
Algebraic Geometry 8 (2) (2021) 231–267

doi:10.14231/AG-2021-005

Some implications between Grothendieck’s

anabelian conjectures

Giulio Bresciani

Abstract

Grothendieck gave two forms of his “main conjecture of anabelian geometry”, namely
the section conjecture and the hom conjecture. He stated that these two forms are
equivalent and that if they hold for hyperbolic curves, then they hold for elementary
anabelian varieties too. We state a stronger form of Grothendieck’s conjecture (equiva-
lent in the case of curves) and prove that Grothendieck’s statements hold for our form
of the conjecture. We work with DM stacks, rather than schemes. If X is a DM stack
over k ⊆ C, we prove that whether X satisfies the conjecture or not depends only
on XC. We prove that the section conjecture for hyperbolic orbicurves stated by Borne
and Emsalem follows from the conjecture for hyperbolic curves.

1. Introduction

1.1 The main conjecture of anabelian geometry

In his letter to Faltings [Gro97], Grothendieck gave two forms of his “main conjecture of an-
abelian geometry”, the hom conjecture and the section conjecture, for anabelian varieties. He
refrained from defining precisely the class of anabelian varieties, but he said that it certainly
contained smooth, hyperbolic curves and the so-called elementary anabelian varieties, that is,
those obtained by subsequent fibrations from smooth hyperbolic curves. He said that being an-
abelian is a purely geometric property, namely whether X/k is anabelian depends only on Xk̄,
or XC if k ⊆ C, and that if the main conjecture holds for proper, hyperbolic curves, then it holds
for proper, elementary anabelian varieties.

Let us recall the two forms of the main conjecture. If G and H are extensions of a group Γ,
then Hom-extΓ(G,H) is the set of homomorphisms G→ H which commute with the projection
to Γ modulo the natural action of ker(H → Γ) by conjugation. If k is a field, we denote by
Γk = Gal(ks/k) the absolute Galois group. If T and X are geometrically connected over k with
étale fundamental groups π1(T ) and π1(X) (we omit base points), there is a natural map

Homk(T,X)→ Hom-extΓk
(π1(T ), π1(X)) .

Conjecture (Grothendieck, “hom conjecture”). Let k be finitely generated over Q. If T/k is
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a smooth variety and X/k is a smooth, proper anabelian variety, then

Homk(T,X)→ Hom-extΓk
(π1(T ), π1(X))

is a bijection.

There is a weaker form of the hom conjecture which restricts the attention to dominant
morphisms, and this weaker form has been famously proved by Mochizuki for hyperbolic curves
in [Moc99]. We stress that the hom conjecture is strictly stronger: Mochizuki’s result only applies
to open homomorphisms π1(T )→ π1(X), while the hom conjecture regards all homomorphisms.

The second form of the main conjecture is the so-called section conjecture, which is just the
hom conjecture for T = Spec k.

Conjecture (Grothendieck, “section conjecture”). Let k be finitely generated over Q. If X is
a smooth, proper anabelian variety over k, then

X(k)→ Hom-extΓk
(Γk, π1(X))

is a bijection.

1.2 A strengthening of the main conjecture

The set Hom-extΓk
(Γk, π1(X)) has a natural interpretation as the set of isomorphism classes

of the category of rational points of the étale fundamental gerbe ΠX/k; see [BV15, § 9]. If X
is a DM stack, X(k) has the natural structure of a category too (rather than just a set) and
Grothendieck’s section map extends naturally to a functor

X(k)→ ΠX/k(k) .

It is then natural to ask for an equivalence of categories rather than a mere bijection. In fact,
already Grothendieck had pointed out that for stacks (which he called “multiplicities”), the
correct statement needs an equivalence of categories; see [Gro97, p. 7 of the original letter,
p. 55]. For hyperbolic curves, the category structure is known to be trivial (that is, it is just a
set) on both sides.

Definition. Let X be a smooth, proper, geometrically connected Deligne–Mumford stack over
a field k of characteristic 0. We say that X is printable (respectively, fundamentally fully faithful,
or fff for short) if the natural morphism X(k′)→ ΠX/k(k

′) is an equivalence (respectively, fully
faithful) for every finitely generated extension k′/k.

The name “printable” is meant to suggest that ΠX/k “prints” X, similarly to how an algebraic
space represents a sheaf.

For smooth, proper, hyperbolic curves over a field k that is finitely generated over Q, print-
ability is equivalent to the section conjecture over all finitely generated extensions of k; see
Proposition 3.7.

1.3 Results of the paper

We prove that printability is a geometric property.

Theorem A (Theorem 6.6). Let k′/k be a finitely generated extension and X a smooth, proper,
geometrically connected DM stack over k. Then X is printable (respectively, fff ) if and only
if Xk′ is printable (respectively, fff ).
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As a consequence, if k ⊆ C is finitely generated over Q, whether or not X is printable depends
only on XC.

We remark that in our proof of Theorem A, the categorical structure is crucial, even for
schemes: we do not know whether the same result holds if we replace printability with the
analogous statement asking only for a bijection.

The first non-trivial example of expected anabelian DM stacks is that of hyperbolic orbicurves;
see [BE14]. There is a natural notion of rational Euler characteristic for orbicurves, and hyperbolic
ones are those with negative characteristic.

Conjecture (Borne, Emsalem). Smooth, proper, hyperbolic orbicurves over finitely generated
extensions of Q satisfy the section conjecture.

We prove that hyperbolic orbicurves are fff (in particular, they satisfy the injectivity part
of the conjecture) and that the section conjecture for them is equivalent to that for hyperbolic
curves.

Theorem B (Theorem 7.2). Let k be finitely generated over Q.

– A smooth, proper orbicurve is fff if and only if its Euler characteristic is less than or equal
to 0.

– If smooth, proper, hyperbolic curves satisfy the section conjecture over every finite exten-
sion k′/k, then the section map is an equivalence for smooth, proper, hyperbolic orbicurves
over k.

– Smooth, proper, hyperbolic orbicurves are printable if and only smooth, proper, hyperbolic
curves are printable.

Thanks to Theorem B and an idea of Borne and Emsalem, we give a new, natural proof of
the fact that the section conjecture for proper curves implies the section conjecture for affine
curves using orbicurves as an intermediate step; see Theorem 8.1.

We then show that the section conjecture implies the hom conjecture.

Theorem C (Theorem 9.1). Let X be a smooth, proper, geometrically connected DM stack
and T a locally noetherian, normal scheme over k. Assume that for every t ∈ T , the residue
field k(t) is finitely generated over k. If X is fff, then X(T ) → ΠX(T ) is fully faithful. If X is
printable, then X(T )→ ΠX(T ) is an equivalence of categories.

Recall that Grothendieck defined a geometrically connected variety as elementary anabelian
if it can be constructed by successive smooth fibrations from hyperbolic curves; see [Gro97].
Merging the concepts of orbicurves and elementary anabelian varieties, in Section 10 we define
elementary anabelian stacks. The section conjecture for curves implies that they are printable.

Theorem D (Theorem 10.16). Elementary anabelian stacks over a field k finitely generated
over Q are fff.

If the section conjecture holds for smooth, proper, hyperbolic curves defined over fields that
are finitely generated over Q, then elementary anabelian stacks defined over fields that are finitely
generated over Q are printable.

Finally, we highlight two minor results that we think are worth observing.
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– If a smooth, proper DM stack X/k is fff, then it has a finite étale cover by an algebraic
space; see Proposition 5.1. This suggests that “anabelian” stacks should have a finite étale
cover by an algebraic space.

– If a smooth, proper DM stack is printable, then π1(Xk̄) has no finite-index abelian sub-
groups; see Proposition 9.4.

In the appendix, we provide some tools we need which are straightforward generalizations of
the work of Borne and Vistoli in [BV15].

1.4 Conventions and notation

We always work over a field k of characteristic 0, except in the appendix, where there are
no hypotheses on the base field. Curves and orbicurves will always be smooth, geometrically
connected and proper, except if we specify differently.

We use underlines to distinguish between sets and sheaves: for instance, Pic is the Picard
group, while Pic is the Picard sheaf, or if X is a stack with a rational point x ∈ X(k), then
AutX(x) is the sheaf of automorphisms of x, while AutX(x) = AutX(x)(k).

If X is geometrically connected, we will denote by πX the structure morphism X → ΠX/k

of the étale fundamental gerbe; see [BV15] and the appendix. If there is no risk of confusion,
we may drop the subscript and just write π : X → ΠX/k. We write π1(X,x) for classical étale
fundamental groups and π1(X,x) = AutΠX/k

(π(x)) for étale fundamental group schemes.

Throughout the article (except in Section 8), we restrict our attention to proper X. The
reason is that the section conjecture is much easier to handle in the proper case, and if one states
the anabelian conjectures for DM stacks rather than schemes, then the non-proper case can be
recovered from the proper one using a limit process found by Borne and Emsalem (see [BE14,
§ 2.2.3] and Section 8).

There is a small conflict of terminology between two of our major references. For Borne and
Vistoli in [BV15], a finite stack over a field k is a stack over k which admits a presentation by a
finite groupoid. A finite gerbe is a finite stack which is a gerbe. For the Stacks Project [Sta20],
finite morphisms are assumed to be representable. We stick with the Borne–Vistoli terminology.

2. Stacky going up and going down theorems

To understand precisely how anabelian geometry for DM stacks should look, the single most
important fact to understand is how the section conjecture behaves along finite étale morphisms.
In a classical context, that is, for schemes, this situation is well understood and packed in the
so-called “going up” and “going down” theorems; see [Sti13, Propositions 110 and 111]. The
formalism of étale fundamental gerbes is particularly well suited for the study of this situation:
in fact, if f : Y → X is a representable, finite étale morphism, then the natural diagram

Y ΠY/k

X ΠX/k

πY

f πf

πX

is 2-cartesian; see Proposition A.25. This fact makes the study of finite étale morphism with
respect to the section conjecture particularly easy, even for stacks.
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Proposition 2.1 (Going up). Let X and Y be geometrically connected fibred categories and
f : Y → X a representable, finite étale morphism. The following are true:

(i) If X(k)→ ΠX/k(k) is fully faithful, then Y (k)→ ΠY/k(k) is fully faithful too.

(ii) If X(k)→ ΠX/k(k) is an equivalence, then Y (k)→ ΠY/k(k) is an equivalence too.

Proof. This follows directly from the fact that the diagram above is 2-cartesian.

Lemma 2.2 (Extension of the base field). Let f : A → B be a morphism of fibred categories
over k which are stacks in the étale topology and L/k a finite Galois extension.

(i) Let a, a′ ∈ A(k) be rational points. If the map IsomA(aL, a
′
L) → IsomB(f(aL), f(a′L)) is

bijective, then the map IsomA(a, a′)→ IsomB(f(a), f(a′)) is bijective.

(ii) If A(L)→ B(L) is fully faithful, then A(k)→ B(k) is fully faithful.

(iii) Let b ∈ B(k) be a rational point, and suppose that A(L)→ B(L) is fully faithful. Then b is in
the essential image ofA(k)→ B(k) if and only if bL is in the essential image ofA(L)→ B(L).

(iv) If A(L)→ B(L) is an equivalence, then A(k)→ B(k) is an equivalence too.

Proof. (i) We have a commutative diagram

IsomA(a, a′) IsomB(f(a), f(a′))

IsomA(aL, a
′
L) IsomB(f(aL), f(aL)) ,∼

where the vertical arrows are injective and the lower arrow is bijective by hypothesis. Both A
and B are stacks in the étale topology; hence, the Isom functors are sheaves and satisfy Galois
descent. This means that the sets in the upper row are just the Gal(L/k)-invariant elements of
the groups in the lower row. Since the lower horizontal arrow is clearly equivariant, we get that
the upper horizontal row is bijective too.

(ii) This follows from part (i).

(iii) The “only if” part is obvious. Now suppose that bL ' f(a′) is in the essential image
of A(L)→ B(L). For every σ ∈ Gal(L/k), we have an isomorphism

ϕσ : σ∗f(a′) ' σ∗bL = bL ' f(a′) ,

which corresponds to an isomorphism ψσ : σ∗(a′) ' a′ since A(L) → B(L) is fully faithful by
hypothesis.

Now we have ϕσρ = ϕσ ◦ σ∗ϕρ by a direct computation. Since A(L)→ B(L) is fully faithful,
this means that we also have ψσρ = ψσ ◦ σ∗ψρ, and hence by Galois descent, there exists an
a ∈ A(k) such that aL ' a′. Let us check that f(a) ' b.

We have a chain of isomorphisms

f(a)L = f(aL) ' f(a′) ' bL ;

we have to check that this is Galois invariant. This amounts to the fact that, by definition,
f(ψσ) = ϕσ.

(iv) This follows from parts (ii) and (iii).

In the following, we will use without mention the fact that if X is a geometrically connected
fibred category and L/k is a finite, separable extension, then the natural morphism ΠXL/L →
ΠX/k ×k L is an isomorphism (see Proposition A.18).
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Definition 2.3. Let C and D be categories, f : C → D a functor and p ∈ C an object. We say
that f is fully faithful at p if AutC(p)→ AutD(f(p)) is bijective.

Remark 2.4. Suppose that C and D are small categories in which all morphisms are isomorphisms.
For example, X(S) has this form for every stack X and every scheme S. A functor f : C → D
is fully faithful if and only if it is fully faithful at every point and is injective on isomorphism
classes.

Proposition 2.5 (Going down). Let X and Y be geometrically connected fibred categories
which are stacks in the étale topology and f : Y → X a representable, finite étale morphism.
The following are true:

(i) If YL(L)→ ΠYL(L) is fully faithful for every finite, separable extension L/k, then X(k)→
ΠX/k(k) is fully faithful.

(ii) If YL(L)→ ΠYL(L) is an equivalence for every finite, separable extension L/k, then X(k)→
ΠX/k(k) is an equivalence.

Proof. As in Proposition 2.1, we are going to use the fact that the 2-commutative diagram

Y ΠY/k

X ΠX/k

πY

f πf

πX

is 2-cartesian; see Proposition A.25. The proof is more complex than that of Proposition 2.1 since
now we have to make a descent argument.

(i) First, let us check that X(k) → ΠX/k(k) is fully faithful at every point; next, we will
show that it is injective on isomorphism classes.

Full faithfulness at a point. Choose x ∈ X(k); since Y → X is finite étale, there exist a finite
Galois extension L and a point y ∈ YL(L) such that f(y) ' xL. Thanks to Lemma 2.2(i), we
may suppose L = k and f(y) ' x. Write

G = AutΠX/k
(πX(x)) , H = AutΠY/k

(πY (y)) .

Since Y → X and ΠY/k → ΠX/k are faithful, we have natural embeddings

πf : H ⊆ G , f : AutY (y) ⊆ AutX(x) .

By an abuse of notation, write πXand πY for the homomorphisms AutX(x)→ G and AutY (y)→
H, respectively.

We have an isomorphism AutY (y) ' AutX(x)×GH, and we also know that πY : AutY (y)→H
is an isomorphism. In particular, the fact that πY : AutY (y) → H is injective implies that
πX : AutX(x)→ G is injective. Let us prove the surjectivity.

Fix an element g ∈ G. Since the diagram above is 2-cartesian, the triple

(x, πY (y), g)

gives us a point y′ ∈ Y (k) such that πY (y′) ' πY (y) and f(y′) ' x. Since Y (k)→ ΠY/k(k) is fully
faithful, there exists an isomorphism y → y′. Because of the 2-cartesianity of the diagram above,
the isomorphism y → y′ gives us the following data: two isomorphisms α : x → x, α ∈ AutX(x)
and h : πY (y)→ πY (y), h ∈ H such that

πf (h) ◦ id = πX(α) ◦ g ∈ G .
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Since πY : AutY (y)→ H is an isomorphism, there exists a β ∈ AutY (y) such that πY (β) = h. It
follows that g = πX(α−1 ◦ f(β)).

Injectivity on isomorphism classes. Suppose that we have an isomorphism α : πX(x) →
πX(x′) for some x, x′ ∈ X(k). We want to show that there exists an isomorphism x→ x′. Thanks
to the preceding point, this is equivalent to showing that IsomX(x, x′)→ IsomΠX/k

(πX(x), πX(x′))
is bijective. There exist a finite Galois extension L/k and a point y ∈ Y (L) such that f(y) = xL.
Thanks to Lemma 2.2(i), we may assume L = k.

Since

πf (πY (y)) = πX(f(y)) = πX(x) ' πX(x′)

by 2-cartesianity, there exists a point y′ ∈ Y (k) such that πY (y′) ' πY (y) and f(y′) ' x′. Now
since Y (k)→ ΠY/k(k) is fully faithful by hypothesis and πY (y) ' πY (y′), we get an isomorphism
y ' y′ which induces an isomorphism x ' x′, as desired.

(ii) This is a direct application of point (i) and Lemma 2.2(iii) together with the observation
that every section Spec k → ΠX/k lifts to a section of ΠY/k up to a finite, separable field extension:
in fact, Spec k×ΠX/k

ΠY/k is a finite étale scheme. To check that Spec k×ΠX/k
ΠY/k is finite étale,

observe that up to an extension k′/k, we have

Spec k′ ×ΠX/k
ΠY/k ' Spec k′ ×X Y

for some point Spec k′ → X since ΠX/k is a gerbe and hence all points are fpqc-locally isomor-
phic.

In the classical going up and down theorems, there are hypotheses on the so-called centralizers
of sections. If σ ∈ ΠX/k(k) corresponds to a section s : Gal(k̄/k)→ π1(X, x̄), the centralizer of s
is the group of elements of π1(Xk̄, x̄) centralizing the image of s. However, in our results, these
hypotheses seem to be absent: the reason is that the notion of centralizer of a section (see [Sti13,
§ 3.3]) fits nicely in our point of view without any additional work. The following Lemma 2.6
explains how.

Lemma 2.6. Let s : Gal(k̄/k) → π1(X,x) be a section of the natural projection π1(X,x) →
Gal(k̄/k) and Cs ⊆ π1(Xk̄, x) its group of centralizers. Let σ ∈ ΠX/k(k) be the rational section
corresponding to s. There is an isomorphism

Cs ' AutΠX/k
(σ)(k) .

Proof. This follows from Proposition A.19. Let us explain this.

We have a natural identification

π1(Xk̄, x̄) = AutΠX/k
(π(x))(k̄) .

Since ΠX/k is a gerbe, there exists an isomorphism Φ: AutΠX/k
(π(x))(k̄) ' AutΠX/k

(σ)(k̄).

The section s induces an action of Gal(k̄/k) on π1(Xk̄, x) by conjugation, and this action coincides
with the natural action on AutΠX/k

(σ)(k̄) pulled back to AutΠX/k
(π(x))(k̄) = π1(Xk̄, x). Hence,

g ∈ π1(Xk̄, x) centralizes s if and only if Φ(g) ∈ AutΠX/k
(σ)(k̄) is Galois invariant, in other

words, is rational.

3. Printable DM stacks

Now that we have established what happens along finite, étale covers, we want to understand
what the section conjecture for DM stacks should look like. Clearly, one can just directly trans-
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late Grothendieck’s section conjecture to DM stacks. Here we hope to show that the right
thing to conjecture in general is slightly stronger (but equivalent in the case of hyperbolic
curves).

Proposition 3.1. Let X be a proper, smooth, geometrically connected Deligne–Mumford stack
over k. The following are equivalent:

(i) For every finitely generated extension k′/k and for every finite, étale, geometrically con-
nected cover Y → Xk′ ,

Y (k′)→ Hom-extΓk′ (Γk′ , π1(Y ))

is bijective (respectively, injective) on isomorphism classes.

(ii) The natural map

X(k′)→ ΠX/k(k
′)

is an equivalence of categories (respectively, fully faithful) for every finitely generated exten-
sion k′/k.

Proof. Suppose that X(k′) → ΠX/k(k
′) is an equivalence (respectively, fully faithful). Then by

Proposition A.23, the functor Xk′(k
′)→ ΠXk′/k

′(k′) is an equivalence (respectively, fully faithful)
too, and hence Y (k′)→ Hom-extΓk′ (Γk′ , π1(Y )) is bijective (respectively, injective) thanks to the
going up theorem Proposition 2.1.

Now suppose that part (i) holds. Let k′/k be a finitely generated extension, x ∈ X(k′) a
point and π(x) ∈ ΠX/k(k

′). Write G = AutΠX/k
(π(x)). Since by hypothesis X(k′)→ ΠX/k(k

′) is

bijective (respectively, injective) on isomorphism classes, we only have to show that

AutX(x)→ G = AutΠX/k
(π(x))

induces a bijection on k′-rational points. Thanks to Proposition A.23, we may suppose k′ = k.

Surjectivity of AutX(x)(k)→ G(k). Let A ⊆ G(k) be the image of AutX(x)(k), and assume
for a contradiction that g /∈ A. Since A ⊆ G(k) is finite and g /∈ A, there exists a finite-index
subgroup H ⊆ G such that A ⊆ H(k) and g /∈ H(k): in order to find it, choose a finite quotient
q : G→ Q such that q(g) /∈ q(A), then choose H as the inverse image of q(A). Now consider the
2-fibre product

Y BH = ΠY/k

X BG = ΠX/k ,

where BH identifies naturally with ΠY/k. In fact, the universal property of ΠY/k gives us a natural
map ΠY/k → BH, and thanks to Proposition A.25, the gerbes ΠY/k and BH are both subgerbes
of ΠX/k with the same finite index; hence, they coincide.

Now consider x ∈ X(k) and the distinguished point dH : Spec k → BH: by construction, they
both map to π(x) ∈ ΠX/k(k), that is, the distinguished point of BG. By the definition of a 2-fibre
product, every automorphism of π(x) defines a rational point of Y mapping to x ∈ X(k) and
dH ∈ BH(k). In particular, we have two such rational points y = (x, dH , id) and y′ = (x, dH , g)
in Y (k). Let us study the isomorphisms y → y′.

By the definition of a 2-fibre product, an isomorphism β : y = (x, dH , id) → y′ = (x, dH , g)
is given by a couple of isomorphisms α : x → x, α ∈ AutX(x) and h : dH → dH , h ∈ H(k) such
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that

h ◦ id = g ◦ π(α) ∈ G(k) .

By construction, π(α) ∈ A ⊆ H(k) and clearly h ∈ H(k); since we have chosen H such that
g /∈ H(k), the equation above tells us that an isomorphism y → y′ cannot exists; that is, y and
y′ are not isomorphic. But this gives a contradiction since y and y′ both map to dH ∈ BH(k)
and Y (k)→ BH(k) = ΠY/k(k) is injective on isomorphism classes by hypothesis.

Injectivity of AutX(x)(k)→ G(k). Since AutX(x) is finite étale, up to enlarging the base field
we may suppose that AutX(x) is discrete. Let A ⊆ G(k) be the image of AutX(x)(k). We can
find a finite-index subgroup H ⊆ G such that

H(k) ∩A = {id} ⊆ G(k) ,

for instance by taking a finite quotient G→ Q such that A→ Q(k) is injective and choosing H
as the kernel.

Take the 2-fibre product Y = X ×ΠX/k
BH as above, x ∈ X(k) and the distinguished point

dH : Spec k → BH to define a rational point y = (x, dH , id) ∈ Y (k). Since

AutY (y) ' AutX(x)×G H

and A∩H(k) = {id}, we get that AutY (y) ⊆ AutX(x) is the kernel of πX : AutX(x)→ G. Hence,
we want to prove that AutY (y) is trivial.

Suppose for a contradiction that AutY (y) is not trivial. A non-trivial, finite étale group scheme
is non-special; hence, there exist a finitely generated extension k′/k and a point y′ : Spec k′ →
BAutY (y) which is not k′-isomorphic to the distinguished one; that is, y′ 6' y ∈ BAutY (y)(k′).

The morphism BAutY (y) → Y is the residual gerbe (see [Sta20, Definition 06MU]) of y
thanks to [Sta20, Lemmas 0DTI and 06UI]; in particular, it is a monomorphism, and thus y
and y′ define non-isomorphic points of Y (k′). On the other hand, since

AutY (y)→ H = AutΠY/k
(πY (y)) ⊆ G

is a trivial homomorphism of group schemes, the images of y and y′ in BH(k′) = ΠY/k(k
′) are

isomorphic. This gives a contradiction since, by hypothesis, Y (k′) → ΠY/k(k
′) is injective on

isomorphism classes.

We define printable DM stacks as those satisfying the equivalent conditions of Proposition 3.1.

Definition 3.2. Let X be a smooth, proper, geometrically connected Deligne–Mumford stack.
We say that X is printable (respectively, fundamentally fully faithful, or fff for short) if the
natural morphism

X(k′)→ ΠX/k(k
′)

is an equivalence of categories (respectively, fully faithful) for every finitely generated exten-
sion k′/k.

As we will see later, even if this definition seems deeply arithmetic in nature, it is actually
purely geometric: if k ⊆ C, the printability of X depends only on XC; see Remark 6.7. This
agrees with the ideas expressed by Grothendieck in [Gro97].

Remark 3.3. Extending the definition to Deligne–Mumford stacks seems natural for at least two
reasons. One is that moduli stacks of curves are expected to be anabelian, the second is that
hyperbolic orbicurves are printable if and only if hyperbolic curves are printable; see Theorem 7.2.
We address the question “why not Artin stacks?” in Section 4.

239

https://stacks.math.columbia.edu/tag/06MU
https://stacks.math.columbia.edu/tag/0DTI
https://stacks.math.columbia.edu/tag/06UI


G. Bresciani

Let us study printability in dimension 0.

Lemma 3.4. A geometrically connected, geometrically reduced, 0-dimensional DM stack of finite
type over k is a finite étale gerbe.

Proof. Let X be such a DM stack. Applying the definition of gerbe, it is immediate to see that X
is a gerbe over k if and only if Xk̄ is a gerbe over k̄; hence, we may assume k algebraically closed.
Let U → X be an étale cover of finite type and R = U ×X U ; we have that R⇒ U is a groupoid
and the natural map [U/R]→ X is an isomorphism.

Since U and R are 0-dimensional, reduced schemes of finite type over the algebraically closed
field k, they are finite disjoint unions of copies of Spec k; that is, we may think of them as sets.
The groupoid R⇒ U induces an oriented graph whose set of nodes is U and whose set of arrows
is R. Let (U,R) = (U1, R1) t · · · t (Un, Rn) be the connected components of the graph. For
every i, we have an induced groupoid Ri ⇒ Ui, and, by construction, X =

⊔
i[Ui/Ri]. Since X is

connected, it follows that n = 1.

Now, since the graph induced by U and R is connected, it is immediate to check that X =
[U/R] = BG, where G is the group of R-automorphisms of any point of U .

Corollary 3.5. A smooth, proper, geometrically connected DM stack of dimension 0 over k is
printable.

Proof. If X is such a DM stack, it is a finite étale gerbe thanks to Lemma 3.4; thus, X = ΠX/k

is obviously printable.

In the following, we show what it means for a scheme to be printable in the classical terms
of the section conjecture and of centralizers of sections; see [Sti13, § 3.3].

Lemma 3.6. Let X be a smooth, proper, geometrically connected scheme. Then X is printable
(respectively, fff ) if and only if

– Xk′ satisfies the section conjecture (respectively, the injectivity part of the section conjec-
ture) for every finitely generated extension k′/k, and

– for every x ∈ X(k′), the associated section in Hom-extΓk′ (Γk′ , π1(X)) has trivial centralizer.

Proof. As we have shown in Lemma 2.6, the automorphism groups of the points of the funda-
mental gerbe correspond to centralizers of sections of the étale fundamental group. Hence, if
X is a scheme, asking for an equivalence of categories corresponds to asking for a bijection on
isomorphism classes together with the triviality of centralizers.

Proposition 3.7. Let k be finitely generated over Q.

– Smooth proper curves over k are fundamentally fully faithful if and only if they have positive
genus.

– Hyperbolic curves over k are printable if and only if they satisfy the section conjecture over
every finitely generated extension of the base field.

Proof. For smooth, proper curves with Euler characteristic less than or equal to 0, centralizers of
sections coming from rational points are trivial, thanks either to [Sti13, Propositions 36 and 104]
or to the full faithfulness part of Proposition 3.1. Apply Lemma 3.6.

Proposition 3.8. Let Y and X be smooth, proper, geometrically connected DM stacks over
a field k and Y → X a finite étale covering. Then X(k′)→ ΠX(k′) is an equivalence (respectively,
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fully faithful) for every finite, separable extension k′/k if and only if the same holds for Y . In
particular, Y is printable (respectively, fff ) if and only if X is printable (respectively, fff ).

Proof. This is a straightforward application of the going up and down theorems, Propositions 2.1
and 2.5.

4. Why not Artin stacks

One may wonder: why DM stacks and not algebraic (that is, Artin) stacks? The answer is based
on one’s taste. DM stacks seem more natural since ΠX/k is profinite étale and Proposition 3.1
fails for algebraic stacks. For example, if G is a connected algebraic group, then condition (i) of
Proposition 3.1 holds for BG if and only if G is special, while condition (ii) if and only if G is
trivial. Hence, it makes a difference if we choose condition (i) or (ii) as definition of printability
for algebraic stacks.

If we choose conditions (i), we should for instance consider BGLn as printable even if
BGLn → ΠBGLn = Spec k is not an equivalence of categories on rational points, and this does
not seem very pleasant. On the other hand, if we choose condition (ii), the following proposition
shows that we get back to DM stack.

Proposition 4.1. Let X be a separated, geometrically connected algebraic stack that is locally
of finite type over k. Suppose that

X(k′)→ ΠX/k(k
′)

is fully faithful for every finitely generated extension k′/k. Then X is a DM stack.

Proof. Since we are in characteristic 0, it is enough to show that AutX(x) is finite for any
geometric point x; see [Sta20, Lemma 0DSN]. Since X is locally of finite type, we may assume
that x is defined over a finitely generated extension k′/k. Thanks to Proposition A.23, we may
suppose k′ = k; that is, x ∈ X(k) is a rational point. Since X is separated, AutX(x) is a group
scheme of finite type; see [Sta20, Lemma 0DTS].

Let π(x) ∈ ΠX/k(k) be the image of x; we have a homomorphism of group schemes

AutX(x)
π−→ AutΠX/k

(π(x)) .

This homomorphism has trivial kernel: otherwise, since AutX(x) is of finite type, up to enlarging
the base field we may suppose that there exists a rational point ϕ ∈ ker(π)(k) different from the
identity. But AutX(x) → AutΠX/k

(π(x)) is injective on rational points by hypothesis, we are in

characteristic 0, and hence ker(π) is trivial. By the following Lemma 4.2, we get that AutX(x)
is finite.

Lemma 4.2. Let f : G → P be a homomorphism of group schemes over a field k with trivial
kernel. Assume that G is of finite type and P is profinite. Then G is finite.

Proof. We may base change everything to k̄ and assume that k is algebraically closed. Let g ∈ G
be any point with residue field k(g). Since G is of finite type, there exists an irreducible variety U
with function field k(U) = k(g) and a locally closed embedding U ⊆ G. Since P is profinite and k
is algebraically closed, f(g) is rational; thus, by construction, all the points of U(k) ⊆ G(k) map
to f(g). Since G → P has trivial kernel, it follows that U(k) has only one point and hence
k(g) = k(U) = k. Since G is of finite type and every point is rational, it is finite.
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5. Covers by algebraic spaces

It turns out that fff DM stacks must have a non-obvious topological feature: they are uniformiz-
able in the sense of Noohi; that is, they have a finite étale cover by an algebraic space; see [Noo04,
Definition 6.1]. Noohi essentially proves this in [Noo04, Theorem 6.2], but the connection with
the section conjecture is not stated in his work.

Rather than using Noohi’s result, we prove it again in our setting: a formal comparison with
Noohi’s theory would be longer. The idea behind the proof is essentially the same.

Proposition 5.1. Let X be a geometrically connected, separated DM stack of finite type over k,
and suppose that the natural morphism

X(k′)→ ΠX/k(k
′)

is faithful for every finitely generated k′/k.

There exist a finite étale gerbe Φ with a representable morphism X → Φ and a finite étale
cover E → X with E an algebraic space. If ΠX/k(k) 6= ∅, we can choose E to be geometrically
connected.

Proof. Let ξ : Spec k′ → X be the generic point of an irreducible component of X with k′

finitely generated over k. Up to enlarging k′, we may assume that AutX(ξ) is discrete over k′.
By hypothesis, there exists a finite étale gerbe Φ0 over k with a morphism ϕ0 : X → Φ0 which is
faithful at ξ; that is, AutX(ξ)→ AutΦ0

(ϕ0(ξ)) is injective.

Consider the relative inertia IX/Φ0
. By generic flatness, there exists an open, irreducible

subset U0 ⊆ X such that ξ ∈ U0 and the restriction of IX/Φ0
→ X to U0,red ⊆ Xred is flat. Since

IX/Φ0
→ X is proper and unramified too, its restriction to U0,red is finite étale. Since X → Φ0 is

faithful at ξ, it moreover follows that the restriction of IX/Φ0
to U0,red is a finite étale morphism

of degree 1, that is, an isomorphism. In particular, IU0/Φ0
→ U0 is radicial and unramified, thus

a monomorphism. Moreover, it has a section; hence, it is an isomorphism, and hence U0 → Φ0 is
faithful.

Now let X1 = X\U0. We may repeat the process and find U1 ⊆ X1 with a finite étale gerbe Φ1

and a morphism X → Φ1 → Φ0 such that U1 → Φ1 is faithful, define X2 = X1 \U1 and continue
by recursion. By noetherian descent, the process ends; thus, for some large N , we have that
XN+1 is empty and X → ΦN is faithful. Choose Φ = ΦN . We have that X → Φ is representable
since a faithful morphism of algebraic stacks is representable; see [Sta20, Lemma 04Y5].

In order to find E, observe that since Φ is a finite étale gerbe, there exist a finite, separable
extension k′/k and a section Spec k′ → Φ. Take E = Spec k′ ×Φ X.

Suppose ΠX/k(k) 6= ∅; in particular, we have a section Spec k → Φ. Thanks to [BV15, Lem-
ma 5.12], we may assume that X → Φ is Nori-reduced: this exactly means that E = Spec k ×Φ X
is geometrically connected; see [BV15, Remark 5.11]. We remark that in [BV15, Remark 5.11],
the authors assume that X is geometrically reduced, a hypothesis we do not have, but it can
be checked that they do not actually use it (provided that in their proof, algebraic closures are
replaced by separable closures).

6. Printability depends only on the geometric type

A priori, our definition of printable DM stack depends on the base field k. It turns out that it is
actually independent of it.
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In order to prove this, we have to generalize some Galois-theoretic facts about finite exten-
sions of fields to finitely generated extensions. We work in characteristic 0 in order to avoid
inseparability issues.

Lemma 6.1. Let k′/h/k be finitely generated extensions of a field k of characteristic 0. Let σ be
a non-trivial automorphism of h of finite order which is trivial on k. Then there exists a finite
extension k′′/k′ such that σ extends to an automorphism of finite order of k′′.

Proof. Up to replacing k with the subfield of h fixed by σ, we may assume that h/k is finite.

Let t1, . . . , tn be a transcendence basis of k′/h. We have that σ extends to an automorphism
of h(t1, . . . , tn) that is trivial on k(t1, . . . , tn) by acting trivially on ti. Since h is finite over k, the
extension k′/k(t1, . . . , tn) is finite. Choose a Galois closure k′′/k′/k(t1, . . . , tn); the automorphism
of h(t1, . . . , tn) extends to k′′.

Lemma 6.2. Let k′/h/k be finitely generated extensions of a field k of characteristic 0. If h/k
is non-trivial, then there exists a finitely generated extension k′′/k′/k with an automorphism
σ : k′′ → k′′ of finite order which is trivial on k but non-trivial on h.

Proof. Let us do this in three cases.

Case 1: k′ = h and k is not algebraically closed in h. Let l = k̄h, fix a Galois closure l̃ of l, and
set h̃ = l̃⊗l h. Since l is algebraically closed in h, we get that h̃ is an integral domain; moreover,
it is a field since it is finite over h. Now take any automorphism σ of l̃/k which is non-trivial on
h∩ l (it exists by Galois theory since the extension h∩ l/k is non-trivial) and apply Lemma 6.1.

Case 2: k′ = h and k is algebraically closed in h. Let k′′ be the fraction field of the integral
domain h⊗h, and let σ be the automorphism of h⊗h which permutes the two coordinates: this
extends to the fraction field k′′, and thus we conclude.

General case. By the preceding cases, there exists a finitely generated extension h′/h with
an automorphism σ of h′ that is trivial on k but not trivial on h. Choose any finitely generated
extension k′′/k which contains both h′ and k′ as subextensions. Thanks to Lemma 6.1, there
exists a further finite extension k′′′/k′′ such that σ extends to k′′′.

Lemma 6.3. Let G be a profinite étale group scheme over k, and suppose that

G(k′) = {id}

for every field k′ finite over k. Let T → Spec k be a G-torsor and k′/k a finitely generated
extension such that Tk′ → Spec k′ is the trivial torsor. Then T is trivial.

Proof. Let p ∈ T be the image of a point Spec k′ → T ; then k(p)/k is finite and separable since

k′/k is finitely generated and T → Spec k is profinite étale. Let k̃(p) be a Galois closure of k(p)/k.

We have that Spec k(p) ⊗k k̃(p) → T
k̃(p)

is a closed embedding because it is the base change of

Spec k(p) → T , which is a closed embedding. But if k(p)/k is non-trivial, Spec k(p) ⊗k k̃(p) is
a finite étale scheme with more than one point; hence, we get a contradiction because T

k̃(p)
'

G
k̃(p)

has only one rational point by hypothesis.

Example 6.4. Let X/k be an fff algebraic space and p ∈ X(k) a rational point. Then

π1(X,x) = AutΠX/k
(π(x))

respects the hypothesis of Lemma 6.3 by the definition of fff. In classical terms, the fact that
π1(X,x) has no non-trivial rational points amounts to the triviality of centralizers of π(x); see
Lemma 2.6.
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Lemma 6.5. Let k′/k be a finitely generated extension of the base field and X a separated, fff
DM stack of finite type over k. Let s ∈ ΠX/k(k) be such that s′ = sk′ is in the essential image of
X(k′)→ ΠX/k(k

′). Then s is in the essential image of X(k)→ ΠX/k(k).

Proof. If k′/k is finite, then since we are in characteristic 0, we may extend k′/k and suppose
that it is Galois. The statement is then the content of Lemma 2.2(iii); hence, we may freely take
finite extensions of the base field.

Thanks to Proposition 5.1, we may take a finite cover E → X with E an algebraic space.
Up to taking a finite extension of the base field and by taking connected components, we may
suppose that E is geometrically connected. Since every point of X extends to E up to a finite
extension, by an easy diagram chasing, we see that we may replace X with E and suppose that X
is an algebraic space.

Now, by hypothesis, we have a point x′ ∈ X(k′) which maps to s′ ∈ ΠX/k(k
′). Since X is

separated, x′ has a residue field k(x′). If the extension k(x′)/k is non-trivial, then thanks to
Lemma 6.2, there exists a finitely generated extension k′′/k′/k(x′)/k with a non-trivial automor-
phism σ : k′′ → k′′ which fixes k but does not fix k(x′). In particular, σ∗x′k′′ 6= x′k′′ , but

πX(σ∗x′k′′) = σ∗πX(x′k′′) = σ∗s′k′′ = s′k′′ = πX(x′) ∈ ΠX/k(k
′′)

because s′ is defined on k. This gives a contradiction since X is fff by hypothesis. Hence, k(x′) = k;
that is, there exists an x ∈ X(k) with xk′ = x′.

We now want to show that πX(x) = s using the fact that πX(x)k′ = πX(xk′) = πX(x′) = sk′ .
We may think of s as a π1(X,x) = AutΠX/k

(x)-torsor, πX(x) is the trivial π1(X,x)-torsor, and k′

splits the torsor s. Then s is trivial because π1(X,x) respects the hypothesis of Lemma 6.3 sinceX
is fff.

Theorem 6.6. Let k′/k be a finitely generated extension and X a smooth, proper, geometrically
connected DM stack over k. Then X is printable (respectively, fff) if and only if Xk′ is printable
(respectively, fff ).

Proof. We only do this for printability, the argument for fff is analogous.

If X is printable, Xk′ is printable by definition since ΠXk′/k
′ = ΠX/k ×k k′ thanks to Propo-

sition A.23.

On the other hand, suppose that Xk′ is printable. If k′/k is finite, up to a finite extension,
we may suppose that it is Galois too. Then this is the content of Lemma 2.2.

Now that we can take arbitrary finite extensions of the base field, we may reduce to the case
in which X is an algebraic space using the same argument we have used in Lemma 6.5.

Hence, we may suppose thatX is an algebraic space. Let L/k be a finitely generated extension;
we want to show that X(L) → ΠX/k(L) is an equivalence. There exists a finitely generated
extension L′ of k′ containing L; up to taking extensions, we may suppose L = k and L′ = k′.

First, we must show that πX : X(k) → ΠX/k(k) is fully faithful. Since X is an algebraic
space, this amounts to showing injectivity on isomorphism classes together with the fact that
for every x ∈ X(k), the group AutΠX/k

(πX(x))(k) is trivial. But these are direct consequences

of the analogous facts over k′, which are true by hypothesis.

Finally, we have to show the essential surjectivity of πX : X(k)→ ΠX/k(k); this is the content
of Lemma 6.5.

Remark 6.7. Thanks to Theorem 6.6, we can see printability as a geometric property, rather than
an arithmetic one, and this is coherent with Grothendieck’s ideas. If a DM stack X is defined
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over a subfield k of C which is finitely generated over Q, then whether or not X is printable
depends only on XC; that is, printability is a geometric notion. Clearly this is a tautology; we
are not really able to describe in purely geometrical terms which DM stacks over C descend to
printable DM stacks: still, we think it is worth observing that the arithmetic property depends
only on the geometry of the variety.

7. Orbicurves

The first non-trivial example of expected anabelian DM stacks is that of hyperbolic orbicurves.
Borne and Emsalem conjectured [BE14, Conjecture 2] that the section conjecture holds for them.

A proper orbicurve is a smooth, proper DM stack of dimension 1 which is generically a scheme.
In order to be clear, we will use Fraktur letters for orbicurves and normal ones for schemes.

Let X be an orbicurve with coarse moduli space X→ X. There exists a maximal open subset
U ⊆ X which is a scheme and for which U → X is an open immersion. Let D = X \ U , and
define the rational Euler characteristic of X as

χ(X) = 2− 2g −
∑
x∈D

rx − 1

rx
[k(x) : k] ,

where rx is the degree of the residual gerbe at x, that is, the ramification degree of X → X
at x. The orbicurve X is hyperbolic (respectively, elliptic, parabolic) if χ(X) < 0 (respectively,
χ(X) = 0, χ(X) > 0); see [BE14, § 2.2], [BN06, Proposition 5.11].

If Y → X is a finite étale cover of degree d, the Riemann–Hurwitz formula applied to the
associated (possibly ramified) morphism of coarse moduli spaces Y → X yields the usual formula

χ(Y) = dχ(X) .

Proposition 7.1. Let X be an orbicurve with coarse moduli space X → X, U ⊆ X a maximal
open subset which is scheme, D = X \U , and rx the degree of the residual gerbe at x for x ∈ D.
Suppose that we are not in one of the following cases:

– g(X) = 0, degD = 1;

– g(X) = 0, D = {x1, x2}, xi ∈ X(k) rational, rx1 6= rx2 .

Then there exist a finite extension k′/k and a smooth, geometrically connected curve Y over k′

with a geometrically Galois finite étale cover Y → Xk′ . If ΠX/k(k) 6= ∅, we may furthermore
assume k′ = k.

Proof. Since everything is of finite type, with standard arguments we can obtain the general
case once we know that the proposition is true for k finitely generated over Q. Now we may fix
an embedding k ⊆ C, and thus reduce to k = C. For k = C, this is [BN06, Proposition 5.7].

We are able to work with orbicurves because those with non-positive Euler characteristic
have a finite étale covering which is a curve; that is, they are uniformizable in the sense of Noohi.
This is not only a useful feature, but a necessary one: thanks to Propositions 3.1 and 5.1, it is
implied by the injectivity part of the section conjecture for orbicurves. It is rather remarkable
that this necessary topological feature happens to be true.

Theorem 7.2. Let k be finitely generated over Q.

– A smooth, proper orbicurve X is fundamentally fully faithful if and only if χ(X) 6 0.
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– If smooth, proper, hyperbolic curves satisfy the section conjecture over every finite exten-
sion k′/k, then the section map is an equivalence for smooth, proper, hyperbolic orbicurves
over k.

– In particular, smooth, proper, hyperbolic orbicurves are printable if and only if smooth,
proper, hyperbolic curves are printable.

Proof. Thanks to Propositions 3.7 and 3.8, Theorem 6.6 and Proposition 7.1, we may reduce to
one of the following cases: X is either a curve or a simply connected orbicurve. Both these cases
are obvious.

Corollary 7.3. The section conjecture holds for hyperbolic orbicurves if and only if it holds
for hyperbolic curves.

8. Affine curves

There is a version of the section conjecture for affine curves. If U is a smooth, geometrically
connected curve with smooth completion X and complement D = X\U , every “missing” rational
point x ∈ D(k) defines a so-called packet of cuspidal sections Px ⊆ ΠU/k(k); see [EH08] and

[Sti12]. Following [Sti12], the packet based at the cusp x is defined as follows. Let Oh
X,x be the

henselianization of the local ring, and define the scheme of nearby points Ux = U×X Spec(Oh
X,x).

The packet Px is then defined as the image of

ΠUx/k(k)→ ΠX/k(k) .

The section conjecture for U says that if k is finitely generated over Q and U has negative
Euler characteristic, then the section map

U(k) t
⊔

x∈D(k)

ΠUx/k(k)→ ΠU/k(k)

is bijective on isomorphism classes.

As showed by Borne and Emsalem in [BE14, § 2.2.3], the section conjecture for orbicurves
implies easily the section conjecture for affine curves. If we put together their observation and
Theorem 7.2, we obtain a new proof of the following classical result; see [Sti13, Propositions 103
and 250].

Theorem 8.1. The section map is injective for affine hyperbolic curves. The section conjecture
for proper hyperbolic curves implies the section conjecture for affine hyperbolic curves.

Let us show how the ideas of Borne and Emsalem fit nicely in our formalism, giving a clear
picture of packets of tangential points and of the section conjecture for affine curves.

Let U , X, D be as above, and define Un as the root stack supported over X with ramification
of degree n along the divisor D; see [AGV08, Appendix B.2] and [BE14, § 2.2] for the definition
of a root stack. The stack Un is an orbicurve with coarse moduli space Un → X such that U ⊆ X
is the schematic locus of Un, and Un → X has ramification index equal to n at each point over D.
Define

Û = lim←−
n

Un

as the projective limit: it is an fpqc stack with natural morphisms U ↪→ Û and Û � X. The
pro-algebraic stack Û , called the infinite root stack, can also be constructed using logarithmic
geometry; see [TV18] for details.

246



Grothendieck’s anabelian conjectures

The natural morphism

ΠU/k → Π
Û/k
' lim←−

n

ΠUn/k

is an isomorphism; this is proved in [Bor09, Proposition 3.2.2]. In view of this fact, from our
point of view one could simply consider Û as a “complete substitute” of U and decide that the
section conjecture for U is the section conjecture for Û . Let us show that this coincides with the
classical approach using packets.

Fix a rational point x ∈ D(k). Using Abhyankar’s lemma, the étale fundamental gerbe ΠUx/k

of the scheme of nearby points Ux can be easily computed to be abelian and banded by Ẑ(1). Let x̄
be the closed point of Spec

(
Oh
X,x

)
; if we consider the infinite root stack Ûx of Spec

(
Oh
X,x

)
at x̄,

it is immediate to check that the structure map Ûx → Π
Ûx/k

= ΠUx/k induces an isomorphism

between the residue gerbe Ûx ×Spec(Oh
X,x) x̄ = Ûxx̄ and ΠUx/k. This gives us a map

ΠUx/k = Ûxx̄ → Ûx = Û ×X x ,

which is easily checked to be an isomorphism. It follows that the packet at x identifies naturally
with the isomorphism classes of rational points of Û over x.

Proof of Theorem 8.1. If U is hyperbolic, χ(Un) < 0 for n big enough. Hence Un(k)→ ΠUn/k(k)

is fully faithful for n big enough, and passing to the limit shows that the same is true for Û . If
the section conjecture holds for proper hyperbolic curves, the section map is an equivalence for
Un thanks to Theorem 7.2. Passing to the limit, we see that the section map is an equivalence
for Û , and thus the section conjecture holds for U .

9. The section conjecture implies the hom conjecture

If X is printable, we expect the functor

X(T )→ ΠX/k(T )

to be an equivalence for a much larger class than finitely generated extensions of k. At least, we
should have smooth schemes: we actually show that normality together with a broad finiteness
condition is enough.

Recall that for X a hyperbolic curve and T smooth, Mochizuki proved in [Moc99, Theorem A]
that X(T ) → ΠX/k(T ) induces a bijection between dominant morphisms T → X and sections
T → ΠX/k inducing an open homomorphism of étale fundamental groups. Here, we are concerned
with all sections T → ΠX/k: the hom conjecture implies that if T is geometrically connected, a
section T → ΠX/k either induces an open homomorphism of étale fundamental groups or factors
through Spec k, but no proof of this is known.

Theorem 9.1. Let X be a smooth, proper, geometrically connected DM stack and T a locally
noetherian, normal scheme over k. Assume that for every t ∈ T , the residue field k(t) is finitely
generated over k. If X is fff, then X(T ) → ΠX(T ) is fully faithful. If X is printable, then
X(T )→ ΠX(T ) is an equivalence of categories.

Proof. Since a locally noetherian, normal scheme is a disjoint union of integral normal schemes
by [Sta20, Lemma 033N], we may assume that T is integral.

Full faithfulness. Let t1, t2 : T → X be two morphisms, π(t1), π(t2) their images in ΠX/k(T )
and (t1, t2) ∈ X × X(T ). We have that IsomX(t1, t2) is proper, unramified and hence finite
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over T since X is separated and DM. Moreover, ΠX/k is a projective limit of DM, separated
stacks; hence, for the same reason, IsomΠX/k

(π(t1), π(t2)) is profinite over T .

Since IsomX(t1, t2) and IsomΠX/k
(π(t1), π(t2)) are profinite over T and T is integral and

normal, we have that

IsomX(t1, t2)(T ) = IsomX(t1, t2)(k(T )) ,

IsomΠX/k
(π(t1), π(t2))(T ) = IsomΠX/k

(π(t1), π(t2))(k(T )) ,

and hence

IsomX(t1, t2)(T )
∼−→ IsomΠX/k

(π(t1), π(t2))(T )

since by hypothesis

IsomX(t1, t2)(k(T ))
∼−→ IsomΠX/k

(π(t1), π(t2))(k(T )) .

Essential surjectivity. Fix a morphism τ : T → ΠX/k. Consider the “universal cover” X̃ =
X ×ΠX/k

T → X × T , which is an algebraic space thanks to Proposition 5.1: our hypothesis that

X is printable implies that for every finitely generated extension k′/k, the map X̃(k′) → T (k′)
is bijective.

Let R be a DVR over k with fraction and residue fields finitely generated over k, and suppose
that we have a morphism SpecR → T . Since k(R) is finitely generated over k, the morphism
Spec k(R) → T lifts uniquely to X̃. The morphism X̃ → T is separated and universally closed
since X̃ → X × T is profinite (it can be obtained by base change from the diagonal of ΠX/k)
and X × T → T is proper. Thanks to [Sta20, Lemmas 0A3X, 0A3W and 03KU] this is enough
to apply the valuative criterion; that is, we get that SpecR → T lifts uniquely to X̃. We thus
obtain that X̃(R) → T (R) is bijective too. If A is either a field finitely generated over k or a
DVR with fraction and residue fields finitely generated over k, denote the inverse map by

ι : T (A)→ X̃(A) .

Thanks to Proposition 5.1, there exist a finite étale gerbe Φ and a representable morphism
X → Φ; the fibre product X×ΦT is an algebraic space. The natural morphism ΠX/k → Φ induces

a morphism ω : X̃ → X ×Φ T . The reader may keep in mind the particular case in which X is
an algebraic space and Φ = Spec k: we use the morphism X → Φ only to “kill” the inertia of
X × T .

Now, consider the generic point ξ : Spec k(T ) → T , and let S ⊆ X ×Φ T be the closure
of ω(ι(ξ)) : Spec k(T ) → X ×Φ T with the reduced structure and p : S → T the projection.
We have that S is an integral algebraic space. The situation is illustrated in the following diagram:

X̃ S X ×Φ T

Spec k(T ) T T .

ω

p

ξ

ι(ξ) ∃?

Observe that it is sufficient to prove that p : S → T is an isomorphism. In fact, if S → T is an
isomorphism, we have an induced morphism x : T → X ×Φ T → X such that π(x) : T → ΠX/k is
generically isomorphic to the original morphism τ : T → ΠX/k. Thanks to what we have shown
in the preceding point, the fact that τ and π(x) are generically isomorphic implies that they are
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isomorphic; hence, τ is in the essential image of X(T ) → ΠX/k(T ). Let us show that p : S → T
is an isomorphism.

Step 1: the map S(k′) → T (k′) is injective for any field extension k′/k. Since S is of finite
type over k and all the points of T have residue field finitely generated over k, it is enough to do
this step for k′/k finitely generated. For every point s : Spec k′ → S with k′/k finitely generated,
consider ω(ι(p(s))) : Spec k′ → X ×Φ T . It is enough to show that

ω(ι(p(s))) = s ,

and it is enough to do so for k′ = k(s). We prove this by induction on the Krull height of s in S
(the height can be defined by passing to an étale neighbourhood which is a scheme).

If s has height 0, then s is the generic point ω(ι(ξ)) of S and p(s) maps to the generic point ξ
of T ; thus, k(T ) = k(s) and s = ω(ι(ξ)) = ω(ι(p(s))).

If htS(s) > 0, there exists a germ of a non-constant curve on S passing through s. More
precisely, there exist a noetherian DVR R with fraction and residue fields finitely generated over
k and a morphism r : SpecR→ S such that the closed point maps to s and the open point maps
to a point s0 6= s. In order to find R, take an étale neighbourhood (S′, s′) of s which is a scheme,
and choose R as the normalization of a dimension 1 integral quotient of OS′,s′ .

Now consider ω(ι(r)) : SpecR → X ×Φ T . We have ω(ι(p(r)))k(R) = rk(R) by the induction
hypothesis; this implies that ω(ι(p(r))) = r since S → T is separated. Let R/m be the residue
field of R. We have k(s) ⊆ R/m and

ω(ι(p(s)))R/m = ω(ι(p(r)))R/m = rR/m = sR/m

and thus ω(ι(p(s))) = s. This concludes step 1.

Step 2: the map S(k′)→ T (k′) is bijective. We already know that it is injective. Moreover, T
is integral and S → T is proper; thus, S → T is bijective set-theoretically. Let t ∈ T be any point;
we thus know that St has exactly one point s ∈ St. Since St is of finite type over k(t), it follows
that k(s) is finite over k(t). We are in characteristic 0, and thus k(s) is separable over k(t). Since
St(k

′) → Spec k(t)(k′) is injective for every extension k′/k, we get that k(s) = k(t), and this
concludes step 2.

Step 3: p : S → T is an isomorphism. Thanks to the previous steps, S is quasi-finite over T ,
and thus it is a scheme; see [Sta20, Proposition 03XX].

If T is quasi-compact and quasi-separated, we can apply Zariski’s main theorem [Sta20,
Lemma 05K0], and there exists a factorization S → T ′ → T with S → T ′ an open immersion
and T ′ → T finite. Since S is integral, we may assume T ′ integral too and k(S) = k(T ′) = k(T ).
Since T is normal, T ′ → T is an isomorphism. It follows that S → T is a bijective open immersion,
that is, an isomorphism.

If T is not quasi-compact and quasi-separated, cover it by open affine schemes Ti with re-
strictions Si → Ti. For each i, the argument above works since Ti is quasi-compact and quasi-
separated; hence, Si → Ti is an isomorphism. It follows that S → T is an isomorphism.

Remark 9.2. We cannot hope to remove completely the normality hypothesis from Theorem 9.1.
Consider an integral, projective curve X of geometric genus at least 2 with only a cuspidal
singularity and smooth normalization X over a number field k. Passing to C, we may check that
ΠX/k = ΠX/k. If the section conjecture holds, X is printable: Theorem 9.1 without the normality

hypothesis would give us a section X → X.
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Corollary 9.3. If smooth, proper, hyperbolic curves satisfy the section conjecture, then they
satisfy the hom conjecture.

Proof. If hyperbolic curves satisfy the section conjecture, then they are printable thanks to
Proposition 3.7. Hence, they satisfy the hom conjecture thanks to Theorem 9.1.

Thanks to Corollary 9.3, we can also see the anabelian conjecture proved by Mochizuki as
a particular case of the section conjecture, rather than a different conjecture.

Theorem 9.1 allows us to prove that the topological fundamental group of a printable DM
stack has no abelian finite-index subgroup. We know no other result of the form “if a variety
shows anabelian behaviour, then its fundamental group is far from being abelian”: conjectures
and theorems are always in the other direction.

Proposition 9.4. Let X be a printable DM stack of positive dimension. Then π1(Xk̄) has no
finite-index abelian subgroups.

Proof. Thanks to Propositions 5.1 and 3.8, up to taking a finite extension of k and a finite étale
covering of X, we may assume that X is an algebraic space.

Assume for a contradiction that a finite-index abelian subgroup exists. Up to taking another a
finite extension of k and finite étale covering of X, we may assume that π1(Xk̄) is abelian and X
has a rational point x0 ∈ X(k). Let Smk be the category of smooth varieties over k. Since X
is printable, thanks to Theorem 9.1, the stacks X and ΠX/k define two naturally equivalent
functors Smop

k → Set (by taking equivalence classes of ΠX/k(T ) for every T ∈ Smk). The fact
that the fundamental group of Xk̄ is abelian implies that the gerbe ΠX/k is abelian, and hence
its functor is enriched in groups with identity π(x0) ∈ ΠX/k(x0); thus, the same is true for the
functor defined by X and x0.

Now take an étale cover U → X with U a scheme, and let R = U ×X U . Since U and R
are smooth varieties, X(U) and X(R) are groups with the structure inherited from ΠX/k(U)
and ΠX/k(R). This allows us to construct the usual maps m : X ×X → X and i : X → X giving
a group structure to X. Hence, the functor of points of X is enriched in groups over the whole
category of schemes over k and not just the smooth ones. This implies that X is not only an
algebraic space but also a scheme; see [Art69, Theorem 4.1].

Hence, X is actually a proper group scheme, that is, an abelian variety. But it is well known
that an abelian variety of positive dimension is not printable; see, for instance, [Mat12], where
a proof is given for elliptic curves (the proof actually works without modifications for positive-
dimensional abelian varieties).

10. Elementary anabelian stacks

Recall that Grothendieck defined a geometrically connected variety X as elementary anabelian
if there exists a chain of morphisms

X = XN → XN−1 → · · · → X1 → X0 = Spec k

such that Xi+1 → Xi is a smooth fibration whose fibres are hyperbolic curves; see [Gro97].
We want to extend this definition to elementary anabelian stacks.

Definition 10.1. Let X and Y be DM stacks. A morphism Y → X is a family of orbicurves if
it is smooth, proper, and its fibres are geometrically connected orbicurves.
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Definition 10.2. Let k be a field of characteristic 0. A DM stack is constructible by fibrations
over k if it can be constructed by recursion in the following way:

(i) The scheme Spec k is constructible by fibrations.

(ii) If Y → X is a family of hyperbolic orbicurves and X is constructible by fibrations, then Y
is constructible by fibrations.

(iii) If Y → X is finite, representable and étale, then X is constructible by fibrations if and only
if Y is constructible by fibrations.

We say that X is an elementary anabelian stack if there exists a field extension k′/k such that Xk′

is constructible by fibrations.

Lemma 10.3. Let X be a DM stack over a field k of characteristic 0 and K/k any extension.
Then X is elementary anabelian if and only if XK is elementary anabelian.

Proof. If X is elementary anabelian, there exists an extension k′/k such that Xk′ is constructible
by fibrations. It is possible to find an extension K ′/k containing both k′ and K as subextensions.
It follows that XK′ is constructible by fibrations, and thus XK is elementary anabelian. The
other implication is trivial.

Lemma 10.4. Let X be an elementary anabelian stack over a field k of characteristic 0. There
exists a diagram of field extensions

k′ C

k h

such that the extensions k′/k and h/Q are finitely generated and Xk′ descends to a DM stack Y
over h which is constructible by fibrations.

If k is finitely generated over Q and k ⊆ C, we may choose k′ = h; that is, there exists a
finitely generated subextension C/k′/k such that Xk′ is constructible by fibrations.

Proof. The first part follows from standard arguments about finite presentation. For the second
part, find k′ as before and embed it in C as an extension of k using the fact that C is algebraically
closed of infinite transcendence degree over k.

Corollary 10.5. A DM stack over C is an elementary anabelian stack if and only if it is
constructible by fibrations.

Proof. The “if” part is by definition. Let X be elementary anabelian over C. It descends to
a DM stack Y over some finitely generated subfield k ⊆ C. Apply Lemma 10.4 to Y ; we find
a finitely generated subextension C/k′/k such that Yk′ is constructible by fibrations. It follows
that YC = X is constructible by fibrations.

10.1 Topology of elementary anabelian stacks

It will be useful to define and study the topological counterparts of elementary anabelian stacks.
Mainly, we do so because we will need the long exact sequence of a fibration: in the algebraic
setting, the standard reference [Fri73] does not cover stacks. As a workaround, we will pass
through topology and then get back to the algebraic setting using Serre’s good groups. We refer
to [Noo05] and [Noo14] for the theory of topological stacks and orbifolds, fibrations and long
exact homotopy sequences.
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Definition 10.6. A topological orbicurve is a complete orbifold X of dimension 2 with a coarse
moduli space X → S which restricts to an isomorphism on the complement of a finite subset of
S and in which S is a compact, orientable surface.

Topological orbicurves have a rational Euler characteristic analogously to algebraic orbi-
curves; thus, we may define hyperbolic, elliptic and parabolic topological orbicurves.

Definition 10.7. Elementary anabelian topological stacks are topological DM stacks defined by
recursion in the following way:

(i) The point is elementary anabelian.

(ii) If Y → X is a fibration whose fibres are hyperbolic topological orbicurves and X is elemen-
tary anabelian, then Y is elementary anabelian.

(iii) If Y → X is a finite covering space, then X is elementary anabelian if and only if Y is
elementary anabelian.

In order to pass from the topological to the algebraic setting, we need to check that all groups
involved are good in the sense of Serre. Recall that a discrete group G is good in the sense of
Serre if the natural homomorphism

Hq
(
Ĝ,M

)
→ Hq(G,M)

is an isomorphism for every finite G-module M , where Ĝ is the profinite completion of G.
The reason why we are interested in good groups is the following: if G/K = H is an extension
with G good and H finitely generated, then

1→ K̂ → Ĝ→ Ĥ → 1

is exact; see [Ser94, § I.2.6, Exercises 1 and 2].

Finite groups are obviously good, and fundamental groups of compact, orientable surfaces are
known to be good: this was already known to Serre when he introduced the concept; see [SCM04,
Letter October 22, 1961, p. 138]. In [GJZ08, Proposition 3.7], it is proved that fundamental groups
of topological orbicurves are good.

We now need to strengthen the concept of good groups in order to obtain a definition which
is stable under extension. We will do so by requesting that our groups are of type FL∞. Recall
that a group G is of type FL∞ if Z as a Z[G]-module has a resolution by free Z[G]-modules of
finite rank; see [Bro94, Chapter VIII]. Groups of type FL∞ are finitely generated; see [Bro94,
§ VIII.4, Exercise 1]. If a group G is of type FL∞ and M is a finite G-module, then Hq(G,M) =
ExtqZ[G](Z,M) is finite since it is torsion; we can use the finite rank resolution of Z to show that
it is finitely generated.

Finite groups are of type FL∞ since the resolution can easily be constructed step by step.
Moreover, if there exists a CW complex X of type K(G, 1) whose n-skeleton is finite for every n,
then the cellular chain complex of the universal covering of X shows that G is of type FL∞; see
[Bro94, § I.4]. In particular, the fundamental group of surfaces is of type FL∞.

Definition 10.8. We say that a group is very good if it is good and of type FL∞.

Lemma 10.9. Let H = G/K be an extension of groups. If H and K are very good, then G is
very good.

Proof. If H and K are of type FL∞, it is known that G is of type FL∞; see [Wal61].
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If H and K are good, a sufficient condition for G to be good is that K is finitely generated
and Hq(K,M) is finite for every finite G-module M ; see [Ser94, § I.2.6, Exercises 1 and 2]. If K
is of type FL∞, this is automatically satisfied.

Recall that two groups are called commensurable if they have isomorphic finite-index sub-
groups.

Lemma 10.10. If H and G are commensurable and G is very good, then H is very good.

Proof. The fact that H is good is proved in [GJZ08, Lemma 3.2]. We want to show that it is FL∞
too. First suppose that H is a finite-index subgroup of G. Since Z[G] is a free Z[H]-module of
finite rank, it is immediate to check that H is of type FL∞. Now suppose that G is a finite-index
subgroup of H. By the preceding case, we may reduce to the case in which G is normal of finite
index in H. The statement then follows from Lemma 10.9. The general case directly follows from
the first two.

Lemma 10.11. Let X be an elementary anabelian topological stack. Then

(i) X is of type K(G, 1);

(ii) X is uniformizable; that is, there exists a finite covering space Y → X with Y a manifold;

(iii) π1(X) is very good and residually finite.

Proof. Let us prove this by recursion using the rules defining elementary anabelian topological
stacks.

If X is just a point, then it clearly satisfies the assertion.

Let Y → X be a finite covering space. Clearly, Y is of type K(G, 1) and uniformizable if
and only if the same holds for X. By Lemma 10.10, the group π1(X) is very good if and only if
the same holds for π1(Y ). If H = G/K is a finite group, then it is immediate to show that G is
residually finite if and only if K is residually finite. Using a Galois closure Z → Y → X, we get
that π1(X) is residually finite if and only if the same holds for π1(Y ).

If X is a complete, orientable surface of genus at least 2, it is clearly of type K(G, 1) and
uniformizable. The fact that π1(X) is good is proved in [GJZ08, Proposition 3.7]. Since X is of
type K(G, 1) and we can endow it with a structure of finite CW complex, it follows that π1(X)
is of type FL∞ and thus very good. The fact that π1(X) is residually finite is well known;
see [Hem72].

Let X be a hyperbolic topological orbicurve. Thanks to [BN06, Proposition 5.1, Corollary 5.9],
there exists some finite covering space Y → X with Y a hyperbolic surface; thus, the assertion
follows from the preceding case.

Now suppose that X satisfies the assertion, and let Y → X be a fibration whose fibres are
hyperbolic topological orbicurves, and let F be a fibre. We have a commutative diagram

1 π1(F ) π1(Y ) π1(X) 1

1 π̂1(F ) π̂1(Y ) π̂1(X) 1 ,

where the first row is exact, being the long exact sequence of the fibration. It follows that Y
is of type K(G, 1). Since π1(X) and π1(F ) are very good, π1(Y ) is very good too thanks to
Lemma 10.9, and the second row is exact. Moreover, the left and right vertical arrows are injective
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since π1(F ) and π1(X) are residually finite; thus, the central vertical arrow is injective by diagram
chasing, and hence π1(Y ) is residually finite.

It remains to show that Y is uniformizable. Since X is uniformizable, up to passing to a finite
covering space, we may assume that X is a manifold. We know that F is uniformizable. Let

F ′ → F be a finite covering space which is a surface, and let Q ⊆ π̂1(F ) be the set-theoretic

complement of π̂1(F ′). Since π1(F ′) has finite index in π1(F ), we have that Q ⊆ π̂1(F ) is

compact. By the injectivity of π̂1(F )→ π̂1(Y ), the image of Q in π̂1(Y ) does not contain 1. By

the compactness of Q, it follows that there exists a finite quotient π̂1(Y ) → G such that the
image of Q in G does not contain 1. Let Y ′ → Y be the associated G-covering. Let us show that
Y ′ is a manifold.

In fact, let K ⊆ π̂1(F ) be the kernel of the composition π̂1(F ) → π̂1(Y ) → G. Since the

image of Q in G does not contain 1, we have that K ⊆ π̂1(F ′). Hence, the associated (possibly
disconnected) G-covering F ′′ → F dominates F ′ and is thus a manifold. In particular, Y ′ → X
is a fibration whose base and fibres are manifolds, and thus it is a manifold too.

Corollary 10.12. The étale homotopy type of an elementary anabelian stack over an alge-
braically closed field of characteristic 0 is K(G, 1).

Proof. Thanks to Lemma 10.4, we may reduce to the case in which k = C and X is constructible
by fibrations. Let X be an elementary anabelian stack; the associated topological stack Xan in the
sense of [Noo05] is an elementary anabelian topological stack. Now apply [AM69, Theorem 6.7]
and Lemma 10.11.

10.2 An additional property of elementary anabelian stacks

The class of elementary anabelian stacks is by definition stable under a certain number of oper-
ations. There is another natural, non-obvious operation under which they are stable: if Y → X
is an elementary anabelian stack and Y → X is a proper étale morphism, for instance a proper
étale gerbe, then Y is elementary anabelian.

We remark that this property is not strictly necessary for the main purposes of the paper: it
just seems appropriate to highlight it while introducing elementary anabelian stacks.

We refer to [Sta20, § 06QB] for the definition and main properties of gerbes.

Lemma 10.13. Let Y → X be a morphism of finite type of algebraic stacks which is a gerbe.
The following are equivalent:

(i) The morphism Y → X is proper étale.

(ii) The morphism Y → X is separated and DM.

(iii) The diagonal Y → Y ×X Y is finite étale.

(iv) The relative inertia IY/X → Y is finite étale.

Proof. (i) ⇒ (ii) This holds by definition.

(ii) ⇒ (iii) Since Y → X is separated and DM, the diagonal is proper and unramified. Since
the diagonal of a gerbe is always flat [Sta20, Lemma 0CPR], we conclude.

(iii)⇒ (i) Since Y → X is gerbe, it is a universal homeomorphism by [Sta20, Lemma 06R9];
it is separated since the diagonal is finite; and it is of finite type by hypothesis. Thus, it is proper.
Moreover, Y → X is flat since it is a gerbe [Sta20, Proposition 0CPS] and unramified since it is
of finite type with étale diagonal [Sta20, Lemma 0CJ0]; thus, we conclude that it is étale too.
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(iii) ⇔ (iv) Since Y → X is gerbe, the diagonal is an fppf covering by [Sta20, Proposi-
tion 0CPS]. It follows that the diagonal is finite étale if and only if the same holds for the
relative inertia.

If Φ → Spec k is a proper étale gerbe over a field k, then it is immediate to check that it is
a finite étale gerbe in the sense of [BV15].

Lemma 10.14. Let f : Y → X be a proper étale morphism of DM stacks that is locally of finite
type with Stein factorization

Y → Spec f∗OY → X .

Then Y → Spec f∗OY is a proper étale gerbe and Spec f∗OY → X is representable finite étale.

Proof. Up to passing to an étale cover and since f∗ commutes with étale base change, we may
assume that X is a scheme. If X is a scheme, the inertia stack IY of Y coincides with the relative
inertia stack IY/X ; see [Sta20, Lemma 04Z6]. Since Y → X is étale, it follows that IY ' IY/X is
étale over Y thanks to [Sta20, Lemma 0CJ0]. In particular, IY is flat over Y , and thus Y is a gerbe
over its coarse moduli sheaf M , which is an algebraic space too; see [Sta20, Proposition 06QJ]
and [Sta20, Lemma 06QD].

Since f is proper and X is locally of finite type, pushforward of coherent sheaves is coherent,
see [Fal03], and hence Spec f∗OY → X is a finite morphism. We have a natural morphism
M → Spec f∗OY since X, and thus Spec f∗OY , is a scheme. On the other hand, M → X is
proper and quasi-finite, hence affine, and this gives us a natural morphism in the other direction,
Spec f∗OY →M . These morphisms are easily checked to be inverses.

Thus, we know that Y → M = Spec f∗OY is a gerbe and M → X is finite. Since Y → X
is separated and DM and M → X is representable and finite, by [Sta20, Lemma 050M], we get
that Y → M is separated and DM and thus proper étale by Lemma 10.13. It remains to prove
that M → X is étale; this follows from the fact that both Y → M and Y → X are surjective
étale.

Lemma 10.15. If X is an elementary anabelian stack and f : Y → X is a proper étale morphism,
then Y is an elementary anabelian stack.

Proof. Thanks to Lemma 10.4, we may reduce to the case in which k = C and X is con-
structible by fibrations, and we want to show that Y is constructible by fibrations too. Thanks
to Lemma 10.14, we may furthermore reduce to the case in which Y → X is a proper étale
gerbe.

Consider a geometric point y ∈ Y (C) and its image x ∈ X(C). The fibre Yx is a gerbe of the
form BG for some finite group G. Since Y → X is a proper étale gerbe, the diagonal Y → Y ×XY
is finite étale. Passing to the associated topological stacks in the sense of [Noo05, Noo14], this
tells us that Y an → Xan is a fibration with fibre BGan, and we may thus consider the topological
homotopy exact sequence

1→ G→ πtop
1 (Y an)→ πtop

1 (Xan)→ 1 ,

where πtop
2 (X) is 0 by Lemma 10.11. Since G and πtop

1 (X) are very good, we can pass to profinite
completions

1→ G→ ̂πtop
1 (Y an) = π1(Y )→ ̂πtop

1 (Xan) = π1(X)→ 1 .

Since G is finite, there exists a connected, finite étale cover Z → Y such that π1(Z)∩G = {1} ⊆
π1(Y ).
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Now consider the composition g : Z → Y → X; it is a proper étale morphism. Let us show
that it is representable. Consider the Stein factorization

Z → Spec g∗OZ → X ,

it is enough to show that Z → Spec g∗OZ is an isomorphism. By Lemma 10.14, we know that
Z → Spec g∗OZ is a proper étale gerbe and that Spec g∗OZ → X is a finite étale cover. Take
any geometric fibre of Z → Spec g∗OZ . It has the form BH for some finite group H; we want to
show that H is trivial.

By the same argument as above, we get an embedding H ⊆ π1(Z) ⊆ π1(Y ), and by con-
struction H maps to the identity in π1(X). Since π1(Z) intersects the kernel of π1(Y )→ π1(X)
trivially, it follows that H is trivial too.

Hence, we have two finite étale covers Z → Y and Z → X; since X is constructible by
fibrations, Z and Y are constructible by fibrations too.

10.3 From curves to elementary anabelian stacks

Theorem 10.16. Elementary anabelian stacks over a field k that is finitely generated over Q
are fff.

If the section conjecture holds for smooth, proper, hyperbolic curves defined over fields that
are finitely generated over Q, then elementary anabelian stacks defined over fields that are finitely
generated over Q are printable.

Proof. Thanks to Theorem 6.6 and Lemma 10.4, it is enough to prove the theorem for DM stacks
that are constructible by fibrations. We do this only for printability, the argument for fff is anal-
ogous. We are going to check that printability is preserved along the elementary operations that
define DM stacks constructible by fibrations. We may assume that smooth, proper, hyperbolic
orbicurves are printable thanks to Theorem 7.2.

Obviously, Spec k is printable since ΠSpec k/k = Spec k. If Y → X is finite étale, then by
Proposition 3.8, the stack Y is printable if and only if X is printable. We only have to check that
printability is preserved along families of hyperbolic orbicurves.

Let Y → X be a family of hyperbolic orbicurves, and assume that X is printable. Denote the
fibre product X ×ΠX/k

ΠY/k by ΠY/X ; we have a natural 2-commutative diagram

Y ΠY/X ΠY/k

X ΠX/k .

For any extension k′/k and morphism x : Spec k′ → X, consider the fibre

ΠY/X,x = ΠY/X ×X Spec k′ = ΠY/k ×ΠX/k
Spec k′ .

There is a natural map Yx → ΠY/X,x.

Claim: Yx → ΠY/X,x is the étale fundamental gerbe of Yx. Thanks to Proposition A.23,
we may assume that k′ = k = k̄ is algebraically closed. Fix a base point y ∈ Yx. Then, since X
has trivial topological second homotopy group, there is an exact sequence of étale fundamental
groups

0→ πtop
1 (Yx, y)→ πtop

1 (Y, y)→ πtop
1 (X,x)→ 0 .
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Since πtop
1 (X,x) is good in the sense of Serre thanks to Lemma 10.11, we may pass to profinite

completions, that is, étale fundamental groups:

0→ π1(Yx, y)→ π1(Y, y)→ π1(X,x)→ 0 .

Since ΠY/X,x = ΠY/k ×ΠX/k
Spec k(x), there is also a short exact sequence

0→ AutΠY/X,x
(y)→ AutΠY/k

(y)→ AutΠX/k
(x)→ 0 ,

and there are natural identifications

π1(Yx, y) = AutΠYx/k
(y) , π1(Y, y) = AutΠY/k

(y) , π1(X,x) = AutΠX/k
(x) .

These fit in a commutative diagram of short exact sequences, identifying Yx → ΠY/X,x with the
étale fundamental gerbe Yx → ΠYx/k.

So we know that ΠY/X,x is the étale fundamental gerbe of Yx. Since we are assuming that
hyperbolic orbicurves are printable, by working fibrewise, we get that Y → ΠY/X is an equivalence
for every finitely generated extension k′/k. Moreover, we are assuming that X(k′) → ΠX/k(k

′)
is an equivalence; thus, the same holds for its base change ΠY/X(k′)→ ΠY/k(k

′). It follows that
the composition Y (k′)→ ΠY/k(k

′) is an equivalence, as desired.

Finally, let us give a version of Theorem 10.16 for classical elementary anabelian varieties:
for them, we can slightly relax the hypotheses since we can work with a fixed base field. Varying
the base field is necessary in the passage from curves to orbicurves but not in that from curves
to elementary anabelian varieties.

Theorem 10.17. Let k be a finitely generated extension of Q. If the section conjecture holds
for smooth, proper, hyperbolic curves over k, then it holds for proper elementary anabelian
varieties over k. Moreover, elementary anabelian varieties respect the injectivity part of the
section conjecture.

Proof. If we assume that the section conjecture holds for an elementary anabelian variety X/k
and for all smooth, proper hyperbolic curves over k, and Y → X is a fibration in hyperbolic
curves, then we can repeat the argument contained in the proof of Theorem 10.16 in order to
show that the section conjecture holds for Y/k. The injectivity part is analogous.

Appendix. Étale fundamental gerbes

Almost everything in this appendix is already known to the mathematical community; we claim
no originality. In particular, most of the ideas and results are already implicit in [BV15] and in the
original paper by Deligne [Del89]. Anyway, we could not find a satisfying reference since [BV15]
is mostly concerned with the Nori fundamental gerbe rather than the étale one, and hence
the theorems regarding the étale fundamental gerbe are not expressed in the right generality. In
particular, the authors of [BV15] always work with inflexible fibred categories, while geometrically
connected is the right hypothesis. See also [TZ19, § 2–4], where part of what is contained in this
appendix is done under minor additional hypotheses.

In addition to putting Borne and Vistoli’s work for étale fundamental gerbes in the right
generality, we give proofs of two technical results, namely of the fact that in characteristic 0 the
étale fundamental gerbe behaves well with respect to any field extension (while in [BV15] only
algebraic extensions are treated) and of a result concerning the behaviour of the étale fundamen-
tal gerbe under finite étale covers. Again, these are not original ideas, but no proof of them was
available in the literature.
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We want to stress that our effort to state results in maximal generality is not for its own
sake: it just happens to work with rather nasty objects that are not even algebraic stacks, like
the infinite root stacks of Section 8. Since the theory works for raw fibred categories without any
additional hypothesis, we want to give statements in this generality.

If we say that a stack X is finite over a field k, we mean that it has groupoid presentation
R ⇒ U with R and U finite over k; see [BV15, § 4]. In particular, a finite stack over k is not
necessarily representable.

A.1 Connected fibred categories

Definition A.1 ([TZ19, Definition 2.5]). A fibred category X over k is connected if H0(X,OX)
has no non-trivial idempotents.

Definition A.2. If S is a scheme and X is a fibred category, we say that a morphism X → S
is set-surjective if for every point s ∈ S, there exist a field Ω and a morphism Spec Ω→ X with
image s in S.

Lemma A.3. A fibred category X/k is not connected if and only there exists a set-surjective
morphism X → Spec k t Spec k.

Proof. If X → Spec k t Spec k = Spec k × k is set-surjective, the pullback of 1 × 0 is a non-
trivial idempotent. On the other hand, if e ∈ H0(X,OX) is a non-trivial idempotent and S → X
is a morphism, we can define a morphism S → Spec k t Spec k by sending Se=0 to one point
and Se=1 to the other one. This defines a morphism X → Spec k t Spec k. Since e is non-trivial,
for some schemes S and S′ with morphisms S, S′ → X, we have Se=0 6= ∅ and S′e=1 6= ∅; that is,
X → Spec k t Spec k is set-surjective.

Let X1 and X2 be two fibred categories over k. It is possible to define the disjoint union
X1 tX2: if S is a scheme, a morphism S → X1 tX2 is a decomposition of S = S1 t S2 with S1

and S2 open and closed together with a pair of morphisms si : Si → Xi.

Definition A.4. We define the clopen topology on the category of schemes as the Grothendieck
topology for which a cover {Ui → U}i is a jointly surjective set of morphisms Ui → U which are
both closed and open immersions.

The clopen topology is very coarse; in particular, it is coarser than the Zariski topology.

Lemma A.5. If X is a connected fibred category over k and X ' X1 tX2, then either X1 or X2

is empty. If X is a stack in the clopen topology, the converse hold; that is, we can write it as
a non-trivial disjoint union if and only if it is disconnected.

Proof. If X1 and X2 are both non-empty, 1× 0 in H0(X,OX) = H0(X1,OX1)× H0(X2,OX2) is
a non-trivial idempotent.

Now let e ∈ H0(X,OX) be a non-trivial idempotent. For every scheme S, define

X1(S) = {s ∈ X(S)|s∗e = 1 ∈ H0(S,OS)} ,
X2(S) = {s ∈ X(S)|s∗e = 0 ∈ H0(S,OS)} .

We have a natural morphism X → X1 tX2 sending a morphism s : S → X to the pair s1, s2,
where s1 is the restriction of s to Se=1 and s2 is the restriction of s to Se=0. Since Se=1 and Se=0

are open subsets of S such that Se=0 t Se=1 = S, if X is a stack in the clopen topology, we get
that X → X1 tX2 is an equivalence.
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Remark A.6. IfX is an algebraic stack, this is equivalent to asking that the underlying topological
space |X| (see [Sta20, Tag 04XE]) be connected. On one hand, if X = X1 t X2, then |X| =
|X1|t|X2|. On the other hand, if |X| = U1tU2 is disconnected, the fact that for every scheme S,
the natural morphism |S| → |X| is continuous allows us to define two fibred categories X1 and X2

such that |Xi| = Ui and X = X1 tX2.

A.2 Geometrically connected fibred categories

If k′/k is a finite extension of fields, the Weil restriction along k′/k is the right adjoint to the
functor of base change along Spec k′ → Spec k. More concretely, if X is a fibred category over k
and Y is a fibred category over k′, the Weil restriction Rk′/k Y is a fibred category over k with
an equivalence of categories

Homk(X,Rk′/k Y ) ' Homk′(Xk′ , Y )

that is functorial in X and Y . We can construct Rk′/k Y as the fibred product Aff /k ×Aff /k′ Y .
When Y is represented by a quasi-projective scheme, Rk′/k Y is represented by a scheme too.
If Y is represented by a finite stack and k′/k is separable, then Rk′/k Y is represented by a finite
stack too; see [BV15, Lemma 6.2].

Lemma A.7. Let k′/k be a finite, separable extension and Y a finite étale stack over k′. Then
Rk′/k Y is a finite étale stack over k too.

Proof. In the proof of [BV15, Lemma 6.2], from a finite groupoid presentation R⇒ U of Y the
authors construct a finite groupoid presentation R′ ⇒ U ′ of Rk′/k Y . Following their construction,
it is immediate to check that if R⇒ U is étale, R′ ⇒ U ′ is étale too.

Recall that a fibred category is concentrated if there exist an affine scheme U and a repre-
sentable, quasi-separated, quasi-compact and faithfully flat morphism U → X.

If X is concentrated and u : U → X is as above, set R = U ×X U ; we obtain an fpqc groupoid
(r1, r2) : R⇒ U in algebraic spaces. From standard arguments in descent theory, we get an exact
sequence

0→ H0(X,OX)
u∗−→ H0(U,OU )

r∗1−r∗2−−−−→ H0(R,OR) ,

and hence it follows easily that for any field extension k′/k,

H0(Xk′ ,OXk′ ) = H0(X,OX)⊗k k′ .

Lemma A.8. Let X be a category fibred over k, and ks/k a separable closure. Consider the
following:

(i) The category Xk′/k
′ is connected for every extension k′/k.

(ii) The category Xks/ks is connected.

(iii) The category Xk′/k
′ is connected for every finite, separable extension k′/k.

(iv) The field k is the only étale subalgebra of H0(X,OX).

(v) The scheme Spec H0(X,OX) is geometrically connected.

In general, we have implications (i) ⇔ (ii) ⇒ (iii) ⇔ (iv) ⇔ (v). If X is an algebraic space or it
is concentrated, then (iii) ⇒ (ii) holds too.

Proof. (i) ⇒ (ii) This is obvious.
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(ii) ⇒ (i) Suppose that Xk′ → Spec k′ t Spec k′ is a set-surjective morphism. Up to en-
larging k′, we may suppose ks ⊆ k′. Let S be a scheme over ks and S → Xks a morphism.
By [Sta20, Tag 0363 and Tag 0383], the morphism Sk′ → S is open and induces a bijection of
connected components.

In particular, we can write S = S1tS2, where Si,k′ → Sk′ → Spec k′tSpec k′ maps to the ith
point for i = 1, 2. This allows us to define a morphism S → Spec ks t Spec ks whose base change
is Sk′ → Spec k′ t Spec k′, and thus a morphism Xks → Spec ks t Spec ks whose base change is
Xk′ → Spec k′ t Spec k′. The morphism Xks → Spec ks t Spec ks is then clearly set-surjective,
which is absurd.

(ii) ⇒ (iii) If Xk′ → Spec k′ t Spec k′ is set-surjective, then Xks → Spec ks t Spec ks is
set-surjective too.

(iii) ⇒ (iv) Suppose that A ⊆ H0(X,OX) is a non-trivial finite étale subalgebra of degree
d > 1 and that there exists a scheme S with a morphism S → X such that the composition
S → X → SpecA is dominant. Now choose a finite separable extension k′/k which splits A. The
base change

Xk′ → SpecAk′ = Spec k′d

is set-surjective because Sk′ → Xk′ → Spec k′d is set-surjective. But this is absurd since d > 1
and Xk′ is connected.

(iv)⇒ (iii) Suppose that k′/k is a finite separable extension and that we have a set-surjective
morphism Xk′ → Spec k′ t Spec k′; this induces a morphism X → Rk′/k(Spec k′ t Spec k′). Since
Rk′/k(Spec k′ t Spec k′) is a finite étale scheme, by hypothesis we have a factorization

X → Spec k → Rk′/k(Spec k′ t Spec k′) .

But this gives a factorization Xk′ → Spec k′ → Spec k′ t Spec k′, which is absurd.

(iv) ⇔ (v) This is well known.

(iii) ⇒ (ii) If X is concentrated, we have

H0(Xk′ ,OXk′ ) = H0(X,OX)⊗k k′

for every extension k′/k; hence, we can reduce to affine schemes for which the result is well
known. If X is an algebraic space, this is [Sta20, Lemma 0A17].

Definition A.9. Let X be a fibred category. We say that X is geometrically connected if the
equivalent conditions (iii), (iv) and (v) of Lemma A.8 hold for X.

A.3 Existence and base change

Lemma A.10. A stack over k is finite étale if and only if it is étale and of finite type over k.

Proof. A finite stack in the sense of [BV15, Section 4] is clearly proper. On the other hand, let X
be an étale stack of finite type over k. Étale morphisms are by definition DM; thus, X is a DM
stack. Let U → X be an étale cover of finite type with U a scheme and R = U ×R U . By com-
position, we get that U and R are étale of finite type over k. It follows that X is finite étale.

Definition A.11. An fpqc stack Γ over a field k is profinite étale if it is the limit of a projective
system of finite, étale stacks over k, in the sense of [BV15, Definition 3.5].

Remark A.12. In [BV15, Definition 3.5], the authors define the limit of a projective system (Γi)i
of affine fpqc gerbes as a category fibred in groupoids which turns out to be an fpqc stack.

260

http://stacks.math.columbia.edu/tag/0363
http://stacks.math.columbia.edu/tag/0383
https://stacks.math.columbia.edu/tag/0A17


Grothendieck’s anabelian conjectures

Actually, it is straightforward to check that the definition works without any modification for a
projective system (Γi) of categories fibred in groupoids, and if Γi is an fpqc stack for every i,
then the limit is also an fpqc stack. Moreover, if Γi is an affine fpqc gerbe for every i and the
limit is not empty, then the limit is an fpqc gerbe too; see [BV15, Proposition 3.7].

Definition A.13. Let X be a fibred category over k and Π a profinite étale gerbe with a mor-
phism X → Π. Then X → Π is an étale fundamental gerbe if for every finite, étale stack Φ, the
functor Hom(Π,Φ)→ Hom(X,Φ) is an equivalence of categories.

Lemma A.14. Let X be a fibred category with an étale fundamental gerbe X → Π and Φ a profi-
nite étale stack. Then Hom(Π,Φ) → Hom(X,Φ) is an equivalence of categories. In particular,
the étale fundamental gerbe is unique up to a canonical equivalence.

Proof. This is a straightforward application of the definitions of the étale fundamental gerbe and
of profinite étale stacks.

The following simple lemma is rather enlightening in the sense that it draws the line between
the étale setting and the Nori setting: its failure for finite stacks is what makes Nori’s fundamental
gerbe subtler than the étale one.

Lemma A.15. Let Φ be a finite étale stack. Then the natural morphism Φ→ Spec H0(Φ,OΦ) is
a gerbe.

Proof. We give an elementary proof. See also [TZ19, Proposition 3.2] for a more technical proof
for finite, reduced stacks.

If ks/k is the separable closure, it is easy to check that Φ→ Spec H0(Φ,OΦ) is a gerbe if and
only if Φks → Spec H0(Φks ,OΦks

) is a gerbe. Hence, we may suppose that k is separably closed.

Now choose a finite étale groupoid R ⇒ U giving a presentation of Φ. Since k is separably
closed and R and U are finite étale, they are simply finite disjoint unions of points. Hence, we
can write Φ = tiBGi, where Gi are finite discrete groups. Now it is obvious that Φ = tiBGi →
ti Spec k is a gerbe.

Corollary A.16. Let X be a fibred category. Then X is geometrically connected if and only if
every morphism X → Γ, where Γ is a finite étale stack, has a factorization X → Γ′ → Γ, where
Γ′ is a finite étale gerbe.

Proof. Suppose that X is geometrically connected. Consider the composition

X → Γ→ Spec H0(Γ,OΓ) .

Since X is geometrically connected and H0(Γ,OΓ) is finite étale, we have a factorization

X → Spec k → Spec H0(Γ,OΓ) .

Set Γ′ = Spec k ×Spec H0(Γ,OΓ) Γ, we have a factorization X → Γ′ → Γ, and Γ′ is a gerbe over
Spec k thanks to Lemma A.15.

On the other hand, if A ⊆ H0(X,OX) is a non-trivial étale subalgebra, the natural morphism
X → SpecA cannot factor through any finite gerbe.

The following three results are straightforward modifications of results of Borne and Vistoli.

Theorem A.17 ([BV15, Theorem 5.7]). Let X be a fibred category over k. Then X has an étale
fundamental gerbe if and only if it is geometrically connected.
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Proof. Thanks to Corollary A.16, we can replace inflexible fibred categories with geometrically
connected ones. See also [TZ19, Proposition 4.3] for a proof under some minor additional hy-
potheses.

Proposition A.18 ([BV15, Proposition 6.1]). Let k′/k be an algebraic and separable extension
and X a geometrically connected fibred category over k. Suppose that either

(a) k′ is finite over k, or

(b) X is concentrated.

Then Xk′ is geometrically connected over k′ and ΠXk′/k
′ = Spec k′ ×ΠX/k.

Proof. Replace [BV15, Lemma 6.2] with Lemma A.7.

Given two extensions G and H of a group Γ, we have defined Hom-extΓ(G,H) as the set of
homomorphisms G → H of Γ-extensions modulo the action of ker(H → Γ) by conjugacy. It is
more natural to consider the category Hom-extΓ(G,H) whose objects are said homomorphisms
and whose arrows are given by conjugacy with elements of ker(H → Γ). Then Hom-extΓ(G,H)
is the set of isomorphism classes.

Proposition A.19 ([BV15, Proposition 9.3]). Let X be a quasi-compact, quasi-separated and
geometrically connected algebraic stack over k with a geometric point x̄ : Spec Ω → X and T
any geometrically connected scheme with a geometric point t̄ : Spec Ω → X. There is a (non-
canonical) equivalence of categories

ΠX/k(T )→ Hom-extΓk
(π1(T, t̄), π1(X, x̄))

that composed with the canonical functor Homk(T,X)→ ΠX/k(T ) gives the natural map

Homk(T,X)→ Hom-extΓk
(π1(T, t̄), π1(X, x̄)) .

Proof. Replacing Spec k with T simply does not affect the proof given in [BV15].

Now suppose that we are in characteristic 0. Following Borne and Vistoli, we have shown that
the étale fundamental gerbe behaves well under algebraic field extensions: we want to show that,
actually, it behaves well with respect to any field extension. The idea is to rephrase the theorem
in terms of étale fundamental groups and then use the fact that the étale fundamental group is
invariant along extensions of algebraically closed fields; see [GR03, Exposé XIII, Proposition 4.6].

Given a field k, let AffGrpk be the category of affine group schemes over k, and let FGrp,
PFGrp be the categories of finite and profinite classical groups.

Lemma A.20. The functor FGrp→ AffGrpk which sends a finite group to the associated constant
group scheme extends to a fully faithful functor PFGrp→ AffGrpk which preserves limits.

If k is separably closed, the essential image of the functor PFGrp→ AffGrpk consists of the
full subcategory of profinite étale group schemes.

Proof. Given a profinite group G, define IG as the k-algebra of continuous homomorphisms
G → k, where k is endowed with the discrete topology. The k-algebra IG can be endowed with
a Hopf algebra structure analogously to the finite case. Define the associated profinite constant
group scheme

G = Spec IG .

Observe that if we write G = lim←−iGi as a limit of finite groups, then the natural map lim−→i
IGi →

IG is easily checked to be an isomorphism of Hopf algebras. Using this, it is easy to check that
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G 7→ G defines a functor PFGrp → AffGrpk with the desired properties. Once the functor is
defined, the second part of the lemma follows from the analogous statement for finite groups.

Lemma A.21. If G and H are profinite étale groups schemes and k′/k is an extension of separably
closed fields, then the natural functor

Homk(BkG,BkH)→ Homk′(Bk′G,Bk′H)

is an equivalence.

Proof. Both categories have the same description in purely group-theoretic terms; let us explain
this. Since k is separably closed, thanks to Lemma A.21 there exist profinite groups Gc and Hc

whose associated group schemes over k are G and H. Clearly, Gk′ and Hk′ are associated with
Gc and Hc over k′.

We now define the category Homcont(BGc, BHc) of “continuous” functors BGc → BHc: its
objects are just continuous homomorphisms Gc → Hc, and every h ∈ Hc defines an arrow
ϕ→ h−1ϕh for every continuous homomorphism ϕ : Gc → Hc.

We have a natural morphism Homcont(BGc, BHc) → Hom(BkG,BkH); since k is separably
closed, thanks to Lemma A.21, it is immediate to check that this morphism is an equivalence
of categories. The same is true over k′; thus, the assertion follows by 2-commutativity of the
obvious diagram.

For the following Lemma A.22, I would like to thank Marc Hoyois, who suggested the use of
noetherian approximation in order to reach full generality; see [Mat18].

Lemma A.22. Let k′/k be an extension of algebraically closed fields of characteristic 0. Consider
a concentrated fibred category X over k and a finite étale stack Φ over k. Then the natural
functor

Homk(X,Φ)→ Homk′(Xk′ ,Φk′)

is an equivalence of categories.

Proof. Let us prove this firstly under the additional hypothesis that X is a scheme of finite type
over k. Under this hypothesis, connected components are open; hence, we may suppose that X
is connected and Φ is of the form BG for some finite group G. Fix any point x ∈ X(k). Thanks
to [GR03, Exposé XIII, Proposition 4.6], we have that π1(X,x) = π1(Xk′ , xk′).

We thus have

Homk(X,BkG) = Homk(Bkπ1(X,x), BkG)

= Homk′(Bk′π1(Xk′ , sk′), Bk′G) = Homk′(Xk′ , Bk′G) .

Let us now generalize to X a quasi-compact, quasi-separated scheme. By noetherian approx-
imation [TT90, Theorem C.9], we can write X as an inverse limit lim←−iXi, with Xi of finite type
over k. Since Φ is finite,

Homk(X,Φ) = lim−→
i

Homk(Xi,Φ) = lim−→
i

Homk′(Xi,k′ ,Φk′) = Homk′(Xk′ ,Φk′) .

Finally, if X is a concentrated fibred category, let U be a quasi-compact and quasi-separated
scheme with a representable, quasi-separated, quasi-compact and faithfully flat morphism U →
X. Set R = U ×X U ; then R is again quasi-compact and quasi-separated. Let Hom(R ⇒ U,Φ)
be the category of morphism U → Φ satisfying the usual cocycle condition on R. Descent theory
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tells us that Hom(R⇒ U,Φ) is naturally equivalent to Hom(X,Φ), even if X is not a stack and
hence X 6= [U/R]. Since U and R are quasi-compact and quasi-separated, by the preceding case,
we conclude that

Homk′(Xk′ ,Φk′) = Homk′(Rk′ ⇒ Uk′ ,Φk′) = Homk(R⇒ U,Φ) = Homk(X,Φ) .

Proposition A.23. Let k be a field of characteristic 0. If X is a geometrically connected,
concentrated fibred category over k, then the natural map ΠXk′/k

′ → ΠX/k×kk′ is an isomorphism
for every field extension k′/k.

Proof. Thanks to Proposition A.18, it is immediate to reduce to the case in which k and k′ are
both algebraically closed. We have to show that ΠX/k ×k k′ has the universal property of the
étale fundamental gerbe of Xk′ .

Since k′ is algebraically closed, every finite étale stack over k′ has the form tiBk′Gi for some
finite number of finite groups Gi. In particular, every finite étale stack over k′ is isomorphic
to Φk′ for some finite étale stack Φ over k; hence, it is enough to show that ΠX/k ×k k′ has the
universal property with respect to stacks of the form Φk′ with Φ finite étale over k.

Now observe that ΠX/k, being a gerbe over Spec k, is concentrated: in fact, any morphism
SpecL → ΠX/k with L a field is representable, quasi-compact, quasi-separated and faithfully
flat. Hence, both X and ΠX/k are concentrated, and thanks to Lemma A.22, we have

Homk′(Xk′ ,Φk′) = Homk(X,Φ) = Homk(ΠX/k,Φ) = Homk′(ΠX/k ×k k′,Φk′) .

A.4 Étale coverings of fibred categories

Lemma A.24. Let f : Y → X be a representable, finite étale morphism of fibred categories. If X
is connected, then there exists an integer d such that for every scheme S and every morphism
s : S → X, the étale covering S ×X Y → S has constant degree d.

Proof. If S is a scheme, s ∈ X(S) an object and d > 0 an integer, the locus S=d of points p
of S such that Y ×X S → S has degree d over p is an open and closed subscheme of S; set
S6=d = S \S=d. This allows us to define a morphism X → Spec ktSpec k sending S=d to the first
point and S6=d to the second point. If there exist morphisms S, S′ → X such that S=d and S′6=d
are both non-empty, then X is not connected, which is absurd.

There exist some d0 and a morphism S → X such that S=d0 6= ∅; hence, for every morphism
S′ → X, we have S′=d0

= S′; that is, Y → X has constant degree d0.

In the following, we need to use quotients by group actions of stacks; see [Rom05, Theorem 4.1]
for the general existence result.

Proposition A.25. Let Y → X be a representable, finite étale morphism of geometrically
connected fibred categories. The following natural 2-commutative diagram is 2-cartesian:

Y ΠY/k

X ΠX/k .

Proof. Thanks to Lemma A.24, the morphism Y → X is a finite cover of fixed degree d. Let
d×X be the disjoint union of d copies of X; we have a finite cover d×X → X of degree d. The
group Sd acts on the fibred category Z = IsomX(d×X,Y ) by automorphisms of d×X, making
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it into an Sd-torsor over X. If S is a scheme with a morphism S → Z, we have a trivialization
d × S ' Y ×X S. The first copy of d × S gives us a morphism S → Y , and thus by Yoneda’s
lemma, we have an Sd−1-invariant morphism Z → Y which is actually an Sd−1-torsor.

All of this can be summarized by saying that we have a morphism X → BSd with identifica-
tions Z = X ×BSd

Spec k and Y = X ×BSd
BSd−1. Moreover, define Π = ΠX/k ×BSd

BSd−1 and
Λ = Spec k ×BSd

ΠX/k. We have a 2-cartesian diagram

Z Λ Spec k

Y Π BSd−1

X ΠX/k BSd .

Since Π is profinite étale, if we show that it satisfies the universal property of ΠY/k, then
we have that Π = ΠY/k thanks to Lemma A.14, and hence the assertion.

Now consider a finite étale stack Φ; we want to show that

Homk(Π,Φ)→ Homk(Y,Φ)

is an equivalence of categories. Let ρ : Z × Sd → Z be the action. If Y → Φ is a morphism,
consider the composition

ρΦ : Z × Sd
ρ−→ Z → Y → Φ .

For every g ∈ Sd, this defines a morphism ρΦ(·, g) : Z → Φ. If h ∈ Sd−1 ⊆ Sd, since Z → Y
is Sd−1 invariant, we get that ρΦ(·, g) = ρΦ(·, gh) : Z → Φ; hence, ρΦ(·, [g]) is well defined for
[g] ∈ Sd/Sd−1. This gives us an Sd-equivariant morphism Z → ΦSd/Sd−1 , where Sd acts on
ΦSd/Sd−1 via left multiplication on Sd/Sd−1.

On the other hand, if we have an Sd-equivariant morphism Z → ΦSd/Sd−1 , it is Sd−1-invariant
since Sd−1 acts trivially on Sd/Sd−1. Hence, we have an induced morphism Y → ΦSd/Sd−1 , which,
composed with the projection ΦSd/Sd−1 → Φ on the identity component, gives a morphism
Y → Φ. It is easy to check that these constructions are inverses and give an equivalence of
categories

Hom(Y,Φ)
∼−→ HomSd

(
Z,ΦSd/Sd−1

)
.

Since Z → X is an Sd-torsor, we also have an equivalence

HomSd
(
Z,ΦSd/Sd−1

) ∼−→ HomBSd

(
X,
[
ΦSd/Sd−1/Sd

])
and the composition

Hom(Y,Φ)
∼−→ HomBSd

(
X,
[
ΦSd/Sd−1/Sd

])
.

We can repeat the same argument with ΠX/k, Π and Λ instead of X, Y and Z, finding an
equivalence

Hom(Π,Φ)
∼−→ HomBSd

(
ΠX/k,

[
ΦSd/Sd−1/Sd

])
.

Thanks to Lemma A.10, we have that
[
ΦSd/Sd−1/Sd

]
is a finite étale stack, and thus there is

another equivalence

HomBSd

(
X,
[
ΦSd/Sd−1/Sd

]) ∼−→ HomBSd

(
ΠX/k,

[
ΦSd/Sd−1/Sd

])
.

Composing these three, we obtain the desired equivalence Hom(Y,Φ)
∼−→ Hom(Π,Φ).
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