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THE CLOSURE OF A MODEL CATEGORY
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§ 0 Introduction.

The concept of model category is due to Quillen [i}
It represents an axiomatic aproach to homotopy in
which not only homotopy itself but also several of
the concepts of Algebraic Topology are developed,
such as fibrations, loop and suspension functors,
homology and homotopy sequences, among others. Thus
in order to precise the aims of this paper we first

give the definition of a model category.

0.1. Definition: A model category consists of a ca

tegory A together with three clases of maps:
fibrations (F), cofibrations (C), and weak equiva-

lences (WE) such that:
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M.0. A is closed under finite projective and

inductive limits.
M.1., Given a solid arrow diagram

A —>

X
7
| 7
Y

-
B ——>

where i € C and p € F, and where i or p be-

long to WE then the dotted arrow exists.

M.2. Any map f can be factored as f = pi ,
where i is a cofibration and p is a fibration
and weak equivalence. Also f = pi, whith i a
cofibration and weak equivalence and p a fibra-

tion.

M.3. Fibrations are closed under composition,
base change, and any isomorphism is a fibration.
Cofibrations are closed under composition, co-base

change and any isomorphism is a cofibration.

M.4., The base change of a map which is both a
fibration and a weak equivalence is a weak equiva-
lence. The co-base change of a map which is a co-
fibration and a weak equivalence, is a weak equiva

lence.

M.5. Any isomorphism is a weak equivalence, and

if in a conmutative diagram
X —> Y
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two of the maps are weak equivalences, so is the

third.

As it was mentioned before, the basic objective
of the definition of model categories was the axio
matic developement of homotopy. In fact the word
modei stands for model for homotopy . However, it
is not homotopy that we are concerned with here,
but rather with conditions on the model category
under which the classes of maps involved in the
axioms admit precise characterizations which are,
in general, missing. This may be the reason why
much, if not all, of the later developements and
aplications of model categories is being done using
a special kind of model categories where F, C, WE,
F(WE, and CNWE admit characterization by means of
liftings. They are called closed model categories,
they are defined by Quillen [}] and [ﬂ ) as follows:

0.2. Definition: A closed model category, consists

of a category A, and threeclasses of maps F, C,

WE, such that:

C.M.1. A is closed under finite projective and

inductive limits.

C.M.2. Whenever in a commutative diagram

X i;;;? Y

two of the maps belog to WE, then so does the third.
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C.M.3. F, C, and WE are closed under retracts.

C.M.4. In a commutative solid arrow diagram

X ————ﬁ;Y
i} _-""p
% Tovean K

the dotted arrow exists in either of the follo-

wing situations:

i) i belongs to C and p to WENF.
ii) i belongs to CNWE and p to F.

C.M.5. Any map f can be factored in two ways:
= poi with i in C and p in FNWE, and
= poi with i in CAWE and p in F.

The class FNWE will be called the class of tri-
vial fibrations and will be denoted by TF. Simi-
larly CNWE will be called the class of triviali
cofibrations and will be denoted by TC. The clas-
ses F, C, WE, TF, and TC will be refered to as
the classes of basic morphisms of the model or
closed model category. The advantage of closed
model categories is the characterization of the
classes of basic morphisms, except for WE, by

means of liftings:

0.3. Proposition: For a model category (A, F, C,

WE) the following statements are equivalent:

i) (A, ¢

ii) The classes of basic morphisms admit the

F, WE) is a ciosed model category
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foliowing characterizations:

f is a fibration if an only if it has the R.L.P.
for TC.

f is a trivial fibration if and only if it has R.
L.P. for C.

f is a cofibration if and only if it has L.L.P.
for TF.

f is a trivial cofibration if and only if it has
LRES PEU FOPCFX

f is a weak equivalence if and only if f = pi
where i is a trivial cofibration and p is a

trivial fibration.

In proposition 0.3. we have used the following no-

menclature:

R.L.P. stands for vight lifting pvoperty and L.L.P. stands
for teft lifting property. The proof of this propo

sition can be found in Quillen [ﬂ .

The aims of this paper are basically the follo-
wing:
i) A sugestion is given for the axiomatization of
the theory of 1iftings or categories with theo-
ries of liftings. This is done by introducing the
concept of premodel category , which is basically
a category A together with five classes of maps
F, C, WE, TF, and TC for which the conditions of

definition 0.3. part ii), hold
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We consider this to be the ideal situation, as far

as liftings is concerned, first because it is high
ly workable, and second it represents not only the
setting of liftings of the most used model catego-
ries, the closed model ones, but also because the-
re happens to exist a unique structure of this

kind associated to a model category. In fact:

ii) It will be shown that given a category A with
model structure ( F, C, WE ), there exists on
A a premodel structure (F, C, WE, TF, TC ),  and
only one, for which the following property holds:
if & stands for any of the classes of basic maps
of the model structure, and @ for the correspon-

ding of the premodel category, then @ CQ.

This premodel structure will be called the clo-
sure of A and will be denoted by X . It will be
very useful for the third purpose of this paper.
In order to explain it, let us recall that, asso-
ciated to a model category (A, F, C, WE), there
exists a homotopy category , denoted by HOA
and obtained by localizing the class WE. There
exists, therefore, a functor r: A > Ho A , which
will be refered to as the homotopic functor ,
and such that (r, H, A ) has the following uni-
versal property: If f Dbelongs to WE then
r(f) is an isomorphism, and if t : AB 1is a
functor such that for each f in WE, t(f) is an
isomorphism, then there exists a unique functor
e : Ho A = B such that ©er =% , Now,' "fTf" " %
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beiongs to WE then 1r(f) is an isomcrphism, but this
does not characterize the weak equivalences of A .
In a closed model category, however, f belong to
WE if.2nd only if,r(f) is an isomorphism. Yet this
behavior of WE apparently does not characterize cio

sed model categories.

iii) X does provide a characterization of model ca
tegories in which weak equivalences are the only
morphisms sent by r into isomorphisms. In fact,
it will be shown that for a model category A the

following statements are equivalent:

a) X (the closure of A) is a closed model category.

b) £ belongs to WE if and only if r(f) is an iso-

morphism.

Categories with these (equivalent) conditions will
be called semiclosed model categories and some
other characterizations of them are provided at the

end of the paper.

§ 1. Theory of Liftings.

Recall that a commutative square
B Z

o
L

X ———
K ——m—>
in a category A is called a pulli-back square if

B

whenever a square of the kind
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=
R—n3

B
commutes, then there exists a unique morphism
i : T>X such that fi = p and &i = n . Dua-
lly, a commutative square is called a push-out
square if the corresponding one in A° (the oppo-

site category of A ) is a pull-back square.

In a pull-back (resp. push-out) square

X irwmetnl

cl d

K—b—PL
a and ¢ are called the base extensions of b and
d , respectively (resp. b and d are called the co-

base extensions of a and ¢, respectively ).

A morphism f:X - Y is called a retract of
g:K > L 1if there exists a commutative diagram of
the kind. 1

o

- K —»

f

< X

B — %

< o—
h

g
T, -y
~——~"
1y

1.1. Definition: Let ® be a class of morphisms

of a category A we say that it is a fibration

type class if:

F.T.1. @ contains all the isomorphisms of A .
F.T.-2. @ is closed under composition.
F.T.3. @ is closed under base extensions, i.e.
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+he base extension of a map in @ belongs to @ .

F.T.4. & in closed under retracts, i.e. any re

tract of an element of R belongs to @ .

As examples of fibration type classes we have
Kan fibrations in A°S ( the category of simpli-
cial sets), Serre fibrations in Top (the catego-
ry of topological spaces), and Hurewicz fibrations,
among others, The fact that they are fibration ty

pe classes follows (as we will see) from

1.2. Proposition: Let @ denote a non empty class

of morphisms of a category A, and RLP(&) the class
of morphisms of A with right lifting property with
respect to ® . Then RLP(R) is a fibration type

class.

We omit the proof which is very simple, but we
recall the definition of RLP: a morphism f: X - Y
is said to have the right lifting property with
respect to g: K -» L if given any commutative so-

lid arrow diagram

o
e— %
\
1 E 1
\
\
< ¢
-

the lifting q exists, i.e., q:L - X makes the
triangles commutative. Now, f has the right 1lif-
ting property for a class of morphisms if f has
that property for each member of the class. If f
has the right 1lifting property for g we say also

~ =
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that g has the left lifting property for f .
Again g has the left lifting property for a class
if g has that property for each member of the
class.

Let us return.to the examples given above; we

first consider the standard simplicial simplexes

A[n] (resp., topological simplexes A(n) )
n=0,1,2,..., and we denote by A[n,k] (resp.

A(n,k) ) the simplicial set U a*( A[n-1] ) (resp.
%L A(n-1) ), R R R..nf

Thus the class of Kan fibrations is the class of
simplicial functions with right lifting property
for the inclusions

Aln,x] - A[n] s

Where n>0 and o € k £ n. Similarlyin Top the
class of Serre fibrations is the class of conti-
nuos functions with right lifting property for the

class of inclusions
A(n,k) = A(n) ,
where n>0 and 0<k<n.
As for Hurewicz fibrations they are precisely

the class J

(o]
RLP { A - AxI|A € Top }

Where J,(a) = (a,0).

1.3. Definition: A class @ of maps of a cate-

gory A is said to be a cofibration type class
s 7
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¢.T.1. @ contains the classof isomorphims of A.
C.T.2. @ is closed under composition.
C.T.3. @ is closed under co-base extensions.

C.T.4. @& is closed under retracts.

As an example of cofibration type classes we have

following.

1.4, Proposition: Let @ be a class of morphisms of

a category A. Then the class LLP(®) of morphisms
with left lifting property for @ , is a cofibration
type class.

It can be proved (Quillen [1] ) that the class
of injective simplicial functions, better known as
the (standard) cofibrations of A°S, is a cofibra-
tion type class. It is'precisely

LLP (Kan fibrations NMHE) ,
where HE denotes the class of weak homotopy equiva-
lences of A°S. Similarly, the class

LLP (Kan fibrations)
is, of course, a cofibration type class known as

the class of trivial cofibrations of A°S.

It follows from 0.3 that, in general, in a clo-
sed model category F and TF are fibration type cla-

sses and C and TC are cofibration type classes.

An interesting example are the isomorphisms and
the class of all the morphisms of any category. In
fact, one has that, denoting by Mor A and Iso A
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these classes of morphisms, then
Mor A = LLP (Iso A ) RLP {(Iso A ),
Iso A = LLP (Mer A ) RLP (Mor A ).

il

Note that RLP and LLP can be considered as opevrators
from the class of parts of Mor A. Furthermore, if
we complete the class of parts of Mor A into a ca-
tegory with the morphisms being the inclusions, then
RLP and LLP are contravariant functors. That is to
say (among other things), if @C® then RLP(®)CRLP(R)
and LLP(B) CLLP(QR).

§ 2. Premodel categories.

2.1. Definition: By a premodel tategory we mean

a category A together with four classes of maps
F(fibrations), TF (trivial fibrations), C (cofibra-
tions) and TC (trivial cofibrations). The class of
compositions of the kind X i»Y B 7 , where ie TC
and pe TF, will be denoted by WE and its members
will be called weak equivalences. The classes F,
TF, C, TCy, WE will be called the classes of struc
tural maps and are subjected to the following pro-

perties:

P.M.1., TICF i.e. any trivial fibration is a fi-
bration.
P.M.2. F, TF, C, TC, admit the following cha-

racterization by liftings:

las
i

RERC DG «) 25 oBPi® vRLEC 2@ ) 14 LERC DR L) €0y

LLP ( )CITC 4

*ry
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P.M.3. Any morphism f of A admits two factori
zations: f = kh , where he TC and ke F, and
f = kh, where he C and ke TF

One has the following consequences of P.M.1.

to P.M.3.

2.2. Proposition: In a premodel category the follo-

g wing hold:
i) ¢ = LLP(TF) and TC = LLP(F)

ii) F and TF are fibration type classes and C

and TC are cofibration type classes.
iii) Iso ACWE.

iv) TcCC and moreover TC = CMWE. Also
TF = FAWE.
v) FNACNWE = Iso A .

Proof: i) is an inmediate consequence of the réli
tions
F = RLP (TC) and TF = RLP( C ).

As far as ii) is concerned, the characterization of
F and TF by the right lifting property implies that
they are fibration type classes. Similary, for C
and TC, since they are characterized by the left
lifting property they are cofibration type classes.
For iii), since any isomorphism belong to any fi-
bration (res. cofibration) type class, then any
isomorphism belongs to TF and TC. Therefore, any
isomorphism f3X = Y <can be written as f = 1Yof,

which in turn implies that fe WE.
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iv) Since TFCF, then LLP(F)CLLP(TF). Hence by
P.M.2., TCCC. Note that if feTF(resp. feTC),

then f can be factored as f = foiY and

f = 1Y of ; therefore, TF, TCCWE, and since
TFCF and TCCC, then TFCFWE and TCCCIWE.
We next prove the opposite inclusions: suppose

that feFNWE. Since feWE, it admits a factori-
zation f = koh where heTC and keTF. We then

have a solid arrow diagram
1

F 4
hl q-” lf
//
K
X

—_—> Y

in which the dotted arrow exists since heTC and
feF, Then f is a retract of keTF, which is clo

sed under retracts. That implies that feTF .
The proof of TC = CIWE is similar.
v) follows from the commutativity of the follo-

wing diagram, for feF[IC/WE:

1)(

X —%5 X
fl Q. l f
e Y
1y

That ends the proof of proposition 2.2.

Remark. We will say that a map X ). K is a co-

domain restriction of X —£4:Y if there exists an
injection K ==X such that f = i o j. Simi-
larly,we will say that a map L —1> vy is a domain

£

restriction of X ——> Y if there exists a surjec
tion X ——=» L such that £ = j os . In particu-

lar, if one has a composition
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30 i il

i J,S
L

L

so that (i is an injection and s is a surjection),
where s defines a domain restriction L sy of
f: X —> Y, then the codomain restriction j is sim
ply given by L —i* X afig Y. This is the form gene
rally used to present domain restrictions but, un-
fortunatelly, it is not enough for our purposes. In

many useful categories the two definitions coincide.

It is very easy to verify that if feRLP(Q) and
g is a codomain restriction of f, then geRLP(R).
Aiso, if feLLP(R) and g is domain restriction of
f, then geLLP(Q). Therefore.

2.3. Proposition: In a premodel category F and TF

are closed under codomain restrictions and -C and

TC are closed under domain restrictions.

2.4, Remarks: 1) The basic properties of a premo-

del category can be given diagramatically as follows:
RLP
¢ e— TF

LLi////

MNWE WE NWE

TC ___195;__, F

LLP

For example,; the arrow C EE&-TF stands for the

equality RLP(C)IJF. The arrow CIDEEVTC for
33



CWE = TC and the diagonal for the equality
WE = TFoTC (in the sense that feWE if and only if
f = poi, where ieTF and peTC ).

ii) It is clear that any closed model category
is a premodel category, but the opposite does not
seem to be true. As in the case suggested by Qui-
llen [i] (and never formalized) to build up closed
model categories from model categories by omiting
unnecesary arrows, there is also the open question
on whether or not there is a formal procedure to
associate with a premodel category (which is not
closed) a closed model category. But, is possible,
in the light of the results given later on in this
paper, this can not be done by simple elimination.
In fact, as we will see A is closed if and only if
A=A , and A is the unique premodel category as
sociate to A such that for each one of the classes
of structural maps (say @) one has Ggéo Hence
if X is a premodel category and A 1is a closed mo-
del category obtained by elimination of maps, then
A becomes the closure of A, and since A is clo
sed,then A = A , which contradicts the assump-
tion of factual elimination of maps or the hypothe

sis that A is not closed.

1ii) From the previous remark one is tempted to
predict that premodel categories are in fact closed.
But from the point of view of general model catego-
ry theory one would be lead to a less enthusiastic
position. In fact, it involves the axiom of model
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categories, namely M.5., less likely to be redun-
dant. Yet, if accepted the equivalence ciosed =
premodel, then, at least in the closed model cate-
gories, M.5. would be redundant and by implication
(from some of the results of this paper) a first

choice for redundance in the general case.

The same expectation as in Quillen's work, in which
no examples of non-closed model categories are gi-
ven, remains alive here, except for the fact that
several propositions suggest serious reasons to sus
pect a difference between (not only the two, but)
the three concepts and thus an eventual equivalence

being a surprise.

§ 3. The closure of a model category.

In this paragraph we will prove the existence
of a premodel category (over the same underlaying
category) associated to a model category. Since the
part corresponding to uniqueness of the closure lea
ves only one possible closure, we dealt firts with
this part and subsequently we prove that the only

possible choice is in fact a premodel category.

3.1 Proposition: Let (A, F, C, WE) be a model cate-
gory. Suppose further that (A, F, ¢, TF, TC) is a
premodel category such that FCF, c¢C, TF¢TF, TCCTC

Then the following equaliities hold:
F = [B]"= "Rrip(Tec), € =[c] = LLR(TF),
Prr] & RLp. (¢),. TC =[rel=  LLP(F)

3
if

Tt

i
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where if @ is a class of morphisms of A then Hﬂ

denotes the class of all retracts of members of @ .

Proof: Recall that in a premodel category the clas
ses of fibrations and trivial cofibrations are fi-
bration type classes and therefore closed under re
tracts. Similarly, cofibrations and trivial cofi-
brations are cofibration type classes and hence al-
so closed under retracts. Since, by hypotesis, one
has inclusions @ = @ (@ =P, TF}:Cs TC);74dt fo=
llows that [Rl¢c@(@= F, TF, C, TC). We prove now
that FC[F]. The procedure to prove that Tr¢[TF)

is the same and will be ommited,

Let f:X —>» YeF. Since (A, F, C, WE) is a model
category, then f can be factored as

I D S

N\

K
Where heF and geTC = CNWE. By hypotesis F CF

and TCCTC. One can then consider the following
1
X — X
FJ
7
gl . & lf
'
K—— Y

where the lifting q exists, since F = RLP(TC) .

diagram

Thus, f is a retract of heF. Now, if we assume
that f : X —> YeC, then, from a decomposition of

TN CRL Py C, "RE), B&Y X ____9 Y

NA
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keC and 1l€TF, one gets the following diagram, from
which CC[c] follows:

X-—JL~>L

alh
Y ————>Y
y

Using similar procedures one can prove the remain-
ing equalities. That ends the proof of proposi-
tion 3.1.

The following corolary is obvious:

3.2. Corolary: Given a model category there exists
at most a premodel category (over the same undel-
yina category) such that if @ denotes any of the
classes of structural maps of the model category
and @ the corresponding one of the premodel cate-
gory, then @C&.

We face now the task of proving that (A, [F],
[C], [TF], [TC]) is a premodel category. In order
to simplify it we give first a lemma whose result

corresponds to the general theory of 1liftins.

3.3. Lemma: Let A be a cateqofy closed under fe-
tracts. Let @ and @ be two (not necessarily diffe
rent) classes of morphisms of A. One has

i) If @ CRLP (@) then [G]QRLP.(a) and @ cRLP(g) .
i1) Tf RCLLP(B) then [RICLLP () and @CLLP(g)).

In words: if a morphism f has the right lifting
pProperty with respect to a class @ , then any re-
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tract of f has the right lifting property with res
pect to @ , and f has the right lifting property
with respect to any retract of any morphism of @.

Similarly for left lifting property.

Proof: Suppose that f : X —Y has the right 1lif
ting property with respect to a class  of morphis
ms of a category A . Let g: K—L be a retract

of f given by the following commutative diagram

oy B1

K =—» X —»K

W13 Fhiod"

L —»Y —> L
az P

with Bi oa, = 1,2. Suppose given a commutative

square

=
Ze—=
& x
0Q

al lb

with ke®. Then the following diagram provides a

lifting q : N =-»K :

a B
N Kbl b K
-~
iyl ade sd
N~—>L — Y —> L
n a2 B2
qQ = B,oq”, where q° exists since ke and f

has the right lifting property with respect to §.
That proves B{KRLP(@). Suppose now that f has
the right lifting property for 8 . Let g € @
and supose that h is a retract of g given by the
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following diagram

% 2234, ¥ o g
i il
L > N > L
0.2 0.2
with Bioai = 1. We want to prove that then f

has the right lifting property for h.For thispurpose

consider a commutative diagram
K P X

hl lf

L Y

The 1ifting q : L -+ X is given by q =q¢B, in

a B p
K —i»M —2s K ——pX
hl gl q:,—rf' lf
L g g AT R — Y
B, Ba n

where q° exists since f has the right lifting pro-

perty with respect to g. That proves Q¢ rRLP(R] ).

Part ii) can be proved in a similar way.

3.4, Proposition: If (A, F, C, WE) is a model ca
tegory, then (A, [F], LC], [TF], [TC]) is a pre-

model category.

Proof: We first notice that if @ and  are cla-
sses of morphisms in a category then QC[QJ and if
QRSB , then [R]JcR] - Now, since TFCF then
hﬁighq, which proves axiom P.M.1. In order to
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prove P.M.2., we notice that since (A, F, C, WE)is
a model category then the following inclusions holid

F.CRLP.ATC)y. JFCRLPEL) o

Then by lemma 3.3 one also has that [FJCRLP [Tc]
and [TFJCRLP[C]. On the other hand, since for
any class @ one has that LLP(RLP(R) )2@ and
RLP(LLP (@) ) O Q@ ,then, from the inclusion
FCRLP [TC] » oOne gets that :

LLP [F] > LLP(F) D.LLP [Tc] D TC

Similarly, LLP[TEJD[C] . Therefore, in order
to finish the proof of P.M.2., it remains to pro-
ve that RLP[Tc]JC[F) - ana =RrLp [c]S([TF]. since
the proofs are identical we only do the first one.
Suppose f:X =Y has the right 1ifting property
with respect to [TC] and thus to TC (see next

remark). One considers a decomposition of f, say
f
X —— Y
g\./:
k
with ge TC and h€ F. One then has the follo-

wing commutative diagram

1x

—p
’7

X X
’/
K'——Y
h
where the lifting q exists by the assumption on f.
Thus f belongs to [FJO
Axiom P.M.3. 1is obvious.
The following thecrem is clear now:
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3.5. Theorem: Given a model category (A,F,C,WE)there
exists one and only one premodel category (A, F,

¢, T¢ ) such that FCF,

WE C WE.

LT, IPLIF, TCCTC,

We call the premodel category associated to a

model category the closure of the model category.

This name is justified by the following proposition:

3.6.

and only

Proposition:
if

§ L.

A model category

it coincides with

is closed if

is closure.

Semiclosed model categories.

In this paragraph we want to give characteriza

tions of model categories whose closure is also a

model category.

It turns out that,

as we will see,

they are closely related to model categories whose

weak equivalences are the
the homotopy functor into
the two characterizations
categories with these two

will be called semiclosed

b.1,

ry is a

Definition: We will

semiclosed model

only morphisms mapped by
isomorphisms. In fact,
are equivalent and model
equivalent properties

model categories.

say that a model catego-

category if in any com-

mutative diagrams of the kind

A) X

L

a5 Ly

Ix

—_>7
g

with feLLP(F), keWE,
geLLP(F) ;
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B)
with £ , g’e RLP(C) and

KTEINE: T,

h

Re——¢

—_—
—

L
3
M
the morphism h can factored as h = iop, where

peLLP(F) and i€eRLP(C).

4.2, Proposition: The closure of a semiclosed mode

category is a closed model category.

In order to prove this proposition we need some le
mmata. We will use the following notarion: 1is a
map X— Y belongs to a class ® of morphisms of

A we write X js'Y.

4.3. Lemma: In commutative diagrams of the kind
below the morphism h belongs to WE.

x —0d, y x T8, y
NAONA

Proof: Since WECWE, the result follows from the
following push-out and pull-back diagrams for the

first and second situations respectively:

[tc]

X iiity

Y
C WE
l LC]”L I[TFJ
Y

Note that i, jeWE by axiom M.5. Further, the cobase
extension of a member of TC belongs to WE as well
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as the base extension of a member of TF, by axiom
M.4. Finally, TC is closed under cobase extension
since it is a cofibration type class, and TF is clo
sed under base extensions since it is a fibration

type class. Hence heWE and the result follows.

4.4, Lemma: In commutative diagrams of the kind be
low the morphism h belong to WE.

x ~I8o v Bl " AR ———9—Z
& [re] (rd [rF)
Tgr\\\kx‘////;F T\\\\\* B

Proof: In the first diagram there exists a 1lif-
ting q:Y —K and by the previous lemma it be-
longs to WE. Therefore, h factors as

Y ——E—a-z

N\, /b

K

which implies that heWE. For the second diagram,

there exists a lifting q°: K —»Y which again be-
longs to WE. Hence h factors as
X ————4>Y

[Ta\ /e

which implies that he WE.

Proof of proposition 4.2: We first prove that, with

no conditions on (A, F, C, WE), WE is closed under

composition. Let f:X =Y and g:Y —>Z be members
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of WE. One can pick factorings of f and g as fo-

llows

¥ i 2

e
SNZ
K K

according to lemma 4.4. Hence one gets an exten-

ded diagram

K
TN /';r
L
by axiom M.5. Thus gofEWE. Now we take in account

that (A, F, C, WE) is a semiclosed model category.

Suppose a commutative diagram

is given. We want to prove that heWE. By lemma 4.4

one can extend this diagram to

thus, there exists a lifting q:Y"—>» K°. From the

diagram Y ——» Y
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it follows (M.5) that qeWE. Hence one gets a com-
x LIl ¢
hl lquE
K ——— K
[Tc]

and since-[TCJ = LLP(F) we are in the situation A)

mutative diagram

of the hypotesis. Hence h = iep. with ieRLP(C)=
=(TF] and peLLP(F) = [Tc]. That implies that

heWE. We now prove that in a commutative diagram

X ————9'Y

W‘\/

heWE. This follows from condition B) of the hypo-
tesis and the following extended diagram, guaran-
ted by lemma 4.4. ,

x —1Cy y2l18, 4

'rc\A /WE /{:

Kd————4>K
(rF)

Since it is clear that a premodel category is a
closed model category if and only if axiom M.5
holds for its weak equivalences, then (A, [F],[C],
(rF) ,[TC)) is a closed model category. That ends
the proof of 4.2,

The converse of 4.2 is also true and obvious:

4.5 Proposition: if the closure of a model catego-

ry is closed then the model category is semiclosed.
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We now relate semiclosed model categories with
the homotopic functor r: A —>Ho A. We first iden
tify a larger than the known class WE of morphisms

of A whose images r(f) are isomorphisms:

L.6. Proposition: In a model category (A, F, C, WE)

any morphism which factors as

X ————5 Y

LLP(F}\\ //%LP(C)

is sent by r: A,>H, A into an isomorphism.

Proof: Since LLP(F) =[Tc] and RLP(C) =[TF] and
any retract of an isomorphism is an isomorphism ,

it follows that, if he[TC](resp. hs[TF]) then r(h)
is an isomorphism and if f is a retract of h, then

r(f) is an isomorphism.

We have therefore that any weak equivalence of
the closure of a model category is also sent by
r : A>H, A into an isomorphism. Conversely we

have:

4.7. Theorem: For a model category the following
two statements are equivalent:

i) The model category is semiclosed.
ii) If r(f) is an isomorphism then f is a weak
equivalence of its closure.

Proof: i) -+ ii). If A is semiclosed, then its clo
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sure is closed. We denote the homotopy category

of the closure K of A by ﬁoA and the homoto-

py functor by ¥. Since WECWE, if feWE, then

T(£f) 1is an isomorphism. Hence there exists a fun

tor ‘P: H,A 4'ﬁ°A such that the following diagram

commutes

A" iy oA

H
\EF\\\‘l?
r ~

HoA

So, if r(f) is an isomorphism so is T(f) = Pr(f) ,

and since the closure of A is closed then feWE.

ii) =>i). By the note above, ii) becomes:
r(f) is an isomorphism if and only if fe WE .
Thus M.5. holds for WE. Hence (A, [P], [C],[TF],
[TC] ) is a closed model category if 1ii) holds,

and in such a case A is semiclosed.

It is clear, from 4.7, that the property of
being a semiclosed model category, for a model ca-
tegory, lies primarily on the good behavior of the
class of its weak equivalences. We next emphasize

more on this aspect:

4L.8 pefinition: A model category (A, F, C, WE) is

said to be strongly semiclosed if in any diagram
of the kind below, heWE.
X RLP(C)
wg}
—

RLP(C)

h

R € <
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It is not difficult to prove that A is stron-

gly semiclosed if and only if WE = WE.

We next give some workable sufficient conditions
under which a model category is strongly semiclo-

sed.

4.9 Proposition: Each one of the following is a

sufficient condition in order for a model catego-

ry to be strongly semiclosed:

i) TF is closed under retracts.
ii) TC is closed under retracts.

iii) WE is closed under retracts.

Proof: i) If TF is closed under retracts then

TF TF = RLP(C).

Hence the diagram of 4.5 becomes
_T_E_yy
I»
— K
TF

Since TF C WE then by axiom M.5 heWE.

WE

NE— X

ii) we will prove that WE = WE. It remains to
prove that WECWE. But if feWE one can pick a fac
torization of f of the kind

¥ e g

N

and since TC is closed under retracts, then
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¢ = [T¢] = TC. Thus feWE. (Note that this procedu

re could very well be used in part i) as well ).

iii) Suppose that WE is closed under retracts.
We will prove that RLP(C) = TFCWE, and therefore
the condition of 4.5 holds. The desired inclusion
follows from TF = [rF] € [WE] = WE. That ends
the proof of 4.9.

Notice the following equivalences of conditi-

ons i) and ii) of proposition 4.9:

TF is closed under retracts if and only if
TF. & RLP (C) .

TC is closed under retracts if and only if
TC = LLP (F).
So, if one of the onclusions TFCRLP(C) or
TCCLLP (F) becomes equality in a model category,
then WE=WE and the model category becomes a

(strongly) semiclosed model category.

L 2 1
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