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It has long been known that long-ranged
entangled topological phases can be ex-
ploited to protect quantum information
against unwanted local errors. Indeed,
conditions for intrinsic topological order
are reminiscent of criteria for faithful
quantum error correction. At the same
time, the promise of using general topo-
logical orders for practical error correc-
tion remains largely unfulfilled to date. In
this work, we significantly contribute to
establishing such a connection by show-
ing that Abelian twisted quantum double
models can be used for quantum error cor-
rection. By exploiting the group cohomo-
logical data sitting at the heart of these
lattice models, we transmute the terms
of these Hamiltonians into full-rank, pair-
wise commuting operators, defining com-
muting stabilizers. The resulting codes
are defined by commuting non-Pauli sta-
bilizers, with local systems that can ei-
ther be qubits or higher dimensional quan-
tum systems. Thus, this work establishes
a new connection between condensed mat-
ter physics and quantum information the-
ory, and constructs tools to systematically
devise new topological quantum error cor-
recting codes beyond toric or surface code
models.

1 Introduction
Any architecture proposed for information stor-
age must be equipped with an error correction
strategy to avoid the corruption of the data en-
coded, whether the information is classical or
quantum in nature [8, 25, 30]. Since the no-
cloning theorem [28] prevents qubits from being
Julio Carlos Magdalena de la Fuente: jm@juliomagdalena.de

copied, quantum error correction cannot rely on
simply copying the necessary information at any
point. Thankfully, the fact that errors are usually
local, i.e., they affect a small number of qubits,
has lead to fruitful alternative strategies. By dis-
tributing the relevant data over a whole system,
it is possible to detect the errors without ever
needing to copy the original state.

Building from this insight, stabilizer codes
[16, 31] have taken a particularly prominent role
in the search for encoding strategies for scalable
and fault-tolerant quantum computing. In stabi-
lizer codes, the subspace in which the quantum
information is stored is the joint eigenspace of
pairwise commuting operators, called stabilizers.
Among these are a class of codes – so called topo-
logical codes – where error detection can be per-
formed with the measurement of local stabilizers.
These measurement outcomes, repackaged into
syndromes, determine the errors that have oc-
curred. By construction of such codes, the mea-
surement does not destroy the stored quantum in-
formation and makes it possible to restore it with
a suitable error correction scheme [14, 16, 31].
The toric code [20], its associated planar embed-
ding known as the surface code [15], and color
codes [3], are by far the most studied codes, and
have emerged as the gold standard of this class of
error-correction protocols. Their simple construc-
tion – with stabilisers built out of Pauli words –
means that they collectively provide a wide range
of easily understood schemes. That said, there
are strong reasons to seek for new codes beyond
these Pauli stabilizer models. While the lack of a
universal and fault-tolerant gate set – by virtue
of the Eastin-Knill theorem [28] – and a lack of
self-correctability [6] will be common to any sta-
bilizer approach in two spatial dimensions, sev-
eral techniques have already been identified to cir-
cumvent these limitations, including magic state
distillation [26] and just-in-time decoders [5, 7].
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Moreover, codes built out of d-level systems have
been found to have superior error correction ca-
pabilities compared to qubit-based codes, with an
increasing performance with increasing d [9] or
enhanced bit flip stability [2]. Other generalisa-
tions involving non-commuting stabiliser sets [27]
have demonstrated the ability to produce gate
sets which, while not universal, have enhanced
computation power. Taken together, these find-
ings strongly motivate the quest for new topolog-
ical quantum error correction codes with stabiliz-
ers outside the Pauli group.

In light of this search, we present a wealth of
new topological codes. To do so, we have taken
inspiration from the closely related field of topo-
logical phases of matter. The conditions for quan-
tum error correction, the Knill-Laflamme crite-
ria [21], are highly reminiscent of conditions for
the topological order in quantum many-body the-
ory. However, this connection is rarely made ex-
plicit beyond the toric code, which can be seen
as defining a gapped Hamiltonian with 4 anyon
types and a topological ground state degeneracy.
While it is true that all topological error correct-
ing codes can ultimately be understood as defin-
ing a system containing anyonic excitations and
therefore being in a topological phase, all well-
studied instances of this are equivalent to multi-
ple copies of the toric code phase [4]. What is
sorely lacking in this picture is a way of reverse-
engineering topological quantum error correcting
codes from the wealth of topological phases of
matter. This seems a remarkable omission in
the light of the powerful and highly developed
classification of such phases from the perspective
of condensed matter and mathematical physics
[11, 17, 24]. This omission is also significant given
the fact that, from a technological perspective [1],
the identification of new topological codes seems
imperative.

In this work, we use a large class of topolog-
ical orders hosting Abelian anyons to construct
new topological error correcting codes. In partic-
ular, we modify existing lattice models for topo-
logical orders – twisted quantum double models
– so that they give rise to Non-Pauli stabilizers.
In their original form, the local terms of these
Hamiltonians do not commute in a particular ex-
cited subspace of the Hilbert space, which makes
them – on first glance – unsuitable for stabilizer
error correction. Practically speaking, commuta-

tivity is a highly desirable property in the context
of quantum error correction, in that it allows for
error correction schemes based on independent lo-
cal measurements of such stabilizers without per-
turbing the stored quantum information. We re-
store commutativity by first deriving the quanti-
ties that obstruct this property from the group co-
homology data of twisted gauge theories. In most
cases – namely, for Abelian twisted quantum dou-
bles – these obstructions can be lifted completely
by carefully modifying the offending terms in the
Hamiltonian, yielding a true stabilizer code, con-
sisting of commuting non-Pauli operators. A first
step in this direction was taken in Ref. [13], where
the double semion string-net model [24] was mod-
ified with a local phase factor to overcome the
same commutativity problem. However, this ap-
proach lacks a systematic and quantitative un-
derstanding of the failure of commutativity, and
as such it cannot be generalized to other lattice
models for more exotic topological orders. Our
results go a significant step further, providing a
robust framework for deriving quantum error cor-
recting codes from not only a Hamiltonian in the
double semion phase, but from a huge family of
Abelian phases as well. The main limitation of
our scheme is that it is not applicable to TQD
models with Non-Abelian anyons.

This work is structured as follows: In Section 2
we give a comprehensive introduction to twisted
quantum double models for general (Abelian)
groups. We have kept the mathematical details
to a minimum while still presenting our results
in a self-contained manner. Our construction is
done explicitly for a Z2 and a Z2×Z2 model and
then summarized for the general ZN and Z2

N cases
in Sec. 3, with full details in Apps. B-D. More-
over, we give a brief overview on the properties of
the newly constructed codes and how they relate
to known schemes for topological quantum error
correction. In Sec. 4, we conclude our work and
give an outlook on future directions and poten-
tial use cases of the codes and discuss potential
applications in topological quantum information
processing.

2 Introduction into twisted quantum
double models

Twisted quantum double (TQD) models are lat-
tice models for topological order in 2+1 dimen-
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Figure 1: Local patch of a translation-invariant lattice on
which we define our model. It is a oriented triangulation
of a compact surface. Around each vertex, the edges
directly adjacent to it are labelled from l1 to l6 and the
other 6 edges that share a triangle with the vertex are
labelled by l7 to l12. Together, these edges constitute
the neighborhood of the vertex and are marked in red
above.

sions which can be viewed as a generalization of
the quantum double model [20] introduced by Ki-
taev. They can be obtained by promoting the
global symmetry of a symmetry protected topo-
logical (SPT) phase [10, 11, 23] to a local gauge
symmetry via minimal coupling to the original
“spins” of the SPT. We will restrict the discussion
of the model only to the aspects necessary for our
construction. An interested reader is referred to
Ref. [17] for more comprehensive perspective.

2.1 The Hamiltonian

We define our model on a translation-invariant,
oriented triangulation of a general compact sur-
face shown in Fig. 1. We label the edges in the
neighborhood of a vertex v from l1 to l12. Each
edge li carries a degree of freedom (gauge field)
whose local Hilbert space Hl is spanned by states
labeled by elements of a finite group G,

Hl = spanC{|g〉 , g ∈ G} (1)

with 〈g|h〉 = δg,h. Its local dimension is |G|, so a
group with |G| = 2 will be a qubit model , |G| = 3
a qutrit model and so on. The total Hilbert space
is then simply given by H =

⊗
edges lHl. While

G can be chosen to be any finite group, we will
only be treating Abelian cases in this work. Addi-
tionally, the TQD model takes a cocycle function

ω : G2 → U(1) as an input.1 It will define the
action of the vertex operators in the Hamiltonian.

The full TQD Hamiltonian is given by

HTQD = −
∑

plaquettes p
Bp −

∑
vertices v

Av. (2)

The first sum runs over all (triangular) plaquettes
and the plaquette operator acting on a triangular
face is defined by

Bp

∣∣∣∣∣
l3

l1l2 p

〉

= δ(−l3)⊕l2⊕l1

∣∣∣∣∣
l3

l1l2 p

〉

= 1
|G|

∑
i∈C

χi(−l3 ⊕ l2 ⊕ l1)︸ ︷︷ ︸
=:Bip

∣∣∣∣∣
l3

l1l2 p

〉
,

(3)

where ⊕ denotes the group operation (modular
addition for cyclic groups) and −l the inverse el-
ement of l in G. The projector δg = 1 for g = 0G
(identity element in G) and δg = 0 otherwise.
The plaqeutte terms ensure that the ground space
is flux free, i.e., Bp = 1 ∀p. In the second step,
we decomposed the projector into a sum of group
characters χi over conjugacy classes C, which can
be done for any finite group. While this decom-
position is usually a curiosity, this is useful when
G is an Abelian group. In this case, each conju-
gacy class contains only a single element, and so
the characters are in one-to-one correspondence
with the group elements. For cyclic groups, where
g ∈ {0, . . . , N −1}, this means that these charac-
ter operators can be thought of as the products
phase operators Zl,

Bg
p =

∏
i∼p

N−1∑
n=0

(
e

2πi
N
n
)s(p,l)g

|n〉〈n| (4a)

=
∏
l∼p

Z
s(p,l)g
l , (4b)

with s(p, i) = +1(−1) if edge l is oriented in coun-
terclockwise(clockwise) direction around plaque-
tte p. For G = Z2 for example, Zi is the Pauli
Z operator acting on edge i and one recovers the
toric code plaquette operator. Arbitrary finite
abelian groups can always be decomposed into
cyclic factors, and thus their character operators

1To be precise, the cocycle ω has to be normalized, i.e.
ω(0G, a, b) = ω(a, 0G, b) = ω(a, b, 0G) = 1 ∀a, b ∈ G.
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can be factored into products of phase operators
as well.

The second sum in the Hamiltonian runs over
all vertices and the summand Av, acting on the
neighborhood of a vertex v, is defined by a similar

decomposition as Bp, i.e.,

Av = 1
|G|

∑
g∈G

Agv, (5)

where |G| is the order of the group G, and Agv
the vertex operator corresponding to the group
element g defined by its action on a basis element,

Agv

∣∣∣∣∣ l1
l2
l3 l4

l5

l6

l7

l8

l9

l10

l11

l12

. . .

〉
=ω(l9, l′3, g)ω(l′3, g, l4)ω(g, l4, l11)
ω(l8, l′1, g)ω(l′1, g, l6)ω(g, l6, l12)

∣∣∣∣∣ l′1l′2
l′3 l′4

l′5

l′6

l7

l8

l9

l10

l11

l12

. . .

〉
, (6)

where the label of the central vertex v is left out
for readability. The vertex operator can be de-
composed into two consecutive actions. First, it
changes the values of the edges adjacent to the
vertex depending on their orientation. On our
lattice,

li
Agv7−→ l′i = li ⊕ (−g) for i = 1, 2, 3, (7a)

lj
Agv7−→ l′j = g ⊕ lj for j = 4, 5, 6, (7b)

where ⊕ denotes the group operation which we
choose to be modular addition for cyclic groups.
Second, it scales the wavefunction by a phase fac-
tor given by the product of 6 cocycles ω : G3 →
U(1), one per triangle adjacent to v. The order of
the arguments in the cocycles and whether they
appear in the numerator or denominator of this
pre-factor is determined by the orientation struc-
ture of the lattice. For a detailed explanation of
constructing the pre-factor for a general lattice,
see Ref. [17]. The cocycles encode the topologi-
cal data of the theory modelled by HTQD. Their
defining property is the so-called cocycle condi-
tion

ω(g1, g2, g3)ω(g0, g1 ⊕ g2, g3)ω(g0, g1, g2)
ω(g0 ⊕ g1, g2, g3)ω(g0, g1, g2 ⊕ g3) = 1

∀g0, g1, g2, g3 ∈ G.
(8)

Obviously, ω(a, b, c) ≡ 1 is always a solution
and is called trivial. If we use this trivial solu-
tion in Eq. (6) to define HTQD, we obtain the
quantum double Hamiltonian from [19]. Since

– in general – there are non-trivial solutions to
this equation as well, the TQD model covers a
much broader class of Hamiltonians than the pure
quantum double Hamiltonians. In principle, one
can choose any function satisfying condition (8),
insert it into Eq. (6) and obtain a consistent topo-
logically ordered Hamiltonian. However, not all
solutions yield distinct orders but they are classi-
fied in equivalence classes. A close investigation
of the cocycle condition reveals that if we have
one solution ω, we can always obtain another so-
lution

ω̃(g1, g2, g3) = ω(g1, g2, g3)β(g2, g3)β(g1, g2 ⊕ g3)
β(g1 ⊕ g2, g3)β(g1, g2) ,

(9)

where β : G2 → U(1) is an arbitrary function
mapping two group elements to a phase factor. If
we have two TQD Hamiltonians defined by two
cocycles ω1 and ω2 in Eq. (6) so that they are in
different topological orders, we know and there
exists no β to map ω1 onto ω2 by Eq. (9). Hence,
inequivalent Hamiltonians HTQD (in the sense of
topological order) are classified by distinct equiv-
alence classes of functions ω, which define ele-
ments of the third group cohomology of G over
U(1)

[ω] ∈ H3(G,U(1)) = {ω satisfying (8)}�∼ (10)

with ω ∼ ω̃ iff ∃β : G2 → U(1) such that they
are related by Eq. (9). In the next section, we will
see examples of such functions for simple groups
such as Z2 and Z2×Z2. For an introduction into
group cohomology, see App.A.
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2.2 Topological data

The Hamiltonian we have constructed on a tri-
angulation of a compact surface from a group G
together with a cocycle ω is indeed topologically
ordered. It has anyonic excitations and a robust
ground state degeneracy (GSD). For models with
Abelian anyons only, GSD = |G|2g where g is the
genus of the surface on which it is defined. The
topological quantum numbers (topological spin
and S-matrix) of the excitations are uniquely de-
fined by the input group G and the cocycle one
chooses to define Av. Moreover, they are gauge
invariant in the sense that one can choose any co-
cycle in the same equivalence class to define Av
and still obtain the same topological data. This
corresponds to a transformation of the cocycles
like in Eq. (9). For the derivation and explicit ex-
pressions of those quantities in terms of the input
data see Ref. [17].

2.3 Ground space and failure of commutativity

The ground space of HTQD can be found exactly
and is defined implicitly by the conditions

Bp |ψ〉 = Av |ψ〉 = |ψ〉 ∀ plaquettes p
and vertices v,

(11)

so that it is the simultaneous eigenspace of the
plaquette and vertex operators. As stated be-
fore, this subspace has dimension larger than 1 on
a surface with non-trivial topology and therefore
we hope to use that space as a code space of an er-
ror correction stabilizer code. Unfortunately, the
Hamiltonian is not exactly solvable on the whole
Hilbert space, i.e. one cannot simultaneously di-
agonalize all vertex and plaquette operators. In
particular, the vertex operators fail to commute
in the presence of certain fluxes (Bp = 0).2 In
the TQD model for G = Z2 and the non-trivial
cocycle [17]

ω1(1, 1, 1) = −1, ω(a, b, c) = 1 else, (12)

a version of the double semion phase, the vertex
operators do not commute when acting on the

2For a precise statement on how commutativity fails
for general Abelian groups, we refer to App.B.

following configuration:

A1
2A

1
v

∣∣∣∣∣∣∣ v2

〉
=

∣∣∣∣∣∣∣ v2

〉

A1
vA

1
2

∣∣∣∣∣∣∣ v2

〉
= −

∣∣∣∣∣∣∣ v2

〉
.

In the case of G = Z2, the local Hilbert space
corresponds to the one of a qubit which we repre-
sented by a circle in the state vectors above. We
have labelled the state vectors of the qubits with
circles, |0〉 = ◦ and |1〉 = •. The rest of the lat-
tice is not explicitly shown, but we assume that
all other qubits are in |0〉. The vertex operators
will be defined in Sec. 3.1 where we discuss the
double semion phase in detail.

From an error correction perspective, there are
many (single qudit) errors that create such fluxes
and for the vertex operators to be proper sta-
bilizers they also have to commute in that sec-
tor of the Hilbert space. In principle, one can
make the Hamiltonian exactly solvable by mul-
tiplying it with a projector on the flux-free sub-
space, PB=1 =

∏
pBp. However, we will loose

information about the excited sector in doing so
in the sense that it makes it impossible to iden-
tify an excitation uniquely by measuring those
local operators. Luckily, it turns out that a slight
modification of the vertex operators that does not
change the topological order resolves the obstruc-
tion of commutativity entirely.

3 Construction of fully commuting
models

In order to successfully overcome the obstacle to
commutativity, the vertex operators have to be
modified. This modification should not alter the
topological phase of the Hamiltonian. This means
that the vertex operators must be altered in such
a way so that the ground space is left unchanged
and that the spectral gap is preserved. At the
same time, the modification should be minimal.
The latter means that the modification should be
local – in the sense of not increasing the support
at all – and leave the large sections of the Hilbert
space where the Hamiltonian is solvable undis-
turbed. In particular, only for certain flux con-

5



figurations do the operators need to be minimally
altered.

It constitutes the main result of this work that,
for large classes of twisted quantum doubles, the
above desiderata can be achieved with a modifi-
cation of the form,

Ãgv = Dg
vA

g
v, (13)

where Dg
v is a full-rank operator that is diagonal

in the edge basis, with entries being roots of unity,
and is equal to 1 on the ground space.

By imposing that the modified operators {Ãgv}
commute, we obtain consistency equations for the
modification phases {ηgv}. The derivation of these
consistency equations is only possible with the
TQD model and exploits the machinery of group
cohomology in its construction. We will illustrate
the procedure of solving these equations by means
of two simple examples where the input group
is Z2 and Z2 × Z2. In the second case, we in-
vestigate a topological order that is entirely new
to the context of quantum error correction, but
is still in principle realizable with a qubit archi-
tecture. We apply the same procedure to more
exotic models derived from the groups ZN and
Z2
N . With those completed, we have resolved the

commutativity issue for every Abelian topological
order that can be obtained from a twisted quan-
tum double model. These results are described
in the last part of this section. For the general
formalism and the calculation see App.B, C, and
D.

The newly obtained operators Ãgv together with
the plaquette phase operators Bg

p (see Eq. (3))

generate the Non-Pauli stabilizer group

STQD = 〈{Bg
p}, {Ãgv}〉, (14)

which defines the corresponding code. Although
stabilizer groups are normally defined as a sub-
group of the Pauli group, this restriction is not
necessary for the general concepts of stabilizer er-
ror correction. These require only that there exist
an invariant subspace under the action of those
generalized stabilizers, namely the common +1
eigenspace of all Bg

p and Ãgv.
In the following, we will illustrate the construc-

tion for an arbitrary finite group G and a cocycle
ω for two simple examples that already go beyond
the toric code. We will see that we arrive at a
wealth of new topological quantum error correct-
ing codes produced directly from twisted quan-
tum double models for topological order.
3.1 Z2 – double semion code

We first investigate the non-trivial Z2 model that
is in the same phase as the double semion string-
net model [24]. We represent Z2 as the set {0, 1}
together with the group operation being addition
modulo two. With that, Hl = spanC{|0〉 , |1〉} =
C2, so it is a model of interacting qubits. Z2
has two inequivalent cocycle classes, one trivial
class [ω0 ≡ 1] and one non-trivial class [ω1]. The
TQD model with the trivial cocycle would yield a
Hamiltonian in the toric code phase. The canon-
ical representative of the non-trivial class is given
by Eq. (12). Inserting this cocycle into Eq. (6)
yields the Hamiltonian

HZ2 =−
∑

plaquettes p

1
2
(
1 +

∏
l∼p

Zl
)
−

∑
vertices v

1
2
(
1 +A1

v

)
(15a)

with A1
v = (−1)P

−
9 P−3 +P−3 P+

4 +P+
4 P
−
11+P−8 P−1 +P−1 P+

6 +P+
6 P
−
12

6∏
l=1

Xl, (15b)

where Zl and Xl are the Pauli Z and X matrices
on (the qubit sitting on) edge l and P±l = 1

2(1±
Zl) is the projector onto the space where edge l
caries the value 0 or 1, respectively. Each term
of the form (−1)P

−
i P
−
j corresponds to a CZ gate

between qubit i and j. These entangling gates

are essential to build up long range entanglement
that is inequivalent to the one in the toric code.
The above Hamiltonian is in the so-called double
semion phase.

By construction, A1
v always flips an even num-

ber of qubits adjacent to a plaquette, and thus

6



[
A1
v, Bp

]
= 0 ∀v, p.3 Hence, the only obstruction

for the operators Bp and A1
v to form a commut-

ing set of operators that we can use for stabilizer
error correction comes from the vertex operators
A1
v.

3.1.1 Obstruction in the original model

For the operators A1
v to generate a stabilizer

group they have to represent the group action
of Z2 on site. In particular, any representative of
an element in Z2 should square to the identity.
Unfortunately, it turns out that(
A1
v

)2
=(−1)P

−
1 +P−3 +P−4 +P−6 +P−8 +P−9 +P−11+P−121

6=1,
(16)

where we have used X2
l = 1, and the decomposi-

tion of the identity, 1 = P+
l +P−l for any edge l.

In fact,
(
A1
v

)2 = −1 exactly when an odd number
of the edges {1, 3, 4, 6, 8, 9, 11, 12} is in the state
|1〉, which coincides with(

A1
v

)2
= (−1)B3,9,8,1+B6,12,11,41, (17)

where Bi,j,k,l = 1
2(1 − ZiZjZkZl) measures the

flux through the region enclosed by the edges
{i, j, k, l}. This shows that the operators fail
to represent the group action on the part of
the Hilbert space where B3,9,8,1 + B6,12,11,4 = 1
mod 2. In particular, on the ground space (in
which no flux is present) the group action is im-
plemented correctly.

This is not the only obstruction in the origi-
nal TQD model. To form stabilizers, the vertex
operators Agv must commute pairwise. Due to
the translational invariance of the model, we need
only calculate the commutation relation between
A1
v with the three operators {A1

i , i = 1, 2, 3} act-
ing on the three vertices {1, 2, 3} connected to
v by the edges {l1, l2, l3} (see Fig. 1 for the la-
belling) to confirm this. It turns out that

A1
v1A

1
v =A1

vA
1
v1 , (18a)

A1
v3A

1
v =A1

vA
1
v3 , (18b)

A1
v2A

1
v =(−1)P

−
1 +P−3 +P−8 +P−9 A1

vA
1
v2

=(−1)B3,9,8,1A1
vA

1
v2 ,

(18c)

3In fact, Ag
v is flux preserving in any twisted quantum

double model due to the orientation structure of the edges.

using the same relations used to produce Eq. (16)
and (17). Again, we find that they commute in
the zero-flux sector of the Hilbert space. Inter-
estingly, vertex operators on neighboring vertices
only fail to commute in the last case, when they
are connected by a horizontal edge (labeled by l2
in Fig. 1) which is neighboring a nontrivial flux
B3,9,8,1 = 1 mod 2. This particular “locality" of
the commutativity obstruction is a consequence
of our chosen edge orientation4 which determines
which arguments enter in the cocycles in Eq. (6).

3.1.2 Modifying vertex operators by local phase

We have found that the vertex operators in the
original TQD model fail to be commuting stabi-
lizers on the whole Hilbert space because, on one
hand, they do not implement the group action
on site, i.e. (A1

v)2 6= 1, and, on the other, fail to
commute A1

v1A
1
2 6= A1

2A
1
v1 . However, we were able

to quantify the obstructions and found that they
take a very particular form and only depend on
fluxes. Because of this, there are no obstructions
in the ground space. To remove the obstructions
on the whole Hilbert space, we want to modify
the vertex operators by a local diagonal unitary
as described in the beginning of Sec. 3,

Ã1
v = DvA

1
v (19)

so that Ã1
v are stabilizers. The modified operators

should therefore satisfy(
Ã1
v

)2
=1, (20a)

Ã1
v1Ã

1
v2 =Ã1

v2Ã
1
v1 , (20b)

for all vertices v, v1, v2. Imposing Eq. (20a) and
using Eq. (17) yields the condition on the modifi-
cation phase

1 = DvA
1
vDv

(
A1
v

)−1
(−1)B3,9,8,1+B6,12,11,4 . (21)

In fact, this can be solved by the Ansatz

Dv = iB3,9,8,1+B6,12,11,4D̄v (22)

with D̄vA
1
vD̄v

(
A1
v

)−1 = 1 since A1
v leaves fluxes

invariant. Now, inserting this family of solutions

4Choosing a different edge orientation in the first place
would only shift the commutativity obstruction to differ-
ent edges, not remove it.
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Figure 2: Geometric illustration of the support of D1
v(p)

in the neighborhood of vertex v. For any ZN model (see
App. C), the obstructions (and therefore also the mod-
ification phases) only depend on the horizontal edges,
labelled by l2 and l5 and the two fluxes through the re-
gions around them, B3,9,8,1 and B6,12,11,4, depicted by
a dashed area in the figure above. The edges l1, l8, . . .
that are written in gray only enter implicitly via the fluxes
that are composed of them. Note the orientation struc-
ture can be neglected in the Z2 case.

into Eq. (20b) and using Eqs. (18) yields a second
condition on D̄v,

1 =(−1)B3,9,8,1D̄2A
1
v(D̄2)−1

(
A1
v

)−1

×(D̄v)−1A1
2D̄v

(
A1

2

)−1
,

(23)

which is solved by the one-parameter family

D̄v(p) =eπi[pB3,9,8,1L2+(p−1)B6,12,11,4L5]

×e−
πi
2 [(p+2)B3,9,8,1+(p+1)B6,12,11,4],

(24)

with p ∈ R. Li = 1
2(1 − Zi) is the operator that

measures the value of the edge li in Z2. Note that
D̄ is a periodic function in p with periodicity 4,
i.e. D̄(p+4) = D̄(p). Also, the second factor con-
taining i only depends on fluxes and ensures that
D̄vA

1
vD̄v

(
A1
v

)−1 = 1 and does not affect commu-
tativity.

Combined, we obtain the modification phase

Dv(p) =e−
πi
2 [(p+1)B3,9,8,1+pB6,12,11,4)]

×eπi[pB3,9,8,1L2+(p−1)B6,12,11,4L5],
(25)

where the first factor ensures that the group prop-
erty is fulfilled on site and the second factor fixes
the commutativity on the whole Hilbert space.
Dv(p + 4) = Dv(p), p ∈ [0, 4) parametrizes all
the distinct modification phases in this family of
solutions. The geometric support structure for
general p is depicted in Fig. 2. Note that the pa-
rameter p sets the dependence on l2 and l5 in the

second factor. The freedom to choose p ∈ [0, 4)
may be useful in an actual error correction scheme
since different modification phases yield different
stabilizers that in turn could have different prop-
erties in the decoding process. For p = 1, for
example, we obtain

Dv(1) =(−i)B6,12,11,4(−1)B3,9,8,1(−1)B3,9,8,1L2 ,
(26)

so that it does not depend on l5.
Explicitly quantifying the obstructions of the

group property (Eq. (17)) and the commutativity
of the operators acting on neighboring vertices
(Eqs. (18) in the original TQD model enabled us
to remove them with a local phase modification
such that the modified operators Ã1

v = DvA
1
v

faithfully represent the group Z2 on the whole
Hilbert space. The constructed operators are out-
side the Pauli group and can be used as stabilizers
in the context of quantum error correction. More-
over, the modification does not change the action
of A1

v on the ground space, and thus the modified
Hamiltonian it still is in the double semion phase.

3.2 Z2 × Z2 – twisted color codes
In the previous section, we have constructed a
set of stabilizers defined on a lattice of qubits
such that its code space corresponds to a dou-
ble semion ground space. However, the dou-
ble semion phase is not the only twisted gauge
theory one can implement with a qubit archi-
tecture. By taking G = Z2 × Z2 = {g =
(g1, g2); g1, g2 ∈ Z2} as an input group for the
TQD model, the local Hilbert space becomes
Hl = spanC{|0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉} ' C2 ⊗C2

which can be realized using two qubits per edge.
As was shown in Ref. [22], an untwisted Z2 × Z2
quantum double model – otherwise known as two
copies of the toric code – is equivalent to the color
code. In this section we investigate the twisted
versions thereof, which we call twisted color codes.

The possible topological orders of a TQD
model with G = Z2×Z2 are classified by H3(Z2×
Z2, U(1)) = Z2 × Z2 × Z2, and thus there are 8
different cocycle classes we can choose as input,
labelled by (s1, s2, s3) ∈ Z3

2. In an appropriate
gauge, a general cocycle ω ∈ H3(Z2 × Z2, U(1))
can be written as

ω(a, b, c) =ωs1
1 (a1, b1, c1)ωs2

1 (a2, b2, c2)
× ωs3

II(a, b, c),
(27)
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with si = 0, 1 and the group elements are repre-
sented by pairs of Z2 variables, i.e., a = (a1, a2).
When s3 = 0, only the cocycles ω1 appear. They
are the same as those seen for the Z2 phases, de-
fined in Eq. (12), only now they depend explicitly
on a particular tensor factor, and are referred to
as type-I cocycles. Cocycles of that type yield
TQD models describing a topological order that
is decomposable into Z2 phases. For example,
choosing (s1, s2, s3) = (1, 1, 0) produces a Hamil-
tonian describing a product of two double semion
phases.

In this case, one can make the vertex operators
from each copy fully commuting using the same
phase modification derived in the previous sec-
tion. When s3 = 1, we have a cocycle that can

be represented by

ωII(a, b, c) =ω1(a1, b2, c2) (28a)

=
{
−1 a1 = b2 = c2 = 1
1 else

, (28b)

which mixes the two tensor factors and therefore
is unique to the Z2 × Z2 case.5 To distinguish it
from the previously studied cocycles, it is referred
to as a type-II cocycle. A TQD model with such a
cocycle as input requires a different modification
of the Hamiltonian, which we construct in this
section.

The TQD Hamiltonian built by inserting the
type-II cocycle from Eq. (28) into Eq. (6) reads

HZ2×Z2 =−
∑

plaquettes p

1
4
(
1 +

∏
l∼p

Z
(1)
l

)(
1 +

∏
l∼p

Z
(2)
l

)
−

∑
vertices v

1
4
(
1+A(1,0)

v +A(0,1)
v +A(1,1)

v

) (29a)

with A(1,0)
v =(−1)P

−
42P

−
112+P−

62P
−
122

6∏
l=1

X
(1)
l , (29b)

A(0,1)
v =(−1)P

−
91P

−
32+P−

31P
+
42+P−

81P
−
12+P−

11P
+
62

6∏
l=1

X
(2)
l and (29c)

A(1,1)
v =(−1)P

−
91P

−
32+P−

31P
+
42+P+

42P
−
112+P−

81P
−
12+P−

11P
+
62+P+

62P
−
122

6∏
l=1

X
(1)
l X

(2)
l , (29d)

where X(i)
l , Z

(i)
l are the qubit Pauli matrices act-

ing on the ith tensor factor. And P±
li

= 1
2(1±Z(i)

l )
are the projectors on th values of the ith tensor
factor of edge l.

Again, [B(1)
p , Agv] = [B(2)

p , Agv] = 0 ∀g ∈ Z2 ×
Z2 since each vertex operator flips an even num-
ber of qubits around each plaquette. The only
obstructions preventing {B(i)

p , Agv; i = 1, 2; g ∈
Z2×Z2} from forming a pairwise commuting set
come from the vertex operators. We will quantify
the obstructions below.

5Analogously, we could represent this cocycle by
ω1(a2, b1, c1). However, it is gauge-equivalent to the one
we are using [29].

3.2.1 Obstructions in the original model

Each element in Z2×Z2 is its own inverse. For the
vertex operators to generate a proper stabilizer
group, they must represent the group action on
site and therefore also square to 1. Since the
representative we chose for the type-II cocycle in
Eq. (28) does not depend on a2, b1 and c1, we find

(
A(1,0)
v

)2
=1 and (30a)

A(0,1)
v A(1,0)

v =A(1,1)
v . (30b)

For the other products of non-trivial group ele-
ments (0, 1), (1, 0) and (1, 1) however, we obtain
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explicit obstructions(
A(0,1)
v

)2
=(−1)B

(1)
3,9,8,11 6= 1, (31a)(

A(1,1)
v

)2
=(−1)B

(1)
3,8,9,1+B(2)

6,12,11,41 6= 1, (31b)

A(1,0)
v A(0,1)

v =(−1)B
(2)
6,12,11,4A(1,1)

v 6= A(1,1)
v

(31c)

where B(i)
j,k,l,m = 1

2(1−Z(i)
j Z

(i)
k Z

(i)
l Z

(i)
m ) measures

the flux in the ith tensor factor through the re-
gion enclosed by the edges {j, k, l,m}. As in the
Z2 case, the operators square to the identity in
the flux-free subspace which includes the ground
space.

In addition to the on-site obstructions, the ver-
tex operators fail to commute for neighboring ver-
tices. Due to translation invariance, we need only
calculate the commutation relation between Agv
and the three operators {Ahi , i = 1, 2, 3} con-
nected to v by the edges {l1, l2, l3} (see Fig. 1 for
the labelling) for any pair (g, h). We obtain the
commutativity relations

A(0,1)
v2 A(1,0)

v =(−1)B
(1)
3,9,8,1A(1,0)

v A(0,1)
v2 , (32a)

A(1,0)
v2 A(0,1)

v =(−1)B
(2)
3,9,8,1A(0,1)

v A(1,0)
v2 , (32b)

with the remaining pairs either commuting or
not giving independent obstruction phases(see
App.D). In particular, we find that only the ver-
tex operators acting on different tensor factors
fail to commute and they fail precisely when the
vertices on which they act are connected by a hor-
izontal edge neighboring a flux. In fact, this is a
general property of our model, and can be traced
back to the original choice of edge orientations
(see App.B).

3.2.2 Modifying vertex operators by a local phase

We have found that in the original Z2×Z2 TQD
model the vertex operators fail to be proper sta-
bilizers because, on one hand, the group action
is not represented correctly on-site, i.e. AgvAhv 6=
Ag⊕hv in general, and, on the other, some of them
fail to commute. We were able to quantify the
obstructions and found that they have a simi-
lar structure as in the Z2 TQD model, namely
factors of −1 that only depend on fluxes. To
resolve the obstructions for the three operators
A

(1,0)
v , A(0,1)

v and A(1,1)
v , we modify them by a lo-

cal phase Dg
v that is the identity on the ground

space (Eq. (13)). For the modified operators to
be stabilizers, we need them to fulfill(

Ãgv

)2
=1 ∀g ∈ Z2 × Z2, (33a)

Ã(1,0)
v Ã(0,1)

v =Ã(0,1)
v Ã(1,0)

v = Ã(1,1)
v , (33b)[

Ãgv, Ã
h
v′

]
=0, v 6= v′,∀g, h. (33c)

The first two conditions are on-site conditions re-
flecting that the vertex operators should form a
representation of the Abelian input group and
the third condition is the commutativity condi-
tion necessary for the vertex operators to be sta-
bilizers.

Condition (33a) gives us independent con-
straints on each of the generating phases D(0,1)

v

and D(1,0)
v . Using Eq. (31a), we find that the first

phase must satisfy

1 =D(0,1)
v A(0,1)

v D(0,1)
v

(
A(0,1)
v

)−1

× (−1)B
(1)
3,9,8,1 ,

(34)

which is solved by any solution of the form

D(0,1)
v = iB

(1)
3,9,8,1D̄(0,1)

v (35)

together with D̄
(0,1)
v A

(0,1)
v D̄

(0,1)
v

(
A

(0,1)
v

)−1 = 1.
Since A

(1,0)
v squares to 1 already, the condi-

tion on D
(1,0)
v is simpler. Eq. (33a) imposes

that 1 = D
(1,0)
v A

(1,0)
v D

(1,0)
v

(
A

(1,0)
v

)−1. Now, us-
ing Eq. (33b) to express D(1,1)

v in terms of D(1,0)
v

and D
(0,1)
v and inserting it into the condition(

Ã
(1,1)
v

)2 = 1 yields an additional constraint on
D̄

(0,1)
v and D(1,0)

v ,

1 =A(0,1)
v D̄(0,1)

v

(
A(0,1)
v

)−1
A(1,0)
v D̄(0,1)

v

(
A(1,0)
v

)−1

×A(1,1)
v D(1,0)

v

(
A(1,1)
v

)−1
D(1,0)
v (−1)B

(2)
6,12,11,4 .

(36)

A close inspection of this equation shows that this
equation is satisfied by

D̄(0,1)
v =1 and (37a)

D(1,0)
v =(−1)L

(2)
5 B

(2)
6,12,11,4 , (37b)

where L(i)
j = 1

2(1 − Z(i)
5 ) measures the value of

the ith tensor factor on edge lj giving rise to the
generating phases

D(0,1)
v =iB

(1)
3,9,8,1 , (38a)

D(1,0)
v =(−1)L

(2)
5 B

(2)
6,12,11,4 (38b)
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The remaining modification phase can be calcu-
lated using Eq. (33b) to obtain

D(1,1)
v =iB

(1)
3,9,8,1(−1)(L(2)

5 +1)B(2)
6,12,11,4 . (39)

These solutions define the modified operators

Ã(0,1)
v =iB

(1)
3,9,8,1A(0,1)

v , (40a)

Ã(1,0)
v =(−1)L

(2)
5 B

(2)
6,12,11,4A(1,0)

v and (40b)

Ã(1,1)
v =iB

(1)
3,9,8,1(−1)(L(2)

5 +1)B(2)
6,12,11,4A(1,1)

v , (40c)

which form a faithful representation of Z2 × Z2.
When inserting these operators into Eq. (33c),
one finds that they also commute for neighbor-
ing vertices which completes our construction of
non-Pauli stabilizers {Ã(1,0)

v , Ã
(0,1)
v , Ã

(1,1)
v } based

on the Z2 × Z2 TQD model constructed with a
type-II cocycle. Note that – unlike in the Z2 case
– we have not found a one-parameter family of so-
lutions, though we do not claim that our solution
is unique. Thankfully, the modification phases
we derived here are already quite simple in form,
depending only on a restricted neighborhood of
the vertex, illustrated in Fig. 3. The modification
phase of A(0,1)

v adds an i whenever B(1)
3,9,8,1 = 1

mod 2, which can be seen as an S-gate on the
flux. Similarly, one can see that the phase for
A

(1,0)
v , (−1)B

(2)
6,12,11,4L

(2)
5 , is a controlled Z-gate be-

tween the flux B6,12,11,4 and the edge l5.
With these modifications, we have constructed

a set of stabilizers whose code space is the ground
space of a Z2 × Z2 topological order that cannot
be factored into two (possibly twisted) Z2 phases.
It is just one example of how our analysis of the
on-site and commutativity obstructions in a TQD
model allows us to obtain stabilizers from various
topological orders, since the techniques used here
can be extended to more general models.

3.3 General Abelian topological order

In the previous subsections, we explicitly calcu-
lated and corrected the obstructions to the con-
struction of stabilizers from qubit-based TQD
models. The method can also be applied for the
input groups ZN = {0, 1, . . . , N−1} and ZN×ZN
with type-I and type-II cocycles (and combina-
tions thereof). For those topological orders, the
construction of the modification phases follows a
similar line as that of the qubit based models. In

the following, we will sketch the general construc-
tion and state the resulting modification phases
for ZN and ZN × ZN . The detailed calculation
can be found in App.C and D.

The action of the vertex operator in terms of
cocycles (Eq. (6)) allows us to quantify the on-site
and the commutativity obstructions for a generic
TQD model. Moreover, we can derive consistency
equations for the modification phase by impos-
ing that the vertex operators should represent the
group action on-site and commute for neighboring
vertices (see App.B). Using the canonical repre-
sentative of a type-I cocycle for ZN ,

ωI(a, b, c) = e
2πi
N2 a(b+c−[b+c]N ), (41)

where [a + b]N = (a + b) mod N , allows us to
explicitly solve the consistency equations and ob-
tain pairwise commuting vertex operators {Ãgv}
that represent the group action of ZN . We ex-
ploit the cyclicity of ZN by imposing that every
vertex operator to the Nth power should equal
the identity, just as in Eq. (20a) for N = 2. In
particular, this should hold for the generating ver-
tex operator A1

v, which allows us to determine a
suitable ansatz for the corresponding modifica-
tion phase D1

v . From this, we find a family of
solutions D1

v(p) that ensure that the generating
vertex operators not only represent the group but
also commute pairwise. The fact that Ã1

v gener-
ates every other Ãgv allows us to compute every
other modification phase Dg

v iteratively. One of
the resulting modification phases for any g ∈ ZN
reads

Dg
v =e

2πi
N2 gB6,12,11,4e

− 2πi
N
g
∑−L2−g

n=0

(
P

(n)
−2,8,1−P

(n)
−2,9,3

)
×e
− 2πi

N

∑g−1
n=0 n

(
P

(−L2−n)
−2,8,1 −P (−L2−n)

−2,9,3

)
(42)

×e
− 2πi

N

∑g−1
n=0 n

(
P

(−L5+n)
6,12,−5 −P (−L5+n)

4,11,−5

)
,

where P
(n)
i,j,k is the projector onto the space in

which the sum of edge values li + lj + lk = n
mod N and a minus sign in front of an index
states that the inverse element enters in the sum.
For example, the projector P (n)

−2,8,1 projects onto
the space in which −l2 + l8 + l1 = n mod N . The
flux B6,12,11,4 = (L6 +L12−L11−L4) mod N is
defined in a similar fashion as in the Z2 case. Un-
like the Z2 case, we have to take the orientation
of the edges into account by subtracting l11 and
l4 since the elements of ZN are not self-inverses.
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v

A(0,1)
v

l1

l3

l8

l9

iB3,9,8,1 v

A(1,0)
v

l4

l6

l11

l12

(−1)B6,12,11,4l5

1st tensor factor 2nd tensor factor 1st & 2nd tensor factor

v

A(1,1)
v

l4

l6

l11

l12

iB3,9,8,1

l1

l3

l8

l9

(−1)B6,12,11,4(l5+1)

Figure 3: Graphical representation of the stabilizers {Ã(0,1)
v , Ã

(1,0)
v , Ã

(1,1)
v } (left to right). They are composed of

TQD vertex operators (Eqs. (29)) – represented by the filled dots on the vertex – and modification phases. The latter
are only supported on a restricted neighborhood which is colored red (blue) when acting on the first (second) tensor
factor of the local C2 ⊗ C2 Hilbert space. The edges in gray only enter implicitly via the fluxes.

We note that the modification phase above is 1
in the zero-flux subspace, where B6,12,11,4 = 0
and all the projectors appearing cancel pairwise
in the above expression. The first term is a N2th
root of unity and only depends on fluxes. It is
the higher dimensional analogue of the first fac-
tor in the Z2 solution, Eq. (26). The second term,
which only includes the edge value l2 in the upper
summation bound, reduces to the second term in
Eq. (26) when N = 2. The only term where l2
enters in the argument of the projectors is the
third term. For N = 2, this term reduces to the
last term in Eq. (26). For a detailed derivation of
the modification phase for G = ZN we refer to
App.B and C.

When considering the TQD model with gauge
group Z2

N and a type-II cocycle (Eq. (28)), the
construction follows a similar path. For each ten-
sor factor, the vertex operators must fulfill the
same closure relation as in ZN . This allows us to
find suitable ansatzes for the modification phases
D

(0,1)
v and D

(1,0)
v for the two generating vertex

operators Ã(0,1)
v and Ã

(1,0)
v so that the modified

operators {Ã(0,1)
v , Ã

(0,1)
v } represent the group ac-

tion of the two generators (0, 1) and (1, 0) on-site
in a consistent fashion on both tensor factors and
commute pairwise. Since they correspond to the
two generators of ZN × ZN , we can again iter-
atively construct the modification phase for any
g = (g1, g2) ∈ Z2

N ,

D(g1,g2)
v = e

2πi
N2 g2B

(1)
3,9,8,1 (43)

× e
− 2πi

N
g1
∑−L(2)

5 −1+g2
i=0

(
P

(i)
(6,12,−5)(2)−P

(i)
(4,11,−5)(2)

)
,

where we indicate the operators only supported

on the ith tensor factor with an upper index
in brackets, e.g. L

(1)
5 acts like L5 ⊗ 1 on the

CN ⊗ CN Hilbert space on edge 5. The flux
B

(i)
3,9,8,1 = (−L(i)

3 −L
(i)
9 +L(i)

8 +L(i)
1 ) mod N mea-

sures the ith tensor factor of the flux through the
diamond left of the vertex (see. Fig. 3) and the
projectors P (n)

(i,j,k)(l) are defined as in the ZN case
but on the lth tensor factor. As with the ZN so-
lution, we can identify the terms derived in the
previous subsection for N = 2 (see Eqs. (39) and
(38)). The first term only depends on fluxes and
is non-trivial when g2 6= 0. In contrast, the sec-
ond term depends on both tensor factors of g,
where g1 defines which Nth root of unity is ap-
pended and g2 selects which projectors appear in
the sum. The explicit edge value l(2)

5 enters only
in the upper summation bound of the second term
and has a similar influence on the sum of projec-
tors as g2. In contrast to the one-parameter fam-
ily of the ZN case, we have found only a single
solution. For a detailed derivation, see App.D.

Although we have only calculated the modifi-
cation phase for ZN and ZN × ZN , these results
readily generalize to any Abelian group yielding
an Abelian anyon theory. Since, by the fun-
damental theorem of finitely generated Abelian
groups, any finite Abelian group can be decom-
posed into ZN factors. As a consequence of
this, one can also decompose the cocycles of
an Abelian group into cocycles of of this cyclic
decomposition[29]. Whilst there exist cocycles
beyond the type-I and type-II classes considered
here, their inclusion in a TQD model produces
topological order containing non-Abelian anyons,
and are therefore not suitable for stabilizer error

12



correction based on commuting syndrome mea-
surements. In our construction, we have explic-
itly constructed the modification phase for type-I
and type-II cocycles. Since the cocycle defining
an arbitrary Abelian TQD model will be a prod-
uct of type-I and type-II cocycles, the modifica-
tion phases can be computed as above for each
factor in that product. The resulting phases can
then be multiplied together as they are all di-
agonal operators and therefore commute. This
finalizes the argument that our construction car-
ries over to any Abelian topological order derived
from a TQD model.

3.4 Towards quantum error correction
In this subsection, we discuss the potential of the
new topological codes devised here for notions of
fault tolerant quantum computing and quantum
error correction [31]. We have constructed pair-
wise commuting operators Ãgv that, together with
Bg
p (see Eq. (4)) generate the Non-Pauli stabilizer

group STQD. Just as in other topological codes, a
measurement of all generators of this group gives
rise to a unique excitation pattern. This diag-
nostic information can be used in decoders that
allow for an eventual correction by annihilating
them with suitable string-like operators. The
same string operators, when closed around a non-
trivial loop, give rise to logical operators of the
codes.

Let us illustrate the qualitative difference of the
string operators in our codes to the toric code-
like string operators in Kitaev’s quantum double
models [20] with the previously discussed TQD
model with G = ZN and a non-trivial cocycle
from Eq. (41). The group action can be imple-
mented by a generalized Pauli operatorX : |n〉 7→
|n+ 1 mod N〉. With that, the vertex operators
are of the form

Agv = αgv
∏
l∼v

X
gs(l,v)
l , (44)

where αgv is a (in the computational basis) diag-
onal unitary operator containing the pre-factor
of the original vertex operator made up of cocy-
cles (see Eq. (6)) and the correction phaseDg

v (see
Eq. (42)). The sign s(l, v) = (−1)+1 for an (out-
going)incoming edge l w.r.t. vertex v (compare
Eqs. (7)). The plaquette operators are the known
plaquette operators Bg

p made up of generalized
Pauli Zs around the plaquette. The elementary

Z
Z

Z Z

X
X
X XX XX X

Figure 4: Example of two elementary string operators of
the double semion code. A Z-string along a path on the
lattice creates vertex excitations at its endpoints (red
dots). Similarly, a pair of plaquette excitations (blue
dots) is created by a X-string along a path on the dual
lattice which is dressed with a phase factor βP . The lat-
ter is supported on the neighborhood of the path, whose
boundary is depicted in green. The logical operators of
the code are generated by these string operators acting
on along non-trivial loops on the surface.

string operators of the corresponding code have
the property that they are supported on paths on
the (dual) lattice and commute everywhere with
the stabilizers except at their endpoints where
they only commute up to a phase e±2πi/N with
either the plaquette or vertex operators. Since
the plaquette operators are exactly the same as in
the (N -level) toric code, the string operators that
create a pair of vertex-excitations (charges) are
strings of Pauli Zs along a path connecting the
two vertices that carry the excitations. The ele-
mentary string operators supported along a (ori-
ented) path P in the dual lattice creating fluxes
at their end-plaquettes, on the other hand, have
to be of the form

SgP = βgP
∏
l∈P

X
gs(l,P)
l , (45)

where βgP is a diagonal operator similar to αgv but
supported on the path P and its nearest neigh-
bors and s(l,P) = (−1)1 for an edge l that crosses
P from the (left)right. The reason for that is that
a simple X string on the dual lattice does not
commute with the vertex operators due to the
non-trivial pre-factor αgv. For the double semion
code, the string operators are depicted in Fig. 4.

To find the pre-factors for the string operators
βgP it suffices to look at the generator g = 1 and
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then define SgP =
(
S1
P
)g. Moreover, strings along

longer paths can be formed by concatenation of
elementary strings along paths of length 1. This
allows us to generate any flux-string operator for
the code (and with that the logical operators as
well) from generating string operators that create
excitations on neighboring plaquettes and then
use the same operators to move one excitation
away from the other. These generating strings
can be obtained as solutions to the consistency
conditions (

S1
P

)N
=1, (46a)[

S1
P , A

1
v

]
G

=1 ∀v, (46b)

where [A,B]G = ABA−1B−1 denotes the group
commutator and N is the order of the corre-
sponding excitation. The first condition enforces
the correct fusion rules of the underlying excita-
tions and the second one ensures that S1

P is in-
deed an elementary string operator of the code
as discussed above. The authors of Ref. [13] Ref.
have encountered similar conditions in their ver-
sion of a semion code (N = 2 in our case) and
have identified an algorithmic way to construct
the phase β1

v . This method should be generaliz-
able to higher local dimensionsN > 2 and models
from product groups like the twisted color codes
introduced above. This – as well as identifying
ways of making the best use of the diagnostic in-
formation obtained in non-Pauli stabilizer mea-
surements – will be the topic of future work.

What all TQD codes from a non-trivial cocy-
cles have in common is the exotic structure of the
vertex operators and the flux-string operators, as
illustrated above. This results in strings of (gen-
eralized) Pauli X errors no longer only creating
flux-excitations at their endpoints but also creat-
ing correlated vertex excitations in its interior. In
particular, such a Pauli XP string along a path P
will decompose into elementary string operators
as

XP =
∑
{Pz}

cP(Pz)PzS1
P , (47)

where {Pz} is the set of possible products of (gen-
eralized) Pauli Zs supported on the neighborhood
of path P and {cP(Pz)} are the (complex) expan-
sion coefficients that can be obtained by project-
ing β1

P onto the Pauli words {Pz}. This means
that Pauli errors act on the TQD codes in a

similar way as coherent errors in Pauli stabilizer
codes. Investigating TQD codes with Pauli noise
therefore could also bring insight into the study
of coherent errors in Pauli codes.

4 Conclusion and outlook

In this work, we have exploited the deep connec-
tions between topological phases of matter and
topological error correction to construct a new
class of stabilizer codes built from twisted quan-
tum double models hosting Abelian anyons. To
do so, we have established a systematic and quan-
titative understanding of how the vertex oper-
ators of twisted quantum double models fail to
commute outside of the ground space and there-
fore precluding their use as stabilizers without
further modification. We began with the rel-
atively straightforward task of deriving the ob-
structions for the fixed-point Hamiltonian of the
double semion phase – the twisted version of the
toric code Hamiltonian – and of a twisted Z2×Z2
phase. By appropriately modifying the vertex op-
erators, we have obtained commuting stabilizers
from both models that, in principle, can be im-
plemented with a two dimensional qubit architec-
ture. This approach readily generalizes to other
twisted quantum double models with higher local
dimensions. We have explicitly constructed com-
muting stabilizers from the twisted ZN and Z2

N

models, making it possible to construct stabiliz-
ers for every Abelian TQD model.

Our findings invite further research into ex-
plicit error correction schemes based on these
novel stabilizers so that their potential may be
fully explored. For any decoder proposed, one has
to find suitable string operators for these modi-
fied models, which provide both the recovery op-
erations and the logical operations on the code
space. We expect that the feature of our codes
that Pauli X strings (and their higher dimen-
sional analogues) not only create plaquette ex-
citations at their endpoints but also some vertex
excitations along their path can be used to de-
sign a tailored decoder with potentially increased
performance under Pauli noise. A first step in
this direction has been taken in Ref. [32] using
a neural network decoder for their semion code.
Although they did not find substantial evidence
of increased performance compared to the toric
code, it is far from clear whether there does not
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exist a better decoder tailored to the exotic string
operators and what can be achieved with Stabi-
lizer codes implementing other topological orders
– like the twisted color code introduced in Sec. 3.2.
Moreover, a more sophisticated analysis of the be-
haviour of our codes under Pauli noise would not
only yield a deeper understanding of Non-Pauli
topological codes in general but also connect to
Pauli (topological) codes with coherent errors: In
fact, here one has to deal with similar a decom-
position of errors into elementary strings, but in
reversed roles. As far as we know, mappings to
statistical mechanics models for such error mod-
els [12], for example, are yet to be discovered.

On a more abstract level, our codes host fun-
damentally different anyons to those in Pauli
stabilizer codes resulting in a different algebra
of the logical operators, twist defects and do-
main walls [18] and with that allow for a dif-
ferent fault-tolerant gate set. With our stabi-
lizers at hand, it is now possible to implement
these twisted anyon theories in an error correct-
ing code inviting research into their potential for
topological quantum computation. Though these
codes in and of themselves are a novel take on
the idea of stabilizer-based error correction, it is
our hope that the many questions raised by this
class of codes spurs the comprehensive investiga-
tion into their properties and their potential for
fault-tolerant quantum computing.
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A Group cohomology with U(1) coefficients
In this section, we will give an algebraic definition of group cohomology with U(1) coefficients. In some
sense it can be thought of a condensed version of the appendix in Ref. [11] in which we give all the
necessary background to understand our general framework described in the next appendices. Besides
that, it is an interesting subject on its own and pops up in different fields of physics and mathematics.

In our context, we deal with the cohomology of groups over U(1).6 To define the nth cohomology
group, we start by defining maps from multiple copies of G onto U(1), ωn : Gn → U(1). Such a general
map is called n-cochain and we denote the set of all such functions by Cn(G,U(1)). Moreover, we
define the so called coboundary operator mapping n-cochains to n + 1-cochains, δn : Cn(G,U(1)) →
Cn+1(G,U(1)) with

(δnωn)(g0, g1, . . . , gn) =ωs(g0)
n (g1, . . . , gn)

n−1∏
i=0

ω(−1)i+1
n (g0, . . . , gi−1, gigi+1, . . . , gn)

× ω(−1)n+1
n (g0, . . . , gn−1),

(48)

where s(g) = −1 if g is antiunitary and 1 if it is unitary and the group multiplication symbol on G
between gi and gi+1 is implicit. A short calculation shows that (δn+1 ◦ δn)ωn = 1 ∀ωn ∈ Cn(G,U(1))
which is the defining property of any coboundary operator. For n = 2 and n = 3 for example the
coboundary operator acts as

(δ2ω2)(g0, g1, g2) =ω2(g1, g2)ω2(g0, g1g2)
ω2(g0g1, g2)ω2(g0, g1) , (49a)

(δ3ω3)(g0, g1, g2, g3) =ω3(g1, g2, g3)ω3(g0, g1g2, g3)ω3(g0, g1, g2)
ω3(g0g1, g2, g3)ω3(g0, g1, g2g3) . (49b)

The first thing we do with an algebraic map is to define its kernel and its image. We call any element in
the kernel of δn n-cocycle and denote the set of n-cocycles as Zn(G,U(1)) = {ω ∈ Cn(G,U(1)); δnω =
1}. We call any element in the image of δn−1 n-coboundary and denote the set of n-coboundaries by
Bn(G,U(1)) = {ω ∈ Cn(G,U(1)); ω = δn−1β, β ∈ Cn−1(G,U(1))}.

Due to (δn ◦ δn−1)ωn−1 = 1 we can multiply any n-cocycle with an n-coboundary and the result
will still be a n-cocycle. Group cohomology classifies all the inequivalent cocycles under such a gauge
freedom, i.e. the nth cohomology group of G over U(1) is defined by

Hn(G,U(1)) = Z
n(G,U(1))�Bn(G,U(1)). (50)

By comparison of Eqs. (8) and (9) with Eqs. (49a) and (49b), we see that the classification of the
topological orders of a twisted gauge theory with gauge group G in Eq. (10) is exactly what we defined
here as the third cohomology group of G over U(1).

B Obstruction in general TQD models from Abelian groups
Consider a finite Abelian group G and a 3-cocycle ω ∈ H3(G,U(1)). By construction, the vertex
operators {Agv} in the original TQD model defined by (G,ω) (see Eq. (6)) form a representation of
the group on the flux-free Hilbert space, where Bp = 1 ∀p, i.e., they implement the group action
on-site and commute with any vertex operator acting on a different vertex. In the following, we will
investigate the how they act on the total Hilbert space H =

⊗
Hl. In particular, we find two types of

obstructions – one which capture the failure of the group multiplication rule when implemented on site
(the on-site obstruction) and one which captures the failure of two neighboring operators to commute
(the commutativity obstruction).

6Formally, here U(1) is a G-module with trivial group action.
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B.1 On-site obstruction
We will first investigate the successive action of two vertex operators Agv and Ahv on an arbitrary basis
element. Using the action defined in Eq. (6), we obtain

AgvA
h
v

∣∣∣∣∣ l1
l2
l3 l4

l5

l6

l7

l8

l9

l10

l11

l12

〉
=ω(l9, l3h−1, h)ω(l3h−1, h, l4)ω(h, l4, l11)
ω(l8, l1h−1, h)ω(l1h−1, h, l6)ω(h, l6, l12)

× ω(l9, l′′3 , g)ω(l′′3 , g, hl4)ω(g, hl4, l11)
ω(l8, l′′1 , g)ω(l′′1 , g, hl6)ω(g, hl6, l12)

∣∣∣∣∣ l′′1l′′2
l′′3 l′′4

l′′5

l′′6

l7

l8

l9

l10

l11

l12

〉
,

(51)

where l′′i = lih
−1g−1 for i = 1, 2, 3 and l′′j = ghlj for j = 4, 5, 6. Note that we have left the group

multiplication symbol implicit. Besides shifting the edge values of l1 to l6, the two vertex operators
multiply the basis vector with a phase factor given by a product of 12 cocycles. We can simplify this
large product using the cocycle condition Eq. (8) so that it reduces to a product of 10 cocycles

ω(l9l′′3 , g, h)ω(g, h, l4l11)ω(l9, l′′3 , gh)ω(l′′3 , gh, l4)ω(gh, l4, l11)
ω(l8l′′1 , g, h)ω(g, h, l6l12)ω(l8, l′′1 , gh)ω(l′′1 , gh, l6)ω(gh, l6, l12) , (52)

where we can identify the pre-factor of Aghv

AgvA
h
v

∣∣∣∣∣ l1
l2
l3 l4

l5

l6

l7

l8

l9

l10

l11

l12

〉
= ω(l9l′′3 , g, h)ω(g, h, l4l11)
ω(l8l′′1 , g, h)ω(g, h, l6l12)A

gh
v

∣∣∣∣∣ l1
l2
l3 l4

l5

l6

l7

l8

l9

l10

l11

l12

〉
. (53)

Since this equality holds for any basis element and any group elements g, h, we have established a
relation between the operators AgvAhv and Aghv . By rewriting the product of edges in terms of the fluxes
b3,9,2 = l−1

3 l−1
9 l2, b2,8,1 = l−1

2 l8l9, b5,11,4 = l5l
−1
11 l
−1
4 and b6,12,5 = l6l12l

−1
5 , this relation reads

AgvA
h
v =ω(l2(b3,9,2)−1, g, h)ω(g, h, (b5,11,4)−1l5h

−1g−1)
ω(l2b2,8,1, g, h)ω(g, h, b6,12,5l5h−1g−1) Aghv

=:Ω(l2,l5)
{b} (g, h)Aghv ,

(54)

where we have omitted the group multiplication symbol for clarity and introduced the on-site obstruc-
tion phase Ω(l2,l5)

{b} (g, h), defined with a fixed flux configuration {b}, that is only supported on the
horizontal edges l2 and l5 and depends on the two group elements g, h.

By introducing the fluxes as above, we immediately see that the on-site obstruction phase equals
1 in the flux-free subspace. Hence, AgvAhv = Aghv holds in the absence of fluxes, as anticipated. On
the whole Hilbert space however, group multiplication is only faithfully implemented up to the phase
factor Ω.7

B.2 Commutativity obstruction
To quantify the (non-)commutativity of the vertex operators in the original TQD model, we compute
the group commutator

[
Agv′ , A

h
v

]
G

:= Agv′A
h
v(Agv′)−1(Ahv)−1. It is clear from the definition that two

7One might be eager to see the vertex operators as a projective representation of G. However, one has to be careful
with this, since Ω is in fact an operator that itself does not commute with the vertex operators. Hence, where one
might think only of projective representations characterized by group cohomology over a module with trivial action as
discussed in the previous section, one really is dealing with a group cohomology over a module with non-trivial action
characterizing the obstruction phase, sometimes referred to as twisted group cohomology.
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vertex operators that act on vertices separated by two or more edges commute. We therefore only have
to consider neighboring vertices v and v′. Due to the translation symmetry of our lattice, we only need
to consider three cases: Whether v and v′ are connected by l1, l2 or l3 (see Fig. 1).

In the first case, adapting the labelling of the vertices in Fig. 1 and using Eq. (6), the group commu-
tator, acting on an arbitrary basis vector, reads

[
Ag1, A

h
v

]
G

∣∣∣∣∣ v1

l6
l1

l2

l7

l8

〉
= ω(g, g−1l1, l6)ω(l8, g, g−1l1)
ω(l8g, g−1l1, h)ω(g−1l1, h, h−1l6)

× ω(l8, l1, h)ω(l1, h, h−1l6)
ω(l8, g, g−1l1h)ω(g, g−1l1h, h−1l6)

∣∣∣∣∣ v1

l6
l1

l2

l7

l8

〉
,

(55)

where we have only explicitly shown the part of the lattice on which both operators act non-trivially.
Using the two cocycle conditions (Eq. (8))

ω(l8, l1, h)ω(l8, g, g−1l1)
ω(l8g, g−1l1, h)ω(l8, g, g−1l1h)

(8)= 1
ω(g, g−1l1, h) and (56a)

ω(g, g−1l1, l6)ω(l1, h, h−1l6)
ω(g−1l1, h, h−1l6)ω(g, g−1l1h, h−1l6)

(8)=ω(g, g−1l1, h), (56b)

we see that this pre-factor is in fact equal to 1 for any cocycle. Since this holds for any basis vector,[
Ag1, A

h
v

]
G

= 1 on the whole Hilbert space and the vertex operators Ag1 and Ahv commute in the original

TQD model. We observe the same for the vertex operators Ag3 and Ahv , since

[
Ag3, A

h
v

]
G

∣∣∣∣∣ v3

l2
l3

l4

l9

l10

〉
= ω(g, g−1l1, l6)ω(l8, g, g−1l1)ω(l8, l1, h)ω(l1, h, h−1l6)
ω(l8g, g−1l1, h)ω(g−1l1, h, h−1l6)ω(l8, g, g−1l1h)ω(g, g−1l1h, h−1l6)

∣∣∣∣∣ v3

l2
l3

l4

l9

l10

〉

(8)=
∣∣∣∣∣ v3

l2
l3

l4

l9

l10

〉
,

(57)

where we have again used the cocycle condition to identify the pre-factor in the first line with 1.
This leaves only the second pair of vertices, v and 2, where we keep to the same procedure. However,

when we compute the commutator, Eq. (6),

[
Ag2, A

h
v

]
G

∣∣∣∣∣ v2

l1
l2

l3

l8

l9

〉
= ω(g−1l9, l3, h)ω(g, g−1l9, l3)ω(g, g−1l8, l1h)ω(l8, l1, h)
ω(g−1l8, l1, h)ω(g, g−1l8, l1)ω(g, g−1l9, l3h)ω(l9, l3, h)

∣∣∣∣∣ v2

l1
l2

l3

l8

l9

〉
, (58)

we find that – in contrast to the previous cases – no amount of cocycle manipulation can remove the
pre-factor, leaving a phase of the form

ω(g−1l9, l3, h)ω(g, g−1l9, l3)ω(g, g−1l8, l1h)ω(l8, l1, h)
ω(g−1l8, l1, h)ω(g, g−1l8, l1)ω(g, g−1l9, l3h)ω(l9, l3, h) = ω(g, g−1l8l1, h)

ω(g, g−1l9l3, h) . (59)

Since Eq. (58) holds for any basis vector we established an identity for the operator
[
Ag2, A

h
v

]
G
. Ex-

pressed in terms of the fluxes b2,8,1 and b3,9,2 introduced in Eq. (54) it reads

[
Ag2, A

h
v

]
G

= ω(g, g−1l2b2,8,1, h)
ω(g, g−1l2(b3,9,2)−1, h) =: Π(l2)

{b} (g, h), (60)
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where we introduced the commutativity obstruction phase Π(l2)
{b} (g, h) similar to the on-site obstruction

phase Ω in the previous section. Note that, for a given flux configuration {b} and group elements g, h,
the commutativity obstruction is only supported on one edge, namely the edge connecting the two
vertices v and 2. When expressed in this form, we can directly see that the commutativity obstruction
phase is 1 in the flux-free subspace, as anticipated. The goal of our stabilizer construction is to modify
the vertex operators in such a way to remove Ω and Π simultaneously.

C Constructing stabilizers from input group ZN and a type-I cocycle
In this section, we will explicitly calculate the obstructions defined above for G = ZN . We represent
the group by the set {0, 1, . . . , N−1} together with the group multiplication being addition modulo N ,
i.e. g1 · g2 = (g1 + g2) mod N =: g1⊕ g2. We first introduce operators that generalize the Pauli Z and
X matrices to N level systems. These are defined y their action on Hl = spanC{|0〉 , |1〉 , . . . , |N − 1〉},

Z =
N−1∑
n=0

λn |n〉〈n| with λ := e2πi/N and X =
N−1∑
n=0
|n⊕ 1〉〈n| . (61)

Note that XN = ZN = 1 and that they satisfy the commutation relation

XZ = λ−1ZX. (62)

Having defined those operators, we can write Agv of any ZN TQD model in terms of a phase factor
(defined in Eq. (6) by the chosen cocycle ω) times the product

∏
l∼vX

s(v,l)g
l , where s(v, lj) = (−)1 for

an edge lj pointing (away from)towards vertex v. From that, it directly follows that the phase operator
Z fulfills the following commutativity relation with Agv:

AgvZj = λ−s(v,lj)gZjA
g
v, (63)

where j labels the edge on which Zj acts and s(v, lj) = 1 (−1) for an edge lj pointing to-
wards (away from) vertex v (compare Eqs. (7)). Moreover, we introduce projectors P

(n)
l1,...,lk

:=∑
n1⊕···⊕nk=n |n1, . . . , nk〉〈n1, . . . , nk| projecting onto the subspace on which values8 of the k edges

l1, . . . , lk sum up to n mod N . Since n is understood modulo N , we define P (n+N)
j = P

(n)
j for any

(set of) edge(s) j.
To evaluate the obstruction phases Ω and Π that we have defined in App.B, we first need to choose

a (non-trivial) cocycle representative [ω] ∈ H3(ZN , U(1)) to insert into Eqs. (54) and (60). For ZN ,
there are N cocycle classes that can be labelled by p ∈ ZN are represented by

ωp(a, b, c) = e
2πi
N2 pa(b+c−[b⊕c]) =

{
λap b+ c ≥ N
1 else

, a, b, c ∈ ZN . (64)

Such cocycles, depending only on elements from the same group ZN , are called type-I cocycles [29].
All representatives are generated by ω1 and (ω1)0 = (ω1)N ≡ 1 represents the trivial cocycle class.
Investigating the TQD model defined by the cocycle ω1 and lifting the obstructions for that particular
model with a generating modification phase is therefore enough to lift the obstructions for all ZN TQD
models. The modification phase that lifts the obstruction for a model defined with an ωp cocycle is
given as pth power of the generating modification phase.

Inserting ω1 from Eq. (64) into Eq. (54) gives the on-site obstruction

Ω(l2,l5)
{b} (g, h) =

(
λ−B3,9,8,1

)∆g+h,N
λ
g
∑g+h−1

i=g

(
P

(i−l5)
4,11,−5−P

(i−l5)
6,12,−5

)
= Ω(l5)

{b} (g, h), (65)

8To be precise, we say an edge has a value l ∈ ZN when it is in a state vector |l〉. Hence, we can sum up the values
according to the group multiplication on ZN .

20



where B3,9,8,1 = (−l3)⊕ (−l9)⊕ l8 ⊕ l1 and ∆g+h,N = 1 for g + h ≥ N and 0 otherwise. Interestingly,
the l2 dependence drops out such that, for a fixed flux configuration, the modification phase is only
supported on l5. Similarly, inserting ω1 into Eq. (60) gives the commutativity obstruction

Π(l2)
{b} (g, h) = λ

g
∑g−1

i=g−h(P (i−l2)
−2,8,1−P

(i−l2)
−2,9,3 )

. (66)

Note that these obstructions coincide with the ones calculated for N = 2, where g = h = 1 is the only
non-trivial case, in Sec. 3.1.

Having quantified the obstructions for the ZN TQDmodel, we introduce themodified vertex operators
Ãgv = Dg

vA
g
v with the phase modificationDg

v being a (in the edge basis) diagonal operator with all entries
taking values being roots of unity. We impose that Dg

v |flux-free = 1 so that the ground space properties
– and with them the topological data of the model – remain unchanged. Let us first consider two
vertex operators acting on the same vertex. The modified operators should fulfill

ÃgvÃ
h
v = Ãg⊕hv , ∀g, h. (67)

Inserting the definition of Ãgv and Eq. (54) yields the on-site consistency condition on the phases {ηgv},

ηg⊕hv = Agvη
h
v (Agv)−1ηgvΩ(l5)

{b} (g, h). (68)

Since ηgv is diagonal in the edge basis, conjugation with Agv modifies it only by shuffling edge values.
In particular, Agvl2(Agv)−1 = l2 ⊕ g and Agvl5(Agv)−1 = l5 ⊕ (−g). Using the cyclic property of ZN , we
can set g = 1 and h = N − 1 in Eq. (68) to obtain an equation for η0. Since A0

v = 1, η0
v = 1, and we

obtain

1 = η0
v = η(N−1)⊕1

v
(68)= A1

vη
N−1
v (A1

v)−1η1
vΩ

(l5)
{b} (1, N − 1). (69)

We expand this further by recursively writing N − 1 = (N − 2)⊕ 1, N − 2 = (N − 3)⊕ 1, . . . , 2 = 1⊕ 1
and using Eq. (68) to rewrite ηN−1

v , ηN−2
v , . . . , η2

v , thereby obtaining the closure relation

1 =
N−1∏
n=0

AnvΩ(l5)
{b} (1,−(n+ 1))(Anv )−1

N−1∏
n=0

Anvη
1
v(Anv )−1

=
N−1∏
n=0

Ω(l5−n)
{b} (1,−(n+ 1))

N−1∏
n=0

Anvη
1
v(Anv )−1,

(70)

where we have used that a diagonal operator (such as Ω and η) conjugated by Agv is still a diagonal
operator and therefore commutes with any other diagonal operator. Eq. (70) makes is possible to find
a solution for the phase corresponding to the generator of ZN , η1

v . Moreover, the recursion process that
led us to Eq. (70) can be used iteratively to generate all other phases ηgv ∀g ∈ ZN so that Eq. (67) is
fulfilled. Once that is achieved, the general commutativity problem reduces to restoring commutativity
to the generator {Ã1

v} since any other modified vertex operator decomposes as Ãgv = (Ã1
v)g. We will

therefore first solve the on-site consistency condition and then derive a second consistency condition
for the commutativity of the modified vertex operators.

Inserting the explicit form of the obstruction phase Ω(l5)
{b} calculated before, the equation reads

1 = λB3,9,8,1λ

∑N−1
n=0

∑N−1−n
i=1

(
P

(i−l5+n)
4,11,−5 −P (i−l5+n)

6,12,−5

)
N−1∏
n=0

Anvη
1
v(Anv )−1. (71)

The double sum in the exponent can be simplified with some projector algebra. It reads
N−1∑
n=0

N−1−n∑
i=1

(
P

(i−l5+n)
4,11,−5 − P (i−l5+n)

6,12,−5

)
=
N−1∑
n=0

N−1∑
i=1+n

(
P

(i−l5)
4,11,−5 − P

(i−l5)
6,12,−5

)

=−
N−1∑
n=1

n
(
P

(n−l5)
4,11,−5 − P

(n−l5)
6,12,−5

)
= −B6,12,11,4,

(72)
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where we have used that
∑N−1
n=0 P

(n)
j = 1 and noting that the final expression is the operator measuring

the flux through the diamond to the right of the vertex, B6,12,11,4 = l6 ⊕ l12 ⊕ (−l11) ⊕ (−l4). With
that, the closure condition on η1

v reads

1 = λ−B3,9,8,1−B6,12,11,4
N−1∏
n=0

Anvη
1
v(Anv )−1. (73)

Since the vertex operators do not change fluxes, this equation can be solved by any expression of the
form

η1
v = λ(B3,9,8,1+B6,12,11,4)/N η̄1

v with
N−1∏
n=0

Anv η̄
1
v(Anv )−1 = 1. (74)

We are left with a freedom η̄1
v to solve an additional consistency equation coming from the commu-

tativity obstruction phase (66). To be precise, imposing that the generating vertex operators {A1
v}

commute, i.e., [Ã1
2, Ã

1
v]G = 1, yields the commutativity consistency condition on {η1

v}

Π(l2)
{b} (1, 1) =ηhvA1

2(ηhv )−1(A1
2)−1A1

vη
1
2(A1

v)−1(η1
2)−1

=
[
ηhv , A

1
2

]
G

[
A1
v, η

1
2

]
G
.

(75)

Substituting in Eqs. (74) and (66), we obtain the two consistency conditions

λP
(−l2)
−2,8,1−P

(−l2)
−2,9,3 = η̄1

vA
1
2(η̄1

v)−1(A1
2)−1A1

vη̄
1
2(A1

v)−1(η̄1
2)−1 and

N−1∏
n=0

Anv η̄
1
v(Anv )−1 = 1 (76)

to lift the on-site and commutativity obstructions. We find a one-parameter family of solutions

η̄1
v(p) = λ−(pB3,9,8,1+(1−p)B6,12,11,4)/Nλ

−p
∑−l2−1

n=0

(
P

(n)
−2,8,1−P

(n)
−2,9,3

)
−(1−p)

∑−l5
m=0

(
P

(m)
6,12,−5−P

(m)
4,11,−5

)
, (77)

where we have used a similar manipulation as in Eq. (72) to show the second condition for η̄1
v . Note

that η1
v(p + N2) = η1

v(p), and thus all distinct solutions in this family are labeled by p ∈ [0, N2).
Putting these together with Eq. (74) yields the full modification phase

η1
v(p) = λ((1−p)B3,9,8,1+pB6,12,11,4)/Nλ

−p
∑−l2−1

n=0

(
P

(n)
−2,8,1−P

(n)
−2,9,3

)
−(1−p)

∑−l5
m=0

(
P

(m)
6,12,−5−P

(m)
4,11,−5

)
. (78)

This expression consists of two parts. The rightmost one, built from two sums of projectors and having
an explicit l2 and l5 dependence ensures commutativity, whereas the other part, depending only on
fluxes and therefore not altering the commutativity properties, is there to fulfill the on-site condition.
Using the recurrence relation from the derivation of the closure relation Eq. (68), we generate all other
modification phases {ηgv} iteratively so that the on-site condition is fulfilled. The general modification
phase then reads

ηgv(p) =λg((1−p)B3,9,8,1+pB6,12,11,4)/Nλ
−g
[
p
∑−l2−g

n=0

(
P

(n)
−2,8,1−P

(n)
−2,9,3

)
+(1−p)

∑−l5
n=0

(
P

(n)
6,12,−5−P

(n)
4,11,−5

)]
× λ

−
∑g−1

n=0 n

[
p

(
P

(−l2−n)
−2,8,1 −P (−l2−n)

−2,9,3

)
+(2−p)

(
P

(−l5+n)
6,12,−5 −P

(−l5+n)
4,11,−5

)]
, p ∈ R.

(79)

With that, we have obtained a solution for a very general case, namely all ZN TQD models. On a first
glance this expression seems complex, but a little inspections shows that, for specific choices of p and
certain (small) local dimensions, it reduces to a manageable expression (see Sec. 3.1).
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D Constructing stabilizers from input group ZN × ZN and a type-II cocycle
In this section, we will calculate the obstruction phases derived in App.B for G = Z2

N and a type-II
cocycle. Each element in the input group can be written as a pair of ZN elements, g = (g1, g2) with
group multiplication naturally carrying over from ZN .9 It is clear that this group is generated by
two elements, namely (0, 1) and (1, 0). When looking at the cohomology of this group, one finds that
the resulting cocycle classes are generated by three elements split into two types[29]. The two type-I
generators are the same as those for ZN , depending on the data from a single tensor factor, i.e.,

ωI,p(a, b, c) = ωp(ai, bi, ci), i = 1, 2, (80)

where ωp was defined in Eq. (64). Using such a cocycle to define a TQD model will result in the same
functional form of the obstructions Ω and Π found for ZN . Hence, they also can be removed by the
same modification phase ηgv from Eq. (79) where all ZN variables now carry a tensor factor index i.

Besides these type-I cocycles, there are type-II cocyles that depend on both tensor factors simulta-
neously and can be represented by

ωII,p(a, b, c) = ωp(a1, b2, c2) =
{
λa1p b2 + c2 ≥ N
1 else

, (81)

where λ = e2πi/N . One could also define the cocycle with indices 1 and 2 interchanged, but this is
known to be gauge equivalent to the above definition [29]. Eq. (81) shows that cocycles of type II mixes
the two tensor factors of the input group elements in a non-trivial way. Whereas the Z2

N TQD model
with a type-I cocycle can be decomposed into two (possibly inequivalent) ZN TQD models, a type-II
cocyle gives rise to a different topological order that cannot be factored in this way. In the following,
we calculate the obstructions Ω and Π with a type-II cocycle and investigate how to lift these with
appropriately chosen phase modifications.

Inserting the chosen type-II cocycle representative ωII,1 from Eq. (81) into the obstruction phases
calculated in Eqs. (54) and (60), we find that the vertex operators of the type-II Z2

N TQD model fail
to implement the group action faithfully on site, generating the obstruction phase

Ω(l5)
{b} (g, h) =λ−B

(2)
3,9,8,1∆

g(1)+h(1),N−B
(1)
3,9,8,1∆

g(2)+h(2),N

× λ
g(2)
∑g(1)+h(1)−1

i=g(1)

(
P

(i−l(1)
5 )

4,11,−5(1)−P
(i−l(1)

5 )

6,12,−5(1)

)
λ
g(1)
∑g(2)+h(2)−1

i=g(2)

(
P

(i−l(2)
5 )

4,11,−5(2)−P
(i−l(2)

5 )

6,12,−5(2)

)
,

(82)

where the fluxes and projectors are defined as in the previous section but with every group element
and edge value carrying an additional (upper) index (i) labelling the tensor factor of the corresponding
variable. To avoid notation clutter in the projectors, we only write the tensor factor index once. For
example, P (n)

4,11,−5(1) projects onto the subspace where l(1)
4 ⊕ l(1)

−1 ⊕ (−l(1)
5 ) = n. The quantity ∆•,• is

defined as in Eq. (65). Note that this obstruction phase consists of similar terms as those found for ZN
case, but with added mixing between tensor factors. The analoguous calculation of the commutativity
obstruction phase yields

Π(l2)
{b} (g, h) = λ

g(2)
∑g(1)−1

i=g(1)−h(1)

(
P

(i−l(1)
2 )

−2,8,1(1)−P
(i−l(1)

2 )

−2,9,3(1)

)
λ
g(1)
∑g(2)−1

i=g(2)−h(2)

(
P

(i−l(2)
2 )

−2,8,1(2)−P
(i−l(2)

2 )

−2,9,3(2)

)
. (83)

The procedure to lift these obstructions begins identically to that in the previous section. Again,
we derive closure relations from group multiplication in every cyclic sub-factor of Z2

N . In addition
to these, one also finds extra constraint equations coming from group multiplication of elements from
different sub-factors when the model includes a non-trivial type-II cocycle. Just as in the previous
section, once the group multiplication is implemented consistently on-site, we only need to make the

9We use the same symbol “⊕" for the group multiplication on ZN and Z2
N .
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vertex operators for the generators (0, 1) and (1, 0) commute and can then iteratively construct all
other modification phases so that both the on-site and commutativity obstructions are removed.

We start by introducing the modified vertex operators Ãgv = ηgvA
g
v ∀g ∈ Z2

N and imposing Eq. (67).
In particular, this directly implies a general condition on the modification phases, Eq. (68). This
enables us to use cyclicity to iteratively derive the three consistency conditions from the relations
(N − 1, 0)⊕ (1, 0) = (0, 0), (0, N − 1)⊕ (0, 1) = (0, 0) and (N − 1, N − 1)⊕ (1, 1) = (0, 0), yielding

1 =η(0,0)
v = η(1,0)⊕···⊕(1,0)

v =
N−1∏
n=0

A(n,0)
v Ω(l5)

{b} ((1, 0), (−(n+ 1), 0))(A(n,0)
v )−1

N−1∏
m=0

A(m,0)
v η(1,0)

v (A(m,0)
v )−1

=λ−B
(2)
3,9,8,1

N−1∏
m=0

A(m,0)
v η(1,0)

v (A(m,0)
v )−1, (84a)

1 =η(0,0)
v = η(0,1)⊕···⊕(0,1)

v =
N−1∏
n=0

A(0,n)
v Ω(l5)

{b} ((0, 1), (0,−(n+ 1)))(A(0,n)
v )−1

N−1∏
m=0

A(0,m)
v η(0,1)

v (A(0,m)
v )−1

=λ−B
(1)
3,9,8,1

N−1∏
m=0

A(0,m)
v η(0,1)

v (A(0,m)
v )−1 and (84b)

1 =η(0,0)
v = η(1,1)⊕···⊕(1,1)

v =
N−1∏
n=0

A(n,n)
v Ω(l5)

{b} ((1, 1), (−(n+ 1),−(n+ 1)))(A(n,n)
v )−1

N−1∏
m=0

A(n,n)
v η(1,1)

v (A(n,n)
v )−1

(68)=
N−1∏
n=0

A(n,n)
v Ω(l5)

{b} ((1, 1), (−(n+ 1),−(n+ 1))(A(n,n)
v )−1

×
N−1∏
m=0

A(m,m)
v A(1,0)

v η(0,1)
v (A(1,0)

v )−1η(1,0)
v Ω((1, 0), (0, 1))(A(m,m)

v )−1

=λ
−
∑2

i=1

(
B

(i)
3,9,8,1+B(i)

6,12,11,4

)
N−1∏
m=0

A(m+1,m)
v η(0,1)

v (A(m+1,m)
v )−1A(m,m)

v η(1,0)
v (A(m,m)

v )−1. (84c)

The final pre-factors from Eqs. (84a), (84b) and (84c), where the root of unity λ appears with fluxes
in the exponent, are produced by the obstruction phases using the same identities as in Eq. (72). The
first two conditions are analogous to the one found in Eq. (73), and so we begin by solving the first
two equations Eq. (84a) and (84b) in a similar fashion as the closure relation in the ZN case, Eq. (73).
We find that they are easily solved by

η(1,0)
v =λB

(2)
3,9,8,1/N η̄(1,0)

v and (85a)

η(0,1)
v =λB

(1)
3,9,8,1/N η̄(0,1)

v , (85b)

where
∏N−1
m=0 A

(m,0)
v η̄(1,0)(A(m,0)

v )−1 =
∏N−1
m=0 A

(0,m)
v η̄(0,1)(A(0,m)

v )−1 = 1. Note that these two constraints
on η̄(1,0) and η̄(1,0) are fulfilled by any term that is a Nth root of unity and only depends on the second
respectively the first tensor factor of the link variables. Inserting this ansatz into the third closure
relation Eq. (84c), we obtain a closure relation for η̄,

1 = λ−B
(1)
6,12,11,4−B

(2)
6,12,11,4

N−1∏
m=0

A(m+1,m)
v η̄(0,1)

v (A(m+1,m)
v )−1A(m,m)

v η̄(1,0)
v (A(m,m)

v )−1.

Given the large freedom available when fulfilling the first two closure relations, we can construct η̄(1,0)

such that it cancels out λ−B
(2)
6,12,11,4 and η̄(0,1) such that it cancels out λ−B

(1)
6,12,11,4 . One solution is given

by

η̄(1,0) =λ
−
∑−l(2)

5 −1
i=0

(
P

(i)
6,12,−5(2)−P

(i)
4,11,−5(2)

)
and (86a)

η̄(0,1) =λ
−
∑−l(1)

5 −1
i=0

(
P

(i)
6,12,−5(2)−P

(i)
4,11,−5(2)

)
(86b)
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since the tensor factors of l5 are shifted by m and m+ 1, respectively, by the conjugation with A(m,m)
v

and A(m+1,m)
v , respectively. Then, summing over all m in the exponent (due to the product over all

m) as in Eq. (72) gives exactly the desired flux.
The full modification phases for the generators therefore read

η(1,0) =λB
(2)
3,9,8,1/Nλ

−
∑−l(2)

5 −1
i=0

(
P

(i)
6,12,−5(2)−P

(i)
4,11,−5(2)

)
, (87a)

η(0,1) =λB
(1)
3,9,8,1/Nλ

−
∑−l(1)

5 −1
i=0

(
P

(i)
6,12,−5(2)−P

(i)
4,11,−5(2)

)
. (87b)

Interestingly, the phase for the first generator only depends on the second tensor factor of fluxes and
edges and vice versa. This is a direct consequence of the way the type-II cocycle couples the two tensor
factors.

The other modification phases can be calculated iteratively using Eq. (68) to produce a proper
representation of the group action. We will give an explicit expression the modification phases for any
group element g ∈ Z2

N at the end of this section after having discussed the commutativity obstruction.
Once the vertex operators faithfully represent the group action on-site, every modified vertex operator
can be decomposed in terms of the generating vertex operators Ã(0,1)

v and Ã
(1,0)
v . Therefore, it is

sufficient to resolve the commutativity obstruction for those two operators while still fulfilling Eqs. (84).
Imposing [Ãg2, Ãhv ]G = 1 ∀ g, h ∈ {(0, 1); (1, 0)} and evaluating the obstruction phases Π(l2)

{b} (g, h) for
the corresponding g, h yields the conditions

A
(1,0)
2 (η(1,0)

v )−1(A(1,0)
2 )−1η(1,0)

v A(0,1)
v η

(1,0)
2 (A(0,1)

v )−1(η(1,0)
2 )−1 =Π(l2)

{b} ((1, 0), (1, 0)) (83)= 1, (88a)

A
(0,1)
2 (η(0,1)

v )−1(A(0,1)
v )−1η(0,1)

v A(0,1)
v η

(0,1)
2 (A(0,1)

v )−1(η(0,1)
2 )−1 =Π(l2)

{b} ((0, 1), (0, 1)) (83)= 1, (88b)

A
(1,0)
2 (η(0,1)

v )−1(A(1,0)
2 )−1η(0,1)

v A(0,1)
v η

(1,0)
2 (A(0,1)

v )−1(η(1,0)
2 )−1 =Π(l2)

{b} ((1, 0), (0, 1)) (83)= λ
P

(−l(2)
2 −1)

−2,8,1(2) −P
(−l(2)

2 −1)

−2,9,3(2) ,

(88c)

A
(0,1)
2 (η(1,0)

v )−1(A(0,1)
2 )−1η(1,0)

v A(1,0)
v η

(0,1)
2 (A(1,0)

v )−1(η(0,1)
2 )−1 =Π(l2)

{b} ((0, 1), (1, 0)) (83)= λ
P

(−l(1)
2 −1)

−2,8,1(1) −P
(−l(1)

2 −1)

−2,9,3(1) .

(88d)

Surprisingly, the generating modification phases derived from the on-site condition (see Eqs. (87)) also
fulfill these four equations. As mentioned, Eq. (68) now allows us to iteratively generate all modification
phases for any group element g = (g1, g2). It reads

ηgv = λ(g1B
(2)
3,9,8,1+g2B

(1)
3,9,8,1)/Nλ

−g1
∑−l(2)

5 −1+g2
i=0

(
P

(i)
6,12,−5(2)−P

(i)
4,11,−5(2)

)
−g2

∑−l(1)
5 −1+g1

i=0

(
P

(i)
6,12,−5(1)−P

(i)
4,11,−5(1)

)
.

(89)

With that, we have resolved both obstructions for the Z2
N TQD model with a type-II cocycle.
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