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Abstract

The detection, segmentation and quantification of multiple sclerosis (MS) lesions on mag-

netic resonance images (MRI) has been a very active field for the last two decades because

of the urge to correlate these measures with the e↵ectiveness of pharmacological treatment.

A myriad of methods has been developed and most of these are non specific for the type of

lesions, e.g. they do not di↵erentiate between acute and chronic lesions. On the other hand,

radiologists are able to distinguish between several stages of the disease on di↵erent types of

MRI images. The main motivation of the work presented here is to computationally emulate

the visual perception of the radiologist by using modeling principles of the neuronal centers

along the visual system. By using this approach we were able to successfully detect multiple

sclerosis lesions in brain MRI. This type of approach allows us to study and improve the

analysis of brain networks by introducing a priori information.

Keywords: Multiple sclerosis, visual attention, artificial vision, magnetic resonance

imaging

Resumen

La detección, segmentación y cuantificación de lesiones de esclerosis múltiple (MS) en imágenes

de resonancia magnética (MRI) ha sido un área de estudio muy activa en las últimas dos

décadas. Esto es debido la necesidad de correlacionar estas medidas con la efectividad de los

tratamientos farmacológicos. Muchos métodos han sido desarrollados y la mayoŕıa no son

espećıficos para los diferentes tipos de lesiones, es decir que no pueden distinguir entre le-

siones agudas y crónicas. Los médicos radiólogos por su parte son capaces de distinguir entre

diferentes niveles de la enfermedad haciendo uso de las imágenes de resonancia magnética de

diferentes tipos. La principal motivación de este trabajo es la de emular mediante un modelo

computacional la percepción visual del radiólogo, haciendo uso de los principios fisiológicos

del sistema visual. De esta manera logramos detectar satisfactoriamente las lesiones de es-

clerosis múltiple en imágenes de resonancia magnética del cerebro. Este tipo de análisis nos

permite estudiar y mejorar el estudio de las redes neuronales al poder introducir información

a priori.

Palabras clave: Esclerosis múltiple, atención visual, visión artificial, imágen por reso-

nancia magnética.
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1. Introduction and motivation

Multiple sclerosis (MS) is the most prevalent demyelinating disease in the world. Its preva-

lence has been estimated to be between 2 and 25 per 100,000 habitants [5]. This large range

in prevalence is due to the geographical variance of the disease, i.e. the higher the latitude in

the northern hemisphere the larger the prevalence of the disease. In general, demyelinating

diseases are characterized by the destruction of the myelin of nerve fibers with relative spar-

ing of axons, nerve cells, and supporting structures. Other pathological hallmarks of this

group of disorders is the infiltration of inflammatory cells in a perivascular and particularly

paravenous distribution and a distribution of lesions that is primarily in white matter, either

in multiple small disseminated foci or in larger foci spreading from one or more centers.

The main symptoms of MS are motor weakness, paraparesis, paresthesias, loss of sight,

diplopia, nystagmus, dysarthria, intention tremor, ataxia, impairment of deep sensation, and

bladder dysfunction. These symptoms occur most frequently in what is called the relapsing-

remitting pattern. This pattern is characterized by initial manifestations that may or may

not be noticed by the patient and that improve partially or completely and are then followed

after a variable interval by the recurrence of the same abnormalities or the appearance of

new ones in other parts of the nervous system.

Pathologically, MS lesions may vary in diameter from less than a millimeter to several

centimeters and they are usually localized in the periventricular areas, but only where

subependymal veins line the ventricles (body and atria of the lateral ventricles). Other

regions that may be a↵ected are the brainstem, spinal cord, and cerebellar peduncles. Al-

though chronic lesions are essentially still demyelinative, partial remyelination has been found

to take place on undamaged axons. This finding has attracted the attention as the target

for potential pharmacological therapeutics that could potentiate and promote remyelination

processes [6].

Magnetic resonance imaging (MRI) has gained a special position for the diagnosis and follow-

up of patients with MS. T2 weighted MRI images have the ability to reveal MS plaques in

the cerebrum, brainstem, optic nerves, and spinal cord. This plaques are detectable even

without any proper MS symptoms. Acute and chronic MS plaques are hyperintense (look

white on the image) on T2-weighted spin echo images and even more strikingly obvious on

T2-weighted FLAIR (fluid attenuated inversion recovery) images. Especially diagnostic are

oval or linear regions of demyelination, oriented perpendicularly to the ventricular surface.

This radiological sign is usually referred as “Dawson fingers” because of their characteristic

thick elongated appearance. Some of these demyelinating areas may extend into the centrum
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semiovale and may reach the convolutional white matter. See figure 1.1 for example MRI

images. Morphological changes of the lesions on T2-weighted images across time have been

radiologically described, especially the confluence of many small lesions into single big lesions

at the poles of the ventricles. The overall trend of T2 lesions is to increase in number and

volume over time, a phenomenon also referred to as the ”T2 burden of disease”. This burden

is more severe in the absence of treatment and less so when there has been e↵ective treatment.

Thus, the T2 burden of disease has been used as a biomarker in MS treatment trials [7].

Figure 1.1.: A.) T2 spin echo weighted image showing a typical hyperintense “Dawson fin-

ger” starting from the ventricle edge and extending deeper into the white matter.

B.) T1 weighted image with contrast medium (Gadolinium) showing a ring en-

hancement surrounding an acute demyelinating lesion. C.) T1 weighed image

showing chronic hypointense demyelinated lesions in the corpus callosum, an

important sign of axonal degeneration. D.) T2 FLAIR weighted image with hy-

perintense lesions in the deep white matter that extent towards the subcortical

white matter within the gyri.

Gadolinium enhanced MRI images are used for the detection of acute MS lesions that present

early inflammation. These lesions usually last between 4 and 8 months and their detection

has been also used as a biomarker for relapsing episodes of MS in drug trials [8]. MRI has

been also found to detect plaque remyelination processes. Typically, T1-weighted images
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are able to identify the demyelinated areas that progress to axonal damage. These areas

are seen in T1-weighted images as “black holes”. Axonal loss is an irreversible pathological

phenomenon and will ultimately determine the patients outcome. Importantly, Barkhof et

al. found that T1 hypointensity within a plaque as well as the magnetization transfer rate

were inversely correlated to the degree of remyelination [9], suggesting that MRI is able to

di↵erentiate between the pathological stages of the disease.

All of the evidence shown above brings brain imaging into the center of the diagnostic

and prognostic approaches for MS, and places challenging and interesting image processing

problems to improve and gain the accuracy in detection of demyelinating lesions as well as

their size estimation, remyelination and pharmacological treatment e↵ects.

Most of the above mentioned methods rely on the segmentation of the lesions by using

the voxel intensity for that purpose. The majority of the algorithms use a multichannel

approach, meaning that they combine several types of MRI images, usually the T1-weighted,

T2-weighted, PD, FLAIR and contrast enhanced images [10–12]. Although many studies

have also used only one modality of MRI image, especially T2-weighted or PD images [13].

Another important distinction is that many methods rely on the manual input of an expert to

help the segmentation process to be more accurate, which makes it a semiautomatic method

[14], whereas other approaches are absolutely automatic [10]. The other very important

distinction to make is the one between supervised and unsupervised methods. The so-called

supervised methods rely on prior information. The prior information can be provided as

either a brain probabilistic or topological atlas, or as manually pre-segmented and annotated

lesions for further classification purposes [15–17]. The unsupervised methods can also be

divided into two types, those that classify lesions as outliers based on a previous tissue

segmentation of the brain and those that only use the lesion properties to segment them

[18,19].

Although a thorough review of all the algorithms used for the segmentation of MS lesions

is beyond the scope of this chapter, it’s worth mentioning the most relevant and influential

ones. For example, Zijdenbos et al. developed a processing pipeline that denoises the

images and thereafter runs a tissue classification algorithm [10]. The algorithm is based on

back-propagation artificial neural networks (ANNs). Their system is trained with manually

segmented images and the ANN input layer used three di↵erent scan modalities (T1, T2

weighted and PD images) and tissue specific probabilistic maps as priors (gray matter, white

matter and cerebrospinal fluid probabilistic maps). This is clearly a supervised method with

input from a probabilistic atlas and from manually segmented and annotated images. Wells

et al. presented an influential unsupervised segmentation algorithm [15]. They first create a

Gaussian mixture distribution of intensities to characterize the di↵erent brain tissue types as

well as the image bias field. By utilizing these tissue properties an expectation maximization

algorithm is implemented to adaptively determine the desired ”missing” tissue classes (white

and gray matter, CSF and MS lesions). They tested their algorithm on a dataset of 1000

T2-weighted images of patients with MS brain lesion. A similar approach has been used by
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other authors to quantify the evolution of the burden of disease in MS across time [12, 20].

These researchers also added a connectivity-based partial volume e↵ect correction after the

tissue segmentations took place. Warfield et al. also utilized expectation maximization to

extract the di↵erent tissue types but after they provided prior information from an atlas [16].

They linearly and non-linearly align an atlas (or template) to the subject’s space. The atlas

has been previously segmented and labeled by hand into cortical and subcortical gray matter

structures, white matter and CSF. By using the matched atlas’ white matter mask they were

able to discriminate between MS lesion vs gray matter and to determine the boundaries of

white matter after excluding the CSF. Van Leemput et al. performed a stochastic model-

aided segmentation for automatic segmentation of MS lesions [11]. This is also an atlas-

supervised segmentation strategy because each voxel was iteratively interleaved into a set

of tissue-type models (gray matter, white matter and CSF) and the voxels that weren’t

explained well by the tissue models were labeled as MS lesions. Udupa et al designed a

semiautomatic method based on fuzzy connectedness [14]. The user adds a few starting

points within each anatomical brain structure, such as the white matter, gray matter and

CSF, and the system then detects each one of them as a fuzzy-connected 3-D object. The

MS lesions are detected as holes in the union of these three anatomical objects. A very

interesting method for MS lesion segmentation on proton density and T2 weighted images

was proposed by Pachai et al. [19]. Their algorithm can be considered as a multi-channel but

also an unsupervised method of lesion segmentation. It uses a multi resolution approach,

by constructing a Gaussian pyramid of low-pass versions of the original image. Each of

these versions is resampled to the original resolution and subtracted from the initial image.

This gives a Laplacian pyramid of increasing high-pass representations of the initial image.

A local thresholding algorithm estimates the most hyper intense areas that the Laplacian

pyramid is able to enhance in the image. After applying morphological tools the external

hyperintense CSF areas are left out and the MS lesions are then finally quantified. This

method is robust enough to overcome the scanner induced intensity inhomogeneity.

After more than 20 years of research on MS lesion segmentation and quantification, no

study has been published yet, to the extend of our knowledge, that uses biologically in-

spired algorithms to detect demyelinating pathology in brain MRI images. By biologically

we mean essentially the use of physiologic principles of the visual system that have been

mathematically modeled and that are worth exploring for medical image processing. The

main motivation of this work is to bring one of such models to the context of brain imaging

so that it is possible to detect MS pathology in MRI images and try to emulate the visual

system at high levels of visual expertise like radiology.

When determining the so called “burden of the disease” most of the referred methods try

to look for the total extent of the lesions. This is why the majority of the methods use

multichannel approaches, since some lesions may appear independently in di↵erent types of

images. One advantage of visual attention models is that they can be tuned and trained in

order to detect and even describe specific types of targets in the scene. When developing
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such a model for medical imaging purposes, the aim is to detect and discriminate between

di↵erent pathological conditions. It is possible to design a system that can accurately detect

a particular type of lesion. In this work we hypothesize that by using some basic principles

of the visual system it is possible to detect MS lesions. The resulting tool will be specific

to detect MS lesions in T2 weighted FLAIR images and can eventually be tuned to describe

various types of lesions in MRI.

The combination of the current knowledge about the visual perception of radiologists with

existing computational visual attention models may help disentangle many of the challenges

concerning problems like accurate MS classification and staging and their relationship to

therapeutics. As said before, MRI techniques are rapidly evolving and are already able to

distinguish between di↵erent pathological stages of brain tissue. In this work we argue that

computational visual models may be an e�cient way to not only analyze pathological MRI

images based on image features (luminance and texture) but also to find a suitable tool to

study the neural networks involved in human visual perception.



2. Theoretical background

The training process in radiology implies learning many skills that are necessary to accom-

plish a reliable diagnosis. This diagnosis is mainly based on the information embedded in

the radiological image (X-rays, computer tomography, ultrasound, magnetic resonance imag-

ing), but it also depends on the constantly evolving structured knowledge of the radiology

trainee. There are four steps involved in the radiological diagnostic process, that constitute

a general framework for problem solving in radiology: searching & detecting - recognizing

- deciding. From a behavioral point of view, the first two steps mentioned (searching and

detecting) imply the activation of perceptual and cognitive processes specifically related to

visual attention. In this chapter, we first give an introduction to some basic morphological

and physiological concepts related to the process of vision in humans and primate brains to

later connect them to the concept of visual attention, which is the core of the work developed

in this manuscript.

2.1. Neurophysiological background of the visual system

An important physiological concept of visual processing is the direction of information flow.

Visual information can flow in a bottom-up or a top-down manner through clusters of neurons

embedded within the cortex and subcortical grey matter structures (i.e. the lateral geniculate

nucleus). Each of these clusters is considered as a stage in the process. Synaptic connections

to one visual processing stage are reciprocal, which means that each area receives feed-

forward projections from an area earlier in the stream and provides a feedback projection to

the same area. The feed-forward pathway provides the bottom-up input to subsequent visual

areas. Feed-back projections are thought to be responsible for the top-down modulation.

Another important concept is the segregation of the information into di↵erent pathways. In

general two main visual processing cortical streams have been described [21]. The ventral

or “what” pathway runs from the primary visual area (V1) to the secondary visual area

(V2), visual area four (V4), anterior inferior temporal cortex (TE) and posterior inferior

temporal cortex (TEO). TE and TEO are also also known as the inferior temporal region

(IT) in macaques. Experimental evidence strongly suggests that these areas process the

object information and are responsible for their recognition. Cells within this pathway are

busy with signals related to form, color and texture. The dorsal or “where” pathway extends

from V1 and V2 to MT (middle temporal area) and MST (medial superior temporal area),
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and continues to dorsal parietal areas. These areas are primarily concerned with the spatial

information of images.

Other important pathways to mention are the magnocellular and parvocellular ones (also

called M-pathway and P-pathway, respectively), each one of them carrying di↵erent kinds of

information [22]. Early in the retina, large ganglion cells (magno, or M cells) project to the

magnocellular portion of the lateral geniculate nucleus, that consequently sends neuronal

projections to the superficial layer 4C in the primary visual cortex. This “system” is color

blind, has high contrast sensitivity, fast temporal resolution, and low spatial resolution.

Small ganglion cells in the retina (parvo, P cells) project to the parvocellular portion of the

lateral geniculate nucleus, which projects to the deep layer 4C of the primary visual cortex.

This system is color selective has low contrast sensitivity, slow temporal resolution and high

spatial resolution.

Every stage within the ventral stream analyses the information with a progressive level

of abstraction and complexity, in accordance with the growing receptive fields from V1 to

TEO [23]. Cells in V1 serve as local spatio-temporal filters for orientation, spatial frequency

and direction of motion. Receptive fields of simple cells in V1 respond to oriented stimuli,

due to their linear on-and-o↵ subregions. V2 cells with larger receptive fields may respond

to virtual or illusory contours. From there the information follows to V4 where the majority

of cells are responsive to contour features (angles and curves) [24].

The largest cell receptive fields found in the ventral stream are within the IT cortex in

monkeys and LO (lateral occipital cortex) in humans [25, 26]. This area is more responsive

to whole objects, primarily representing their shapes. Functional neuroimaging studies have

evidenced important features of LO that allow these cells to detect and manipulate whole

visual objects: (1) change in visual size does not a↵ect it’s activation, (2) high sensitivity to

image scrambling, (3) convergence of visual cues, i.e. shapes can be defined by luminance,

texture or motion, (4) invariance to changes in image position, (5) novel and memorized

objects produce similar activations.

The existence of these pathways and “subsystems” within the visual system that commu-

nicate to each other clearly indicates that the brain is not only capable of managing local

properties (i.e. orientation, texture analysis, edges) but also global properties of the visual

scene (i.e. “where” it is in space and the object-to-context relationships). This is important

to highlight, since any artificial vision system will necessarily have to be able to handle these

two opposing but complementary portions of the visual information. That is to say, the

artificial vision system should distinguish and split both types of information, the frequency

related information and the object related information. A multi-resolution analysis would

be an appropriate approach to do this and has been previously applied to some extent for

the analysis of natural images and medical images as well [ put references here ].
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2.2. Cognitive neuroscience of visual attention

Cognitive science has traditionally distinguished two varieties of attention. Overt attention

refers to the rapid eye movements used to fixate the gaze on the attended object of the scene.

It is not possible to direct gaze to one object without attending to it. Attention can also

be deployed covertly, that is in a global manner, without looking directly to objects. Thus

overt and covert attention represent the two ends of a spectrum of visual behavior.

Saccades are a type of eye movements that occur as the gaze shifts from one object to another

in a scene. These movements are very fast and are interspersed by fixations of the eye that

last between 200 and 300 ms. Fixations bring every new object of interest onto the fovea, a

special zone of the retina located in the posterior pole of the eye. Due to some morphological

and physiological characteristics, the highest spatial resolution (as high as 5.5µ or 1�of the

visual scene) of the incoming image is found in the fovea. The fovea is mainly constituted by

cones, a type of retinal cells in charge of photopic vision, i.e. responsible for vision in bright

light and color vision. The cone system has a greater acuity for resolving the details and

boundaries of objects. The packing density of cones decreases towards the retinal periphery,

where rods are the prevailing cells. Rods are more sensitive to light and subserve night

vision. The rod system is not sensitive to color and has less resolving power than the fovea.

What is actually the focus of attention? What is brought onto the fovea due to overt

attention mechanisms? Does covert attention select the objects in the scene in advance

prior to be fixated by the eyes? These are intriguing questions and although the neural

mechanisms of attention are still not completely understood, some explanatory models have

been proposed [27,28]. One of the most influential models describes attention in the context

of the nervous system’s limited capacity of information processing and it’s selectivity for

information relevant to current behavior. The most important aspect of this model for the

following discussion is that both, bottom-up, as well as top-down information serve as cues

to resolve the competition between di↵erent objects to be attended.

There is consistent experimental evidence, that bottom-up saliency may be elicited through

di↵erent kinds of cues, namely by single features (motion or color) [27, 29, 30], by objects

[28,31–33] (conjunction of features), or by spatial location [34–36]. Importantly, this bottom-

up driven saliency occurs in pre-attentive stages. In the case of single features, the fewer

features an item has in common with the surrounding distracters, the more salient it is

and easier to locate. In object-based selection, basic features and parts of objects can be

integrated into whole structures, i.e. selection of only one visual attribute, enhances the

representation of the other attributes of the same object automatically.

Top-down information biases the competition in favor of one of the multiple objects pre-

sented in the image and requires a previously stored representation of these objects as well

as of the complete scene for further recognition in higher processing areas. As we mentioned

in the previous section, object recognition processes occur within the ventral pathway. Neu-

ropsychological and neuroimaging studies have evidenced the subprocessses of object recog-
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nition [37] which can be split into four main stages: (1) extraction of basic features, (2)

shape analysis, i.e. extraction of higher level information about the object, (3) matching to

stored visual descriptions, (4) accessing of semantic/conceptual representations about the

object.

All the mentioned processes depend on the reciprocal interaction between lower and higher

order visual processing areas and do not necessarily occur in the order exposed. The extrac-

tion of basic features takes place within areas V1 and V2. Whole object shape analysis is

accomplished in the IT cortex. Processes 3 and 4 depend on the connections between the

temporal and prefrontal cortex. Additionally, a strong line of thinking suggests the existence

of a category-specific, anatomically segregated modular organization of the IT cortex [38–40].

That is, some particular categories of objects (e.g. faces, houses, animals, tools, etc) are rep-

resented by the activation of distributed discrete areas, where semantic information about

their features is stored. Important findings also reveal that IT cell’s selectivity for specific

object features can be modified through associative learning and that expertise with some

categories enhances activity in the associated areas encoding their information [41,42].

This brings us to the topic of “expertise”, which is fundamental to understand within the

scope of a highly trained medical specialty such as radiology. Expertise has also been studied

extensively in cognitive science. Rosch et al. described three cognitive levels of an object

or a scene description, i.e. superordinate, basic and subordinate levels [43]. These are three

di↵erent levels of abstraction, with di↵erent semantic information which help to categorize

between di↵erent objects and scenes. Experience determines the di↵erence between basic

and subordinate categories. With training, subordinate categories become new basic level

categories. One of the most influential theories about the acquisition and evolution of exper-

tise with specific categories of objects is the one proposed by Gauthier et al [41, 42]. Their

proposal is supported by neuroimaging experimental evidence. This theory states that long

and repetitive exposure to a specific category of objects (birds, cars, and eventually radio-

logical images) enables neural automatic processes for immediate subordinate categorization

and identification in the same manner as is done with faces. Face recognition is consid-

ered as a domain in which all humans are experts. Gauthier et al. demonstrated that the

fusiform face area (FFA) which activates during face recognition tasks also serves as the

neural substrate for object recognition in other expert fields of knowledge at an individual

level.

The important idea to be emphasized concerning the evidence on expertise and face percep-

tion experimentation, is that face recognition di↵ers from general object recognition because

of “configural processing”. Gauthier et al. [41, 42] argue that configural or holistic pro-

cessing with faces is gained as people become experts with them permitting a subordinate

identification of individual faces. That is, previous subordinate items (objects or scenes)

are recognized as belonging to a basic category. This may occur in the same manner with

novel objects as people become experts with them. As someone becomes expert in a specific

domain, there will be a gradual shift from feature based to configural processing.
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Holistic or configural processing refers to a representation and processing strategy, consisting

in the integration of features into a gestalt or holistic representation. Integration of features

implies that each face part cannot be processed independently from another, i.e. the recog-

nition of one part is a↵ected by the other face part(s). This is close to the idea of object

based attention [28]. The evidence also suggests that the holistic information extracted from

the image takes place at the perceptual encoding stage and not at the decisional stage [44].

Marr postulated in his influential model of vision that di↵erent spatial frequency bands enter

the visual system through di↵erent channels (see section 1.1 on magnocellular and parvocel-

lular pathways) and provided also di↵erent kinds of bottom-up information for perceptual

and cognitive functions [45]. Low spatial frecuencies provide coarse visual information, i.e.

large scale variations. High spatial frequencies represent fine visual information that relies

on tighter luminance gradients. Interestingly, there is evidence that low spatial frequencies

highly support configural processing in face perception [44].

Configural or holistic processing is intimately related to other cognitive theories about per-

ception known for decades. These theories conceptualize holistic processing in terms such

as schemata [46,47], frames [48] or context frames [49], and are applied to the recognition of

categories of objects, and natural scenes as well. In general, these theories rely on the idea

that the identification of a particular object or scene initially depends on the construction

of a schemata or context frame, which is activated by coarse global scene information. This

kind of information arrives earlier to higher visual areas (V4, TE, TEO/IT), where the large

receptive fields subserve covert attention, necessary at this initial moment. Thus, an initial

approximation guess or the gist of the scene has to be reached. This initial gist has already

semantic content and pertains to a specific basic level of categorization. Experiments have

shown that visual scene semantics can be extracted in exposure times of around 100 ms,

that is in the perceptual phase of encoding [46,50].

After this initial phase, overt attention is required to confirm the guess. Overt attention is

thus a phenomenon of feature analysis on the eye fixation points, taking advantage of the

higher spatial resolution. The type of information required in this process arrives later and

consists of the higher spatial frequencies. What is important in terms of expertise is that

basic level categories of the observed object are detected at the first glance without requiring

further processing. On the contrary, the identification of subordinate categories requires the

incorporation of fine details, and thus further feature-based processing.

2.2.1. The role of working memory and the frontal lobe

According to Desimone et al. [28] two cues are necessary for visual attention, the bottom-

up cue and a top-down cue, that modulates the activity in the IT cortex and biases the

competition in favor of the most relevant stimulus representation. This theory states that

the “focus of attention”, requires a previously defined “attentional template”, which is a

sort of short description that represents any property of the relevant object. This template
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may serve to monitor the object representation in higher visual areas of the cortex. It also

has to be a rapid and temporary access to the semantic information and has to be activated

immediately after the scene or object is presented or with any expectation of a specific

object. As said before, the “attentional template” may also be interpreted as an analogy to

the initial holistic representation that is activated with the coarse information provided by

the low spatial frequencies that reach higher level cortical cells such as V4, IT, and TEO

through the M visual pathway.

The most complex step of the visual attention process is the semantic conceptualization,

which ultimately leads to the recognition and identification of the scene or object. Working

memory is a complex form of very short-term memory which is constantly supporting other

neural systems with important higher order information derived from the frontal cortex.

Studies on visual working memory have demonstrated the existence of an interconnected

system of di↵erent cortical areas that are able to carry out the temporary maintenance

and manipulation of visual information in the absence of the visual stimulus. The involved

areas are the IT cortex, the prefrontal cortex (PFC), and the medial temporal lobe.The

three components of this system have been related to persistent activation during working

memory maintenance of objects and spatial locations [51].

The most critical cortical area implicated in working memory is the prefrontal cortex. In

general, the PFC has been related to cognitive control processes, by selecting or inhibiting

relevant object representations, and by monitoring spatial and non spatial relations among

items active in memory. Interestingly, the PFC region in the left hemisphere has also been

implicated in semantic memory processes. Some investigators have suggested a ”semantic

working memory system” located in this region with strong influences over the temporal

occipital cortex.

Important findings related to the working memory system is that the activation in IT cortex

for a particular object, may be elicited by the expectation of it’s appearance. That is to say,

that there is an increased activity during directed attention in the absence of visual input and

a larger increase after onset of the expected visual stimuli [52–54]. Activation within this area

has also been linked to the maintenance of novel stimuli relative to familiar ones, i.e. they

are involved in the retrieval of long term memory representations of objects, while associated

cues are being presented. Ultimately, representations encoding object concepts in this latter

region are selected, inhibited, manipulated and monitored via the PFC connections.

2.3. Visual perception of radiologists

Radiology is a medical discipline that depends on the interpretation of visual information

provided by medical images that results in a reliable a diagnosis. Radiological interpretation

is considered a domain of expertise [55]. Expertise is the ability to acquire and retrieve

specific contextual knowledge that makes the di↵erence between experts in di↵erent fields.

Expertise is acquired by experience and in the case of radiology, expertise refers to reliably
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solve diagnostic problems. Radiology trainees gain expertise by interpreting a vast amount

of medical images during their training period or residency.

The radiological interpretative task has been studied under two approaches, a perceptual

one and a cognitive one. The former approach analyzes eye-position data from the search

for diagnostic information in an image. Answers in the cognitive approach are derived from

the analysis of verbal protocols and sketches produced during the interpretation [55].

Research on the visual perception of radiologists has yield to important discoveries. It is now

clear that experienced radiologists do not scan the whole image with a lot of fixations, but

they rather bring up to the center of the gaze the most informative areas for diagnosis [56–58].

Although the highest resolving power resides within the fovea, most of the radiological

image is not fixated and is left unexplored. Studies done on the interpretation of chest

radiographs demonstrated that the detection of most abnormalities is reached between 10

and 20 sec or 30 to 60 fixations [59]. Experienced radiologists also tend to locate faster and

more accurately the high informative areas compared to radiology residents. In fact, during

training the visual scanning paths evolve from fixations concentrating on edges to more rapid

accurate fixations on the abnormalities [57, 58]. The results from all the mentioned studies

are consistent with the idea that speed and accuracy of abnormality detection determine

expertise in radiology [60].

Resembling studies in cognitive psychology, experiments with radiologists have included

protocols in which radiographs are presented shortly. These studies are also known as flash

experiments and the experimental question is about how much the viewer (in this case a

radiologist) can see in a glance. Previous cognitive studies in which a series of images is

presented sequentially and the person is asked to only react to a specific target item (also

called the rapid serial visual presentation paradigm) have demonstrated that observers can

identify the category of a natural scene by extracting contextual information in about 100

ms [46,50]. That is, semantic information is already available at this short time of exposure.

Similarly, experiments with radiologists have demonstrated that with presentation times

of 200 ms experienced radiologists identify 70% of the abnormalities. Interestingly, the

recognized abnormalities are large, high-contrast targets, which significantly alter the normal

anatomy of the image. The smaller and low-contrasted an abnormality is, the more time is

needed to locate and recognize it [61, 62].

Other similar studies have investigated the perceptual schemas of radiologists by comparing

their drawings of the displayed radiograph with the drawing of the same images done by

laypersons [61]. These experiments demonstrated that the drawings of radiologists depicted

actual objects identified within the image. The authors of the study concluded that the

radiological schema consists of anatomical objects and the abnormalities are perceived as

additional objects within this schema. These findings suggest that that the visual perception

in radiologists is basically driven by whole objects, which is consistent wight the object-based

attention theory previously exposed.

As mentioned before, the other approach for studying the radiologists’ perception is the cog-
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nitive approach. In these experiments, verbal protocols are recorded by having the radiologist

read the radiograph while “thinking out loud” and followed by the dictated diagnostic report.

Lesgold et al. studied expertise by comparing verbal protocols of radiologists with di↵erent

levels of experience [63]. The analysis of verbal protocols led to a two stage diagnostic pro-

cess. In the first stage a perceptual decision was taken on the basis of a set of perceptual

features that characterized the image. The second stage consisted of a decision-making anal-

ysis of the perceptual features within a cognitive framework. Their important finding was

that the first stage strongly depends on a schematic representation of the anatomy, i.e. a

map of anatomic features. The more experienced the radiologist, the richer and more refined

the anatomic schema. This schema maps the image features to the normal anatomy. The

schema is also called up faster in experts. Features that do not match the schema provide

signals for possible abnormalities.

Another important finding of the analysis of verbal protocols is that experienced radiologists

tend to generalize the abnormal imaging findings from one particular case to idealized gen-

eral patterns of pathology. Thus, each particular patient is projected to a “patient model” of

anatomy, pathology and medical history. Evidence for this comes from a study that demon-

strated that with the development of expertise in radiology, normal anatomical variants are

selectively ignored, permitting a more refined normal and abnormal pattern construction

and detection of real perturbations [64]. This finding supports the idea of the existence of

di↵erent patterns for each group of pathology in addition to the normal pattern.

Radiologists also make use of several and di↵erent cues to detect the abnormalities in an

image. Cues are hints about the image that are part of the pictorial content. There are

external and internal cues. External cues are arrows or circles that indicate probably im-

portant diagnostic locations within the image, such as the ones used in Computer Aided

Diagnosis (CAD) systems. Internal cues are those image findings that suggest the existence

of other findings. It has been shown that the radiologist’s search pattern is highly dependent

of what is seen during the scanning of the image. That is, the first detected and recognized

abnormality will serve as a suggestion for where and what to look for later [65].

To summarize, the expert performance in radiology is gained during the residency training

and is intimately related to the building and further rapid activation of a global schema

of the di↵erent types of radiological images (CT, MRI, X-ray, etc). The ultimate goal of

this global schema is to determine wether an image is normal or abnormal. This schema

represents the normal anatomy, and at the first glance oddities or perturbations to the

normality are localized. The most conspicuous perturbations are then focused and analyzed

in detail, and will serve as a guide for the following search strategy. This sequence of events

led to the formulation of the radiologist’s perception called the global-focal model [61,65,66].

According to this model the image is analyzed with two perceptual and cognitive strategies,

one global strategy and one focal strategy. The global strategy uses information from all the

retina including it’s peripheral portions and generates a general glimpse of the image and

establishes the major spatial relationships between objects. As the experimental evidence
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shows, radiologists gain and tune the global analysis during their training. Global analysis

alternates with focal analysis, which depends on more resolving power for feature-based

analysis of the fixated object. It is a more detailed processing of the object projected on the

fovea.

2.4. Previously developed models of visual attention

As a result of the neurophysiological and cognitive evidence on visual attention and the

mammal visual system in general, the computational models that have been proposed and

developed so far have either a feature-based or an object-based approach. As part of these

models, bottom-up or top-down computation strategies have also been included in either a

pure form or as a combination of both.

The concepts of top-down and bottom-up information flow are based on previously exposed

neurophysiological theories and experimental evidence. Bottom-up models have been more

extensively developed since there is more evidence on its neurophysiological correlates in

the brain and the easiness of the implementation. The primary assumption of bottom-up

models is that visual information is endowed with inherent low level characteristics that are

processed in a pre-attentive manner. So called “pop-out” e↵ects and perceptual grouping

phenomena may occur within this pre-attentive period. These self organizing properties are

supposed to be enough to guide the focus of attention. Some pure bottom-up models also

consider that these low level characteristics control the selection, movement and inhibition

of one attended region to another, resembling a serial “scanpath” of attention. On the other

hand, top-down approaches take into account that internal representations of the outside

world guide the focus of attention. Thus, top-down phenomena are more related to volition

(voluntary actions), knowledge of a specific task, the semantic category of the scene (the

gist of the scene) and prior knowledge of the target. . Many models combine both types

of information control. Lately the e↵orts have been also directed towards the coupling of

attention and visual recognition algorithms.

One of the most influential computational models of bottom-up attention was proposed by

Koch and Ullman [67]. This model is based on a psychophysical theory of attention known

as “feature integration” [27], that was derived from visual search experiments. This theory

postulates that visual objects are characterized by very basic dimensions such as orientation,

size, color, closure, intensity, flicker and direction of motion. Objects automatically “pop-

out” from the image if they di↵er from the surrounding objects (that act as distracters) in

only one single features. If an object is distinguished from the distractors by a combination

of single features (a conjunction of features), then the “pop-out” e↵ect takes longer because

a direct attention deployment is needed, permitting the target’s identification and location.

If there are more than two objects that are distinguished from the rest by a combination of

features, then attention must be directed serially to one object at a time. This proposal led

to the idea of considering attention as a “spotlight” that serially illuminates each object of
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a scene.

Based on this psychophysical theory Itti and Koch developed a computational model [1].

The key component of their model is the saliency map, which is the final pathway after

single feature maps (e.g. for color, contrast and intensity) have been initially computed in

parallel and have competed between each other to become salient. At the end, an external

winner-take-all algorithm, which can be interpreted as the top-down modulation, selects in

a serial manner the more salient locations within the saliency map.

Figure 2.1 shows the complete diagram of the model by Itti et al. and a detailed description

of the computation of the model has been described in [1]. Initially, a color image is processed

with a linear lowpass filter consisting of Gaussian pyramids that create nine spatial scales of

the same image. These low frequency maps of the image serve as input for the calculation

of the saliency map. The computation is based on center-surround operations that mimic

processes that take place in the retina, lateral geniculate nuclei and V1 cells. These cells

function as linear filters for the three basic image features (intensity, color and orientation).

The center-surround architecture is implemented as the di↵erence between the fine and

coarse scales. Seven center-surround feature types are used: on/o↵ image intensity contrast,

red/green and blue/yellow double opponent channels, and four local orientation contrast

channels. For each of these contrast types six di↵erent feature maps are computed at di↵erent

pairs of center and surround spatial scales to finally get 42 di↵erent feature maps. Afterwards,

the feature maps are normalized by a factor that enhances the locations with strong peaks

of activity and suppresses those with multiple comparable peak responses. This procedure is

supposed to resemble the lateral inhibition mechanisms of cortical networks. Subsequently,

all the feature maps for each characteristic are added across the di↵erent scales, by initially

reducing each map to the corresponding scale and adding them point-by-point. This addition

yields to the saliency map for each feature. Finally, the three saliency maps (intensity, color

and orientation) are normalized and summed together into a generalized saliency map.

Attempts to integrate top-down information into Itti’s saliency-based model include the one

by Rapantzikos et al. [68]. Their approach integrates prior knowledge and motion processing

to the original model scheme in order to draw attention to faces in video coding. They make

use of a traditional color based skin detector and a multiresolution gradient-based approach

to estimate optical flow and run them as additional channels next to the basic features of

color, intensity and orientation. This yields to a total of five conspicuity maps, which are

then combined into the final saliency map that locates faces as regions with higher activity

in the image.

Itti’s group enhanced their own model by adding top-down cues to locate the target of an

image [69]. This enhanced model gives a task in the form of a set of keywords. These

keywords are then analyzed by an ontology that outputs task-related entities and their

relationships. The model then looks for the most relevant task-related entity in the visual

scene which is then considered a target. The low-level visual features processed through Itti’s

model are biased according to the known features of the target in order to make the target
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Figure 2.1.: Itti’s Model of Visual Attention. Taken from [1]

more salient. This closes the top-down to bottom-up loop. Additionally, the authors added

a recognition module which then links the low-level visual information to the task-relevancy

features and ultimately generates a task-relevance map that is constantly feeding a memory

module.

There is enough evidence of object-driven attention in monkeys as well as in humans and

some cognitive theories have been proposed that argue that the selection of objects is a

process of parallel competitions of their combined neural representations in the scene. Thus,

models following this neurophysiological/cognitive theory focus on the importance of whole

objects as the directing elements of attention. Contrary to the serial processing exposed by

the feature integration theory, this model proposes a parallel inflow of low level information

to primary and higher visual areas. These low-level descriptors are grouped together, thus

constituting themselves as integral objects. Objects compete for the limited processing

capacity in the hierarchically higher visual areas, that are densely connected with prefrontal

regions. In these models, competition is biased by bottom-up cues, as well as by top-down

ones, such as behavioral and “attentional templates” stored in working memory.

Stark and colleagues have proposed a purely top-down attentional gaze shift model [70].

The model is based on the “scanpath theory” [71], in which the sequence of eye fixations is

under the control of an internal cognitive model. Their model selects the most relevant sites

of a scene based on prior knowledge of similar scenes. This is achieved by two modules, a
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learning one and a cognitive one. In the learning module, the image is initially segmented into

regions. A probability is given to each region of being a hypothetical object from a specific

scene category. The recognition module shares the initial processing with the learning one

up to the description of the segmented descriptors. By using a bayesian approach they

estimated the probability of a scene category to contain a specific object.

Deco and colleagues have proposed a combined recognition and attention model [72]. Their

model is inspired by the biased competition theory, stresses mechanisms for space-based and

object-based attention, involves interactions between the dorsal and ventral visual streams,

and includes top-down and bottom-up modulation strategies. They use neural networks

models, each of them representing a cortical visual area. Within each module a competitive

network is implemented by local lateral inhibitory connections. Modules are hierarchically

interconnected by feed-forward and feedback connections. The input image enters the V1

module, which has hyper-columns of Gabor-modeled neurons to extract location, orientation,

symmetry, and spatial frequency. In general, the visual search, as well as the object attention

and object recognition are accomplished by introducing top-down biasing cues from the

higher processing modules that ultimately have back-projections to the lower visual areas

(V4-V2-V1).

Another approach, combining attention and recognition was proposed by Rybak et al. [73].

This model is also built in the context of the “scanpath theory” previously exposed [71].

Thus, it depends on an internal model of objects that directs eye fixations based on motor

and sensory representations stored in memory. A low-level subsystem receives the input

image and decreases its resolution from the center to the periphery in each fixation point.

Afterwards edges are extracted in a twofold manner, i.e. a basic set of edges at the cen-

ter and ‘context edges’ at the periphery. A mid-level processing module transforms these

primary features in second-order invariant features. This is accomplished with the relative

orientations and relative angular locations of the context edges with respect to the basic

edges. The high-level subsystem functions in three di↵erent modes: memory, search and

recognition. Initially, each image portion at each fixation point is stored in a sensory mem-

ory module and each following fixation position is stored in a motor memory module. In the

search mode each new fixation point is compared to the stored images. If a match occurs, the

recognizing mode executes the consecutive fixation movements according to the previously

memorized patterns.

Some object-based approaches have been implemented with basic visual feature extraction

algorithms and saliency maps. For example, Sun et al. [74] proposed a model integrating

competitive interactions of objects and locations. As with feature-based models, this one

initially extracts basic features (color, intensity and orientation), which then are grouped.

This grouping is based on Gestalt theory principles and on heuristic knowledge, that is,

proximity, closure, continuity, common fate, familiarity, and shared properties. Finally,

spatial and grouping saliency maps are constructed and a top-down biasing module selects

the fixation points.
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Han et al. [75] extract objects from a visual scene after Itti’s saliency-map is computed. The

authors also compute a texture-based edge detection algorithm. By maximizing the most

salient areas in the saliency-map and by minimizing the local edge values, the model is able

to selectively seed the scene. The location of the seed is considered as an attention object

which then grown by means of a markov random field model. This last step is implemented

serially in terms of the decreasing order of saliency value.

Orabona et al. [2] created a very sophisticated visual attention model that was implemented

on a robot, with bottom-up and top-down cues as well as attention and recognition mod-

ules. This model initially extracts basic features from a color image by extracting four color

channels (red, green, blue and yellow) and by computing center-surround receptive fields on

each pixel for red-green, green-red and blue-yellow opponencies. Edges are then calculated

for each of the three color-contrasts by using a Sobel filter. The edge maps are then com-

bined in order to generate a generalized edge map which afterwards undergoes a watershed

algorithm in order to extract so called “proto-objects”. The watershed algorithm fills out

the spaces in between the edges ultimately leading to segmented blobs that are tagged based

on the average color inside it. Bottom-up saliency is computed as the euclidean distance

in the color opponent space between each blob and its surrounding. Top-down influence is

calculated based on a specified task which biases the bottom-up saliency in favor of a stored

representation of the target to be searched. The general structure of the model can be seen

figure2.2.

In summary, a perfect model of visual attention should be able to resemble most of the

visual system’s functionality, but this is realistically speaking beyond the capabilities of the

all the models presented here. When choosing an approach, one should look for the specific

features of the of the target images (task-related choice) and also learn from particular fields

of expertise in order to ”shape” one’s model according to it. Something that is be very

important and should be part of a model trying to emulate the radiologic diagnostic process

is the bidirectional flow of information. The communication between modules processing

di↵erent types of visual information (top-down and bottom-up processing) in some way

ensures that only the most relevant information will be captured by reinforcing and inhibiting

it. It is also important to split the visual information, for example in higher and lower spatial

frequencies (magno and parvocellular pathways), and have each module process it separately.

This multi resolution approach is very close to what has been seen on actual neurons of the

visual system. Finally, higher complex semantic information is a very sophisticated way to

actually categorize and ultimately identify the extracted objects in the scene (MS lesions in

this case). These “semantic modules” emulate the the functions exerted by the frontal lobe

in the way that working memory does.
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Figure 2.2.: Orabona’s object-based model of visual attention. Taken from [2]



3. A fully bioinspired model of visual

attention

3.1. Texture border processing model

The model proposed here is designed to characterize the relevant diagnostic regions in patho-

logic magnetic resonance images (MRI) of the brain, by trying to resemble the neural mech-

anisms that happen during the radiological interpretation process. The model attempts to

include bottom-up and top-down processing streams as described in Desimone and Duncan’s

theory of attention [28]. In addition to this, it also focuses on the analysis of texture in the

image as it is proposed in the visual model proposed by Thielsher et al. [3,4]. It is important

to mention that the initial part of the radiological diagnostic process (searching and detecting

the pathologic regions in the image) is highly dependent on the contrast produced by either

luminance as well as by texture that distinguishes boundaries between normal appearing tis-

sue and pathology. Luminance contrast has been more widely studied in vision research than

texture contrast. Also, to the extent of our knowledge, there are no studies that investigate

the radiological perception based on texture when interpreting MRI images. The reasons we

explored the usage of the proposed model is based on the fact that boundary detection is

also possible via texture analysis and that the texture border detection is mainly achieved

by cells in higher model areas. The latter property serves our goals because it will allow us

to explore the interaction between hierarchically lower and higher areas in the visual ventral

stream (bottom-up and top-down processing). The original model proposed by Thielsher et

al. will be first described below, followed by the model proposed in this work, which is a

variation of it.

The visual system utilizes several di↵erent basic image features to group the incoming visual

stimulus into distinct objects. These features are: luminance, color, texture, motion and

stereoscopic depth. Higher order visual areas such as V4 and TEO require the image to

be segmented into objects which can be detected by following the discontinuities inherently

provided by these basic features. In other words, the detection of borders is crucial for

the segmentation and identification of objects. In the case of radiological images (X-rays),

luminance and texture contrasts have been used to detect, characterize and segment relevant

diagnostic regions [76]. Despite the fact that the physiological basis of luminance contrasts

guiding the detection of borders is better understood than that of texture, here we focus on

texture border detection. This strategy also allows us to test the importance of texture for
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the radiological interpretation process and also evaluate it’s contribution to the “global-focal”

model (See section 2.3 for more information).

The model is built by a set of hierarchically organized model-cells (i.e. filters) that represent

specific groups of cells with similar activation patterns. These cellular groups resemble the

di↵erent stages or steps of the the visual system’s information flow. These model-cells are:

the lateral geniculate nucleus (LGN), V1 simple cells, V1 complex cells, area V2 and area

V4. The three latter ones, i.e. V1 complex cells, area V2 and area V4, are bi-directionally

connected to each other resembling the feed-forward (bottom-up) and the recurrent (top-

down) processes and connections in the brain (See figure 3.1). Unless otherwise stated, these

filters will be referred as “cells” for now on in this dissertation. V1 complex cells , V2 cells

and V4 cells constitute the three higher stages of the model and each of them undergoes

three successive “activation stages”: 1) pooling of bottom-up activity, 2) activity modulation

via feedback interaction (top-down modulation), 3) intra-areal center-surround competition.

(See figure 3.2).

Figure 3.1.: Thielsher’s Model of Texture Boundary Detection. Taken and modified from [3]

The first activation level of V1-complex, V2 and V4 cells is the bottom-up activation, which

is modeled as a linear equation that implements a spatial convolution and pools the input

into the cell’s receptive field. During the second level cell activation the initial bottom-

up input is modulated via the feedback signal originated in higher model areas (top-down

modulation). In the third and last level of activation, the top-down modulated activity

undergoes center-surround (ON-center/OFF-surround) competition between cells of their

spatial and orientational neighborhood (See figure 3.2).

3.1.1. Top-down modulation and Center-surround competition

Bottom-up input pooling, top-down modulation and center-surround competition are the

three steps of activation that characterize the behavior of V1 complex cells, V2 cells and V4

cells. The dynamics of the second (top-down modulation) and third (center-surround) steps

of activation will be explained first, because they are common to the three cells, whereas the

dynamics of the cells’ first step of activation (bottom-up input) is unique to each cell and

will be explained separately in the next section (section 3.1.2).

The dynamics of the top-down modulated activation (Figure 3.2, section 2) is modeled as a

di↵erential equation:
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Figure 3.2.: Activation steps for each filter (model cell) in the attention model. Taken from

[3]

@
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I

(1)
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= �↵1I
(1)
i✓

+ (�1 � �1I
(1)
i✓

)c
i✓

[1 + Ch

i✓

] (3.1.1)

where c

i✓

is the bottom-up input that comes from the first activation process (see section

3.1.2) and is sensitive to location i and orientation ✓, whereas h
i✓

is the top-down feedback

of the cell’s activity located in a higher stage of processing. The equilibrated response of

equation 3.1.1 when @

@t

I

(1)
i✓

= 0 is:

I

(1)
i✓

=
�1ci✓[1 + Ch

i✓

]

↵1 + �1ci✓[1 + Ch

i✓

]
(3.1.2)

where �1 and C control the strength of the excitatory feedback (top-down modulation).

↵1 determines the rate of activity decay. Afterwards, I(1) becomes the input to the third

computational stage, which exerts a scheme of shunting center-surround competition (ON-

center/OFF-surround) (Figure 3.2, section 3). This stage is expressed by another di↵erential

equation:

@

@t

I

(2)
i✓

= �↵2I
(2)
i✓

+�2{I(1)⇤ +⇤⇤+}
i✓

�(�2+⇣2I
(2)
i✓

){I(1)⇤ �⇤⇤�}
i✓

(3.1.3)

In this equation,  +, �,⇤+ and ⇤� denote gaussian weighting functions for the excitatory

and inhibitory activity and “⇤” denotes the convolution operator. Interestingly, this equa-

tion has the same form as a “mexican hat” for spatial and orientational information. The
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mexican hat is a non-orthogonal, symmetric, crude wavelet. This means that it is defined

by a mathematical expression that draws a continuos and infinite waveform and by using

equidistant discrete points along this curve we can create its corresponding filter. The math-

ematical expression that defines the “mexican hat” wavelet filter is the second derivative of

the Gaussian probability density function. It can also be defined as an operator that applies

a two dimensional Laplacian to the image. This operator is the core of the Marr-Hildreth

edge detector that was very commonly used for edge detection in image processing [77].

The equilibrium state of equation 3.1.3, when @

@t

I

(2)
i✓

= 0 derives into:

I

(2)
i✓

=
�2{I(1) ⇤ + ⇤ ⇤+}

i✓

� �2{I(1) ⇤ � ⇤ ⇤�}
i✓

↵2 + ⇣2{I(1) ⇤ � ⇤ ⇤�}
i✓

(3.1.4)

This last equation shows how the signal �2{I(1) ⇤  + ⇤ ⇤+} is interacting with inhibitory

substractive activity in the neighborhood represented by �2{I(1) ⇤ � ⇤⇤�} and by shunting

divisive inhibitory activity represented by ⇣2{I(1) ⇤ � ⇤⇤�}. At a glance, the model initially

extracts salient texture arrangements that are then modulated with top-down feedback in-

formation and ultimately the activity is followed by center-surround competition where local

irrelevant information is suppressed within the neighborhood, which is what is expressed in

equation 3.1.4.

3.1.2. Bottom-up input

The second and third activation levels of V1 complex cells, V2 and V4 cells were described

in the section above. We will now describe the initial bottom-up activation of all the cells

that are part of the model (LGN, V1 simple cells, V1 complex cells, V2 cells, V4 cells). The

only pure feedforward model cells are the first two cells in the model, LGN cells and V1

simple cells (See Figure 3.1 a) and b)), which means that they do not undergo the second

and third stage of activation explained in section 3.1.1. These two first cells greatly mimic

the parvocellular visual pathway and in this model they are the only ones that filter the

input’s luminance distribution. The LGN cell uses circular center-surround receptive fields

to detect local luminance transitions:

x = I ⇤ (⇤
Center

� ⇤
Surround

) (3.1.5)

x

on = [x]+

x

off = [�x]+

Here, I is the input image, which is convolved by the di↵erence of isotropic 2D gaussian

kernels represented by ⇤
Center

and ⇤
Surround

. [x]+ and [x]� represent half-wave rectifications.

Beware that this center-surround competition is di↵erent than the one described before in

equation 3.1.4. The input to the V1 simple cells are the bottom-up ON and OFF activations
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of LGN (represented by x

on and x

off ). V1 simple cells exist for two polarities (dark-light: dl;

light-dark: ld) and eight orientations. That is, V1 simple cells are the first ones to process

not only luminance information but also texture information. As it is shown in part b)

of figure 3.1, these cells filter the image with elongated ovoid ON (light) and OFF (dark)

subfields:

p

on/off�left

✓

= x

on/off ⇤ ⇤
�

x

,�

y

,0,�⌧

y

/2,✓
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✓

= x
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�

x

,�

y

,0,⌧
y

/2,✓

Here, p
✓

denotes the subfields of V1 simple cells, ⇤
�

x

,�

y

,0,± ⌧

y

2 ,✓

are 2D anisotropic gaussian

weighting functions, in which the standard deviations �

x

and �

y

define the size and shape

of the subfield. ✓ determines the orientation of the subfield. The subfields are initially

shifted perpendicular to their axis by ± ⌧

y

2 and rotated by ✓, that has eight orientations

(n
orient

= 8), so that ✓ = 0, ⇡/n
orient

, ..., (n
orient

� 1)⇡/n
orient

. Thus, the analysis is split into

eight maps, one for each orientation ✓ and it will be conducted in this manner throughout

all the upcoming steps in the higher order cells (V2 and V4). The subfields pon/off�left

✓

and

p

on/off�right

✓

feed the activation of V1 simple cells S in a specific spatial location i and for

each orientation ✓. For example the activation that is selective for light-dark polarity is:
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(3.1.6)

and the activation that is selective for dark-light polarity is:

S
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(poff�left

i✓

+ p

on�right
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) + 2B
s
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)
(3.1.7)

In these last two equations, A
s

, B

s

, D

s

, E

s

are factors that control the impacts of the addi-

tive (left side of the numerator), multiplicative (right side of the numerator), and divisive

components of the subfield responses.

After the initial activation of LGN and V1 simple cells, the model is characterized by the

bidirectional tra�c of information (feed-forward and feed-back) across the “higher order”

cells (V1 complex cells, V2 bipole cells, and V4 cells) (See Figure 3.1 c)). V1 complex cells

pool the activity of two simple cells of opposite polarity (Sld

i✓

and S

dl

i✓

) at each position i

by calculating a half-wave rectification from the di↵erences between the two activations of

opposite polarities (Sld

i✓

, Sdl

i✓

):

c

V 1
i✓

= A

c

([Sld

i✓

� S

dl

i✓

]+ + [Sdl

i✓

� S

ld

i✓

]+) (3.1.8)
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V1 complex cells’ activity is already sensitive to the orientation contrast, which means that

it highlights areas where there are notable orientation changes from one receptive field to the

other. The first activation of V1 complex cells (cV 1
i✓

) then undergoes the second activation

(I(1)
V 1) with top-down modulation (see equation 3.1.2) and then the third activation (I(2)

V 1) of

within-area center-surround competition as expressed in equation 3.1.4.

Thereafter, V2 cells take as input the last activation (I(2)
V 1) of V1 complex cells (See Figure

3.1 part d)). I

(2)
V 1 is a 3D matrix, that encodes a 2D spatial matrix and a 1D orientational

matrix (✓ = 8) and it is pooled into left and right subfields of activations represented by f :

f

left = I

(2)
V 1 ⇤ f

⇤K left (3.1.9)

f

right = I

(2)
V 1 ⇤ f

⇤Kright (3.1.10)

f

left = c
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⇤ 
f

⇤K left (3.1.11)

f

right = c

V 1
i✓

⇤ 
f

⇤Kright (3.1.12)

Here, the orientation domain is blurred via the convolution with the isotropic gaussian kernel

 
f

and in the 2D spatial domain with the anisotropic gaussian weighting function K
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. These

are elongated subfields which are shifted parallel to the main axis of the cell and are cut o↵

in the central part of the cell by means of a sigmoid function. K left/right are represented by:
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The activities f of the V2 cells are combined in order to obtain the initial activation c

i✓

of

V2:
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(3.1.13)

This equation is very similar to equations 3.1.6 and 3.1.7, in which the activities of oppo-

site subfields (left and right in this case) are weighted by their additive and multiplicative

interactions. cV 2
i✓

goes then throughout its second and third activation levels (I(1)
V 2 and I

(2)
V 2).

The final step of processing is the model cell V4, which is hierarchically the highest cell

of the model (See Figure 3.1 part e)). This cell measures the di↵erences between the final

activations of V2 cells (I(2)
V 2) that are pooled into an excitatory center field (qcenter

'

) and
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left and right inhibitory subfields (qleft
'

and q

right

'

). The center field (qcenter) is defined as a

gaussian kernel:

q

center

'

= I

(2)
V 2 ⇤ q

⇤ ⇤
�

qx

,�

qy

,0,0,' (3.1.14)

and the left and right subfields are also defined as anisotropic gaussian kernels:
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q

right

'

= I

(2)
V 2 ⇤ q

⇤ ⇤
�

qx

,�

qy

,0,⌧
qy

,'

(3.1.16)

“⇤” denotes the convolution operator. The rotation angle of the subfields is ' and the

inhibitory subfields qleft
'

and q

right

'

are shifted perpendicularly to their main axis by +/�⌧

qy

.

V1 and V2 cells processed the information in eight di↵erent orientations (✓ = 8), and V4

assigns to each orientation ✓ eight orientations (' = 8). This creates a matrix of 8⇥ 8 = 64

V4 cells. The initial activation of V4 is then calculated as the sum of the two half-wave

rectified di↵erences:

c

V 4
i✓

= [qcenter
i✓'

� Cq

left

i✓'

]+ + [qcenter
i✓'

� Cq

right

i✓'

]+ (3.1.17)

As before, ✓ denotes the orientation of the V1 and V2 cells, but ' denotes the orientations of

the V4 cells. What equation 3.1.17 is saying is that for each V1/V2 cell orientations ✓ there is

a group of V4 cells interacting between each other in a spatial and orientational neighborhood

(eight total and denoted by '). Each V4 orientation ' evaluates the orientations in the

✓ domain, suppressing those areas where there are homogeneous distributions of texture

(texture elements with the same orientation pattern) and highlighting the texture borders

(areas with huge gradients of orientation activity). V4 is the cell at the highest level of

processing and it is not modulated by top-down activity of any other higher order cell.

Thus, cV 4
i✓

immediately undergoes the inter-areal center-surround competition (third level of

activation as expressed in equation 3.1.4) right after the first bottom-up activation. Once all

responses of V4 (I(2)
V 4) for each V1 orientation ✓ are calculated, they are summed up together

(see next equation) and then sent back to modulate the activity of V2’s second activation

level:

I

(2)
V 4i✓ =

n

orientX

k=1

I

(2)
V 4i✓(k�1)⇥⇡/n

orient

Figure 3.3 shows the performance of Thielscher’s model on an artificial test image.
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Figure 3.3.: This figure shows and example of the results of the equilibrated responses of the

three higher order model cells as presented in the original model proposed by

Thielsher et. al. 2003. The image shows a central pop-out bar surrounded by

background noise and the performance of two di↵erent versions of the model, a

recurrent version (with top-down modulating activity) and a purely feed-forward

model. It is clearly shown that the recurrent model is able to better highlight the

contours of the central bar as well as to suppress the background noise. Figure

taken from [4].

3.2. The modified texture processing model

The model implemented here is a variation of the original model proposed by Thielscher et

al. that was described above. Despite this, we did not change any of the core equations of the

model. Most of the coe�cients, multiplicative and divisive factors that regulate the activity

within each cell’s activation step were left the same as specified in the paper of Thielscher

et al. of 2003 [4]. All of these parameters were previously proven to satisfy the stability of

the system. We modified two coe�cients - � and C - of equation 3.1.2. In this equation,

these two parameters control the strength of the top-down modulation of h
i✓

(activity of

the higher level cell) over c
i✓

(activity of the lower level cell). In our experiments we found

better results when doubling the value of these two parameters. This was particularly true for

the top-down modulation exerted by the V2 cell to the V1 complex cell (See the interaction

between these two cells in figure 3.1). In addition to this, we also tried di↵erent combinations

of gaussian kernel sizes for the bottom-up activation of each model cell. Table 3.1 shows

the di↵erent gaussian kernel widths used throughout the model for each cell along with all

the other parameters specified in equations 3.1.1 through 3.1.17. In general, we chose the

combination of gaussian kernel array sizes that provided with the best results in terms of

characterizing the multiple sclerosis lesion areas in the MRIs of the brain. The scheme that

worked best consisted of growing gaussian kernel sizes from LGN (smallest size) to the higher

order areas (V4 cells had the biggest size). This may be related to the fact that the receptive
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fields increase in size along the visual system when moving from the lateral geniculate nuclei

and striate cortex (V1) to higher order neuronal assemblies (V4).

Parameters of I(1) Parameters of I(2)

↵1 �1 �1 C ↵2 �2 �2 ⇣2 � of

 + ⇤+  � ⇤�

V1 12.0 1.46 3.7 50 1.0 2.8 3.5 5.0 0.2 1.0 2.0 3.0

V2 12.0 0.73 4.2 25 1.0 2.9 3.1 50.0 0.2 2.0 2.0 6.0

V4 - - - - 1.0 10.6 9.9 1000.0 0.2 8.0 2.0 24.0

Table 3.1.: This table shows the parameters used for the second and third levels of activation

(I(1) and I

(2) respectively) and the respective gaussian kernel widths for each

model cell.

A brief view of the model implemented here is shown in the figure below (Figure 3.4). Here,

the input image is initially processed by LGN ad V1 simple cells by using the luminance

distribution of the image. V1 simple cells process this information along 8 di↵erent orienta-

tions for either light-dark or dark-light polarities. The output of V1 simple cells’ bottom-up

activity is then sent to V1 complex cells (this sequence of events can be seen in figure 3.4

parts a), b) and c) and with more detail in figure 3.5 part D.). After this point our model

starts di↵ering from the original one proposed by Thielscher et al. We tested di↵erent forms

of feed-forward and feed-back interactions between the higher order cells (Figure 3.4 parts

c), d) and e)). What is shown in the bottom row of figure 3.4 is the final arrangement of

interactions that resulted in the best results.

V1 complex cells pass over the output of their bottom-up activation to V2 and V4 model

cells. Then, V2 and V4 start o↵ with their own bottom-up activations. V2 cells get activated

as in equation 3.1.13, but in this case the input to the the left and right hemi-fields is the

first activation of V1 complex cells I(1)
V 1 :

f

left = I

(1)
V 1 ⇤ f

⇤K left (3.2.1)

f

right = I

(1)
V 1 ⇤ f

⇤Kright (3.2.2)

In the case of V4, the first activation is exactly as stated in equation 3.1.17 but the excitatory

center field and the inhibitory left and right fields are also fed with I

(1)
V 1 :
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Figure 3.4.: This figure shows a simplified structure of the modified version of the texture

boundary detection model.

The result of these first activations on a brain MRI image can be seen in parts C. and A.

of figure 3.6. In this figure, it is also possible to see in detail the following steps of our

implementation. After its first activation, V4 is activated for the last time as in equation

3.1.4, and I

(2)
V 4 is used to modulate the activity of V2’s second level of activation (top-down

modulation) (See in figure 3.6 the dashed orange line that goes fromD. towards the continuos

red line that connects A. to E.). Part E. of figure 3.6 shows the result after V2 cells reach

their highest level of activation with the intra-areal center-surround competition (equation

3.1.4). The endproduct of V2’s activity finally feeds V1’s second activation as stated in

equation 3.1.2 by exerting the top-down modulatory e↵ect (See F. in figure 3.6 and the

dashed line that goes from E. to the red continuous line that enters F.).

3.3. Application to clinical imaging data

The main goal of implementing the visual attention model is its direct application on clinical

MRI images in order to describe and characterize the pathological changes in them. Here

we will use MRI data of patients with demyelinating lesions caused by multiple sclerosis

(MS) (See Chapter 1). As explained before, the radiological diagnosis heavily depends on

T2-weighted MRI images (spin echo or FLAIR) since they are able to sharply di↵erentiate

the lesions from the surrounding healthy tissue.
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Figure 3.5.: This figure shows the bottom-up activation of LGN, V1 simple cells and V1

complex cells on an example brain MRI image with multiple sclerosis lesions
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Figure 3.6.: This figure shows the bottom-up activation of V1 complex cells, V2 cells and

V4 cells on an example brain MRI image with multiple sclerosis lesions. It also

shows the feed-forward and feed-back interactions between these cells as they go

through their di↵erent steps of activation.
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A total of 23 subjects were scanned at the Magnetic Resonance Center of the San Jose Hos-

pital in Bogota, Colombia between 2000 and 2010. These subjects were patients admitted,

diagnosed and treated at the same hospital. Some patients were diagnosed with acute MS

and others with recurrent chronic MS. The population mean age was 34±10.2 with 15 females

and males. The images used for the analysis were acquired with a FLAIR sequence (Fluid

Attenuated Inversion Recovery), that has a T2-weighted tissue contrast that suppresses the

cerebrospinal fluid (CSF) signal. By such, the demyelinating lesions in the white matter are

the only regions of the image with higher intensity than the rest of the brain, which makes

them easier to be detected by the radiologist. The parameters of the whole-brain acqui-

sitions were: 1.5 Tesla Siemens Vision magnetic resonance scanner (Erlangen, Germany),

TE=110ms, TR=5000ms, TI=190ms, flip angle=180�, 2D axial-plane acquisition with an

in-plane resolution of 256x256 and a 0.976x0.976x5mm voxel size, a total of 16 slices and

spacing between slices of 2.5mm, FOV of 24.98cm.

As part of the preprocessing of the images, we used FSL’s brain extraction tool BET1 [78]

to automatically skullstrip the images. After having the skull automatically removed, the

masks were checked for any errors produced by the program and if there were any, they were

manually fixed on Brainsuite’s graphic user interface2. Afterwards, all the 3D brain volumes

were split into separate axial slices (16 total axial slices for each subject). Only the slices

that showed abnormalities were taken for further analysis. At the end we had a total of 162

axial 2D images of the brain with MS lesions. Each 2D image had a spatial dimension of

256x256.

The 162 images were smoothed with a Perona-Malik anisotropic di↵usion kernel of size 0.4

and 100 iterations by using the ITK-SNAP C3D tool3. The same tool was also used to

upsample the images with a cubic interpolation method to a spatial dimension of 512x512

pixels. Right after this step, the images were submitted to the visual texture processing

module explained in the previous section.

Once the visual model was run on all the images some extra steps were performed in order

to fully characterize the MS lesions of the brain. The resulting image of the second level

activation of the complex V1 cells (figure 3.6 part D.) was substracted from the output

of the second activation of V4 (See figure 3.6 part F.). The resulting di↵erence image was

thresholded to keep only the positive values and it was then binarized. Manual segmentations

of the MS lesions were previously traced by an expert medical doctor on each of the 162

pathologic images. Finally, we computed four validation metrics, i.e. the Jaccard index, the

Dice index, sensitivity and specificity, to compare the resulting relevant regions extracted

from the visual computational model with the manually traced lesions.

1http://www.fmrib.ox.ac.uk/analysis/research/bet/
2http://brainsuite.loni.ucla.edu/
3http://www.itksnap.org/
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4.1. Results of Itti’s model

Itti’s computational model [1] is a very well known model and it is many times used as a

gold standard to compare newly developed models of visual attention. Here we used an

implementation of this model available on the web as an open source tool 1. Two full brain

axial slices with MS lesions and the corresponding results are shown in figures 4.1 and 4.2.

Figure 4.1.: The figure shows the input image with MS lesions (0.5 - 7cm) (A.), the manually

traced mask in red overlaid on the input image (B.), the resulting saliency map

(C.), and the saliency map overlaid on the MRI image with MS lesions (D.). The

yellow areas are the highly salient areas, whereas the red areas are less salient

ones.

Clearly, this model was not able to capture the relevant diagnostic information in these

images. The saliency maps show a strong bias towards the edges of the brain tissue, rather

than highlighting the MS lesions. It did not matter the size of the lesions, small or big,

the model was not able to declare them as salient. This makes sense, since this model

was mainly developed for natural images and applications in robotic navigation. This is a

1look for: http://www.vision.caltech.edu/harel/share/gbvs.php
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Figure 4.2.: The figure shows the input image with bigger MS lesions (7 - 10cm) (A.), the

manually traced mask in red overlaid on the input image (B.), the resulting

saliency map (C.), and the saliency map overlaid on the MRI image with MS

lesions (D.). The yellow areas are the highly salient areas, whereas the red areas

are less salient ones.

classic example that shows us how semantically di↵erent natural images can be from medical

images.

4.2. Results of the proposed model

The final step of the model proposed above is the subtraction of TP V 1
i✓

(“V1 second”) from

CC

V 4
i✓

(“V4 final”). The end result of this is an image that can be thresholded by eliminating

all negative values. The positive values depict the salient areas for one single 2D image (see

figure 4.3 for a closer look at the output on the example lesion). After running the full

pipeline on the 162 images, the expert radiologist compared the manual delineations with

the results of our implementation. The expert determined whether or not the proposed

model was able to delineate the lesion.

The computational attention model was able to characterize MS lesions on the majority of

the images. After a detailed visual inspection it could be established that the model was

able to automatically delineate the lesions in 85.8% of our set of 162 images with MS lesions.

Figure 4.4 shows the results for one full axial slice of the brain with small MS lesions (0.4

to 2 cm) that are distributed throughout the brain tissue in both hemispheres.

Figure 4.5 shows the results for one image with bigger MS lesions (7 to 10 cm). The first

observation from these results is that the computational model was not able to pick up the

smallest MS lesions. This can be seen in figure 4.4 where the two smallest lesions were not
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- = 

“V4 final” “V1 second” difference  

Figure 4.3.: In this figure “V4 final” is CC

V 4
i✓

from equation (3.1.4) and “V1 second” de-

rived from equation (3.1.2). The colored image on the very right represents the

thresholded result after subtracting the “V1 second” from “V4 final”.

Figure 4.4.: The figure shows the input image with MS lesions (0.5 - 7cm) (A.), the manually

traced mask in red overlaid on the input image (B.), the resulting image of V4

cells (C.), the resulting image of V1 cells (D.), the di↵erence image (E.) and the

thresholded version of the di↵erence (F.)

Figure 4.5.: The figure shows the input image with bigger MS lesions (7 - 10cm) (A.), the

manually traced mask in red overlaid on the input image (B.), the resulting

image of V4 cells (C.), the resulting image of V1 cells (D.), the di↵erence image

(E.) and the thresholded version of the di↵erence (F.)
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characterized properly by the model. Another important observation is that when the lesion

is larger in average than five centimeters the algorithm will characterize it in a “ring” fashion,

and would only describe the border or edge of the lesion. This can be appreciated in part F.

of figure 4.5. A plausible interpretation of the results is related to the texture decomposition

done by the model. The model is tuned to localize and highlight the areas of transition or

change in texture, where there are contrasts of local orientations of texture elements and

where there is a higher texture density [3, 79, 80]. In this case, the tissue types that are

radiologically distinct are the healthy white matter and the pathological hyperintense MS

lesions. After running the anisotropic di↵usion filter on the images, which was a preliminary

step before submitting them to the visual attention model, the images preserved the edges

and the areas within these were homogenized by the filter. Thus, it is possible to argue that

most of the healthy brain tissue was homogenized in terms of texture and the areas with

MS lesions were also homogenized. The borders between pathological areas and the rest of

the healthy brain are the areas of changing texture, the areas with most edge details (higher

density) and also higher orientation contrasts. The model did not perform well in those

lesions that were too small (less than 0.5 cm) maybe because there weren’t enough pixels (or

enough area) within them that had a homogeneous texture and not enough texture contrast

was identified between the lesions and the rest of the brain tissue.

Another important observation is the fact that the visual model also highlighted the external

border of the brain. According to the previous explanation, this pattern makes sense, because

of the vast texture di↵erence between the brain and the background of the image which is

composed by pixels with a value of zero. It is important to note here that for the validation

metrics that were run (Dice index, specificity, etc) we manually erased the brain rim spotted

by the algorithm.

Table 4.1 summarizes the results of the four validation measures computed for each image.

We chose as the gold standard the manually traced labels of each image. Each resulting

map of visually relevant areas was compared to its corresponding manually traced label.

We then computed descriptive statistics on each index separately. Interestingly, we found a

very high range in the Dice, Jaccard and sensitivity indices, with minimum values starting

at 0, in which case the model could not characterize the relevant visual area. Importantly,

the specificity was very high for the majority of images and small standard deviation and

a very small range. Although the results for the Jaccard and Dice coe�cients are low, we

still had a sensibility above 0.5 and a very high specificity. It is important to note here that

the main goal of this study is to find a plausible explanation of how the visual system works

during medical imaging diagnosis by using a known visual attention computational model

for this particular task. In the future we will intent to design segmentation tools based on

this approach, which may be able to be tuned to specific pathological features and a priori

information.
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Jaccard Dice Sensitivity Specificity

Mean 0.204 0.307 0.622 0.995

Standard deviation 0.169 0.226 0.339 0.003

Median 0.170 0.290 0.754 0.966

Minimum value 0 0 0 0.982

Maximum value 0.612 0.760 0.992 0.999

Table 4.1.: This table shows the summary of the four validation measures that were

computed.

4.3. Conclusions

The first contribution of this work that I would like to highlight is the construction of a

dataset of preprocessed images of MS patients. This has not been done before in Colombia

and it is the first time that such a data set will be available for the research community in

the field of medical image processing.

The main contribution of this work is the implementation of a biologically inspired artificial

vision system for the detection of abnormalities on radiological images, specifically MS lesions

on brain MRI images. Our findings show that it is possible to model the radiologist’s

perception and find a plausible explanation of how the human visual system works in the

radiological diagnostic setting. This approach may be helpful for studying the visual system’s

behavior in the context of clinical radiology with functional brain imaging and eye tracking

tools. Ultimately, this kind of approach will allow us to analyze artificial visual networks in a

better way by introducing a priori information such as anatomical and semantic information

relevant for the clinical diagnosis.
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ABSTRACT

The detection, segmentation and quantification of multiple sclerosis (MS) lesions on magnetic resonance images
(MRI) has been a very active field for the last two decades because of the urge to correlate these measures with
the e↵ectiveness of pharmacological treatment. A myriad of methods has been developed and most of these are
non specific for the type of lesions, e.g. they do not di↵erentiate between acute and chronic lesions. On the
other hand, radiologists are able to distinguish between several stages of the disease on di↵erent types of MRI
images. The main motivation of the work presented here is to computationally emulate the visual perception
of the radiologist by using modeling principles of the neuronal centers along the visual system. By using this
approach we were able to successfully detect multiple sclerosis lesions in brain MRI. This type of approach allows
us to study and improve the analysis of brain networks by introducing a priori information.

Keywords: Multiple sclerosis, visual attention, artificial vision, magnetic resonance imaging

1. INTRODUCTION

Multiple sclerosis (MS) is the most prevalent demyelinating disease in the world. Its prevalence has been estimated
to be between 2 and 25 per 100,000 habitants.1 Its main pathological features are the destruction of the myelin of
nerve fibers with relative sparing of axons, the infiltration of inflammatory cells in a perivascular distribution and
lesions that are primarily located in the white matter in multiple small disseminated foci that tend to coalesce
as the disease turns to its chronic phase.

Magnetic resonance imaging (MRI) is considered the main tool for diagnosis and follow-up of MS patients.
This is due to the ability of di↵erent MRI sequences to depict di↵erent aspects of the disease in its di↵erent
stages. T1-weighted images with contrast are able to detect acute lesions, T1-weighted images without contrast
show hypointense areas of axonal damage, and T2-weighted images show acute lesions as well as shrinking
chronic lesions (“T2 footprint”). Recently, magnetization transfer images have been inversely correlated with
remyelination processes.2 Although the abnormalities shown on T2-weighted images are the least specific ones,
the quantification of their changes across time has been considered the standard for clinical trials.3 The overall
trend of lesions seen on T2-weighted images is to increase in number and volume over time, a phenomenon also
referred to as the “T2 burden of disease”. This burden is more severe in the absence of treatment and less so
when there has been e↵ective treatment. Thus, for the last 20 years there has been a rise in the development of
software tools for the segmentation and quantification of MS lesions on not only T2-weighted images, but also
on a combination of T1, T2 and proton density (PD) weighted images.

Most of the above mentioned methods rely on the segmentation of the lesions by using the voxel intensity.
Also, the majority of the algorithms use a multichannel approach, meaning that they combine several types
of MRI images, usually the T1-weighted, T2-weighted, PD, FLAIR (Fluid Attenuated Inversion Recovery, is a
sequence that has a T2-weighted tissue contrast and it suppresses the cerebrospinal fluid signal) and contrast
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enhanced images.4–6 Although many studies have also used only one modality of MRI image, especially T2-
weighted or PD images.7 Another important distinction is that many methods rely on the manual input of an
expert to help the segmentation process to be more accurate, which makes it a semiautomatic method,8 whereas
other approaches are absolutely automatic.4 The other very important distinction to make is the one between
supervised and unsupervised methods. The so called supervised methods rely on prior information. The prior
information can be provided as either a brain probabilistic or topological atlas, or as manually pre-segmented
and annotated lesions for further classification purposes.9–11 The unsupervised methods can also be divided into
two types, those that classify lesions as outliers based on a previous tissue segmentation of the brain and those
that only use the lesion properties to segment them.12,13

After more than 20 years of research on MS lesion segmentation and quantification, no study has been
published yet, to the extend of our knowledge, that uses biologically inspired algorithms to detect demyelinating
pathology in brain MRI images. By biologically we mean essentially the use of physiologic principles of the visual
system that have been mathematically modeled and that are worth exploring for medical image processing. The
main motivation of this work is to bring one of such models to the context of brain imaging so that it is possible
to detect MS pathology in MRI images and try to emulate the visual system at high levels of visual expertise
like radiology.

When determining the so called “burden of the disease” most of the referred methods try to look for the
total extent of the lesions. This is why the majority of the methods use multichannel approaches, since some
lesions may appear independently in di↵erent types of images. One advantage of visual attention models is that
they can be tuned and trained in order to detect and even describe specific types of targets in the scene. When
developing such a model for medical imaging purposes, the aim is to detect and discriminate between di↵erent
pathological conditions, thus it should be possible to design a system that can accurately detect a particular type
of lesion. In this work we hypothesize that by using some basic principles of the visual system it is possible to
develop a computational model that is able to detect MS lesions. The resulting tool will be specifically designed
to detect MS lesions in T2 weighted MRI and can eventually be tuned to describe various types of lesions in the
same imaging modality.

Furthermore, the combination of the current knowledge about the visual perception of radiologists with
existing computational visual attention models may help disentangle many of the challenges concerning problems
like accurate MS classification, staging and their relationship to therapeutics. As said before, MRI techniques
are rapidly evolving and are already able to distinguish between di↵erent pathological stages of brain tissue. In
this work we argue that computational visual models may be an e�cient way to not only analyze pathological
MRI images based on image features (luminance and texture) but also to find a suitable tool to study the neural
networks involved in human visual perception.

2. METHODS

A total of 23 subjects were scanned at the Magnetic Resonance Center of the San Jose Hospital in Bogota,
Colombia between 2000 and 2010. These subjects were patients admitted, diagnosed and treated at the same
hospital. Some patients were diagnosed with acute MS and others with recurrent chronic MS. The images used
for the analysis were acquired with the FLAIR sequence. By such, the demyelinating lesions in the white matter
are the only regions of the image with higher intensity than the rest of the brain, which makes them easier to
be detected by the radiologist. The parameters of the whole-brain acquisitions were: 1.5 Tesla Siemens Vision
magnetic resonance scanner (Erlangen, Germany), TE=110ms, TR=5000ms, TI=190ms, flip angle=180�, 2D
axial-plane acquisition with an in-plane resolution of 256x256 and a 0.976x0.976x5mm voxel size, a total of 16
slices and spacing between slices of 2.5mm, FOV of 24.98cm.

We used FSL’s brain extraction tool -BET (http://www.fmrib.ox.ac.uk/analysis/research/bet/)-14 to auto-
matically skullstrip the images. After having the skull automatically removed, the masks were checked for any
errors produced by the program and if there were any, they were manually fixed on Brainsuite’s graphic user
interface (http://brainsuite.loni.ucla.edu/). Afterwards, all the 3D brain volumes were split into separate axial
slices (16 total axial slices for each subject).



A expert radiologist determined what slices in each of the 23 volumes were abnormal. The slices that showed
abnormalities were included for further analysis yielding to a total of 162 axial 2D images of the brain with MS
lesions. The radiologist also manually delineated each lesion on the selected slice. The 162 images were smoothed
with a Perona-Malik anisotropic di↵usion kernel of size 0.4 and 100 iterations by using the ITK-SNAP C3D tool
(http://www.itksnap.org/). After these preliminary preprocessing steps we submitted the images to the visual
attention model.

The model presented here is built by a set of hierarchically organized filters (also called model-cells) that
represent specific groups of neurons. These filters were previously modeled by Thielscher et al.15–17 and they
resemble the di↵erent stages or steps of the the visual system’s information flow. These model-cells are: the lateral
geniculate nucleus (LGN), V1 simple cells, V1 complex cells, area V2 and area V4. The three latter ones, i.e.
V1 complex cells, area V2 and area V4, are bi-directionally connected to each other resembling the feed-forward
(bottom-up) and the recurrent (top-down) information processing and connections in the brain. V1 complex
cells , V2 cells and V4 cells constitute the three higher stages of the model and each of them undergoes three
successive “activation stages”: 1) pooling of bottom-up activity, 2) activity modulation via feedback interaction
(top-down modulation) and 3) intra-areal center-surround competition. For detailed information on the model
see Thielscher et al.15,16 We implemented a slight modification of this model, although we neither changed
the core functions of the filters nor the functions that establish their di↵erent activation stages. The general
structure of our model can be seen in figure 1.

Figure 1. This figure shows a simplified structure of the modified version of the texture boundary detection model.

As is shown in part a) of figure 1, the first filter is the LGN model-cell. The LGN filter and the V1 filter
(discussed below) greatly mimic the parvocellular visual pathway. This filter consists of circular center-surround
receptive fields to detect local luminance transitions. If the input input is called I, the LGN is determined by:

x = I ⇤ (⇤
Center

� ⇤
Surround

) (1)

x

on = [x]+

x

off = [�x]+

I is convolved by the di↵erence of isotropic 2D gaussian kernels represented by ⇤
Center

and ⇤
Surround

. [x]+

and [x]� represent half-wave rectifications. The output of this filter with an example image is shown in figure 2.

After LGN’s step the resulting ON and OFF activations (represented by x

on and x

off , respectively) are
processed by the V1 filter (V1 simple cells). As it is shown in part b) of figure 1, this filter is represented by
elongated ovoid ON (light) and OFF (dark) subfields and are expressed by :
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Figure 2. The resulting image on the right side shows that most borders are detected by the V1 filter.
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and the activation that is selective for dark-light polarity is:
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In (4) and (5) A
s
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, D
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, E

s

are factors that control the impacts of the additive (left side of the numerator),
multiplicative (right side of the numerator), and divisive components of the subfield responses. We used the
same values for these parameters as in the original paper of Thielscher et al.15,16

V1 Simple Cells 
a) 

b) 
c) 

d) 

Figure 3. a) Shows a diagram of the shape of the V1’s subfields. b) shows the maps derived from pon/off�left

✓

(equation

(2)) and pon/off�right

✓

(equation 3). c) and d) show the end result of activations S (equations (2) and (3), respectively).
Note that V1 simple cells introduce the global analysis by splitting the border detection in eight di↵erent orientations.

After the activation of V1-simple-cell filter, the filter for V1 complex cells pool the activity of two simple cells
of opposite polarity (Sld

i✓

and S

dl

i✓

) at each position i by calculating a half-wave rectification of their di↵erence:
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The input to the V2 filter is cV 1
i✓

which is convolved by a an isotropic gaussian filter  
f

and by the prolated
receptive field of V2 named K

left/right. K also analyzes the image globally along the eight orientations of ✓.
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Figure 4. It is shown in the figure that the incomplete edges seen after V1 simple cells’ activation are put together in
order to delineate contours of the objects inside the image. a) The two images are the V1 simple cells’ output and b) is
the resulting image of equation (6). The same sample image is used as before.
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The output image of this filter is shown is figure 5. The equation that computes V2’s activation is very
similar to the equation for V1 complex cells, in which the activities of opposite subfields (left and right in this
case) are weighted by their additive and multiplicative interactions:
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V2 Bipole Cells 

a) 

b) 

c) 

d) 

Figure 5. V2 model cells finalize the global analysis of the image by closing and delineating all edges in the image, since
their receptive fields are larger and more elongated than the ones of V1 model cells. a) shows the output of V1 and d) is
the final result of V2.

V1 not only passes the result of its activation (cV 1
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) to V2 but also to V4, which is hierarchically the highest
model cell of the system. This filter pools c
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Here “⇤” denotes the convolution operator. The rotation angle of the subfields is ' and the inhibitory subfields
q

left

'

and q

right

'

are shifted perpendicularly to their main axis by ±⌧

qy

. V1 and V2 filters process the information
in eight di↵erent orientations (✓ = 8), and V4 assigns to each orientation ✓ another eight orientations (' = 8).
Thus, V4 suppresses most of the noise in the image wherever ' is equal to ✓ which can be seen in figure 6. The
three subfields q

'

are combined in the following equation to give the output of V4.
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V4 Cells 
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e) 

Figure 6. a) Shows a schematic diagram of the center subfield and the inhibitory left and right subfields. b), c), d)
represent equations (12), (13), (14), respectively and e) shows the output of V4’s first activation. At this stage the more
relevant features of the original input image are the external border of the brain and some sulci borders but there is also
a very sharp delineation of the MS lesion (round-shaped structures in the center of the brain).

After getting c

V 4
i✓

from equation (15) a “center-surround competition” follows, which consists of a border
detection function that enhances the central portion of the edges and blurs or suppresses the surrounding in-
tensities. We call V4’s final output CC

V 4
i✓

(“V4 final”) and is determined by equation (16). Figure 7 show the
result of this step.
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After all the bottom-up information has been passed on to each of the filters, the corresponding outputs of
V1, V2 and V4 interact in a top-down manner, that is to say, the higher order filters (e.g. V4) modulate the
final output of lower order filters (e.g. V2). This step is determined by the following equation:
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Figure 7.

In equation (17) c
i✓

is the lower order model cell and h

i✓

is the higher order model-cell. Thus, for the V2-V4
interaction, cV 2

i✓

is modulated by CC

V 4
i✓

to get TPV 2
i✓

which we call “V2 second” in figure 8. TPV 2
i✓

then undergoes
“center surround competition” as stated in (16) that yields to CC

V 2
i✓

and we call it “V2 final” in figure 8. Then,
for the V1-V2 interaction, CC

V 2
i✓

modulates cV 1
i✓

as in (17) to get TPV 1
i✓

, which we call “V1 second” in figure 9.

“V2 final” “V2 second” 

Figure 8. On the right side (“V2 final”), the borders of the MS lesions are enhanced. Notice the higher intensity around
the central dark area and the homogeneous appearance of the rest of the brain tissue.

“V1 second” 

Figure 9.

The final step is to subtract TP

V 1
i✓

(“V1 second”) from CC

V 4
i✓

(“V4 final”). The end result of this is an
image that can be thresholded by eliminating all negative values. The positive values depict the end result of
our implementation for one single 2D image (see figure 10 for a closer look at the output on the example lesion).
Figures 11 and 12. show the results on two sample 2D brain images. After running the whole pipeline on the 162
images, the expert radiologist compared the manual delineations with the results of our implementation. The
expert determined whether or not the proposed pipeline was able to delineate the lesion.

3. RESULTS AND DISCUSSION

We were able to automatically delineate the lesions in 85.8% of our set of 162 images with MS lesions. The first
observation from these results is that the computational model is not able to pick up the smallest MS lesions.
This can be seen in figure 12 where the two smallest lesions were not detected by the model. Another important
observation is that when the lesion is larger in average than five centimeters the algorithm will characterize it
in a “ring” fashion, and would only describe the border or edge of the lesion. This can be appreciated in part
F. of figure 11. A plausible interpretation of the results is related to the texture decomposition done by the
model. The model is tuned to localize and highlight the areas of transition or change in texture, where there are
contrasts of local orientations of texture elements and where there is a higher texture density.16,18,19 In this case,
the tissue types that are radiologically distinct are the healthy white matter and the pathological hyperintense
MS lesions. After running the anisotropic di↵usion filter on the images, which is a preprocessing step, the images
preserved the edges and the areas within these were homogenized by the filter. Thus, it is possible to argue
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from equation (16) and “V1 second” derived from equation (17). The colored
image on the very right represents the thresholded result after subtracting the “V1 second” from “V4 final”.

Figure 11. A) is the original input image, B) shows the expert’s delineation (in red) on top of the input image, C) “V4
final” from equation (16), D) “V1 second” derived from equation (17), E) is the di↵erence image and F) represents the
thresholded subtraction.

Figure 12. A) is the original input image, B) shows the expert’s delineation (in red) on top of the input image, C) “V4
final” from equation (16), D) “V1 second” derived from equation (17), E) is the di↵erence image and F) represents the
thresholded subtraction. Note that the algorithm did not detect the smallest lesions that were delineated by the expert.



that most of the healthy brain tissue was homogenized in terms of texture and the areas with MS lesions were
also homogenized. The borders between pathological areas and the rest of the healthy brain are the areas of
changing texture, the areas with most edge details (higher density) and also higher orientation contrasts. The
model did not perform well in those lesions that were too small (less than 0.5 cm) maybe because there were not
enough pixels (or enough area) within them that had a homogeneous texture and not enough texture contrast
was identified between the lesions and the rest of the brain tissue. In the future we will explore standardized
learning methods in order to tune the model for smaller lesions detection.

We also compared the resulting detected areas against the radiologist’s delineation of the MS lesions with
standardized indices, i.e. Jaccard coe�cient, Dice coe�cient, sensitivity and specificity (Table 1). Although the
results for the Jaccard and Dice coe�cients are low, we still had a sensibility above 0.5 and a very high specificity.
It is important to note here that the main goal of this study is to find a plausible explanation of how the visual
system works during medical imaging diagnosis by using a known visual attention computational model for this
particular task. In the future we will intent to design segmentation tools based on this approach, which may be
able to be tuned to specific pathological features and a priori information.

Jaccard Dice Sensitivity Specificity
Mean 0.204 0.307 0.622 0.995
Standard deviation 0.169 0.226 0.339 0.003

Table 1.

Our main contribution is the implementation of a biologically inspired artificial vision system for the detection
of abnormalities on radiological images, specifically MS lesions on brain MRI images. Our findings show that it
is possible to model the radiologist’s perception and find a plausible explanation of how the human visual system
works in the radiological diagnostic setting. This approach may be helpful for studying the visual system’s
behavior in the context of clinical radiology with functional brain imaging and eye tracking tools. Ultimately,
this kind of approach will allow us to analyze artificial visual networks in a better way by introducing a priori
information such as anatomical and semantic information relevant for the clinical diagnosis.
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