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§ 0 Introduction.

The concept of model category is due to Quillen [~].
It represents an axiomatic aproach to homotopy in

which not only homotopy itself but also several of
the concepts of Algebraic Topology are developed,
such as fibrations, loop and suspension functors,
homology and homotopy sequences, among others. Thus
in order to precise the aims of this paper we first
give the definition of a model category.

0.10 Definition: A model category consists of a ca
tegory A together with three clases of maps:
fibrations (F), cofibrations (C)~ and weak equiva-
lences (WE) su h that:

1



A is closed under finite projectiv~ and
inductive limits.

Mol. Given a solid arrow diagram

where i £ C and p £ F, and where i or p be-
long to WE then the dotted arrow exists.

M.2. Any map f can be factored as f = pi ,
where i is a cofibration and p is a fibration
and weak equivalence. Also. f = ~i, whith i a
cofibration and weak equivalence and p a fibra-
tion.

M.3. Fibrations are closed under composition,
base change, and any isomorphism is a fibration.
Cofibrations are closed under composition, co-base
change and any isomorphism i~ a cofibration.

M.4. The base change of a map which is both a
fibration and a weak equivalence is a weak equiva-
lence. The co-base change of a map which is a co-
fibration and a weak equivalence, is a weak equiv~
lence.

M.S. Any isomorphism is a weak equivalence, and
if in a conmutative diagram
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two of the maps a e weak equivalences~ so is the
third.

As it was mentioned before~ the basic objective
of the definition of model categories was the axi~
matic developement of homotopy, In fact the word
modei stands for model for homotopy. However, it
is not homotopy that we are concerned with here~
but rather with conditions on the model category
under which the cLasses of maps involved in the
axioms admit precise characterizations which are,
in general~ missing. This may be the reason why
much~ if not all~ of the later developements and
aplications .of model categories is being done using
a special kind of model categories where F, C, WE,
FnWE, and CnWE admit characterization by means of
liftings. They are called closed model categories,
they are defined by Quillen l~ and l~ ) as follows:

0.2. Definition: A closed model category, consist~
of a category A, and three classes of maps F, C,
WE, such that:

C.M.i. A is closed under finite projective and
inductive limits.

C.M.2. Whenever in a commutative diagram

two of the maps belog to WEg then so does the thi d.
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CoMo3o F, C, and WE are closed under retractso

C.M.4. In a commutative solid arrow diagram

the dotted arrow exists in either of the follo-
wing situations:

i) i belongs to C and p to WEnF.
ii) i belongs to CnWE and p to F.

CoM.5. Any map f c~n be factored in two ways:
f = poi with i in C and p in FOWE, and
f = poi with i in COWE and p in F.

The class FnWE will be called the class of tri-
vial fibrations and will be denoted by TF. Simi-
larly CnWE will be called the class of trivial
cofibrations and will be deno~ed by TC. The clas-
ses F, C, WE, TF, and TC will be refered to as
the classes of basic morphisms of the model or
closed model category. The advantage of closed
model categories is the characterization of the
classes of basic morphisms, except for WE, by
means of liftings:

O ':l po .• v. roposltion:
WE) the following statements are equivalent:

n (A~ C~ F. vt ) is a l o s e d mode c a t e o r v ,

II) The classes of ba We morphisms admi the
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f o l low lng character Iz a t ions:

f Is a fibration If an only If it has the R.L.P.
for TC.
f Is a trivial fibration if and only if it has R.

i .>. for Co

f is a cofibration if and only if it has l.l.P.
for TF.
f Is a trivial coflbration if and only if it has
L.l.P. for F.
f is a weak equivalence if and only if
where i 'is a trl v la l cofibration and
trivial fibration.

f = pi
pis a

In proposition 0.3. we have used the following no-
menclature:

RoLoPo stands fo'it'i"ight1if~8ng prop;eB'"~y and-L.L<P, stands
for left I iftlng property. The proof of this prop~
sition can be found in Quillen [2J.

The aims of this paper are oasically the follo-
wing:
i) A sugestion is given for the axiomatizati n of
the theory of 1 iftlngs or categories with theo-

ies of 1 iftlngso This 's done by introdu ing the
concept of premodel catego y which ~s ba ically
a categ y A together with 've clas es of maps
r~ C~ WE~ T ~ and TC fa wh·ch the ondi °ons of
defini 'on 0030 a t i')~ ho do



We consider this to be the ideal situation~ as far
as liftings is concerned, first because it is hiah
ly workable, and second it represents not only'the
setting of liftings of the most used model catego-
ries, the closed model ones, but also because the-
re happens to exist a unique structure of this
kind associated to a model category. In fact:

ii) It will be shown that given a category A with
model structure ( F, C, WE ), there exists on
A a premodel structure (r, C, WE, TF, TC ), and
only one, for which the following property holds:
if a stands for any of the classes of basic maps
of the model structure, and Q for the correspon-
ding of the premodel category, then C? ~ C%.

This premodel structure will be called the clo-
sure of A and will be denoted by A • It will be
very useful for the third purpose of this paper.
In order to explain it, let us recall that, asso-
ciated to a model category (A, F, c, WE), there
exists a homotopy category , denoted by H Ao
andobta~nedby localizing the class WE. There
exist~ therefore, a functor r: A + H A, whicho
will be refered to as the homotopic functor,
and such that (r, Ho A) has the following uni-
versal property: If f belongs to WE then
r(f) is an isomorphism, and if t: A-+B is a
functor such that for each f in WE, t(f) is an
isomorphism, then there exists a unique functor
e : Ho A ~ B such that 8r ~ t 0 Now, 'f f
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belong~ to WE then ref) is an isomorphism, but this
does not characterize the weak equivalences of A .
In a closed model categoryj however, f belong to
WE if~and only if,r(f) is an isomorphism. Yet this
behavior of WE apparently does not characterize clo
sed model categorie~.

iii) A does provide a characterization of model ca
tegories in which weak equivalences are the only
morphisms sent by r into isomorphisms. In fact,
it will be shown that for a model category A the
following statements are equivalent:

a) X (the closure of A) is a closed model category.

b) f belongs to WE if and only if r(f)
morphism.

is an iso-

Categories with these (equivalent) conditions will
be called semiclosed rnode l categories and some
other characterizations of them are provided at the
end of the paper.

§ 1. Theory of Lifting~.

Recall that a commutative square
X e ~ z

& t in
K f3. L

in a category A is called a pull-back square if
whenever a square of the kind
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p
Z

~a
L

T

nl
K

commutes, then there exists a unique morphism
i : T ~ X such that 8i = p and ai = n . Dua-
lly, a commutative square is called a push-out
square if the corresponding one in AO (the oppo-
site category of A) is a pull-back square.

A morphism f:X ~ Y is called a retract of
g:K ~ L if there exists a commutative diagram· of
the kind. A

... K -+ X

g! !f
-+ L ... Y
<c:»

1y

1.1. Definition: Let ~ be a class of morphisms
of a category A we say that it is a fibration
type class if:

~ contains all the isomorphisms of A 0

~ is closed under compositiono
~ is closed und r base ext nsoons~ oeo
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the base extension of a ~ap in ~ belongs to G .

F 0 T. 4. <X in closed under retracts, i. e. any r-e

tract of an element of a belongs to ~ •

As examples of
Kan fibrations in
cial sets), Serre

fibration type classes we have
60S ( the category of simpli-

fibrations in Top (the catego-
ry of,topological spa~e~), and Hurewicz fibrations,
among others. The fact that they ~re fibration t~
pe classes follows (as we will see) from

1.2. Proposition: let G denote a non empty class
of morphisms of a category A, and RlP(Q.) the class
of morphisms of A wit~ right lifting property with
res pec t t0 (i The n RL P (~) is a fib rat ion ty P e
c las s ,.

We omit the proof which is very simple, but we
recall the definition of RLP: a morphism f: X ~ Y
is said to have the right I if.ting property with
respect to g: K ~ L if given any commutative so-
lid arrow diagram

the lifting q exists, i.e., q:L - X makes the
triangles commutative. Now, f has the right lif-
ting property for a class of morphisms if f has
that property for each member of the lass. If f

ha he ight lif fng property fo g we say a s
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that g has the left lifting property for f 0

Again,g has the 1eft 1i ftin g pro per t y for a c las s

if g has that property for each member of the
class.

Let us return to the examples given above; we
first conside~ the standard simplicial simplexes

~[nl (resp., topological simplexes ~(n) )
n = 0,1,2, ... , and we denote by ~[n,k] (resp.

~(n,k) ) the simplicial set V die ~[n-lJ ) (resp.
~

11 ~(n-l», 1 = 0, ••• 1L.n.
i
Thus the class of Kan fibrations is the class of
simplicial functions with right lifting property
for the inclusions

,

Where n>O and 0 ~ k ~ n. Similarl~ln Top the
class of Serre fibrations is the class of conti~
nuos functions with right lifting property for the
class of inclusions

~(n,k) .. ~(n) ,

where n>O and

As for Hurewicz fibrations they are precisely
the class

Jo
RLP { A - AxIIA E Top}

Where Jo(a) = (a,O).

1.3. Definition: A class (i of maps of a cate-
gory A is said to be a cofibration type class
if
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c.r.lo & contains the class of isomorph.i m s rof A 0

C.T.2. Q is closed under composition.
CoT.3. Q is closed under co-base extensions.
C.T.4, e is closed under retracts.

As an example of cofibration type classes we have
following.

1.4. Proposition: Let (i be a class
a category A. Then the class lLP(~)
with left I ifting property for ~ ,
type class.

of morphisms of
of morphisms

is a cofibration

It can be proved (Quillen [~ ) that the class
of injective simplicial functions, better known as
the (standard) cofibrations of ~oS, is a cofibra-
tion type class. It is'precisely

LLP (Ka n fibrat ions n HE) ,
where HE denotes the class of weak homotopy equiva-
lences of 60S. Similarly, the class

LLP (Kan fibrations)
is, of course, a cofibration type class known as
the class of trivial cofibrations of ~oS.

It follows from 0.3 that, in general, in a clo-
sed model category F and TF are fibration type cla-
sses and C and TC are cofibration type classes.

An interesting example are the isomorphisms and
the class of all the morphisms of any category. In
fact, one has that9 denot·ng by Mor A and Iso A



these classes of morphisms, then
Mor A = LLP (Iso A ) = RLP (Iso A ),
Iso A = LLP (Mor A ) = RLP (Mor A ),

Note that RLP and LLP can be considered as operator$
from the class of parts of Mor A. Furthermore, if
we complete the class of parts of Mor A into a ca-
tegory with the morphisms being the inclusions~ then
RLP and LLP are contravariant functors. That is to
say (among other things), if C?Cle then RLP(la )c;RLP(Q)

and LLP «s: ~ LLP «n.

§ 2. Premodel categories.

2.1. Definition: By a premodel category we mean
a category A together with four classes of maps :
F(fibrations), TF (trivial fibrations), C (cofibra-
tions) and TC (trivial cofibrations). The class of
compositions of the kind X 1y ~z , where iE TC
and pE TF, will be denoted by WE and its members
will be called weak equivalences. The classes F,
TF, C, TC, WE will be called the classes of struc
tural maps and are subjected to the following pro-
perties:

P,M.1. TF~F i,e, any trivial fibration is a fi-
bration.

P,M,2. F, TF, C, TC, admit the following cha-
racterization by liftings:

F := RLP ( TC ) , TF::::RLP ( C ) , LLP ( TF ) <:.
LLP ( F ) ~ TC
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PoM.30 Any morphism f of A admits two factori
zations: f = kh , where hE TC and kE F, and
f = kh, where hE C and kE TF

One has the following consequences of P.M.1.
to P.M.3.
2.2. Proposition: In a premddel category the follo-

wIng hold:
i) C = LLP(TF) and TC = LLP(F)

ii) F and TF are fibration. type classes and C
and TC are cofibration type c~asses.

, ,1,i I ) Iso A <;WE .
iv) TC-<;C 'and mo r-eov e r TC = C n WE. A.1 so

TF = F:{)'WE.'
v ) F(lCf"lWE = Iso A

Proof: i) is an inmediate consequence o~ ~~e ~ela
tions

F = RLP (TC) a~d TF = RLP( C ).

As far as ii) is concerned, the characterization of
F and TF by the right Lifting property implies that
they are fibration type classes. Similary, for C
and TC, since they are characterized by the left
lifting property they are 'cofibrationtype classes.
For iii), since any isomorphism belong to 'any fi-
bration(res. cofibration) type class, then any
isomorphism belongs to TF and TCo Therefore, any
isomorphism f;X ~ Y can be written as f = 1yof,
which in turn implies that fE WEo
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iv) Since TF~F, then LLP(F)~LLP(TF)o Hence by
P.M.2., TC~C. Note that if fETF(respo fETC),
then f can be factored as f = foly and
f = 1y of therefore, TF, TC~WE, and since
TF~F and TCC,C, then TF~F(;)WE and TC~CnwE.
We next prove the opposite inclusions: suppose
that f£F~WE. Since fEWE, it admits a factori-
zation f = koh where hETC and kETF. We then"
have a solid arrow diagram

X 1 ~ X

hl J .> :r!f
K'" .. Y

k
in which the, dotted arrow exists since h£TC and
fEF. Then f is a retract of k£TF, which is cl~
sed under retracts. That implies that f£TF.
The proof of TC = CnHE is similar.

v) follows from the commutativity of the follo-
wing diagram, forf£F~nWE:

1X x ~ Xf! ,q.> .:P! f
y.... ~ Y

1y
That ends the proof of proposition 2.2.

Remark. We will say that a map X -i. K is a co-
domain restriction of X -f+-~ if there exists an
injection K.2....X such that f = i 0 j. Simi-
larly;we "ill say that a map L..l. Y is a doma in
restriction of X -i. Y if there exists a surj~c
tion X ~ L such that f = j 0 s. In particu-
lar, if one has a composition
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i

so that (i is an injection and s is a surjection),
where s defines a domain restriction L -L Y of
f~ X ~ Y, then the codomain restriction j is sim
ply given by L ~ X ~ Yo This is the form gen~
rally used to present domain restrictions but, un-
fortunatelly, it is not enough for our purposes, In
many useful categories the two definitions coincide,

It is very easy to verify that if fERLP(Q) and
g is a codomain restriction of f, then gERLP(Q),
Also, if fELLP(~) and g is domain restriction of
f, then gELLP(Q). Therefore.

2,3. Proposition: In a premodel category F and TF

are closed under codomain restrictions and < and
TC are closed under domain restrictions.

2.4. Remarks: i) The basic properties of a premo-
del category can be given diagramatically as follows:

RLP
C < .. TF

nWEi~L:( InWE
TC RLP ~ F

• LLP

For example, the arrow C ~TF stands for the
equality RLP(C) ..r , The arrow nw~ TC or
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CnWE = TC and the diagonal for the equality
WE = TFoTC (in the sense that fEWE if and o~lyif
f = poi, where iETF and pETC).

ii) It is clear that any closed model category
is a premodel category, but the opposite does not
seem to be true. As in the case suggested by Qui-
llen [1] (and never formali zed) to build up closed.
model categories from model categories by omiting
unnecesary arrows, there is also the open question
on whether or not there is a formal procedure to
associate with a premodel category (which is not
closed) a closed model category. But, is possible,
in the light of the results given later on in this
paper, this can not be done by simple elimination.
In fact, as we will see A is closed if and only if,.. ,..
A = A ,and A is the unique premodel category a~
sociate to A 'such that for each one of the classes,.,
of structural maps (say ex) one has Ci ~ ~. Hence

tvif A is a premodel category and A is a closed mo-
del category obtained by elimination of maps, then
,., "A becomes the closure of A, and since A is clo,.,

."sed, then A = A, which contradicts the ·assump-
tion of factual elimination of maps or the hypoth~
sis that A is not clos ed 0

iii) From the previous remark one is tempted to
predict that premodel categories are in fact closedo
But from the point of view of general model catego-
ry theory one would be lead to a less enthusiastic
position. In fact. it invo ves the axiom of model
34



categories, namely Mo5o~ less l~kely to be redun-
dant. Yet, if accepted the equivalence cVo~ed e
premodel, then~ at least in the closed model cate-
gories, M.So would be redundant and by implication
(from some of the results of this paper) a first
choice for redundance in the general caseo

The same expectation as in Quillen's work, in which
no examples of non-closed model categories are gi-
ven, remains alive here, except for the fact that
several propositions suggest serious reasons to sus
pect a difference between (not only the two, but)·
the three concepts and thus an eventual equivalence
being a surprise.

§ 3. The closure of a model category.

In this paragraph we will prove the existence
of a premodel category (over the same underlaying
category) associated to a model category. Since the
part corresponding to uniqueness of the closure lea
yes only one possible closure, we dealt firts with
this part and subsequently we prove that the only
possible choice is in fact a premodel category.

3 c 1 Proposition: Let (A, F, C, WE) be a model cate-
gory, Suppose further that (A, r, C, TF, TC) is a
premodel category such that F~l' , C~C , TF~TF, TC~TC.
Then the following equalities hold:

f ::: [F] - RLP TC) ~ C ::: ( CJ :: LLP(TF) ,
Tr :: [TF) :: RLP ( ), TC :::(T J :: LLP F) c



where If G is a class of mo rp h lsm s of A then [~J,
denotes the class of all retracts of members of ~ .

Proof: Recall that in a premodel category the clas
ses of fibrations and trivial cofibrations are fi-
bration type classes .and therefore closed under r~
tracts. Similarly, cofibrations and trivial cofi-
brat ions are cofibration type classes and hence al-
so closed under retracts. Since, by hypotesis, one
has inclusion's G = c'i (Q = F, TF, c , TC), it fo-
110 w s that ((1J C £t ( ex = F, TF, C, T C ). We pro v e now
that F <; [F]. The procedure to prove that TF~[TFJ
is the same and will be ommited_

Let f:X ~ YEF. Since (A, F, c, WE) is a model
category, then f can be factored as

f
t-. X .. Y

~A
K

Where he F and gETC = C()WE. By hypotesis F ~F
and TC<:TC. One can then consider the following
diagram

where the lifting q exists, since f = RLP(fC) .
Thus, f is a retract of hEF. Now, if we assume
that f: X ~ YEC, then, from a decomposition of
f in (A, F, c, WE), say X f > Y

~A
L
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k€C and l£TF, one gets the following diagram, from
which C~lc) follows ~

X k ~ Lf! /q //'711
y"" ... y

ly

Using similar procedures one can prove the remain-
ing equalities. Tha~ ends the proof of proposi-
tion 3.1.

The following corolary is obvious:

3.2. Corolary: Giv~na model category there exists
at most a premodel category (over the same undel-
ying category) such that if a denotes any of the
classes of structural maps of the model category
and Q the corresponding one of the premodel cate-
gory, then e c (i.

We face now the task of proving that (A, [FJ,
[c], [rr}, (TC) is a premodel .c ate gorry;' In or-der-

to simplify it we give first a lemma whose result
corresponds to the general theory of liftins~

3.3. Lemma: Let A be a category closed under re-
tracts. Let a and e be two (not necessari ly di ffe
rent),classes of morphisms of A. One has

. t ) If (il~RLP (@) then [CX)CRLP, (~) and (fC;R~P~)).
i t ) If ~ ~ LL P (~) the n [Q] eLL P (~) and a C; l LP ~) ).

In words~ if a morphism f has the right lifting
property with re~pect to ~ class ~ then any re-



tract of f has the right lifting property with re~
pect to Q , and f has the right lifting property
with respect to any retract of any .morphism of~.
Similarly for left lifting property.

Proof: Suppose that f: X -+Y has the right lif
ting property with rOespect to a class ~ of morphi~
ms of a category A. Let g: K -+ L be a r-et ract-

of f given by the following commutative diagram
ai 81

K --+ X --+K

gt fl !g
with 8. 0 a. = 1,2. Suppose given a commutative

J. J.

square

with kEe~ Then the following diagram provid~a
lifting q N -+K :

q = 81oq~, where q~ exists since kE~ and f
has the right lifting property with respect to e.
That proves [~kRLP «(f3) • Suppose now tha t f has
the right lifting property for £. Let g E ~
and supose that h is a retract of g given by the
38



following diagram
().l 81

K • M .. K

hl gt lh
L , N • L

().2 ().2

with a.oa. = 1. We want to prove that then f
1 1

has the right lifting prpperty for h.ror thispurpose

consider a commutative diagram

K
p • X

hi if
L .. Y

n

The lifting' q : L -+X is given by q =q; a 1 in

(). a p
K 1 • M 1 ~ K -.,x

h! gl ~~",!h'';'" If
L ~ N-'" ~ L ~ Ya1 a2 n

where q~ exists since f has the'right lifting pro-

perty with respect to g.' That proves Q~ RLP~]).

Part ii) can be proved in a similar way.

3.lt. Proposition: If (A,F, c , vr) Is a model ca

tegory, then (A, [F], lcJ, (TFJ, (TC]> is a pre-

model c e t e qo r v ,
Proof: We first notice that if a and ~ are c t a-

sses of morphisms in a category then QC[GJ and if

G'~ , then [Q], Ii3J Now, since rrcr then

[Tr};;[r], which proves axiom Po M 010 In order to
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prove P.M.2., we notice that since (A, F, C~ WE)is
a model category then the following inclusions hold

F ~RLP (TC), TF <;RLP (C) .

Then by lemma 3.3 one also has that [FJ~RLP [TC)
and [TFJ{RLP (C]. On the other hand, since for
any class G one has that LLP(RLP«(i) ).:2et and
RLP(LLP (li) )2~ ,then, from the inclusion
F,RLP [TC] ~ one gets that :

LLP [FJ2 LLP (F) ;> .LLPlTc] 2 TC .

Similarly, LLP [TrJ2[C] Therefore, in order
to finish the proof of P.M.2., it remains to pro-
ve that RLP[TCJc;[F) rand RLP [C] <; [TFJ., Since
the proofs are identical we only do the first one.
Suppose f:X ~Y has ~he ~ight lifting property
with respect to [TC] and thus to TC (see next
remark). One considers a decomposition of f, say

f

With g e: TC and he: F. One then has' the follo-
wing commutative diagram

lx
X ~ Xg! ,q..,.,71f

K" ~ Y
h

where the lifting q exists by the assumption on fo
Thus f belongs to (Fj 0

Axiom PoMo3o is obvious.
The following theorem is clear now:
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3.5, Theorem: Given
exists one and only
C. TC) such that
WE " WE.

a model <category (A,r,C,WE)there
one premodel category (A, r,

F~F, c ~ C, TF ~ TF, TC' TC,

We call the premodel category associated to a
model category the closure of the model category.
This name is justified by the following proposition:

3.6. Proposition: A model category is closed if
and only if it coincides with is closure.

§ 4. Semiclosed model categories.

In this paragraph we want to give characteriza
tidns of model categories whose closure is also a
model category. It turns out that, as we will see,
they are closely related to model categories whose
weak equivalences are the only morphisms mapped by
the homotopy functor into isomorphisms. In fact,
the two characterizations are equivalent and model
categories with these two equivalent properties
will be called semiclosed model categories.

4.1. Definition: We will say that a model catego-
ry is a semiclosed model category if in any com-
mutative diagrams of the kind

A) X f with f£LLP(F), ke:WE,> Y
hi lk ge:LLP(F) ;

K )'Z
g
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B) L
f~

)0 x
ki lh

with f~ , g~£RLP(C) and
k~£ WE

M ~ )- Kg

the morphism h can factored as h = i9P, where
p§LLP(F) and i£RLP(C).

4.2. Proposition: The closure of a semiclosed model
category is a closed model cat~gory.

In order to prove this proposition we need some Ie
mmata. We will use the following notarion: is a
map X ---+ Y belongs to a class 6? of morphisms of
A we write X Sy.

4.3. Lemma: In commutative diagrams of the kind
below the morphism h belongs to WE.

X -1:!:.sl.. y X hrJ~ Y

T~~ ~~F
K K

P roo f : S inc e WE,WE, the result, follows from the
following push~out and pull-back diagrams for the
first and second situations respectively:

X (Tc).y X~

Tcl [Tcrl ~x ~i KXy X WE.~ X

K > Kl1xy~ \ J[Tr] ![TF]-, --Ny h K ~y
~ TF

Note that i, j£WE by axiom Mo5e Further, the cobase
extension of a member of TC belongs to WE as well
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as the base extension of a member of TF, by axiom
M.4. Finally, TC is closed under cobase extension
since it is a cofibration type class, and TF is clo
sed under base extensions since it is a fibration
type class. Hence hE~ and the result follows •

.4.4. Lemma: In commutative diagrams of the kind be
low the morphism h belong to WE.

X TC»- y h Zro·
[T~ /1tF)

K

Proof: In the first diagram there exists a lif-
ting q:Y -.K and by the previous lemma it be~
longs to WE. Therefore, h factors as

Y h.. z
W~ftFJ

K

which implies that hEWE. For the second diagram,
there exists a lifting q .. : K -.y which again be-
longs to WE. Hence h factors as

X h .. Y

[T~~
K

which implies that hE WE.

Proof of proposition 4.2: We first prove that, with
no conditions on (A, F, C, WE), WE is closed under
composition. Let f:X ~Y and g:Y -+Z be membe s
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of WE. One can pick factorings of'f and 'g as fo-
llows

X f .. y

tr~~F
K

y g) Z

T~ ftc]
K

according to lemma 4.4~
ded diagram

Hence one gets an exten-

by axiom M.S. Thus gof£WE. Now we take in account
that (A, F, c, WE) is a semiclosed model category.
Suppose a commutative diagram

X V'!:)y

~~
K

is given. We want to prove that heWE. By lemma 4.4
one can extend this diagram to

x~cl~y. T>:
K > K'"

[TC]

thus, there exists
diagram

a lifting q:Y"'-. K....y~Tf:
K

From the
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it follows (M.5) that qEWEo Hence one gets a com-
mutative diagram

[TC]

and since ·[TcJ = LLP (r ) we are in the situation A)

of the hypotesis. Hence h = iop. with iERLP(C)=
= [Tr] and pELLP (r ) = [TC]. That implies that
hEWE. We now prove that in a commutative diagram

X WE> y

~\.~
K

h£WE. This follows from condition B) of the hypo-
tesis and the following extended diagram, guaran-
ted by lemma 4.4.

X TC .. y" [TrJ. y

T~//~E f
K" ~ K

(Tr]

Since it is clear that a prem6del category is a
closed model category if and only if axiom M.5
holds for its weak equivalences, then (A, ~J, ~],
[Tr) , [TC]) is a closed model category. That ends

the proof of 402.

The converse of 4.2 is also true and obvious:

~o5 Proposition: if the closure of a model catego-
ry is closed then the model category IS semiclosedo
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We now relate semiclosed model categories with
the homotopic functor r: A ~Ho Ao We first iden
tify a larger than the known class WE of morphisms
of A whose images r(f) are isomorphisms:

4.6. Proposition: In a model category (A, F, c, WE)
any morphism which factors as

X f ~ y
LLP(F~ ~LP(C)

K

is sent by r: Ao-'Ho A into an isomorphism.

Proof: Since LLP(F) =[TC] and RLP(C) =[TF] and
any retract of an isomorphism is an isomorphism ,
it follows that, if hE[TC) (resp. hElTFJ) then r(h)
is an isomorphism and if f is a retract of h, then
r(f) is an isomorphism.

We have therefore that any weak equivalence of
the closure of a model category is also sent by
r.: A ~Ho A into an isomorphism. Conversely we
have:

4.7. Theorem: For a model category the following
two statements are equivalent:

i) The model category is semiclosedo
ii) If r(f) is an isomorphism then f is a weak

equivalence of its closure.

Proof: i) -+ii). If A is semiclosed, then its clo
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sure is closed. We denote the homotopy category
of the closure X of A by ~oA and the homoto-
py functor by oro Since WE'WE, if fEWE, then
ref) is an isomorphism. Hence there exists a fun
tor If: HoA ....HoA
commutes

such that the following diagram

r

ii) ...i). By the note above, ii) becomes:
r (f) is an isomorphism if and only if fE WE .
Thus M. 5. holds for ~. Hence (A, [F] , (C] , [TF] ,
[TC] ) is a closed model category if il) holds,
and in such a case A is semiclosed.

It is clear, from 4.7, that the property of
being a semiclosed model category, for a model ca-
tegory, lies primarily on the good behavior of the
class of its weak equivalences. We next emphasize
more on this aspect:

4.8 Definition: A model category (A, F, c, WE) is
said to be strongly semiclosed if in any diagram
of the kind below, h£WE.

X RLP(C.)y

WEl Jh
RLP(C)
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It is not difficult to prove that A is stron-
gly semiclosed if and only if WE; WE.

We next give some workable sufficient co n d Lt Lo n s
under which a model category is strongly semiclo-
sed.

4.9 Proposition: Each one of the following is a
sufficient condition In order for a model catego-
ry to be strongly semiclosed:

i) TF is closed under retracts.
ii) TC is closed under retracts.

iii) WE is closed under retracts.

Proof: i) If TF is closed under retracts then
TF = TF = RLP(C).

Hence the diagram of 4.5 becomes

X TF • Y
WE! lh

z .... K
TF

Since TF <;: WE then by axiom M.5 he:WE.

ii) we will prove that WE = WE. It remains to
prove that W&;WE. But if fe:WE one can pick a fac
torizatiori of f of the kind

X f ~ y

T~}C
K

and since TC s closed under retracts~ then
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TC ~ [Tcl = TC, Thus fEWEo (Note that this proced~
re could very well be used in part i) as well ).

iii) Suppose that WE is closed under retracts.
We will prove that RLP(C) =Tr~WE, and therefore
the condition of 4.5 holds. The desired inclusion
follows from TF = [TFJ~ [WE] = WE. That ends
the p roof of 4.9.

Notice the following equivalences of conditi-
ons i) and ii) of proposition 4.9:

TF is closed under retracts if and onl, "f
TF = RLP(C) •

***

TC is closed und~r retracts' if and ~n1y if

TC = LLP (F).
So, if one of the onclusions TF~RLP(C) or
TCCLLP (F) becomes equality in a model category,
then WE-WE and the model category becomes a
(strongly) semiclosed model category.

49



REFERENCES •.

[1] Quillen, Daniel: Homotopical Algebra, Lecture
Notes. in Math, 43, Springer-Verlag, Berlin
1967.

[2] Quillen, Daniel: Rational Homotopy, Annals of
Math. 90 (1969), 205-295.

[3] Ready, C.L.: Homotopy tneory of model catego-
ries (mimeographed Notes) •

***

Vepa~~amen~o de Ma~em4~iea~ y E~~ad~~~iea
U~ive~~idad Naeional de Colombia
Bogo~4, 6, V.E., Colombia, S.A.

(Recibido en Septiembre de 1967)

50


