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Summary

In this paper we propose a bivariate beta regression model, defining the

beta distribution derived from Farlie-Gumbel-Morgenstern (FGM) copulas.

This model could be a good alternative to analyze pairs of proportions, when

they are not independent. To fit the proposed models we apply standard

existing MCMC (Markov Chain Monte Carlo) methods to simulate samples

for the joint posterior of interest, using the Bayesian methodology proposed

by Cepeda and Gamerman (2001) and Cepeda and Gamerman (2005). Two

examples are introduced to illustrate the proposed methodology: an example

with simulated bivariate data and an example with a real data set.

Key words: Beta distribution; Beta regression models; bivariate random

variables; MCMC methods; Bayesian methodology.
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1. Introduction

In many applications in different areas as medicine, education, economics,

ecology among many others, we could have a response given by a rate or

proportion that is limited to a value in the interval (0, 1). Usually, we also

have the presence of a vector of covariates associated to each unit.

A flexible and natural candidate distribution to model this kind of da-

ta is given by the beta distribution (see for example, Johnson, Kotz and

Balakrishnan, 1998, p. 235).

As an application and motivation for this paper, we consider a study to

evaluate the quality of education in different regions, where in the evaluation

of the schools performance in mathematics, language, natural sciences among

many other school areas, a number between 0 and 5 (or any other positive

integer) is assigned as a measure of the student performance. In this case, the

measure assigned to each student could be expressed as a number between

zero and one and a beta distribution could be used to analyze the data in

the presence or not of a vector of covariates. Some applications of the beta

distribution are presented and analyzed by Bury (1999).

Many studies to determine the quality of the educational systems in dif-

ferent countries were developed in different contexts. The Program for Inter-

national Student Assessment (PISA) was designed and launched by OECD

(Organization for Economic Co-operation and Development) by the end of

the nineties decade as an international and comparative index to evaluate the

performance of the school children that would enable countries to improve

their educational systems.

In 2009 the PISA program was applied to 57 countries, including 37
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OECD countries and other 27 countries called ”partner countries”. In this

case, the explanatory variables measured the ways of learning as well as the

influence of social and family environmental factors, school material, tea-

ching staff, expectation and inclinations of the teenagers to learn, among

others topics (Sancho, 2006; Cepeda, 2005; Donoso, 2002).

Similar studies where the student’s performance or the educational system

is associated with a beta distribution with explanatory variables like family

environments, socioeconomic or scholar variables, have been developed in

countries as Colombia, Chile, Spain and the United States of America.

In these models, if Y is the variable of interest with beta distribution, we

relate a vector of covariates X ′ = (X1, . . . , Xk) by the link function g(µi) =

x
′
iβ, with µi = E(Yi), i = 1, 2, . . . , n where n is the sample size, g is an

appropriate real valued function, β′ = (β1, ..., βk) is a vector of regression

parameters and x
′
i is the vector of covariates associated to the i-th individual.

This modeling approach was introduced by Cribari-Neto (2005), although

more general models were proposed by Cepeda (2001) considering joint mo-

deling of the mean and variance or dispersion parameters in the biparametric

exponential family, including joint modeling of the mean and dispersion pa-

rameters in the beta distribution.

Inferences for the beta regression models have been discussed by many

authors under a classical inference approach (see for example, Paolino, 2001,

or Ferrari and Cribari-Neto, 2004) or under Bayesian approach (see for exam-

ple, Cepeda, 2001; Branscum et al., 2007).

In some situations, we could have two proportion responses associated to

the same unit, as it is the case of medical longitudinal data where a patient
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could have a proportion of virus in the blood measured before and after

receiving a treatment. In this case we can not assume independence between

the responses and we need a bivariate beta distribution to analyze the data

(see for example, Olkin and Liu, 2003).

The dependence between the observed proportions could also be studied

considering the use of copula functions (see for example, Nelsen, 1999).

In this paper we present a Bayesian analysis for univariate and bivaria-

te regression models. In the case of bivariate regression models, we assu-

me a special copula function: the Farlie-Gumbel-Morgenstern (FGM) copula

which is appropriate to fit data with weak dependences. We get the posterior

summaries of interest using standard MCMC (Markov Chain Monte Carlo)

methods to simulate samples for the joint posterior distribution of interest

(see for example, Gelfand and Smith, 1990).

The paper is organized as follows: In section 2.1, general concepts on the

beta distribution are introduced; in section 2.2, we present some concepts on

the copula functions; in section 2.2.1, we present a bivariate beta distribution

derived from a FGM copula; in section 3.1, we introduce a general joint

mean and dispersion (variance) beta regression model; in section 3.2, we

introduce a bivariate beta regression model; in section 4, we introduce a

Bayesian approach for the model; in section 5, we present a simulation study;

in section 6, we present a real data set; finally in section 7, we present some

conclusions.
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2. The beta distribution

2.1. Univariate beta distribution

A random variable Y has a beta distribution if its density function is

given by

f(y|p, q) =
Γ(p + q)

Γ(p)Γ(q)
yp−1(1− y)q−1I(0,1)(y), (1)

where p > 0, q > 0 and Γ(.) denotes the gamma function. If Y is a random

variable with beta distribution, the mean µ = E(Y ) and variance σ2 =

V ar(Y ) are given respectively by

µ =
p

p + q
, (2)

σ2 =
p q

(p + q)2(p + q + 1)
. (3)

Many observations could be assumed to have a beta distribution. For exam-

ple, the income inequality or the land distribution when they are measured

using the Gini index proposed by Atkinson(1970). Another quantity that can

be analyzed using a beta distribution is the performance of a student in areas

as mathematics , natural sciences or literature. In this case, if the performance

X takes values in an interval (a, b), the random variable Y = (X−a)/(b−a)

can be assumed to have a beta distribution. In this case, there are household

socioeconomic variables that have fundamental impact on the cognitive achie-

vement of the students. For example, the level of student achievement is clo-

sely related to educational levels of their parents and the number of hours

devoted to study a subject. Thus, the beta regression model can be appro-

priate to explain the behavior of the school performance as a function of many
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associate factors. Some reparametrizations of the beta distribution given in

(1) can be more appropriate. As a first one, let us consider φ = p+ q; we can

see that p = µφ, q = φ(1− µ) and σ2 = µ(1−µ)
φ+1

. In this case, φ can be inter-

preted as a precision parameter in the sense that, for fixed values of µ, larger

values of φ correspond to smaller values of the variance of Y . This repara-

metrization given in Ferrari and Cribari-Neto (2004), had already been early

introduced in the literature, for example in Jorgensen (1997) or in Cepeda

(2001). With this reparametrization, the density of the beta distribution (1)

can be rewritten as

f(y|µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1I(0,1)(y). (4)

In this case, the mean and dispersion parameters can be modeled as function

of explanatory variables as it was proposed by Cepeda(2001).

The beta distribution given in (1) can also be reparametrized as a function

of the mean and variance, in the following way:

p =
(1− µ)µ2 − µσ2

σ2
(5)

q =
(1− µ)[µ− µ2 − σ2]

σ2
(6)

Although considering (1) as a function of µ and σ2 can result in a complex

expression, joint modeling of the mean and variance can be easily obtained

applying the Bayesian methodology proposed by Cepeda(2001). Sometimes

the joint modeling of the mean and variance can be more appropriate than

joint modeling the mean and the dispersion parameter given that the para-

meters of the regression models will be more easily interpreted.
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2.2. Bivariate beta distribution

To capture the existing dependence between two observed proportions,

we build a bivariate beta distributions, using copula functions. A popular

copula function considered for the study of the dependence structure of two

random variables is based on the Farlie-Gumbel-Morgentern (FGM) copula

given by

C(u1, u2; θ) = u1u2(1 + θ(1− u1)(1− u2)), (7)

where u1 = F(v1) and u2 = F(v2) are the marginal distribution functions and

θ, −1 < θ < 1, is a measure of the dependence between them.

For interpretation of the dependence parameter θ, can be used the re-

lationship between it and the association coefficients Kendall’s Tau (τ) and

Spearman’s Rho (ρ), given by the equations:

τ = 4

∫ ∫
C(u1, u2)dC(u1, u2)− 1

= 4
( θ

18
+

1

4

)
− 3 =

2θ

9
, (8)

and

ρ = 12

∫ ∫
u1u2dC(u1, u2)− 3

= 12
(1

4
+

θ

36

)
− 1 =

θ

3
(9)

(see for example, Nelsen, 1999).

Other copula functions could be considered to analyze bivariate conti-

nuous data, see Gumbel copula (Gumbel, 1960) and Clayton copula (Clayton,

1978), among others.
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2.2.1. A bivariate beta distribution

In this section, a bivariate beta distribution is derived from the FGM

copula function (7), assuming that u1 = F1(y1) and u2 = F2(y2) are the

marginal beta distributions, given by

Fk(yk) = P (Yk ≤ yk) =

∫ yk

0

fk(t; µk, φk)dt k = 1, 2. (10)

where fk, k = 1, 2 are beta density functions. Thus, the bivariate beta

distribution and density functions are given by

FI(y1, y2) = F1(y1)F2(y2)[1 + θ[1− F1(y1)][1− F2(y2)]], (11)

and

fI(y1, y2) =
∂FI(y1, y2)

∂y1∂y2

= f1(y1)f2(y2) + θf1(y1)f2(y2)[1− 2F1(y1)][1− 2F2(y2)](12)

respectively.

The bivariate beta distribution function has five parameters: µ1 and µ2

for the means, φ1 and φ2 for the precisions, and θ for the dependence para-

meter. If θ = 0 the bivariate beta density function is given by fI(y1, y2) =

f1(y1)f2(y2), which shows that the random variables Y1 and Y2 are indepen-

dent.
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3. Beta regression models

3.1. Univariate Beta regression models

The study of the beta regression models has received great attention fo-

llowing the work of Cepeda(2001), where joint mean and dispersion beta

regression models are proposed, under a Bayesian approach. In these mo-

dels, it is assumed that the interest variable Yi, i = 1, 2, . . . , n, has a beta

distribution, where the mean and dispersion models are given by (13) and

(14), respectively, in which β
′
= (β0, β1, ..., βk) and γ

′
= (γ0, γ1, . . . , γp) are

the parameter vectors, and xi and zi the mean and dispersion explanatory

variables.

logit(µi) = x
′
iβ, (13)

log(φi) = z
′
iγ, (14)

Assuming the same reparametrization of the beta distribution, µ = p/(p+

q) and φ = p+q, Ferrari and Cribari-Neto (2004) proposed a particular case of

these models assuming constant dispersion parameter. In more recent paper,

joint mean an dispersion beta regression models were introduced by Smithson

and Verkuilen (2006) and Simas et al. (2010), under a classical approach. At

the same time, nonlinear beta regression models were proposed by Cepeda

and Achcar (2010), assuming that the mean model is given by

µi = β0

1+β1 exp(β2xi)
(15)

and the dispersion model by (14), in the context of double generalized non-

linear models. This model was applied in the analysis of the schooling rate
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in Colombia, for the period ranging from 1991 to 2003. Nonlinear regression

models were also considered by Simas et al. (2010).

3.2. Bivariate beta regression

The joint mean and dispersion bivariate beta regression models are defi-

ned assuming that the mean and dispersion parameter, µk and φk, k = 1, 2,

can be modeled as functions of the explanatory variables. Thus, we assume

that the random variables (Y1i, Y2i), i = 1, 2, . . . , n, have a bivariate beta

distribution, with mean and dispersion models given by

hk(µki) = x
′
kiβk (16)

gk(φki) = z
′
kiγk, k = 1, 2 (17)

where hk and gk are appropriate real valued functions, βk = (βk1, . . . , βkrk
)

and γk = (γk1, . . . , γkrk
). Thus, the likelihood function is given by

L(θ, β1,β2,γ1,γ2) =
n∏

i=1

fI(y1i, y2i | xi) (18)

=
n∏

i=1

f1(y1i)f2(y2i)[1 + θ[1− 2F1(y1i)][1− 2F2(y2i)]]

where

fk(yki) =
Γ(φk)y

µkiφk−1
ki (1− yki)

(1−µki)φk−1

Γ(µkiφk)Γ[(1− µki)φk]
, (19)

and

Fk(yki) =

∫ yki

0

Γ(φk)t
µkiφk−1(1− t)(1−µki)φk−1dt

Γ(µkiφk)Γ[(1− µki)φk]
. (20)
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with µki and φki given by (16) and (17). If Y1 and Y2 are independent, θ = 0

and L(β1, β2,γ1,γ2) =
∏n

i=1 f1(y1i)f2(y2i).

4. Bayesian methodology

4.1. Univariate regression models

In this section we apply the Bayesian methodology and the MCMC al-

gorithm proposed in Cepeda (2001) and Cepeda et al. (2001, 2005), in the

framework of double generalized regression model, to fit a bivariate beta

regression model. As in these works, to implement a Bayesian approach to

estimate the parameters of the joint beta regression model, we need to specify

a prior distribution for the parameters. Thus, if L(Θ) denotes the likelihood

function and p(Θ) the joint prior distribution, where Θ = (β1, β2,γ1,γ2),

the posterior distribution is given by π(Θ| data) ∝ L(Θ)p(Θ). However,

given that assuming normal prior distributions, the posterior distribution

π(Θ| data) is analytically intractable and it is not easy to generate sam-

ples from it, Cepeda(2001) proposed to get samples of Θ using an iterate

alternating algorithm, sampling β and γ from the posterior conditional dis-

tributions π(β|γ, data) and π(γ|β, data), for which it is necessary to build

normal transition kernels q1 and q2, given that these conditional distributions

are also analytically intractable. We assume normal prior distributions for the

regression parameters, given that their maximum likelihood estimators are

asymptotically normal and given that for large values of the variance of the

prior distribution there are no remarkable changes in the posterior distribu-

tion.
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To build the kernel transition functions we need to define working obser-

vation variables to approximate h(µi) and g(φi) around the current values of

µ and φ, respectively. This variables are defined as first order Taylor appro-

ximations of the real functions h(t1) and g(t2), where t1 and t2 are random

variables such that E(t1) = µ and E(t2) = φ. Thus, given that E(t1) = µ

for t1 = Y , if the mean model is given by (13), the working observational

variable is defined by

ỹi = x
′
iβ

(c) +
yi − µ

(c)
i

(µ
(c)
i )(1− µ

(c)
i )

, i = 1, 2, ..., n, (21)

where µ(c) and β(c) are the current values of µ and β. Thus, assuming that

(21) has a normal distribution and assuming conditional normal prior distri-

bution β|γ ∼ N(b, B), the kernel transition function q1 is given by the pos-

terior distribution obtained from the combination of the prior distribution

with the working observation model ỹi ∼ N(x
′
iβ, σ̃2

i ), where σ̃2
i = Var(ỹi).

That is, by

q1(β|β(c),γ(c)) = N(b∗ ,B∗), (22)

where

b∗ = B∗(B−1b + X
′
Σ−1Ỹ )

β∗ = (B−1 + X
′
Σ−1X)−1

and where Σ is a diagonal matrix with diagonal entries σ̃2
i , i = 1, 2, ..., n,

(see Cepeda and Gamerman, 2001, 2005). Thus, the values of β from the

posterior distribution sample of π(β, γ) are proposed from the transition

kernel defined in equation (22).
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As the full conditional distribution π(γ|β) is analytically intractable and

it is not easy to generate samples from it, we need to build a kernel transition

q2 to propose the values of γ from the posterior distribution of Θ. Given

that E(ti) = φi for ti = (pi+qi)
pi

Y i, if the precision model is given by (14), the

working observational variable (23) is obtained from the first order Taylor

approximation around of current value of φi, given by the current values of

the precision regression models γ(c), given by

ỹi = z
′
iγ

(c) +
yi

µi

− 1, i = 1, 2, ..., n. (23)

Thus, assuming that the observational working variable (23) has a normal

distribution and given that the conditional prior distribution is given by

γ|β ∼ N(g,G), the normal transition kernel q2 is given by the posterior

distribution obtained from the combination of the prior distribution with

the working observational model ỹi ∼ N(z
′
iγ, σ̃2), where σ̃2

i = Var(ỹi). That

is,

q2(γ|γ(c),β(c)) = N(g∗ ,G∗), (24)

where

g∗ = G∗(G−1g + Z
′
Ψ−1Ỹ ),

G∗ = (G−1 + Z
′
Ψ−1Z)−1.

and Ψ is a diagonal matrix with entries σ̃2
i for i = 1, 2, ..., n. Samples of

γ from the posterior distribution π(β, γ), are obtained from the transition

kernel function q2.
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With the transition kernels given by (22) and (24), the components β

and γ of (β,γ)
′
are updated as follows:

1. Begin the chain interactions counter j = 1 and give initial values

(β0, γ0) to (β,γ)
′
.

2. Move the vector β to a new value ψ generated from the proposed

density q1(β
(j−1), .).

3. Calculate the acceptance probability of movement, α(β(j−1),ψ) . If

the movement is accepted, then β(j) = ψ. If it is not accepted, then

β(j) = β(j−1).

4. Move the vector γ to a new value ψ, generated from the proposed

density q2(γ
j−1, .).

5. Calculate the acceptance probability of movement, α(γ(j−1),ψ). If the

movement is accepted, then γ(j) = ψ. If it is not accepted, then γ(j) =

γ(j−1).

6. Finally, change the counter from j to j + 1 and go to 2 until the con-

vergence is reached.

4.2. Bivariate beta regression models

In the bivariate beta regression models, samples of the regression para-

meter models are obtained from the Bayesian algorithm proposed in section

4.1.
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To get samples from the posterior parameter distribution for θ we propose

the reparametrization α = log
(

1−θ
1+θ

)
, taking into account that −1 < θ < 1.

Thus, we assume a normal prior distribution for α and get samples of θ from

the posterior samples of α obtained by a random walk.

5. Simulation study

In this simulation, we assume a bivariate beta regression model with mean

and dispersion models given by

logit(µ1i) = 1.0− 1.0x1i + 0.2x2i, log(φ1i) = 1 + 0.1z1i, (25)

logit(µ2i) = 2.0− 1.0x1i + 0.5x2i, log(φ2i) = 1− 0.1z1i. (26)

and dependence parameter θ = 0.5. For each of the explanatory variables,

200 independent observations were generated from a uniform distribution

U(0, 10). Then, a sample from the variable of interest (Y1i, Y2i), was obtained

from the bivariate beta distribution Bbiv(µ1i, µ2i, φ1i, φ2i, θ) as in Trivedi and

Zimmer (2007), following the next steps.

1. Independent random vectors V1 and V2 are generated from uniform

distributions U(0,1).

2. Consider U1 = V1, u2 = 2v2/
√

B − A + 1, where A = θ(2u1 − 1),

B = (1− A)2 + 4Av2.

3. Y1 = F1(U1; µ1, φ1) and Y2 = F1(U2; µ2, φ2).
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With the structural generated data set and assuming independent normal

prior distributions (with mean zero and variance 10k, with k = 3) for all the

parameters, a posterior sample of size 7000 was generated. For all the para-

meters and in all the three posterior samples generated, the chains showed a

good behavior: for each of the parameters, the chains generated from different

initial values showed the same shape behavior with a small transient period,

a strong indication of the convergence to the posterior marginal distribution.

The algorithm also showed not to be very sensible to initial values.

The posterior inferences were developed from the posterior sample ob-

tained after a bourn-in period of 1000 initial values of the posterior chains,

choosing a value every ten to have an approximately uncorrelated sample.

The posterior chain samples and their respective histograms are shown in

Figure 1 for mean parameters, in Figure 2 for the dispersion parameters and

in Figure 3 for the dependence parameter.
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Figure 1: Posterior chain samples for the mean regression parameters of model

(25) on the left, and model (26) on the right.
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Figure 2: Posterior chain samples for the precision regression parameters of

model (25) on the left, and model (26) on the right.
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Figure 3: Posterior chain samples for the dependence parameter.

The Monte Carlo estimates of the posterior means and their respective

standard deviations, obtained from the generated posterior sample, are given

in Table 1, where it is possible to see that all the estimates are close to the

respective true values of the parameters and all of them have small standard

deviations.
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β0 β1 β2 γ0 γ1 θ

Model 1 t.v. 1 -1 0.2 1 0.1

s.v. 1.0692
(0.1804)

−0.9935
(0.0513)

0.1761
(0.0461)

1.0193
(0.1836)

0.1387
(0.0648)

-

Model 2 t.v. 2 -1 0.5 1 -0.1

s.v. 1.8622
(0.1946)

−0.9156
(0.0605)

0.4945
(0.0585)

0.9144
(0.1858)

−0.0307
(0.0592)

-

- - - - - - 0.5778
(0.1968)

Table 1: Bayesian estimates of the parameters simulation study (standard

deviation in parenthesis) and θ = 0.5 (t.v.=true values; s.v.=simulated va-

lues).

6. An application with educational data

In this application, the random variable of interest is the average develop-

ment in mathematics and language (by departments) of third year students

of secondary school in Colombia. The data set was obtained from ICFES,

(National Institute of Evaluation) and DANE (National Administrative De-

partment of Statistics). The average development by department, in mathe-

matic and language, take values in open intervals (am, bm) and (al, bl) and are

denoted by Pm and Pl, respectively. Thus, to assume bivariate beta distribu-

tion, we define two new random variables Ymi = (Pmi − am)/(bm − am) and

Yli = (Pli−al)/(bl−al) for the average development in mathematics and lan-

guage, respectively. The explanatory variables UBN, unmet basic needs, and

PORC, percentage of teachers that have postgraduate level of education,

were obtained from the National Administrative Department of Statistics

(DANE).

19



In a first approximation, we assume the model with regression models

given by

logit(µki) = βk0 + βk1UBNi + βk2PORCi, (27)

log(φki) = γ10 + γk1UBNi + γk2PORCi, k=1,2 (28)

where equation (27) and (28) considering k=1,2 are related to the first and

second components of the bivariate beta distribution, the mean and the va-

riance of mathematics and languages performance, respectively. Assuming

independent normal prior distribution (with mean zero and variance 10k,

with k = 4) for the parameters, posterior samples of size 7000 were genera-

ted in each case. The posterior inferences were developed from the posterior

sample obtained after a bourn-in period of 1000 initial values of the poste-

rior chains, choosing a value every ten to have an approximately uncorrelated

sample.

β0 β1 β2 γ0 γ1 γ2 θ

Math. 0.3393
(0.1229)

−0.2103
(0.1565)

0.2070
(0.2666)

4.1921
(0.0832)

1.8606
(0.1007)

1.2560
(0.1803)

0.0253
(0.3214)

Lang. 0.5374
(0.1120)

−0.2381
(0.1447)

0.2922
(0.2332)

4.4807
(0.0998)

0.7229
(0.0821)

3.0362
(0.3178)

Table 2: Bayesian estimates of the parameters.

From Table 2 we can see that in the language case the estimate of the

parameter associated with UBN is negative, an expected result given that

language development is in general associated to socioeconomic factors, with

unsatisfied basic needs. This is also an expected and known result for Colom-

bia since there are several different regions, all of them having cultural and
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economic differences that, in general, are associated to several educational

differences in the quality of the education.

The estimate of the parameter associated with the explanatory variable

PERC is positive in both mathematics and language. In the educational

system we expected that a better educational level of the teacher should be

positively associated with better mathematical and language performance of

the students.

Table 2 shows that the parameters of the precision models are different

from zero as observed in the credible 95 % intervals obtained from the simu-

lated Gibbs samples.

7. Conclusions

In this paper a bivariate beta regression model was proposed, assuming

a weak dependence between the variables of interest where this dependen-

ce is modeled by a Farlie-Gumbel-Morgentern (FGM) copula function.Two

examples were introduced, including a simulated study and an application

with a real data set.The Bayesian methodology used to find posterior esti-

mates of the parameters showed good performance. These results could be of

great interest in applications considering bivariate beta data in the presence

of covariates.The bivariate beta distribution could be generalized using other

copula functions, depending on the existing dependence between the beta

variables usually verified by a preliminary data analysis, that can be fitted

using the same Bayesian methodology introduced in this paper.
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