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o. Introduction
Before getting into the subject proper let us have a look at the basic ingre-
dients of the subject of Lie groups. A Lie group is a group that is specified
by a set of coordinates 9 = (g1' g2, , g'n) for which there is a prescribed
rule of composition viz 9 h = (<P1(g, h), , <Pn(g, h)) which satisfies the group
properties

g(hk) = (gh)k,

ge = eg = g,
gg-1 = g-1g = e,
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for suitably smooth functions rp(g, h). The symbol e denotes the identity ele-
ment. As an illustrative example which will make these ideas clear we consider
the group specified by the pair of numbers 9 = (a, b). The composition law is
taken to be

gh = (a,b)' (e,d) = (ae,ad+b)
where a, b, e, d are real numbers. It is in fact generally true that groups such as
this are realisable as matrices. Indeed there is a mapping 9 f---> A(g) which is
such that A(g)A(h) = A(gh) and the group laws are faithfully preserved. For
the example that we are using this mapping is in fact

(a, b) = 9 f---> A(g) = [~ n.
It is easy to check that correct group composition laws are obeyed for the
matrices A(g). From now on all the Lie groups we consider are realised in the
form of a matrix groups. The relationship between Lie groups and Lie algebras
is best understood through the idea of one parameter gropus in the group G.
A one parameter group in G is specified by A(g(t)), 0 < t < 1 where g(t) is in
G, g(t)g(s) = g(s + t) and g(O) = e. In the case of our example we could use

[
e
t 0]A(g(t)) = 0 1 or A(h(s)) = [~ ']

If we consider the space of tangent vectors A = ft A(g( t)) I/=0 at the identity

then the set of all such tangent vectors forms the Lie algebra L( G) structure
associated with the group G. This means that if A, Band C are in L(G) then
so is [A, B] = AB - BA and furthermore the conditions that L(G) be a Lie
algebra are satisfied, i.e.

[A, B] = -[B, A],
[eA + dB, C] = erA, C] + d[B, C], e and d real numbers,

HA, B], cj + [[B, cj, A] + [[C, A], B] = 0 (Jacobi identity).

The crucial relationship between the Lie algebra and the group itself is that
for sufficiently small A a group element A sufficiently close to the identity can
be uniquely written in the form

00 Ai
A = exp(A) = L-.,.

i=O J.

For the group we are studying a suitable basis for L( G) is

L1 = ~A(g(t))lt=o = [~ ~]

L2 = ~A(h(s))I.=o = [~ ~]
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which follows readily from the relation

which recovers a general group element from an element of the Lie algebra.
It is then easy to see that anyone parameter group g(t) could be written in
the form exp(gl(t)L1 + g2(t)L2) for suitable gl and g2' The basis for the Lie
algebra satisfies the commutation relation [L1, L2] = L2.

The main way that Lie groups appear for the theory of special functions is
via action as a transformation group. In this case the group acts on some vector
space V. The action on elements x of this vector space is specified functions
f( x, g) = gx which faithfully represent the group laws, viz

g(hx) = (gh)x
ex = x.

In the case of our example, gx = ax + b, or on matrix form

The main way this is of interest to us is to consider the space of functions f( x)
and the effect of the transformation group is given via Tgf(x) = f(g-lx).

Of primary concern in the study of Lie groups is the representation theory.
A representation of a Lie group on a vector space is a mapping g f-+ T(g) which

-homomorphically reflects the properties of the group, i.e.

T(g)T(k) = T(gk),
T( e) = identity element.

For the cases we have considered the vector space could be the vectors [f]
or when acting as a transformation group the functions f(x). In any given
representation the Lie algebra elements also have their representatives which
can be calculated as follows

Av = dd Tg(t)VI
t tce O

for anyone parameter group g(t). In this definition v can be a finite dimensional
vector (in which case A is a matrix) or a function of x (in which case A is a
differential operator). For the example we have been using the differential
operators that represent the Lie algebra acting on functions of x are
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It can be easily checked that these elements satisfy the correct commutation
relations.

Excellent references on the subject of Lie groups are [10], [14], [15] and [16].

1. An illustrative example: the
Helmholtz equation in two dimensions

These lectures will attempt to explain how the classical special functions arise
and how they can be related to Lie's theory of symmetry groups of differential
equations. The essential ideas are most easily explained via crucial examples.
As our first example let us consider the Helmholtz equation

(~2 + w2)w = Wxx + Wyy + w2w = 0, w real and non zero. (1)

If we consider solutions of a certain class of this equation e.g. the solutions
which are analytic or perhaps square integrable, then this space is a vector
space, i.e. if W1, W2 are solutions of (1) then so is aWl + bW2 if a and bare
complex. It is intuitively clear that if w(x, y) is a solution of (1) then so
are Wl = w(x + a,y + b) and W2 = w(xcosO + ysinO,-xsinO + ycosO).
This observation means that if we translate or rotate the coordinates in any
solution of (1) then we obtain another solution. The group of all translations
and rotations is called the Euclidean group E(2). These are just the motions
that preserve the Euclidean distance between two points in the plane. The
effect of a symmetry group on the solutions of (1) can be deduced from that of
its Lie algebra. This is the fundamental result of the theory of continuous Lie
groups. For a space of functions such as we are considering the elements of the
Lie algebra are realised as partial differential operators. Indeed if we consider
the operators

Pl = ax, P2 = oy and M = YOx - xOy

then we can observe from the Taylor series expansion that

00 ai .
exp(aPI)w(x, y) = L ~Plw(x, y) = w(x + a, y),

Z.
i=O

00 bi

exp(bP2)w(x, y) = L ~P~W(x, y) = \l1(x, y + b),
Z.

i=O

00 Oi .
exp(OM)W(x, y) = L~M'W(x, y) = w(x cos 0 + y sin 0, -x sin 0 + y cos 0).

i=O l.

These partial differential operators close to form a Lie algebra under commu-
tation. The commutation relations are

[Pl, P2] = 0,
[M,Pl] = P2,
[M,P2] = <P,
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The actual group E(2) can be realised as the group of matrices of the form

[

COS B - sin B 0]
g( B, a , b) = sin B cos B 0

a b 1

where a and b are real and 0 ~ B < 27r. The rule for combining these elements
i.e. the group composition law is

g(B, a,b)g(a, c,d) = g(B + a, c cos o + bsina + c, -asina + bcosB + d).

Acting on the space of vectors in two dimensional Euclidean space the group
element transforms x = (x, y) to the point

x 9 = (x cos B + y sin B + a, - x sin B + y cos B + b).

Indeed the matrices

[

0 -1
M = 1 0

o 0 [
0 0 0]

P1 = 0 0 0 ,
1 0 0 [

0 0 0]
P2 = 0 0 0 ,

010

satisfy the same commutation relations as the partial differential operators we
introduced previously. Indeed we can easily compute that

[ co,8 - sin B :]exp(BM) = sin e cos B
0 0

[:
0

:Jexp(P1a) = 1
0

exp(P,b) ~ [i 0 n1
0

These are then two ways of realising the same algebra £E(2), one in terms
of matrices acting on the vectors (x, y, 1), and the other acting on functions
\l1(x, y). Before proceeding we observe that the general group element can be
constructed via the formula g(B, a, b) = exp(BM) exp( aP1 + bP2), i.e. a general
E(2) element can be written as the product of two translations exp(c P, + bP2)

and a rotation exp(BM). Lie groups such as E(2) are studied from the point
of view of representation theory. This involves the representation of the group
element g( B, a, b) by a linear operator T(g( B, a, b)) acting on some vector space
in such a way that T(k)T(h) = T(kh) where k = g(B, a, b), h = g(a, c, d) and if k
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is the identity of the group then T( k) is the identity operator. These operators
mimic the group laws in a homomorphic way. On our space of functions of
\l1(x) the corresponding representation is

T(g(B, a, b))\l1(x) = exp(BM) exp(aP1 + bP2)\l1(x) = \l1(xg).

where x 9 = (x cos B + y sin B + a, - x sin B + y cos B + b).

What has all this got to do with special functions? It is known from
classical reference books that solutions of (1) which can be solved by separation
of variables give rise to some of the classical special functions of physics. A good
reference for the classical special functions and how they arise via separation
of variables is [12].

In particular it can be shown that there are only four coordinate systems in
which this separation occurs.

1. Cartesian coordinates, x, y. The solutions then have the form of a prod-
uct of exponential functions

where A2 + J1.2 = _w2.

2. Polar coordinates, x = rcosB,y = rsinB, 0 < r < 00, 0 ::; B < 271".
The solutions are then of the form

where Cm(wr) is a solution of Bessel's equation.
3. Parabolic coordinates, x = t(e - 1)2), Y = ~1). The solutions are a

product of parabolic cylinder functions.
4. Elliptic coordinates, x = dcoshacosa,y = dsinhasina. The solutions

in this case are then products of Mathieu functions.

'We now see that we have special functions arising from separation of variables
and also an associated group of symmetry transformations E(2).

How are the notions of separable solutions and the existence of a
group of symmetries connected? To answer this we need to look at the
operators that define the Lie algebra LE(2). These operators are such that for
the solutions \l11 (x, y) and \l12 (r, B) the following eigenfunction equations hold

P1 \l11 ( x, y) = A \l11 (x, y),

M\l12(r, B) = im \l12(r, B).

Each of the solutions is the eigenfunction of an element of LE(2). If we con-
sider an element of LE(2) such as L = PP1 + qP2 + r M then the occurrence
of these two coordinate systems can be explained as follows. Let's say that
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two elements of the form L, L1 and L2 say are related by a transformation in
E(2) acting on the x and y coordinates we then say they are equivalent. If
we classify all equivalence classes of such operators we obtain only two possi-
bilities. Suitable choices of representative from these two classes are M and
Pl. We can then say that if we are looking for solutions of (1) which are also
eigenfunctions of an element of LE(2) then to within translations and rotations
in the plane the solutions are either those obtained for Cartesian coordinates
or polar coordinates, i.e. we could position our Cartesian coordinates or polar
coordinates arbitrarily in the plane.

Is there an analogue of this result for the two other coordinates
systems? The answer is yes. To see this consider the coordinate systems 3
and 4 in more detail.

3. If we rewrite (1) in terms of parabolic coordinates then the equation
has the form

(0(( + (7)r,)'Y! + w2(e + 1]2)W= O.

The separable solutions W3(~, 1]) = M(~)N(1]) satisfy the separation
equations

(Oa + (w2e - '\))M(O = 0,

(07)7) + (w21]2 + '\))N(1]) = O.

We can see by direct computation that these solutions satisfy the eigen-
value equation

(e + 1]2)-1(1]20(( - e(7)7))W = '\W.

This is the analogous equation to that given for the polar and Cartesian
coordinate systems. The difference is that ,\ is the eigenvalue of a
second order partial differential operator. What is the key observation
is that this equation can also be written in the form

{M, P2}W = (M P2 + P2M)W = ,\W.

4. Similar observations hold for elliptic coordinates. The equation (1) in
these coordinates has the form

(oaa + oO'o,)W+ d2w2(cosh2 a + cos2 a)W = O.

Setting W = A(a)B(a) the separation equations are

(Oaa + (d2w2 cosh ' a + '\))A(a) = 0

(00'0' - (d2w2 cos2 a + '\))B(a) = O.

The separation constant is an eigenvalue of the operator

(cosh2 a - cos2 a)-1(cos2 o:oaa + cosh.' aoO'O')w = '\W,

(M2 + d2 pnw = '\W.
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From this we see that all the separation equations for the four coordinates
systems can be characterised as eigensolutions of a second order operator which
can be expressed as a sum of symmetric products in terms of M, PI and P2.

If instead of considering first order operators in the elements M, PI and P2

we consider second order elements of the form Q = r{PI,M} + s{P2,M} +
tPIP2 + upl + vPi +wM2 and classify all classes of such operators into equiv-
alence classes under the Euclidean group E(2) we obtain four classes. Suitable
representatives of these classes are

1. P1
2,

2. M2,

3. {M, P2},

4. M2 + d2 P12,
to within multiples of 6.2 + w2 = P'.f + pi + w2, i.e. the original equation (1).
The operator 6.2 is an example of a Casimir operator in that it commutes with
all the elements of LE(2):

[6.2, Pi] = 0, i = 1,2,

We therefore have a very nice relationship between equivalence classes of oper-
ators of this type and separable systems of (1).

How can we use group theory to derive properties of the special
functions that occur as solutions of (I)? This can be done by introducing
the Fourier transform of the solutions w(x, y) of (1). Suppose that w(x, y) is
represented by

w(x, y) = 1: 1: exp(i(WIX + w2y))h(WI, W2)dwIdw2

with Fourier transform h(WI, W2). Proceeding formally this function is a solu-
tion of (1) provided that

. (6. + w2)\lf = 1: 1: (w2 - w~ - wD exp(i(WIX + w2y))h(WI,W2)dwIdw2 = 0

i.e., h(WI ,W2) = (l/w)8(w - s)h(<p) where 8(z) is the Dirac delta function and s
and ware polar coordinates in the WI,W2plane. Noting that dWI dW2 = sdsdip,
the s integration can be carried out for the representation of W to obtain

\If(x, y) = 1:exp(iw(x cos <p+ ysin <p))h(<p)d<p = I(h).

The group acts on functions of x as already described. How does it act on the
functions h( <p)7 This is easily deduced by requiring that

T(g)w(x, y) = 1:exp(iw(x cos <p+ ysin <p))T(g)h(<p)d<p.
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The induced action is then

T(g )h( 'P) = exp( iw (a cos( 'P - ()) + b sine 'P - ()))h( 'P - ())

where we are implicitly assuming that h( 'P + 27r) = h( 'P). We can consider the
space of functions h( 'P) with inner product

and finite norm. This will be a Hilbert space H and the operators T(g) act
on this space irreducibly and satisfy the group property T(glg2) = T(gl)T(g2)
(irreducibility means that there are no proper subspaces on which E(2) acts as
a representation). The operators representing the Lie algebra on Hare

P1 = iw cos 'P, P2 = iw sin 'P,
d

M=--.
d'P

These operators satisfy the same commutation relations as we have seen earlier
and the effect of the group acting on the functions h( 'P) can be obtained via

T(g) = exp(()M)exp(aP1 + bP2).

In particular we should note that the transformation qi 1--+ h is unitary r.e ,
inner product preserving, (qil, qi2) = (h1,h2) where

What this observation achieves is the following. If we want to describe the
space of solutions qi of (1) with the inner product in terms of a set of basic
eigenfunctions of say M, we can just as well do it in the Hilbert space of
functions h( 'P) which has one variable less and we lose nothing. Because the
mapping qi 1--+ h is unitary no spectral properties are changed. In short, if we
look for a complete set of vectors 1m such that M 1m = im L«, then we need
only solve this equation in the Hilbert space H, i.e., solve

- (d~) 1m = imlm.

The corresponding orthonormal solutions are

1m = (27T)-~ exp(im'P), m = O,±l, ±2, ...
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The corresponding orthonormal functions Wm(x, y) are

Wm(X,y) = fUm)

= (21r)-~ I"" exp(iw(cos(<p-B))exp(im<p)d<p

= im(21r) ~ Jm(wr) exp(im <p)

where Jm (z) is the Bessel function of order m. From what we have just dis-
cussed we can then say that (Wm, Wn) = omn'

It is basically the mapping I : h ----> W which enables one to derive relations
amongst these special function from very general principles. Let's look at bases
corresponding to the other three separable coordinate systems in Euclidean
space.

1. Cartesian coordinates. It is sufficient to look for eigenvectors of P2 =
iw sin <po A suitable basis must satisfy p2fil) = iw sin O'.fil), the choice to be
made is fill = o( <p - 0'.) where 0'. is real. The basis vectors are then labeled by
the continuous index 0'.. The corresponding \[f function is

\[f(1)(X, y) = exp(iw(x cos 0'. + ysin 0'.)), 0'. real.

2. Polar coordinates. In this case we have seen that the basis vectors f!;) = fm
are labeled by the discrete index m = 0, ±l, ±2, ...

3. In the case of parabolic coordinates the basis vectors have the form

and f~3J (<p) = f~~ ( -<p). There is in this case a continuous spectrum labeled
by the real number p and the indices ±. The eigenfunctions satisfy

p real

and
(JS~), f~~~/) = o((/o(p- pi), where e, f' = ±.

The corresponding \[f functions are
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where (J = exp(i71-j4)(2w)1/2 and Dv(z) is a parabolic cylinder function.
4. In the case of elliptical coordinates the corresponding eigenfunctions are

f(4) - - ~ ( )nc - 7r cen t.p, q ,

f(4)- -~ ( )ns - 7r sen t.p, q ,

n=O,I,2,3 ...

n = 1,2,3 ...

where the ce and se functions are even and odd periodic Mathieu functions and
q = d2w2/4. The eigenvalues are transcendental and are labelled by the integer
n. If we label this basis by f~i) where t = s, c then these functions satisfy the
orthonormality relations

and (M2 + d2 p2)f(4) = >. f(4)1 nt nt nt .

The corresponding \II functions are

\Ilnc(x, y) = cen( a, q)cen( a, q),

\Ilnc(x,y) = sen(a,q)sen(a,q)

to within normalisation constants.

Let us establish the formula for the generating function of a Bessel function.
In the one dimensional model we can write fill = L::=-oo Aamf$;) where
Aam = (1/V'iir)e-im a. As the transformation between one and two variable
models is unitary we may write \II~l) = L::=-oo Aam \II~) or explicitly

00

eiw(xcosa+ysina) = L imJm(w'r)eim(<p-a)
m=-oo

which is the desired formula. Many other identities between classical special
functions can be worked out using many of the intrinsic group properties such
as group multiplication laws

T~2(gh) = LT~~(g)T~~\h)
k

and the reduction of Tensor products.
In addition to the Helmholtz equation for real variables x and y there is also

the possibility of separation of variables when the variables are complex. In
this case there are six coordinate systems. They are

(1) Cartesian coordinates x, y, characterised by Pl-
(2) Polar coordinates x = r coe t), Y = r sin ti, characterised by M.
(3) Elliptical coordinates x = acoshacos,B, y = asinhasin,B, charac-

terised by M2 - a2 Pi,
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(4) Parabolic coordinates x = He-7J2
), Y = €7J, characterised by {M, P2}.

(5) Degenerate elliptical coordinates of type one x = (u2 +u2v2
- v2 )/2uv,

Y = i(u2 - u2v2 + v2)/2uv, characterised by M2 + (P1 + iP2)2 with
separable solutions the product 01 two Bessel functions.

(6) Degenerate elliptical coordinates of type two

characterised by {M, P1 + iP2} + (P1 - iP2)2 with separable solutions
the product of Airy functions.

What is clear from here is that there are more coordinate systems available
than in the real case. In fact if we were to consider the Klein-Gordon equation
Wxx - Wyy +w2w = 0, there would in fact be ten real forms and correspondingly
different separable systems possible.

What have we developed here? The recurring features of these lec-
tures will be as follows.

1. We are given an equation of which three types are typical. The Helm-
holtz equation, the heat/Schrodinger equation, or Laplace's equation.

2. If we write this equation as

QW(x) = 0
,

we the look for the vector space of operators L = L:~=l akok +ao which
are such that if W is a solution of (*) then so is Lw. The set of such
operators forms a Lie algebra i.e. it is closed under commutation.

3. The action of any Lie algebra element on the functions W is given by

00 (La)n
exp(La)w = L:--,-w.

n.
k=O

4. The candidate special functions are R separable solutions of (*), viz
solutions such that W = R(Ul, ... ,un)Jl~=l Wj(u;). These solutions
are characterised as eigenfunctions of a suitable set of operators which
are often times expressible in terms of elements which are symmetric
products of second order in the enveloping algebra of an associated
symmetry group.

5. What is then required is a vector space of solutions of (*). This could
be a Hilbert space with an appropriate inner product or perhaps a
space of analytic solutions of (*) about a point.
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6. What is then needed is a second model of this space of solutions. This
generally involves fewer variables. Basis functions arising from separa-
ble solutions are usually easier to calculate in this model.

7. The group property is what is used to derive identities amongst differ-
ent bases. At the Lie algebra level the equivalent commutation rela-
tions can result in identities for the solutions. These identities translate
to identities for the solutions of (1).

These are the basic steps in studying special functions arising from equations
of physics. The important texts on this subject are [6] and [11].

2. The Schrod inger equation, separation
of variables and special functions

In quantum mechanics the state of a system is described by the Schrodinger
equation in the coordinate representation. In one space dimension the time
dependant Schrodinger equation has the form

ihlI!t = (-h2/2m)lI!xx + V(x)1I!

where h h/27r and h is Planck's constant. Among the most important
Schrodinger equations are those for which V (x) is one of the potentials

1. V = o.
2. V = a/ x2 + kx2, k positive or negative.
3. V = ax, a # 0, linear potential.

The problem of relating solutions of the Schrcdinger equation to special func-
tions is again via separation of variables and the associated symmetry group.
The key difference is that we now consider the concept of R separation. Pre-
viously we considered solutions that were a product of functions on individual
functions of the separating variables, i.e. II! = lI!(xI)II!(X2). By R separation
we mean that there is the possibility that there is a well defined function in
front of this product II! = R(Xl, x2)II!(xdlI!(X2). To find out all the possible
coordinate systems associated with the free particle Schrodinger equation

(2)

one has to calculate the symmetry algebra. In the case of the Helmholtz equa-
tion it was clear what group mapped solutions into solutions. In the case of the
free particle Schrodinger equation this is not so. Consequently we look for all
the operators L = a( t, x )ax +b(t, x )fJy +c(t, x) such that if II! is a solution of (2)
then so is L II!. If we make this requirement then we obtain a six dimensional
algebra L(Sd with basis

f{2 = -t2at - txfJx - t/2 + ix2/4, f{l =-tfJx + ix/2

f{o = i, K -1 = fJx, K -2 = at, f{0 = xfJx + 2tfJt + 1/2.
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If we choose the basis

CI = J{_I, C2 = J{I, L3 = J{-2 - J{2,
LI=J{°, L2=J{-2+f{2, E=f{o,

the commutation relations are

[LI,L2] = -2L3, [L3,Ld = 2L3, [L2,L3] = 2LI,
[CI, C2] = E/2,
[L3, Cd = C2, [L3, C2] = -CI, [L2, Cd = [C2, LI] = -C2,
[LI,Cd = [L2,C2] = -CI

This form of the commutation relations gives the essential structure of the
algebra.
1. The Li,i = 1,2,3 generate the Lie algebra of SL(2,R) also realised as the

space of traceless 2 x 2 matrices i.e. matrices [a b] withc -a

LI = [~ ~1]' L2 = [~ ~1]' and L3 = [~ ~1]'

The corresponding group consists of the matrices A = [~ ~], 0:6 - (3, = 1,

0:, (3",6 real numbers.
2. The elements CI, C2 and E form a basis of the Weyl algebra WI also realised
as the matrices

[0 1 0]
CI = 0 0 0 ,

000
[
0 0 2]

C3 = 0 0 0 .
o 0 0

This algebra can be exponentiated via

[
1 v 2P+UV/2]

B(u, v, p) = 0 1 u = exp((p + uv/4)E) exp(uC2) exp(vC2).

001

The law of group multiplication is

B(u,v,p)B(u',v',p,) = B(u+ u',v+ v',p+ p' + (vu' - uv')/4).

The action of these subgroups on functions of x and t is

T(u, v, p)~(t, x) = exp(ip + i(uv + 2ux - u2t)/4)<t>(t, x + 1) - ut),

[
. X

2(3] _1 (,+to: x )
T(A)~(t,x)=exp Z4(6+i(3) (6+t(3) 2<t> 6+t(3'6+t(3 .
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This symmetry group is the semi-direct product of WI and 5L(2, R), i.e. any
element is specified by the coordinates 9 = (A, w) where w = (u, v, p) and
a group element in a given representation by T(g) = T(A)T(w). Now that
we have found our symmetry group we know that it maps solutions of the
Schrodinger equation into solutions. In order to find separable solutions of the
Schrodinger equation we proceed in analogy with the Helmholtz equation. We
can act on the vector space generated by the Lie algebra via the action of the
group 51. This is done by what is called the adjoint action. This is defined by

exp(Ad(L))M = f (A~(IL))k M,
k=O

L, M III L(5d

where Ad(L)M = [L, M]. (Exercise: show that this is what we did for the case
of the Helmholtz equation). We say that two elements Ml, M2 are equivalent if
there is an L in L(5d such that Ml = exp(Ad(L))M2. Under this equivalence
relation we find there are four equivalence classes of elements of L(5d. Typical
elements of these five orbits have representatives f{-I, f{-2 - f{1, «» and
f{2 - f{-2. For each of these representatives a separable coordinate system is
possible. This can be seen as follows.
1. Choose the Cartesian coordinates x = u, t = v. The Schrodinger equation is
then iwv + wuu = O. The solutions are then W = exp(>.u - i>.2v) which satisfy
f{_IW = >.w.
2. For the coordinates associated with K -2 - J{ 1 we choose coordinates x =
u + v2/2, t = v. The Schrodinger equation is then

<1>uu + i<1>v+ (-u/2 + v2/4)<1> = 0

where W = exp(iuv/2)<1>. The solutions are then

w = exp(uv/2) exp( _(iv3 /12) - i>.v)Ai((u/2) - >'))

where Ai(z) is an Airy function. In particular, (IC2 - f{1)W = >.w. We should
note the if we wrote <1>= exp( -iv3 /12)A and v = V, u = U then A satisfies the
equation <1>uu+ i<1>v+ (-U/2)<1> = 0 which is the Schrodinger equation with
linear potential -U /2.
3. For the coordinates associated with f{G we choose x = u.jV, t = v. The
Schr6dinger equation is

<1>uu + iv<1>v+ (u2 /16 + i/4)<1> = 0

where W = exp(iu2/8)<1>. The solutions are then

w = exp(iu2 /8)v(-i>-.-1/4) Di>-._ & (-uJifi)
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where Dv(z) is a parabolic cylinder function. The solutions satisfy ](oW = iAW,
and we note that putting u = U, v = exp(V) that the equation for <I>becomes

<I>uu+ i<I>v+ (U2/16)<I> = 0

which is the Schrodinger equation with potential U2/16.
4. For the coordinates associated with ](2 - J{ -2 we choose x = u(1 + v2

) ~,

t = v. The Schrodiriger equation is

<I>""+ i(v2 + 1)<I>v+ (_u2 /4 + iv/2)<I> = 0

where W = exp(iu2v/4)<I>. The solutions are then

W = exp(iu2v/4 - i(n + (1/2)) tan-I v)(v2 + 1)-t Hn(u)

where Hp(x) is a Hermite polynomial. The solutions satisfy

(J{2 - J{_2)W = i(n + (1/2))W,

and we note that putting u = U, v = tan V and <I>= (cos v): ~A, the equation
for A becomes Auu + iAv + (_U2 /4)A = 0 which is the Schrodinger equation
with potential -U2/4

From these observations we see that the Schrodinger equations

iWt + Wxx + V(x)w = 0

with potentials V(x) = 0, ax, ±bx2 all have the same symmetry group.
These results extend to the case of Schrodinger equation in n dimensions

in the sense that for potentials of the form V(x) = 0, aXI, ±bx· x the corre-
sponding symmetry groups are abstractly identical.

The classical references for the extension to n dimensions are [3], [13].
The next question is: How do we set up a model of the solutions and workout

the bases corresponding to these separable solutions? Just as in the case of the
Helmholtz equation there is indeed a one variable model available. It is

It can be shown that given f(x) then w(x, t) = exp(tJ<_2)f(x) is a solution
of the Schrodinger equation (2). Moreover this relationship is inner product
preserving i.e. unitary:1:Wl(t, x)w;(t, x)dx = (exp(tJ<-2)h ,exp(tJ<-2)h)

= (h,h) = 1:h(x)J;(x)dx.
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3. Separation of variables and the
Helmholtz equation in three dimensions

Just as we have done in the previous lectures we can look for solutions of the
Helmholtz equation

(~3 + w2)\If = (\IfX1X1 + \IfX2X2 + \IfX3x3 + w
2)w = 0 (3)

which are solvable via the separation of variables ansatz \If = TI~=l Wk(Uk). If
we look for the set of partial differential operators L = 2:~=1 ak (Xl, X2, X3)OXk
such that if \If is a solution of (3) then L\If is also, we find that the space of all
such operators is six dimensional with a basis

PXi = ox;, i = 1,2,3
J3 = X20Xl - Xlox2, J2 = X10X3 - X30X1' h = X30X2 - X20X3'

We can easily verify that they form a Lie algebra with commuta ion relations

[Ji, Jj] = [ijkJk>

[J/, Pm] = [/mnPn,
[p/,Pm] = O.

This algebra is the three dimensional version LE(3) of the two dimensional
Euclidean group which we discussed in the first lecture. It is clear that if we
rotate or translate the coordinates of any solution W(Xl, X2, X3) of (3) then we
again obtain another solution. Indeed we have typically the relations

exp(aPl)\If(Xl, X2, X3) = \If(Xl + a, X2, X3),

exp(BJ1)\If(Xl, X2, X3) = \If (Xl , X2 cos B - X3 sin B, X3 cos B + X2 sin B).

In matrix form the elements of E(3) are represented by the 4 x 4 matrices

g(A, a) = [~ n
where A is a rotation matrix and a = (al, a2, a3) a real three dimensional
vector. E(3) acts as a transformation group acting on function \If(x) via the
formula

T(A, a)\If(x) = \If(xA + a).

In order to obtain separable solutions for this equation we need to find two ad-
ditional operators which describe the separable solutions. This can be done just
as we did for the two dimensional case. If we classify pairs of operators which
commute and are made up of symmetric products of elements of LE(3) we ob-
tain various equivalence classes with typical representatives. For each of these
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there corresponds a separable coordinate system and corresponding special
function solutions. If the solutions are of the form 'If( x) = ~(Xl, X2) exp( iWl X3)

then the problem reduces to the two dimensional case already studied in the
first lecture i.e. ~(Xl,X2) is a solution of (~2 +w2

-Wn~(Xl,X2) = O. We
can then choose one of the four coordinate systems associated with the first
lecture if we identify x = Xl, Y = X2. The remaining coordinate systems
are given below together with the separable solutions and their Lie algebra
characterization.
1. Spherical coordinates Xl = r sin B cos 10, X2 = r sin B sin 10, X3 = r cos 10· If
we look for solutions 'If = R( r )T( B)~( 10) then the separation equations are

The solutions are of the form \If = r-l/2Cl+L(wr)Ylm(B, 10) where Ylm(B, 10) is
2

a spherical harmonic and Cv(z) is a Bessel function. These functions satisfy
the eigenvalue equations

,
(J .J)'lf = (J~+ fi + Jj)'lf = -f(f + 1)\If ,

Jj'lf = _m2\If.

2. Prolate spheroidal coordinates,

Xl = c sinh c sin o cos c, X2 = c sinh c sin o sin o , X3 = ccoshacosa.

If we look for solutions of the form 'If = A(a)B(a)C(IO) then the separation
equations are

The typical solutions have the form
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where Ps~1 (cos (3, c2w 2) is a spheroidal wave function. These solutions are
eigenfunctions of the operators

(J . J - a2(p12 + pi))w = -,xW

Jlw = -m2w.
3. Oblate spheroidal coordinates,

Xl = c cosh c cos o cos o, X2 = c cosh c cos o sin o, X3 = csinhasina.

If we look for solutions of the form W = A(a)B(a)C(t.p) then the separation
equations are

d2 A dA 2 2 2 2 2
da2 + tanh a da + (-,x + c W cosh a - (m / cosh a))A = 0,

d2B dB
da2 -tana

da
+ (,x +c2w2cos2a-(m2/cos2a))B= ,

d2C _ 2C
dt.p2 - -m .

The typical solutions have the form

W - pslml(-isinha c2w2)Pslml(sina _c2w2)eim<.p- n , n' .

These solutions are eigenfunctions of the operators

(J . J + a2(Pf + Pi))w = -,xw,

Jlw = --m2w.
4. Parabolic coordinates Xl = ~TJcos ip, X2 = ~TJsin t.p, X3 = (e - TJ2)/2. If we
look for solutions ofthe form W = O(OA(TJ)C(t.p) then the separation equations
have the form

These equations have the solutions

(
i>./4w+(m+I)/21· 2)

W = (~TJ)m exp(iw(C + TJ2)/2 + im t.phFI ZW~ X
m+l

(
i>./4w+(m+I)/2I' 2)

IFI ZWTJ
• m+l



20 ERNEST G. KALNINS

These solutions are eigenfunctions of the operators

({Jl,P2} - {h,Pd)W = AW,
J}W = _m2w.

5. Paraboloidal coordinates,

Xl = 2ccoshacosasinh"

x2 = 2c sinh a sin (3cosh"

X3 = c( cosh 2a + cos 2(3 - cosh 2,)/2.

If we look for solutions of the form W = A(a)B((3)C(,) then the separation
equations are

d2A
da2 (-q - Ac cosh Zo + (w2c2/2)cosh4a)A = 0,

d2B
d(32 (q + ACCOS 2(3 - (w2c2/2) cos4(3)B = 0,

d2C
di2 (-q + AC cosh 2, + (w2c2/2) cosh 4i)C = °

where q = J-l - c2w2/2. These equations have the solutions

W = gCn(ia; 2cw, A/2w)gcn((3; 2cw, A/2w)gcn(i, + 7["/2; 2cw, A/2w)

for n = 0,1,2, ... and J-l = J-ln' The functions gcn(z,a,b) are odd periodic
solutions of the Whittaker-Hill equation. The c can be replaced by s to give
odd solutions as well. The eigenvalue equations satisfied by these solutions are

(J}- c2 pi + c{h, Pd + c{h, P2})W = -J-lW,
(cpi - cP1

2 + {J2, Pd - {h, P2})W = AW.

6. Elliptical coordinates,

xi = (J-l - a)(11 - a)(p - a)/a(a - 1),

x~ = (J-l - 1)(11 - l)(p - 1)/(1 - a),
2 _ /x3 - J-lllp a.

If we look for solutions of the form W = A(J-l)B(II)C(p) then the separation
equations are of the form
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where L = A, B, C and K = u, II, P respectively. The solutions satisfy the
eigenvalue equations

(J. J + Pi: + aP:} + (a + l)pl)1lI = Al Ill,

(Ji + aJ? + aPl)1lI = A21l1·

The solutions to these equations are called ellipsoidal wave functions and have
been discussed to some extent in the literature.

7. Conical coordinates,

xi = r2[(bJ.l- l)(bll - 1)/(1 - b)],

x~ = r2[b(J.l- 1)(11 - l)/(b - 1)],

x~ = r2 [bJ.lII].

It IS convenient to rewrite these coordinates in elliptic function for , VIZ

Xl = lo(1/k')dn(a,k)dn(.8,k),
X2 = ir(k/k')cn(a, k)cn((3, k),
X3 = rk sn(a, k)sn((3, k)

where we have introduced Jacobian elliptic functions sn, dn, en and the vari-
ables are in the ranges 0:S r, -2K < a < 2K, K < (3 < K + 2iK', k = b~. If
we now look for solutions in the form 111= R(r)A(a)B((3) then the separation
equations satisfied by this ansatz are

where L = A, Band K = a, f3 respectively. These solutions satisfy the eigen-
value equations

(J . J)1lI = -f(f + 1)111,

(Jf + bJi) III = Alii.

The equation for R is identical with that for spherical coordinates and the
solutions for L are Lame polynomials.

Just as in the case of two dimensions we have that the classification of pairs
of commuting operators is exhaustive, Also there is an inner product that we
can put on the space of solutions of (3), viz
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In direct analogy we can move to a simpler model by taking the Fourier trans-
form

w = J l,exp(iwx . k)h(k)dk = I(h)

where k . k = 1. This relationship between hand W is inner product preserving,
i.e. (W 1, W2) = (hI, h2) = I Is, hi h2dk.

It is then possible to derive the correct spectrum from this simpler model
on the sphere just as we have done in the case of two dimensions and this is
often easier to do as there is one variable less. In fact acting on the functions
h( k) the basis elements of the Lie algebra have the form

PI = iw sin ()cos <p, P2 = iw sin ()sin <p, P3 = iw cos (),

h = k3c)"" - k2fh3 = sin <POe + cos <p cot ()oip,

h = kIOk3 - k30k, = - cos <poe + sin <p cot ()o,."

J2 = k20k, - kIOk, = -a,.,

where k = (sin e cos o, sin ()sin <p, cos()).

A classical and important paper on separation of variables for the Helmholtz
equation in three dimensions is [5].

, 4. Separation of variables and the
Laplace equation in three dimensions

Just as we have done in the previous lectures we look for solutions of Laplace's
equation

(4)

which are solvable via the separation of variables ansatz

3

W = R(UI, U2, U3) IIWk(Uk).
k=l

Classically this has been done by Maxime Bocher in his classical work on Po-
tential theory [2]. The way to understand his work via group theory is by the
methods we have already discussed for the Helmholtz and Schrodinger equa-
tions. If we look for the set of partial differential operators

3

L = L ak(XI, X2, X3)OXk + aO(Xl, X2, X3)
k=l
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such that if W is a solution of (3) then Lw is also we find that the space of all
such operators is ten dimensional with a basis

PXi = OXi' i = 1,2,3,

J3 = X20x. - X10X2' J2 = X10x3 - X30x., J1 = X30X2 - X20X3'
1

D = -2 - (X10x. + X20X2 + X30X3)'

K; = Xi + (xl- XI - XDOXi + 2XiXjOXj + 2XiXkOXk> i:f:. i, j :f:. k, i:f:. k.

The elements PXi' h generate the algebra LE(3). The remaining elements are
genuinely new. The a.ction of these elements in the large on functions W(x).
are

exp(.\D)W(x) = exp( -,Xj2)w(exp( -,x)x),

exp(a1Kl + a2K2 + a3K3)W(X) = (1- 2x . a + (a . a)(x . x))-~,
w((x - a(x . x))j(l - 2x . a + (a· a) (x . x)).

The K1 are referred to as special conformal transformations and the D is a
dilation operator which corresponds to the obvious symmetry of the laplace
equation obtained by replacing x --> [exp( -,x)]x. There are in fact other im-
portant discrete transformations associated with the Laplace equation. These
are the transformation of inversion in the sphere specified by

IW(x) = (x· x)-!w(xj(x. x))

and of course reflections RW( Xl, X2, X3) = w( -Xl, X2, X3). In fact the relations
between the K, and Pi are specifically IPi == -KiI.

In fact the geometry of this fifteen dimensional algebra of (4) can be easily
understood in terms of the so called pentaspherical coordinates. These can be
obtained using the projective coordinates (x, t)

Y1 = i(z· Z +t2), Y5 = z· Z _t2, Yi = 2zi_1t, i = 2,3,4

where the Cartesian coordinates are given by Xi = z;/t. In the five dimensional
space of the coordinates Yi we can get a clear interpretation of the elements of
our Lie algebra. In fact the following formulas can be verified

h= f32,

P1 = f12 + f25,

J{1 = f12 - f25,

J2 = f24, J1 = f43, D = f15,

P2 = f13 + f35, P3 = f14 + f45,

J{2 = f13 - f35, J{3 = f14 - f45,
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where f;j = yJJYj - YjOy;. From these relations we can see that the Lie al-
gebra is the same as that we would get by considering all the linear trans-
formations which preserve the quadratic form I:~=1 y~ = 0, which for the
choice of coordinates given above is in fact zero. This algebra is called the
conformal group and can be identified via the notation L50(1,4), the Lie al-
gebra of pseudoorthogonal 5 x 5 matrices M that preserve the diagonal matrix
D = diag(L,-1, -1, -1, -1), i.e. D = M DMt. The geometry of the Laplace
equation is closely related to this observation. To obtain separable coordinates
for this equation and the corresponding special functions, quadratic surfaces
need to be considered on this five dimensional space. These are curves specified
by

5 2

'"'~-O~ A - ek - ,
k=1

A = A1, A2, A3. For these coordinates the pentaspherical coordinates are given
by

2 11~_1(Aj-ek)
Yk = 11 ( )'l¥k el - ek

The confocal curves introduced in this way are called confocal cyclides. They
form the basis of all coordinate systems for the Laplace equation (4). We can
again discuss the notion of equivalence under the adjoint action of the conformal
group algebra and find that pairs of operators 51,52 which are symmetric and
quadratic in the elements of L50(1, 4) and which commute can be divided
into equivalence classes that correspond exactly to separable coordinates. Let's
look in some detail at the most general coordinates of cyclidic type. We can
without loss of generality subject the coordinates Aj and numbers el to arbitrary
transformations

k=1, ... 5.

and can therefore choose e4 = 00 and eo = 0, e1 = 1, e2 = a, e3 = b. A suitable
choice of coordinates is then

xi = R-2[(A1 - a)(A2 - a)(A3 - a)/(b - a)(a - l)a],

x~ = R-2[(A1 - b)(A2 - b)(A3 - b)/(a - b)(b - l)b],

x~ = R-2[(A1 - 1)(,\2 - 1)(A3 - l)/(a - l)(b - 1)],

where R = 1 + [A1A2A3/ab]!. Separable solutions to (4) can be obtained by
looking for solutions of the form \l1 = R! 11:=1 Aj(Aj). The functions Ak(,\k)
satisfy the ordinary differential equation
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where P(.>.) = .>.(.>. - 1)('>' - a)(.>. - b), .>. = '>'1, '>'2, '>'3. This is an equation
similar to the one we have found for ellipsoidal coordinates in three dimensional
Euclidean space. It is a two parameter spectral problem with parameters Ci, C2

needing to be determined. In fact these solutions satisfy the eigenvalue equa-
tions

[
a + 1 ( ')2 b + 1 ( ')2 a + b 2 2 2 2]-4- P2 + K2 + -4- Pi + Ii.1 + -4-(P3 + J{3) + J3 + bJ2 + aJ1 \[I

There is no nice Hilbert space structure on the space of solutions of (4). How-
ever we can derive identities relating separable solutions of this equation. This
is done using what is known as Weisner's method. For this let us consider the
expression

\[I(Xi, X2, X3) =
r d{3 r (dt/t)h({3, t) exp[(ix{3/2)(t + C1

) + (y{3/2)(t - C1
) - (3z] = I(h)lCI lC2

where h is analytic on the domain of integration. For any h, \[I = I(h) is a
solution of Laplace's equation. By integrating by parts we can find the elements
of our symmetry algebra that act on the functions h(t, (3). They are

1
p+ = -{3t, P- = -{3/t, pO = -i{3, D = {30f3+ 2'
J+ = itof3 - it2ot, J- = -i({3/t)ot - iot, JO = tOt,

J{+ = (t/(3)((30f3 - tOt)({30f3 - tat - 1),

tc: = (l/t{3)({3of3 + tOt)({30f3 + tat - 1),

KO = (i/{3)((tOt? - ((30f3)2)

where -J± = ±h + ih, JO = ih with similar expressions for P±, and J{±.
This representation is obtained from the requirement that Lw = I(Lh) for L
in LSO( 4, 1). If we introd uce the func bans g~) = il (3lt m it follows that on this
basis

J±g(l) - (_£ ± m)g(l)m - m±i'

JOg(l) = mg(l)m m'
pOg(l) = _g(l+l)

m m'

P± (l) _ ± (l+l)- gm - gm±l'
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Dgc,;.) = (!! + (1/2))gc,;.),

KOgc,;.) = (f2 _ m2)g~-1),

K+ gc,;.)= -(f - m)(f - m - 1)g~+~),

K" g~) = (f + m)(f + m - 1)g~:::~).

If fo is a complex number such that fo + ~ is not an integer then if f =
fo, fo ± 1, fo ± 2, ... , and m = E, f - 1, f - 2, ..... then all these vectors are
invariant under the action of the conformal group. This basis can be used to'
construct identities for Gegenbauer polynomials. If we introduce coordinates
r, t, w which are spherical coordinates i.e.,

x3 Xl + iX2 J
w = -, t = ,r = xi + X~ + X~

r r

and consider functions w~)(w, t, r) which satisfy the recurrence relations. We
determine that P . P g~) = O. In this model one can establish the relations
that

JOW(l) - M,(l) DW(l) - (f + ~)w(l) Kow(l) - 0e - {''lil , l - 2 l' c >:

which implies that w~l) = r(f + (1/2))(2t)l(r/i)-l-1 to within
multiple. We can also deduce from the recurrence formulas that

a constant

exp(-iapO)w(l) = ~ (ia)n w(l+n)
m L.J n' m

n=O
and we also know that

exp( -iaPO)w~)( w, t, r) =
w(i) ((w + £) (1 + a2 + 2aw)-~ t(1 + a2 + 2aW)-~ r(1 + a2 + 2aW)-~) .

m r ~ r ' r2 r ' r2 r

If these two expressions are to be the same then

w~)(w, t, r) = ie - m)!r (m + ~)C~~P/2)(w)(2t)m (~) -l-l

where C:;'Jz) is a Gegenbauer polynomial. This can be deduced by putting
m = f in the above identity and recalling the formula for the generating function
of Gegenbauer polynomials, viz

00

(1-2ax+a2)-" = LC~(x)an.
n=O

The general identity for Gegenbauer polynomials deduced from these ideas is

(1 - 2w + a2) -1l-k/2 Ck' [( w - a)(1 - 2wa + (2)- ~] = f= an(~+n)C~+k(w),
n=O

if la2
- 2awl < 1.
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5. Special functions and partial
differential equations in n dimensions

Thus far we have looked at examples of the Helmholtz equation, heat equation
and Laplace equation in lower dimensions and seen the many of the well known
classical special functions can be characterised in Lie algebraic terms. This
has notable included special functions such as for example spheroidal wave
functions which are not of hypergeometric type. In this lecture we will see that
these statements can be extended to n dimensional problems. In fact in the case
of the n dimensional sphere all the separable equations for the corresponding
Helmholtz equation are known. This equation is

~W + u(u + n - 1)'11 = 0 (5)

where ~ = L,i<j(SiOsj - SjOsY = L,i<j Ii~ and L,~~~ s~ = 1. The basic
building blocks of separable coordinates are the elliptical coordinates on the p
dimensional sphere. These are given by

For these coordinates we adopt the notation [ell .... lep+l]. If p = n then (5)
assumes the form

where Pk(Uk) = D7=1(Uk - ej). If we look for solutions of the form'll
D7=1 Wj(uj) then the separation equations are then

n-l
(VPk(uk)Ouk(VPk(uk)Ouk))Wk + [u(u+n-l)(ukr + Lf.lj(ujr-j]'Ilk = o.

j=2

The operators that describe the separable solutions are

In ~Sij 12
k = LJ k-l ij'

i<j
k = 1, ... , n.

where s~j = t. L,i" ...,id e., ...<: To see how this all wor~s. let's go to t~e
example of the two dimensional sphere n = 2. One of the critical questions IS

how can one solve the separation equations. We have been used to equations
for which two term (or perhaps three term) recurrence relations are used in the
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series solution. In the cas- of ellipsoidal coordinates the best way to solve for
the appropriate harmonic solutions is as follows. If we look for solutions of (4)
of the form

(
k ) M 3 2 (k ) TIM TI3 (P _ ().)_ II II '" _5p_ - IT i=1 p=1 U •IV - 5a, LJ () - 5a, 3

j=1 i=1p=1 i - ep j=1 TIp=1(()i - ep)

where the ak are all different and k :::: 3. The zeros of the elliptic harmonics
then satisfy

This achieves the solution of elliptic harmonics in three dimensions. It is rela-
tively easy to see how the generalisation works. In the notation we have been
using this corresponds to the diagram

There is one other separable coordinate system separable on the two dimen-
sional sphere, viz spherical coordinates. These coordinates can be constructed
from two copies of elliptic coordinates on the one dimensional sphere. These
coordinates can be given by

2 _ u1
- e1

251 -
e2 - e1

u1 - e2
25~ = ---

where e1 < u1 < e2. Clearly if we choose e2 = 0, e1 = 1 and u1 = sin ' {3 then
251 = cos {3, 252 = sin {3. We of course know that spherical coordinates can be
written as

251 = sinacos{3, 252 = sinasin{3, 253 = cos o ,

this coordinate system is denoted by the graph

o 1]
1
o I].

This graphical calculus sums the situation up. On the three dimensional sphere
the corresponding diagrams of the six different possible coordinate systems are



SPECIAL FUNCTIONS, LIE THEORY AND PARTIAL DIFF. EQUATIONS 29

1. Elliptical coordinates, [e1 I e2 I e3 I e4 ],

j = 1, ... ,4, ek i- ee if k i- E,

2. (a) Lame rotational coordinates of type one,

e3 ]

1 ].

(b) Lame rotational coordinates of type two,

e3

1
o 1]

3. Lame subgroup reduction,

o 1
1
1 a ]o

4. Spherical coordinates,

81 = sin o sin 0 cos<p, 82 = sin o sin e sin o, 83 = sin o cos d, 84 = cos o

[ 0 1
1
o 1

1
o 1 ]

5. Cylindrical coordinates,

81 = sin 0' cos ip, 82 = sin 0' sm <p, 83 = cos 0' cos 1/;, 84 = cos 0' sin 1/;.

011
1 1
1 J[ 0 1 ][ 0
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This graphical calculus can be extended to the n sphere. It may also be ex-
tended to n dimensional Euclidean space. The basic building blocks are elliptic
and parabolic coordinates. In three dimensions these correspond to

1. Elliptic coordinates

IT3 k
2 2 k=l U - ej

Xj = CIT' kfci ei - ej
j=I,2,3,

These coordinates are denoted by the symbol ( el I e2 I e3 ).

2. Parabolic coordinates.

c (1 2 3
Xl = 2" u + u + u + el + e2),

IT3 (uk - e)
x2 __ c2 k=l J j=2,3, ul<el<u2<e2<u3.

J - ITkfci(ei - ej) ,

These coordinates are denoted by the symbol ( el I e2 I es ).

For three dimensional Euclidean space the graphs which represent the vari-
ous coordinate systems are given below.

1. Cartesian coordinates,

( 1 ), ( 1 ), ( 1 ).

2. Cylindrical coordinates,

1 ) ,
1
o I

(

1 ].

1

3. Elliptical cylindrical coordinates,

4. Parabolic cylindrical,

( 0 ), ( 1 ).

5. Spherical coordinates,

1
1
o 1

1
o 1 ].
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6. Prolate spheroidal coordinates,

o )
1
o 1].

7. Oblate spheroidal coordinates,

( 0 1
1
o 1 ].

8. Parabolic coordinates,

1
1
o 1]

9. Paraboloidal coordinates,

10. Ellipsoidal coordinates,

( ell e2 I e3 ).

11. Conical coordinates,

1
1
o 1 a ]

The other feature to note about these coordinates is that the graphs of the
systems do not need to be connected. This is however a requirement for co-
ordinates on the sphere. It is possible to extend these ideas for the case of
separable coordinates on the hyperboloid and for Laplace's equation and the
heat equation. The results obtained are complete for real manifolds which are
positive definite spaces. There is however the problem of the complexification
of these equations. In this case special functions can occur in a number of ways.
I will discuss these in the last lecture.
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6. Open problems and prospects for this subject
What are the problems that remain in any such study of the connection between
special functions and partial differential equations?
1. There is the question of what are all the separable coordinates for which
separation of variables can occur and give rise to "special functions". These are
indeed known for the Helmholtz equation on the sphere and in Euclidean space,
Laplace's equation and also the heat equation. If we can solve this problem
then all real cases can be established by considering appropriate real forms.
There are various possible courses of solution of this problem.

First, it is known that on a Riemmannian space the corresponding Helmholtz
equation is

~ 1 ..
~W = ~ -ox.(g'] ,jgoxJW = >.'ll.

i,j= I y'g

In order that separable solutions be possible the matrix G with elements gij

must have the form

o
o

where

grCi = LAr{3(xr)(srl/S),
{3

gCi{3= LBCi{3(Xb)(Sbl/S),
b

1 ~ a ~ nl, ni + 1 ~ r ~ ni + n2, 1 ~ b ~ ni + n2,

0',{3 = ni + n2 + 1, ..,n! + n2 +n3·

There exists a so called Stackel matrix S = (Sij(Xi))(n,+n2)x(nl+n2) such that
Sbi is the bl cofactor of Sand S is the determinant. The reference for this
crucial form is [1].

There is another condition for the separation of the Helmholtz equation
also. In keeping with our theme of partial differential equations, Lie groups
and special functions we do not pursue this much further. From this condition
we could make the requirement that the space be of constant curvature, i.e.
Rijkl = K(.qikgjl - gilgjk) where if K = 0 we have Euclidean space and when
K # 0 then an n dimensional sphere. While this works for some of the possible
coordinates it is clearly unfeasible in general (e.g. it is quite straightforward
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in the case of orthogonal coordinates). An outstanding problem is to solve in
some tangible form the general problem of finding all the coordinate systems
which are separable for complex spaces of constant curvature.

The second approach to this problem may be the following. It is known that
each of the separable coordinates give rise to operators of which the separable
solutions are eigenfunctions. These operators are mutually commuting. Could
these families of commuting operators be characterised in some way when they
give rise to separable coordinate systems? There has not been a great deal of
progress on this problem. We also note that for the general form of the metric
gij given above the solutions W satisfy

for all coordinates of type xa. This means that the La form an abelian algebra
i.e. [La, L/3] = 0 for all a, (3. Can one systematically classify the abelian
algebras of this type? They must be subalgebras of E(n, C) and SO(n, C).
Some progress in this direction has been made but a crucial resolution of this
problem has still to be made. In addition to the abelian algebra there is also
the requirement that there be a suitable number of second order operators
that commute with the abelian subalgebra. As an example of a non orthogonal
coordinate system we can choose coordinates in four dimensional flat space via

zl+iz2=Xl, zl-iz2=2x2
Z3 + iZ4 = 2X3Xl, Z3 - 1Z4 = X4

The corresponding infinitesimal distance is then

The corresponding Helmholtz equation is

The separation equations are

Ox,W = VIW, ox,W = V2W,
2(-VIX3 + V2)OX3W = V3W,
2(VIOX1 + v3/xdw = Ew.

The operators which describe this separation of variables are

L1 = (PI + iP2)/2,
L2 = (P3 + iP4)/2,
L3 = (1/4){P3 - iP4, lvs + ih3 + ils« - h4},
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where Ijk = XjOx; - XiOxj.

2. What about other sources of special functions from a goup theoretic point
of view? More recently we have looked at the notion of superintegrable me-
chanical systems. These are Schrodinger equations with potential which admits
a separation of variables in more than one coordinate system. In the case of
Euclidean space of dimension 2 there are four potentials of this type.

V ( ) - 1w'(x'+y')+kt- t + k~~ t(1) j x, Y - 2 x2 y

which separates the Schrodinger equation -~~'lf+ V1(x,y)1lI = E'lf in
a. Cartesian coordinates x, y.
b. Polar coordinates x = r cos B, y = r sin ().
c. Elliptic coordinates

X2 = C2(UI - ed(u2 - el)!(ej - e2),

y2 = C2(UI - e2)(u2 - e2)!(e2 - ed.

(2)
1 ( k

2
1 )V2(x, y) = 2 w2( 4x2 + y2) + 2 y~ 4. .

The corresponding Schrodinger equation then admits separable solu-
tions in

a. Cartesian coordinates x, y.
b. Parabolic coordinates x = ~(e_1]2), y = ~1].

(3) V3(x, y) =

This separates in
a. Spherical coordinates x = r cos B, y = r sin ().
b. Parabolic coordinates x = ~(e_1]2), y = ~1].

c. Elliptical coordinates

1
x=- 2

(Uj - Ed(U2 - Ed
E2 - E1

1
y =-

2
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The separation of variables occurs it two types of parabolic coordinates.
a. Parabolic coordinates one, x = He - 1)2), Y = ~1).

b. Parabolic coordinates two, x = tu/, Y = H/l2 - v2).

The essential feature of these coordinates systems is that the bounds tate energy
eigenvalues and basis functions in each of the separable bases and the relations
between them can be determined from algebraic criteria alone.

For details of this approach to special function properties see for instance
[8].

3. I have not mentioned special functions arising from equations which are
component valued such as Maxwell's equations or the Dirac equation. Also
included in this are the gravitational perturbations of a Kerr black hole. The
classical reference for this is [4]. For a recent update on these matters see [9].

4. There are interesting relations between modern theories of integrability and
separation of variables. The last word has not been said on this subject. How
is separation of variables connected with the notion of integrability. A good
reference for this topic is [7].
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