity tensors and other related problems in topology optimization.

We now present in some more detail the time-independent heat equation that is needed in order to
write the problem for the optimal design of the conductivity coefficient.

Here we work with the flow equation for stationary heat conduction over a domain Ω ⊂ IR2 with
boundary ∂Ω, see [34]. Let #»q = [qx, qy]ᵀ denote the heat flux and f = f(x, y) a source term. The
energy conservation law states that

div( #»q ) = f, (1.8)

and the Fourier heat conduction equation says that,

#»q = −K∇u, (1.9)

where K is the thermal conductivity matrix and u = u(x, y) is the temperature at the (x, y) ∈ Ω
point. See Figure 1.1 for an illustration.

Merging equations (1.8) and (1.9), that is, eliminating the flux we get

−div(K∇u) = f. (1.10)

This is a second order partial differential equation that describes the distribution of temperature
over a domain Ω.
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Ω

∂Ω u(x, y)

x

y

#»q

Q
qx

qy

Figure 1.1: Mass conservation law over an infinitesimal element Q ⊂ Ω ⊂ IR2. In the right we have
the decomposition of the flux ~q in its vertical and horizontal component. Also note that we have
div ~q = ∂xqx + ∂yqy = f over Q. Modified from [34].

Depending on the material, the thermal conductivity matrix K has different properties, see [34]. In
the case the material being isotropic, that is, when heat distributes evenly over the direction of the
plane, e.g., glass, metal, the conductivity matrix is given by a multiple of the identity matrix,

K =
[
k 0
0 k

]
= k

[
1 0
0 1

]
.

When heat principal distribution directions are in the same directions of the orthogonal axes, we
have an orthotropic material, e.g., wood, composite materials, etc. In this we have

K =
[
kx 0
0 ky

]
.

The most general situation is the case of an anisotropic material, when principal heat distribution
directions does not coincide with the orthogonal axes,

K =
[
kxx kxy
kyx kyy

]
.

Now we must set our boundary conditions in order to complete the stationary heat equation
formulation. We can consider the following cases1:

• When we have a prescribed temperature u(x, y) = u∗(x, y) on the boundary ∂Ω. This boundary
condition is known as a Dirichlet boundary condition.

• A prescribed heat influx at the boundary #»q (x, y) = − #»q ∗(x, y) · #»η , where #»η is the normal
direction over ∂Ω is known as a Neumann boundary condition.

• A mixed boundary condition is when we have a Dirichlet boundary condition in part of ∂Ω
and a Neumann boundary condition on the rest of ∂Ω.

1There are other types of boundary conditions but we are just interested only in these types.
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1.6 FEM for the Heat Equation in two Dimensions

Let us consider a Dirichlet boundary condition with an isotropic material with conductivity K.
Then, our formulation is to find u : Ω→ IR such that u ∈ H1(Ω) we have2

{
−div(K∇u(x, y)) = f(x, y) (x, y) ∈ Ω,
u(x, y) = β(x, y) (x, y) ∈ ∂Ω.

(1.11)

We use a test function v : Ω → IR with v ∈ H1(Ω) such that v(x) = 0 for all x ∈ ∂Ω. Then, we
multiply by v on both sides of equation (1.11),

−div(K∇u(x, y))v(x, y) = f(x, y)v(x, y).

To simplify notation we omit (x, y). Now, we integrate over Ω to get

−
∫

Ω
div(K∇u)v =

∫
Ω
fv,

and by using Green’s identity we obtain∫
Ω

(K∇u)∇v +
∫
∂Ω

(K∇u)v #»η =
∫

Ω
fv,

with #»η the normal vector on ∂Ω. Using the fact that v|∂Ω = 0 we have∫
Ω

(K∇u)∇v =
∫

Ω
fv.

Now the weak formulation of the problem is to find u : Ω→ IR such that
∫

Ω
(K∇u)∇v =

∫
Ω
fv for all v ∈ H1

0 (Ω),

u(x, y) = β(x, y) (x, y) ∈ ∂Ω.
(1.12)

Here we have defined H1
0 (Ω) as the subspace of functions v ∈ H1(Ω) with v|∂Ω = 0. Note that if we

define
a(u, v) =

∫
Ω

(K∇u)∇v, and l(v) =
∫

Ω
fv,

we see that a(u, v) is a bilinear form and l(v) is a linear functional.

To obtain the Galerkin formulation of the problem we need to take v ∈ V h where V h a finite
dimensional space. Here h > 0 is a discretization parameter. We also need to choose a basis for V h,
say {ϕ1, ϕ2, . . . , ϕk} with k the dimension of V h. We can approximate the temperature u with uh
over the domain using a linear combination of basis functions and write uh = ∑k

j=1 αjϕj , with αj
unknown coefficients. Within Galerkin’s formulation we should find uh ∈ V h such that

a(uh, vh) = l(vh) for all vh ∈ V h. (1.13)

We get a linear system of size k × k,
A #»α = #»

b ,

2Here we use the standard definition of Sobolev spaces. In particular u ∈ H1(Ω) means that u and ∇u are square
integrable over Ω, for a detailed definition see [18].
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where Aij = a(ϕi, ϕj), with i, j = 1, . . . , k. And bj = l(ϕj) for j = 1, . . . , k, for further details
see [19].

For the construction of the matrix system, now suppose that we have a polygonal domain Ω and let
τh be a polygonal partition of Ω which is made of square elements Q1, Q2, . . ., Qm with m ∈ IN,
see Figure 1.2. Each Qi is an open square such that

Ω =
m⋃
i=1

Qi, and Qi
⋂
Qj = ∅,

to avoid irregularities on mesh squares we need that,

Qi
⋂
Qj =


Qi or Qj if i = j,
an entire side of Qi and Qj if i 6= j,
one vertex of Qi and Qj if i 6= j,
or ∅ if i 6= j.

Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8

Q9 Q10 Q11 Q12

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 1.2: Rectangular domain Ω with a partition in square elements Qi for i = 1, . . . , 20 vertices
over the mesh.

Consider the space of linear continuous functions over τh,

P 1(τh) =

v : Ω→ IR

∣∣∣∣∣∣∣
v continuous function in Ω,
v|Qi linear function,
v(x, y) = β(x, y) if (x, y) ∈ ∂Ω,


let IΩ = {i ∈ {1, . . . , k}| #»x i ∈ Ω} and I∂Ω = {l ∈ {1, . . . , k}| #»x l ∈ ∂Ω}, be the sets of indexes for
the basis functions over Ω and ∂Ω. We are searching for uh ∈ P 1(τh) with uh = β in ∂Ω which can
be written as a linear combination of basis functions

u =
∑
i∈IΩ

αiϕi +
∑
l∈∂Ω

βlϕl,

with αi unknown constants for i ∈ 1, 2, . . . , k. Therefore the gradient for uh is,

∇uh = ∇

∑
i∈IΩ

αiϕi +
∑
l∈∂Ω

βlϕl

 =
∑
i∈IΩ

αi∇ϕi +
∑
l∈∂Ω

βl∇ϕl.
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Replacing this in equation into (1.12) we obtain

∫
Ω
K

∑
i∈IΩ

αi∇ϕi +
∑
l∈∂Ω

βl∇ϕl

∇v =
∫

Ω
fv.

Separating the first integral and rearranging terms we get

∫
Ω
K

∑
i∈IΩ

αi∇ϕi

∇v =
∫

Ω
fv −

∫
Ω

∑
l∈∂Ω

K (βl∇ϕl)∇v.

By the linearity of the integral we can write∑
i∈IΩ

∫
Ω
K (αi∇ϕi)∇v =

∫
Ω
fv −

∑
l∈∂Ω

∫
Ω
K (βl∇ϕl)∇v.

Finally, by taking v = ϕj with j ∈ IΩ in the last equation, we get the matrix formulation
∑
i∈IΩ

∫
Ω
K (αi∇ϕi)∇ϕj =

∫
Ω
fϕj −

∑
l∈∂Ω

∫
Ω
K (βl∇ϕl)∇ϕj .

Define the following matrices and vectors,

aij =
∫

Ω
K (∇ϕi)∇ϕj ,

fj =
∫

Ω
fϕj ,

and
bj =

∫
Ω
K (βl∇ϕl)∇ϕj .

We can write this as a linear system,

A #»α = #»

f − #»

b , (1.14)

that is usually solved using an iterative method due to the size and sparseness of the matrix. We
shall extend the study of these methods in the next chapters.

The main issues when solving the linear system (1.14) are the size and condition number of the
matrix A, see [22]. In the problems we are interested the coefficient K has a multiscale structure,
i.e. it varies in a significant way across the domain Ω at different scales. The coefficient has also a
high-contrast. This is when the contrast η = Kmax/Kmin is large when compared to the coarse-grid
size, see [22].

The performance of numerical methods for this type of problems depends on η and on the multiscale
structure of the coefficient K, see for instance Figure 1.3, for a coefficient with a complicated
structure.
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Figure 1.3: Conductivity coefficient, note the high-contrast channels in black that cross coarse
elements. The coarse mesh is 10× 10 and it is shown in red. The fine mesh is 10× 10 inside each
coarse element.

We can see in Table 1.1 the results of solving problem (1.11) with β = 0 and f constant. Using K as
in Figure 1.3 with high-contrast channels in black, in which Kij = 1, and the low conductivity areas
in white, where Kij = 1× 10p for p = 0,−2,−4 and −6. Table 1.1 shows the number of iterations
that the conjugate gradient method needed to converge using a tolerance of 1× 10−6. It also shows
the spectral condition of the matrix A. Note how iterations and spectral condition increase along
with the coefficient contrast η.

Contrast Iterations Spectral condition
1 112 2 × 103

1× 10−2 768 1.7× 104

1× 10−4 2961 3.8× 105

1× 10−6 7760 3.7× 107

Table 1.1: Heat equation using contrast from Figure 1.3, without preconditioners and with a constant
heat source.

The option to avoid these problems is to choose a grid size that is fine enough to capture the
multiscale variations of K. Note that the size of A is proportional to h−2 being h the size of the
elements and if we choose h to be small we need to solve a large problem. The condition number
of A is proportional to ηh−2 meaning that we also have an ill-conditioned system. This is why is
necessary to explore other approaches to the problem in order to give a better numerical solution.

Now we make a small comparison of state stationary heat conduction and elasticity in two dimensions.
We begin by looking to the variables that have a relation between heat and elasticity formulations.
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Let (x, y) ∈ IR2,

Stationary heat conduction variables:

• #»q (x, y): heat flux,

• u(x, y)→ IR: temperature,

• f(x, y)→ IR: forcing term,

• K: conductivity matrix, dimension 2× 2.

Elasticity variables:

• σ(u): stress tensor, dimension 2× 2,

• #»u (x, y): displacement,

• ε(u): strain tensor, dimension 2× 2,

• E: stiffness tensor, dimension 2×2×2×2.

We now state stationary heat conduction and elasticity equations together in Table 1.2 to see its
similarities, here we assume a regular Dirichlet boundary condition.

Heat conduction (2D) Elasticity (2D)

Mass conservation law div( #»q ) = f div(σ) = #»

F
Constitutive law #»q = −K∇u σ = −Eε(u)
State equation −div(K∇u) = f −div(E ε(u)) = #»

F

Weak form
∫

Ω
(K∇u)∇v =

∫
Ω
fv

∫
Ω

(E ε( #»u )) : ε( #»v ) =
∫

Ω

#»

F : #»v

Galerkin formulation
∑
i∈IΩ

∫
Ω
K (αi∇ϕi)∇ϕj =

∫
Ω
fϕj

∑
i∈IΩ

∫
Ω
E (αiε(ϕi)) εϕj =

∫
Ω

#»

Fϕj

Matrix formulation A #»α = #»

b AE
#»α = # »

bE

Table 1.2: Comparison of stationary heat conduction and elasticity equations in two dimensions.

Note that the variable for which we are solving the equations in heat is temperature, this means
that it has just one degree of freedom per node. In elasticity the variable is displacement, which is
expressed as a vector, this means that in a two dimensional problem the elasticity formulation has
two degrees of freedom per node. The idea is to use the fact that the heat problem has an smaller
dimension than elasticity and give a solution to the elasticity equation using a double heat problem.
This is the main detail between heat and elasticity problems that makes attractive the idea of using
heat problems to try to solve elasticity problems with less cost. In the next chapters we study in a
detailed manner this methods for the heat equation in order to apply this ideas in the elasticity
equation as it is done in [35] and [36].
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Chapter 2

Multiscale Methods for the Heat
Equation

In topology optimization, for instance, the linear system obtained from the finite element method
is solved on each iteration of the optimization algorithm. Using the density formulation proposed
by [3] to solve the topology optimization problem, we see that in each step of the optimization
the coefficient k(x) varies in multiple scales. In industrial 3D topology optimization problems, the
discretization process often leads to a linear system of equations with several million degrees of
freedom, see [30].

Having into account these applications and several others, optimal iterative solvers must be used
to obtain the solution of the state equations. In order to study this big and highly heterogeneous
problems, a common technique is to use multiscale methods to get a fast approximation of the
solution in a coarse grid. This in exchange of losing precision of the fine-scale features of the problem.
To account for these problems we use local corrections as in [17]. Also in composite materials
applications, low, or high-stiffness regions can have complex geometries at very small scales which
leads to a more ill-conditioned linear system, see [10] and [7].

In this chapter, we work for the heat and elasticity equations following the introduction construction
in [16] for the MsFEM and [10] for the GMsFEM part.

2.1 Multiscale FEM

Let consider the following linear elliptic equation
Lu = f in Ω,

where Ω is a polygonal domain in IRd (d = 2, 3), Lu := −div(k(x)∇u), and k(x) is an heterogeneous
field varying in multiple scales. Take a coarse grid partition T H = {Q} of Ω, where H denotes the
size of the coarse-grid partition. Here we remark that the coarse grid does not necessarily resolve
the variations of the coefficient k(x), see Figure 1.3. We regard that for the topology optimization
case,

0 < k0 ≤ k(x) ≤ 1, with k0 � 1.
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Let xi be the interior nodes of the coarse mesh T H and φHi be the nodal basis of the standard
finite element space WH = span{φHi }. We define special basis functions known as multiscale finite
element basis functions. Let us consider that WH consist of piecewise linear functions on a coarse
grid. Denote by Si = sup(φHi ) and define φi with support in Si as follows

Lφi = 0 in Q, φi = φHi on δQ, for all Q ∈ T H , Q ⊂ Si.

The multiscale basis functions coincide with standard finite element basis functions on the boundaries
of a coarse-grid block Q, and are oscillatory in the interior of each coarse-grid block, see [16]
and Figure 2.1.

The MsFEM consists in projecting the solution on the space V0,ms = span{φi}, which is equivalent
to solve a coarse linear system, that is, a linear system whose dimension is that of V0,ms.

Figure 2.1: Multiscale basis function φ for the node (3, 3) in a 5× 5 elements coarse mesh, in red.
Using coefficient from Figure 1.3 on an smaller 5× 5 coarse mesh.

We mention that in topology optimization problems it is usual to obtain designs with a multiscale
structure, as in [30]. This, together with the fact that the regularization parameter from the density
formulation kmin is small, where k(x) = (kmin + (k0 − kmin)ρp), it makes the solution of the linear
system of the coefficient proposal quite challenging since performance of classical solvers for the
elasticity equation with such material properties is negatively affected by the multiscale structure of
the coefficient as well as the high-contrast of the media properties, see [30].

The classical MsFEM can be improved in several ways, see [13]. Special attention has to be taken
to choose proper boundary conditions, see [13]. In spite of these special boundary conditions, it was
shown in [13, 15] that only one basis function per node is not sufficient to obtain good approximation
in the case of a high-contrast multiscale coefficient, where several large high-contrast channels cross
multiple coarse block boundaries, see Figure 2.2. The present method is a modification of the
MsFEM that is known as the Generalized MsFEM or GMsFEM.
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2.2 Generalized Multiscale FEM (GMsFEM)

Now we are concern with domain decomposition preconditioners, specially the two-levels domain
decomposition preconditioner. As showed in [13, 15], the classical variants of these preconditioners do
not perform well for high-contrast problems such as the ones considered here, the condition number
of the preconditioned operator is in general of order η. The construction of the robust preconditioner
may depend on the coefficient and it uses a coarse triangulation and local neighborhoods of the
domain where the heat equation is posed. We use the Generalized Multiscale Finite Element methods
framework introduced in [9, 21, 13] in order to construct robust methods. As in the constructions
proposed there, the design of the preconditioner depends on the behavior of the coefficient inside
local coarse node neighborhoods. The related work [35] uses our exploration to design efficient
preconditioners for the elasticity topology optimization problem.

In this section, we show that these methods can be implemented for the topology optimization that
performs, in terms of the number of iterations and condition number estimates, independently of the
contrast in the media properties. The important part of the preconditioner in order to obtain the
results is well known to be the coarse level. As shown in [10], the coarse level of the preconditioner
should, locally, generate the kernel of the operator and also it should generate, locally, the modes
whose eigenvalue depend on the contrast of the coefficient. For this, the solution of a properly
chosen eigenvalue problem must be computed.

A key part of the construction of robust two-levels domain decomposition methods is the construction
of the coarse spaces for the second level of the preconditioner. In particular, two approaches can
be identified. For coarse spaces with standard dimension, that is, one basis function per coarse
node, it is imperative to have coarse basis functions φ such that κ|ε(φ)|2 is bounded independently
of the contrast. In some cases where the high-contrast regions do not form long channels that cut
several edges of a coarse element this can be achieved by classical multiscale finite element basis
functions or by energy minimizing partition of unity basis functions. But this is not possible for
high-contrast coefficients with long channels, even for isotropic problems. This is similar to the case
of heterogeneous diffusion models on high-contrast media. As mentioned before here we take the
approach proposed in [9, 21, 13], where in order to achieve robustness, an enrichment procedure is
implemented by adding basis functions that locally generate the small modes of the operator (when
considered in local coarse mesh neighborhoods).

Apart from the fact that the coefficient shows high-contrast in the media properties and has multiscale
variations, an extra complication comes from the fact that throughout the optimization iteration
the coefficient K (or C in elasticity) is changing as it approaches the optimal design. In particular,
the topology it represents may change as well as its multiscale structure. The subdomain Ωmat is a
globally connected domain but, if restricted to coarse neighborhoods, high-contrast channels may
break apart or join together from one iteration to the other. Dealing with this extra complication
requires re-computation of the preconditioner as the optimization iteration advances towards the
optimal design.

Now we focus on high-contrast multiscale problems and summarize a GMsFEM construction,
following [33]. For a more detailed description of the development of the GMsFEM methodology,
see [13, 15, 14] and references therein.
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Let consider the following linear elliptic equation

Lu = f in Ω, (2.1)

where Ω is a polygonal domain in IRd (d = 2, 3), Lu := −div(k(x)∇u), and k(x) is an heterogeneous
field varying in multiple scales. Recall that for the topology optimization case,

0 < k0 ≤ k(x) ≤ 1, with k0 � 1.

We can write problem (2.1) in variational formulation as: Find u ∈ H0(Ω) such that

a(u, v) = l(v) for all v ∈ H0(Ω), (2.2)

with
a(u, v) =

∫
Ω
k(x)∇u(x)∇v(x) dx for all u, v ∈ H1

0 (Ω),

and
l(v) =

∫
Ω
f(x)v(x) dx for all v ∈ H1

0 (Ω).

Take a coarse grid T H , note that this grid does not necessarily capture the smallest details of the
multiscale coefficient, see Figure 2.2. Let T h be a refinement of T H , this fine grid is able to solve
the details of the coefficient but the resulting linear system is too large to be solved efficiently by
classical numerical methods.

Figure 2.2: High conductivity channels over a coarse element, note how the fine grid capture the
smallest details of the multiscale coefficient inside the coarse element.

Denote by V h(Ω) the space of piecewise bilinear continuous functions with respect to the fine
triangulation T h, with V h

0 (Ω) ⊂ V h(Ω) the subspace of piecewise linear continuous functions that
vanish on δΩ.

The Galerkin formulation of (2.2) is: Find uh ∈ V h
0 (Ω) such that

ah(uh, vh) = lh(vh) for all vh ∈ V h
0 (Ω),
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which in matrix form yields,
Auh = b.

Let Nc be the number of vertices of the coarse mesh T H and {yi}Nc
i=1 the set of coarse mesh vertices.

We define the neighborhood of the node yi by

ωi =
⋃{

Qj ∈ T H ; yi ∈ Qj
}
,

and the neighborhood of the coarse element Q by

ωQ =
⋃{

ωj ∈ T H ; yj ∈ Q
}
.

yi
ωi

ωQ

Q

H H

h

Figure 2.3: In violet, the neighborhood ωi of the node yi, in light blue the neighborhood ωQ of the
element Q. Also note how a coarse element in gray, with size H is divided into a fine mesh of size h.

We start by choosing an initial set of basis functions that form a partition of unity. Let T H be a
partition of Ω into finite elements (triangles, quadrilaterals, etc) a partition of unity is a set R of
smooth, non-negative functions χi into [0, 1] such that for Q ∈ T H , supχi ⊂ Q, and∑

χi∈R
χi(x) = 1.

The space generated by this basis functions is enriched using the following local spectral problem,
for each coarse node neighborhood ωi, consider the eigenvalue problem as in [23]

−div(K∇ψωi
` ) = λωi

` Kψωi
` , (2.3)

with homogeneous Neumann boundary condition on ∂ωi and Dirichlet boundary condition on
∂ωi ∩ ∂Ω if ∂ωi ∩ ∂Ω is not empty.

Here λωi
` and ψωi

` are eigenvalues and eigenvectors in ωi. We use an ascending ordering on the
eigenvalues and pick the low energy modes, λωi

1 ≤ λ
ωi
2 ≤ · · · ≤ λωi

m . To get this eigenvalues we solve
an approximation of this eigenvalue problem given by,

Aωiψωi = λωiMωiψωi , (2.4)
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with
vAωiw =

∫
ωi

k(x)∇v∇w dx for all v, w ∈ V h(ωi),

and
vMωiw =

∫
ωi

k(x)vw dx for all v, w ∈ V h(ωi).

Note that the eigenvectors ψωi
` form an orthonormal basis of V h(ωi) with respect to the Mωi inner

product, see [15]. Also note that λωi
1 = 0 if ∂ωi ∩ ∂Ω is empty.

As in [33], we construct a set of enriched multiscale basis functions given by χiψωi
` for the selected

eigenvectors ψωi
` . Using Li to denote the number of basis functions from the coarse region ωi, we

then define the coarse GMsFEM space by

V0 = span{Φi,` = χiψ
ωi
` , i = 1, . . . , Nv, ` = 1, . . . , Li}.

For a detailed construction and additional properties of the space V0 see Figure 2.4 and [13, 14, 15].

2.3 Coarse Multiscale Basis and a Randomized Algorithm

Here we analyze in a detailed manner the construction of the coarse basis using an eigenvector
problem, following [23]. We consider a general case in which multiple high-conductivity (high-stiffness
for the elasticity case) regions are disconnected from (or do not communicate with) each other, see
Figure 2.2. It is shown in [23] that for the case of a singly connected high-conductivity region in a
coarse region, only one basis function per node is needed. When there are multiple high-conductivity
regions, one needs to enrich the coarse spaces to get robust preconditioners. See [13, 14, 15] and
references therein.

This eigenvalue problem is solved in a union of coarse-grid blocks with a common vertex yi, noted
ωi. It turns out that the problem (2.3) has eigenvalues that scale as the inverse of the high contrast.
In particular, the number of eigenvalues that scale as the inverse of high conductivity is the same as
the number of connected high-conducting regions.

Figure 2.4: Coarse basis construction. Left: selected eigenvalue, center: partition of unity function
and right: basis function.

The eigenvalue problem above corresponds to the approximation of the eigenvalue problem(2.3) in
Ω with the Neumann boundary condition. In particular, ψωi

l denotes the l-th eigenvector of the
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Neumann matrix associated with the neighborhood of yi. If there are n inclusions and channels,
then one can observe n small, asymptotically vanishing eigenvalues. The eigenvectors corresponding
to these eigenvalues are to be used to construct the coarse space V0. Low energy modes are related
to asymptotically vanishing eigenvalues. As we explained before these eigenvalues represent the
disconnected high-contrast regions, see [13, 14, 15].

In order to get the coarse basis functions, we need to solve local eigenvalue problems that might be
costly to solve. As in [8], we employ randomized singular value decomposition (SVD) techniques in
order to reduce the computational cost of local eigenvalue problems. It is shown in [8] that only a
few of these randomly generated vectors can approximate the dominant modes of the solution space.

We state the following pseudo-algorithm for the randomized SVD for the eigenvalue problems,
from [22],

1. Generate forcing terms f1, f2, . . . , fM randomly (such that
∫
ωi
f` = 0);

2. Compute the local solutions −div(κ∇u`) = f` with homogeneous Neumann boundary condi-
tion;

3. Generate Wi = span{u`} ∪ {1};

4. Choose the low energy eigenvalues in Wi according to a predefined bound.

More precisely, the idea is to restrict the eigenvalue problem (2.3), and therefore (2.4) to the
subspace Wi. This is done as follows: Consider the matrix Ui whose columns generate the subspace
Wi = span{u`} ∪ {1}. Then we can introduce the reduced size matrices,

Ãωi = UTi AωiUi,

and
M̃ωi = UTi MωiUi.

Then, instead of (2.4) we can solve the smaller dimension eigenvalue problem

Ãωiψ̃ωi = λ̃ωiM̃ωiψ̃ωi . (2.5)

As in [22] we then consider the approximations of the eigenvalues as

λωi ≈ λ̃ωi , (2.6)

and the approximation of the eigenvectors as,

ψωi ≈ Uiψ̃ωi . (2.7)

We note that the eigenvalue problem (2.5) is of the size of the dimension of the space Wi (or
the number of snapshots, as they are called it in [22, 13]). Therefore the size of the eigenvalue
problem (2.5) is much smaller than the size of the full eigenvalue problem (2.4). In the numerical
experiments presented later we show that the performance of the preconditioner with the coarse
basis functions constructed using the randomized eigenvalue problem (2.5) is similar to the one
where the basis functions are constructed using (2.4) when the dimension of the space Wi is large
enough (or, in the terminology of [22, 13], when the number of snapshots are large enough). For
more details on the analysis see [8].
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Chapter 3

Preconditioners for the Heat Equation

In this chapter, we describe how the coarse spaces proposed earlier can be used in two-levels domain
decomposition preconditioners. In particular, we show that one can obtain preconditioners that
yield a contrast-independent condition number, and thus they are optimal in terms of physical
parameters. See the details of these results in [20, 11, 12]. An extension of the results to multilevel
methods can be found in [42]. See also [35] for an application of our results to the elasticity equation
in topology optimization problems.

3.1 Domain Decomposition Methods

Here we do a small review of the main idea of the domain decomposition method, for a detailed
explanation see [39, 35], also we present some theorems to apply the decomposition domain method
to the heat equation.

Let us begin with a classic example of the Schwarz parallel method in two regions for the Poisson
problem (3.1) in a continuous region Ω. Consider the problem,{

−∆u = 0 in Ω,
u = 0 on ∂Ω, (3.1)

where the domain Ω can be divided into two subdomains with a simpler geometry than Ω, see
Figure 3.1. We divide Ω in two overlapping subdomains Ω1 and Ω2 as in Figure 3.1. Then we
solve (3.1) in each subdomain using a previous approximation as boundary data,

−∆u(i+1)
1 = 0 in Ω1,

u
(i+1)
1 = 0 on ∂Ω1 ∩ ∂Ω,
u

(i+1)
1 = u(i) on Γ1.

(3.2)


−∆u(i+1)

2 = 0 in Ω2,

u
(i+1)
2 = 0 on ∂Ω2 ∩ ∂Ω,
u

(i+1)
2 = u(i) on Γ2,

(3.3)
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ΩΩ

Ω1 Ω2Γ1 Γ2

Figure 3.1: Domain Ω decomposed into two simple overlapping subdomains Ω1 and Ω2 of the original
region Ω = Ω1 ∪ Ω2, see in [39].

We solve the local problems 3.2 and 3.3. These can be solved in parallel which gives a great
computational advantage, also the linear problems derived from the FEM method are of a smaller
dimension than the original. To get the solution we can add the local solutions via an extension by
zero operator R>j , other combinations are possible, see [39],

u(i+1) =
2∑
j=1

R>i u
(i+1)
j .

Then we use u(i+1) as boundary data to compute the next solution approximation.

3.1.1 Schwarz’s method

We consider a finite dimensional Hilbert space V , and the symmetric and positive definite bilinear
form,

a(·, ·) :V × V → IR
(u, v) 7→ a(u, v).

Given f ∈ V ′ we consider the problem of finding u ∈ V such that

a(u, v) = f(v), for all v ∈ V. (3.4)

If the matrix A is the stiffness matrix associated with the bilinear form a(·, ·) in the problem (3.4),
and b is the vector associated with the linear form f , we obtain the following linear system,

Au = b,
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with A symmetric and positive definite.

We also consider a family of subspaces Vi with i = 1, 2, . . . , N and we assume that there exists
extension operators R>i : Vi → V, that extends the elements of subspace Vi into elements of the
space V .

Assuming that the space V admits the following decomposition

V = R>0 V0 +
N∑
i=1

R>i Vi, (3.5)

see more in [39, 35]. In the subspaces Vi, we introduce the bilinear form associated to the subspaces
Vi,

ai(·, ·) : Vi × Vi → IR, for all i = 0, 1, . . . ,N,
defined as,

ai(ui, vi) = a
(
R>i ui, R

>
i vi

)
, ui, vi ∈ Vi.

The stiffness matrix associated to ai(·, ·) is,

Ai = RiAR
>
i ,

and,
bi = R>i b,

which yields,
Aiui = bi, ui, bi ∈ Vi,

we obtain exact local solutions in the subspace Vi for i = 1, . . . , N , with right hand side bi.

The Schwarz operator Pi, can be written as,

Pi = R>i A
−1
i RiA, 0 ≤ i ≤ N,

and the additive Schwarz preconditioner is,

Pad = A−1
ad A,

where A−1
ad = ∑N

i=0R
>
i A
−1
i Ri. The additive operator Pad is symmetric and positive definite, see

more in [39]. Then we apply the conjugate gradient algorithm to solve the following equation

Padu = A−1
ad f.

Now we give an estimate for the condition number of Pad with the next assumptions and lemmas.
The proofs for the lemmas and theorems can be found in [39] and [35] .

Assumption 1 (Stable Decomposition). There exists a constant C0, such that every u ∈ V admit
a decomposition,

u =
N∑
i=0

Riui, {ui ∈ Vi, 0 ≤ i ≤ N},

that satisfies,
N∑
i=0

ai(ui, ui) ≤ C2
0a(u, u). (3.6)
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Assumption 2 (Strengthened Cauchy-Schwarz Inequalities). There exist constants 0 ≤ εij ≤ 1,
for 1 ≤ i, j ≤ N , such that

|a(R>i ui, R>j uj)| ≤ εija(R>i ui, R>j uj)1/2a(R>i ui, R>j uj)1/2

for ui ∈ Vi and uj ∈ Vj. We denote the spectral radius of E = {εij} by ρ(E).

Assumption 3 (Local Stability). There exist ω > 0, such that,

a(R>i ui, R>i ui) ≤ ωai(ui, ui), ui ∈ range(P̃i) ⊂ Vi, 0 ≤ i ≤ N.

Lemma 5. Assuming the stable decomposition. Then,

a(Padu, u) ≥ C−2
0 a(u, u), u ∈ V, (3.7)

and consequently Pad defined in [39] is invertible. In addition,

a(P−1
ad u, u) = min

ui∈Vi u=
∑

R>i ui

N∑
i=0

ai(ui, ui).

Lemma 6. Assuming the local stability and the inequalities of Cauchy-Schwarz, then for i = 0, . . . , N
we have that,

‖Pi‖a ≤ ω.

In addition,
a(Padu, u) ≥ ω(ρ(E) + 1)a(u, u),

where ρ(E) is the spectral radius.

Theorem 5 (Additive operator’s condition number). Let assume the stable decomposition, the local
stability and the strengthened Cauchy-Schwarz inequalities be satisfied. Then the condition number
of the additive Schwarz operator satisfies

κ(Pad) ≤ C2
0ω(ρ(E) + 1).

This fundamental result is used to obtain estimations on the performance of domain decomposition
methods. A related application is the design of robust methods, see [19].

3.2 Two-levels Domain Decomposition Preconditioner

Based on the results above, we extend the ideas of the example at the beginning of this Chapter to
more than two local problems. We recall also the generalized multiscale approximation from Chapter
2 and apply these results to build a two-levels preconditioner for the heat equation. We denote by
{Ω′i}Ni=1 the overlapping decomposition obtained from the original non-overlapping decomposition
{Ωi}Ni=1 by enlarging each subdomain Ωi to

Ω′i = Ωi ∪ {x ∈ Ω,dist(x,Ωi) < δi}, i = 1, . . . , N,

where dist is some distance function and let V i
0 (Ω′i) be the set of finite element functions with

support in Ω′i.
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i j

Figure 3.2: Overlap example in a 6×6 coarse mesh. Note the two elements i and j of the overlapping
decomposition {Ω′i}Ni=1, and how they overlap.

We also denote by R>i : V i
0 (Ω′i)→ V h the extension by the zero operator and Ai = R>i ARi, which

yields,

M−1
Heat,1r =

N∑
i=1

RHeat,iA
−1
Heat,iR

>
Heat,ir,

this is the first level preconditioner. We have the following bound from [22],

κ(M−1
Heat,1A) ≤ C

(
1 + 1

δH

)
,

with,
δ = max

1≤i≤N
δi,

we assume that the overlapping subdomains {Ω′i} coincide with the coarse vertex neighborhoods ωi,
which means that δ � H. In high-contrast multiscale problems we have that C � η, see [22], which
yields,

κ(M−1
Heat,1A) � η

(
1 + 1

H2

)
.

Here we use the two-levels domain decomposition preconditioner. The preconditioned operator is
M−1
HeatA where the preconditioner matrix is defined by,

M−1
Heat = M−1

Heat,1 +M−1
Heat,2,

where the part corresponding to the first level is

M−1
Heat,1r =

N∑
i=1

RHeat,iA
−1
Heat,iR

>
Heat,ir,

and the part corresponding to the second (or coarse) level is

M−1
Heat,2r = RHeat,0A

−1
Heat,0R

>
Heat,0r,

where AHeat,0 = RHeatAHeatR
>
Heat and R>Heat is a matrix whose columns generate the coarse space

V0.
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We can solve the fine-scale linear system iteratively with a numerical method like the preconditioned
conjugate gradient (PCG) method. The application of the preconditioner involves solving a coarse-
scale system and solving local problems in each iteration. In domain decomposition methods,
our main goal is to reduce the number of iterations in the iterative procedure. The appropriate
construction of the coarse space V0 plays a key role in obtaining robust iterative domain decomposition
methods.

In the general setting of domain decomposition methods, the overlapping subdomains {Ω′i} and
the coarse triangulation T H are not related. The two partitions of unity used here can be chosen
independently of each other. Both partitions of unity are needed to construct a contrast-independent
domain decomposition method. In the numerical experiments, we assume that the overlapping
subdomains {Ω′i} coincide with the coarse vertex neighborhoods {ωi} of T H .

It was proven in [10] that the condition number of the two-levels preconditioner with a GMsFEM
second level is

κ(M−1
HeatA) � C

(
1 + H

δ

)
.

3.2.1 Experiments for the Heat Preconditioner

In the next experiment we use the coefficient from Figure 1.3 in Chapter 1, which have long
high-conductivity channels. We use the conjugate gradient method with preconditioning with a
tolerance of 1 × 10−6. We set a 10 × 10 coarse mesh and inside each coarse-element we have a
10× 10 fine-mesh.

Contrast Iterations Spectral condition
1 112 2.0× 103

1× 10−2 768 1.7× 104

1× 10−4 2961 3.8× 105

1× 10−6 7760 3.7× 107

Table 3.1: Heat equation using coefficient from Figure 1.3. Without preconditioners and with a
constant heat source.

For a contrast of 1 × 10−4 the PCG takes roughly 3000 iterations to converge, in the topology
optimization, this means expensive computational time which makes this option unreasonable
to apply. We can see in Table 3.1, how iterations of the conjugate gradient method without
preconditioning does depend on contrast, while in Table 3.2 iterations and spectral condition of
M−1
HeatA do not depend on contrast. Also, there is a significant improvement in the iteration count

using the two-levels preconditioner which means lower computational time in each optimization
step. For bounds and theoretical results see [19, 17].
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Contrast Iterations Spectral condition
1 17 4.8
1× 10−2 25 9.5
1× 10−4 29 15.0
1× 10−6 30 15.0

Table 3.2: Heat equation using coefficient from Figure 1.3. Using a two-levels domain decomposition
preconditioner and a constant heat source.
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Chapter 4

Topology Optimization

The purpose in topology optimization is to find the best material distribution which optimizes
certain objective function. This objective can be for example compliance, displacement or heat
distribution. Several approaches can be taken to solve this problem, but our main focus is on
density formulations. To achieve this optimization, we must minimize or maximize a functional that
describes the desired objective subject to a boundary value problem which describes the physical
conditions. To solve the boundary value problem the Finite Element Method is applied. For the
optimization part, we use mainly two optimization algorithms, the Optimality Criteria (OC) and
the Method of Moving Asymptotes (MMA). We present the topology optimization in a more general
density formulation as in [31], 

min
ρ
J(ρ, u),

subject to
r(ρ, u) = 0, u ∈ Uad,
gi(ρ, u) ≤ 0, i = 1, . . . , Ng,

ρ ∈ Dad,

where J(ρ, u) is an objective function, in our case is the compliance, r(ρ, u) = 0 represent the
residual of the equilibrium equation describing the physical model, and gi are multiple constraints.
The material density field is represented by a bounded function ρ ∈ L∞(Ω) with 0 ≤ ρmin ≤ ρ ≤ 1,
see more in [31].

We analyze the minimum compliance design because is a relatively simple topology optimization
problem and at the same time carries the most common problems, namely mesh-dependent solutions
and checkerboard patterns. The typical topology optimization problem stems from the minimization
of the compliance of a linear elastic system. Thus, we seek for the optimal material distribution
that minimizes the compliance, which is equivalent to maximizing the stiffness of the design, and
fulfill the elasticity equilibrium equation.

Now we pose the topology optimization problem for the heat equation in a similar way as for the
elasticity equation. After the FEM discretization the heat equilibrium equation can be written as,

Ku = f,
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with f being the heat forcing term, K the conductivity matrix and u the temperature. In topology
optimization for the heat equation, we seek for the optimal material distribution that produces
the least heat for a prescribed material volume, see [24]. We look to minimize the heat potential
capacity C = f>u. We state the discrete minimum compliance design problem as: find {ρ1, . . . , ρn}
with ρi = 1 if the element is solid, and ρi = 0 if it is void.

minC = f>u,

subject to
Ku = f,
N∑
i=1

Viρi

N∑
i=1

Vi

= Vf ,

here ρi is a binary variable that states is the element i is present or not in the optimized structure.
The value vf is a prescribed volume fraction of the available material and Vi is the volume of the
element i.

We change the discrete problem to a continuous one using the modified Simple Isotropic Material
with Penalization (SIMP) formulation,

minC = f>u(ρ),
subject to

K(ρ̃(ρ))u = f,
N∑
i=1

Vi(ρ̃(ρi))− Vf
N∑
i=1

Vi ≤ 0,

0 ≤ ρ ≤ 1.

With ρ the vector of the design variables and ρ̃ the vector of filtered densities. The material
properties for the element Q in the SIMP are given by

KQ = Kmin + ρ̃pQ (Kmax −Kmin) ,

where the parameter p = 3 penalizes the intermediate densities, see more in [30].

For a detailed explanation on density formulations, the Simple Isotropic Material with Penalization
(SIMP) and the modified SIMP formulation, see [3, 2, 30, 31, 41].

To explain the multiple options and parameters in topology optimization we set the following heat
sink conduction problem, see more in [3] and in [31]. Take a square domain that is uniformly heated,
in the left side, on a part of the boundary, we set an homogeneous Dirichlet boundary condition, as
in Figure 4.1.

Let Qx and Qy be the number of elements in the finite element discretization in x and y respectively,
rmin is the filter radius and p is the penalty in the SIMP formulation, see the code from [2].
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L

L
/1

0

Figure 4.1: Heat sink problem scheme. In the left side on a part of the boundary we have a Dirichlet
boundary condition. The rest of the boundary has a free Neumann condition. The plate is uniformly
heated.

In the left image we set Qx = 50, Qy = 50, rmin = 2 with rmin being 0.04 times the width of the
domain, we use the density filter, and we change the penalty to 1 (no penalty applied), this make the
optimized design lack of a 0− 1 characteristic, i.e. the optimized design is mainly an intermediate
density (gray areas) which in not a manufacturable result.

In the right image we take Qx = 50, Qy = 50, p = 3, and rmin = 1 which produces a characteristic
checkerboard pattern, making the result not feasible. As rmin = 1 the filter is not applying any
changes on the design field, i.e. it do not regularize the problem.

Figure 4.2: Left: without a modified SIMP formulation, which leads to a gray design. Right: without
filtering, which leads to a checkerboard pattern.
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In the next examples we show how the SIMP formulation is mesh independent. In the left image we
have the result of a 50× 50 elements topology optimization. In the right image we use a finer mesh
of 250× 250 elements. We can observe how both yields the same result, with just a more accurate
definition in the fine mesh.

Figure 4.3: Left: with a 50 × 50 mesh. Right: with a 250 × 250 mesh. We can see the mesh
independence of the formulation.

Sensitivity Filter

The sensitivity filter modifies the sensitivities The oldest filtering technique applied to topology
optimization is the so-called sensitivity filter which modifies the sensitivities, ∂c

∂ρQ

by,

∂c

∂ρQ

= 1
max(γ, rmin − ‖xi − xQ‖)

∑
i∈NQ

ωQ,i

∑
i∈NQ

ωQ,iρi

∂c

∂ρi

where γ is a small number introduced in order to avoid division by zero, NQ is the set of element I
for which the center-to-center distance ‖xI − xQ‖ to the element Q,

ω(xI) = rmin − ‖xI − xQ‖, (4.1)

rmin is the radius filter, which usually is equal to 0.04 times the width of the domain. The main
issue with the above technique is the lack of consistency, i.e., the actual objective corresponding to
the filtered sensitivities is unknown for general optimization problems. The only known case is for
linear elasticity case and minimum compliance design, see [37].

Density Filter

Density filtering is the most popular technique used nowadays in topology optimization. For the
optimization problem, we apply conditions for the density with the modified SIMP, see more in [3].
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Density filtering can be written in form of the convolution integral as:

ρ̃Q(x) =
∫

Ω
ω(x− y)ρQ(x),

where w(x) is a weighting function.

We define the density filter in discrete form as,

ρ̃Q =

∑
i∈NQ

ω(xI)viρI∑
i∈NQ

ω(xI)vI

,

where vI is the volume of the element I and ω is defined in (4.1). The derivative of the density filter
is:

∂ρ̃Q

∂ρj
= w(xJ)vJ∑

j∈NQ

w(xQ)vQ

.

Implementing a filter in the optimization algorithm allows to eliminate the mesh dependency and
the checkerboard patterns of the optimized structure, but the filter radius allows gray areas with
intermediate density. To eliminate the gray areas and for the optimization process to be a pure
black and white design, we are introducing a filter based on projections in the following section.

Heaviside projection filtering

The idea behind the projection filter is to project all density values ρ̃Q above a threshold η to 1
and the values below η to 0. The projected physical density ¯̃ρQ is computed by a smooth function
controlled by a projection parameter β and give as:

¯̃ρQ =


η[exp(−β(1− ρ̃Q/η))− (1− ρ̃Q/η) exp(−β)] 0 ≤ ρ̃Q ≤ η,

(1− η)[1− exp(−β(ρ̃Q − η)/(1− η))
+(ρ̃Q − η)/(1− η) exp(−β)] + η η ≤ ρ̃Q ≤ 1.

(4.2)

The expression (4.2) is an approximation of the Heaviside function. Often the above expression is
replaced with a simpler one given as:

¯̃ρQ = tanh(βη) + tanh(β(ρ̃Q − η))
tanh(βη) + tanh(β(1− η)) ,

with β →∞. The physical density ¯̃ρQ is used to compute the stiffness matrix and the sensitivities
are:

∂c

∂ρQ

=
∑
I∈NQ

∑
J∈NI

∂c

∂¯̃ρQ

∂¯̃ρQ

∂ρ̃Q

∂ρ̃Q

∂ρ̃Q

.

The Heaviside filter produce a sharper result than the density and sensitivity filters, see Figure 4.4,
leading to a more 0− 1 design.



42 Chapter 4. Topology Optimization

Figure 4.4: Using a projection filter, this leads to a more 0− 1 design.

4.1 Optimization Algorithms

4.1.1 Optimality Criteria (OC)

Here we review the main optimization algorithm to address simple topology optimization problems,
following the one developed in [32]. The Optimality Criteria algorithm is the Lagrange Multipliers
Method applied to topology optimization problems, mainly to the minimum compliance design.

For the discretized minimum compliance design problem,

min
U,Ke

c(u) = U>KU =
NQ∑
e=1

KQ( ¯̃ρQ)u>Q K0uQ

subject to
KU = F,
V (ρ)
V0
− fν( ¯̃ρQ) = 0,

0 < ρmin ≤ ρ ≤ ρmax,

(4.3)

writing the last equation from (4.3) as, ρmin−ρ ≤ 0 and ρmax−ρ ≤ 0, yields the following problem,

min
U,Ke

c(u) = U>KU =
NQ∑
e=1

KQ( ¯̃ρQ)u>Q K0uQ

subject to
KU = F,
V (ρ)
V0
− fν( ¯̃ρQ) = 0,

ρmin − ρ ≤ 0,
ρmax − ρ ≤ 0.

(4.4)
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For the problem (4.4) the Lagrangian can be written as,

L = c+ λ1(V (ρ)− fV0) + λ>2 (Ku− F ) +
NQ∑
e=1

λe3(ρmin − ρQ) +
NQ∑
e=1

λe4(ρQ − ρmax), (4.5)

where λi for i = 1, 2, 3, 4, are the Lagrange multipliers.

We found the optimum as:
∂L

∂ρQ

= 0 for e = 1, . . . , NQ.

using the derivatives in (4.5), we have

∂L

∂ρQ

= ∂c

∂ρQ

+ λ1
∂V

∂ρQ

+ λ>1
∂(uK)
∂ρQ

− λe3 + λe4,

and taking into account the constraints λe3 = λe4 = 0,

∂L

∂ρQ

= u>K
∂u

∂ρQ

+ u>
∂K

∂ρQ

u+ u>K
∂u

∂ρQ

+ λ1
∂V

∂ρQ

+ λ>2 u
∂K

∂ρQ

− λ>2 K
∂u

∂ρQ

,

grouping terms we get,

∂L

∂ρQ

= u>
∂K

∂ρQ

u+ λ>2
∂K

∂ρQ

u+ ∂u

∂ρQ

(2u>K + λ>2 K) + λ1
∂V

∂ρQ

,

as λ>2 is arbitrary, we chose λ>2 = −2u>, and we get,

∂L

∂ρQ

= −u> ∂K
∂ρQ

u+ λ1
∂V

∂ρQ

, (4.6)

note that ∂V/∂ρQ = VQ, here we usually have that VQ = 1 because the elements can be taken with
unitary volume.

Replacing terms in (4.6),
∂L

∂ρQ

= −p(ρQ)p−1u>Q K0uQ + λVQ = 0,

which yields,
− ∂c

∂ρQ

λVQ

= BQ = 1,

and the update factor is,
ρi+1

Q = Bi
Qρ

i
Q.

Now the heuristic update scheme can be written as in [2],

ρi+1
Q =


max(0, ρiQ −m) if ρQB

η
Q ≤ max(0, ρiQ −m),

ρiQB
η
Q if max(0, ρiQ −m) < ρi

QB
η
Q < min(1, ρiQ +m),

min(1, ρi
Q +m) if ρiQB

η
Q ≥ min(1, ρiQ +m),

where m is a positive moving limit, usually m = 0.2 and η = 1/2 is a damping coefficient. The value
of the Lagrange multiplier λ is obtained using a bisection algorithm.
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4.1.2 Method of Moving Asymptotes (MMA)

Now we briefly explain the Method of Moving Asymptotes, from [32] and [38]. The MMA was
introduced by Svanberg in [38] as a method for nonlinear programming in general and structural
optimization. In each step of the iterative process, a strictly convex approximating subproblem
is generated and solved. The generation of these subproblems is controlled by so-called “moving
asymptotes”, which may both stabilize and speed up the convergence of the general process. The
Method of Moving Asymptotes allows us to solve problems with more than one constraint, without
significant changes to the code, and its implementation is easy as it requires almost the same
parameters as the Optimality Criteria.

Following [32] we state the general optimization problem as,
min f0(x), x ∈ IRn

subject to
fi(x) ≤ f̄i, i = 1, . . . ,m,
0 < xjmin ≤ xj ≤ xjmax, j = 1, . . . , n.

Where m is the number of constraints and x = (x1, . . . , xn)> is the vector of design variables, that
is bounded by xmin and xmax. The objective function and constraints are approximated by f̃ (k)

0 and
f̃

(k)
i respectively, which are linearizations of these functions, see [32],

f̃
(k)
i =

n∑
Q=1

(
piQ

UQ − xQ

+ qiQ
xQ − LQ

)
+ ri,

where LQ and UQ are chosen as

if ∂fi
∂xQ

(x(k)) > 0, then piQ = (UQ − x(k)
Q )2 ∂fi

∂xQ

(x(k)) ∧ qiQ = 0,

if ∂fi
∂xQ

(x(k)) < 0, then qiQ = −(x(k)
Q − LQ)2 ∂fi

∂xQ

(x(k)) ∧ piQ = 0,

where LQ < x
(k)
Q < UQ and ri is chosen such that f̃ (k)

i (x(k)) = f
(k)
i (x(k)). After every iteration the

values of the asymptotic points LQ and UQ are updated using a heuristic method.

4.2 Robust Topology Optimization

We apply a modified version of the robust topology optimization from [41] to the minimum compliance
design problem. We create a dilated ¯̃ρd, an intermediate ¯̃ρi and an eroded ¯̃ρe design using the
threshold projection (4.2), as in [41]. Using the threshold parameters η, 0.5 and 1− η, respectively.
The minimum compliance design problem can be formulated as,

minC = f>u(¯̃ρe),
subject to

K(¯̃ρe)ue = f,
N∑
i=1

Vi(¯̃ρ
d
i )− V ∗d

N∑
i=1

Vi ≤ 0,

0 ≤ ρ ≤ 1,
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with η ≤ 0.5 ≤ 1− η.

We modify the code from [2] to match the modified pseudo-code of robust topology optimization
based in [41], we use the Method of Moving Asymptotes as the optimizer.

1. Initialize the design variable ρ. Set up the threshold value η and the maximum design variable
change ∆ρmax, the iteration counter i = 0, and β = 2.

2. For i ≤ imax, with imax = 200 or 300, do:

• i = i+ 1.

• Compute ¯̃ρi.

• Solve the FEM problem K(¯̃ρe)ue = f .

• Compute the sensitivities.

• Update the design variables.

• if [mod(i, 20) = 1] update the volume fraction of the dilated structure V ∗d = V ∗

Vi
Vd such

that the volume of the intermediate design Vi becomes equal to V ∗.

• if [mod(i, 50) = 1 or ‖∆ρ‖∞ ≤ 0.01] and [β ≤ βmax] then β = 2β.

Figure 4.5: Using the robust formulation, with β fixed to 1.

In the next Chapter, we present results of the robust topology optimization algorithm using a
two-levels domain decomposition.



46 Chapter 4. Topology Optimization

4.3 Minimum Compliance Design for the Two Dimensional Heat
Equation

In this part we present the minimum compliance design for the stationary heat equation over a
domain Ω ⊂ R2, with boundary ∂Ω = Γ1∪Γ2, with Dirichlet condition in Γ1 and Neumann condition
in Γ2. The problem is to find Kad ⊆ [K |K : Ω→ R} such that

J = min
K∈Kad

(∫
Ω
f uK(x) dΩ +

∫
Γ2
β(x)uK(x) dS

)
, (4.7)

where, given K ⊆ Kad, uK is the solution of
−div(K · ∇uK) = f, x ∈ Ω,
K · ∇uK = β(x), x ∈ Γ2,
uK = α(x), x ∈ Γ1.

(4.8)

We need to find the weak form from the strong form of the flow equation for the heat equation (4.8).
We multiply (4.8) by a test function v ∈ H1(Ω) such that v(x) = 0 for x ∈ Γ1 and K · ∇v = β(x)
for x ∈ Γ2 and integrating over Ω,∫

Ω
−div(K · ∇uK)v dΩ =

∫
Ω
fv dΩ,

let η be the normal surface vector and using the Green’s identity in the last equation we get∫
Ω
K∇uK∇v dΩ−

∫
∂Ω

(K · ∇uK)ηv =
∫

Ω
fv dΩ.

We can divide the boundary in Γ1 and Γ2, and apply the boundary conditions∫
Ω
K∇uK∇v dΩ−

∫
Γ1

(K · ∇uK)ηv −
∫

Γ2
(K · ∇uK)ηv =

∫
Ω
fv dΩ,

using the boundary conditions v(x) = 0 for x ∈ Γ1 and K · ∇v = β(x) for x ∈ Γ2 we obtain∫
Ω
K∇uK∇v dΩ−

∫
Γ2
K βη =

∫
Ω
fv dΩ.

We take,
aK(u, v) =

∫
Ω
K∇uK∇v dΩ,

and
l(u) =

∫
Ω
fu dΩ +

∫
Γ2
β(x)ηu dS

The minimum compliance design for the heat equation takes the form
min
u∈U,K

l(u)
subject to
aK(u, v) = l(v) for all v ∈ U
K ∈ Kad.

(4.9)
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Now, we apply the finite element method. For this we take a partition τh in Ω with square elements

Q1, Q2, . . . , Qn, such that Ω =
n⋃
i=1

Qi and Qi ∩Qj = ∅ if i 6= j and,

Qi ∩Qj =


Qi if i = j,
one side of Qi and Qj ,
one vertex of Qi and Qj ,
∅ other cases.

And defining the mesh as in Figure 4.6. And, if we consider

Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8

Q9 Q10 Q11 Q12

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 4.6: Example for a rectangle domain Ω with a partition in square elements Qi for i =
[1, 2, . . . , 20} vertices over the mesh.

P 1(τh) =

v : Ω→ R

∣∣∣∣∣∣∣
v continuous function in Ω,
v|Qi is a polynomial function of degree one,

with v(x) = α if x ∈ Γ1 and v(x) = β if x ∈ Γ2.


If we define the indexes sets,

I = [i ∈ [1, 2, . . . , n}/xi ∈ Ω},
I1 = [l ∈ [1, 2, . . . , n}/xl ∈ Γ1},
I2 = [k ∈ [1, 2, . . . , n}/xk ∈ Γ2}.

For uK(x) ∈ P 1(τh) with uK(x) = α and for x ∈ Γ1 we want to find the solution in this form,

uK(x) =
∑

i∈I∪I2
λiϕi(x) +

∑
l∈Γ1

αϕl(x), (4.10)

with λi unknown constants for i ∈ [1, 2, . . . , n} and applying the operator ∇ to uK we have

∇uE = ∇

 ∑
i∈I∪I2

λiϕi(x) +
∑
l∈Γ1

αϕl(x)

 ,
=

∑
i∈I∪I2

λi∇ϕi(x) +
∑
l∈Γ1

α∇ϕl(x).
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Now, we replace uK and ∇(uK) in the equation (4.9)

∫
Ω
K

 ∑
i∈I∪I2

λi∇ϕi(x) +
∑
l∈Γ1

α∇ϕl(x)

∇v dΩ =
∫

Ω
fv dΩ +

∫
Γ2
K βηv,

passing the element that do not depend on λi for all i ∈ [1, 2, . . . , n} to the right side of the equation

∫
Ω
K

 ∑
i∈I∪I2

λi∇ϕi(x)

∇v dΩ =
∫

Ω
fv dΩ +

∫
Γ2
K βηv dS −

∑
l∈Γ1

∫
Ω
K (α∇ϕl(x))∇v dΩ,

and changing the sum by an integral, we obtain:

∑
i∈I∪I2

∫
Ω
K (λi∇ϕi(x))∇v dΩ =

∫
Ω
fv dΩ +

∫
Γ2
K βηv dS −

∑
l∈Γ1

∫
Ω
K (α∇ϕl(x))∇v dΩ. (4.11)

If we take v(x) = ϕj with j ∈ I in (4.11), we obtain the Galerkin formulation for the minimum
compliance design,

∑
i∈I∪I2

∫
Ω
K (λi∇ϕi(x))∇ϕj dΩ =

∫
Ω
fϕj dΩ +

∫
Γ2
K βηϕj −

∑
l∈Γ1

∫
Ω
K (α∇ϕl(x))∇ϕj dΩ. (4.12)

To state the problem in a compact way, we define the following matrix and vectors

Aij =
∫

Ω
K (λi∇ϕi(x))∇ϕj dΩ,

fj =
∫

Ω
fϕj dΩ,

bj =
∫

Γ2
K βηϕj ,

Alj =
∫

Ω
K (α∇ϕl(x))∇ϕj dΩ.

The stationary heat equation (4.12) could be written in matrix form like

A11
−→
λ = −→f +−→b −A12

−→α . (4.13)

And defining the block matrix

A =
[
A11 A12
A21 A22

]
,

where A11 contains the I ∪ I2 indexes, A12 contains I1 and also writing −→f and −→u like block vectors
we have

F =
[ −→
f + b
−→
f Γ1

]
and u =

[ −→
λ
−→α

]
.

The equation (4.13) can be written in block matrix form,

Au = F. (4.14)
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Now, we replace uK defined in (4.10) in the first term of the minimum compliance design

∫
Ω
f uK(x) dx =

∫
Ω
f

 ∑
i∈I∪I2

λiϕi(x) +
∑
l∈Γ1

αϕl(x)

 dx

=
∑

i∈I∪I2

∫
Ω
fλiϕi(x) dx+

∑
l∈Γ1

∫
Ω
αfϕl(x) dx

=
∑

i∈I∪I2

∫
Ω

(fϕi(x))λi dx+
∑
l∈Γ1

∫
Ω
α(fϕl(x)) dx

= −→f >−→λ +−→fΓ1
>α,

we also replace (4.10) in the second term of (4.7) to get,∫
Γ2
β(x)uK(x) dx =

∫
Γ2
β(x)

∑
k∈I2

λkϕk(x) dx

=
∑
k∈I2

∫
Γ2
β(x)λkϕk(x) dx

= −→b >−→λ Γ2 ,

where −→λ Γ2 contains λk with k ∈ I2 indexes.

The minimum compliance design in (4.8) in matrix form is:

min
K∈Kad

(−→
f >
−→
λK +−→fΓ1

>−→α +−→b >−→λ KΓ2

)
,

subject to

A11
−→
λK = −→f +−→b −A12

−→α ,

K ∈ Kad.

In the next chapter, we show the results of two topology optimization experiments for the minimum
compliance design, which due to its formulation has multiscale properties. In each iteration of
the optimization, we solve a high-contrast multiscale finite element problem. In order to improve
the computation time of the numeric solution we apply the two-levels domain decomposition and
compare the iteration count of the PCG method.
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Chapter 5

Topology Optimization for the Heat
Equation

In this chapter we present the results for the minimum compliance design for the stationary heat
equation using the two-levels preconditioner stated in the previous chapters. Let Ω ⊂ R2 a polygonal
domain with boundary ∂Ω = Γ1 ∪ Γ2. Set a Dirichlet condition in Γ1 and a Neumann condition in
Γ2. The problem statement is to find Kad ⊆ {K |K : Ω→ R} such that,

J = min
K∈Kad

(∫
Ω
f uK(x) dΩ +

∫
Γ2
β(x)uK(x) dS

)
,

where, given K ⊆ Kad, uK is the solution of,
−div(K · ∇uK) = f, x ∈ Ω,
K · ∇uK = β(x), x ∈ Γ2,
uK = α(x), x ∈ Γ1.

We begin with a brief reminder of the two-levels domain decomposition preconditioner. The
preconditioned operator is M−1

HeatA where the preconditioned matrix if defined by,

M−1
Heat = M−1

Heat,1 +M−1
Heat,2, (5.1)

the part corresponding to the first level is

M−1
Heat,1r =

N∑
i=1

RiA
−1
i R>i r, (5.2)

and the part corresponding to the second (or coarse) level is

M−1
Heat,2r = R0A

−1
0 R>0 r, (5.3)

where A0 = RART . Here the matrix R is a such that each column is a coarse basis function. The
basis functions are of the form χiψ` where χi is a partition of unity function and ψ` are eigenvalues
of a generalized eigenvalue problem.

Now we present the performance results of the two-levels preconditioner for two topology optimization
problems for the heat equation in two dimensions.
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5.1 Uniformly Heated Plane Problem

Here we review the problem of a uniformly heated square plane with homogeneous Dirichlet boundary
condition, as in [24]. For the FEM discretization we use a squared mesh with a 10× 10 coarse mesh
and a 10× 10 fine mesh. Note the scheme of the problem in Figure 5.1.

t = 0

t = 0

t
=

0 t=
0uniformly heated

Figure 5.1: Uniformly heated square plane with homogeneous Dirichlet boundary condition.

All of the results below were made using a modified code from [2], including the two-levels precon-
ditioner part. If we just count the time that our algorithm takes to converge, a direct method is
faster to achieve the solution. This is because our algorithm is not optimized to perform fast. An
optimized version of the two-levels preconditioning will be better in big problems where a direct
method is not capable to achieve a solution.

The optimization algorithm is set to stop after 300 iterations. All the tested options achieve the
same result in Figure 5.2. Note that the optimized result is a complex design with material in the
black part. We show in Table 5.1 the optimized value for the topology optimization and the number
of coarse basis calculations. In Figures 5.3 and 5.4 we can see the advantage of the two-levels
preconditioner in the optimization.

Method Objective value Coarse basis calculations

No preconditioner 0.1849 —
Two-levels preconditioner 0.1848 300 (on every iteration)

Table 5.1: Results of the topology optimization for the example described in Figure 5.1.
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Figure 5.2: Topology optimization density plot for the heat equation with homogeneous Dirichlet
boundary condition.

Note that the conjugate gradient method takes an average of 500 iterations to converge, even as
this iterations are fairly quick this is a large amount of time to achieve the solution. In Figure 5.4
the PCG iterations are around 20 which is a great improvement.
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Figure 5.3: Topology optimization evolution of
parameters for the heat equation with homoge-
neous Dirichlet boundary condition. Without
preconditioners, note the number of iterations
of the conjugate gradient method.
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Figure 5.4: Topology optimization evolution
of parameters for the heat equation with ho-
mogeneous Dirichlet boundary condition. Us-
ing the two-levels preconditioner.
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5.2 Reusing the Coarse Matrix in the Optimization Iterations

The eigenvectors calculation problem is of order n3, which is quite expensive. The topology
optimization design tends to stabilize across the iterations, i.e. the high conductivity channels are
fixed over each ωi, so we reuse the coarse matrix if the number of iterations of the PCG are below a
constraint.

We follow the next rules in order to recalculate the coarse basis:

• For the first two topology optimization iterations, compute the coarse basis.

• If the last PCG iteration count (i− 1) is more than 1.2 times the mean of the last five PCG
iteration count (i− 6, . . . , i− 2), compute the coarse basis.

• Each 25 topology optimization iterations, compute the coarse basis.

The MATLAB code for the coarse matrix recalculation is:

1 i f loop = = 1 | | loop = = 2
2 meanpcgiter = 1 ;
3 e l s e i f loop <= 6
4 meanpcgiter = 1 .2∗mean( p c g i t e r a t i o n s ( 1 : loop−2) ) ;
5 e l s e
6 meanpcgiter = 1 .2∗mean( p c g i t e r a t i o n s ( loop −6: loop−2) ) ; % up to 20%

in c r e a s e from the l a s t 5 i t e r a t i o n s mean
7 end
8
9 i f loop = = 1 | | p c g i t e r a t i o n s ( loop−1) >= meanpcgiter | | mod( loop , 2 5 ) =

= 0
10 %ca l c u l a t e coa r s e ba s i s
11 end

We present two examples using problem from Figure 5.1. In the first example we apply the coarse
basis reusing algorithm with the usual eigenvectors calculation. In example two we apply the reusing
algorithm in addition to the random eigenvectors calculation.

We can see from the results that the random eigenvectors calculation yields the same results as the
usual eigenvectors calculation, with the advantage of a fewer computational cost.

Method Objective value Coarse basis calculations

Two-levels preconditioner 0.1848 14
Two-levels random preconditioner 0.1848 14

Table 5.2: Results of the topology optimization cases for the example described in Figure 5.1, reusing
the coarse basis.



Chapter 5. Topology Optimization for the Heat Equation 55

50 100 150 200 250 300

0

0.2

0.4

0.6
Objective function

50 100 150 200 250 300

15

20

25

30
PCG iterations

50 100 150 200 250 300

100

150

200

250
Dimension of the coarse space

Figure 5.5: Topology optimization evolution of
parameters for the heat equation with homoge-
neous Dirichlet boundary condition. Using the
two-levels preconditioner and reusing the coarse
basis.
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Figure 5.6: Topology optimization evolution of
parameters for the heat equation with homo-
geneous Dirichlet boundary condition. Using
the two-levels preconditioner with random basis
generation and reusing the coarse basis.

The blue dots in Figure 5.5 and 5.6, represent the iteration in which the coarse basis are calculated.
In the PCG iterations line plot we see how the iterations for the random eigenvectors tend to
increase faster than in the usual eigenvectors calculation, this is because we are approximating the
eigenvectors. Note the lower dimension of the coarse space in the random eigenvectors case, this
also means a fewer computational cost in the calculations. The higher number of PCG iterations in
the first optimization iterations are due to the fast changing coefficient in these optimization steps.
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5.3 Heat Sink

Here we review the results for a uniformly heated square plane with homogeneous Dirichlet boundary
condition and a heat sink in the border, as in Figure 5.7. See the optimized result in Figure 5.8.

L
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L
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L25
L100

L

L
5

uniformly heated

Figure 5.7: Uniformly heated square plane with homogeneous Dirichlet boundary condition and a
heat sink in the border.

Figure 5.8: Topology optimization density plot for the heat equation with homogeneous Dirichlet
boundary condition and a heat sink in the border.
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The results for 350 topology optimization iterations are on Table 5.3 and 5.4. In Figure 5.9 we can
see how without preconditioning the problem the iterations of the CG method are around 1800, and
in Figure 5.10 PCG iterations are around 28 which is a great improve.

Method Objective value Coarse basis calculations

No preconditioner 2.5972 —
Two-levels preconditioner 2.5974 350 (on every iteration)

Table 5.3: Results of the topology optimization for the example described in Figure 5.7.
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Figure 5.9: Topology optimization evolution of
parameters for the heat equation with homo-
geneous Dirichlet boundary condition, without
preconditioners.
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Figure 5.10: Topology optimization evolu-
tion of parameters for the heat equation with
homogeneous Dirichlet boundary condition.
Using the two-levels preconditioner.

In all this examples the maximum number of coarse basis elements is set to 6, and in Figure 5.12
the number of snapshots used is set to 18, this makes the random case very cheap in computational
terms.

Method Objective value Coarse basis calculations

Two-levels preconditioner 2.5974 19
Two-levels random preconditioner 2.5972 19

Table 5.4: Results of the topology optimization cases for the example described in Figure 5.7, reusing
the coarse basis.
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Figure 5.11: Topology optimization evolution of
parameters for the heat equation with homoge-
neous Dirichlet boundary condition. Using the
two-levels preconditioner and reusing the coarse
basis.
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Figure 5.12: Topology optimization evolution
of parameters for the heat equation with homo-
geneous Dirichlet boundary condition. Using
the two-levels preconditioner with random basis
generation and reusing the coarse basis.

In Figures 5.11 and 5.12 we can see how the PCG method takes more iterations to converge in the
first steps of the optimization process. This is due to the fast changing design in the first topology
optimization iterations. The PCG iterations tends to stabilize as the design get fixed (with minimum
changes).
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5.4 Modified Heat Sink

Here we review the results for a uniformly heated square plane with homogeneous Dirichlet boundary
condition and two heat sinks in the border, as in Figure 5.13. All of the results below were made
using a modified code from [2], including the two-levels preconditioner part.
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Figure 5.13: Uniformly heated square plane with homogeneous Dirichlet boundary condition and
two heat sinks in the border.

Figure 5.14: Density plot using one eigenvector to generate the coarse basis.
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We explore varying the number of eigenvectors used to generate the coarse space. We set in the first
example two eigenvectors and four eigenvectors in the second example. We see how we can achieve
lower PCG iterations using more eigenvectors. The improvement is not big enough because the
structure of this example requires a small number of eigenvectors to perform well.
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Figure 5.15: Evolution of parameters using one
eigenvector to generate the coarse basis.
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Figure 5.16: Evolution of parameters using a
maximum of two eigenvectors to generate the
coarse basis.
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Figure 5.17: Evolution of parameters using a maximum of four eigenvectors to generate the coarse
basis.



Chapter 6

Conclusions and Recommendations

6.1 Conclusions

In topology optimization problems it is usual to obtain designs with a multiscale structure for the
high-conductivity part of the material and also a high-contrast property is present due to the density
formulation. These problems make the linear system hard to solve via direct methods. The use of
two-levels preconditioners allows a significant improvement in calculation time for big industrial
problems.

It is important to work with the heat problem in topology optimization, since the results can
be applied to accelerate the calculations in elasticity problems, as in [35, 36]. The randomized
construction proposed in [8] represent a significant reduction in the cost of computing the coarse
basis functions that generate the coarse space as this leads to a smaller eigenvalue problem. Using
the randomized algorithm does not deteriorate the performance of the method as it was verified
here. This is our main contribution on this thesis. We have verified that the two-levels domain
decomposition preconditioner with a GMsFEM second level perform well for topology optimization
of the heat equation. Specially the randomized algorithm that have not being used before in topology
optimization. These results allowed us to design several preconditioners for the similar elasticity
problem, see [35] and [36].

The coarse basis calculation problem is of order n3, which is quite expensive for each iteration.
The topology optimization design tends to stabilize across the iterations, i.e. the high conductivity
channels are fixed over each ωi, so we reuse the coarse matrix if the iterations of the PCG are below a
constraint allowing a significant reduction of computational cost. This in addition to the randomized
construction provides an interesting way to improve performance in the solution calculation for big
industrial problems.

6.2 Recommendations

An interesting future work would be to study the selection criteria of the optimum number of
the basis of the coarse space in each iteration of the topology optimization. Choosing these basis
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requires a careful selection of the eigenvalues that might be different between inner and border
neighborhoods ωi.

Choosing the right-hand side in the eigenvalue problem for the heat case is simple while the selection
of the right-hand side for the elasticity case requires a deeper analysis.

In order to be competitive in calculation time, it is necessary to implement the method in a high-level
programming language such as Fortran or C using optimized libraries. It is also important to take
advantage of the possibility of parallelizing the preconditioners and the reuse of certain matrices as
the design of the optimization stabilizes.
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Appendix A

Codes for Topology Optimization

In this appendix we show some of the codes used in this work. We begin with a simple code in
FEniCS which we used to test the software abilities to numerically solve PDEs. FEniCS can be
used in future work making parts of the programming easier. Then we show an example of the
minimum compliance design in one dimension. This code was used to practice the implementation
basics in the FEM.

A.1 2D Heat Transfer in FEniCS

Now we present an example of an isotropic body. Take Ω a rectangular plate made of an orthotropic
material, with heat conduction coefficient,

K(x, y) =
[
0.1y 0

0 x

]
,

the heat source is the constant function f(x, y) = 2. On the right side of the rectangle we set
u = y(y − 3), and on the other sides we set u = 0°. See Figure A.1 for an illustration.

u = 0°

u = y(y − 3)K(x, y)

Figure A.1: Problem of a plate made of orthotropic material with heat input f and prescribed
temperature u at the border.
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Solving the problem using FEniCS we get the heat distribution in Figure A.2. FEniCS allows a
simple codding simulation of PDEs due to its advanced commands and the clean programming in
Python. Also, Python let us integrate advanced packages easily.

Here we have the code in FEniCS for the heat transfer in 2D. This code is based on the example of
the conductivity equation described in [29] with small modifications.

from fenics import ∗

# Crea t e mesh and d e f i n e f u n c t i o n s p a c e
mesh = RectangleMesh(Point(0,0), Point(4, 3), 80, 60, "right")
V = FunctionSpace(mesh, ’P’, 1)

# De f i n e boundary c o n d i t i o n
tol = 1E−14
u_r = Expression(’x[1]∗(x[1]−3)’, degree=2)
def boundary_r(x, on_boundary):

return on_boundary and not near(x[0], 4, tol)
bc_r = DirichletBC(V, u_r, boundary_r)

u_f = Constant(1)
def boundary_f(x, on_boundary):

return on_boundary and near(x[0], 4, tol)
bc_f = DirichletBC(V, u_f, boundary_f)

bc = [bc_f, bc_r]

# De f i n e v a r i a t i o n a l p r o b l em
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(2.0)
E = as_matrix(((Expression(’0.1∗x[1]’, degree=1), 0),

(0, Expression(’x[0]’, degree=1))))
a = inner(E∗grad(u),grad(v))∗dx
L = f∗v∗dx

# Compute s o l u t i o n
u = Function(V)
solve(a == L, u, bc)

# P l o t s o l u t i o n
parameters["plotting_backend"] = "matplotlib"
from matplotlib import pyplot
pyplot.figure()
ax = plot(u)
pyplot.title("")
pyplot.colorbar(ax)
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pyplot.show()

Figure A.2: Distribution of temperature in an orthotropic plate with conduction coefficient K, a
constant heat source and prescribed temperature at the border. The solution is computed using
FEniCS.

A.2 Minimum Compliance Design for the One Dimensional Heat
Equation

Given the set Kad ⊆ {K|K : (a, b)→ R+} the problem statement is to find the optimal conductivity
coefficient K∗ that solves

J = min
K∈Kad

[∫ b

a
fuK + βuK(b)

]
, (A.1)

where, given K ∈ Kad, the temperature uK is the solution of{
− (K(x)u′K(x))′ = f(x) x ∈ (a, b),
uK(a) = α K(b)u′K(b) = β.

(A.2)

We note uK instead of u to emphasize the dependence of u on the conductivity coefficient K. The
weak form of (A.2) is obtained by multiplying a test function v ∈ C∞(0, 1) with v(0) = 0 and then
integrating by parts using the boundary condition,

−
(
K(x)u′K(x)

)′ = f(x),
−
(
K(x)u′K(x)

)′
v(x) = f(x)v(x),
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here we drop the x to simplify notation and work on the left side

−
∫ b

a

(
Ku′K

)′
v = −

[
K(b)u′K(b)v(b)−K(a)u′K(a)v(a)

]
+
∫ b

a
Ku′Kv

′

=
∫ b

a
Ku′Kv

′ − βv(b),

because v(a) = 0 and K(b)u′K(b) = β,∫ b

a
Ku′Kv

′ =
∫ b

a
fv + βv(b).

Now we define the weak formulation as: given K ∈ Kad find uK as the solution of
uK : (a, b)→ IR+∫ b

a
Ku′Kv

′ =
∫ b

a
fv + βv(b) for all v ∈ C∞(a, b) with v(a) = 0

uK(a) = α.

(A.3)

We take the interval [a, b] = [0, 1], for the finite element discretization and set a triangulation τ of
[0, 1] with h increments. See Figure A.3 for an illustration of the triangulation.

x0 = 0 x1 x2 xn−1 xn xn+1 = 1

Q0 Q1 Q2 Qn−1 Qn

h

Figure A.3: Elements over the segment [0, 1].

Consider the set of piecewise linear functions on the triangulation

P h1 = {v : [a, b]→ IR / v|(xi−1,xi) is linear and continuous},

and observe that we can write
P h1 = span{ϕi}n+1

i=0 ,

where

ϕi(x) =


1, for x = xi

0, for x 6= xi

linear, for (xi−1, xi+1), i = 1, 2, . . . , n+ 1.
(A.4)

The functions ϕi are illustrated in Figure A.4.

Now v ∈ P h1 if, and only if, v = γ0ϕ0 + . . . γn+1ϕn+1 with γi ∈ IR, and observe that by equation (A.4)
we get v(xi) = γi. In (A.3), replacing uK : (0, 1)→ IR+ by uK = α + γ1ϕ1 + . . .+ γn+1ϕn+1 and
v ∈ C∞(0, 1) with v(0) = 0 by v = ϕi for i = 1, . . . , n+ 1, we get

∫ 1

0
K

αϕ0 +
n+1∑
j=1

γjϕj

′ ϕ′i =
∫ 1

0
fϕi + βϕi(1),
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xi−1 xi xi+1 xi+2

ϕi ϕi+1

Figure A.4: Illustration of basis functions ϕi and ϕi+1, note also the nodes xi−1, xi, xi+1 and xi+2.

working out the first integral we get

n+1∑
j=1

(∫ 1

0
Kϕ′jϕ

′
i

)
γj =

∫ 1

0
fϕi + α

∫ 1

0
Eϕ′0ϕ

′
i + βϕi(1),

and therefore, each equation of the linear system is
n∑
j=1

aijγj = bi − αci + βdi for i = 1, . . . , n,

which in matrix form is given by
A #»γ = #»

b − α #»c + β
#»

d ,

or equivalently a11 . . . a1n
... . . . ...
an1 . . . ann


γ1
...
γn

 =

b1...
bn

− α
c1
...
cn

+ β

d1
...
dn

 .

Note that A depends on K, that is A = A(K). Note also that

∫ 1

0
fuK =

∫ 1

0
f(αϕ0 +

N∑
j=1

γjϕj)

= α

∫ 1

0
fϕ0 +

N∑
j=1

(∫ 1

0
fϕj

)
γj

= α

∫ 1

0
fϕ0 + bᵀ · γ.

We conclude that problem (A.1) in matrix form is written as
min
K∈Kad

αb0 + #»

b ᵀ · #»γK + βγKN+1,

such that
AK

#»γK = #»

b − α #»c + β
#»

d .

(A.5)

With the matrix formulation (A.5) and taking care of the definition of the set Kad we can compute
the solution by using an iterative method to compute the minimum. We added the volume constraint
and another constraint to force the coefficient K to be a continuous by parts function. As stated
before, for illustration purposes, we used MATLAB to implement a FEM problem to solve (A.5).
The program uses MATLAB’s function fmincon to perform the minimization, this command calls
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the FEM script in each step, this is why is important to solve the PDE using FEM in the fastest
time possible.

In this work, we seek to explore different methods to numerically solve the partial differential equation.
In general, a preconditioned iterative method is used, e.g., PCG (Preconditioned Conjugate Gradient)
or a similar method. We remark that due to the fact that (conductivity or elasticity) coefficient
K or E is heterogeneous and with large variation across the domain, it is mandatory to use a
well-designed preconditioner. In this work, we study the performance of high-contrast domain
decomposition preconditioners introduced in [1] and in [17], for the iterative solution of the PDE.
These preconditioned iterative methods are constructed by combining local solutions of the partial
differential equation with a properly designed coarse-scale solution in order to reduce the number of
iterations to convergence and also obtaining a number of iterations independent of the contrast.

Here we present the code and results of the minimum compliance design for the heat equation in
1D. The program was done in MATLAB mainly for its simplicity and the availability of useful
commands. The code is organized into four files and it is not thought to have a good readability.

In the file Jmin, we use the MATLAB command fmincon to minimize the functional that is calculated
in mainopt. We set a volume constraint of 0.5 and a restriction (see line 7 in Jmin) that force the
coefficient E to be a continuous by parts function over [0, 1], as we can see in Figure A.5.

file: Jmin.m

1 %%%% Minimizat ion o f the f un c t i o n a l ( J ) vary ing the c o e f f i c i e n t ( c o e f f )
2 c_0=ze ro s (N, 1 ) ; %lower bound f o r c o e f f
3 c_1=ones (N, 1 ) ; %upper bound f o r c o e f f
4 b=0.5; %percentage o f mate r i a l
5 a=1/N∗c_1 ’ ;
6 %obj=@(x )sum(x )−0.5∗N;
7 obj_inequal=@(x )−sum(x .^3 ) +0.75∗N;
8 obj_equal=@(x ) 0 ;
9 r e s t r=@(x ) dea l ( obj_inequal ( x ) , obj_equal ( x ) ) ;

10 [ c_min , f v a l ]= fmincon (@( c o e f f ) mainopt (N, c o e f f ) , c_1 , a , b , [ ] , [ ] , c_0+eps ,
c_1−eps , r e s t r , opt imopt ions ( ’ fmincon ’ , ’MaxFunEvals ’ ,10000) ) ;

file: mainopt.m

1 f unc t i on J=mainopt (N, c o e f f )
2 %%%% Fixing par t s o f c o e f f ( i n i t i a l t e s t )
3 %co e f f =[ var_coe f f ( 1 : 5 ) , ones ( 1 , (N) /2) , var_coe f f ( 6 : 1 0 ) ] ;
4
5 %%%% Parameters : N=mesh points , c o e f f=conduc t i v i ty c o e f f i c i e n t
6 %%%% Quadrature in [−1 ,1 ]
7 %%%% Quadrature weights
8 omega_aux (1 ) =5/9;
9 omega_aux (2 ) =8/9;

10 omega_aux (3 ) =5/9;
11 %%%% Quadrature po in t s
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12 p_aux (1)=−s q r t (15) /5 ;
13 p_aux (2) =0;
14 p_aux (3)=+sq r t (15) /5 ;
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
16
17 %%%% Elements
18 f o r i =1:N
19 x i n i=( i −1)/N;
20 x f i n=i /N;
21 E( i ) . x i n i=x i n i ;
22 E( i ) . x f i n=x f i n ;
23 omega=0.5∗( x f in−x i n i ) ∗omega_aux ;
24 x_q=x i n i +0.5∗(1+p_aux) ∗( x f in−x i n i ) ;
25 % Linear t rans fo rmat ion
26 E( i ) . omega=omega ;
27 E( i ) . x_q=x_q ;
28 E( i ) . b1=(xf in−x_q) . / ( x f in−x i n i ) ; % Phi_i eva lua t i on in x_q
29 E( i ) . b2=(x_q−x i n i ) . / ( x f in−x i n i ) ; % Phi_( i +1) eva lua t i on in x_q
30 E( i ) . b1d=[−1 ,−1 ,−1]./( x f in−x i n i ) ; % Phi_i der ived in x_q
31 E( i ) . b2d= [ 1 , 1 , 1 ] . / ( x f in−x i n i ) ; % Phi_i+1 der ived in x_q
32 E( i ) . dof=[ i , i +1] ; % DOF
33 end
34
35 %%%% Local matr i ce s
36 f o r i =1:N
37 b1=E( i ) . b1 ;
38 b2=E( i ) . b2 ;
39 b1d=E( i ) . b1d ;
40 b2d=E( i ) . b2d ;
41 x_q=E( i ) . x_q ;
42 w=E( i ) . omega ;
43 co e f =1;
44 %a11=( co e f (1 ) ∗w(1) ∗b1d (1) ∗b1d (1) )+( co e f (2 ) ∗w(2) ∗b1d (2) ∗b1d (2) )+(

co e f (3 ) ∗w(3) ∗b1d (3) ∗b1d (3) ) ;
45 a11=sum( co e f . ∗w. ∗ b1d . ∗ b1d ) ;
46 a12=sum( co e f . ∗w. ∗ b1d . ∗ b2d ) ;
47 a21=sum( co e f . ∗w. ∗ b2d . ∗ b1d ) ;
48 a22=sum( co e f . ∗w. ∗ b2d . ∗ b2d ) ;
49 E( i ) . Aloca l=[a11 , a12 ; a21 , a22 ] ;
50 f=s i n (20∗x_q) ; % Forcing term
51 f 1=sum(w.∗ f . ∗ b1 ) ;
52 f 2=sum(w.∗ f . ∗ b2 ) ;
53 E( i ) . f l o c a l =[ f1 , f 2 ] ;
54 end
55
56 b=ze ro s (N+1 ,1) ;
57
58 %%%% Right s i d e coup l ing
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59 f o r k=1:N
60 f l o c a l=E(k ) . f l o c a l ;
61 dof=E(k ) . dof ;
62 b( dof , 1 )=b( dof , 1 )+f l o c a l ’ ;
63 end
64
65 alpha_value=0;
66 beta_value=1;
67
68 %%%% Energy f un c t i o n a l
69 J=f un c i o n a l j (E,N, b , c o e f f , alpha_value , beta_value ) ;

file: funcionalj.m

1 f unc t i on J=f un c i o n a l j (E,N, b , c o e f f , alpha_value , beta_value )
2
3 A=matr i zg l oba lopt (E,N, c o e f f ) ;
4
5 %%%% Di r i c h l e t c ond i t i on s
6 xd=ze ro s (N+1 ,1) ;
7 xd (1)=alpha_value ; % c vec to r
8 xd (N+1)=beta_value ;
9 %%%% Modi f i ca t i on o f the g l oba l r i g h t s i d e

10 bd=b−A∗xd ; % A∗xd i s the c vec to r ( in A we have E∗Phi_0 ’ ∗ Phi_1 ’ )
11 %bd(N+1)=bd(N+1)+beta_value ;
12
13 %%%% So lut i on o f the l i n e a r system
14 i n t =2:(N) ;
15 x so l=xd ; % We f i x alpha_value on the s o l u t i o n
16 Aint=A( int , i n t ) ;
17 bint=bd( i n t ) ;
18
19 xaux=Aint\ b int ;
20 x so l ( i n t )=xaux ;
21
22 t =0:1/(N−1) : 1 ;
23 f i g u r e (1 )
24 hold o f f
25 p lo t ( t , c o e f f ) ;
26 ax i s ( [ 0 1 0 1 ] ) ;
27 pause ( 0 . 0 05 )
28
29 %%%% Calcu la t i on o f the f un c t i o n a l J
30 J=dot (b , x s o l )+beta_value ∗ x so l (N+1) ;
31
32 % fo r k=1:N
33 % x=[E(k ) . x in i ,E(k ) . x f i n ] ;
34 % y=xso l (E(k ) . dof ) ;
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35 % plo t (x , y , ’ r−∗ ’)
36 % hold on
37 % end

file: matrizglobalopt.m

1 f unc t i on A=matr i zg l oba lopt (E,N, c o e f f )
2
3 %%%% Global matrix
4 A=spar s e (N+1,N+1) ;
5
6 f o r k=1:N
7 % F( i ) element con t r i bu t i on ;
8 Aloca l=E(k ) . Aloca l ;
9 dof=E(k ) . dof ;

10 A( dof , dof )=A( dof , dof )+c o e f f ( k ) ∗Aloca l ;
11 end

Figure A.5: Coefficient E for the Minimum Compliance Design with f = sin(20x), note that the
function is constant by parts, thus it represents better a black and white coefficient.

A.3 2D Topology Optimization in MATLAB

Here we present our modifications to the 88 lines topology optimization code in MATLAB from [2]
used to generate examples in Chapter 5.

A.3.1 Uniformly Heated Plane Problem
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1 %%%% AN 88 LINE TOPOLOGY OPTIMIZATION CODE Nov , 2010 %%%%
2 %%%% MODIFIED HEAT EXAMPLE Jan ,2019 %%%%
3 ne lx = 100 ; ne ly = 100 ; v o l f r a c = 0 . 5 ; penal = 3 ; rmin = 2 ; f t = 2 ;
4 beta = 1 ;
5 max_it_opt = 299 ;
6 %% MATERIAL PROPERTIES
7 k0 = 1 ; % Good thermal conduc t i v i ty
8 kmin = 1e−3; % Poor thermal conduc t i v i ty
9 %% PREPARE FINITE ELEMENT ANALYSIS

10 KE = 1/12∗k0 ∗ [4 −1 −2 −1; −1 4 −1 −2; −2 −1 4 −1; −1 −2 −1 4 ] ;
11 nodenrs = reshape (1:(1+ ne lx ) ∗(1+nely ) ,1+nely ,1+ nelx ) ;
12 edofVec = reshape ( nodenrs ( 1 : end−1 ,1: end−1)+1, ne lx ∗nely , 1 ) ;
13 edofMat = repmat ( edofVec , 1 , 4 )+repmat ( [ 0 ne ly+1 ne ly −1] , ne lx ∗nely , 1 ) ;
14 iK = reshape ( kron ( edofMat , ones (4 , 1 ) ) ’ ,16∗ ne lx ∗nely , 1 ) ;
15 jK = reshape ( kron ( edofMat , ones (1 , 4 ) ) ’ ,16∗ ne lx ∗nely , 1 ) ;
16 % DEFINE LOADS AND SUPPORTS
17 F = 0.0001∗ ones ( ( ne ly+1)∗( ne lx+1) ,1 ) ;
18 U = ze ro s ( ( ne ly+1)∗( ne lx+1) ,1 ) ;
19 f i x e ddo f s = union ( [ 1 : ( ne ly+1) , 1 : ( ne ly+1) : ( ne lx+1)∗( ne ly+1) , ( ne ly+1) : (

ne ly+1) : ( ne lx+1)∗( ne ly+1) ] , ( ne ly+1)∗( ne lx ) +1:( ne lx+1)∗( ne ly+1) ) ; %
D i r i c h l e t boundary example

20 a l l d o f s = 1 : ( ne ly+1)∗( ne lx+1) ;
21 f r e e d o f s = s e t d i f f ( a l l d o f s , f i x e ddo f s ) ;
22 %% PREPARE FILTER
23 iH = ones ( ne lx ∗ ne ly ∗(2∗( c e i l ( rmin )−1)+1)^2 ,1) ;
24 jH = ones ( s i z e ( iH ) ) ;
25 sH = ze ro s ( s i z e ( iH ) ) ;
26 k = 0 ;
27 f o r i 1 = 1 : ne lx
28 f o r j 1 = 1 : ne ly
29 e1 = ( i1 −1)∗ ne ly+j1 ;
30 f o r i 2 = max( i1−( c e i l ( rmin )−1) ,1 ) : min ( i 1+( c e i l ( rmin )−1) , ne lx )
31 f o r j 2 = max( j1−( c e i l ( rmin )−1) ,1 ) : min ( j1+( c e i l ( rmin )−1) ,

ne ly )
32 e2 = ( i2 −1)∗ ne ly+j2 ;
33 k = k+1;
34 iH (k ) = e1 ;
35 jH (k ) = e2 ;
36 sH(k ) = max(0 , rmin−s q r t ( ( i1−i 2 )^2+( j1−j 2 ) ^2) ) ;
37 end
38 end
39 end
40 end
41 H = spar s e ( iH , jH , sH) ;
42 Hs = sum(H, 2 ) ;
43 %% ACTIVE AND PASSIVE ELEMENTS
44 pas s i v e = ze ro s ( nely , ne lx ) ;



Appendix A. Codes for Topology Optimization 77

45 %% INITIALIZE ITERATION
46 x = repmat ( vo l f r a c , nely , ne lx ) ;
47 loop = 0 ;
48 l oopbeta = 0 ;
49 change = 1 ;
50 obj = NaN(max_it_opt , 1 ) ;
51 changeplot = NaN(max_it_opt , 1 ) ;
52 volume = NaN(max_it_opt , 1 ) ;
53 %% INITIALIZE MMA OPTIMIZER
54 m = 1 ; % The number o f g ene ra l c on s t r a i n t s .
55 n = nelx ∗ ne ly ; % The number o f des ign v a r i a b l e s x_j .
56 xmin = ze ro s (n , 1 ) ; % Column vecto r with the lower bounds f o r the

v a r i a b l e s x_j .
57 xmax = ones (n , 1 ) ; % Column vecto r with the upper bounds f o r the

v a r i a b l e s x_j .
58 xold1 = x ( : ) ; % xval , one i t e r a t i o n ago ( provided that i t e r >1) .
59 xold2 = x ( : ) ; % xval , two i t e r a t i o n s ago ( provided that i t e r >2) .
60 low = ones (n , 1 ) ; % Column vecto r with the lower asymptotes from the

prev ious i t e r a t i o n ( provided that i t e r >1) .
61 upp = ones (n , 1 ) ; % Column vecto r with the upper asymptotes from the

prev ious i t e r a t i o n ( provided that i t e r >1) .
62 a0 = 1 ; % The cons tant s a_0 in the term a_0∗z .
63 a = ze ro s (m, 1 ) ; % Column vecto r with the cons tant s a_i in the

terms a_i∗z .
64 c_MMA = 1e4∗ones (m, 1 ) ; % Column vecto r with the cons tant s c_i in the

terms c_i∗y_i .
65 d = ze ro s (m, 1 ) ; % Column vecto r with the cons tant s d_i in the

terms 0 .5∗ d_i ∗( y_i ) ^2 .
66 %% HEAVISIDE FILTER
67 i f f t == 1 | | f t == 2
68 xPhys = x ;
69 e l s e i f f t == 3
70 xTi lde = x ;
71 xPhys = 1−exp(−beta ∗ xTi lde )+xTi lde ∗exp(−beta ) ;
72 end
73 %% START ITERATION
74 whi le change > 0.01 && loop <= max_it_opt
75 loop = loop + 1 ;
76 l oopbeta = loopbeta + 1 ;
77 %% FE−ANALYSIS
78 sK = reshape (KE( : ) ∗( kmin+(1−kmin ) ∗xPhys ( : ) ’ . ^ penal ) ,16∗ ne lx ∗nely , 1 )

;
79 K = spar s e ( iK , jK , sK) ; K = (K+K’ ) /2 ;
80 U( f r e e d o f s ) = K( f r e edo f s , f r e e d o f s ) \F( f r e e d o f s ) ;
81 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
82 ce = reshape (sum( (U( edofMat ) ∗KE) . ∗U( edofMat ) ,2 ) , nely , ne lx ) ;
83 c = sum(sum( ( kmin+(1−kmin ) ∗xPhys .^ penal ) . ∗ ce ) ) ;
84 dc = −penal ∗(1−kmin ) ∗xPhys . ^ ( penal−1) . ∗ ce ;
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85 dv = ones ( nely , ne lx ) ;
86 obj ( loop+1) = c ;
87 %% FILTERING/MODIFICATION OF SENSITIVITIES
88 i f f t == 1
89 dc ( : ) = H∗(x ( : ) . ∗ dc ( : ) ) . /Hs . /max(1 e−3,x ( : ) ) ;
90 e l s e i f f t == 2
91 dc ( : ) = H∗( dc ( : ) . /Hs) ;
92 dv ( : ) = H∗(dv ( : ) . /Hs) ;
93 e l s e i f f t == 3
94 dx = beta ∗exp(−beta ∗ xTi lde )+exp(−beta ) ;
95 dc ( : ) = H∗( dc ( : ) . ∗ dx ( : ) . /Hs) ;
96 dv ( : ) = H∗(dv ( : ) . ∗ dx ( : ) . /Hs) ;
97 end
98 %% METHOD OF MOVING ASYMPTOTES
99 f v a l = sum(xPhys ( : ) ) / ( v o l f r a c ∗ ne lx ∗ ne ly ) − 1 ;

100 dfdx = dv ( : ) ’ / ( v o l f r a c ∗ ne lx ∗ ne ly ) ;
101 dfdx2 = 0∗dv ( : ) ’ ;
102 [xmma, ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ , low , upp ] = . . .
103 mmasub(m, n , loop , x ( : ) , xmin , xmax , xold1 , xold2 , c , dc ( : ) , 0∗

dc ( : ) , f va l , dfdx , dfdx2 , low , upp , a0 , a , c_MMA, d) ;
104 % Update MMA Var iab l e s
105 xnew = reshape (xmma, nely , ne lx ) ;
106 change = max( abs (xnew ( : )−x ( : ) ) ) ;
107 i f f t == 1
108 xPhys = xnew ;
109 e l s e i f f t == 2
110 xPhys ( : ) = (H∗xnew ( : ) ) . /Hs ;
111 e l s e i f f t == 3
112 xTi lde ( : ) = (H∗xnew ( : ) ) . /Hs ;
113 xPhys = 1−exp(−beta ∗ xTi lde )+xTi lde ∗exp(−beta ) ;
114 end
115 xPhys ( pa s s i v e==1) = 0 ;
116 xPhys ( pa s s i v e==2) = 1 ;
117 xold2 = xold1 ( : ) ;
118 xold1 = x ( : ) ;
119 x = xnew ;
120 changeplot ( loop+1) = change ;
121 volume ( loop+1) = mean( xPhys ( : ) ) ;
122 %% PRINT RESULTS
123 f p r i n t f ( ’ I t . :%5 i Obj . :%11 .4 f Vol . :%7 .3 f ch . :%7 .3 f \n ’ , loop , c , . . .
124 mean( xPhys ( : ) ) , change ) ;
125 %% PLOT DENSITIES
126 colormap ( gray ) ; imagesc (1−xPhys ) ; c ax i s ( [ 0 1 ] ) ; ax i s equal ; ax i s

o f f ; drawnow ;
127 %% UPDATE HEAVISIDE REGULARIZATION PARAMETER
128 i f f t == 3 && beta < 512 && ( loopbeta >= 50 | | change <= 0 .01 )
129 beta = 2∗ beta ;
130 l oopbeta = 0 ;
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131 change = 1 ;
132 f p r i n t f ( ’ Parameter beta i n c r ea s ed to %g . \ n ’ , beta ) ;
133 end
134 end
135 %% EXTRA PLOTS
136 obj ( i snan ( obj ) ) = [ ] ;
137 changeplot ( i snan ( changeplot ) ) = [ ] ;
138 volume ( i snan ( volume ) ) = [ ] ;
139 xax i s p l o t = 1 : 1 : s i z e ( obj , 1 ) ;
140
141 f i g u r e ;
142 ax1 = subplot ( 3 , 1 , 1 ) ;
143 p lo t ( obj , ’ r ’ ) ;
144 t i t l e ( ax1 , ’ Object ive func t i on ’ )
145
146 ax2 = subplot ( 3 , 1 , 2 ) ;
147 p lo t ( xax i sp l o t , volume , ’ r ’ ) ;
148 t i t l e ( ax2 , ’Volume ’ )
149
150 ax3 = subplot ( 3 , 1 , 3 ) ;
151 p lo t ( xax i sp l o t , changeplot , ’ r ’ ) ;
152 t i t l e ( ax3 , ’Change o f volume ’ )
153
154 xlim ( [ ax1 ax2 ax3 ] , [ 1 s i z e ( obj , 1 ) ] )
155 %
156 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
157 % This Matlab code was wr i t t en by E. Andreassen , A. Clausen , M.

Schevenels ,
158 % B. S . Lazarov and O. Sigmund , Department o f So l i d Mechanics ,
159 % Technica l Un ive r s i ty o f Denmark ,
160 % DK−2800 Lyngby , Denmark .
161 % Please sent your comments to : sigmund@fam . dtu . dk
162 %
163 % The code i s intended f o r educa t i ona l purposes and t h e o r e t i c a l d e t a i l s
164 % are d i s cu s s ed in the paper
165 % " E f f i c i e n t topology opt imiza t i on in MATLAB us ing 88 l i n e s o f code ,
166 % E. Andreassen , A. Clausen , M. Schevenels ,
167 % B. S . Lazarov and O. Sigmund , St ruct Mul t id i s c Optim , 2010
168 % This v e r s i on i s based on e a r l i e r 99− l i n e code
169 % by Ole Sigmund (2001) , S t ru c tu ra l and Mu l t i d i s c i p l i n a r y Optimization ,
170 % Vol 21 , pp . 120−−127.
171 %
172 % The code as we l l as a p o s t s c r i p t v e r s i on o f the paper can be
173 % downloaded from the web−s i t e : http ://www. topopt . dtu . dk
174 %
175 % Disc la imer :
176 % The authors r e s e r v e s a l l r i g h t s but do not guaranty that the code i s
177 % f r e e from e r r o r s . Furthermore , we s h a l l not be l i a b l e in any event
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178 % caused by the use o f the program .
179 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.3.2 Heat Sink
1 %%%% AN 88 LINE TOPOLOGY OPTIMIZATION CODE Nov , 2010 %%%%
2 %%%% MODIFIED HEAT EXAMPLE Jan ,2019 %%%%
3 ne lx = 100 ; ne ly = 100 ; v o l f r a c = 0 . 3 ; penal = 3 ; rmin = 3 ; f t = 2 ;
4 max_it_opt = 349 ;
5 beta = 1 ;
6 %% MATERIAL PROPERTIES
7 k0 = 1 ; % Good thermal conduc t i v i ty
8 kmin = 1e−3; % Poor thermal conduc t i v i ty
9 %% PREPARE FINITE ELEMENT ANALYSIS

10 KE = 1/12∗k0 ∗ [4 −1 −2 −1; −1 4 −1 −2; −2 −1 4 −1; −1 −2 −1 4 ] ;
11 nodenrs = reshape (1:(1+ ne lx ) ∗(1+nely ) ,1+nely ,1+ nelx ) ;
12 edofVec = reshape ( nodenrs ( 1 : end−1 ,1: end−1)+1, ne lx ∗nely , 1 ) ;
13 edofMat = repmat ( edofVec , 1 , 4 )+repmat ( [ 0 ne ly+1 ne ly −1] , ne lx ∗nely , 1 ) ;
14 iK = reshape ( kron ( edofMat , ones (4 , 1 ) ) ’ ,16∗ ne lx ∗nely , 1 ) ;
15 jK = reshape ( kron ( edofMat , ones (1 , 4 ) ) ’ ,16∗ ne lx ∗nely , 1 ) ;
16 % DEFINE LOADS AND SUPPORTS
17 F = 0.0001∗ ones ( ( ne ly+1)∗( ne lx+1) ,1 ) ;
18 U = ze ro s ( ( ne ly+1)∗( ne lx+1) ,1 ) ;
19 f i x e ddo f s = union ( [ 1 : ( ne ly+1) , 1 : ( ne ly+1) : ( ne lx+1)∗( ne ly+1) , ( ne ly+1) : (

ne ly+1) : ( ne lx+1)∗( ne ly+1) ] , ( ne ly+1)∗( ne lx ) +1:( ne lx+1)∗( ne ly+1) ) ; %
D i r i c h l e t boundary example

20 a l l d o f s = 1 : ( ne ly+1)∗( ne lx+1) ;
21 f r e e d o f s = s e t d i f f ( a l l d o f s , f i x e ddo f s ) ;
22 %% PREPARE FILTER
23 iH = ones ( ne lx ∗ ne ly ∗(2∗( c e i l ( rmin )−1)+1)^2 ,1) ;
24 jH = ones ( s i z e ( iH ) ) ;
25 sH = ze ro s ( s i z e ( iH ) ) ;
26 k = 0 ;
27 f o r i 1 = 1 : ne lx
28 f o r j 1 = 1 : ne ly
29 e1 = ( i1 −1)∗ ne ly+j1 ;
30 f o r i 2 = max( i1−( c e i l ( rmin )−1) ,1 ) : min ( i 1+( c e i l ( rmin )−1) , ne lx )
31 f o r j 2 = max( j1−( c e i l ( rmin )−1) ,1 ) : min ( j1+( c e i l ( rmin )−1) ,

ne ly )
32 e2 = ( i2 −1)∗ ne ly+j2 ;
33 k = k+1;
34 iH (k ) = e1 ;
35 jH (k ) = e2 ;
36 sH(k ) = max(0 , rmin−s q r t ( ( i1−i 2 )^2+( j1−j 2 ) ^2) ) ;
37 end
38 end
39 end
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40 end
41 H = spar s e ( iH , jH , sH) ;
42 Hs = sum(H, 2 ) ;
43 %% ACTIVE AND PASSIVE ELEMENTS
44 pas s i v e = ze ro s ( nely , ne lx ) ;
45 pas s i v e ( 1 : 4 , : ) = 1 ;
46 pas s i v e ( : , 1 : 4 ) = 1 ;
47 pas s i v e ( : , 9 7 : 1 0 0 ) = 1 ;
48 pas s i v e ( 9 9 : 1 0 0 , 1 : 4 0 ) = 1 ;
49 pas s i v e ( 99 : 1 00 , 61 : 1 00 ) = 1 ;
50 %% INITIALIZE ITERATION
51 x = repmat ( vo l f r a c , nely , ne lx ) ;
52 loop = 0 ;
53 l oopbeta = 0 ;
54 change = 1 ;
55 obj = NaN(max_it_opt , 1 ) ;
56 changeplot = NaN(max_it_opt , 1 ) ;
57 volume = NaN(max_it_opt , 1 ) ;
58 %% INITIALIZE MMA OPTIMIZER
59 m = 1 ; % The number o f g ene ra l c on s t r a i n t s .
60 n = nelx ∗ ne ly ; % The number o f des ign v a r i a b l e s x_j .
61 xmin = ze ro s (n , 1 ) ; % Column vecto r with the lower bounds f o r the

v a r i a b l e s x_j .
62 xmax = ones (n , 1 ) ; % Column vecto r with the upper bounds f o r the

v a r i a b l e s x_j .
63 xold1 = x ( : ) ; % xval , one i t e r a t i o n ago ( provided that i t e r >1) .
64 xold2 = x ( : ) ; % xval , two i t e r a t i o n s ago ( provided that i t e r >2) .
65 low = ones (n , 1 ) ; % Column vecto r with the lower asymptotes from the

prev ious i t e r a t i o n ( provided that i t e r >1) .
66 upp = ones (n , 1 ) ; % Column vecto r with the upper asymptotes from the

prev ious i t e r a t i o n ( provided that i t e r >1) .
67 a0 = 1 ; % The cons tant s a_0 in the term a_0∗z .
68 a = ze ro s (m, 1 ) ; % Column vecto r with the cons tant s a_i in the

terms a_i∗z .
69 c_MMA = 1e4∗ones (m, 1 ) ; % Column vecto r with the cons tant s c_i in the

terms c_i∗y_i .
70 d = ze ro s (m, 1 ) ; % Column vecto r with the cons tant s d_i in the

terms 0 .5∗ d_i ∗( y_i ) ^2 .
71 %% HEAVISIDE FILTER
72 i f f t == 1 | | f t == 2
73 xPhys = x ;
74 e l s e i f f t == 3
75 xTi lde = x ;
76 xPhys = 1−exp(−beta ∗ xTi lde )+xTi lde ∗exp(−beta ) ;
77 end
78 %% START ITERATION
79 whi le change > 0.01 && loop <= max_it_opt
80 loop = loop + 1 ;
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81 l oopbeta = loopbeta + 1 ;
82 %% FE−ANALYSIS
83 sK = reshape (KE( : ) ∗( kmin+(1−kmin ) ∗xPhys ( : ) ’ . ^ penal ) ,16∗ ne lx ∗nely , 1 )

;
84 K = spar s e ( iK , jK , sK) ; K = (K+K’ ) /2 ;
85 U( f r e e d o f s ) = K( f r e edo f s , f r e e d o f s ) \F( f r e e d o f s ) ;
86 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
87 ce = reshape (sum( (U( edofMat ) ∗KE) . ∗U( edofMat ) ,2 ) , nely , ne lx ) ;
88 c = sum(sum( ( kmin+(1−kmin ) ∗xPhys .^ penal ) . ∗ ce ) ) ;
89 dc = −penal ∗(1−kmin ) ∗xPhys . ^ ( penal−1) . ∗ ce ;
90 dv = ones ( nely , ne lx ) ;
91 obj ( loop+1) = c ;
92 %% FILTERING/MODIFICATION OF SENSITIVITIES
93 i f f t == 1
94 dc ( : ) = H∗(x ( : ) . ∗ dc ( : ) ) . /Hs . /max(1 e−3,x ( : ) ) ;
95 e l s e i f f t == 2
96 dc ( : ) = H∗( dc ( : ) . /Hs) ;
97 dv ( : ) = H∗(dv ( : ) . /Hs) ;
98 e l s e i f f t == 3
99 dx = beta ∗exp(−beta ∗ xTi lde )+exp(−beta ) ;

100 dc ( : ) = H∗( dc ( : ) . ∗ dx ( : ) . /Hs) ;
101 dv ( : ) = H∗(dv ( : ) . ∗ dx ( : ) . /Hs) ;
102 end
103 %% METHOD OF MOVING ASYMPTOTES
104 f v a l = sum(xPhys ( : ) ) / ( v o l f r a c ∗ ne lx ∗ ne ly ) − 1 ;
105 dfdx = dv ( : ) ’ / ( v o l f r a c ∗ ne lx ∗ ne ly ) ;
106 dfdx2 = 0∗dv ( : ) ’ ;
107 [xmma, ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ , low , upp ] = . . .
108 mmasub(m, n , loop , x ( : ) , xmin , xmax , xold1 , xold2 , c , dc ( : ) , 0∗

dc ( : ) , f va l , dfdx , dfdx2 , low , upp , a0 , a , c_MMA, d) ;
109 % Update MMA Var iab l e s
110 xnew = reshape (xmma, nely , ne lx ) ;
111 change = max( abs (xnew ( : )−x ( : ) ) ) ;
112 i f f t == 1
113 xPhys = xnew ;
114 e l s e i f f t == 2
115 xPhys ( : ) = (H∗xnew ( : ) ) . /Hs ;
116 e l s e i f f t == 3
117 xTi lde ( : ) = (H∗xnew ( : ) ) . /Hs ;
118 xPhys = 1−exp(−beta ∗ xTi lde )+xTi lde ∗exp(−beta ) ;
119 end
120 xPhys ( pa s s i v e==1) = 0 ;
121 xPhys ( pa s s i v e==2) = 1 ;
122 xold2 = xold1 ( : ) ;
123 xold1 = x ( : ) ;
124 x = xnew ;
125 changeplot ( loop+1) = change ;
126 volume ( loop+1) = mean( xPhys ( : ) ) ;
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127 %% PRINT RESULTS
128 f p r i n t f ( ’ I t . :%5 i Obj . :%11 .4 f Vol . :%7 .3 f ch . :%7 .3 f \n ’ , loop , c , . . .
129 mean( xPhys ( : ) ) , change ) ;
130 %% PLOT DENSITIES
131 colormap ( gray ) ; imagesc (1−xPhys ) ; c ax i s ( [ 0 1 ] ) ; ax i s equal ; ax i s

o f f ; drawnow ;
132 %% UPDATE HEAVISIDE REGULARIZATION PARAMETER
133 i f f t == 3 && beta < 512 && ( loopbeta >= 50 | | change <= 0 .01 )
134 beta = 2∗ beta ;
135 l oopbeta = 0 ;
136 change = 1 ;
137 f p r i n t f ( ’ Parameter beta i n c r ea s ed to %g . \ n ’ , beta ) ;
138 end
139 end
140 %% EXTRA PLOTS
141 obj ( i snan ( obj ) ) = [ ] ;
142 changeplot ( i snan ( changeplot ) ) = [ ] ;
143 volume ( i snan ( volume ) ) = [ ] ;
144 xax i s p l o t = 1 : 1 : s i z e ( obj , 1 ) ;
145
146 f i g u r e ;
147 ax1 = subplot ( 3 , 1 , 1 ) ;
148 p lo t ( obj , ’ r ’ ) ;
149 t i t l e ( ax1 , ’ Object ive func t i on ’ )
150
151 ax2 = subplot ( 3 , 1 , 2 ) ;
152 p lo t ( xax i sp l o t , volume , ’ r ’ ) ;
153 t i t l e ( ax2 , ’Volume ’ )
154
155 ax3 = subplot ( 3 , 1 , 3 ) ;
156 p lo t ( xax i sp l o t , changeplot , ’ r ’ ) ;
157 t i t l e ( ax3 , ’Change o f volume ’ )
158
159 xlim ( [ ax1 ax2 ax3 ] , [ 1 s i z e ( obj , 1 ) ] )
160 %
161 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
162 % This Matlab code was wr i t t en by E. Andreassen , A. Clausen , M.

Schevenels ,
163 % B. S . Lazarov and O. Sigmund , Department o f So l i d Mechanics ,
164 % Technica l Un ive r s i ty o f Denmark ,
165 % DK−2800 Lyngby , Denmark .
166 % Please sent your comments to : sigmund@fam . dtu . dk
167 %
168 % The code i s intended f o r educa t i ona l purposes and t h e o r e t i c a l d e t a i l s
169 % are d i s cu s s ed in the paper
170 % " E f f i c i e n t topology opt imiza t i on in MATLAB us ing 88 l i n e s o f code ,
171 % E. Andreassen , A. Clausen , M. Schevenels ,
172 % B. S . Lazarov and O. Sigmund , St ruct Mul t id i s c Optim , 2010
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173 % This v e r s i on i s based on e a r l i e r 99− l i n e code
174 % by Ole Sigmund (2001) , S t ru c tu ra l and Mu l t i d i s c i p l i n a r y Optimization ,
175 % Vol 21 , pp . 120−−127.
176 %
177 % The code as we l l as a p o s t s c r i p t v e r s i on o f the paper can be
178 % downloaded from the web−s i t e : http ://www. topopt . dtu . dk
179 %
180 % Disc la imer :
181 % The authors r e s e r v e s a l l r i g h t s but do not guaranty that the code i s
182 % f r e e from e r r o r s . Furthermore , we s h a l l not be l i a b l e in any event
183 % caused by the use o f the program .
184 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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