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Zusammenfassung

Die AdS/CFT-Korrespondenz, eine erstaunliche Dualität zwischen bestimmten Gravita-
tionstheorien in anti-de Sitter (AdS) Raumzeit und Quantenfeldtheorien mit konformer
Symmetrie (CFT), hat die Entwicklung der theoretischen Physik der letzten zwei Jahr-
zehnte entscheidend geprägt. Jüngst wurden viele Verbindungen zwischen AdS/CFT
und der Quanteninformationstheorie entdeckt, welche insbesondere duale gravitative
Beschreibungen von verschiedenen Verschränkungsmaßen ermöglichen. Um diese
Realisierungen von AdS/CFT und des zugrundeliegenden holografischen Prinzips zu
verstehen, bedarf es einer Kombination von Werkzeugen der Hochenergietheorie und
der Quanteninformationsphysik.

In dieser kumulativen Dissertation wird der Zusammenfluss von diesen beiden Feldern
aus zwei verschiedenen Richtungen betrachtet: Erstens durch Berechnungen in der
dualen Gravitationstheorie und zweitens durch einen Tensornetzwerk-Ansatz zur Be-
schreibung der Quantensysteme, von denen eine gravitative Beschreibung vermutet
wird.

Im ersten Ansatz wird die gravitationstheoretische Seite der AdS/CFT-Korrespondenz
genutzt, um Verschränkungsentropien komplizierter 2+1-dimensionaler angeregter
konformer Feldtheorien zu berechnen. Dies zeigt die Möglichkeiten des holografischen
Ansatzes auf, Zugang zu bislang mit praktischen Methoden nicht beschreibbaren Syste-
me zu erhalten und führt neue numerische Methoden ein, die für diesen Ansatz benötigt
werden.

Die zweite Richtung beinhaltet Tensornetzwerke, ein höchst erfolgreicher Ansatz zur Be-
rechnung von ein- und zweidimensionalen Quantensystemen. Effizient berechenbare
Klassen von Tensornetzwerken werden auf ihre Fähigkeit hin untersucht, die Eigen-
schaften einfacher holografischer Systeme darzustellen, wobei sowohl hyperbolische
Geometrien als auch kritische Randzustände erfolgreich reproduziert werden. Außer-
dem werden die allgemeinen Eigenschaften von holografischen Tensornetzwerken auf
regulär-hyperbolischen Tesselierungen untersucht, was zu neuen Verbindungen mit
Modellen führt, welche bislang nicht im Zusammenhang mit Holografie betrachtet
wurden.

Dieses Zusammenspiel verschiedener Ansätze der Quanteninformationsholografie be-
zeugt die reichen Eigenschaften dieses neuen Gebiets und legt nahe, dass noch ein
weites Feld physikalischer Phänomene durch die uns nun zur Verfügung stehenden
Werkzeuge erschlossen werden kann.
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Abstract

The AdS/CFT correspondence, a remarkable duality between certain gravitational the-
ories in anti-de Sitter (AdS) spacetime and quantum field theories with conformal
symmetry (CFT), has had a profound effect on the development of theoretical physics in
the past two decades. Recently, many connections of AdS/CFT to quantum information
theory have been found, in particular by providing gravitationally dual descriptions of
various entanglement measures. Understanding these manifestions of AdS/CFT — or
more generally, the conjectured holographic principle encompassing it — requires the
combination of tools from both high-energy theory and quantum information physics.

In this cumulative thesis, the convergence between these two fields is approached from
two fronts: First, by calculations within the dual gravitational theory, and second, using
a tensor network ansatz to describe the quantum states suspected to possess such a
gravitational description.

In the first approach, using the gravitational side of AdS/CFT, entanglement entropies
of complicated 2+1-dimensional excited CFTs are computed, thus showing how the
holographic approach provides access to systems previously out of reach of practical
methods, while introducing new numerical methods that this approach necessitates.

The second approach is given by tensor networks, a highly successful ansatz for comput-
ing properties of one- and two-dimensional quantum systems. Efficiently computable
classes of tensor networks are tested in their ability to represent simple holographic sys-
tems, successfully reproducing both hyperbolic geometrical features as well as critical
boundary states. In addition, the general properties of tensor networks on regular hyper-
bolic tesselations are considered, leading to new connections to models not previously
considered in the context of holography.

This interplay of different approaches to quantum information holography showcases
the richness of this new field and suggests that a wide range of physical phenomena is
accessible via the new tools now at our disposal.
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Zwar ist’s mit der Gedanken-Fabrik
Wie mit einem Weber-Meisterstück,
Wo ein Tritt tausend Fäden regt,
Die Schifflein herüber hinüber schießen,
Die Fäden ungesehen fließen,
Ein Schlag tausend Verbindungen schlägt.

Truly the fabric of mental fleece
Resembles a weaver’s masterpiece,
Where a thousand threads one treadle throws,
Where fly the shuttles hither and thither.
Unseen the threads are knit together.
And an infinite combination grows. 1

– J. W. von Goethe, Faust 1, 118 (1808).

1From the 1870 translation by Bayard Taylor.
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Chapter 1

Introduction

It is the unfortunate reality of theoretical physics, among other disciplines, that some
problems are hard. While often glossed over in secondary education, it is in the early
stages of undergraduate physics that a student usually begins to realize that some
problems — such as determining the analytical form of certain integrals — cannot be
resolved, even by tenured professors. After having spent a few years in the realm of
university physics, it gradually becomes clear to the student that indeed most physical
problems of interest are not directly solvable, and that the true mettle of a physicist con-
sists in cleverly contriving indirect approaches to tackling the chosen system. While the
experimental physicist’s approach usually involves an intricate measurement apparatus
whose function is several degrees removed from the most straightforward but infeasible
setup, the theoretical physicist has to resort to similarly intricate constructions on the
analytical or numerical side.

Fortunately, while few exactly solvable systems are at the theoretical physicist’s disposal
(most somehow related to harmonic oscillators), great ingenuity has been applied to
extending knowledge of these exact solutions onto new problems. Of great help is
the continuing discovery of dualities, direct relationships between seemingly different
physical theories. Once the precise framework of a duality is understood, it often
allows the transfer of known results on one side to produce solutions on the other. A
famous example is the Jordan-Wigner transformation, which provides a correspondence
between a system composed of spins and one composed of fermions. Despite the
different physical behavior of these two types of quantum-mechanical objects, e.g.
under exchange of two of them, they are related by a deep mathematical connection
that simplifies many practical computations. The duality upon which the work in this
thesis is founded is a recent one in the timescales of physics: Disovered twenty-three
years ago, the anti-de Sitter/conformal field theory correspondence, or simply AdS/CFT,
has led us to fascinating new connections between old theories, producing a concrete
realization of the previously proposed holographic principle. Similar to the holography
that allows for the creation of three-dimensional images on a two-dimensional surface,
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the holographic principle is a proposal that certain higher-dimensional physical theories
involving gravity may be effectively lower-dimensional. While highly counter-intuitive,
AdS/CFT confirmed this intuition for a special type of gravitational system involving a
negative cosmological constant, or equivalently, global negative spacetime curvature.
Perhaps surprisingly, the usefulness of AdS/CFT for practical applications arises mostly
from using results on the higher-dimensional gravitational side — usually the “easy” side
of the duality — and applying it to the lower-dimensional side containing a complicated
quantum theory.

For all its achievements, the AdS/CFT correspondence remains a conjecture, largely
because the theories it relates are not themselves fully (i.e., non-perturbatively) under-
stood. Furthermore, AdS/CFT is deeply embedded into the framework of string theory,
whose mighty mathematical apparatus complicates the application of its results onto
more pedestrian branches of physics. Fortunately, the burgeoning field of quantum
information theory has recently produced many new paths to understanding facets of
holography in great generality, beyond many of the constraints of the original AdS/CFT
setup. In this work, some of these paths will be explored in detail, all deeply related
to the perhaps most quantum of physical phenomena, entanglement. In particular,
we will make great use of the language of tensor networks to illuminate the quantum
information side of holography, a language that encompasses a range of physical setups
from simple quantum-mechanical systems to — as it is hoped — aspects of quantum
gravity.

The many theoretical concepts underlying these endeavors are introduced in Chapter 2,
preparing the reader for the chapters that follow. It also contains short summary boxes
that sketch topics of relevance that are mentioned throughout the sections. References
to introductory books and articles for further reading are listed at the end of each section.
Chapter 3 then motivates the central themes of this thesis and provides an overview of
the publications that comprise its cumulative part. These are then included in Chapter 4
in their original publication format in the order in which they were published. The final
Chapter 5 closes with an outlook on future developments as well as acknowledgements.



Chapter 2

Foundations

2.1 Holography from strings

The origins of the holographic principle can be traced back to the 1970s, when physicists
began to consider black holes from a new vantage point: Based on the work of Stephen
W. Hawking and Jacob D. Bekenstein, it was realized that black holes are thermodynami-
cal objects with a well-defined temperature and entropy [1, 2]. For a black hole with a
given mass M , these are given by1

TH = ~c3

8πkBGM
, SBH = 4GM 2

~c
= c3 Ahor

4~G
, (2.1.1)

commonly called the Hawking temperature and Bekenstein-Hawking entropy of a black
hole, respectively. When expressed in terms of the area Ahor of the event horizon, the
latter equation, more succinctly written in natural units as SBH = Ahor/4G , contains
a surprising insight: Rather than growing with its volume, as a conventional thermo-
dynamical system, a black hole’s entropy grows with its surface area! This has led to
the suggestion that the information of a black hole’s microstates are holographically
encoded on its horizon. The “resolution” of this encoding is on the order of the Planck
scale, as we can see by writing the denominator of (2.1.1) in terms of the Planck length
lP as 4~G/c3 = 4l 2

P. From this observation, Leonard Susskind and Gerardus ’t Hooft
declared that a consistent theory of quantum gravity would have to obey a holographic
principle: The dynamics of gravity in 3+1-dimensional spacetime in such a theory would
have be reducible to an effective 2+1-dimensional description [3, 4]. While the entropy
scaling in terms of area rather than volume appeared in gravitational settings other than
black holes [5], the holographic principle was fundamentally vague: It neither specified
which theory of quantum gravity would produce such a holographic mapping between
systems in different dimensions, nor how this mapping would be implemented.

1During the remainder of this thesis, natural units with ~= c = 1 will be used. Newton’s constant G will
be kept explicit, as it acts as a useful scale in AdS/CFT.
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For this reason, the conjecture of the AdS/CFT correspondence, a specific holographic
duality between a d+1-dimensional gravitational theory and a d-dimensional quantum
field theory by Juan M. Maldacena in 1997 [6] was met with a tremendous amount of
research activity. It fundamentally changed the field of string theory, from which it was
derived, and had repercussions in a wide range of research areas beyond the high-energy
theory community.

The basic setup of AdS/CFT, along with the necessary string-theoretic concepts it is built
upon, will be reviewed in the next sections.

2.1.1 String theory

The development of quantum field theory in the second half of the 20th century led to a
consistent and precise description of high-energy processes occuring in nature. With
the Standard Model of particle physics, quantum field theory unified electromagnetic,
weak and strong interactions into one formulation. Quantum field theory, however,
is an inherently effective theory. The fields of the Standard Model require renormal-
ization: Their naive formulation leads to diverging physical quantities, requiring the
introduction of a regulating energy or length scale (similar to the lattice scale in solid
state models) and leading to physical observables such as coupling “constants” de-
pending on the energy at which the system is probed. This implies that as higher and
higher energies are considered, the behavior of the theory changes; a quantum field
theory valid at lower energies may need to be replaced by a more complicated one at
higher energies, e.g. by introducing new intermediate particles. While the Standard
Model with its finite parameters describes the three aforementioned forces in a manner
that can in principle be extended to arbitrarily high energies, this is not true for the
fourth fundamental force: Gravity. A quantum field theory of gravity which replaces the
metric of spacetime by a dynamical quantum field (with excitations known as gravitons)
can be easily constructed at low energies. However, at high energies the process of
renormalization requires the introduction of increasingly many parameters to cancel
out divergences, making the theory useless for actual predictions. This suggests that a
naive field quantization of gravity is only an effective theory for a more fundamental
theory of quantum gravity appearing at exceedingly high energies.

One candidate for such a theory is given by string theory. Rather than the fundamental
point-like particles appearing in quantum field theory, this approach proposes the
quantization of one-dimensional objects called strings. Similar to how the trajectories
of point particles correspond to worldlines in spacetime, a string traces out a two-
dimensional worldsheet X µ(τ,σ) parametrized by two coordinates τ and σ. Note that
the D-vector X µ can describe a point in a target spacetime of arbitrary dimension D > 2.
Extending the action of a point particle in special relativity to a two-dimensional object,
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one arrives at the Nambu-Goto action2

SNG = −1

2π
√

ls

∫
dτdσ

√√√√(
∂X µ

∂τ

∂Xµ

∂σ

)2

−
(
∂X µ

∂τ

∂Xµ

∂τ

)(
∂X µ

∂σ

∂Xµ

∂σ

)
, (2.1.2)

where Xµ = ηµνX ν (with the Minkowski metric ηµν) and the constant ls is known as the
string length (often replaced by a coefficient α′ = l 2

s ).

Solutions to the action (2.1.2) can be either open or closed strings; in the former case,
this means that the string endpoints need to be associated with Dirichlet or Neumann
boundary conditions. It was later realized that in the first case, the dynamics of the
endpoints are related to higher-dimensional objects known as Dirichlet-branes or D-
branes for short.

The spectrum of possible excitations on strings can be identified with particles of mass
M . For the purely bosonic action (2.1.2), the vacuum state of both open and closed
strings leads to unphysical tachyons with M 2 < 0. The first excited states, however,
become massless if the target space dimension is chosen as D = 26. These states can
be identified with gauge bosons for open strings and gravitons for closed strings. In
addition, closed string excitations contain scalar dilatons and an antisymmetric tensor
field.

Interactions in string theory are considerably more constrained than in regular quantum
field theory, where coupling constants are often free parameters to be determined
by experiment. In contrast, interactions of strings follow directly from geometrical
considerations: For example, by pinching together two points of a closed string it is split
into two new ones. Similarly, open strings can turn into closed ones through the joining
of endpoints. The effective string coupling gs is determined by the vacuum expectation
value of the dilaton field.

While twenty-six dimensions could be reduced to our familiar four by compactification
of the remaining dimensions to small scales, leading to new effective lower-dimensional
fields, the problem of a tachyonic ground state is not easily circumvented. However,
after extending the bosonic action to a supersymmetric one containing both bosonic and
fermionic degrees of freedom (see Summary 1), the tachyonic states can be removed
through the GSO projection [8]. This projection removes states of even fermionic parity,
including the unphysical vacuum. In the case of supersymmetric string theory, the
critical number of dimensions necessary to produce massless states is reduced to ten.
Different projections led to different ten-dimensional superstring theories. For closed
superstrings, due to different possible choices of worldsheet (anti-)periodicity of the
left- and right-moving modes, two consistent models known as type IIA and type IIB
superstring theory emerge. In addition, by separately placing bosonic and supersym-
metric modes in the left- and right-moving sector, another consistent solution known

2Named after Yoichiro Nambu and Tetsuo Goto, though no formal publication of theirs exists. In practice,
a reformulation in terms of the equivalent Polyakov action [7] is more conviently used.
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Summary 1: Supersymmetry

Classifying quantum field theories by their symmetries has driven much of the
development of the Standard Model over the late 20th century. While bosons
and fermions in the Standard Model are intimitely related by gauge symmetries,
it is possible to extend its field content to allow for a direct symmetry between
bosonic and fermionic fields, called supersymmetry. Following Noether’s the-
orem, supersymmetry implies the existence of supercharges Q. These act as
operators on fields that change their spin by 1/2, turning bosonic fields into
fermionic ones and vice-versa. The number N of possible distinct supercharges
is subject to physical constraints. Models of extended supersymmetry with N > 1
preserve chiral symmetry and are thus incompatible with the Standard Model. In
3+1 dimensions, a theory with spins s ≤ 1 can have N = 4 at most. A particular
example of such a theory is N = 4 super-Yang-Mills theory, which also possesses
conformal symmetry. Supersymmetries with N > 8 imply fields with spin s > 2.

as heterotic string theory is recovered.3 Finally, another possibility is given by type I
superstring theory, which contains both open and closed unoriented strings. This web
of consistent string theories was later found to be connected by dualities that map from
one theory to another. Furthermore, it was speculated that these theories might be
related to a unique eleven-dimensional theory called M theory. [9]

For the purposes of the AdS/CFT correspondence, we are mostly interested in type
IIB superstring theory. In the low-energy limit, only the lowest string excitions are
relevant, leading to an effective quantum field theory known as type IIB supergravity. In
addition to the graviton, this theory contains a number of additional fields that preserve
supersymmetry. Interestingly, this theory allows for non-perturbative (solitonic) objects
known as D-branes [10] that fill out some of the ten dimensions. Beyond containing
endpoints of open strings, as mentioned earlier, D-branes can themselves carry masses
and charges and perturb the metric around them. These two perspectives on D-branes
are essential for the construction that led to AdS/CFT.

For more information on string theory, please refer to the several textbooks on the
subject both at the introductory (undergraduate) [11, 12] and advanced level [13, 14].

2.1.2 The AdS/CFT proposal

The original AdS/CFT setup [6] is based on type IIB superstring theory in D=10 space-
time dimensions. This theory supports non-perturbative D-brane solutions. We con-
sider a stack of N parallel D3-branes filling out three of the nine spatial dimensions.
This setup has the following parameters: The string coupling gs, the string length ls, the

3Due to different possible symmetries of this construction, there are actually two heterotic string
theories: SO(32) and E8 ×E8.
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Figure 2.1: Visualization of two perspectives on the AdS/CFT setup. LEFT: At small
coupling N gs, open strings between N D-branes form an effective U (N ) gauge theory
in the low-energy limit, with decoupled closed strings described by IIB supergravity
in a flat R9,1 background. RIGHT: At large N gs, the D-branes deform the spacetime
background filled with closed strings. At low energies, strings near to and far away from
the D-branes decouple; both are approximated by IIB supergravity, with the metric
described by AdS5×S5 and flat R9,1, respectively.

distance d between the branes and their number N .

As mentioned in the previous section, D-branes serve as endpoints of open strings
and carry fields. We consider the low-energy limit of vanishing string length ls → 0,
i.e., we “zoom out” to scales where all excitations (of order 1/ls) beyond the ground
state become negligible. To keep the mass of string modes between different branes
constant, U = d/l 2

s is fixed (so that d → 0, as well). Considering the open strings as small
perturbations (in N gs) of the branes, one finds an effective U (N ) Yang-Mills theory
with coupling constant g 2

YM = 2πgs in the low-energy limit. Specifically, this theory
has N = 4 supercharges (half of the original type IIB theory, broken by the D-branes)
and is known as N = 4 super-Yang-Mills (SYM) theory. The limit ls → 0 also removes
interactions between the open strings on the branes and the closed strings in the type
IIB background, so that the U (N ) theory decouples. The remaining closed strings can
be treated by the low-energy limit of type IIB strings, given by type IIB supergravity.

Alternatively, we can look at the branes as a massive perturbation of the background of
the closed strings in the type IIB string theory. The metric around N D3-branes is given
by [15]

ds2 = dx2√
1+4πN gs(ls/r )4

+
√

1+4πN gs(ls/r )4
(
dr 2 + r 2dΩ2

5

)
, (2.1.3)

where x are the spacetime coordinates along the branes and r is the radial coordinate
away from the D-branes. At large r , this metric simply describes flat 10-dimensional
space. However, at small r we can rewrite it as

ds2 = r 2

α2 dx2 + α2

r 2 dr 2 +α2dΩ2
5 , (2.1.4)
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Summary 2: Anti-de Sitter spacetime

A particularly symmetric class of D-dimensional spacetimes are those with con-
stant scalar curvature R at all points. For vanishing R , we have the flat Minkowski
spacetime RD−1,1. The cases R > 0 and R < 0 are known as de Sitter (dS) and
anti-de Sitter (AdS) spacetimes, respectively. The latter case can be expressed in
different metrics; most commonly used are global coordinates (τ,ρ,Ω1, . . . ,ΩD−2)
with

ds2 =−
(
1+ ρ2

α2

)
dτ2 + α2

α2 +ρ2 dρ2 +ρ2dΩ2
D−2 , (2.1.5)

and Poincaré coordinates (t ,r, x1, . . . , xD−2) with

ds2 = r 2

α2

(−dt 2 +d~x2)+ α2

r 2 dr 2 . (2.1.6)

The AdS radius α determines the scalar curvature R = −D(D −1)/α2. Charac-
teristic of AdS spacetime is a horizon at spatial infinity (ρ→∞ or r → 0) that
no timelike geodesics can reach. The metric at this horizon is given by flat
D−1-dimensional Minkowski spacetime RD−2,1. AdS spacetime has SO(D −1,2)
symmetry, the same symmetry as a D−1-dimensional conformal field theory
(CFT), an important cornerstone of the AdS/CFT correspondence.

where we defined α= (4πN gs)1/4 ls. The metric (2.1.4) describes 4+1-dimensional anti-
de Sitter (AdS) spacetime in the Poincaré coordinates (x,r ) in addition to the angular
coordinatesΩ5 of the 5-sphere S5. This combination is denoted as AdS5×S5. The AdS
radius α is also the radius of the 5-sphere in this setup. AdS spacetime has constant
negative curvature of the same magnitude as the positive curvature of S5. As explained
in Summary 2, the branes at r = 0 form a horizon that is infinitely spatially separated
from the remaining spacetime.

We again consider the low-energy limit of this setup: As ls → 0, the closed strings at
both large and small r are described by type IIB supergravity while decoupling from one
another. At large r , the spacetime background is flat and we find the same supergravity
theory as in the previous setup where we considered the open string dynamics between
branes. However, at small r we find a theory of supergravity on an AdS background,
rather than the U (N ) theory resulting from the previous analysis using open strings.
Assuming that both descriptions of the D-brane setup are equally valid across the whole
range of couplings N gs, it appears that both theories should be equivalent, as well. This
leads to the following duality:

N = 4 SU (N ) SYM theory on R3,1 ≡ Type IIB superstring theory on AdS5×S5 .

Note that we changed the gauge group from U (N ) to SU (N ), as a set of U (1) modes on
the boundary is non-dynamical [16]. The coupling constants are related via g 2

YM = 2πgs
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Summary 3: Conformal field theory

As stated by the Coleman-Mandula theorem [18], it is generally not possible
to combine internal symmetries of quantum fields with spacetime symmetries
in any nontrivial way. One exception to this theorem is supersymmetry, based
on a graded Lie algebra beyond the scope of Coleman-Mandula, which directly
relates bosonic and fermionic fields (see Summary 1). [19] As the theorem is
based on the properties of the S-matrix describing scattering between asymptotic
particles, it also breaks down in theories without a length scale. This includes
scale-invariant and conformally invariant models. Conformal transformations
gµν(x) →Ω2(x)gµν(x) (with positiveΩ2(x)) preserve local angles but not lengths.
This greatly restricts the physical properties of a conformal field theory (CFT).
Correlations generally depend polynomially on distances, with the form of two-
and three-point functions fixed by symmetry. Extending D-dimensional Poincaré
symmetries (translations, rotations and Lorentz transformations) with conformal
symmetry leads to the conformal group SO(D,2). While higher-dimensional CFTs
are hard to study analytically, in 1+1 dimensions many examples (such as the
critical Ising model [20]) are exactly solvable. Further requiring supersymmetry
leads to superconformal theories, a class that also includes N = 4 super-Yang-
Mills (see Summary 1).

and 2N g 2
YM = (α/ls)4. This leads to a remarkable property. The effective coupling

constant in the SYM theory is given by

λ= N g 2
YM = α4

2l 4
s

. (2.1.7)

As we are working in the ls ¿α limit, λ is large and the SYM theory is thus strongly cou-
pled. However, if we are also taking the N →∞ limit, the string coupling gs =λ/(2πN )
is weak and the type IIB superstring theory can be studied perturbatively.4 This duality
between supersymmetric gauge theory and supergravity (or gauge/gravity duality, for
short) is thus often called a strong/weak duality. The name AdS/CFT correspondence
comes from a particular property of the SU (N ) SYM theory: It possesses conformal
invariance (see Summary 3) and is thus belongs to the class of conformal field theories
(CFTs).

The range of applicability of the AdS/CFT correspondence appears to be much larger
than the specific example just given: Rather than a relationship between supergravity in
4+1-dimensional AdS5 and a 3+1-dimensional CFT4 (N = 4 SYM), similar AdSD+1/CFTD

dualities can be constructed for different D .5 This is consistent with the symmetries of

4The large N limit at fixed λ is usually called the ’t Hooft limit, after an earlier observation that Yang-Mills
theory in this limit has a perturbation series similar to that of a quantized string. [17]

5Other examples for D = 1,2,3 and 6 were already proposed in Maldacena’s original paper [6] using
different D-brane setups and compactifications.
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Figure 2.2: Bulk/boundary relation in the AdS/CFT correspondence: The bulk AdSD+1

spacetime (shaded cylinder) has a flat asymptotic boundary at spatial infinity. Each
time-slice t =const is a hyperbolic space with negative curvature.

both theories: The spacetime symmetries of AdSD+1 are given by SO(D,2), as it can be
embedded onto a hyperbola in flat RD,2 spacetime. This exactly matches the spacetime
and conformal symmetries of a CFTD , which taken together also form SO(D,2). The ob-
servation that the algebra of AdSD+1 symmetry generators turns into the D-dimensional
conformal algrebra at the asymptotic boundary of AdSD+1 spacetime was already ob-
served in the D = 2 case long before the AdS/CFT correspondence. [21] Supersymmetry
on the field theory side corresponds to the additional compact dimensions of match-
ing symmetry on the gravity side: For the AdS5/CFT4 case, the N = 4 supersymmetry
corresponds to an SU (4) symmetry that again matches the SO(6) ∼ SO(4) symmetry
of S5. This relationship between supersymmetry and additional compact dimensions
suggests the existence of some non-supersymmetric duality between gravity in AdSD+1

and CFTD . Similarly, one may speculate about the validity of AdS/CFT at small ’t Hooft
coupling λ, where a weakly coupled CFT in the above construction appears to be related
to a strongly interacting — i.e., non-perturbative — theory of quantum gravity. While
examples in both directions have been constructed, the general validity of AdS/CFT
remains unknown. This is intimitely tied to the problem that in a strong/weak duality,
one of the two sides of the duality will always be hard to treat analytically. For this
reason, a fundamental motivation for the focus of this thesis is the construction of
simpler models than can be more directly studied with analytical and numerical tools.

Beyond being a duality between theories, AdS/CFT can also be formulated more con-
cretely as a dictionary between degrees of freedom on both sides. First, note that the flat
background spacetime of the gauge theory side is associated with the location of the
D-brane stack, which lies at the asymptotic boundary r = 0 of the AdS spacetime (2.1.4).
As explained in Summary 2, this is a natural identification, as AdSD+1 spacetime indeed
has a flat RD−1,1 horizon at spatial infinity. It is customary to refer to the AdSD+1 space-
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time as the bulk and to the asymptotic RD−1,1 as the boundary. The relation between
the two is visualized in Fig. 2.2. The bulk/boundary mapping effected by AdS/CFT gen-
erally relates fields φ in the AdS background to operators O in the boundary conformal
field theory. The dynamics on both sides are equivalent; in the language of partition
functions,

Zbulk[φ] = Zboundary[O ] . (2.1.8)

This relationship was first proposed by Edward Witten [22]. Concretely, consider a CFT
operator O with scaling dimension ∆, i.e., with two-point correlations

〈O (x)O (y)〉CFT ∝ 1

|x − y |2∆ , (2.1.9)

between two boundary points x and y . Assume that the AdS/CFT dictionary relates O

to a dual field φ with boundary values φ0. The bulk configuration of φ is determined
as a boundary value problem from a given φ0, so that the bulk action can be expressed
purely in terms of φ0.6 The bulk action then follows from a simple coupling between O

and φ0 as

Zbulk[φ] ≡ Zbulk[φ0] =
〈

exp
∫

dD xφ0 O

〉
CFT

. (2.1.10)

The boundary operator Ok thus acts as a source term for the boundary bulk field φ0
k .

Conversely, for expectation values on the boundary, φ0
k acts as a source term for the

operator Ok . Remarkably, (2.1.10) leads to a direct relationship between the mass m of a
massive bulk field and the scaling dimension ∆ of its dual operator, given by [22]

∆= 1

2

(
D +

√
D2 +4m2

)
. (2.1.11)

AdS/CFT thus implies a concrete relationship between asymptotic bulk fields and
boundary operators in a conformal field theory.7

While the AdS/CFT correspondence is still a conjecture, many specific examples of the
AdS/CFT dictionary with applications from high-energy to condensed matter physics
have been found, with its impact on quantum information theory being a particular
focus of this thesis. With now more than fifteen thousand citations, Juan Maldacena’s
original paper has led to a vast amount of research whose end is nowhere in sight.

Beyond technical papers, a number of introductory texts to AdS/CFT have been written,
from formal textbooks [23, 24, 25] to notes that are freely available online [26, 27, 28, 29,
30], occasionally by the same authors. Due to the breadth of current AdS/CFT research,
each of the citation listed has its own target audience, with numerous more specialized
introductions available.

6As the fieldsφ are technically divergent at the boundary, one generally definesφ0 = limr→0(r∆φ), where
r is the radial AdS coordinate from (2.1.4) and ∆ the scaling dimension of its dual field. The dependence of
the bulk fields φ on the boundary fields φ0 can be written in a diagrammatic expansion known as Witten
diagrams.

7Note that the operator/state correspondence allows each CFT state to be characterized by a single, local
operator, as scale invariance allows us to effectively project the path integral evolution of any state onto a
point. Specifying CFT states and operators is thus equivalent.
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2.2 Tensor networks

Hilbert spaces are large. While most problems in classical mechanics can be reduced to
a small parameter space that is approachable with efficient analytical and numerical
techniques, the state spaces of quantum mechanics rarely offer such a relief. Beyond
perturbative methods that can describe problems close to one of the few analytically
solvable, usually non-interacting ones, only approximate numerical techniques are
available. To see how the size of Hilbert spaces becomes a fundamental problem in this
approach, consider a simple system of N quantum mechanical degrees of freedom each
corresponding to an M-level system (e.g. spins for M = 2). To describe a single quantum
state ψ in this system, we use a basis representation

∣∣ψ〉= M∑
k1,k2,...,kN=1

Tk1,k2,...,kN
|k1,k2, . . . ,kN 〉 , (2.2.1)

where each basis state can be expressed as a direct product of local state vectors

|k1,k2, . . . ,kN 〉 ≡ |k1 〉⊗ |k2 〉⊗ · · ·⊗ |kN 〉 . (2.2.2)

The state (2.1.1) is thus expressed by the M N amplitudes Tk1,...,kN ∈C. We can view T as
a complex-valued rank N tensor. The dimension of each index, often called the bond di-
mensionχ, is given byχ= M . A fundamental problem of any numerical method to tackle
a quantum-mechanical problem — e.g., finding the ground state of a Hamiltonian — is
that describing a quantum state and optimizing over its components takes an exponen-
tial amount of memory. A spin chain of only fifty sites already requires 250 ≈ 1.126 ·1015

complex numbers to store, which in the C++ type complex<double> corresponds to
around 18 petabytes of data, slightly less than the 30 petabytes that the entire LHC
experiment produces every year.8 When performing classical algorithms on such a
gigantic state vector, even operations scaling linearly in the number of components
require extreme computational resources.

A naturally occuring question is thus: Do we really need to be able to describe the full
Hilbert space in most practical problems? If we already know certain physical properties
that our quantum states have to fulfill, can we simply ignore the part of the Hilbert
space that contains states irrelevant to our problem? One of the properties for which the
answer appears to be yes is area-law entanglement. [31] Entanglement in many-body
systems is often quantified by the entanglement entropy S A , defined for a subdivision of
the entire physical space into a subsystem A and its complement AC. Specifically, for a
total system specified by a density matrix ρ,

S A =−tr(ρA logρA) , ρA = trAC (ρ) , (2.2.3)

where ρA is the reduced density matrix on the subsystem A. We say that a system’s
entanglement entropy follows an area law if S A scales with the size of the boundary ∂A

8See https://home.cern/resources/faqs/facts-and-figures-about-lhc.

https://home.cern/resources/faqs/facts-and-figures-about-lhc
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of A; in particular, for an area law in d = 1 dimensions S A is constant. Entanglement
area laws are characteristic of ground states of Hamiltonians that are local, i.e. contain
only coupling terms over a distance that does not grow with the total system size, and
gapped, meaning that even in the continuum limit a separation between the ground
state and the first excitation exists. As this energy gap ∆E induces an energy scale, this
condition excludes scale-invariant (and by extension, conformally invariant) quantum
systems.

Having identified a class of interesting states with characteristic properties, how do we
restrict the Hilbert space to states than conform to these? For the case of area-law states,
we clearly need a state description that encodes the (potential) entanglement entropy
between subsystems, so we can discard states with large long-range entanglement. This
description is afforded by tensor networks.

A tensor network is an ansatz for the state amplitudes Tk1,k2,...,kN in (2.2.1) in terms of a
contraction of tensors. For example, for N = 3 we may write

Tk1,k2,k3 =
χ j∑

j1, j2, j3=1
Uk1, j3, j1Vk2, j1, j2Wk3, j2, j3 , (2.2.4)

where U ,V ,W are rank 3 tensors and χ j is the bond dimension (number of possible
values) of the j indices. Note that this form of contraction is simply a sum over pairs
of indices, and a rank r tensor an r -dimensional collection of complex numbers; there
are no notions of co- and contravariance here that the words tensor and contraction
imply in the context of relativistic theories. As the name suggests, tensor networks can
be represented as a graph, with nodes and edges representing tensors and their indices,
respectively. For example, we can represent the rank 3 tensor U as

Uk, j1, j2 =
U

j1 j2

k

. (2.2.5)

The full contraction (2.2.4) is represented graphically as

Tk1,k2,k3 =
U V W

k1 k2 k3

, (2.2.6)

where the contracted indices j1, j2, j3 correspond to connected edges between nodes
(tensors) without being labeled explicitly. The uncontracted edges are often refered to
as open legs or free indices. Equivalently, a tensor of rank r is often called an r -leg tensor.
The tensor labels on each node are often suppressed in larger networks for clarity.

The ansatz (2.2.4) is not a smart one: Assuming a bond dimensions χk for the k in-
dices, we have expressed χ3

k coefficients on the left-hand side through 3χkχ
2
j on the
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right-hand side. Unless χk >p
3χ j , the tensor network does not reduce the number

of coefficients required to describe a state. However, this changes dramatically when
looking at larger tensor networks. The generalization of (2.2.4)/(2.2.6) to N sites, known
as a matrix product state (MPS)9, consists of a chain of N 3-leg tensors each contracted
with two neighbors (excepting possible non-periodic boundary conditions). Such a
tensor network describes χN

k coefficients by Nχkχ
2
j ones, thus allowing for a repre-

sentation exponentially smaller in N . Of course, this means that unless χ j is chosen
to depend exponentially on N , only a subset of the full N -site Hilbert space can be
reached by the MPS. Fortunately, the this ansatz is sufficient to describe ground states
of one-dimensional local Hamiltonians as long as they are gapped [32, 33, 34], or more
generally, exhibit an exponential decay of correlations [35]. This condition leads to an
area law, which is indeed reproduced with the MPS ansatz: Entanglement entropies S A

of connected subsystems A are constant in the subsystem size |A|.
Which tensor network geometries are needed to reproduce more complicated entangle-
ment? To answer this question, it is necessary to understand how boundary subsystems
and tensor network subregions are related. When computing a reduced density matrix
ρA from whose spectrum entanglement entropies (and their generalization, Rényi en-
tropies [36]) are gleaned, we decompose our system in two parts: A and its complement
AC. If no entanglement between both parts exist, the total state vector can be written as
a tensor product of two parts in each subsystem,∣∣ψ〉= ∣∣ψ〉

A ⊗ ∣∣ψ〉
AC , (2.2.7)

so that ρA = ∣∣ψ〉
AC

〈
ψ

∣∣
AC is pure, leading to S A = 0. For a generic entangled state, we

need the more general form known as the Schmidt decomposition∣∣φ〉=∑
k
λk

∣∣ψk
〉

A ⊗ ∣∣ψk
〉

AC , (2.2.8)

where the
∣∣ψk

〉
A and

∣∣ψk
〉

AC each form an orthogonal set of state vectors on A and
AC, respectively. The number of terms in the Schmidt decomposition increases with
the amount of entanglement between both subsystems: If the Schmidt values λk are
normalized so that

∑
k |λk |2 = 1, we find an entanglement entropy

S A =−∑
k
|λk |2 log |λk |2 . (2.2.9)

For a single term with λ1 = 1, we recover (2.2.7) and S A = 0. Given an MPS, the Schmidt
decomposition for any connected subsystem A is exactly the contraction of the block
of tensors associated with A with the remaining tensors, that is, the contraction over
two legs (one at each endpoint of A). Thus (2.2.8) can contain at most χ2

j terms, where
χ j is again the bond dimension of all internal contracted legs. S A becomes maximal

9The terminology becomes clear when rewriting each three-leg tensor Ukn , jn−1, jn
in the chain as a

matrix (Ukn
) jn−1, jn , as the tensor contraction can then be written as tr[Uk1

Uk2
. . .UkN

].
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Figure 2.3: Cuts γA and γ̃A through a tensor network, with their endpoints on the
boundary between the subsystem A and its complement AC. γA is the minimal cut,
passing through the fewest legs between tensors.

if all Schmidt values are identical, i.e., |λk |2 = 1/χ2
j . Thus the entanglement entropy is

generally bounded as
S A ≤ 2logχ j . (2.2.10)

This equation can be generalized to tensor networks of arbitrary geometry: Any cut
through the network ending on the boundary ∂A between A and AC can be associated
with a decomposition (2.2.8). As shown in Fig. 2.3, such a cut effectively associates
two smaller tensor networks to each subsystem A and AC. The contraction between
them over the chosen cut entangles both boundary regions, with the total entanglement
entropy bounded by the length of the cut. This bound is tightest for the minimal cut γA

over the fewest legs. Again assuming constant bond dimension χ j on all internal legs,
we thus arrive at the well-known bound

S A ≤ |γA| logχ j , (2.2.11)

where |γA| is the length of γA counted as the number of cut legs (|γA| = 2 for the example
in Fig. 2.3). In order to describe states with more entanglement than a simple area
law, it is thus necessary to increase either the bond dimension χ j or the lengths |γA| of
minimal cuts through the tensor network, i.e., consider geometries more complicated
that the geometry of the physical sites themselves.

A particularly interesting class of states with entanglement not following an area law is
afforded by critical or gapless states, which naturally follow from systems with conformal
invariance: In a system without characteristic length scale l , there also cannot exist a
characteristic energy ε, such as ε= ~c/l . In 1+1-dimensional conformal field theory, for
example, the entanglement entropy of a subsystem A of length `= |A| generally follows
a logarithmic scaling [37, 38, 39]

S A = c

3
log

`

a
, (2.2.12)

where c is the central charge and a is a lattice regulator. Note that in the continuum
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|ψ0>
I

I
†

=

D

D
†

=

Figure 2.4: A MERA tensor network composed of isometries (triangles) and disentanglers
(squares). LEFT: The full network acting on an initial coarse-grained state vector

∣∣ψ0
〉

.
RIGHT: Identities of the isometries and disentanglers for contractions of each tensor
with its Hermitian conjugate over two legs.

limit a → 0, S A is infinite; entanglement on all scales provides contributions that diverge
as infinitely small scales are included.

To reproduce states with an entanglement following (2.2.12), an MPS would require a
bond dimension that scales linearly in `/a and would thus fail at reproducing entangle-
ment of sufficiently large subsystems. A more effective approach is to replace the MPS
by a tensor network whose geometry automatically reproduces a relation |γA|∝ log`/a.
Such a tensor network indeed exists and is known as the multi-scale entanglement renor-
malization ansatz (MERA), first introduced by Guifré Vidal [40]. As visualized in Fig.
2.4, it consists of two types of tensors, unitary disentanglers and directional isometries,
arranged in a tree-like structure. Due to special properties of each of these two tensor
types, evaluating local observables is significantly more efficient than an evaluation of
the entire tensor network would be in principle. The tree-like structure ensures that
a shortest cut associated with a boundary region A generally protrudes deeper into
the “bulk” geometry as |A| is increased, leading to the desired entanglement entropy
bounds.

The MERA also has a further interesting property: It can be interpreted as an entan-
glement renormalization [41] that transforms a coarse-grained state to a fine-grained
one (or vice-versa), as shown in Fig. 2.4 for a coarse-grained state

∣∣ψ0
〉

. Each layer in
the MERA network thus has an associated length or energy scale at which it produces
entanglement in the output state.

As we will see later, these properties of the MERA are reminiscient of AdS/CFT, of
which it was proposed as an early toy model [42]. The usefulness of tensor networks
in understanding and modeling properties of AdS/CFT is the main motivation of a
large part of the work presented in this thesis, extending beyond the tensor network
approaches presented in this introduction.

Reviews for a broader introduction to tensor network methods include Refs. [43, 44, 45].
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2.3 Quantum error correction

Information is susceptible to errors. Even in a purely classical system, both the storage
and transmission of information — digital or analog — is affected by corruption of the
physical medium carrying the information. In case of information storage, this includes
corruption of bits on hard drives or SSDs, while in the case of transmission, noise in
the conducting material can affect the signal from which the data is later read. As it
is impossible to preclude errors completely, error correction becomes necessary. This
means that information is encoded such that recovery of the logical data is still possible
after small errors have occured. The simplest way of achieving such resilience is by
simply storing or transmitting multiple copies of the original data in what is called
a repetition code. For example, one may transfer the bit sequences 000 and 111 in
place of the logical bits 0 and 1. If one of the bits becomes corrupted, the remaining
two still allow the reconstruction of the original logical bit (e.g. 1 from 101). Classical
codes are often categorized by the notation [n,k,d ], which denotes an encoding of k
logical bits in n physical ones, with a Hamming distance d . The latter is the minimal
number of physical single-bit errors required to map one logical state (sequence of bits)
to another. If we think of all possible physical bitstrings for a given code block as nodes
in a graph, and of single-bit errors as edges connecting them, d becomes the minimal
graph distance between the bitstrings corresponding to logical states, showcasing the
notion of code distance. In the given notation, and n-fold repetition code for a single
logical bit is denoted as an [n,1,n] code, as n physical bits need to be flipped in order to
change the bitstring 00...0 to 11...1 and vice-versa.

Classical codes in practical use are much more complicated that simple repetition
codes, but rely on the same concept of spreading out the information of logical bits
over larger bitstrings. For example, the popular class of Reed-Solomon codes interprets
k logical values as coefficients in a polynomial function whose result is mapped onto
n > k physical ones [46], leading to an [n,k,n −k +1] code.

The appearance of errors and methods for their correction are fundamentally different
for quantum systems. When interacting with an environment, isolated quantum sys-
tems exhibit decoherence, i.e., the breakdown of quantum superposition and in turn,
entanglement. As entanglement is a necessary resource for any quantum computa-
tion,10 its breakdown must be avoided if computational power beyond classical limits is
desired.

Methods of quantum error correction are thus required to store and manipulate quantum
information with a certain resilience to coupling with an environment. The most useful
approach in classical error correction, the duplication of information, is impossible
for quantum systems due to the no-cloning theorem: No unitary operator, and thus no
physical time evolution, can duplicate an arbitrary quantum state [48, 49]. Quantum
error correction thus requires other approaches. The most popular and relevant for

10Though necessary, more entanglement does not automatically make a quantum system more useful
for computations. [47]
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this thesis is the use of stabilizer codes, first introduced by Daniel Gottesman in his own
PhD thesis [50], extending earlier approaches to the problem by Peter Shor and Andrew
Steane [51, 52]. The idea of stabilizer codes is to encode quantum information in ground
states of Hamiltonians

HS =−
m∑

i=1
Si (2.3.1)

that are given by the sum of orthogonal operators Si , called the generators of the stabi-
lizer S = {S1,S2, . . . ,Sm}. The generators are chosen to commute with one another and
act as “parity checks” on different parts of the Hilbert space, i.e., have eigenvalues ±1.
The space of ground states of HS , given an n-qubit system, is thus 2n−m-dimensional
and contains all states that are in the +1-eigenspace of each generator. For qubits, it is
convenient to choose stabilizer generators that are direct products of the Pauli operators
σx ,σy ,σz and the identity 1, as well as using them as a basis set for operators that
represent local errors. This ensures that any product of such errors either commutes or
anticommutes with each generator. The errors thus flip the eigenvalue of one or more
of the generators, leading to a measured pattern or syndrome from which the type of
error can be deduced and reversed.

Stabilizer codes are generally denoted as [[n,k,d ]] codes, in a generalization of the
notation for classical codes introduced above. Here n and k again denote the number
of physical and logical sites, respectively, usually qubits. The code distance d , however,
has a slightly more nuanced meaning than the classical Hamming distance. Consider,
for example, a single logical qubit encoded in a basis of states 0̄ and 1̄ (read as “logical
zero” and “logical one”):

|ψ̄ 〉 =α ∣∣0̄〉+β ∣∣1̄〉
, (2.3.2)

where |α|2 + |β|2 = 1. The quantum analogon of classical bit flip errors is a basis flip
0̄ ↔ 1̄, expressed by an operator Ob that interchanges the basis as

Ob |ψ̄ 〉 =β ∣∣0̄〉+α ∣∣1̄〉
. (2.3.3)

Clearly this operator fulfills the condition O2
b =1, which followed directly from our ex-

pression of errors in terms of products of Pauli operators. However, there exists another
type of error which fulfills this condition as well; these phase flip errors, expressed by an
operator Op act on a logical qubit basis as

Op |ψ̄ 〉 =α ∣∣0̄〉−β ∣∣1̄〉
. (2.3.4)

Note that this type of error maps the 0̄ basis state onto itself, but adds a phase e− iπ

to 1̄. This implies that when calculating the error distance d , we have to count the
minimal number of fundamental error operations (local Pauli operators) that not only
map logical basis states to other eigenstates of the stabilizer Hamiltonian, but also
include errors than produce basis-dependent phases. Note that in a classical system, an
operation of arbitrary complexity that maps each bit string to itself produces no effective
error, a simplification that no longer applies for code states in a quantum superposition.
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Summary 4: The 5-qubit code

The [[5,1,3]] quantum error correcting code [54, 55] is built from the stabilizer

S5 = {σxσzσzσx1, 1σxσzσzσx , σx1σxσzσz , σzσx1σxσz } . (2.3.6)

Note that all generators are cyclic permutations of one another, and that multi-
plying all of them yields a fifth generatorσzσzσx1σx that is precisely the missing
permutation. This code is optimal in a variety of ways: It saturates the quantum
Hamming bound [56] as well as the quantum Singleton bound [50], which follows
from conditions on reconstructability after erasures [57] and is given by

n ≥ 2(d −1)+k , (2.3.7)

for an arbitrary [[n,k,d ]] code. The two local eigenstates 0̄ and 1̄ of the 5-qubit
code can be distinguished by the total parity σ⊗5

z , which thus acts as the logical
parity operator σ̄z . Similarly, σ̄x =σ⊗5

x and σ̄y =σ⊗5
y act as the remaining logical

Pauli operators. Conveniently, a Jordan-Wigner transformation maps 0̄ and 1̄ to
fermionic states that are Gaussian, i.e., can be expressed as ground states of a
Hamiltonian that is only quadratic in fermionic operators.

As in classical codes, to increase d one generally needs to increase n, the number of
physical sites, as well. This is quantified by the quantum Hamming bound [53], which
can be derived from the following argument: The full n-qubit Hilbert space can contain
2n orthogonal states, 2k of which are logical states. If the code distance is d , then bd−1

2 c
errors can be corrected, i.e., lead to distinct orthogonal states.11 There are 3n possible
local errors, one for each physical qubit and Pauli operator, and 3m

(n
m

)
possibilities of

applying exactly m non-trivial errors. As all errors applied to the logical states must be
distinct and contained in the physical Hilbert space, we arrive at the following bound
for an [[n,k,d ]] code:

b d−1
2 c∑

m=0
3m

(
n

m

)
≤ 2n

2k
. (2.3.5)

For a single logical qubit, the quantum Hamming bound leads to the requirement of
n ≥ 5 physical sites. Indeed, a [[5,1,3]] code that can correct an arbitrary Pauli-type error
on one logical qubit exists, often simply called the “5-qubit code”. This code, which will
be highly relevant troughout this work, is explained in more detail in Summary 4.

A widely used class of stabilizer codes are Calderbank-Shor-Steane (CSS) codes [58,
52], built from a combination of two classical codes. Each is mapped onto stabilizer
generators containing, up to local identities, only σx or only σz operators, respectively,
which makes it easier to realize such codes in practice; indeed, they were the first

11Note that we can detect d −1 errors, but may not be able to identify the original logical state.
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quantum codes to be realized experimentally [59]. Recently, topological codes [60]
like the surface code [61] and the color code [62] have enjoyed large popularity for
potential quantum error correction in large systems of qubits (see e.g. Ref. [63]). In
addition, an experimental realization of the 9-qubit Bacon-Shor code, a subsystem code
that extends stabilizer codes by a notion of gauge transformations [64], has recently
been achieved in trapped ions [65]. However, as the codes considered in the context
of holography are usually simple stabilizer codes, no more details on the fascinating
subject of experimental realizations of quantum error correction will be given here.

As the general reference for all things quantum information, the book by Michael A.
Nielsen and Isaac L. Chuang [66] contains a broad introduction to quantum error
correction, as does chapter 7 of the lecture notes by John Preskill [67]. The previously
mentioned PhD thesis by Daniel Gottesman [50] provides a more extensive introduction
to the field of quantum error correction. For a more recent overview of the field, consult
Refs. [68, 69].

2.4 Holography in quantum information

In recent years, viewing the AdS/CFT correspondence through the lens of quantum
information theory has led to surprising connections between both fields. These “holo-
graphic” descriptions of quantum information concepts deepen our understanding
of holography itself, but also offer potential approaches to problems that were not
originally thought to be associated with AdS/CFT.

2.4.1 Holographic entanglement entropy

Probably the first connection between AdS/CFT and quantum information was intro-
duced by Shinsei Ryu and Tadashi Takayanagi, when they considered the following
question: What is the dual AdSd+1 bulk description of the entanglement entropy S A of a
boundary subsystem A in a holographic CFTd ? The answer is provided by a startling
generalization of the black hole entropy formula (2.1.1) which relates the black hole
entropy to its horizon area. It turns out that the bulk quantity dual to S A is the area of a
d−1-dimensional minimal surface γA homologous to A, i.e., with ∂A = ∂γA (see Fig. 2.5,
left). This is quantified by the Ryu-Takayanagi (RT) formula [70]

S A = |γA|
4G

, (2.4.1)

where |γA| is the area of γA and G is the gravitational constant in the d+1-dimensional
bulk spacetime. Note that this formula has no dependence on the actual holographic
model, e.g., the degree of supersymmetry and the bulk structure. Given an excited CFT
with a dual bulk geometry other than “pure”, undeformed AdS, the shape and area of γA

change, reflecting entanglement produced or destroyed by the excitation. For example,
consider a thermal CFT, whose bulk dual is given by an AdS black hole geometry (see
Fig. 2.5, right). The horizon deforms the minimal surface towards the AdS boundary,
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Figure 2.5: LEFT: Minimal surface γA homologous to a boundary region A in an AdS
time-slice (blue-shaded throat region). RIGHT: Deformed minimal surface γ̃A in an AdS
geometry with black hole horizon H .

increasing its area and thus reproducing the thermal entanglement associated with a
finite-temperature CFT [70]. If we start growing the subsystem A until it encompasses
the entire boundary, the minimal surface starts wrapping around the black hole horizon,
as this horizon is itself extremal. In that limit, (2.4.1) becomes the Bekenstein-Hawking
formula (2.1.1) for the classical entropy S, showing the intimate connection between
both formulae.

Strictly speaking, the definition of γA is only properly coordinate-independent if we
restrict the boundary system to the time-slice of a static spacetime geometry. For more
general space-like boundary regions A, we have to consider a space-like bulk surface
γA that is extremal: It is minimal with regard to space-like variations and maximal with
regard to time-like ones. This generalized form of the RT formula is often called the
Hubeny-Rangamani-Takayanagi (HRT) formula [71].

While originally a conjecture within AdS/CFT, the RT formula was proven first for 1+1-
dimensional CFTs [72, 73] and shortly afterwards for the more general case [74]. It was
soon understood that (2.4.1) only holds in the AdS/CFT limit of large G (classical bulk
gravity) and N →∞, where N is the rank of the gauge group SU (N ) of the boundary
CFT, and that quantum corrections lead to additional terms constant in G and N that
can be interpreted as entanglement between bulk regions [75].

For an introduction to holographic entanglement entropy, the extended version of S.
Ryu and T. Takayanagi’s original paper [76] is a good starting point. There also exists a
book on the topic [77], a shortened version of which is available online [78].

2.4.2 Holographic tensor networks

The form of the Ryu-Takayanagi formel (2.4.1) bears a striking resemblance to the
entanglement entropy bound (2.2.11) in generic tensor networks, both involving a
minimal surface through a geometry than extends the direct geometry of the boundary
state. This leads to a straightforward question: Can the time-slice of an AdS spacetime,
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which we consider in the RT formula, be expressed as a tensor network? The first
proposal in this direction was made by Brian Swingle, who suggested the MERA tensor
network for this particular interpretation [42]. This identification is tempting, because
the MERA implements entanglement renormalization between discretized quantum
systems at different scales. Similarly, we expect a timeslice in the AdS metric (2.1.6) at
fixed radius r from the AdS boundary to describe an increasingly fine-grained system
as r is decreased. Furthermore, the gapless states produced by the MERA resemble
those expected in the conformal boundary theories of AdS/CFT, though being ground
states of much simpler critical Hamiltonians that usually feature neither supersymmetry
nor non-Abelian gauge symmetries. While the MERA produces boundary states with
conformal symmetries, its tensor network geometry does not exactly match an AdS time-
slice — the hyperbolic Poincaré disk — and leads to inconsistencies when treated as
such [79]. Alternatively, the MERA geometry was interpreted both as a time-like surface
in positively curved de Sitter (dS) spacetime [80] and as a path integral discretization of
an AdS light-like surface [81]. In either case, using the MERA is a discrete realization of
AdS/CFT requires abandoning the simple time-slice picture in which the RT formula was
derived, leading to a setting whose relationship to holography is not yet fully understood.

In principle, the indices of any tensor network can be seperated into two sets between
which it acts as a linear map on states. Clearly, labeling these two sets “bulk” and
“boundary” and expectating the map to show any holographic features is pointless for
most setups. Invoking the RT formula, we at minimum desire an ansatz that gives the
correct entanglement entropy scaling for minimal cuts through the network. Choosing a
tensor network whose geometry discretizes the Poincaré disk is not generally sufficient;
we also need the entanglement entropy bound (2.2.11) to saturate for any choice of
subsystem. The right choice of tensors is thus crucial. Surprisingly, choosing random
tensors already reproduces many of the expectated properties, such as polynomially
decaying correlation functions, as long as the bond dimension is large [82, 83]. Rather
than a mapping between individual states, such a construction considers averages of
random bulk configurations, leading to a bulk partition that is in fact equivalent ot
the classical Ising model. Unfortunately, many of the observed holographic results
break down at finite bond dimension, and even in the infite limit, the Rényi entropies
S(n)

A = 1
1−n log(trρn

A) do not reproduce the expected behavior for CFTs.

Which other choices of tensors are possible? Conditions to constrain suitable tensors, as
we will see in the next section, are found by considering quantum information quantities
beyond simple entanglement measures.

While a broad introduction to tensor network holography remains to be written, the
initial proposal by Brian Swingle [42] contains many of the key ideas that various imple-
mentations over the past decade have been based on.
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Figure 2.6: LEFT: Causal wedges WA and WB in an AdS timeslice (Poincaré disk), corre-
sponding to two regions in which a bulk fieldφ(x) can be reconstructed as two operators
OA and OB with support on boundary regions A and B . RIGHT: The discrete form of
causal wedges in the hyperbolic pentagon code. The logical state on the marked pen-
tagon can be reconstructed from either of the two boundary states

∣∣ψA
〉

and
∣∣ψB

〉
.

2.4.3 Holographic quantum error correction

As a duality between bulk and boundary, AdS/CFT contains a complicated mapping
of quantum information between both sides of the duality. Considering subregions of
bulk or boundary, the question arises if the information encoded in local regions on one
side is contained in a local region on the other side, as well. In general, this does not
appear to be the case. Reconstructing a bulk field φ(x) at a point x generally requires
information about a boundary region that increases in size as x is moved further into the
bulk; in other words, information about fields close to the boundary can be recovered
from a small boundary region, while information deep in the bulk is “smeared out”
over the boundary [84]. More precisely, given a region on the boundary there exists a
causal wedge in the bulk spacetime whose content can be reconstructed [85, 86, 87]. As
different boundary regions correspond to sometimes overlapping wedges in the bulk,
local bulk information can in fact be reconstructed on different boundary regions [88].
This leads to a conundrum: Consider, as shown in Fig. 2.6 (left), two causal wedges WA

and WB containing at point x. If we can reconstruct the bulk field φ(x) in both of the
corresponding boundary regions A and B , does that imply than the its information is
encoded in A∩B? As we can choose wedges with no overlap, this cannot be correct. The
only resolution to this problem — other than assuming that reconstructed operators
are all trivial, acting as an identity — is to conclude that φ(x) can be represented as
different equivalent operators on different boundary regions. Its information is thus
stored redundantly, as removing parts of the boundary required for the reconstruction
along one causal wedge does not prevent its recovery via another; in other words, bulk
information is stored on the boundary in the manner of a quantum error-correcting
code [89].
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In its continuum formulation with infinitely many degrees of freedom, the code picture
of AdS/CFT is difficult to treat with the language usually used in quantum information.
Can we instead build a discrete toy model, based on simple quantum error-correcting
codes that are already familiar to us? Such a model was indeed constructed using
the previously mentioned five-qubit code, leading to the hyperbolic pentagon code
[90]: On a regular hyperbolic discretization built from pentagons, each pentagon is
identified with a [[5,1,3]] code, with each pentagon edge identified with a physical
qubit. Representing the code as a six-leg tensor that maps between the logical and
physical qubits, the five “physical legs” are then contracted following the adjacency of
edges in the discretized geometry. In this construction, visualized in Fig. 2.6 (right),
the reconstruction along different causal wedges follows directly from the [[5,1,3]]
code’s properties: Starting from a set of uncontracted physical sites on the (asymptotic)
boundary, we can reconstruct the logical states on the near-boundary pentagons from
just three physical sites. Recovering the physical state on the remaining edges, we then
use these as inputs on the next layer of pentagons, reconstructing their logical states in
turn. Through this procedure, we gradually recover the logical states in the bulk from a
boundary region, building up a discretized causal wedge until we can no longer find
three physical sites around the same pentagon, i.e., until the edge of the wedge is no
longer concave. This process, known as a greedy algorithm, can be applied to any given
boundary region, the state of which is determined by all logical states within the wedge.
Conversely, the logical state on a single pentagon affects all physical boundary states
in subsystems whose wedges include it. The hyperbolic pentagon code thus gives a
concrete mapping between bulk and boundary states with the quantum error-correcting
features of AdS/CFT.

In fact, the hyperbolic pentagon code is only a special case of a large class of tensor
networks with similar properties: The crucial ingredient is that of perfect tensors, which
act as isometries between any bipartition of its indices as long as the number of output
indices is at least as large as the number of input indices. Each tensor can then fine-grain
a state supported on a small subset of its indices by mapping it onto the remaining
ones, turning the tensor network into something akin to an omnidirectional MERA. The
perfect tensors can be easily identified with absolutely maximally entangled states [91]
and in turn, quantum error-correcting codes. These holographic toy models built from
perfect tensors are popularly known as HaPPY codes, after the alphabetical arrangement
of the initials of its creators [90]. Beyond perfect tensors, it is also possible to built similar
toy models on the basis of block-perfect tensors, which fulfill the isometry condition only
between adjacent sets of indices, allowing an implemention of Calderbank-Shor-Steane
(CSS) codes [92].

The connection between quantum error correction and holography has only recently
been established and is the subject of much ongoing research. While a formal review
does not yet exist, a short introduction by Beni Yoshida, one of the original HaPPY
authors, is available on Caltech’s Quantum Frontiers blog [93].
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Figure 2.7: Holographic prescription of entanglement of purification EP for a disjoint
boundary region A ∪B : The minimal (Ryu-Takayanagi) surface γAB connects both
boundary regions when A and B are close together. The area of the minimal entan-
glement wedge cross-section ΣAB is conjectured to be related to the entanglement of
purification via EP = |Σmin

AB |/4GN [97].

2.4.4 Gravity and entanglement

A particularly fascinating feature of AdS/CFT is that it relates a theory with (quantum)
gravity to one without it. This has led to the suggestion that gravity, whose failure at
consistent quantization on arbitrarily small scales was one of the driving motivations
behind the development of string theory, is indeed not a fundamental force at all, but
rather holographically emergent from quantum degrees of freedom. More concretely,
Mark Van Raamsdonk suggested that the connectivity between regions of spacetime
could be a consequence of entanglement between them [94]: First, he interpreted an
earlier setup relating a maximally entangled AdS black hole spacetime to two copies
of a CFT [95] as an example of a non-entangled system being spatially separated. An
entangled system, on the other hand, would be characterized by a nonvanishing mutual
information

I (A : B) = S A +SB −S A∪B , (2.4.2)

between two regions A and B , serving as an upper bound to two-point correlation
functions between both regions [96]. In a holographic theory, where such correlators are
expected to decay exponentially with geodesic distance through the bulk, an increase in
entanglement would thus imply a closer spatial bulk distance.

While this conjectured connection between entanglement and the emergence of gravity
remains far from understood, many similar ideas have appeared throughout the decade
since its proposal. For example, a similar behavior has been found in the holographic
description of quantities other than entanglement entropy. This includes entanglement
of purification, an entanglement measure for mixed states related holographically to
the minimal cross-section of the throat-like RT surface of a two-component region
[97, 98] (see Fig. 2.7 for details), again relating spatial connectivity and entanglement.
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Another example is the suggestion that the complexity of a quantum state, related to the
number of local operations required to construct it from a reference state, may possess
a holographic dual either in terms of a bulk volume [99] or an action evaluated on as
specific bulk region [100]. The validity of either proposal is still hotly debated.

As most of these proposals are motivated around conceptual issues of quantum gravity,
it may be surprising that a holographic description of gravity may have a bearing on
actual qubit experiments: It was proposed that certain experimental setups for quantum
teleportation, the transmission of quantum states via entanglement, may be effectively
described by a holographic construction involving traversable wormholes [101]. Though
no such experiments have yet been conducted, this emphasizes the potential of bridging
the fields of quantum computation and fundamental physics.

Many of the early ideas of connecting gravity and entanglement are surveyed in Mark
Van Raamsdonk’s lecture notes on the same topic [102].



Chapter 3

Roads to holography

3.1 Gravitational approches

As we have seen in the last chapter, the AdS/CFT correspondence has produced many
surprising connections between physical systems that seem quite unconnected at
first glance. Commonly, the resulting dualities are useful in one particular direction:
Rather than performing computations for strongly interacting quantum field theories,
a fairly painful exercise even under the restriction of conformal symmetry, we can
carry out conjecturally equivalent calculations in a system of (super)gravity. Gravity
is inherently weakly coupled, meaning that small additions of masses and energy to a
given spacetime create perturbatively tractable deformations. Thus, even when closed
analytical solutions to a dual gravitational setup are not feasible, efficient numerics are
in principle possible.

This is especially apparent in the holographic descriptions of entanglement and com-
plexity, which become a problem of extremizing various bulk hypersurfaces on a given
spacetime background. The measure explored in the first paper of the cumulative part
of this thesis, holographic entanglement entropy, requires the extremal surface com-
putation of the RT/HRT prescription discussed in Sec. 2.4.1. While the computation of
such surfaces is clearly amenable to variational methods, we will see that the contruc-
tion of proper numerical algorithms for this task is still a strenuous exercise. The main
obstacle is that surface optimization, which commonly appears in various engineering
problems as well as in certain corners of pure mathematics, is not usually applied onto
spacetime surfaces. This requires the introduction of completely new algorithms taking
into account, for example, the nontrivial constraints on the parameter space of solutions
placed by the requirement that surfaces be space-like.

Fortunately, analytical techniques already yield many fascinating results from holo-
graphic descriptions of entanglement, such as the recent (partial) resolution of the
black hole information paradox [103, 104]. Yet, to harness the full power of hologaphic
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methods to achieve an understanding of complicated strongly interacting systems will
inevitably require the introduction of increasingly complex numerical approaches. This
is especially true for systems with complicated time dependence, where a closed-form
expression of the bulk metric may not even exist, requiring numerical lattice approxi-
mations of the spacetime itself.

Alternatively, one may attempt to understand the boundary system by using numerical
approximations to tackle strongly coupled conformal field theory. In combination with
results from the gravitational side, this would also clarify the exact scope of the AdS/CFT
correspondence. In the next section, the usefulness of tensor network approaches
to this problem will be discussed, including the assumptions necessary for efficient
computational realizations.

3.2 Tensor network approaches

Why is the construction of finite-dimensional models of holography, particularly using
tensor networks, a worthwhile endeavor? In its continuum formulation, AdS/CFT has
shed light on remarkable connections between theories of weak and strong coupling,
between those containing gravitational and quantum degrees of freedom, and even
between models in different dimensions; as such, its potential for relating complicated
theories whose dynamics are yet to be understood to those that are more tractable is
tantalizing. Unfortunately, the specific AdS/CFT setups of whose validity we are most
certain are also, in some sense, the least practical. While supersymmetry, for example,
provides a mathematically elegant simplification to theories of quantum fields and
strings, most practical physical systems that we would like to better understand are far
from supersymmetrical. The large N limit and conformal symmetry of the boundary
gauge theory pose a similar constraint; for example, the strongly interacting low-energy
regime of quantum chromodynamics (with N = 3 and without conformal symmetry)
should not be expected to be describable with AdS/CFT beyond rough approximations.

These constraints, however, may be less of a problem of the holographic principle
itself than of the specific setup that AdS/CFT provides. As we have already seen in the
formulation of holographic entanglement entropy in the Ryu-Takayanagi formula, many
aspects of Juan Maldacena’s original proposal seem to become irrelevant as we consider
holography through the lens of quantum information. Perhaps a generalization of
AdS/CFT, constructed with tools outside of superstring theory, can pave the way to more
general dualities? The fundamental challenge in finding such a generalization is the
virtuousness of AdS/CFT itself: One side of the duality is always hard to compute in
each regime, be it strongly interacting conformal field theory or full quantum gravity.
While this allows for a convenient shortcut to this hard theory via its more manageable
dual partner, this complicates finding generalizations, whose confirmation requires a
detailed understanding of the dynamics of the related theories.

Tensor networks provide a possible path to addressing these issues. They are the lan-
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guage of choice for describing physical systems in terms of their entanglement structure
and allow efficient computations of a range of properties of finite-dimensional system,
easily integrating many useful concepts of quantum information theory. They also ap-
pear to reproduce some of the features of AdS/CFT in a range of different models, serving
as a useful toolbox to test complicated holographic properties in a well-understood
setting. It thus appears reasonable to use tensor networks to understand if and how
holography manifests itself in simple quantum systems.

The two new tensor network models introduced in the second and third publication
contained in this thesis, built upon fermionic matchgate tensors and Majorana dimers,
respectively, rely on the significant simplification of Gaussianity. Generic tensor network
techniques require a representation of the boundary state in its full Hilbert space — as
mentioned in Sec. 2.2, this is unfeasible for more than a few dozen spin sites even with
supercomputers. Studying tensor networks with arbitrary geometries thus requires the
restriction to a subset of tensors that allows for a more efficient representation. The ten-
sors considered in this thesis furnish such a represention by describing Gaussian states.
These states can be defined in several different ways that are all equivalent: In particular,
they are ground states of non-interacting (or “free”) Hamiltonians that contain only
terms quadratic in the fundamental bosonic or fermionic operators. Equivalently, their
2n-point correlation functions for n > 1 can be expressed by applying Wick’s theorem
[105] of summing over all combinations of two-point correlators. For example, a four-
point function of a fermionic field ψ evaluated at different points xk would follow the
structure

〈ψ1ψ2ψ3ψ4〉 = 〈ψ1ψ2〉〈ψ3ψ4〉−〈ψ1ψ3〉〈ψ2ψ4〉+〈ψ1ψ4〉〈ψ2ψ3〉 , (3.2.1)

writing ψk ≡ψ(xk ). Note the change of signs due to reordering of the anti-commuting
field. In terms of Feynman diagrams, the theory only contains propagators but no inter-
action vertices. The application of Wick’s theorem implies that two-point correlations,
often written as a covariance matrix, completely determine all correlation functions
up to a suitable definition of the vacuum.1 As we will see, Gaussian states can be rep-
resented in forms other than their state vector in the full Hilbert space, essentially by
defining quantities that contain the same information as the covariance matrix. By ex-
pressing tensor contraction in this language, the study of large tensor networks becomes
feasible within the Gaussian constraint.

Of course, the accessability of a certain class of tensor networks to efficient studies does
not necessarily imply that it is useful for building holographic models. On the contrary,
the strong/weak coupling duality inherent to AdS/CFT may suggest that a framework
that only covers non-interacting states should be far from holographic. Fortunately, early
constructions already showed that many features of AdS/CFT appear in non-interacting
bulk models, as well. In particular, consider the problem of reconstructing expectation
values of bulk fields from those of boundary operators. In the AdS/CFT limit where

1In order to force all n-point correlations for odd n to vanish, we can add a source term, linear in the
fundamental operators, to the vacuum.
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both N and N g 2
YM are large, the boundary SU (N ) field theory is strongly coupled, while

the boundary can be described by semiclassical gravity. In this pure AdS background,
we can define a simple model involving only a non-interacting scalar field φ(x), whose
equation of motion is simply

(�−m2)φ= 0 , (3.2.2)

where � = gµν∂µ∂ν is the d’Alembert operator for the AdS metric gµν. The Green’s
function G(x, x ′) for (3.2.2) can then be used to compute the bulk field uniquely from
the its boundary values. Splitting the coordinate x into a bulk radial direction r (with
the AdS boundary at r → 0) and the remaining boundary coordinates x̃, the bulk field is
then given by convolving the boundary values with G over the bulk [22],

φ(x̃,r ) =
∫

dx̃ ′G(x̃, x̃ ′,r,r ′ → 0) φ̃(x ′) . (3.2.3)

Here we defined the boundary field φ̃(x) = φ(x,r → 0). Correspondingly, correlation
functions between bulk points are given by convolving over boundary correlation func-
tions, i.e., those of the boundary CFT, while preserving causality within the AdS space-
time [106, 84]. Both for simple scalar fields and N = 4 super-Yang-Mills theory at large
N , two- and three-point functions match between direct CFT computations at small
coupling and the holographic computation at large coupling [107, 108]. Thus we see that
CFT dynamics are well described by holographic models at a large range of interaction
strengths.

It is therefore not entirely unreasonable to hope that a suitable non-interacting tensor
network ansatz may reproduce features of AdS/CFT. Indeed, this is in alignment with
the central notion of the strong/weak coupling duality; bulk dynamics ought to be
simpler in their underlying physical description than a generic physical system in the
same number of dimensions. Previous work with the MERA tensor network in this
direction is encouraging: It can be used as an exact holographic mapping that relates
non-interacting bulk and boundary states [109, 110], and the RG flow of free fermions
can be understood in terms of an exact model of wavelets [111].

Given an efficiently computable class of tensor networks, the question of choosing
suitable network geometries remains. Starting with the most symmetrical models, the
tensor networks that are a primary focus of this thesis follow a regular bulk geometry, a
setup popularized by the hyperbolic pentagon code model [90]. Unlike the MERA and
its generalizations, these geometries have no inherent directionality, reproducing the
isotropy of an AdS time-slice, i.e., the hyperbolic Poincaré disk. Though these hyperbolic
tesselations appear as a natural choice for holographic tensor network models, they
lack one assumption that underlies the MERA: The evaluation of expectation values
of local operators is no longer simplified by a causal cone within the network.2 That
means that instead of evaluating a small region of the tensor network that scales with
the support of the operator, we generally need to evaluate the entire network. While

2However, a more involved construction on regular tilings, called hyperinvariant MERA, attempts to
reconcile both approaches [112].
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computationally challenging, this property is quite natural given the causal structure
of AdS/CFT: If the tensor network is a discrete representation of a time-slice, then
correlations between space-like separated points should not exhibit a causal cone,
rather decaying exponentially with bulk distance.

Embedding a tensor network into regular hyperbolic tilings yields generic properties
that can be derived without using the Gaussian approximation. As will be shown in the
fourth paper of this thesis, fixing the inflation process by which the discrete geometry is
iteratively constructed also bounds the entanglement scaling that boundary states can
exhibit. This also bounds the maximal central charge c that a critical theory expressed
by such a model can possess. To produce ground states of these models, we further
assume that the choice of tensors respects the symmetries of the geometry, i.e., that the
tensors are invariant under cyclic index permutation, leading to a bulk configuration
resembling an isotropic, “pure” AdS geometry without massive deformations, which we
would consider as the bulk dual of CFT ground states in continuum AdS/CFT. Under this
assumption the same technical approach that led to central charge bounds now fixes
the entanglement scaling and c exactly. As is shown in the fourth paper, the bounds can
indeed be saturated by the Majorana dimer model, introduced in the third paper, assum-
ing certain limits. The resulting aperiodic symmetries lead to surprising connections to
models that are widely studied in condensed matter applications, giving yet another
example of the many connections between subfields engendered by holographic tensor
network methods.

3.3 Publication overview

While we so far discussed the general background and motivation to the four publi-
cations comprising this cumulative dissertation, this section contains a summary of
the core content of each publication to serve as a reading guide. The actual papers are
included in the next chapter, sorted by the order of publication.

A. Jahn, T. Takayanagi,
“Holographic Entanglement Entropy of Local Quenches in AdS4/CFT3:
A Finite-Element Approach”

A simple dynamical AdS/CFT model describing local quenches, i.e., local excitations
that can be modeled by a Hamiltonian with sudden time dependence, can be con-
structed by adding a free-falling mass into a pure AdS background geometry. Studing
the entanglement entropy induced by this excitation holographically requires the com-
putation of extremal surfaces that becomes analytically challenging in more than 2+1
bulk dimensions. Extending a numerical finite-element approach originally developed
in my Master’s thesis, we compute 3+1-dimensional extremal surfaces that correspond
to different quench masses and times. For small masses (and dual operator dimensions
in the boundary CFT), the results match predictions from the “first law of entanglement
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entropy” relating energy density and entanglement entropy. For large masses, numerics
show dominant contributions arising from the horizon region, allowing for a general-
ization to arbitrary dimensions. While the numerical approach cannot be extended
to arbitrarily large times after the quench, results suggest deviations from the simple
logarithmic time dependence that is quickly reached in the AdS3/CFT2 setup.

A. Jahn, M. Gluza, F. Pastawski and J. Eisert,
“Holography and criticality in matchgate tensor networks”

In this paper we initiate a program of investigating generic holographic properties of
Gaussian tensor networks using the formalism of matchgate tensors. We consider three
distinct tensor network geometries: Regular flat tilings, regular hyperbolic tilings, and
the MERA geometry. Within the constrained parameter space of bond dimension χ= 2
matchgate tensor networks, the MERA yields translation-invariant critical states, identi-
fied with the critical Ising model at central charge c = 1/2. Regular hyperbolic tilings lead
to boundary states that break translation invariance, but still possess algebraic decay of
correlations over the entire parameter space accessible to our matchgate ansatz. We
find a special point in this parameter space leading to boundary states with average cor-
relations that, like the MERA, match the c = 1/2 critical Ising model. Surprisingly, while
flat tilings usually produce exponentially decaying correlations — indicative of gapped,
non-critical states — there again exists a special point in their parameter space that
leads to average correlations of the critical Ising model. This suggests the existence of a
class of tensor networks encoding critical theories that is independent of the network’s
curvature.

A. Jahn, M. Gluza, F. Pastawski and J. Eisert,
“Majorana dimers and holographic quantum error-correcting codes”

This work establishes a formalism for a class of Gaussian fermionic states characterized
by paired Majorana modes, called Majorana dimers. We show how tensors representing
these states can be contracted by applying a set of simple graphical rules. The resulting
tensor networks are thus even easier to contract than the matchgate tensor networks
they are a subclass of, and many of their properties can be calculated from geometric
features of the connected dimers rather than requiring any numerical contraction
algorithm. Having established the theoretical machinery for Majorana dimer tensor
network, we then show that these contain the hyperbolic pentagon code (HyPeC) as
long as its bulk qubits are fixed to logical basis states. The dimer structure of the
resulting boundary states retains the discrete hyperbolic geometry of the bulk, leading
to entanglement entropies and correlation decay as expected from a critical theory.
These results are shown to extend beyond the basis state restriction on bulk qubits,
thus providing new details on HyPeC boundary states previously inaccesible due to
the computational difficulties of contracting large non-Gaussian tensor networks. The
results also lead to interesting new connections between quantum error correction,
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hyperbolic tensor network models, and the bit thread model of holographic states as an
optimal bulk flow of entangled boundary qubits.

A. Jahn, Z. Zimborás and J. Eisert,
“Central charges of aperiodic holographic tensor network models”

Beyond the behavior of individual tensor network models of AdS/CFT, this paper derives
general properties of boundary states produced by tensor networks with the geometry
of regular hyperbolic tilings. In particular, it is shown that analogously to continuum
AdS/CFT, bulk and boundary symmetries can be directly related, describing the crit-
ical boundary theory, e.g. its central charge, in terms of geometric bulk quantities.
Making no assumptions on the actual tensor content, effective central charges can be
upper-bounded in the regular hyperbolic tensor network setup, with a bound closely
resembling its continuum version, the Brown-Henneaux formula. We then demonstrate
that these bounds can be saturated, using the Majorana dimer state description of the
HyPeC, as well as generalizations on other hyperbolic tilings introduced in the previous
publication. Interestingly, the RG behavior of the HyPeC can be treated analytically,
leading to an appearance of criticality closely resembling strongly disordered systems,
such as the Fibonacci XXZ chain. This result is particularly interesting because it relates
the HyPeC, a model of holographic quantum error correction, to a well-understood
class of critical systems.
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Holography and criticality in matchgate
tensor networks
A. Jahn1*, M. Gluza1, F. Pastawski1, J. Eisert1,2,3

The AdS/CFT correspondence conjectures a holographic duality between gravity in a bulk space and a critical
quantum field theory on its boundary. Tensor networks have come to provide toy models to understand these
bulk-boundary correspondences, shedding light on connections between geometry and entanglement. We intro-
duce a versatile and efficient framework for studying tensor networks, extending previous tools for Gaussian
matchgate tensors in 1 + 1 dimensions. Using regular bulk tilings, we show that the critical Ising theory can be
realized on the boundary of both flat and hyperbolic bulk lattices, obtaining highly accurate critical data. Within
our framework, we also produce translation-invariant critical states by an efficiently contractible tensor network
with the geometry of the multiscale entanglement renormalization ansatz. Furthermore, we establish a link be-
tween holographic quantum error–correcting codes and tensor networks. This work is expected to stimulate a
more comprehensive study of tensor network models capturing bulk-boundary correspondences.

INTRODUCTION
The notion of holography in the context of bulk-boundary dualities,
most famously expressed through the anti–de Sitter space/conformal
field theory (AdS/CFT) correspondence (1), has had an enormously
stimulating effect on recent developments in theoretical physics. A key
feature of these dualities is the relationship between bulk geometry
and boundary entanglement entropies (2–4), prominently elucidated
by the Ryu-Takayanagi formula (5). Because of the importance of en-
tanglement in the context of AdS/CFT (6), it was quickly realized that
tensor networks are ideally suited for constructing holographic toy
models, most notably the multiscale entanglement renormalization
ansatz (MERA) (7–9). The realization that quantum error correction
could be realized by a holographic duality (10) further connected to
ideas from quantum information theory. Despite the successful con-
struction of several tensor network models that reproduce various as-
pects of AdS/CFT [see, e.g., (11–13)], a general understanding of the
features and limits of tensor network holography is still lacking. Par-
ticular obstacles are the potentially large parameter spaces of tensor
networks and the considerable computational cost of contraction.

In this work, we overcome some of these challenges by applying
highly efficient contraction techniques developed for matchgate ten-
sors (14, 15), which replace tensor contraction by aGrassmann-variate
integration scheme. These techniques allow us to comprehensively
study the interplay of geometry and correlations in Gaussian fermionic
tensor networks in a versatile fashion, incorporating toy models for
quantum error correction and tensor network approaches for CFT,
such as the MERA, into a single framework, highlighting the connec-
tions between them. Furthermore, this framework includes highly
symmetrical tensor networks based on regular tilings (see Fig. 1, A
and B). We are thus in a position to efficiently probe the full space
of Gaussian bulk-boundary correspondences from a small set of pa-
rameters, including the bulk curvature.We show thatmatchgate tensor
networks with a variety of bulk geometries contain the Ising CFT in
their parameter space to remarkably good approximation as a special

case, with properties similar to the wavelet MERA model (16, 17).
While regular hyperbolic tilings have recently been considered as a
MERA alternative (18), we show that flat tilings can lead to very sim-
ilar boundary states. In our studies, we restrict ourselves to tensor
networks that are nonunitary and real, resembling a Euclidean evolu-
tion frombulk to boundary. In particular, we do not require the causal
constraints of the MERA for efficient contraction, thus providing new
approaches in the context of tensor network renormalization (19, 20).
While we provide substantial evidence that tensor networks are capa-
ble of describing bulk-boundary correspondences beyond known
models and introduce a framework for their study, our work is by
nomeans exhaustive.We do hope to provide a starting point for more
systematic studies of holography in tensor networks.

MATERIALS AND METHODS
We constructed two-dimensional planar tensor networks with fer-
mionic bulk and boundary degrees of freedom. The bulk degrees of
freedom are associated with a set V of vertices of a tensor network.
At each vertex, v ∈ V, a local tensor Tv with kv indices is placed, which
can be interpreted as a local fermionic state on kv sites. After contrac-
tion over all connected bulk indices, the L remaining open indices are
interpreted as boundary sites with the boundary state specified by the
full contracted tensor. Because of the planarity of the network, the
boundary sites form a loop. The bulk geometry can be flat or negatively
curved (a positively curvednetwork closes inon itself after finite distance).
We visualized our tensor networks by representing each tensor Tv as
a kv-gonwhose edges correspond to indices. Thus, the tensor network is
represented by a polygon tiling, which determines the bulk geometry.
Adjacent edges between two polygons correspond to contracted indices
and boundary edges to open ones. See Fig. 1 for examples.

Concretely, each bulk degree of freedom v ∈ V is associated with a
local tensor Tv : {0,1}

×r → ℂ of tensor rank r (equal to the number of
edges of the corresponding tile), all of which are contracted to form ten-
sors of higher rank. We denote the tensor component at indices j ∈
{0,1}×r as Tv( j) and the standard computational basis for r boundary
spins as ∣j〉≔⊗r

k¼1∣jk〉. Each tensor is then equivalent to a state vector

∣yv〉 ¼ ∑
j∈f0;1g�r

Tvð jÞ∣j〉 ð1Þ

1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195
Berlin, Germany. 2Helmholtz-Zentrum Berlin für Materialien und Energie, 14109
Berlin, Germany. 3Department of Mathematics and Computer Science, Freie
Universität Berlin, 14195 Berlin, Germany.
*Corresponding author. Email: a.jahn@fu-berlin.de
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For a broader introduction to tensor networks and their contractions,
see (21–24).

Instead of explicit tensor contraction along pairs of indices, we used
the formalism from (15) using Grassmann integration. Any tensor
T can be represented by a Grassmann-variate characteristic function

FTðqÞ ¼ ∑
j∈f0;1g�r

Tð jÞq j1
1 q

j2
2…q jr

r ð2Þ

where the qk are Grassmann numbers defined by the anticommuta-
tion relation qkqk′ + qk′qk = 0. The contraction T1*2 of two tensors T1
and T2 (of rank r1 and r2, respectively) over the last index of T1 and
the first index of T2 is given by

T1*2ðx; yÞ ¼ ∑
z∈f0;1g

T1ðx; zÞT2ðz; yÞ ð3Þ

where x ∈ {0,1}×(r1 − 1), y ∈ {0,1}×(r2 − 1). T1 * 2 has rank r1 + r2 − 2. The
characteristic function of the contraction is obtained as

FT1*2ðxÞ ¼ ∫dh1∫dqr1FT1ðqÞFT2ðhÞexpðqr1h1Þ ð4Þ

where we used x = (q1,…, qr1 − 1, h2,…, hr2) and ∫ dh1 ∫ dqr1 denotes
Grassmann integrals, anticommuting multilinear functionals obey-
ing ∫dxjx

zj
j ¼ dzj;1 [see (15, 25–27) for more details]. A self-contained

derivation of the equivalence of (4) with tensor contraction, as well as
a note on iterated integrals, is given in the Supplementary Materials.
Anticommutativity requires an appropriate labeling of all Grassmann

variables, but such a labeling can always be found for contractions of
planar networks (15). These Grassmann integrations are particularly
efficient to compute for the case of matchgate tensors, where their
computation scales polynomially in the number of tensor indices.

Consider a rank r tensor T(x) with inputs x ∈ {0,1}×r. One calls
T(x) amatchgate if there exists an antisymmetricmatrixA ∈ℂr × r and
a z ∈ {0,1}×r so that one can write

TðxÞ ¼ PfðA∣x XOR zÞTðzÞ ð5Þ

where Pf(A) is the Pfaffian ofA andA∣x is the principal submatrix ofA
acting on the subspace supported by x. Furthermore, one calls T(x) an
even tensor if T(x) = 0 for any x with odd ∑j xj.

A generic evenmatchgate has a simple Gaussian characteristic func-
tion of the form

FT ðqÞ ¼ Tð0Þexp 1
2
∑
r

j;k¼1
Aj;kqjqk

� �
ð6Þ

where T(0), the tensor component for all-zero input, acts as a normal-
ization factor. Apart from normalization, the full tensor is completely
determined byA, which we therefore call the generating matrix. Thus,
the rules for contracting matchgate tensors can be written as rules for
combining generatingmatrices. Full derivations of these, including the
calculation of physical covariance matrices from the generating
matrices, are provided in the SupplementaryMaterials. With our con-
traction rules, the computational cost of contracting two tensors is
quadratic in the number of indices of the final tensor. Thus, we could
bound the total computational cost for contracting an entire network
of the type considered here by O(L2N), where L is the number of
boundary sites and N is the number of contracted tensors [for similar
bounds on matchgate contraction, see (15)].

Using Pauli matrices sa with a ∈ {x, y, z}, one can defineMajorana
operators gi via the Jordan-Wigner transformation

g2k�1 ¼ ðszÞ⊗ðk�1Þ⊗sx⊗ð12Þ⊗ðr�kÞ ð7Þ

g2k ¼ ðszÞ⊗ðk�1Þ⊗sy⊗ð12Þ⊗ðr�kÞ ð8Þ

The computational basis is then equivalent to an occupational
basis. In this context, we proved that any fermionic Gaussian state
vector in the form of Eq. 1 has coefficients T( j) constituting a match-
gate tensor. For details on this proof, refer to the Supplementary
Materials. The converse statement is also true, providing a further per-
spective on the connection to free fermions (28).

RESULTS
The holographic pentagon code
We will now apply our framework to the highly symmetric class of
regular bulk tilings, first implementing the holographic error correct-
ing code (HaPPY code) proposed in (12) and then exploiting the ver-
satility of our framework to extend it toward more physical setups.
The HaPPY code furnishes a mapping between additional (uncon-
tracted) bulk degrees of freedom on each tensor and the boundary
state, realized by a bulk tiling of pentagons. Each pentagon tile encodes

A Flat {3,6} tiling B Hyperbolic {3,7} tiling

C Hyperbolic mMERA tiling

Fig. 1. Geometries of tensor networks. Discretizations of flat (A) and hyperbolic
space (B and C) with a triangular tiling (blue edges), into which a tensor network is
embedded (black lattice). In the matchgate formalism, joint edges between triangles
correspond to an integration over a pair of Grassmann numbers, analogous to tensor
network contraction over indices. While (A) and (B) show regular tilings, (C) presents a
nonregular MERA-like tiling we call the matchgate MERA (mMERA).
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one fault-tolerant logical qubit via the encoding isometry of the five-
qubit code. This [[5,1,3]] quantum error–correcting code (29) satu-
rates both the quantum Hamming bound (30, 31) and the singleton
bound (31) and can be expressed as a stabilizer code (32).

We observe that fixing the bulk degrees of freedom to computational
basis states gives rise to a matchgate tensor network, as the logical com-
putational basis states of the holographic pentagon code can be viewed
as ground states of a quadratic fermionic Hamiltonian. This can be seen
directly by applying Eqs. 7 and 8 onto the stabilizers Sk of the underlying
[[5,1,3]] code, thus expressing it in terms ofMajorana operators gi and a
total parity operator Ptot ¼ ðszÞ⊗5 as

S1 ¼ sx⊗sz⊗sz⊗sx⊗12 ¼ ig7g2
S2 ¼ 12⊗sx⊗sz⊗sz⊗sx ¼ ig9g4
S3 ¼ sx⊗12⊗sx⊗sz⊗sz ¼ iPtotg6g1
S4 ¼ sz⊗sx⊗12⊗sx⊗sz ¼ iPtotg8g3
S5 ¼ sz⊗sz⊗sx⊗12⊗sx ¼ iPtotg10g5

ð9Þ

As the corresponding stabilizer Hamiltonian is given by H ¼
�∑5k¼1Sk , we find a doubly degenerate ground state whose degen-
eracy is lifted by the parity operatorPtot. The resulting two states with
parity eigenvalues ±1 correspond to the logical eigenstates �0 and �1,
which are themselves ground states of purely quadratic Hamiltonians
with different parity factors. Thus, both computational basis states are
pure Gaussian, leading us to the conclusion that for fixed computa-

tional input in the bulk, the holographic pentagon code yields a
matchgate tensor on the boundary (see Fig. 2). The explicit construc-
tion is given in the Supplementary Materials. Using the Schläfli sym-
bol {p, q}, where p is the number of edges per polygon and q is the
number of polygons around each corner, we can specify the hy-
perbolic geometry of the HaPPY model as a regular {5, 4} tiling.

We find that the correlation structure of thismodel is best captured
in theMajorana picture. Explicitly, consider the pentagon tiling of (12)
with all bulk inputs set to the positive-parity eigenvector ∣�0〉. The en-
tries of the Majorana covariance matrixGj;k ¼ i

2 〈y∣½gj; gk�∣y〉 result-
ing from successive contraction steps are shown in Fig. 3 (A to C). As

0

0

0

0

1

1
00

0

1

1

0

1

0 0

1
1

1

1

0

1
1

0
0

0

0

1

0

1

0

1
0

1
1

1

1

1

1

0

0

0

01

1

1

0

1 1

1

1

0

Fixed–input HaPPY code Matchgate tensor network

Fig. 2. HaPPY/matchgate equivalence. The holographic pentagon code of the
HaPPY model for fixed computational bulk input (left) is equal to a matchgate
tensor network on a hyperbolic pentagon tiling (right).
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Fig. 3. Boundary state correlations. (A to C) Majorana covariance matrix G with color-coded entries for a boundary state of a hyperbolic {5,4} tiling of the HaPPY code
with fixed �0 input on each tile. Boundary consists of 2L = 10, 40, and 50 Majorana sites, respectively. (D to F) Field correlation matrix 〈yjyk − ykyj〉/2 = (G2j,2k−1 + G2j−1,2k)/4
for boundary states of the {3,6}, {3,7}, and mMERA tiling at criticality with L = 63, 69, and 64 boundary sites, respectively. Matrix entries are normalized to the same color
scale. The tiling corresponding to each correlation matrix in (A) to (F) is shown in the lower left corner.
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we can see, both the individual pentagon state and the larger contracted
states are characterized by a nonlocal pairing ofMajorana fermions. The
contractions effectively connect Majorana pairs from each pentagon to
a larger chain, so the pairs on the boundary of the contracted network
can be seen as end points of a discretized “geodesic” spanning the bulk.
While this discontinuous correlation pattern of Gj,k makes the com-
putation of CFT observables difficult, we can estimate the average
correlation falloff by counting the relative frequency n(d) of Majorana
pairs at distance d = ∣ j − k∣ over which they connect points on the
boundary. According to the results shown in Fig. 4A, correlation falloff
follows a power law n(d)º d−1, as expected of a CFT. Furthermore, we
compute the entanglement entropy SA of a subsystem A of size l aver-
aged over all boundary positions, defined as

ElðSÞ ¼ ∑
L

k¼1
S½k;kþl� ð10Þ

The result, shown in Fig. 4B, closely follows the Calabrese-Cardy
formula for periodic 1 + 1–dimensional CFTs, given by (33, 34)

SA ¼ c
3
log

L
pe

sin
pl
L

� �
≃

c
3
log

l
e
þ Oððl=LÞ2Þ ð11Þ

with a numerical fit yielding c≈ 4.2 and e≈ 1.1 for a cutoff at L = 2605
boundary sites.

The peculiar pairwise correlation of boundary Majorana modes,
suggesting a connection to Majorana dimer models (35), is more
deeply explored in a separate publication (36). However, as the cor-
relation structure breaks the translation and scale invariance expected
of CFT ground states, we now consider regular tilings with generic
matchgate input.

Regular triangulations
As the boundary states of triangular tilings are necessarily Gaussian
(15), we can study their properties comprehensively using matchgate
tensors. The simplest such tilings are regular and isotropic, i.e., with
each local tensor specified by the same antisymmetric 3 × 3–generating
matrix A. Isotropy constrains its components to one parameter a =
A1,2 =A1,3 =A2,3. The bulk topology follows from our choice of tiling.
For triangular tilings (p = 3), setting q = 6 produces a flat tiling, whereas
q > 6 leads to a hyperbolic one (see Fig. 1, A and B). Triangular tilings
with q < 6 produce closed polyhedra that are positively curved and lack
the notion of an asymptotic boundary. As a convention, we choose the
local orientation of the triangles so that the generating matrix for the
contracted boundary state satisfies A′

i;j > 0 for i > j, corresponding to
antiperiodic boundary conditions: Covariance matrix entries Gi,j

acquire a sign flip when cyclic permutions push either index i or j over
the boundary, as relative ordering is reversed.

Wenow consider the boundary states of {3, k} bulk tilings. The falloff
of correlations along the boundary generally depends on k, i.e., the bulk
curvature, as shown in Fig. 5 (A and B) for the a = 0.25 case. While
correlations between the boundaryMajorana fermions of a flat bulk fall
off exponentially, a hyperbolic bulk produces a polynomial decay (up toA B

C

Fig. 4. Critical correlations and entanglement scaling. (A and B) Boundary
state properties of the HaPPY code at 2605 boundary sites. (A) shows average corre-
lations at boundary distance d, computed as the relative frequency n of Majorana
pairs. Dashed gray line shows an n(d)~1/d numerical fit. (B) shows the scaling of av-
erage entanglement entropy ElðSÞ with subsystem size l. Dashed gray line shows
numerical fit using (11). (C) ElðSÞ for regular tilings at the critical values a = 0.580
for a {3,6} tiling (blue) and at a = 0.609 for the {3,7} tiling (yellow) with 348 boundary
sites each. The dashed gray line shows the exact c = 1/2 CFT solution.

A B

C D

Fig. 5. Boundary correlations for regular tilings. (A and B) Mean value of
Majorana covariance EdðGÞ ¼ ∑Lk¼1∣Gk;kþd∣=L (with Gi,L+j = Gi, j) at boundary dis-
tance d. For {3,6} tiling with 150 boundary Majorana fermions (left) and {3,7} tiling
with 348 (right). a = 0.25 in both cases. (C and D) Dependence of correlation
falloff on a for {3,6} tiling with falloff ~e−d/l (left) and {3,7} tiling with ºd−p (right).
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finite-size effects at large distances and rounding errors at very small
correlations). In the hyperbolic case, geodesics between boundary
points scale logarithmically in boundary distance, so the falloff is still
exponential in bulk distance, as we would expect in AdS/CFT (37).

Restricting ourselves to the 0 < a < 1 region, we explore how
quickly correlations decay in both settings. At a = 0 and a = 1, the
boundary Majorana fermions only have neighboring pair correla-
tions, either pairing within each edge (a = 0) or across the corners
(a = 1). Thus, correlation decay becomes infinite in the limits a→ 0
and a→ 1, independent of bulk geometry. We use numerical fits to
study the remaining region 0 < a < 1 (see Fig. 5, C and D). For a
hyperbolic bulk geometry, the power law is generic with the slowest
decay at a ≈ 0.61, where we see a ºd−1 falloff over distance d. The
exponential decay ºe−d/l generally produced by a flat bulk geome-
try, however, slows down to a power law (with correlation length l
diverging) around a≈ 0.58, where correlations again decay asºd−1.
At their critical values, the boundary states of both bulk geometries
have the same average properties.

Up to finite-size effects, this critical boundary theory turns out to be
the Ising CFT, as we confirm by computing a range of critical proper-
ties from the covariance matrix, shown in Table 1. The entanglement
entropy scaling, shown in Fig. 4C, again matches the expected form
(11) irrespective of the choice of tiling. The Ising CFT state that we
observe at the critical value of a is the ground state of the Hamiltonian

H ¼ i ∑
N�1

k¼1
gkgkþ1 þ g1gN

 !
ð12Þ

where the sign of the boundary term g1gN signifies antiperiodic bound-
ary conditions. Triangular tilings also incorporatemore genericmodels:
By associating each edge with a bond dimension c > 2, it is possible to
produce boundary theories with central charges c larger than 1/2. In the
simplest case, we choose a generating matrix that only couples between
sets of fermionic modes, resulting in a boundary theory that consists of
multiple copies of the Ising CFT and a corresponding central charge
that is a multiple of 1/2 (note that this construction is only possible
for {n, k} tilings with even k). Furthermore, by changing the tensor con-
tent in a central region of the network, a mass gap can be introduced,
highlighting how radii in a hyperbolic bulk correspond to a re-

normalization scale on the boundary. Details are provided in the Sup-
plementary Materials.

Translation invariance and MERA
The regular bulk tilings considered so far have a set of discrete symme-
tries. When choosing identical tensors on each polygon, the boundary
states necessarily inherit these symmetries, breaking translation in-
variance. To recover it, we consider a tiling with the same geometry
as the MERA network. As we restrict ourselves to real generating
matrices for the three- and four-legmatchgate tensors in this geometry,
our model is not a unitary circuit but a model of Euclidean entangle-
ment renormalization resembling imaginary time evolution, extending
ideas from (19, 20). This may provide amore realistic representation of
the causal structure of an AdS time slice than the standardMERA. Ac-
cordingly, the tensors of our matchgate MERA (mMERA) do not cor-
respond to the usual (norm-preserving) isometries and disentanglers.
We can still produce almost perfectly translation-invariant boundary
states (Fig. 3F) while optimizing over only three parameters and re-
cover the expected CFT properties (Table 1). In particular, at bond
dimension c = 2, the ground-state energy has a relative error of only
0.02% compared to the exact solution. Note that the optimization pro-
cess only takes a few minutes on a desktop computer for a network
with hundreds of tensors. We also find that the c = 2 mMERA has a
symmetry that allows us to write its four-leg tensors as contractions of
simpler three-leg tensors (see Fig. 1C), yielding a nonregular triangular
tiling. An interesting question to pursue is whether alternating or qua-
siperiodic tilings with a larger parameter space than regular tilings can
also produce translation-invariant states.

DISCUSSION
In this work, we have studied bulk-boundary correspondences in fer-
mionic Gaussian tensor networks, introducing a versatile framework
and a highly efficient contractionmethod based onmatchgate tensors
(14, 15) for a wide class of flat and hyperbolic bulk tilings. We showed
that our framework includes the holographic pentagon code built
from five-qubit stabilizer states for fixed bulk inputs. Its boundary
states correspond to a nonlocal bulk pairing of Majorana fermions,
opening an avenue to studying the state properties of this holographic
model at large sizes.We explicitly computed two-point correlators and
entanglement entropies, whichwere found to exhibit critical scaling. Be-
yond known models, we showed that critical and gapped Gaussian
boundary states can be realized by various bulk tilings. In particular,
the average scaling properties of the c ¼ 1

2= Ising CFT (and multiples
thereof) can be reproduced using regular one-parameter bulk trian-
gulations with both flat and hyperbolic curvature. This is particularly
unexpected for the flat case where boundary theories are typically
gapped and raises the question whether this appearance of criticality
is retained in strongly interacting models as well. The appearance of
equivalent boundary CFT states for flat and hyperbolic bulks resem-
bles the effect of local Weyl transformations in Euclidean path inte-
grals (38). Our reproduction of conformal properties froman isotropic
tensor network with only a single parameter further suggests that isot-
ropy is a powerful symmetry for numerical CFT computations. Fur-
thermore, we constructed the mMERA, a Euclidean matchgate tensor
network based on the MERA geometry. Beyond the results achievable
with regular triangulations, this tiling, which can also be expressed as a
triangulation, recovers the Ising CFTwith translation invariance while
requiring only three free parameters and little computational cost.

Table 1. Table of conformal data for the regular {3, 6} and {3, 7} bulk
tilings as well as the mMERA, compared to the exact results and
the wavelet MERA (16). Listed are the ground-state energy density D0,
central charge c, scaling dimensions Df of the fields f ¼ y; �y; D; s, and
the structure constant Cs,s,D. The nonscaling of the identity 1 is discussed
in the Supplementary Materials.

Exact {3, 6} bulk {3, 7} bulk mMERA Wavelets

D0 −0.6366 −0.6139 −0.5617 −0.6365 −0.6211

c 0.5000 0.5006 0.5018 0.4958 0.4957

Dy;D�y 0.5000 0.4948 0.4951 0.5023 0.5000

DD 1.0000 0.9856 1.0121 1.0027 1.0000

Ds 0.1250 0.1403 0.1368 0.1417 0.1402

Cs,s,D 0.5000 0.5470 0.5336 0.5156 0.4584
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Within the Gaussian setting, further studies could focus on positively
curved bulks, higher-dimensionalmodels, and random tensors. Beyond
Gaussianity, one could also explore interacting fermionic tensor net-
works (39–43) by a weak-coupling expansion or under locally restricted
interactions. Both of these possible extensions to our framework would
require computations scaling only polynomially in the system size, thus
still avoiding the prohibitive computational effort of general methods
for exact tensor contraction.
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Supplementary materials

OVERVIEW

These supplementary materials contain additional details, technical calculations and proofs of the assertions made in the main
text. We begin by showing how to perform tensor contraction using Grassmann integration in Section S1, followed by a minimal
example of contracting two matchgate tensors. In Section S2, we restructure the definitions made in Ref. [15] in order to bring
the theory of matchgates closer to the free fermionic formalism. In particular, we prove the correspondence between matchgate
tensors and fermionic Gaussian states. In Section S3, we show how to convert a generating matrix of a matchgate tensor to the
covariance matrix of the corresponding state, yielding the physically relevant correlations. In Section S4, we provide technical
details and calculations for the contraction rules in the Grassmann formalism used in the numerical implementation. In Section

central charges.
S5, we give explicit examples of generating matrices relevant to the main text and present a construction of states with higher
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In this section, we review the approach to contraction of matchgate tensor networks through Grassmann integration [15]. In
particular we present a simplified version of Lemma 5 from Ref. [15] and explain this result through an example. Grassmann
variables will be denoted by θ and are a set of anti-commuting generators of an algebra (θiθj = −θjθi) which nevertheless
commutes with ordinary scalars x (xθi = θix). A general element in this algebra may be written as

z =
n∑

k=0

∑

i1,··· ,ik
ci1···ikθi1 · · · θik (1)

where ci1···ik can be arbitrary complex coefficients and ik form an increasing sequence in {1, 2, . . . , n}. In particular, given a
tensor T : {0, 1}×r → C we associate to it a polynomial in Grassmann numbers given by

ΦT (θ) =
∑

j∈{0,1}×r
T (j)θj11 θ

j2
2 . . . θjrr (2)

which we call its characteristic function.
For simplicity, we consider contracting the last index of a rank-r1 tensor T1 with the first index of a rank-r2 tensor T2 where

r1, r2 ≥ 1. Let us denote r′1 = r1 − 1 and r′2 = r2 − 1 This operation gives rise to a rank-(r′1 + r′2) tensor T1?2 with entries

T1?2(x, y) =
∑

z∈{0,1}
T1(x, z)T2(z, y) (3)

for x ∈ {0, 1}×r′1 and y ∈ {0, 1}×r′2 being binary words. The characteristic function for the contraction of two tensors can be
obtained by

ΦT1?2
(θ̃, η̃) =

∫
dη1

∫
dθr1 ΦT1

(θ)ΦT2
(η) exp(θr1η1) (4)

where θ̃ = (θ1, . . . , θr′1), η̃ = (η1, . . . , ηr′2) correspond to uncontracted indices and θr1 and η1 are the two Grassmann numbers
of the two indices that are being contracted. Let us use exp(θr1η1) = 1 + θr1η1 on the right hand side

RHS =
∑

x∈{0,1}×r′1
y∈{0,1}×r′2

∑

a,b∈{0,1}
T1(x, a)T2(b, y)

∫
dη1

∫
dθr1 θ

x1
1 θx2

2 . . . θ
xr′1
r′1

θar1η
b
1η
y1
2 . . . η

yr′2
r2 (1 + θr1η1) (5)

and observe that the two integrals commute with the first r1 − 1 of the θ’s and exponential factor commutes with the η’s. This
gives

RHS =
∑

x∈{0,1}×r′1
y∈{0,1}×r′2

∑

a,b∈{0,1}
T1(x, a)T2(b, y)θx1

1 θx2
2 . . . θ

xr′1
r′1

[∫
dη1

∫
dθr1 θ

a
r1η

b
1(1 + θr1η1)

]
ηy12 . . . η

yr′2
r2 (6)

For the middle bracket, we obtain
∫
dη1

∫
dθr1 θ

a
r1η

b
1(1 + θr1η1) = δa,b (7)

and therefore

RHS =
∑

x∈{0,1}×r′1
y∈{0,1}×r′2


 ∑

z∈{0,1}
T1(x, z)T2(z, y)


 θx1

1 θx2
2 . . . θ

xr′1
r′1

ηy12 . . . η
yr′2
r2 (8)

We see that this is exactly the characteristic function for the tensor contraction. Note that it is important that we contract the
last index with the first one. Lemma 5 of Ref. [15] generalizes this calculation to an arbitrary number of indices that are being
contracted in an appropriate order – this essentially could be derived by iterating the formula that we derived for the case of
self-contractions.

Section S1. Tensor contractions in the Grassmann formalism 
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A. Minimal example

As an example, we want to show the contraction of two tensors TA, TB with Gaussian characteristic functions of the form

ΦTA(θ) = exp

(
1

2

L∑

j,k=1

Aj,kθjθk

)
, ΦTB (θ) = exp

(
1

2

L∑

j,k=1

Bj,kθjθk

)
(9)

As we summarize in Fig. S1, we associate the Grassmann numbers θ1, θ2, θ3 to A and θ4, θ5, θ6 to B, and fix θ3 and θ4 on the
edges between the triangles to be integrated out, yielding a state with four edges whose correlation matrix C shall be computed
from A and B via Grassmann integration

ΦC(Θ) =

∫
dθ4dθ3 e

θ3θ4+ 1
2

∑6
j,k=1(A⊕B)j,kθjθk (10)

where Θ = (θ1, θ2, θ5, θ6)> contains the four Grassmann numbers that remain after integration. Taking A,B as input, we
find that after the integration ΦTC is again Gaussian (the technicalities of integration will be dealt with in Section S4) and the
generating matrix is

C =




0 A1,2 A1,3B4,5 A1,3B4,6

−A1,2 0 A2,3B4,5 A2,3B4,6

−A1,3B4,5 −A2,3B4,5 0 B5,6

−A1,3B4,6 −A2,3B4,6 −B5,6 0


 (11)

We observe that the newly created entries in the upper right corner are in fact a dyadic product and this block is a lower-rank
matrix.

θ2θ1

θ3

A23

A12

A13

θ6 θ5

θ4

B46

B56

B45

Θ2Θ1

Θ4 Θ3

C23C14

C13

C24

C12

C34

We first discuss definitions of matchgate tensors and then explain the connection to fermionic Gaussian states.

A. Definitions of matchgates

For completeness, we shortly recapitulate the characterization of matchgates by Bravyi in Ref. [15]. Originally matchgates
[44] were characterized as the local tensors of a tensor network that can be contracted efficiently through the Fisher-Kastelyn-
Temperley method [ , 4 ]. Subsequently, the following algebraic characterization has been found [ ].

Definition 1 (Matchgate equations). A rank-r tensor T is a matchgate if for all x, y ∈ {0, 1}×r it holds that
∑

k: xk 6=yk
T (x XOR ek)T (y XOR ek)(−1)

∑k−1
j=1 (xj+yj) = 0 (12)

where (ek)q = δk,q .

Section S2. Matchgates and fermionic Gaussian states 

45 6 47

Fig. S1. Combining tiles of matchgates.  

   

Contraction of two triangle states with Grassmann-variable edges   {θ 1, θ2, θ3}

 and {θ4,

 

θ5, θ6} into a state with four edges {Θ1, Θ2, Θ3, Θ4}. 
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Proposition 2 of Ref. [15] shows that one can equivalently define matchgates through Pfaffians, leading to the following
equivalent definition.

Definition 2 (Matchgates as Pfaffians). A rank-r tensor T is a matchgate if there exists a reference index z ∈ {0, 1}×r and an
anti-symmetric matrix A ∈ Cr×r, such that for any x ∈ {0, 1}×r

T (x) = Pf
(
A|x XOR z

)
T (z) (13)

In particular, A is explicitly given by Aj,k = T (ej XOR ek XOR z)/T (z) for j < k if T (z) 6= 0 or A ≡ 0 if T ≡ 0 and we
denote by A|x XOR z the restriction of A to the entries indicated by x XOR z.

Proof of the equivalence of these definitions. In particular, proposition 2 of Ref. [15] shows that whenever T (z) 6= 0 then
a new matchgate tensor T ′ fulfills T ′(x) = T (x XOR z)/T (z) = Pf

(
A|x
)

which is derived from the matchgate equations.
From this we have that T ′(x XOR z) = T (x XOR z XOR z)/T (z) = T (x)/T (z) = Pf

(
A|x XOR z

)
T (z) and therefore

T (x) = Pf
(
A|x XOR z

)
T (z). Finally, for the trivial matchgate tensor T = 0 both definitions agree, too.

The converse direction can be shown by a simplification of the argument of Theorem 2 of Ref. [15]. We start with
T (x) = Pf

(
A|x XOR z

)
T (z). If T (z) = 0 then T fulfills the matchgate equations trivially. Otherwise we consider T ′ with

entries T ′(x) = T (x XOR z)/T (z) = Pf
(
A|x
)

which has a Gaussian characteristic function

ΦT ′(θ) = exp

(
1

2

r∑

j,k=1

Aj,kθjθk

)
(14)

This is argued as follows. As this is a Gaussian characteristic function by the theory of Ref. [27] the Lemma 1 in Ref. [15] applies
which shows that T ′ fulfills matchgate equations. Finally, from Proposition 1 in op. cit., or by a shift of variables, we find that T
also satisfies these equations.

The following lemma shows that matchgates have Gaussian characteristic functions.

Lemma 3 (Grassmann exponentials). Let A = −A> ∈ Cr×r for some positive integer r, then we have

exp

(
1

2

r∑

j,k=1

Aj,kθjθk

)
=

∑

x∈{0,1}×r
Pf
(
A|x
)
θx1

1 θx2
2 . . . θxrr (15)

We omit the proof which proceeds by using the definition of the exponential series which is truncated to first bn/2c powers
of the quadratic form and then regrouping terms that have the same normal ordered Grassmann monomial. Keeping track of the
sign in such reordering, yields the sign of the permutation and subsequently the Pfaffian can be identified. From this it follows
that an even matchgate with z = 0 and covariance matrix A has a Gaussian characteristic function

ΦT (θ) = T (0) exp

(
1

2

r∑

j,k=1

Aj,kθjθk

)
(16)

For matchgates with z 6= 0 we refer the reader to Theorem 2 of Ref. [15] for a general form of the characteristic function. Note
that the set of creation operators generates a Grassmann algebra too because {f†j , f†k} = f†j f†k + f†k f†j = 0. This means that if we
calculate exp((1/2)

∑r
j,k=1Aj,k f†j f†k) from the definition and simplify all terms, we will make the same reordering as in the

Grassmann number case, picking up the same sign differences. Hence, (15) is valid if we replace Grassmann numbers by the
creation operators, which gives a physical interpretation to the characteristic function as normal-ordered operators.

B. Fermionic Gaussian states

Our statements will concern even Gaussian state vectors of the form |ψG 〉 = UG |∅ 〉. This means that we fix the reference
state vector |∅ 〉 to be the vacuum and use a Gaussian unitary that has an even and quadratic generator

H(G) =
i

4

2L∑

j,k=1

Gj,k γj γk (17)

where G = −G> ∈ R2L×2K and the {γj} are the self-adjoint Majorana operators which satisfy the Clifford relations
{γj , γk} = 2δj,k1. Alternatively, they can be defined via Jordan-Wigner transformation or by relating them to the canonically
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anticommuting creation-annihilation operators through γ2j−1 = fj + f†j and γ2j = − i(fj − f†j). As we are using even
generators, the resulting state will conform to the fermionic parity superselection rule. Note that as reference state one could in
principle use a Fock-basis state with an odd particle content and again use a Gaussian unitary, however either choice results in
the same physics and can be related by an appropriate particle-hole redefinition.

The Bloch-Messiah reduction [48, 49] employs a unitary transformation U1 of the single particle basis to decouple a given
Gaussian state vector as

|ψG 〉 = U1

L/2∏

k=1

(vk + uk f†2k−1 f†2k) |∅ 〉 (18)

where the coefficients v, u depend on G. A particle number preserving (PNP) Gaussian transformation is a unitary of the form
U1 = e− iH1 where H1 =

∑L
j,k=1 hj,k f†j fk with h = h† ∈ CL×L. For the above defined Gaussian states we have the following

result [48, 49].

Lemma 4 (Bloch-Messiah reduction). There exists a PNP transformation U1 decoupling the state vector |ψG 〉 in the following
sense

|ψG 〉 =

bL/2c∏

k=1

(vk1+ ukp
†
2k−1p

†
2k) |∅ 〉 (19)

Here, v, u ∈ C×bL/2c and pj = U1 fj U
†
1 .

Proof. We recapitulate the idea of the proof that can be found in the Appendix A of Ref. [49] or in Ref. [48]. The main idea
is to show that there exists a unitary transformation that puts into the normal form both the coherent hopping correlations
Cj,k = 〈f†j fk〉 and pairing terms Pj,k = 〈fj fk〉. A relation first derived by Bogoliubov between C and P shows that
both matrices can be put into a normal form simultaneously by a unitary transformation U ∈ CL×L [48, 49]. For C due
to hermiticity we seek a diagonal form, while for P a block diagonal form. The transformation U that achieves this
can be viewed as a representation in mode space of a PNP transformation U1 which defines the special mode operators
pk = U1 fk U

†
1 =

∑
k′ Uk,k′ fk where the correlation matrices are particularly simple. The state vector |ψG 〉 expressed in

the {pk} takes the particularly simple form

|ψ 〉 =

L/2∏

k=1

(v2k−11+ u2kp
†
2k−1p

†
2k) |∅ 〉 (20)

where |vk|2 + |uk|2 = 1 and we use the invariance of the vacuum under PNP transformations.

This means that normal-ordering of a generic UG with respect to the vacuum is again Gaussian, i.e., it is a quadratic operator
exponential which now only contains creation operators

|ψ 〉 = : UG : |∅ 〉 =
√
Z
−1

exp

(
1

2

L∑

j,k=1

Aj,k f†j f†k

)
|∅ 〉 (21)

Indeed, let us for now assume that vk 6= 0. We now use f†2 = 0 to write (19) as

|ψ 〉 =

L/2∏

k=1

v2k−1e
u2k
v2k−1

p†2k−1p
†
2k |∅ 〉 (22)

=
√
Z
−1
e
∑L/2
k=1

u2k
2v2k−1

[p†2k−1,p
†
2k] |∅ 〉 (23)

where we have defined

√
Z
−1

:=

L/2∏

k=1

v2k−1 (24)

In the next step, we exploit the result that any complex anti-symmetric matrix Ã can be put into a normal form by a unitary
conjugation, i.e., Ã = UN(λ)U† where

N(λ) =
⊕

k

(
0 λk
−λk 0

)
(25)
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when L is even, with complex {λk} [48, 49]. If L is odd, it takes the same form, with an additional 1× 1 block of 0’s. Thus, if U1

acts as U on modes we will have for pk = U1 fk U
†
1 =

∑
k′ Uk,k′ fk

|ψ 〉 =
√
Z
−1

exp

(
1

2

L∑

j,k=1

Aj,k f†j f†k

)
|∅ 〉 = : UG : |∅ 〉 (26)

where

λk =
u2k

2v2k−1
(27)

Clearly, by tuning u, v we can reach any spectrum so any complex anti-symmetric matrix A can be obtained. For generic states
this is enough, while basis states can be expressed as a limit of such expressions.

Finally, we observe that the algebra of creation operators alone is isomorphic to that of Grassmann by replacing θj by f†j .
Then we can rewrite

|ψ 〉 =
∑

j∈{0,1}×L
T (j)(f†1)j1 . . . (f†L)jL |∅ 〉 (28)

where T (j) =
√
Z
−1

Pf
(
A|j
)

which is by definition a matchgate tensor. Conversely, one can go the other direction defining
as state using a matchgate tensor which will be a fermionic Gaussian state. An alternative derivation of this fact based on a
generalized Wick’s theorem [ ] is given below.

C. Alternative proof for matchgates corresponding to Gaussian states

We express a fermionic Gaussian state vector in the occupation basis

|ψ 〉 =
∑

x∈{0,1}n
T (x) |x 〉 (29)

where we have defined the amplitude tensor T . Its components can be obtained via T (x) = 〈x|ψ〉where |x 〉 = (f†1)x1 . . . (f†L)xL |∅ 〉
denotes an occupation basis state. Note, that identifying |∅ 〉 = |↓ 〉⊗L and using the Jordan-Wigner transformation as in the
main-text, this ordering of creation operators will yield |x 〉 = (σ+

1 )x1 . . . (σ+
L )xL |↓ 〉⊗L = ⊗Lj=1 |xj 〉. Fixing a basis state |z 〉,

we may define the z-offset basis |x 〉z = (γ2L−1)xL . . . (γ1)x1 |z 〉. We would like to show that T is a matchgate tensor by
making use of the following result [49].

Lemma 5 (Generalized Wick’s theorem). For two Gaussian state vectors |φ1 〉 , |φ2 〉 and corresponding covariance matrices
M1, M2, we have the generalized Wick’s theorem

〈φ1 | (γ1)x1 . . . (γ2L)x2L |φ2 〉 = 〈φ1|φ2〉Pf
(

i∆|x
)

(30)

where

∆ = (−21+ iM1 − iM2)(M1 +M2)−1 (31)

This general result should also be useful in various settings, in particular for studying non-Gaussian states with the methods
of fermionic linear optics as it allows to calculate observables in linear combinations of pure Gaussian states. Here is a first
possible application.

Lemma 6 (Matchgates and Gaussian states). For a Gaussian state vector |ψ 〉 = UG |∅ 〉 define the z-offset such that 〈z|ψ〉 6= 0.
Then the amplitude tensor T in the z-offset basis representation |ψ 〉 =

∑
x∈{0,1}L T (x) |x 〉z is a matchgate tensor.

Proof. We define T (x) = z 〈x|ψ〉. We want to show that there exists an anti-symmetric matrix A such that we have
T (x) = T (0)Pf

(
A|x
)

for all x. Let us observe that |z 〉 is Gaussian and we can obtain the components via T (x) =
〈z | (γ1)x1 . . . (γ2L−1)xL |ψ 〉. Next, we use the generalized Wick’s theorem as stated above for the Gaussian state vectors
|z 〉 and |ψ 〉 which gives us T (x) = 〈z|ψ〉Pf

(
i∆|x

)
= T (0)Pf

(
i∆|x

)
where x = x⊗ (1, 0)> and therefore T is a matchgate

tensor because we have A = i∆|1⊗(1,0)> such that T (x) = T (0)Pf
(
A|x
)
.
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We now convert generating matrices to their corresponding covariance matrix, the entries of which are given by

Γj,k(ψ) = 〈ψ | i
2 [γj , γk] |ψ 〉 (32)

This can be seen as the inverse procedure to the Bloch-Messiah reduction that was used above to calculate the normal ordering.
Again, the calculation is based on the normal form of anti-symmetric matrices: We use the fact that any anti-symmetric matrix
A ∈ CL×L can be put into a normal form A = W>ΣW where W ∈ O(L) and Σ is block-diagonal consisting of 2× 2 blocks
of the form

1
2

(
0 λk
−λk 0

)
(33)

for L even and additionally a 0 block if it is odd. If A is real, it is easy to find W from the eigenvectors of the hermitian matrix
iA, while in the general case the appendix of Ref. [ ] provides implicitly a possible algorithm. In the following we will prove a
conversion formula for the case of real anti-symmetric generating matrices, as the general case is not necessary for the main-text
results. In this case λk’s are real and we will assume thatW is such that λk > 0 without loss of generality. Using this convention
we define a set of angles φk by identifying

cos(φk) := 1/(1 + λ2
k)1/2 and sin(φk) := λk/(1 + λ2

k)1/2 (34)

With these definitions, we state the following conversion lemma.

Lemma 7 (A → Γ conversion). Let A = −A> ∈ RL×L with normal form A = W>ΣW as above. Then the state vector
|ψ 〉 =

√
Z
−1

exp( 1
2

∑L
j,k=1Aj,k f†j f†k) |∅ 〉 has the covariance matrix

Γ(ψ) = ΞW̃VφΞ−1Γ(∅)(ΞW̃VφΞ−1)> (35)

where W̃ = W ⊗ 12, Vφ = ⊕L/2k=1(cos(φk)1 + i sin(φk)σy ⊗ σx) when L is even, or append ⊕11 if it is odd and

Ξ = ⊕nk=1

(
1 1
− i i

)
.

Proof. Let UW be the Gaussian particle number preserving unitary that implements the W action on the modes

fj = UW f†j U
†
W =

L∑

k=1

Wj,k f†k (36)

This choice puts the quadratic form into the normal form because

L∑

j,k=1

Aj,k f†j f†k =

L∑

j,k=1

L∑

j′,k′=1

(W>)j,j′Σj′,k′Wk′,k f†j f†k =

L∑

j′,k′=1

Σj′,k′ f̃
†
j′ f̃
†
k′ (37)

which gives

|ψ 〉 =
√
Z
−1
e
∑L
j,k=1 Aj,k f†j f†k |∅ 〉 =

√
Z
−1

L/2∏

k=1

eλk f̃
†
2k−1 f̃

†
2k |∅ 〉 =

√
Z
−1

L/2∏

k=1

(1 + λk f̃
†
2k−1 f̃

†
2k) |∅ 〉 (38)

For ease of notation all sums and products going up to bL/2c will be denoted with an L/2 upper limit. From this form we can
read off the normalization of |ψ 〉

〈ψ|ψ〉 = Z−1

L/2∏

k=1

(1 + λ2
k) = 1 (39)

i.e., Z =
∏L/2
k=1(1 + λ2

k). Having found that the state is decoupled, for fixed k each term can be promoted to a unitary with the
same action on the vacuum |∅ 〉. Using the angles φk defined above through (34) we find that

1 + λk f̃
†
2k−1 f̃

†
2k√

1 + λ2
k

|∅ 〉 = (cosφk1+ sinφkΩk) |∅ 〉 (40)

Section S3. Conversion of generating matrices to covariance matrices 
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where we have defined

Ωk := f̃
†
2k−1 f̃

†
2k + f̃2k−1 f̃2k (41)

which is anti-symmetric and hence can be used as a generator for a unitary operator in Hilbert space. By observing that
Ω2
k |∅ 〉 = −|∅〉 we find that Uφk = cosφk1 + sinφkΩk = eφkΩk and using that the {Ωk} commute we finally arrive at

|ψ 〉 = e
∑L/2
k=1 φkΩk |∅ 〉 =: Uφ |∅ 〉 (42)

which is an explicit (even) Gaussian rotation of the vacuum. To summarize this decoupling step, we have decoupled the normal-
form of the state with UW to the Bloch-Messiah form and found the Gaussian unitary Uφ that rotates the vacuum into the state
vector |ψ 〉.Note, that this allows to split any Gaussian unitary UG acting on the vacuum into a particle number preserving part

UW and a squeezing part Uφ. For Majorana operators γ̃2k−1 = f̃k + f̃
†
k and γ̃2k = − i(f̃k − f̃

†
k), we define the matrix Γ̃ with

entries

Γ̃j,k(ψ) := 〈ψ | i
2 [γ̃j , γ̃k] |ψ 〉 (43)

By noting that γ̃2k−1 =
∑L
j=1Wk,j γ2j−1 and γ̃2k =

∑L
j=1Wk,j γ2j , we find the relation Γ̃(ψ) = W̃Γ(ψ)W̃ t where

W̃ = W ⊗
(

1 0
0 1

)
(44)

Denoting by

Γ(∅) =
L⊕

k=1

(
0 1
−1 0

)
(45)

the vacuum covariance matrix, it remains to show that Γ̃ = WφΓ(∅)W>φ where Wφ is defined by U†φγ̃jUφ =
∑2L
k=1(Wφ)j,kγ̃k.

Indeed we find that for f̃k(φ) = U†φ f̃kUφ we have the block-decoupled equations of motion

∂φk




f̃2k−1(φ)

f̃
†
2k−1(φ)

f̃2k(φ)

f̃
†
2k(φ)




=




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0







f̃2k−1(φ)

f̃
†
2k−1(φ)

f̃2k(φ)

f̃
†
2k(φ)




= iσy ⊗ σx




f̃2k−1(φ)

f̃
†
2k−1(φ)

f̃2k(φ)

f̃
†
2k(φ)




(46)

and therefore



f̃2k−1(φ)

f̃
†
2k−1(φ)

f̃2k(φ)

f̃
†
2k(φ)




=




cos(φk) 0 0 sin(φk)
0 cos(φk) sin(φk) 0
0 − sin(φk) cos(φk) 0

− sin(φk) 0 0 cos(φk)







f̃2k−1

f̃
†
2k−1

f̃2k

f̃
†
2k




= (cos(φk)1+ sin(φk) iσy ⊗ σx)




f̃2k−1

f̃
†
2k−1

f̃2k

f̃
†
2k




(47)

We collect all such rotations to Vφ = ⊕L/2k=1(cos(φk)1+ i sin(φk)σy ⊗ σx) when L is even, and append ⊕11 if it is odd. Using
the relation m̃ = Ξf̃† with

Ξ = ⊕nk=1

(
1 1
− i i

)
(48)

we can switch between the vector of creation anihiliation operators and Majorana operators which gives Wφ = ΞVφΞ−1, so we
find

Γ(ψ) = ΞW̃VφΞ−1Γ(∅)(ΞW̃VφΞ−1)> (49)
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A. Contracting two tensors

Now, we explicitly show how contracting two tensors U and V into a tensor W combines the generating matrices A and B of
the two original tensors into a larger generating matrix C. We assume that all three tensors are even matchgates, and can thus be
written as

U (ΘU ) = cU exp

(
1

2
ΘT
UAΘU

)
(50)

V (ΘV ) = cV exp

(
1

2
ΘT
VBΘV

)
(51)

W (ΘW ) = cW exp

(
1

2
ΘT
WCΘW

)
(52)

where we have defined the vectors ΘU , ΘV , and ΘW of Grassmann variables θi as

ΘU := (θ1, . . . , θdU )T (53)

ΘV := (θdU+1, . . . , θdU+dV )T (54)

ΘW := (θ1, . . . , θdU−1, θdU+2, . . . , θdU+dV )T (55)

Thus, A, B, and C are dU × dU , dV × dV and (dU + dV − 2)× (dU + dV − 2) matrices, respectively. All are anti-symmetric.
Note that we want to trace out the degrees of freedom corresponding to the Grassmann variables θdU and θdU+1, i.e., the last
index of U and the first index of V . As we showed earlier, the contraction is equivalent to the Grassmann integration

W (ΘW ) =

∫
dθdU+1

∫
dθdU exp (θdU θdU+1)U(ΘU )V (ΘV ) (56)

= cUcV

∫
dθdU+1

∫
dθdU exp

(
θdU θdU+1 +

1

2
ΘT
UAΘU +

1

2
ΘT
VBΘV

)
(57)

Notice that we can easily factorize exponentials because binomial terms in Grassmann variables commute, thus making the
Baker-Campbell-Hausdorff formula trivial. This also allows us the remove all terms independent of θdU and θdU+1 from the
integral

W (ΘW ) = cUcV exp



dU−2∑

i=1

dU−1∑

j=i+1

Ai,jθiθj +

dV −1∑

i=2

dV∑

j=i+1

Bi,jθdU+iθdU+j




·
∫

dθdU+1

∫
dθdU exp


θdU θdU+1 +

dU−1∑

i=1

Ai,dU θiθdU +

dV∑

j=2

B1,jθdU+1θdU+j


 (58)

The expansion of the integrand exponential is fairly simple, as all powers higher than two vanish, according to

exp


θdU θdU+1 +

dU−1∑

i=1

Ai,dU θiθdU +

dV∑

j=2

B1,jθdU+1θdU+j


 = 1 + θdU θdU+1 +

dU−1∑

i=1

Ai,dU θiθdU +

dV∑

j=2

B1,jθdU+1θdU+j

+

dU−1∑

i=1

dV∑

j=2

Ai,dUB1,jθiθdU θdU+1θdU+j (59)

Applying the integral leaves us with

W (ΘW ) = cUcV exp



dU−2∑

i=1

dU−1∑

j=i+1

Ai,jθiθj +

dV −1∑

i=2

dV∑

j=i+1

Bi,jθdU+iθdU+j




1 +

dU−1∑

i=1

dV∑

j=2

Ai,dUB1,jθiθdU+j




= cUcV exp



dU−2∑

i=1

dU−1∑

j=i+1

Ai,jθiθj +

dV −1∑

i=2

dV∑

j=i+1

Bi,jθdU+iθdU+j +

dU−1∑

i=1

dV∑

j=2

Ai,dUB1,jθiθdU+j


 (60)

Section S4. Contraction rules for generating matrices 
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We were able to turn the last factor into an exponential because higher powers of the contraction sum are zero, i.e.,


dU−1∑

i=1

dV∑

j=2

Ai,dUB1,jθiθdU+j




2

=

(
dU−1∑

i=1

Ai,dU θi

)2



dV∑

j=2

B1,jθdU+j




2

= 0 (61)

where we have used the fact that any linear combination of Grassmann numbers
∑
i aiθi is again a Grassmann number, squaring

to zero. We can now write the explicit structure of W (ΘW ) in terms of cW and C in (52). Obviously, cW = cUcV . The matrix
C is composed of A and B according the pattern

C =




A1,1 · · · A1,dU−1 A1,dUB1,2 · · · A1,dUB1,dV
...

. . .
...

...
. . .

...
−A1,dU−1 · · · AdU−1,dU−1 AdU−1,dUB1,2 · · · AdU−1,dUB1,dV

−A1,dUB1,1 · · · −AdU−1,dUB1,1 B2,2 · · · B2,dV
...

. . .
...

...
. . .

...

−A1,dUB1,dV

... −AdU−1,dUB1,dV BdV ,2 · · · BdV ,dV




(62)

=




AUL




A1,dU
...

AdU−1,dU



(
B1,2 · · · B1,dV

)

−



B1,2

...
B1,dV



(
A1,dU · · · AdU−1,dU

)
BBR




(63)

The submatrices AUL and BBR are the upper-left and bottom-right part of the matrices A and B, respectively, with one row and
column removed. anti-symmetry of AUL and BBR, and by extensions C, implies that all diagonal elements are zero.

This result is indeed quite natural, seen from a diagrammatic perspective, where the matrix C defines the 2-point correlators of
the contracted state. The correlation between uncontracted Grassmann variables that lie either completely in ΘU or ΘV remains
unaffected by the contraction. Correlators Ci,j between a θi in ΘU and a θj in ΘV are simply given by Ai,dUB1j , i.e., the
product of the correlators over the contracted edge (θdU , θdU+1).

B. Self-contractions

Now, consider the more complicated case of self-contraction. We start with the tensor T (Θ) given by

T (Θ) = c exp

(
1

2
ΘTAΘ

)
= c exp



d−1∑

i=1

d∑

j=i+1

Ai,jθiθj


 (64)

using the d Grassmann variables Θ = (θ1, . . . , θd). Without loss of generality (we can always perform index permutation), we
want to contract the first two indices of T , i.e., contract over θ1 and θ2. Again writing the contraction as a Grassmann integration,
we find

T (Θ)1?2 = c

∫
dθ2

∫
dθ1 exp


θ1θ2 +

d−1∑

i=1

d∑

j=i+1

Ai,jθiθj




= c exp



d−1∑

i=3

d∑

j=i+1

Ai,jθiθj



∫

dθ2

∫
dθ1 exp


(1 +A1,2)θ1θ2 +

d∑

j=3

(A1,jθ1θj +A2,jθ2θj)


 (65)

Again, we can expand the exponential explicitly, as all terms beyond second order vanish

exp


(1 +A1,2)θ1θ2 +

d∑

j=3

(A1,jθ1θj +A2,jθ2θj)


 =1 + (1 +A1,2)θ1θ2 +

d∑

j=3

(A1,jθ1θj +A2,jθ2θj)

+

d−1∑

i=3

d∑

j=i+1

(Ai,1A2,j −Ai,2A1,j)θ1θ2θiθj (66)
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Only the second and fourth term survive the integration, giving us

T (Θ)1?2 = c exp



d−1∑

i=3

d∑

j=i+1

Ai,jθiθj




1 +A1,2 +

d−1∑

i=3

d∑

j=i+1

(Ai,1A2,j −Ai,2A1,j)θiθj




= c(1 +A1,2) exp



d−1∑

i=3

d∑

j=i+1

Ai,jθiθj


 exp



d−1∑

i=3

d∑

j=i+1

Ai,1A2,j −Ai,2A1,j

1 +A1,2
θiθj




= c(1 +A1,2) exp



d−1∑

i=3

d∑

j=i+1

(
Ai,j +

Ai,1A2,j −Ai,2A1,j

1 +A1,2

)
θiθj


 (67)

To get to the second line, we require that the square (and thus higher powers) of the O(θiθj) term vanish


d−1∑

i=3

d∑

j=i+1

(Ai,1A2,j −Ai,2A1,j)θiθj




2

=




d∑

i=3

d∑

j=3

Ai,1A2,jθiθj




2

=

(
d∑

i=3

Ai,1θi

)2



d∑

j=3

A2,jθj




2

= 0 (68)

Thus, we can express the contracted tensor in the form

T (Θ)1?2 = c1?2 exp

(
1

2
ΘT

1?2A1?2Θ1?2

)
(69)

where Θ1?2 = (θ3, θ4, . . . , θd) contains the uncontracted Grassmann variables, and the constant c1?2 and (d − 2) × (d − 2)
matrix A1?2 are given by the original constant c and matrix A according to

c1?2 = (1 +A1,2)c , (70)

(A1?2)i,j = Ai,j +
Ai,1A2,j −Ai,2A1,j

1 +A1,2

=
Ai,j +Ai,jA1,2 +Ai,1A2,j −Ai,2A1,j

1 +A1,2
(71)

The self-contraction integrates out the A1,2 correlator, redefining our “vacuum term” c. (A1?2)i,j now contains all connected
and disconnected correlations between site i and j, divided by the vacuum contributions.

C. Cyclic permutations

In order to contract smaller matchgate tensors into larger ones, we need one additional ingredient: rules for cyclic permutation.
Our prescription for contracting two tensors U and V works by contracting the last index of U with the first index V , while in
the self-contraction case we contracted the first two indices of a tensor T . Clearly, we can satisfy both conditions by cyclically
permuting the indices of the tensors in question, i.e., relabeling the Grassmann variables. We write a cyclic permutation by n
bits as σn(Θ), for example

σ1 (θ1θ2 − θ2θ3) = θ1θ3 + θ2θ3 (72)

It is easy to see that the cyclic permutation of a Gaussian matchgate tensor T (Θ) is given by

σn (T (Θ)) = σn

(
c exp

(
1

2
ΘTAΘ

))
= c exp

(
1

2
ΘTσn(A)Θ

)
(73)

where the new correlation matrix σn(A) is simply A where the i-th row and j-th colummn is replaced by the (i+ n)th row and
the (j+n)th column modulom (wherem is the length of the vector of Grassman variables Θ). With these rules for permutations,
contractions and self-contractions, we can contract any planar network of Gaussian matchgate tensors. For odd tensors, where
an integral over an additional source term of auxiliary Grassmann variables is required, the rules become significantly more
complicated.
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D. Graph orientation and boundary conditions

We now show how a complete network is contracted using the tools developed earlier. As a concrete example, consider the
contraction of 11 pentagons (i.e., tensors with five indices) in a {5, 4} tiling shown in Fig. S2. We start with an initial labeling
of all pentagon edges in a clockwise orientation, with each index i corresponding to an independent Grassmann variable θi.
Starting from the central tensor, we start contracting adjacent tensors, using cyclic permutations of the indices to ensure that the
largest index of the first tensor is adjacent to the smallest index of the second tensor. This process can be easily repeated until a
tensor with two adjacent edges is encountered. We then contract from the edge with the smaller index (in clockwise orientation),
which leaves a protruding double-edge that can be removed through self-contraction.
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Fig. S2. Tile  orientations  under  contraction. Schematic contraction of 11 pentagons (steps A-F), using contractions over joint edges,
self-contraction and cyclic permutation of  indices. Contracted edges and indices are marked in red, while cyclic permutations are shown
by circular arrows.

ns and cyclic permutations of

After all tensors are contracted, we are left with a boundary of edges whose indices are still clockwise-oriented, provided
that our inital labeling of pentagon edges followed the order in which we contracted the respective tensors. We can think of the
remaining indices as specifying our boundary sites, and the contracted indices being bulk sites that were “integrated out”. Note
that this contraction process is possible for planar graphs for which a Kasteleyn orientation is guaranteed to exist [46].

In principle, we have the freedom to cyclically permute the indices of each inital tensor. We can fix this freedom by using
symmetry constraints on the generating matrix Ai,j . For anti-periodic boundary conditions, we require Ai,j to be positive for
i > j and negative for i < j. The condition is retained for the full contracted state if we restrict ourselves to applying cyclic
permutations only on the indices of the “inner” tensor from which we contract outwards, and affix the lowest index of each
“outer tensor” to the edge over which it is first contracted. These conditions on Ai,j allowed us to produce physical covariance
matrices with Γi,j > 0 for i > j, as well.

For periodic boundary conditions,Ai,j should be positive for |i−j| < L/2 (with number of indices L) and negative otherwise.
This can be achieved using the same index labeling rules, but choosing only the central tensor’s generating matrix to produce a
locally anti-periodic state, while keeping the states corresponding to all other local tensors as periodic.

Periodic boundary conditions are less convenient for numerical studies, as overlap between positive and negative correlations
can occur for networks of finite size. For this reason, we have focused on anti-periodic boundary conditions in our work. In the
infinite-size limit, of course, both choices of boundary conditions should lead to the same physical properties of the boundary
states.
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dc k = 6: rc k = 7: k = 8: k = 9: k = 10: k = 11: k = 12:

10 0.5779 0.95 0.6063 0.6213 0.6378 0.6482 0.6529 0.6650
15 0.5804 0.98 0.6051 0.6203 0.6404 0.6447 0.6618 0.6639
20 0.5806 0.99 0.6082 0.6244 0.6393 0.6502 0.6575 0.6661

A. Regular tilings

We start by discussing the correlations achieved for regular tilings. We can produce the boundary theory with ∼ 1/d falloff
using a regular {3, k} tiling with k ≥ 6. The critical parameter a = acrit for each k can be found by maximizing mean long-range
correlations (2/L)

∑L/2
k=1 |Γk,k+L/2| in the covariance matrix. For k > 6, the tilings can be embedded into the Poincaré disk

with metric

ds2 = 4
dr2 + r2dφ2

(1− r2)2
(74)

using polar coordinates (r, φ) with 0 ≤ r < 1 and 0 ≤ φ < 2π. As the Poincaré disk represents an infinite volume, we cut
off our tilings at a radius r = rc. For the flat case k = 6, we simply cut off at Euclidean distance dc (with all edges set to unit
length). The resulting values of acrit for a given d (k = 6) or rc (k > 6) are shown in Table S1. Note that increasing k leads to a
larger ac. We argue that this may compensate for the “leaking” of correlations into the higher-curvature bulk. While in principle
it is possible to extend this reasoning to positive-curvature (spherical) tilings, the largest triangular tiling {3, 5} corresponds to
an icosahedron with only 20 triangles. Thus, no proper choice of an asymptotic boundary can be made.

B. MERA

We now turn to discussing how the MERA framework can be related to our approach. The MERA tensor network consists
of two types of tensors, isometries and disentanglers with three and four legs, respectively. Thus, the lattice for the equivalent
matchgate tensor consists of triangles and quadrilaterals. In the matchgate setting, the MERA tensors are thus fully specified by a
3×3 generating matrix S and a 4×4 matrixB, corresponding to isometries and disentanglers, respectively. For norm-preserving
tensors, i.e. unitary disentanglers and isometries, real generating matrices are restricted to the components

A =




0
√

1 + x2 cos θ
√

1 + x2 sin θ

−
√

1 + x2 cos θ 0 x

−
√

1 + x2 sin θ −x 0


 (75)

B =




0 y
√

1 + y2 cosφ
√

1 + y2 sinφ

−y 0 −
√

1 + y2 sinφ
√

1 + y2 cosφ

−
√

1 + y2 cosφ
√

1 + y2 sinφ 0 y

−
√

1 + y2 sinφ −
√

1 + y2 cosφ −y 0


 (76)

with x, y ∈ R and θ, φ ∈ [0, 2π]. These free parameters of the model can be set by numerically minimizing the ground-state
energy of the translation-invariant Ising Hamiltonian

H = i

(
L−1∑

i=1

γi γi+1 + γ1 γL

)
(77)

However, with these inputs we were unable to find boundary states that are any more translation-invariant than the regular tilings
considered earlier. Instead, we consider a more generic “matchgate MERA” (mMERA) with three- and four-leg generating
matrices

A =




0 a a

−a 0 b

−a −b 0


 , B =




0 c e f

−c 0 d e

−e −d 0 c

−f −e −c 0


 (78)

Section S5. Explicit generating matrices and numerical results 

Table S1. Values of the critical generating matrix parameter  for different {3, k} triangular tilings and

 ultraviolet cutoffs. 

a
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with the parameters a, b, . . . , f ∈ R. Now, again minimizing according to (77), we find that numerical solutions obey the
symmetries c ≈ e and a ≈ d ≈ f , thus leaving us with three free parameters to optimize. Intriguingly, these symmetries
allow us to express the 4-leg “disentanglers” as contractions of a 3-leg tensor with its conjugate, visualized in Fig. S3. While
the individual tensors of our model are no longer norm-preserving, we show in the next section that for large networks, norm
preservation can still be achieved. Note that while the usual MERA identities for isometries and disentanglers no longer hold,
contractions of the mMERA are still efficient, owing to the matchgate setting.

A

B

aa

b

C

cc

c

c

a

a

D

a

cc

c c

a

Fig. S . Constructing the  mMERA.  A: The standard MERA tensor network (left) in our numerical matchgate setting is equivalent to
B-D : Isometries, disentanglers, and triangulated disentanglers (from left to right) expressed as

matchgate tensors. The free parameters a, b, c fix the components of the generating matrices (78).

The central 4-leg tensor of the MERA describes a CFT ground state on four sites, for which the generating matrix A0 and
normalization c0 can be given explicitly:

A0 =




0 a0 b0 a0

−a0 0 a0 b0
−b0 −a0 0 a0

−a0 −b0 −a0 0


 , c0 =

1√
1 + 4a2

0 − 2b20 + (2a2
0 − b20)2

(79)

where the constants a0 and b0 are found by analytically minimizing (77), yielding

a0 =

√
1 +

1√
2
− 1 ≈ 0.3066 , b0 =

68 + 8a0 + 532a2
0 − 616a3

0 − 290a4
0 − 58a5

0

43 + 16a0 − 340a2
0 − 474a3

0 − 250a4
0 − 50a5

0

≈ 0.2346 (80)

All remaining tensors are numerically optimized within our three-parameter model. As shown in Fig. S4, the minimal energy
density ε = 〈H〉/L converges quadratically with the number of boundary sites L. The optimal values for a, b, c converge as
well. At L = 1024, those are given by a = 0.6854, b = 0.5246, and c = 0.2172, yielding a ground-state energy density
ε0 = −0.636533 (decimals given up to convergent digits). The relative error with respect to the continuum solution ε0 = 2/π
is about 0.014%. Note that this MERA model only has bond dimension χ = 2, and that increasing χ would increase the size of
the generating matrices and the number of free parameters, presumably allowing for even higher accuracy.

C. Conformal data

In this subsection, we show how to obtain conformal data from the approach taken here. The Ising theory at criticality can be
described by a 1+1-dimensional conformal field theory (CFT) [51]. The operator content of this theory is defined by its primary
fields, whose scaling behavior is exactly known. This is because two-dimensional CFTs can be solved exactly, usually by
mapping the space and time coordinates (x, t) to a complex number z = x+ i t and its complex conjugate z̄ = x− i t. (Quasi-)
primary fields φ(z) have associated conformal weights hφ and h̄φ, with correlations between different space-time points z and
w being given by

〈φ(z)φ(w)〉 =
Cφ,φ

(z − w)2hφ(z̄ − w̄)2h̄φ
(81)

3
a network of purely 3-leg tensors (right).

CHAPTER 4. PUBLICATIONS 87



Δϵ ~ L-2
●

●

●

●

●

●

●

0 1 2 3 4 5 6

-14

-12

-10

-8

-6

-4

-2

log L

lo
g
Δ
ϵ

Plotted are the
Energy density     of the mMERA boundary state of      sites, minimized with respect to the Ising 

Hamiltonian
 

(77). differences ∆ε = ε(2L)− ε(L) between two MERA layers, with a quadratic falloff, fitted from the data,
shown as a gray line.

Field φ 1 ε σ ψ ψ̄

hφ 0 1/2 1/16 1/2 0
h̄φ 0 1/2 1/16 0 1/2
∆φ 0 1 1/8 1/2 1/2

The constantCφ,φ is not a fundamental CFT parameter, but determined by the normalization of φ. As we are restricting ourselves
to correlations on time-slices, we will find correlators of the form

〈φ(x)φ(y)〉 =
Cφ,φ

|x− y|2(hφ+h̄φ)
=

Cφ,φ
|x− y|2∆φ

(82)

expressed in terms of the scaling dimension ∆φ = hφ + h̄φ. The three-point functions of primary fields φ, χ and ω have the
form

〈φ(x)χ(y)ω(z)〉 =

√
Cφ,φCχ,χCω,ω Cφ,χ,ω

|x− y|∆φ+∆χ−∆ω |y − z|∆χ+∆ω−∆φ |z − x|∆ω+∆φ−∆χ
(83)

with the structure constants Cφ,χ,ω being fundamental CFT quantities.
For the Ising CFT in two dimensions, there are three primary fields: The identity 1, the energy density ε and the spin (or

“order parameter”) σ. The Jordan-Wigner transformation gives us an alternative description in terms of the fermionic fields ψ
and ψ̄. The corresponding scaling dimensions are given in Table S2. Furthermore, the structure constants in the spin sector are
given by Cσ,σ,1 = 1 and Cσ,σ,ε = 1

2 .
For the Gaussian states produced by our matchgate tensor networks, all the information on correlators is stored in the Majorana

covariance matrix with entries Γj,k = 〈 i
2 [γj , γk]〉. Before calculating the scaling dimensions, let us first prove a useful identity

regarding the covariance matrix of odd-pairing Hamiltonians of the form

HOP = i
∑

k,d

Jk,d γk γk+2d−1 (84)

with the couplings Jk,d ∈ R between Majorana sites at odd distance. In particular, this includes Hamiltonians with only nearest-
neighbor Majorana coupling with Jk,d = δd,1 Jk, such as the Ising model considered above.

Lemma 8 (Covariance matrices of odd-pairing Majorana Hamiltonians). Eigenstates of Hamiltonians HOP of the form (84) are
described by a covariance matrix Γ whose entries Γj,k vanish for even j+ k.

Proof. Consider an eigenstate |ψ 〉 =
∑
x∈{0,1}n T (x) |x 〉 of HOP with eigenenergy E. We will first prove that T (x) ∈ R for

all x ∈ {0, 1}n. We first note that we can write

HOP = i
∑

i,d

(
J2i−1,d γ2i−1 γ2i+2d−2 +J2i,d γ2i γ2i+2d−1

)

=
∑

i,d

(
J2i−1,d(fi + f†i )(fi+d−1− f†i+d−1) + J2i,d(fi − f†i )(fi+d + f†i+d)

)
(85)

Table S2. Exact conformal scaling dimension of various (quasi-)primary fields ϕ of the Ising CFT. 

Fig. S4. Energy convergence of mMERA. 

m

ϵ L
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which implies that the Hamiltonian is not only Hermitian but also invariant under complex conjugation H∗OP = HOP. We now
decompose our eigenstate into its real and imaginary part denoted by |ψ 〉 = <[ |ψ 〉] + i=[ |ψ 〉]. The eigenequation reads

HOP |ψ 〉 = E |ψ 〉 (86)

and its complex conjugate can be expressed as

(HOP |ψ 〉)∗ = HOP |ψ 〉∗ = HOP<[ |ψ 〉]− iHOP=[ |ψ 〉] !
= E <[ |ψ 〉]− iE =[ |ψ 〉] (87)

where the only difference to the original equation is the minus sign. Adding and subtracting these two equations yields

HOP<[ |ψ 〉] = E <[ |ψ 〉] (88)

and

HOP=[ |ψ 〉] = E =[ |ψ 〉] (89)

which means that <[ |ψ 〉] and =[ |ψ 〉] are both eigenvectors. If the spectrum is non-degenerate then they are collinear and hence
we can assume that |ψ 〉∗ = |ψ 〉 up to a phase. If the spectrum is degenerate then we can also choose real eigenstates because
span( |ψ 〉 , |ψ 〉∗) = span(<[ |ψ 〉],=[ |ψ 〉]). In the context of matchgates, this means that all eigenstates are expressed by real
generating matrices, which are therefore a suitable ansatz for ground states of such Hamiltonians.

Next, we show that the matrix elements of the covariance matrix vanish for even j+ k. For j= k this is true by definition,
so we assume j 6= k. For even j and k we find i

2 [γj , γk] = i γj γk = − i (fj/2− f†j/2)(fk/2− f†k/2) while for odd j and k we

have i
2 [γj , γk] = i γj γk = i (f(j+1)/2 + f†(j+1)/2)(f(k+1)/2 + f†(k+1)/2). Either way, these Hermitian operators have purely

imaginary coefficients in terms of creation and annihilation operators. Evaluated in a state with real amplitudes, as shown above,
the expectation value can only be imaginary. As all observables are real, it must therefore vanish altogether.

Now let us relate the covariance matrix entries Γj,k to the primary fields. By construction of our covariance matrix in Section
, 〈ψ|ψ〉 = 1 and thus the identity 1 does not scale. However, the normalization factor Z in (39) can in principle scale with

the size of the contracted network. To ensure normalization, we have to act on each of the NT contracted tensors with a scaling
factor f = Z−1/(2NT ). We find that this factor f converges for large systems, ensuring ∆1 = 0. Explicitly, f{3,6} ≈ 0.972 and
f{3,7} ≈ 0.941 for the regular tilings and fmMERA ≈ 0.959 for the mMERA.

We identify the fermionic fields ψ and ψ̄ with physical operators ψk := fk = 1
2 (γ2k−1 + i γ2k) and ψ̄k := i f†k =

1
2 ( i γ2k−1 + γ2k). We then find that

〈ψjψk〉 = 〈ψ̄jψ̄k〉 =
1

4
(Γ2j,2k−1 + Γ2j−1,2k) (90)

Note that we have used Lemma 8 to simplify the result. As we are considering Gaussian states, 〈ψk〉 = 〈ψ̄k〉 = 0 for any k,
so we do not have to consider expectation values of the individual fields. Next, we compute the energy density ε. On site k, we
simply consider the local operator εk := iψkψ̄k = i

2 γ2k−1 γ2k. With this definition, 〈ε〉 6= 0, so we need to subtract the field’s
expectation value to compute physical two-point correlators, equivalent to using a field ε′ = ε− 〈ε〉. Using Wick’s theorem, the
two-point functions then follow as

〈εjεk〉 − 〈εj〉〈εk〉 =
1

4

(
−〈γ2j−1 γ2j γ2k−1 γ2k〉+ 〈γ2j−1 γ2j〉〈γ2k−1 γ2k〉

)
=

1

4
Γ2j−1,2kΓ2j,2k−1 (91)

The order σ is a nonlocal operator in the Majorana picture but corresponds to a σx operator in the spin picture, obtained through
a Jordan-Wigner transformation (similarly, ε can be related to the σz operator, which only acts locally in terms of Majorana
operators). A two-point correlator of σxk at different sites j and k corresponds to a chain of Majorana operators,

〈σxkσxk+1〉 = − i 〈γ2k γ2k+1〉 = −Pf

(
Γ2k,2k Γ2k,2k+1

Γ2k+1,2k Γ2k+1,2k+1

)
(92)

〈σxkσxk+2〉 = −〈 γ2k γ2k+1 γ2k+2 γ2k+3〉 = Pf




Γ2k,2k Γ2k,2k+1 Γ2k,2k+2 Γ2k,2k+3

Γ2k+1,2k Γ2k+1,2k+1 Γ2k+1,2k+2 Γ2k+1,2k+3

Γ2k+2,2k Γ2k+2,2k+1 Γ2k+2,2k+2 Γ2k+2,2k+3

Γ2k+3,2k Γ2k+3,2k+1 Γ2k+3,2k+2 Γ2k+3,2k+3


 (93)

〈σxj σxk〉 = (− i)k−j 〈γ2j γ2j+1 . . . γ2k−2 γ2k−1〉 = (−1)k−j Pf
(
Γ|[2j,2k−1]

)
(94)

S3
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The absolute value of the Pfaffian is given by |Pf (M) | =
√

detM . Note that because σxk is an odd product of Majorana
operators, 〈σxk〉 = 0.

Additionally, we compute the structure constant Cσ,σ,ε from the corresponding three-point correlator:

〈σxj σxkεl〉 − 〈σxj σxk〉〈εl〉 =
−1

2

(
(− i)k−j+1〈γ2j γ2j+1 . . . γ2k−2 γ2k−1 γ2l−1 γ2l〉+ (−1)k−j Pf

(
Γ|[2j,2k−1]

)
Γ2l−1,2l

)
(95)

=
(−1)k−j

2

(
Pf
(
Γ|[2j,2k−1]∩{2l−1,2l}

)
− Pf

(
Γ|[2j,2k−1]

)
Γ2l−1,2l

)
(96)

In order to use this result to compute the value of Cσ,σ,ε as in (83), we consider the special case k − j = l − k = d, for some
integer distance d. We then expect a scaling

〈σxj σxj+dεj+2d〉 − 〈σxj σxj+d〉〈εj+2d〉 =
Cσ,σ

√
Cε,ε Cσ,σ,ε

2∆εd 2∆σ+∆ε
(97)

Using these tools for extracting two- and three-point correlators, we compute the scaling powers pφ for the various fields φ by
fitting the dependence of 〈φiφi+d〉 on distance d. The resulting graphs for φ ∈ {ψ, ε, σ} are presented for the regular {3, 6} and
{3, 7} tilings as well as for the mMERA tiling in figures S7, S8 and S9, respectively. We also compute Cσ,σ,ε with (95) and (97),
using the scaling dimensions ∆σ,∆ε and normalizations Cσ,σ, Cε,ε from the previous fits as inputs. Furthermore, we compute
the energy density ε0 = 〈H〉/L with respect to the Ising Hamiltonian (77). Note that the regular {3, 6} and {3, 7} tilings are not
translation invariant, leading to irregularities on small scales and amplified finite-size effects. This also leads to larger deviations
from the exact ground state energy density ε0 = −2/π.

Finally, we can also compute the central charge c characterizing the CFT. This is achieved by considering the scaling of the
entanglement entropy SA with the subsystem size ` = |A|. The exact result for a critical theory is given by [33, 34]

SA =
c

3
ln

(
L

πε
sin

π`

L

)
' c

3
ln
`

ε
+O

(
(`/L)2

)
(98)

where L is again the size of the total system. For the Ising CFT, we expect c = 1/2. The entanglement entropy SA for
A = [k, k + `] can be computed from the symplectic eigenvalue spectrum of the partial covariance matrix Γ|A [ ]. In detail,
one performs an orthogonal transformation Γ|A = Q Γ̃|AQT into the form

Γ̃|A =
L⊕

i=1

(
0 λi
−λi 0

)
(99)

which is most conveniently achieved using numerical Schur decomposition, and then reading off the entanglement entropy as

SA =
L∑

i=1

(
−1 + λi

2
log

1 + λi
2
− 1− λi

2
log

1− λi
2

)
(100)

Our combined results for scaling dimensions, the structure constant Cσ,σ,ε, the ground state energy ε0 and the central charge c
are summarized in Fig. 4 of the main text.

D. IR cutoff

While the matchgate model is restricted to planar graphs, it is possible to construct an effective IR cutoff, i.e. a “black hole
horizon”, by changing the tensor content of tensors in the center of the network. For a regular {3, k} tiling with k ≥ 7 this
cutoff is simply a cutoff radius rcut in the Poincaré disk with 0 ≤ rcut < 1. For a flat {3, 6} tiling rcut becomes a radius in the
flat Euclidean plane with 0 ≤ rcut < ∞. While the MERA can also be embedded in the Poincaré disk, it is more convenient to
define a cutoff layer ncut, with the first ncut MERA layers (isometries and disentanglers) and the central tensor being affected.

There are two natural choices for the tensor’s generating matrices A in the cutoff region: Either setting all components Ai,j
with i < j to zero or to one, corresponding to a local vacuum or a fully occupied state, respectively. We find that both produce
gapped states on the boundary, but that the former choice leads to periodic boundary conditions, while the latter produces
anti-periodic ones. As we have been considering the anti-periodic case in the previous examples, we also choose this case here.

The results are shown in Fig. S9  with regard to the scaling of the fermionic field ψ and the dependence of the entanglement
entropy SA on the length l of the subsystem A. Outside of the cutoff region, the tensor content is identical to the one used to
produce a boundary Ising CFT in the previous section.
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Fig. S5 Scaling of primary operators ψ, ε and σ (A-C ) in the regular {3,6} tiling
for boundary states of 84, 282, and 870 Majorana sites (blue, yellow and green points, respectively). Numerical fit of scaling power law
shown as grey line. Correlators 〈φiφi+d〉 of fields φ at distance d are averaged over all sites i.
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Fig. S Scaling of primary operators ψ, ε and σ (A-C) in the regular {3, 7}
tiling for boundary states of 90, 360, and 876 Majorana sites (blue, yellow and green points, respectively).Numerical fit of scaling power law
shown as grey line. Correlators 〈φiφi+d〉 of fields φ at distance d are averaged over all sites i.
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Fig. S Scaling of primary operators ψ, ε and σ (A-C) in the mMERA tiling for
boundary states of 64, 256, and 1024 Majorana sites (blue, yellow and green points, respectively). Numerical fit of scaling power law
shown as grey line. Correlators 〈φiφi+d〉 of fields φ at distance d are averaged over all sites i.
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Fig. S Scaling of the three-point function 〈σiσi+dεi+2d〉 at distance d, averaged over
all sites i, for the regular {3, 6} and {3, 7}, as well as the mMERA tilings (A-C). Numerical fit of scaling power law, based on
the data from Fig. S5-S7, shown as grey line.
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. Determining scaling dimensions of flat tilings.

. Determining scaling dimensions of hyperbolic tilings.

. Determining scaling dimensions of mMERA.

. Determining structure constants.
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After a characteristic length scale ξ depending on the cutoff, we see that the ψ field’s power law scaling transitions to an
exponential falloff, as would be expected in a gapped (massive) theory. Furthermore, SA saturates for l > ξ, which allows us to
directly extract ξ from the entanglement entropy formula for a massive QFT [ ],

SA =
c

3
log

ξ

a
, (101)

which holds in the limit where ξ is much larger than the lattice spacing a. The values for c and a are given by the full entanglement
entropy scaling (98) at zero cutoff (note that a depends on the tiling). Without a cutoff, ξ can be identified with the length of the
system, which is infinite in the CFT limit.
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Fig. S9. Correlations and entanglement with IR cutoff. Scaling of the 〈ψiψ i+d 〉 correlator with distance d (A -C) as well as the
entanglement entropy SA with subsystem length l = |A| (D-F) at various cutoffs for the {3, 6}, {3, 7} and MERA tiling (left to right). The
cutoffs are rc = 0, 50, 75 ({3, 6} case with 870 Majorana boundary sites), rc = 0.0, 0.8, 0.9 ({3, 7} case with 876 sites), and nc = 0, 2, 4
(MERA case with 1024 sites), the data for each cutoff plotted in blue, yellow and green, respectively.

E. Pentagon code for quantum error correction

First, consider the boundary state of a single pentagon. Explicitly, the +1 logical state vector of the quantum error correcting
code is given by

∣∣0
〉

= N exp


1

2

∑

i,j

A+
i,j f†i f†j


 |∅ 〉 , (102)

with a normalization factor N = 1
4 and the 5× 5 generating matrix

A+ =




0 −1 1 1 −1

1 0 −1 1 1

−1 1 0 −1 1

−1 −1 1 0 −1

1 −1 −1 1 0




.

Correspondingly, the −1 logical state vector is given by

∣∣1
〉

= N exp


1

2

∑

i,j

A−i,j f†i f†j



∫

dη exp

(
η
∑

i

B−i f†i

)
|̃∅ 〉 , (103)
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containing an integration over the auxiliary Grassmann variable η, fulfilling η f†i = − f†i η. The generating matrix A− and
coupling matrix B− between η and the f†i are given by

A− =




0 0.2 −0.6 0.6 −0.2

−0.2 0 0.2 −0.6 0.6

0.6 −0.2 0 0.2 −0.6

−0.6 0.6 −0.2 0 0.2

0.2 −0.6 0.6 −0.2 0




, B− =
(

1 1 1 1 1
)

(104)

However, we can also write this state in a purely Gaussian form by acting with annihilation operators on the fully occupied state
vector |̃∅ 〉 =

∏
i f†i |∅ 〉

∣∣1
〉

= −N exp


1

2

∑

i,j

A+
i,j fi fj


 |̃∅ 〉 (105)

Note that the generating matrix A+ in this form is the same as for the positive-parity state, highlighting the symmetry between
the positive- and negative-parity eigenstate. The additional minus sign can be removed by redefining either N or |0̃〉.

F. Higher central charges and critical scaling of entanglement entropies

By associating a higher bond dimension χ = 2n with each geometric edge, it is possible to increase the central charge c of the
conformal field theory capturing the boundary state. The corresponding 3n× 3n correlation matrix A of each triangle state can
be chosen so that correlations separate into n parts. An example for χ = 4 is given by

A =




0 0 a 0 b 0

0 0 0 a 0 b

−a 0 0 0 c 0

0 −a 0 0 0 c

−b 0 −c 0 0 0

0 −b 0 −c 0 0




(106)

where a = b = c again corresponds to a rotation-invariant state. The construction of states with higher χ is visualized in Fig. S10.
Note that this separation into n independent “channels” can only be sustained in contracted {p, q} tilings if q is even; otherwise,
self-contractions lead to mixing between different channels. Also shown in Fig. S10 is the entanglement entropy scaling of the
boundary states of such triangular bulks, yielding a central charge of the equivalent CFT description of c = n/2 = log2

√
χ.

The expected entanglement growth (98) is only reached when the subsystem size l is larger than the size of one geometrical
edge, i.e. 2n Majorana fermions. Indeed, by construction of our Gaussian model, a site of one Majorana fermion always has an
entanglement entropy of 1/2 log 2, independent of χ.
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A: Visualization of correlations, with colored connections between
sites θk denoting non-zero correlations. B: Mean value of entanglement entropy E`(S) =

∑L
k=1 S[k,k+`] of a boundary subsystem of size `.

Results for {3, 8} tiling with bond dimension χ = 2, 4, 8 (bottom to top; with 144, 288, 432 boundary sites, respectively).

Fig. S10. Construction of triangle states with bond dimension χ  = 2, 4, 8.

 

CHAPTER 4. PUBLICATIONS 93



PHYSICAL REVIEW RESEARCH 1, 033079 (2019)

Majorana dimers and holographic quantum error-correcting codes

A. Jahn , M. Gluza, F. Pastawski, and J. Eisert
Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

(Received 15 July 2019; published 6 November 2019)

Holographic quantum error-correcting codes have been proposed as toy models that describe key aspects
of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence. In this work, we introduce a versatile
framework of Majorana dimers capturing the intersection of stabilizer and Gaussian Majorana states. This picture
allows for an efficient contraction with a simple diagrammatic interpretation and is amenable to analytical study
of holographic quantum error-correcting codes. Equipped with this framework, we revisit the recently proposed
hyperbolic pentagon code (HyPeC). Relating its logical code basis to Majorana dimers, we efficiently compute
boundary-state properties even for the non-Gaussian case of generic logical input. The dimers characterizing
these boundary states coincide with discrete bulk geodesics, leading to a geometric picture from which properties
of entanglement, quantum error correction, and bulk/boundary operator mapping immediately follow. We also
elaborate upon the emergence of the Ryu-Takayanagi formula from our model, which realizes many of the
properties of the recent bit thread proposal. Our work thus elucidates the connection among bulk geometry,
entanglement, and quantum error correction in AdS/CFT and lays the foundation for new models of holography.

DOI: 10.1103/PhysRevResearch.1.033079

I. INTRODUCTION

The holographic principle—the idea that certain theories of
gravity are dual to lower dimensional quantum field theory—
has had wide-ranging applications within theoretical physics.
In particular, the AdS/CFT correspondence has changed our
understanding of theories of both (quantum) gravity and
quantum field theory by giving a specific relationship be-
tween gravity on (d+1)-dimensional negatively curved anti–
de Sitter spacetime (AdS) and d-dimensional conformal field
theory (CFT) [1,2]. A number of simple models capturing key
aspects of holography have been constructed [3–8], largely
relying on tensor network descriptions of bulk AdS geom-
etry and boundary states. Tensor networks have long been
understood as describing a state in terms of its entanglement
structure [9], thus serving as an ideal tool to study holography
in terms of notions of quantum information theory [10–14].
The basis of this work is the tensor network construction of
the hyperbolic pentagon code (HyPeC), a class of holographic
models often named HaPPY codes after the authors’ initials
[5]. These codes explicitly realize holographic quantum error
correction [3] by providing an error-correctable mapping from
bulk to boundary degrees of freedom, reproducing many of
the features of AdS/CFT. However, the boundary states of
the HyPeC differ from other tensor network models specifi-
cally designed to produce physical CFTs, such as the multi-
scale entanglement renormalization ansatz (MERA) [15]. For
computational basis bulk inputs, where the tensor network

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

becomes Gaussian and efficiently contractible, earlier studies
revealed a pairwise correlation structure in terms of boundary
Majorana modes [16]. As we show in this work, HyPeC states
are in fact a special case of a Majorana dimer model and can
be described by entangled fermionic pairs. Majorana dimers
have previously been used to describe superconducting phases
on lattices [17,18] as instances of tensor networks that have a
fermionic component [19–23]. We show that the contraction
of dimer-based tensor networks is equivalent to combining
entangled Majorana pairs, replacing the computational dif-
ficulties of contraction by simple rules on dimer diagrams.
This graphical language directly visualizes parities, physical
correlations, and the entanglement structure of quantum states
spanning the entire fermionic Hilbert space. By deriving the
holographic properties of the HyPeC merely from emergent
entangled pairs, we connect to recent proposals of AdS/CFT
models based on bit threads [24,25]. Thus, our work is also
an important step toward integrating discrete tensor network
models of AdS/CFT into a unified setting.

II. A SIMPLE MODEL OF HOLOGRAPHY

Consider the boundary and bulk Hilbert spaces denoted
by H∂ and Hbulk respectively. A holographic quantum error-
correcting code is formed by an encoding isometry E from
the logical states in Hbulk to boundary states in Hcode ⊂ H∂ .
Indeed, EE† is the projector onto the code Hcode of the
boundary Hilbert space H∂ . Any bulk operator O acting on
the states in Hbulk can be represented by at least one operator
O∂ acting on |ψcode〉 ∈ Hcode with the property E†O∂E = O
while preserving the code subspace ([O∂ , EE†] = 0). The
specific form of such a mapping from bulk to boundary is
the holographic dictionary obtained in continuum AdS/CFT
by equating bulk and boundary partition functions [2], which
is equivalent to considering boundary CFT operators O∂ as

2643-1564/2019/1(3)/033079(39) 033079-1 Published by the American Physical Society
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FIG. 1. Continuous (left) and discretized (right) reconstruction
of an AdS bulk operator O along two (causal) wedges W[A] and
W[B] [3], leading to two boundary operators OA and OB with support
on boundary regions A and B. The AdS time slice is projected onto
the Poincaré disk, with the AdS boundary corresponding to the black
outer circle. The discretization is a {5, 4} tiling.

limits of fields on the gravitational AdS background [26]. As
we visualize in Fig. 1 (left), oftentimes O∂ acts nontrivially
only on a subregion of the total boundary. Given a subregion
A on the boundary, one can perform the so-called AdS-Rindler
reconstruction [26–31] to associate to any boundary operator
OA a corresponding bulk operator O acting within the wedge
W[A] which is a subset of the bulk.

Because of the computational difficulties in studying con-
tinuum AdS/CFT, discrete toy models often provide an eas-
ier approach to understanding its properties. These models
usually consider a spacelike slice of the full AdS spacetime,
discretized by a tiling whose open boundary edges correspond
to the AdS boundary. Subsets of these open edges are then
identified with subregions of the boundary CFT (see Fig. 1,
right).

What properties should the discretized boundary states in
Hcode fulfill? As a bulk operator can be represented equiva-
lently on different parts of the boundary, e.g., two regions A
and B, we are led to the condition

OA|ψcode〉 = OB|ψcode〉, (1)

where OA and OB are boundary representations on A and B
of an operator O inserted somewhere in the bulk. For this
condition to hold for any O and any suitable A and B, the states
in Hcode must necessarily possess multipartite and nonlocal
entanglement to allow for operators that act equivalently on
distant parts of the boundary.

In this work, we show that the holographic pentagon code
implements these properties through an underlying fermionic
structure. To motivate the use of fermions in the context of
holographic quantum error correction, consider a simple toy
model of entangled fermionic modes. Throughout, we denote
fermionic canonically anticommuting operators by f j satis-

fying f †
j fk + fk f †

j = δ j,k and distinguish the vacuum state

vector |∅〉 satisfying f j |∅〉 = 0 for any j. The counterpart of
a Bell pair for fermions is the so-called BCS state which has
the form

|ψBCS〉 = (1 + f †
j f †

k )|∅〉. (2)

By a simple calculation, we find that

f j |ψBCS〉 = f †
k |ψBCS〉 = f †

k |∅〉, (3)

which implies that if j, k are boundary indices, we found a
mapping between boundary operators that resembles (1). For
holographic quantum error correction, however, this mapping
is insufficient: After acting with the operator, the result (3) is
an unentangled Fock state vector f †

k |∅〉, which is no longer
in the desired code space of entangled states. Furthermore,
|ψBCS〉 does not exhibit any multipartite entanglement nec-
essary for holography [32]. Fortunately, both problems can
be resolved by fermionic mode fractionalization by means of
Majorana dimers. Consider the action of Majorana operators,
defined as

γ2k−1 = f †
k + fk , γ2k = i ( f †

k − fk ), (4)

and fulfilling {γ j, γ k} = 2δ j,k , on the BCS state vector (2) as

γ2 j−1 |ψBCS〉 = −i γ2k |ψBCS〉 = ( f †
j + f †

k )|∅〉, (5)

γ2k−1 |ψBCS〉 = i γ2 j |ψBCS〉 = ( f †
j − f †

k )|∅〉. (6)

This shows that a mapping between Majorana operators,
unlike one relying on standard fermionic operators as in
Eq. (3), can be performed without destroying entanglement.
To achieve multipartite entanglement, BCS-type states are
insufficient. However, a suitable model is provided by the
hyperbolic pentagon code (HyPeC). Let us briefly review its
construction: The HyPeC is an isometry between bulk and
boundary degrees of freedom. An AdS time slice is discretized
by a finite tiling of M pentagons, the Poincaré disk projection
of which is shown in Fig. 1. Each pentagon is associated with
one logical qubit, i.e., one bulk degree of freedom, encoded
in five spins (the pentagon edges) via the [[5, 1, 3]] quantum
error-correcting code. This code can be expressed by a six-leg
tensor, with one “bulk” leg corresponding to the logical qubit
and the remaining five to the physical spins. The tiling is
connected by tracing out spins on the edges of two adjacent
pentagon tiles, i.e., by contracting the corresponding tensor
indices. This contraction can be understood as a projection of
the spins on the two connected edges onto a Bell pair. In this
paper, we will usually consider this setup with each bulk input
fixed to a certain state. Before contraction, the bulk is then
effectively composed of a product state of M local quantum
states on five spins each. Contraction locally entangles the
spins with each other, thus leading to a larger entangled state
on the remaining N spins at the boundary of the pentagon
tiling. If we consider instead an arbitrary bulk input on each
pentagon,1 contraction combines the local five-spin Hilbert
spaces into a larger N-spin Hilbert space that defines our code
space Hcode.

By merit of the [[5, 1, 3]] code, the five spins on the edges
of each pentagon are absolutely maximally entangled. A pure
state of n qubits is absolutely maximally entangled if all of its
reductions to �n/2� subsystems are maximally mixed [33–35]
and hence the states are maximally entangled over all such
cuts. The isometric properties of the code follow from this
construction.

1For the purposes of this paper, bulk inputs between different
pentagons are assumed to be unentangled.
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A useful approach to understanding these states is to rep-
resent this spin picture of the HyPeC in terms of Majorana
fermions [16]. This is achieved by a Jordan-Wigner transfor-
mation between L spins and 2L Majorana modes:

γ2k−1 = Z1Z2 . . . Zk−1Xk,

γ2k = Z1Z2 . . . Zk−1Yk, (7)

where we have used the k-site Pauli operators defined as

Xk := 12
⊗(k−1) ⊗ σx ⊗ 12

⊗(L−k),

Yk := 12
⊗(k−1) ⊗ σy ⊗ 12

⊗(L−k),

Zk := 12
⊗(k−1) ⊗ σz ⊗ 12

⊗(L−k),

(8)

in terms of the Pauli matrices σx, σy, σz. It will be useful to
define the total parity operator

Ptot = Z1Z2 . . . ZL = (−i)L γ 1 γ 2 . . . γ2L . (9)

In the HyPeC, we take L = 5 spins for each pentagon. The
logical eigenvectors |0̄〉 and |1̄〉 of the [[5, 1, 3]] code have
Ptot eigenvalues +1 and −1, respectively, corresponding to
even and odd fermionic parity. For fixed bulk input (and thus
parity), the stabilizers are quadratic in Majorana operators.
Thus, |0̄〉 and |1̄〉 are ground-state vectors of a Hamiltonian
describing free Majorana modes, given by

H = i
L=5∑
j=1

(Ptot )
jγ jγ j+5, (10)

where Ptot = ±1 is the eigenvalue of Ptot and indices follow
periodic boundary conditions. If we replace Ptot → Ptot , we
recover the original [[5, 1, 3]] stabilizer Hamiltonian with
its twofold degenerate ground state. Before considering con-
tractions of these fermionic code states, we now develop a
comprehensive framework for Majorana dimers that allows us
to study the fermionic HyPeC in detail.

III. MAJORANA DIMERS

A. Definition

Majorana dimers are effectively a reordering of the vacuum
state in terms of Majorana modes. The L-fermion vacuum
state vector is defined by being annihilated by all of the
fermionic annihilation operators fk for k ∈ {1, 2, . . . , L} as

fk |∅〉 = 1
2 (γ2k−1 + i γ2k )|∅〉 = 0. (11)

Thus, the vacuum state effectively relates L pairs of Majorana
modes (2k−1, 2k) in an operator equation. By permuting
Majorana indices, we can generalize this state to any pairing
of modes. Such a Majorana dimer state is determined via L
conditions on distinct pairs ( j, k) (choosing j < k as conven-
tion) of Majorana operators

(γ j + ip j,k γ k )|ψ〉 = 0. (12)

The dimer parities p j,k ∈ {−1, 1} give each pair an “orienta-
tion” with respect to the index ordering. We refer to pj,k = 1
as “even” and p j,k = −1 as “odd.” To restate this, a Majorana
dimer state is defined to be a (normalized) state vector of
L fermionic modes which is annihilated by L independent

conditions of the form (12). Note that we have fixed a vacuum
state which under the Jordan-Wigner transformation corre-
sponds to a product state in spins, but nontrivial Majorana
dimer states can be highly entangled, as we shall see.

Equivalently, we may characterize Majorana dimer state
vectors |ψ〉 as ground states of specific quadratic Hamilto-
nians: Multiplying (12) with its Hermitian conjugate from the
left yields

〈ψ |(2 + 2 i p j,k γ j γ k )|ψ〉 = 0, (13)

which implies that the Hermitian operator i γ j γ k has expec-
tation value −p j,k . We can now construct the Hamiltonian

H = i

2

∑
( j,k)∈�

p j,k γ j γ k, (14)

where we sum over all L Majorana dimers � = {( j, k)}. H is
a parent Hamiltonian of |ψ〉, meaning that |ψ〉 is the unique
ground-state vector of H with energy −L, being in the −1
eigenspace of all the summands.

These two equivalent characterizations are most intu-
itively visualized through a diagrammatic notation. Consider
L fermionic modes, ordered as a chain visualized by an Lgon,
with the Majorana modes shown as dots on the edge (mode).
Arrows between the Majorana modes represent the pairing.
For example, for L = 5, the state visualized by

(15)

is the ground state of the Hamiltonian

H = i

2
(γ1 γ2 + γ3 γ6 − γ4 γ5 + γ7 γ9 + γ8 γ10). (16)

An arrow j → k along the index orientation ( j < k, blue)
corresponds to a dimer parity pj,k = +1, while an arrow
against it ( j > k, orange) corresponds to pj,k = −1. Note
that these diagrams only specify the state up to a scalar
c ∈ C, as c affects neither the ground-state property nor the
dimer conditions (12). A particularly symmetric case is the
aforementioned vacuum |∅〉 represented by a diagram

(17)

for L = 5. Unsurprisingly, |∅〉 is also the ground-state vector
of the Hamiltonian H0 = ∑

k nk with the local number oper-
ators nk = f †

k fk = (1 + i γ2k−1 γ2k )/2. We can construct any
Majorana dimer state from the vacuum by applying swap op-
erators Sj,k := Ptot (γ j − γ k )/

√
2 onto |∅〉, with Ptot being the

total parity operator defined in the last section. For example,
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the state expressed by diagram (15) is given by S8,9S4,6|∅〉. It
should be noted that while these swap operators violate the
fermionic superselection rule in an actual fermionic systems,
we are merely interested in Majorana dimers as an effective
representation of spins (such as the HyPeC).

As Majorana dimer states are Gaussian, all expectation
values are determined by the entries of the covariance matrix
with entries

�
ψ

j,k = i

2
〈ψ |[γ j, γk]|ψ〉. (18)

We can read off �
ψ

j,k directly from the corresponding diagram:
As |ψ〉 is constructed from |∅〉 by acting with a product S of
swap operators mapping each index k to an index S(k), �

ψ

j,k is

simply �∅
j,k with interchanged rows and columns:

�
ψ

j,k = i

2
〈∅|S†[γi, γ j]S|∅〉 (19)

= i

2
〈∅|[γ S(i), γ S( j)]|∅〉 = �∅

S( j),S(k). (20)

The only nonzero entries of the vacuum covariance matrix
are �∅

2k,2k−1 = −�∅
2k−1,2k = 1. We can thus infer �

ψ

j,k from its
diagram using the rules

�
ψ

j,k =
⎧⎨
⎩

−1 for an arrow j → k
1 for an arrow k → j
0 if no arrow connects j and k

. (21)

For example, the covariance matrix for diagram (15) is

(22)

with color-coded entries (orange = +1, blue = −1). Note that
we have chosen the colors to match with the dimer parities
when reading the entries above the main diagonal ( j < k). We
assume that the state vector |ψ〉 is normalized. Equivalently,
we can think of the swap operators as acting on the Hamilto-
nian, yielding Hψ = S H0 S†. Clearly, the spectrum of Hψ is
simply a permutation of the spectrum of H0, consistent with
the covariance matrix picture.

By Eq. (10), the [[5, 1, 3]] code states are ground states of
Hamiltonians quadratic in Majorana operators and can thus

be represented as Majorana dimers. As diagrams, they are
given by

, (23)

. (24)

As we will see in the next section, the code distance d = 3
between these two states in terms of Pauli operations can be
shown graphically.

B. Pauli operations and total parity

As the Majorana operators are obtained from spin op-
erators through a Jordan-Wigner transformation, local Pauli
operations in the spin picture generally act nonlocally on the
Majorana dimers. Specifically, the reverse transformation of
(7) is given by

Xk = (−i)k−1
2k−1∏
j=1

γ j,

Yk = (−i)k−1

⎛
⎝2k−2∏

j=1

γ j

⎞
⎠ γ2k, (25)

Zk = −i γ2k−1 γ2k .

A Majorana operator γ k acting on a Majorana dimer state flips
the parity of the dimer ending on site k. We show this by
noting that if a state vector |ψ〉 is annihilated by the operator
γ a + i pγ b (with dimer parity p ∈ {−1,+1} and a �= b), then
both γ a |ψ〉 and γ b |ψ〉 are annihilated by γ a −i pγ b:

(γa − i pγb)γa|ψ〉 = γa(γa + i pγb)|ψ〉 = 0, (26)

(γa − i pγb)γb|ψ〉 = −γb(γa + i pγb)|ψ〉 = 0. (27)

All other dimer conditions remain unaffected. As a graphical
notation, we highlight the affected edges of the state in red.
Some examples of these operations on a Majorana dimer state
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vector |ψ〉 are shown here:

, (28)

, (29)

. (30)

When both ends of a dimer are acted upon with a Majorana
operator, the local parity stays the same. Note that Zk opera-
tions only affect the kth edge, while Xk and Yk combine a local
Majorana operation with a Z string on the first k−1 edges.
Using this graphical calculus, we can now see that it requires
three Pauli operations to map (23) into (24) or each into itself.
These correspond to bit flip (e.g., i γ 1 γ 3 γ 5 = X1Y2X3) and
phase flip errors (e.g., i γ 1 γ 6 = Y1Z2Y3), respectively.

Now consider the total parity operator Ptot = ∏
i Zi, which

affects all Majorana sites at once. Clearly, acting with Ptot

leaves the state invariant (up to the parity eigenvalue), which
implies that all Majorana dimer states have definite total parity
ptot. In fact, this parity is given by

ptot = (−1)Nc
∏
( j,k)

p j,k, (31)

depending on the dimer parities pj,k of all dimers ( j, k) as well
the number Nc of crossings between dimers. This statement
can be proven inductively: We start with the vacuum |∅〉
with ptot = +1. It corresponds to a diagram with pk = +1
for all dimers k and no crossings. We can now construct
any state vector |ψ〉 from |∅〉 by applying swap operators
S j,k = Ptot (γ j − γ k )/

√
2. Since Si, j anticommutes with Ptot,

each swap inverts ptot. To see that (31) reflects this, consider
how a swap S j,k affects the pairs ending in j and k for each
possible initial configuration as

. (32)

Up to mirroring, relabeling, and relative shifting of indices,
all possible swaps belong to one the four categories shown
above. The first two swaps flip one local parity but create no
additional crossings; the last two either add or remove one
crossing while flipping an even number of parities. Thus, (31)
is always satisfied. Note that we are free to move around the
dimer curve between the fixed endpoints, which means we can
make two (or more) paths overlap. However, this will always
change the number of crossings by an even number. For
example, the logical 0̄ state of the [[5, 1, 3]] code corresponds
to both of the following diagrams (each with ten crossings):

. (33)

As expected, (31) tells us that this state has positive parity.
For a fixed dimer configuration but variable dimer parities
pk , only the second factor of (31) is relevant. Thus, we find
that acting with an Xk or Yk operator, which changes an odd
number of dimer parities, also flips the total parity. A Zk error,
which always flips two dimer parities, leaves the total parity
invariant.

C. Contracting dimers

We will now show how the notion of tensor network
contraction applies to Majorana dimer states. To begin with,
consider a state of N spins

|ψT 〉 =
∑

j∈{0,1}×N

Tj1,..., jN | j1, . . . , jN 〉. (34)

Here, the amplitudes Tj1,..., jN = 〈 j1, . . . , jN |ψ〉 can be viewed
as a tensor T which fully specifies the state vector |ψT 〉. A
tensor network is a means of specifying a tensor describing a
state of a large number of spins through multiple contractions
of tensors of a smaller rank. Specifically, the contraction of
two tensors S and T of ranks NS and NT between the last index
of S and the first index of T is defined to be a new tensor U of
rank NU = NS + NT − 2, with entries

Uk1,k2,...,kNU
= Sk1,k2,...,kNS−1,0 T0,kNS ,kNS+1,...,kNU

+ Sk1,k2,...,kNS−1,1 T1,kNS ,kNS+1,...,kNU
. (35)

We see that by contracting the respective tensors, this opera-
tion allows us to merge two state vectors |ψS〉 and |ψT 〉 into a
larger one |ψU 〉 given by

|ψU 〉 =
∑

k∈{0,1}×N ′
Uk1,k2,...,kN ′ |k1, . . . , kN ′ 〉. (36)

A tensor network state can thus describe a large state by the
relatively few entries of its contracted tensors. This process
can be generalized to fermions by identifying the spin basis
with a fermionic one as

| j1, . . . , jN 〉 ↔ ( f †
1 ) j1 ( f †

2 ) j2 . . . ( f †
N ) jN |∅〉. (37)

In this picture, tensors are associated with pure fermionic
states. As these expressions only use creation operators, they
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obey a Grassmann algebra. The tensor contraction (35) can
then be expressed by a Grassmann integration over fermionic
degrees of freedom [36]. Specifically, a contraction of two
fermionic state vectors |φ〉 and |ψ〉 into a state vector |ω〉 over
the same indices as in Eq. (35) has the form

|ω〉 =
∫

d f †
M+1d f †

M (1 + f †
M f †

M+1)|φ〉|ψ〉 (38)

=
∫

d f †
M+1d f †

M e f †
M f †

M+1 |φ〉|ψ〉, (39)

where we have used the Grassmann integration
∫

d f †
k f †

k
n =

δn,1 (for more information, see Refs. [36–39]). Note that∫
d f †

k acts like an annihilator fk on a fermionic state, with a
subsequent projection onto the fermionic subspace excluding
the kth mode. This requires a relabeling of the remaining
degrees of freedom and a truncation of the Jordan-Wigner
string in the corresponding spin representation.

We can now apply this machinery to Majorana dimer
states. In our graphical language, tensor contraction is equiv-
alent to connecting two polygon edges and integrating out the
four Majorana modes on them. What happens to the dimers
of the original states? It is easy to see that dimers ( j, k) of a
state vector |φ〉 not connected to the contracted edges remain
dimers, i.e., if (γ j + i p j,k γ k )|φ〉 vanishes, we also find

(γ j + i p j,k γ k )
∫

d f †
M+1d f †

M e f †
M f †

M+1 |φ〉|ψ〉

=
∫

d f †
M+1d f †

M e f †
M f †

M+1 (γ j + i p j,k γ k )|φ〉|ψ〉 = 0,

(40)

as γ j and γ k commute with the integration. We now claim
that the dimers connected to the contracted edge become new
dimers of the contracted state ω. This leads to the following
statement.

Theorem 1 (Contractions of Majorana dimer states). The
contraction of two Majorana dimer state vectors |φ〉 and |ψ〉
yields either a new Majorana dimer state vector |ω〉 or zero.

An example for the contraction of two pentagon state
vectors |φ〉 and |ψ〉 is given by

. (41)

We have visualized the contraction by a pair of dashed lines.
In this example, dimers not connected to the contracted edges
are omitted. The upper diagram corresponds to the conditions

(γ 4 − i γ 10)|φ〉 = 0, (γ 11 + i γ 19)|ψ〉 = 0, (42)

(γ 5 − i γ 9)|φ〉 = 0, (γ 12 − i γ 15)|ψ〉 = 0. (43)

We now prove that (42) implies (γ 4 − i γ 19)|ω〉 = 0 for the
contracted state vector |ω〉, i.e., that the two original dimers
fuse into a larger one:

(γ4 − i γ 19)|ω〉

=
∫

d f †
6 d f †

5 e f †
5 f †

6 (γ 4 − i γ 19)|ψ〉|φ〉

=
∫

d f †
6 d f †

5 e f †
5 f †

6 (i γ 10 + γ 11)|ψ〉|φ〉

=
∫

d f †
6 d f †

5 e f †
5 f †

6 (− f †
5 + f †

6 + f5 + f6 )|ψ〉|φ〉

=
∫

d f †
6 d f †

5 (− f †
5 + f †

6 − f †
6 f †

5 f5 + f †
5 f †

6 f6 )|ψ〉|φ〉
= 0, (44)

where we have used the identities
∫

d f †
k fk = 0 and

{ fk , f †
l } = δk,l . A similar proof using (43) leads to (γ5 +

i γ 15)|ω〉 = 0.
The full proof for all possible dimer contractions is given

in Appendix A. The resulting rules are the following:
(1) Contracting neighboring edges k and k+1 removes

the Majorana modes {2k − 1, 2k, 2k + 1, 2k + 2}. The dimers
ending on 2k − 1 and 2k + 2 as well as 2k and 2k + 1 are
fused into larger dimers.

(2) The dimer parity pj,k of a fused dimer is the product
of parities of the original dimers. In addition, every crossing
of the path of a contracted dimer with itself reverses p j,k .

(3) Every contraction that creates closed loops leads to a
vanishing contracted state if at least one loop has an odd dimer
parity.

The last case refers to diagrams such as the following:

(45)

Loops with even total dimer parity only change the contracted
state by a nonzero constant.

D. Ordering and cyclic permutations

As fermionic operators anticommute, defining a chain of
fermionic sites requires a definite ordering of the site indices.
This is also true for the Majorana modes that make up Ma-
jorana dimer states. For convention, we assume clockwise-
oriented indices starting from an initial index which we call
the pivot and mark by a little circle in the following diagrams.
Shifting the pivot corresponds to a cyclic permutation of all
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indices:

. (46)

How does this transformation affect the dimer parities? First,
let us interpret (46) as a cyclic permutation of Majorana
indices through an operator M4 acting on Majorana modes.
For example, in the initial labeling we find (γ5 + i γ 7)|ψ〉 =
0. After a cyclic permutation |ψ〉 �→ |ψ ′〉 = M4|ψ〉 with
M4 γ k M−1

4 = γ (k+4) mod 10, it follows that

(γ9 + i γ 1)|ψ ′〉 ∝ (γ1 − i γ 9)|ψ ′〉 = 0. (47)

Hence, while a cyclic permutation of Majorana operators does
not change the direction of the arrows, it flips the local parities
of dimers ending on the edges between the initial and final
pivot (with indices i, i + 1, . . . , f ), effectively acting like a
product of all Majorana operators γ2i−1, γ2i, . . . , γ2 f on these
edges.

However, in our use of Majorana dimers as a description
of the HyPeC, the underlying physical system is one of spins,
where (Pauli) operators on different sites commute. Hence, we
are interested in cyclic permutations not of Majorana modes
but of the underlying spin degrees of freedom. This modifies
the previous result, as each spin permutation effects a different
Jordan-Wigner transformation. Consider an initial spin state
vector

|ψ〉 =
∑

k∈{0,1}×N

Tk1,k2,...,kN |k1, k2, . . . , kN 〉. (48)

A permutation i �→ σ (i) of indices i gives rise to the spin
state vector |ψ̃〉 = Sσ |ψ〉, where Sσ is the spin-picture unitary
permutation operator. Explicitly,

|ψ̃〉 =
∑

k∈{0,1}×N

Tk1,k2,...,kN |σ (k1), σ (k2), . . . , σ (kN )〉

=
∑

j∈{0,1}×N

T̃j1, j2,..., jN | j1, j2, . . . , jN 〉 (49)

with

T̃j1, j2,..., jN = Tσ−1( j1 ),σ−1( j2 ),...σ−1( jN ). (50)

In terms of fermionic operators, the initial- and final-state
vectors |ψ〉 and |ψ̃〉 are identified as

|ψ〉 =
∑

k∈{0,1}×N

Tk1,k2,...,kN ( f †
1 )k1 ( f †

2 )k2 . . . ( f †
N )kN |∅〉, (51)

|ψ̃ 〉 =
∑

k∈{0,1}×N

T̃k1,k2,...,kN ( f̃ †
1 )k1 ( f̃ †

2 )k2 . . . ( f̃ †
N )kN |∅〉. (52)

The operators f †
k and f̃ †

k are fermionic operators defined
by the respective Jordan-Wigner transformations. Consider a
one-step cyclic spin permutation i �→ (i + 1) mod N through
a permutation operator S+1. The Majorana operators trans-
form as γ k �→ S+1 γ k S†

+1 and explicitly as

γ 1 = X1 �→ X2 = Z1 γ̃ 3,

γ 2 = Y1 �→ Y2 = Z1 γ̃ 4,

γ 3 = Z1X2 �→ Z2X3 = Z1 γ̃ 5,

. . . (53)

γ 2N−2 = Z1 . . . ZN−2YN−1 �→ Z2 . . . ZN−1YN = Z1 γ̃ N ,

γ 2N−1 = Z1 . . . ZN−1XN �→ X1Z2 . . . ZN = −Z1 γ̃ 1 Ptot,

γ 2N = Z1 . . . ZN−1YN �→ Y1Z2 . . . ZN = −Z1 γ̃ 2 Ptot.

Hence, the transformed Majorana operators are not the Ma-
jorana operators defined by the new Jordan-Wigner transfor-
mation. Instead, under the cyclic permutation S+1, all γ k for
k < 2N − 1 transform as γ k �→ Z1 γ̃ k+2, while γ2N−1 and γ2N
transform with an additional total parity Ptot = Z1Z2 . . . ZN .
This changes the dimer conditions: If the state vector |ψ〉 is
annihilated by the operator γ j + i p j,k γ k (with j < k), then
this operator changes under cyclic spin permutation to

(γ j + i p j,k γ k )|ψ〉 �→ S+1(γ j + i p j,k γ k )S†
+1S+1|ψ〉

= (S+1 γ j S†
+1 + i p j,k S+1 γ k S†

+1)|ψ̃〉.
(54)

Let us distinguish this result by the parity of |ψ̃〉. For even
parity Ptot|ψ̃〉 = |ψ̃〉, we find

(S+1 γ j S†
+1 + i p j,k S+1 γ k S†

+1)|ψ̃〉 =

⎧⎪⎨
⎪⎩

Z1(γ̃ j+2 + i p j,k γ̃ k+2)|ψ̃〉, j, k < 2N − 1,

Z1(γ̃ j+2 − i p j,k γ̃ k+2−2N )|ψ̃〉, j < 2N − 1, k � 2N − 1,

−Z1(γ̃1 + i p j,k γ̃ 2)|ψ̃〉, j = 2N−1, k = 2N.

(55)

For odd parity Ptot|ψ̃〉 = −|ψ̃〉, the result is given by

(S+1 γ j S†
+1 + i p j,k S+1 γ k S†

+1)|ψ̃〉 =

⎧⎪⎨
⎪⎩

Z1(γ̃ j+2 + i p j,k γ̃ k+2)|ψ̃〉, j, k < 2N − 1,

Z1(γ̃ j+2 + i p j,k γ̃k+2−2N ) |ψ̃ 〉, j < 2N − 1, k � 2N − 1,

Z1(γ̃1 + i p j,k γ̃ 2) |ψ̃ 〉, j = 2N − 1, k = 2N.

(56)

For odd-parity states, we thus find from (56) that the dimer
parities flip as one dimer endpoint moves past the pivot, just as

in Eq. (47). However, for an even-parity state, (55) tells us that
the dimer parities remain invariant under spin permutations.
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This is the only difference between cyclic permutations of
Majorana modes and of the underlying spin sites. Omitting
arrows and showing only dimer parities, spin cyclic permuta-
tion correspond to diagrams such as

, (57)

.

(58)

These two diagrams illustrate a more general observation.
Namely, the upper diagram shows a parity-even Majorana
dimer state, where changing the index labeling (i.e., shifting
the pivot) does not change the dimer parities. The lower one,
however, is parity odd: The red-shaded edges, following the
path along which the pivot was moved, represent Majorana
operators on the edges that flip the connected dimer parities.
Note that there are two possible paths (clockwise and anti-
clockwise) between the initial and final position of the pivot
and that both lead to the same final state up to a total sign.

As a special case, consider the behavior of the logical code
state vectors |0̄〉5 and |1̄〉5 of the [[5,1,3]] code under cyclic
permutations (here, for a clockwise shift of two edges):

, (59)

.

(60)

We see that a cyclic permutation of these states is equivalent
to a rotation of its dimer parities, which is simply a rotation
of the corresponding diagram. This is because the tensors
T corresponding to these states are invariant under cyclic
permutations of indices, i.e., Ti, j,k,l,m = Tm,i, j,k,l . The explicit
construction of these states can be easily performed using
matchgate tensors [16].

E. Computing entanglement

The entanglement entropy SA = −trA(ρA log ρA) of a sub-
system A and its corresponding reduced density matrix

ρA = trAC (ρtot ) can be evaluated diagrammatically. Given the
2M × 2M Majorana covariance matrix �A of the subspace
belonging to A (i.e., the rows and columns of the full 2L × 2L
covariance matrix � whose Majorana modes are contained
in A), we can perform a special orthogonal transformation
�A = Q�̃AQT to the form

�̃A =
M⊕

i=1

(
0 λi

−λi 0

)
, (61)

where ±iλk are the eigenvalues of �A, some of which may be
zero. From this form, the entanglement entropy follows as

SA =
M∑

i=1

(
−1 + λi

2
log

1 + λi

2
− 1 − λi

2
log

1 − λi

2

)
. (62)

As we have found in Sec. III, the covariance matrix entries
� j,k of Majorana dimer states can only be ±1 or zero.
Consider the jth row (or column) of the submatrix �A: The
dimer connected to Majorana mode j ends on another mode k
(with 1 � k � 2L). If j, k ∈ A, the j and kth row will jointly
contribute to a λi of ±1, i.e., zero entanglement entropy.
However, if j ∈ A, k �∈ A, the jth row of �A will be zero. As
the number of such “dimer leaks” must be even, each pair
contributes to a vanishing λi. Thus, each dimer connecting A
with its complement AC contributes an entanglement entropy
of 1

2 log 2, i.e., half of an EPR pair, a maximally entangled
pair of qubits. Graphically, the entanglement entropy reduces
to counting such dimers

SA = (# dimers between A and AC) × log 2

2
. (63)

Consider the following example state:

. (64)

The subsystem A comprises four edges with the Majorana
modes 9 to 16. As four dimers connect A with AC, the
entanglement entropy is given by SA = 2 log 2. Effectively,
SA counts the number of dimers across the cut γA separating
A from AC (shown as a dashed line). For contracted states,
SA � |γA| log 2, where |γA| is the length of the shortest cut
through the contracted network. Thus, we recover the tensor
network interpretation of the Ryu-Takayanagi surface γA,
which appears in continuum AdS/CFT in the holographic
entanglement entropy formula [40]

SA = |γA|
4 GN

, (65)

which expresses SA in terms of the area of the minimal surface
γA, denoted |γA|, and Newton’s constant GN . In our two-
dimensional bulk space, γA is simply a geodesic and |γA| is
its length. We will see later how the discrete analog of (65),
where 1/(4GN ) → log 2, is saturated in the HyPeC.
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The definition of entanglement entropy SA can be ambigu-
ous under a mapping from spins to fermions, as fermionic
operators on different sites do not commute. As long as we
consider connected subsystems A, such a mapping (37) yields
the same SA, as both are related only by cyclical permutation
of fermionic sites, which only leads to a sign flip along the
permuted rows and columns of the covariance matrix �. For
a region A composed of disconnected parts, SA is generally
not preserved by a mapping from spins to fermions. If, as in
the HyPeC model, we want to compute the spin entanglement
entropy in the effective fermionic picture, we first need to
permute the spin degrees of freedom so that A becomes
connected and then apply the mapping to fermions. However,
such a spin transposition usually breaks the Majorana dimer
structure, as it leads to fermionic states that are not ground
states of Hamiltonians quadratic in Majorana operators. Thus,
(63) describes fermionic entanglement that remains valid in
the spin picture only for connected regions A.

In the fermionic picture, we can easily generalize (63) to
disjoint subsystems, such as the mutual information

I (A : B) = SA + SB − SAB

= (# dimers between A and B) × log 2. (66)

Compared to (63), each dimer in Eq. (66) is counted twice.
In terms of the geometry of the dimer graph itself, (66)
corresponds to a system with an exact area law [41]. One of
the properties of this form of the mutual information is an
always vanishing tripartite information [42]

I3(A : B : C) = I (A : B) + I (A : C) − I (A : BC)

= 0. (67)

This implies that Majorana dimer models are compatible with
holographic theories, where I3 � 0 [43]. Furthermore, as we
show in Appendix B, the spectrum of Rényi entropies

S(n)
A = 1

1 − n
log tr

(
ρn

A

)
(68)

is flat, a property of the underlying stabilizer state structure
[44]. We show in Appendix B that this property also follows
from the Majorana dimer picture for arbitrary local superposi-
tions of bulk input in the HyPeC under certain constraints on
the (compact) boundary region considered.

To clarify the connection between Majorana dimers and
EPR pairs, we can explicitly construct Bell states from pairs
of dimers. Consider the following two even-parity dimers
connecting edges j and k (with j < k) without crossing:

. (69)

This corresponds to two conditions on the total state
vector |ψ〉,

(γ2 j−1 + i γ2k )|ψ〉 = ( f †
j + f j − f †

k + fk )|ψ〉 = 0,

(γ2 j + i γ2k−1)|ψ〉 = i ( f †
j − f j + f †

k + fk )|ψ〉 = 0. (70)

As no entanglement between edges j and k and the rest of the
system exists, |ψ〉 should be factorizable with regards to these

TABLE I. Bell states expressed as Majorana dimers.

degrees of freedom:

|ψ〉 ∝ (a + b f †
j + c f †

k + d f †
j f †

k )(. . . )|∅〉, (71)

where (. . . ) includes terms containing creation operators
f †
i with i �= j, k. Up to a complex phase, the parameters

a, b, c, d ∈ C can be fixed using (70), which leads to b = c =
0 and a = d = 1/

√
2 (assuming normalization). This corre-

sponds to a Bell state vector |
+〉 = (|0〉|0〉 + |1〉|1〉)/
√

2 on
sites j and k. This analysis can be repeated for all possible
dimer configurations, yielding Table I. Conveniently, this
allows us to form superpositions of dimers, for example,

. (72)

Each diagram in this expression corresponds to a normalized
Majorana dimer state. Note that this diagram confirms our in-
tuition that a contraction, which is the sum of projections onto
|0〉 and |1〉, is equivalent to connecting pairs of Majoranas via
dimers. In a mild abuse of notation, we may thus write

(73)

to express a contraction (dashed lines). This also allows us to
fix relative factors that appear through contraction, such as in
the following projection of (72) onto a |0〉 state vector:

. (74)

The second term vanishes from the condition 〈0|1〉 = 0, in
agreement with the rule that loops of total odd parity vanish
[compare Eq. (45)]. Note that the arrow orientation of the
dimer for 〈0| is reversed, as it is used in its adjoint form
〈0| (more on Hermitian conjugates in the next section). Pro-
jections like (74) can be evaluated for each of the entries in
Table I, always leading to a resulting factor of 1/

√
2. This

result is heavily used in Appendix B, where we study the
entanglement properties of superpositions of HyPeC code
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states, where norms of Majorana dimer states become rele-
vant.

F. Orthogonality and completeness

Our diagrammatic notation can also express inner products.
Consider the bra 〈ψ | corresponding to a ket |ψ〉. Clearly,
if (γ j + i γ k )|ψ〉 = 0 then 〈ψ |(γ j − i γ k ) = 0 holds for the
adjoint. Thus, we can visualize adjoints by inverting all arrows
and corresponding parities, for example (omitting labels):

, . (75)

The inner product 〈ψ |ψ〉 is a contraction between |ψ〉 and 〈ψ |
over all indices, expressed as

. (76)

The right-hand side, showing a “flipped” 〈ψ |, represents a
Choi-Jamiolkowski isomorphism expressing 〈ψ | in the same
Hilbert space as |ψ〉. This involves an inversion of the ori-
entation which flips all dimer parities. As all diagrams are
defined for normalized state vectors that satisfy 〈ψ |ψ〉 = 1.
Furthermore, we can easily evaluate whether two diagrams
correspond to orthogonal states as a contraction 〈ψ |φ〉 of |ψ〉
and |φ〉 vanishes for any odd-parity loop (see Appendix A). In
particular, |ψ〉 and |φ〉 are orthogonal if they share the same
correlation structure (i.e., pairing of Majorana modes) but
differ in at least one dimer parity. This allows us to construct
the complete Hilbert space with Majorana dimer states on
N edges by fixing a correlation structure and then flipping
through all 2N possible dimer parities, resulting in 2N mutu-
ally orthogonal state vectors. Since the Hilbert space is also 2N

dimensional, we can express any state in it by a superposition
of Majorana dimer states under the given correlation structure.
This is equivalent to obtaining a orthogonal stabilizer state
basis by considering all 2N sign combinations of N stabilizer
generators.

IV. THE HYPEC WITH MAJORANA DIMERS

A. Overview

As we saw in the previous section, the computational basis
logical code states of the [[5, 1, 3]] quantum error-correcting
code can be expressed as Majorana dimers. Furthermore,
we showed that identifying Majorana dimer states as tensors
and contracting them yields new Majorana dimer states and
that these contractions are easy to evaluate diagrammatically.
Because the HyPeC is built from tensors each representing the
[[5, 1, 3]] code, we find the following key result.

Theorem 2 (Representing the HyPeC with Majorana
dimers). The hyperbolic pentagon code (HyPeC) with logical
bulk input fixed to local basis states 0̄ or 1̄ yields a Majorana

dimer state on the boundary. Each input corresponds to a
(unique) pattern of dimer parities on the boundary state.

While fermionic modes require an explicit ordering, we
show in Appendix C that different contraction orderings lead
to equivalent boundary states. We will now show how the ge-
ometry of the dimers in the HyPeC determines its properties,
using the tools developed in the previous section.

B. Dimers and entanglement structure

First, we will consider the physical properties of the HyPeC
for logical inputs fixed locally to 0̄ or 1̄. The code is con-
structed from a hyperbolic {5, 4} tiling,2 with each tile now set
to (23) or (24) (the full HyPeC also allows for superpositions
between the two). As the model consists of asymptotically
infinite tiles, we have to define a UV cutoff at which the tiling
is truncated. We do this by starting with a central tile and itera-
tively adding tiles on all free edges. The number n of iterations
thus gives the graph distance between each boundary tile and
the center, determining the cutoff. Such a series of iterations
for an all-0̄ bulk input is visualized in Fig. 2.

The contracted dimers are drawn as geodesics in the
Poincaré disk. This is not an arbitrary choice, as the dimers
follow discrete geodesics (i.e., shortest paths) in the {5, 4}
tiling. Figure 3 shows the n → ∞ limit both for an example
of two dimers and the whole contraction. Because of the
particular property of the {5, 4} tiling that the pentagon edges
connect to continuous geodesics, the asymptotic endpoints of
a contracted dimer are also endpoints of such a geodesic.3

Tracing this geodesic back into the bulk, we see that it passes
along all tiles that contained the uncontracted dimer pieces.
Furthermore, as Fig. 3 also shows, there are always two dimers
with the same pair of asymptotic boundary points, resulting
in a bulk geodesic that is dual to a boundary Bell state.
While Fig. 3 only shows a uniform 0̄ bulk input, the dimer
parities generally differ with the input. The dimer pairs then
correspond to different types of Bell states, as in Table I. Note
that the Majorana modes composing the effective fermions of
these Bell states are located on neighboring boundary edges
at any finite cutoff. This elucidates the code’s error-correction
properties: Any product of pairs of Majorana operators i γ j γ k
acting on dimer endpoints ( j, k) can only change the state up
to a total sign and is thus a representation of a logical parity
operation in the bulk. While single Majorana operators are
nonlocal in terms of spins, pairs of Majorana operators on
neighboring sites can be expressed by a local pair of Pauli
operators [compare (25)]. For each pair of HyPeC dimers,
there then exists a boundary operator O of weight |O| = 4,
i.e., consisting of four Pauli operators acting on the boundary,
which represents a logical bulk operation. Thus, even for an
infinitely large number of HyPeC tiles, the code distance d
never exceeds d = 3, as such an O represents an error on the
code space.

2This Schläfli symbol denotes a polygon tiling with four pentagons
at each vertex.

3In the dual {4, 5} tiling, each four-sided tile contains an intersec-
tion of two such geodesics meeting at right angles.
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FIG. 2. Iterative contraction of the HyPeC for fixed bulk inputs of |0̄〉5 state vectors, with a cutoff after 3 iterations. Each step involves
contracting a further layer of tiles, starting from the center at n = 0. The asymptotic boundary of the Poincaré disk is drawn as a black circle.

Given this picture of pair entanglement on the boundary
through bulk geodesics, the dependence of the entanglement
entropy SA on the boundary subsystem size |A| = � can be
explicitly computed. Clearly, the position of this subsystem
affects the value of SA, as the distribution of entangled pairs in
Fig. 3 does not respect translation invariance on the boundary.
Thus, we consider the average expectation value E�(S) of the
entanglement entropy instead. The results in Fig. 4 show an
approximate logarithmic growth SA ∝ log �, as expected of a
critical theory. Fitting against the expected logarithmic scaling
expected for a CFT [45],

SA = c

3
log

(
L

πε
sin

π�

L

)
� c

3
log

�

ε
+ O((�/L)2), (77)

we find a central charge c ≈ 4.2 (dashed line in Fig. 4). For
a finite system of boundary size L, SA reaches its maximum
at � = L/2, in agreement with the full form of (77). Each
iteration preserves the entanglement entropy scaling of the
previous one up to � ≈ L/4. We already observed this behav-
ior in a previous analysis using matchgate tensors [16].

The logarithmic entanglement entropy scaling saturates the
bound we observed in Eq. (64): The maximum entanglement
between two boundary regions A and AC is proportional to
the maximum number of dimers that can connect them, or
equivalently, the number of edges |γA| of a minimal cut γA

through the bulk separating A from AC. Because of the hy-
perbolic geometry of the {5, 4} tiling, |γA| ∝ log |A|. As γA is
a geodesic in this discrete geometry, no other geodesic—and
thus no dimer—can pass through it twice (up to cases such as
in Fig. 6), turning the upper bound into an equality:

SA = |γA| log 2 ∝ log �. (78)

Clearly, this result is the same for each computational basis
state input, as changing this input only changes dimer parities,
leaving SA invariant.

We can modify the infrared (IR) structure of our boundary
states by modifying the central tiles. There are two possible
approaches: One is the replacement of the dimer structure
in these tiles, and the other is the complete removal of the
tiles. In the first case, we simply reconnect the dimers with
each other, so that they no longer follow geodesics. This
breaks the conditions for the saturation of the bound (78),
so that we reduce the entanglement of the boundary states.
The more tiles in the center are changed [e.g., to the vacuum
(17)], the further long-range entanglement is suppressed, so
that we approach a gapped boundary state with constant (i.e.,
area-law) entanglement.

The second case was already considered in the original
HyPeC model: When removing entire tiles, auxiliary bulk de-
grees of freedom (open edges, or open legs in tensor network
language) are opened up. The usual interpretation of this setup
is that of a black hole, or when extending the open edges
to a noncontracted auxiliary system, that of a wormhole. In
both cases, the boundary state of this setup should exhibit
an additional thermal entropy, which the Ryu-Takayanagi
formula interprets as a deformation of geodesics around the
horizon. In the language of Majorana dimers, this additional
entropy is explained by dimers ending on the open edges:
Following (62), any dimer in a region A that connects to a site
outside of A contributes log(2)/2 to the entanglement entropy
SA. When A becomes large, this entropy contribution scales
with the “horizon area” of the black hole, i.e., the number of
fermionic modes on the open edges. As we increase the radius
of the black hole, SA will begin to grow linearly with the size
of A, as expected of a thermal CFT.

FIG. 3. Left: A Majorana dimer pair in an infinitely large contraction of HyPeC tiles. The endpoints of both dimers meet at the asymptotic
boundary, and thus the dimer pair can be drawn as a double geodesic. Right: Full contraction for a 0̄ input on all tiles, with all dimers pairing
up.
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FIG. 4. Entanglement entropy scaling with the size � of the sub-
system block for successive iterations n of the contraction. Dashed
line is a logarithmic fit of the n → ∞ limit.

As we show in Appendix B, the entanglement entropy SA

of compact subsystems A of the HyPeC for logical bulk input
can be generalized to arbitrary local input, i.e., superpositions
of 0̄ and 1̄ that factorize between the tiles. Without additional
entanglement between bulk sites, SA is independent of the
specific bulk input, as long as the boundary regions A and
its complement AC are reducible to the same discrete bulk
geodesic γA via the greedy algorithm [5], which can be
completely rederived using Majorana dimers. This algorithm
iteratively removes tiles with three or four open edges (see
Fig. 5), deforming A into a region A′ further in the bulk, while
keeping SA = SA′ invariant. Figure 6 illustrates how some
boundary regions B are not reducible to the same geodesic
γB as their complement regions BC. In these cases, no cut
along the pentagon edges can completely separate dimers
with endpoints in B from those with endpoints in BC, leaving
dimers in a residual bulk region. While (63) still holds if local
bulk inputs are fixed to basis states 0̄ or 1̄, the entanglement
entropy SB for local superpositions can generally be larger, as
there is additional input-dependent entanglement between the
residual dimers. For example, in the setup of Fig. 6 (bottom),

FIG. 5. The greedy algorithm: The boundary region A is pushed
into the bulk to a new region A′ by removing pentagon tiles with
three (top) and four (bottom) open edges. Each pentagon can be in
an arbitrary local superposition of 0̄ and 1̄, shown as gray-shaded
dimers.

FIG. 6. Reducing boundary regions in the HyPeC with the
greedy algorithm, for two boundary regions A and B. A reduces to
the same geodesic γA = γAC as its complement AC, while B does not.
On the left-hand side, the corresponding “greedy wedge” is shaded
in the same color as the boundary regions. The residual dimers are
shaded in red.

SB can be up to log 2 larger than the fixed-input result (see
Appendix B for details).

C. Scaling and RG flow

As we saw in Fig. 3, contracting the HyPeC produces effec-
tive boundary EPR pairs connected along geodesics through
the bulk. This allows for a naive interpretation in terms of
IR/UV scaling: Longer geodesics that probe deeper into the
bulk are then associated with the IR scale, while short-range
geodesics close to the boundary correspond to UV modes.
The iteration of contractions in Fig. 2 is then interpreted as
a renormalization group (RG) flow, with each new iteration
adding additional degrees of freedom. As each tile connects
to either one or two tiles of the previous iteration, there are
two possible local scaling steps, both of which are shown in
Fig. 7. Thus, either one or three new dimers are added in each
local step.

FIG. 7. Each tile in the HyPeC can act as a mapping of 1 → 4
edges (left) or 2 → 3 edge (right). Arrows distinguish between “in-
put” (IR) and “output” (UV) edges. Dimers extended from previous
tiles are drawn as dashed curves, while new ones are drawn as solid
curves. The dimer parities depend on the actual logical input on the
tile.
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FIG. 8. Iterative contraction of the HyPeC, with Majorana dimers belonging to decoupled fermionic subsystems drawn in different colors.
The number of such subsystems increases with iteration number n.

This IR → UV renormalization step has a well-defined
UV → IR inverse constructed from the Hermititian conjugate
of a specific tile. Consider the 2 → 3 step from Fig. 7: The
IR → UV step consists of contracting the edges 1 and 2 of
|ψ〉 = α|0̄〉5 + β|1̄〉5 (with |α|2 + |β|2 = 1) onto the bound-
ary state. To inverse this operation, we trace out the edges
3,4,5 of |ψ〉〈ψ |, which we can express using Majorana dimers
[full calculation (B10) in Appendix B]:

(79)

Note the representation of the identity as a set of dimers
directly connecting two pairs of edges: Any Majorana dimer
state is left invariant by contraction with such a state, and
hence any other state, which we can always express in a dimer
basis, as well. We can similarly find that tr(2,3,4,5) |ψ〉〈ψ | =
12/2. The inverse renormalization step is thus simply the
reversal of Fig. 7: Some dimers are closed into loops, thus
tracing out the associated degrees of freedom. In fact, this
result is closely related to the perfect tensor property of the
HyPeC, whereby any pentagon tile can act as an isometry of
k → 5 − k edges as long as k � 5 − k. We also use it in Ap-
pendix B to prove the greedy algorithm with Majorana dimers.

While we saw that Majorana dimers form effective EPR
pairs in the asymptotic limit of infinitely many contractions,
we can also observe a separation of the boundary into separate
fermionic subsystems at finite cutoff. The physical fermion
corresponding to each uncontracted edge can be coupled
to at most two other fermions or edges via the dimers it
contains. These two fermions are again coupled to further
fermions, so we end up with a—necessarily closed—chain of
fermions, each only coupled to its two nonlocal “neighbors.”
However, as we contract more tiles, we find that our boundary
fermions are separated into an increasing number of indepen-
dent chains. This is shown in Fig. 8 for the first few iterations,
where the dimers are colored according to the decoupled
fermionic chain they belong to. The appearance of additional
decoupled subsystems at larger iterations is another sign of an
RG flow: Increasing the number of iterations encodes more
subsystems of varying sizes on the boundary. For the full
HyPeC beyond basis-state input, correlations between these
subsystems can be nonzero. As we will show next, however,
such correlations can only be captured by n-point correlators
with n > 2.

D. Correlation functions for general bulk input

By counting the dimers by the boundary distance over
which they reach, the average correlation falloff of the Ma-
jorana covariance matrix � defined in Eq. (18) can be deter-
mined. For fixed input, this leads to a polynomial � j,k ∝ | j −
k|−1 falloff of two-point correlations [16], again resembling
a CFT scaling. Naively, this holds only for the case of a
fixed logical input 0̄ or 1̄ on each tile, as superpositions of
Majorana dimer states are generally non-Gaussian and have a
complicated two-point correlation structure.

However, we will now show that two-point correlations for
the HyPeC with general bulk input, where local superpositions
of 0̄ and 1̄ inputs are allowed, are surprisingly similar to
the fixed-input case. First, consider the dimer parity structure
caused by local 1̄ inputs. As we showed in Fig. 2, using
even-parity 0̄ input over the entire bulk leads to a simple
contracted state, where all resulting dimer parities are even.
When contracting over odd-parity 1̄ inputs, index permuta-
tions necessary during the contraction process can lead to
additional dimer parity flips caused by Z operators on some
of the pentagon edges. After going through the contraction
process, which is laid out in Appendix C, we find that these
dimer parity flips can be grouped into strings of Z operators
between the tiles with 1̄ input. Possible configurations are
shown in Fig. 9 for two and four 1̄ insertions. While neither the
pairing of 1̄ tiles with Z strings nor the paths of these strings
are unique, we can freely deform them without changing the
boundary state (bottom diagrams in Fig. 9). Furthermore, we
can freely add closed Z loops around a set of tiles with an
even number of 1̄ tiles in it, as this is equivalent to evaluating
the total (even) parity of the contained tiles. Intriguingly, we
can relate this to physical rotations of tiles: While the dimer
parities of 0̄ tiles are invariant under cyclic permutations (in
the spin picture), we showed in Eq. (60) that a rotation of a
tile with 1̄ input is equivalent to tracing the shifted endpoint
of the local ordering with a Z string. A full “rotation” (leading
to a closed Z loop around a 1̄ tile) changes the state by a total
minus sign. In other words, as shown in Fig. 9, Z string loops
around tiles with an even number of 1̄ insertions leave the state
invariant. Thus, it is tempting to interpret the 0̄ tiles as local
fermionic vacua and the 1̄ tiles as logical fermions, emergent
from the underlying spin degrees of freedom.

The set of boundary states for all possible basis-state bulk
inputs (0̄ or 1̄ on each tile) gives us a basis set for the states
of the full HyPeC. In general, boundary n-point functions
for an arbitrary input can have a correlation structure com-
pletely different from the dimer structure we saw for logical
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FIG. 9. Top: Inserting two (left) and four (right) 1̄ tiles in the
HyPeC. Beyond the local dimer parity flips in each tile, pairs of 1̄
tiles are connected by Z strings (red lines), which flip dimer parities
nonlocally. The endpoints of these strings (red dots) set the local
orientation of the 1̄ tiles connected to it. Bottom: Equivalent Z string
configuration of the upper two states.

basis-state input, and overlaps between different basis states
can change the entanglement structure. Fortunately, as we
show in Appendix C, the HyPeC boundary states for different
basis inputs are all distinct by an operator of Majorana weight
w>2, i.e., at least three Majorana operators γ k are required to
map one basis state to another. This leads us to the following
conclusion:

Theorem 3. For a contraction of N pentagon tiles of the
HyPeC, two-point correlation functions of the boundary states
are convex combinations of the covariance matrices for any
logical basis input.

Proof. We denote by |b〉 := |b1, b2, . . . , bN 〉 the state vec-
tor for a fixed basis-state input bk on the kth pentagon. A
general HyPeC boundary state vector is given by the super-
position

|ω〉 =
∑

b∈{0̄,1̄}×N

cb|b〉, (80)

with cb ∈ C. A fermionic two-point correlation function with
entries

G(2)
j,k = i

2
〈ω|[γ j, γ k]|ω〉 (81)

=
∑

b,b′∈{0̄,1̄}×N

i c�
bcb′

2
〈b|[γ j, γ k]|b′〉 (82)

is generally a sum of 22N terms. However, we assumed that
two boundary states for different basis-state inputs b and b′
are separated by a w > 2 operator, i.e., fulfill the conditions

〈b|b′〉 = 0, (83)

〈b| γ j |b′〉 = 0, (84)

〈b| γ j γ k |b′〉 = 0. (85)

In other words, the expectation values of operators with
Majorana weight w � 2 are diagonal in the logical basis. This
implies

G(2)
j,k =

∑
b∈{0̄,1̄}×N

i c∗
bcb

2
〈b|[γ j, γ k]|b〉

=
∑

b∈{0̄,1̄}×N

|cb|2 �b
j,k, (86)

where �b
j,k = i〈b|[γ j, γ k]|b〉/2 are the covariance matrices for

the Gaussian boundary state for a basis-state input b. �
This enormously simplifies the computation of fermionic

two-point correlation functions. For example, consider the
contraction of only two pentagon states: There are four pos-
sible fixed logical bulk inputs, with a 0̄ or 1̄ input on either
pentagon. When contracted, these lead to the “boundary” state
vectors |0̄, 0̄〉8, |0̄, 1̄〉8, |1̄, 0̄〉8, and |1̄, 1̄〉8 on eight edges.
Now consider a general logical input, i.e., a state vector
α1|0̄〉5 + β1|1̄〉5 on the first tile and α2|0̄〉5 + β2|1̄〉5 on the
second (with |αk|2 + |βk|2 = 1). As tensor contraction is a
linear operation, the contracted state vector is given by

|ω〉 = α1α2|0̄, 0̄〉8 + β1β2|1̄, 1̄〉8 (87)

+α1β2|0̄, 1̄〉8 + β1α2|1̄, 0̄〉8. (88)

In dimers, the explicit basis-state contractions are

(89)

(90)

(91)

(92)

Note that in this labeling, the first pentagon is on the right. As
we can see, each of these state vectors is distinguished from
the others by at least three dimer parity flips; i.e., it requires
more than two Majorana operators to map between them. As
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a result, G(2) only contains four diagonal terms,

G(2)
j,k = |α1|2|α2|2 �0̄,0̄

j,k + |β1|2|β2|2 �1̄,1̄
j,k

+ |α1|2|β2|2 �0̄,1̄
j,k + |β1|2|α2|2 �1̄,0̄

j,k , (93)

with the covariance matrix �
b1,b2
j,k containing two-point corre-

lations for the basis state vector |b1, b2〉8.
This example, as well as the general case of Theorem 3,

implies that two-point functions G(2) preserve the correlation
structure of the fixed-input covariance matrices �, whose en-
tries only differ by signs (i.e., dimer parities). Hence, if � j,k =
0 for a fixed logical input (no dimer connecting Majorana
modes j and k), then two-point correlations between the two
modes vanish for any bulk input. This is even true for the case
of superpositions with entangled bulk input, where G(2) is still
a convex sum. Higher order correlation functions separate into
a Gaussian part that follows Wick’s theorem and has the form
of products of dimer terms, and a non-Gaussian part which
contains contributions from overlaps between boundary states
for different logical inputs. To illustrate, consider a single
pentagon with arbitrary logical input, described by |ψ〉 =
α|0̄〉5 + β|1̄〉5 (with |α|2 + |β|2 = 1). The n-point correlators
G(n) until n = 4 are given by

G(1)
j = 〈ψ | γ j |ψ〉 = 0, (94)

G(2)
j,k = i 〈ψ | γ [ j γ k] |ψ〉 = |α|2 �0̄

j,k + |β|2 �1̄
j,k, (95)

G(3)
j,k,l = −i 〈ψ | γ [ j γ k γ l] |ψ〉

= −i α�β〈0̄| γ [ j γ k γ l] |1̄〉 + H.c., (96)

G(4)
j,k,l,m = 〈ψ | γ [ j γ k γ l γ m] |ψ〉

= |α|2 (
�0̄

i, j�
0̄
k,m − �0̄

i,k�
0̄
j,m + �0̄

i,m�0̄
j,k

)
+ |β|2 (

�1̄
i, j�

1̄
k,m − �1̄

i,k�
1̄
j,m + �1̄

i,m�1̄
j,k

)
. (97)

We have used square brackets around indices to denote an-
tisymmetrization. Gaussian contributions can occur only for
even n, as only pairs of Majorana operators can map a dimer
state onto itself. As |0̄〉5 and |1̄〉5 are mapped to each other
by a w = 3 operator, the non-Gaussian part appears at n = 3:
The correlator G(3)

j,k,l can have nonzero entries for j ∈ {1, 6},
k ∈ {3, 8}, l ∈ {5, 10} and its permutations, corresponding to
the dimers differing between both input states [compare (23)
and (24)]. As the exact entries of G(3) depend on the complex
phases with which we define |0̄〉5 and |1̄〉5, they are not
determined by the Majorana dimer structure.

Our example generalizes to large HyPeC contractions: The
Gaussian part of n-point correlations G(n) is described by a
convex combination of Gaussian covariance matrices, while
all boundary states for fixed logical input that differ by n dimer
parities contribute to its non-Gaussian part. We can think of
the latter as an “interaction” between code words that depends
on how much the logical bulk input is in a superposition of the
basis state vectors 0̄ and 1̄. For a completely classical version
of the code, no non-Gaussianity appears.

V. GENERALIZED CODES WITH MAJORANA DIMERS

A. Other stabilizer codes

We have extensively focused on the [[5, 1, 3]] stabilizer
code as the building block of the HyPeC. However, we can
construct Majorana dimer models for states on other ngons,
i.e., more general [[n, 1, d]] stabilizer codes. We now show
that these have properties very similar to the n = 5 case.

We set a number of requirements to such generalizations:
(I) Stabilizer code: We require n − 1 stabilizers (com-

muting products of Pauli operators) that lead to a twofold
degenerate ground state, stabilizing one logical qubit.

(II) Majorana dimer representation: All stabilizers should
be products of two Majorana operators, up to a total parity
operator Ptot .

(III) Rotational symmetry: All stabilizers Sk should be
cyclic permutations of S1.

We may also wish to construct n-qubit codes that corre-
spond to perfect tensors. For fixed input b̄ with b ∈ {0, 1}, this
requires an isometric reduced density matrix

ρA = trAC |b̄〉n〈b̄|n ∝ 12|A| (98)

for any subset A of sites with size |A| � n/2. To hold for
arbitrary input (i.e., superpositions of 0̄ and 1̄), it is also
necessary that 0̄ and 1̄ are partially orthogonal on AC, i.e.,

trAC |0̄〉n〈1̄|n = trAC |1̄〉n〈0̄|n = 0, (99)

again assuming |A| � n/2. Unfortunately, perfect tensors for
qubits require states that are maximally entangled for any
subdivision of sites, a condition which cannot be satisfied for
n = 4 or any n > 6 [46,47]. As n < 3 does not correspond to
a physical tile and we already covered the n = 5 case, this
leaves only n = 3 and n = 6 to be studied with Majorana
dimers. However, as we will see below, none of the corre-
sponding Majorana dimer codes can be perfect for arbitrary
bulk input.

Let us start with the n = 3 case. We can easily find a
stabilizer code that conditions I–III. The stabilizers S are

Y1Y2 = i γ 1 γ 4, Y1Y3 = iPtot γ 2 γ 5, Y2Y3 = i γ 3 γ6.

(100)

The twofold degenerate ground state of the stabilizer Hamil-
tonian H = −∑

k Sk is spanned by one parity-even and one
parity-odd Majorana dimer state with pairing between modes
on opposite sites. Furthermore, for a fixed logical input 0̄ or 1̄
(but not its superpositions), the boundary state is described by
a perfect tensor. This implies that adding such triangular tiles
into the pentagon code preserves its entanglement structure
only for logical basis-state input. Note that this code is equiv-
alent to a repetition code under Yk → Zk . We will explore the
connection to GHZ states in the next section. Contrary to the
pentagon code, embedding the states of this “triangle code”
into a regular {3, k} bulk tiling does not lead to interesting
bulk/boundary relations, as the dimers close into loops.

Similarly, we can consider a “square code” for n = 4,
where we find yet another stabilizer code with similar prop-
erties. The following stabilizers lead to a familiar Majorana
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form:

X1X2Z3Z4 = −iPtot γ 1 γ 4, Z1X2X3Z4 = −iPtot γ 3 γ 6,

Z1Z2X3X4 = −iPtot γ 5 γ 8, X1Z2Z3X4 = −i γ 2 γ7. (101)

Note that by applying a total parity operator, we can
map this to an equivalent code with stabilizers S =
〈Y1Y2, Y2Y3, Y3Y4, Y1Y4〉 (which again highlights the GHZ-
type entanglement). As in the triangle code, Majorana dimers
at a distance of three Majorana sites are paired up. Again, this
implies trivial bulk loops of dimers for a regular {4, k} tiling.
Furthermore, this code does not lead to a perfect tensor for any
logical input, as this is impossible to achieve with four-leg
tensors. One may be tempted to construct a stabilizer code
with S = 〈X1Z2X3, X2Z3X4, X1X3Z4, Z1X2X4〉, where each el-
ement of S can also be written as a product of two Majorana
operators on opposite edges (see Table II). However, this
choice of S only stabilizes a single state instead of a full qubit,
as the ground state is nondegenerate. Interestingly, this ground
state does fulfill the perfect tensor property for connected
subsets of the boundary legs.

Beyond the familiar n = 5 case (with permutations of
X1Z2Z3X4 as stabilizers), we can construct another code
by exchanging Xk ↔ Yk , which is equivalent to exchanging
γ2k−1 ↔ γ2k and leads to the stabilizers

Y1Y3Z4Z5 = iPtot γ 2 γ 5, Y1Z2Z3Y4 = i γ 1 γ 8,

Z1Y2Y4Z5 = iPtot γ 4 γ 7, Y2Z3Z4Z5 = i γ 3 γ 10,

Z1Z2Y3Y5 = iPtot γ 6 γ9.

(102)

Naturally, this code inherits the properties of the original
[[5, 1, 3]] code, including the perfect tensor property for any
logical input.

Attempting to generalize to n = 6, we find the following
choice for the elements of S:

X1X4Z5Z6 = −iPtot γ 1 γ 8, X1Z2Z3X4 = −i γ 2 γ 7,

Z1X2X5Z6 = −iPtot γ 3 γ 10, X2Z3Z4X5 = −i γ 4 γ 9,

Z1Z2X3X6 = −iPtot γ 5 γ 12, X3Z4Z5X6 = −i γ 6 γ11.

(103)

The n = 6 case resembles the n = 3 result, as partial traces
trAC |0̄〉〈1̄| do not usually vanish. Contrary to the n = 3 case,
it is also possible to form subsystems A of size |A| � n/2 that
are disjoint. In both cases, the reduced density matrix ρA is
not an isometry. In other words, this code is only perfect for
basis-state inputs and connected subsystems A.

We find similar properties for n > 6 codes: While it is
impossible to construct a perfect tensor for all (possibly
disjoint) boundary regions A, we can always construct a
Majorana dimer code with basis states 0̄ and 1̄ that are each
perfect for connected subsystems A by connecting Majorana
dimer modes on opposite edges. For n = 4k+1, k ∈ N, this
construction even leads to codes where trAC |0̄〉〈1̄| = 0 for a
connected subsystem A with |A| � n/2. Such a block perfect
code leads to an isometric ρA for superpositions of bulk input
for any connected A. The n = 9 case, whose stabilizers are
permutations of X1Z2Z3Z4Z5X6, is visualized in Table II. Note

TABLE II. Possible generalizations of the [[5, 1, 3]] pentagon
code (fourth row) to an ngon code. All stabilizers are cyclic per-
mutations of the one given in the second column. The last column
indicates whether boundary states lead to block perfect tensors (�)
or fully perfect tensors (��).

that block perfect holographic codes can also be constructed
from Calderbank-Shor-Steane (CSS) codes [48].

While we would expect a bulk tiling of each of the two
n = 5 codes to lead to similar boundary properties, it would
be interesting to investigate codes built from combinations of
perfect and block perfect tensors.
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B. GHZ states

The n = 3 code considered previously possesses a peculiar
property: The logical eigenstates are GHZ states in the Y
basis, i.e., |0̄〉3 = |Y +〉GHZ

3 and |1̄〉3 = |Y −〉GHZ
3 , using the

definition

|Y +〉GHZ
n = 1√

2
(|y+〉⊗n − |y−〉⊗n),

|Y −〉GHZ
n = 1√

2
(|y+〉⊗n + |y− 〉⊗n), (104)

where |y±〉 are the eigenstates of σ y with σ y|y±〉 = ±|y±〉.
This is because |±〉GHZ

n is in the +1 eigenspace of the stabi-
lizer S1 = Y1Y2 and its permutations, and thus in the ground-
state space of corresponding stabilizer Hamiltonian. The to-
tal parity Ptot|±〉GHZ

n = ±|±〉GHZ
n follows from the relation

σz|y±〉 = −|y∓〉.
We can easily generalize these Y -basis GHZ states to

higher n. Using (25), we find YkYk+1 = i γ2k−1 γ2k+2 for k <

n and Y1Yn = iPtot γ2 γ2n−1. This fixes the Majorana dimers
for any n to a (2k+2 mod 2n) �→ (2k−1) pairing (k ∈
{1, . . . , n}), with the last dimer parity flipped in the Y − state.
For example, the GHZ state vectors on a pentagon are

(105)

(106)

Similarly, we can construct n-qubit GHZ states in the X basis:
As XkXk+1 = −i γ2k γ2k+1 and X1Xn = iPtot γ 1 γ2n, we find a
2k → 2k+1 mod 2n pairing, with the last dimer flipped in
the X+ state. For the n = 5 case, the corresponding diagrams
are

(107)

(108)

As a general rule, the positive-parity GHZ states are rota-
tionally invariant in dimer parities, while the negative-parity
GHZ states are rotationally invariant in dimer orientation (i.e.,
direction of arrows). As shown in Sec. III D, this means that
the underlying spin degrees of freedom are invariant under

a cyclic permutation of indices of the tensors specifying the
GHZ states.

In the Majorana dimer language, we can also see that the
[[5, 1, 3]] logical code states are extensions of GHZ states:
All have a completely symmetric entanglement structure,
but whereas the X± and Y ± GHZ states connect Majorana
modes at a distance of d = 1 and d = 3 modes, respectively,
the 0̄ and 1̄ logical eigenstates pair modes five sites apart.
While an even d cannot lead to rotational symmetry, we can
systematically construct all of these states by considering all
odd d . For example, the n = 9 case in Table II corresponds to
a d = 9 pairing.

C. Majorana dimers and Majorana codes

So far, we have only discussed quantum error correction in
a system of spins which we effectively described by fermionic
degrees of freedom. Another approach is to build quantum
error correction in fundamentally fermionic systems and then
describe the actions of Majorana operators in such codes [49].
While superficially similar to our treatment of the HyPeC,
there are fundamental differences: The advantage of actual
Majorana codes is the use of fermion super-selection to reduce
the occurrence of logical errors by encoding them in operators
that are odd in Majorana operators and thus cannot occur if
the system is in a purely bosonic environment. However, our
Majorana dimer model encodes the 0̄ and 1̄ states in different
fermionic parity sectors, superpositions of which would thus
be forbidden in a system composed of actual fermions. It
follows that our Majorana dimer description of the [[5, 1, 3]]
stabilizer code is different from the Bravyi-Terhal-Leemhuis
prescription to turn stabilizer into Majorana codes, which
uses four Majorana modes to encode one spin degrees of
freedom. However, Majorana dimers can still be a useful
tool for studying Majorana codes. Consider a simple Kitaev
chain [50] of 2N Majorana modes in the ground state of the
stabilizer Hamiltonian

H = −i
N−1∑
k=1

γ2k γ2k+1. (109)

The ground state is twofold degenerate but can be spanned by
two Majorana dimer state vectors |±〉N . Explicitly for N = 6,

(110)

(111)

From (31), we immediately see that |±〉N has fermionic parity
±1. While the logical code states can be easily mapped into
each other by applying the operator γ 1 or γ 12 (which flips the
parity of the 1 → 12 dimer), any physical error has to respect
fermion parity and locality and is therefore restricted to the
form γ k γ k+1, i.e., even nearest-neighbor terms. Thus, a phase
error requires a string γ 1 γ 2 . . . γ 12 of Majorana operators
with w = 2N , endowing the ground state of the Kitaev chain
with topological protection. Clearly, this approach can be
generalized to any Majorana dimer state of 2N Majorana

033079-17

CHAPTER 4. PUBLICATIONS 110



A. JAHN, M. GLUZA, F. PASTAWSKI, AND J. EISERT PHYSICAL REVIEW RESEARCH 1, 033079 (2019)

modes: By fixing N−k dimers, we leave a k-dimensional
logical qubit subspace on the remaining k possible dimers.
If these remaining k modes are far apart, then they will be
robust against errors that are both even and local in Majorana
operators.

Furthermore, we can express Majorana stabilizer codes
with dimers even if the stabilizer generators are not
quadratic in Majorana operators. Consider N = 4 edges
with eight Majorana modes under the stabilizers S =
〈−γ1 γ 3 γ 5 γ 7, − γ 2 γ 4 γ 6 γ 8〉. The +1 eigenspace of each
Sk is spanned by two Majorana dimer states on the corre-
sponding modes, one where both dimer parities are even and
one where they are odd. We can thus define the logical 2-qubit
state vectors |b̄1, b̄2〉 as follows:

(112)

If we again assume physical errors to correspond to even
nearest-neighbour Majorana operators, we find a code dis-
tance d = 2 with regards to these errors. Explicitly, two such
operators are required for both bit-flip and phase-flip errors,
e.g., γ 1 γ 2 γ 2 γ 3 = γ 1 γ 3 for a phase flip and γ 3 γ 4 γ 5 γ 6 for
a bit flip. We identify these types of errors by the Majorana
dimers whose parity differs between the logical code states:
In the former case, we identify operators acting on both ends
of one of these dimers, while the latter case corresponds to
operators on one endpoint of each of them. We can thus
systematically evaluate the error correction properties of any
Majorana stabilizer code by expressing its logical basis in
Majorana dimers.

VI. MAJORANA DIMERS AND BIT THREADS

Our model bears close resemblance to the bit thread pro-
posal [24], a model for holographic states that rederives the
Ryu-Takayanagi (RT) formula by postulating that such states
are composed by a flow of EPR pairs between boundary
regions. In this proposal, the entanglement entropy SA of a
boundary region A is then equivalent to the maximal flow
of EPR pairs between A and AC through the bulk, which is
equivalent to the area of the minimal surface γA in the standard
RT prescription.

Clearly, this picture is satisfied by the Majorana dimer de-
scription of the HyPeC for compact regions A [for which (63)
holds]. While each dimer only carries half the entanglement
of an EPR pair, the phenomenological behavior is identical:
SA is determined by the number of dimers between A and AC,
which is restricted by the minimal cut through the bulk tiling
from the endpoints of A. The HyPeC leads to a special dimer

FIG. 10. Effective bit thread picture in the asymptotically large
HyPeC: All dimers are paired along bulk geodesics and any boundary
region A has a maximal flow of bit threads (dimer pairs) through
the Ryu-Takayanagi surface γA. The threads that pass γA, each
contributing log 2 to the entanglement entropy SA, are highlighted.
Note that both the number of such threads and SA are UV divergent.

configuration in which this bound is saturated for any compact
region A (up to degenerate cases shown in Fig. 6). It thus
defines a global bit thread configuration, i.e., one independent
of the choice of A. A special property of this configuration
is that the dimers and bit threads follow discrete geodesics
through the bulk, so that the bulk metric is emergent from the
entanglement structure. Note that in the asymptotic limit of
infinitely many tiles, shown in Fig. 10, each geodesic can be
identified with a pair of dimers, thus forming an effective EPR
pair. Curiously, the resulting entanglement entropy resembles
a classical fracton models on a {4, 5} tiling, where the Shan-
non entropy scales with the number of dual geodesics, each
doubling the ground-state degeneracy [51].

However, global bit thread configurations are generally not
sufficient to reproduce the RT formula for disjoint subsystems;
in such cases, the bit thread flow must differ according to the
choice of the subsystems to reproduce the correct holographic
multipartite entanglement [25]. This cannot be fulfilled with
fermionic dimers, as the global entanglement structure is fixed
for a specific state. However, the HyPeC is only a Majorana
dimer model effectively, with its underlying spin degrees of
freedom converted to fermionic modes through a Jordan-
Wigner transformation. Thus in general, when considering
disjoint subsystems, the entanglement entropy cannot be de-
termined by a dimer counting. It is an interesting future ques-
tion whether the entanglement between disjoint subsystems
(or equivalently, for transpositions of boundary regions) leads
to a multipartite entanglement of the HyPeC also resembling
the bit thread picture.

VII. DISCUSSION

In this work, we have studied the intersection of stabilizer
states and fermionic Gaussian states, both efficiently describ-
able classes of quantum states with a wide range of appli-
cations in quantum information theory and both condensed-
matter and high-energy physics. For this purpose, we have
introduced a graphical formalism for describing Majorana
dimer states, free fermionic states characterized by entangled
Majorana modes. These can describe stabilizer states such
as those of the [[5, 1, 3]] quantum error-correcting code. We
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applied this formalism to the recently constructed hyperbolic
pentagon code (HyPeC), a discrete toy model of the AdS/CFT
correspondence [5]. For logical bulk input fixed to code basis
states, the HyPeC was found to correspond to Majorana
dimers along discrete bulk geodesics. With the bulk geometry
thus encoded in boundary-state entanglement, we reproduced
the logarithmic scaling of the entanglement entropy SA with its
subsystem size for connected subsystems A, reproducing the
Ryu-Takayanagi formula through a calculation that sharply
resembles the recent bit thread proposal. We also extended
our results to bulk inputs containing local superpositions on
each pentagon tile. For this case, where boundary states are
generally non-Gaussian, Majorana dimers quantify the depen-
dence of the entanglement entropy on residual bulk regions.
We also provided a method for computing non-Gaussian n-
point correlations function of the HyPeC for arbitrary bulk
input, finding that the Majorana dimer structure—i.e., bound-
ary correlations only between pairs of Majorana modes—is
preserved for n = 2, a feature related to the quantum error-
correcting properties of the code. Furthermore, we showed
that Majorana dimers can describe a range of entangled states,
including GHZ states and models such as the Kitaev chain,
while also allowing for complicated non-Gaussian states by
expansion in a Majorana dimer basis. Finally, tensor net-
works based on Majorana dimers provide a particularly simple
model of an RG flow, where an IR → UV transformation is
interpreted as an addition of new dimer degrees of freedom
upon contraction.

As this work has focused on the specific Majorana dimer
structure of the [[5, 1, 3]] code and the HyPeC that is built
upon it, we have only glimpsed the general relationship be-
tween Majorana fermions and stabilizers. While our graphical
formalism for Majorana dimers can be used to describe a
wide range of entangled quantum states, including generalized
stabilizer codes, only a subset of these could be covered here.
As this formalism allows for the construction of quantum
states from their entanglement symmetries, a more systematic
study of Majorana dimer states and their symmetries would
be useful in the future. With our approach allowing for a
direct analytical contraction of dimer-based tensor networks
through simple graphical rules and a possible description
of non-Gaussian states through dimer superpositions, there
appears to be a vast number of potential applications. Within
the Gaussian setting, an interesting question is the deforma-
tion of Gaussian stabilizer states. As each Majorana dimer
state can be expressed by a matchgate tensor [16], one may
consider smooth deformation of the HyPeC (and other stabi-
lizer models) while retaining an efficiently contractible tensor
network. Under such deformations, it is conceivable that a
picture with some effective degrees of freedom localized to
geodesics is retained. For example, there exists a possible
connection to ribbon operators [52] which appear in the
study of topological phases of matter away from fixed point
models. This would also involve exploring the similarities
between Majorana dimers and anyon models. One may also
wish to address the actual recovery rates of logical qubits
in holographic codes, which have been studied both in the
original HyPeC proposal [5] and in extensions such as the
Calderbank-Shor-Steane (CSS) holographic heptagon code
[48]. Their remarkable property of a resilience of logical

qubits further in the bulk may be studied more directly with
Majorana dimers, where an explicit mapping between bulk
and boundary degrees of freedom is provided. While the toy
models studied here are inherently discrete, the many proper-
ties of the HyPeC resembling a conformal field theory (CFT)
motivate further studies on its continuum limits, analogous
to continuous MERA [53,54]. While rigorous studies of the
continuum quantum fields corresponding to lattice models are
ongoing [55], the quasiregular symmetries expected on the
boundary of regular hyperbolic bulk tilings [56] may require
a different notion of a CFT for regular discretizations than
the familiar continuum formulation. We hope that the present
work stimulates further endeavors in this direction.
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APPENDIX A: DIMER CONTRACTION RULES

We will now prove the contraction rules from the main text
by considering all possible Majorana dimer configurations
that can be contracted, showing that they either result in a
new Majorana dimer state or vanish. As the Majorana dimer
diagrams are defined as an effective representation of spins,
we define contractions in the Majorana picture to be consis-
tent with the result obtained by reversing the Jordan-Wigner
transformation, contracting the corresponding spin degrees of
freedoms, and applying a new Jordan-Wigner transformation
on the remaining ones. This is equivalent to always con-
tracting the first two fermionic degrees of freedom under the
given ordering, as this requires no reordering when projecting
onto the |0, 0〉 and |1, 1〉 subspaces in the spin picture during
contraction.

Note that any contraction is equivalent to a self-
contraction. For example, when contracting two state vec-
tors |φ〉 and |ψ〉 over some fermionic degree of freedom,
we can simply view this as a self-contraction of the tensor
product |φ〉|ψ〉. By using cyclic permutations, we can relate
the contraction of any edge index pair ( j, k) with j < k to
the canonical case (i, j) = (1, 2). Equivalently, as we will
consider below, we can apply the contraction rules to the last
two edges under a given ordering (which avoids renumbering
all the edges). As we will see throughout this section, the
contraction rules rely purely on the dimer parities of dimers
connected to contracted edges, so changing the index ordering
for states with even total parity does not affect the result, as
dimer parities are left invariant. To see that the same logic
holds for parity-odd states, consider the following reordered
versions of the contraction (41) from the main text, where we
assume the product state vector |φ〉|ψ〉 to have odd total parity,

033079-19

CHAPTER 4. PUBLICATIONS 112



A. JAHN, M. GLUZA, F. PASTAWSKI, AND J. EISERT PHYSICAL REVIEW RESEARCH 1, 033079 (2019)

and again omit dimers that are not connected to the contracted edge:

. (A1)

The two diagrams on the left correspond to the contraction (41) proved in the main text. Cyclic permutations relate this to a
self-contraction of the first two fermions (Majorana modes 1 to 4, center) and alternatively of the two last fermions (Majorana
modes 17 to 20, right). The pivot of the permutation is again represented by a small circle. As we see, applying the dimer
contraction rules from the main text leads to equivalent results under cyclic permutations. Note, however, that forming product
state vectors |φ〉|ψ〉 requires an ordering of the modes in |φ〉 before the ones in |ψ〉, which can still lead to additional parity
shifts when contracting in parity-odd states. We resolve these ambiguities in Appendix C.

Let us now prove the general case of the previous diagram, written as a self-contraction of an arbitrary Majorana dimers state
(of which a product state is only a special case). We start with contractions of the form

. (A2)

We start with an N-fermion state vector |χ〉 [N = 7 in Eq. (A2)] that obeys the Majorana dimer conditions

(γa + i pa,2N γ2N )|χ〉 = 0, (γb + i pb,2N−3 γ2N−3)|χ〉 = 0, (A3)

(γc + i pc,2N−1 γ2N−1)|χ〉 = 0, (γd + i pd,2N−2 γ2N−2)|χ〉 = 0, (A4)

where we assume for now that a < b and c < d , so that the dimer lines do not cross [a = 1, b = 9, c = 3, d = 5 in Eq. (A2)].
We claim that after contraction, the contracted state vector |ω〉 is again a Majorana dimer state with conditions

(γa + i pa,2N pb,2N−3 γ b)|ω〉 = 0, (A5)

(γc + i pc,2N−1 pd,2N−2 γ d )|ω〉 = 0, (A6)

which means that the parities along a contracted path are multiplied. We write these conditions as Ok|ω〉 = 0 with k ∈ {1, 2}
denoting the two cases. Using the tools developed in Sec. III C, we will now prove them simultaneously:

Ok|ω〉 = Ok

∫
d f †

N d f †
N−1 e f †

N−1 f †
N |χ〉

=
∫

d f †
N d f †

N−1 e f †
N−1 f †

N

{
(γ a +i pa,2N pb,2N−3 γ b)|χ〉 for k = 1

(γ c +i pc,2N−1 pd,2N−2 γ d )|χ〉 for k = 2
. (A7)
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Using (A3) and (A4), we can rewrite this purely in terms of operators acting locally on the contracted edges:

Ok|ω〉 =
∫

d f †
N d f †

N−1 e f †
N−1 f †

N

{
pa,2N (γ2N−3 − i γ2N )|χ〉 for k = 1

pc,2N−1(γ2N−3 − i γ2N−1)|χ〉 for k = 2

∝
∫

d f †
N d f †

N−1 e f †
N−1 f †

N

{
( fN−1 + f †

N−1 − fN + f †
N )|χ〉

( fN−1 − f †
N−1 + fN + f †

N )|χ〉

=
∫

d f †
N d f †

N−1

{
( f †

N−1 + f †
N − f †

N f †
N−1 fN−1 − f †

N−1 f †
N f )|χ〉

(− f †
N−1 + f †

N − f †
N f †

N−1 fN−1 + f †
N−1 f †

N fN )|χ〉

=
∫

d f †
N d f †

N−1

{
( fN−1 f †

N−1 f †
N + f †

N−1 fN f †
N )|χ〉

( fN−1 f †
N−1 f †

N − f †
N−1 fN f †

N )|χ〉 = 0. (A8)

We previously assumed a < b and c < d . What happens if, e.g., c > d? As the condition (A6) for the contracted state vector |ω〉
still hold, we just multiply both sides by −i pc,2N−1 pd,2N−2, yielding

(γd − i pc,2N−1 pd,2N−2 γ c)|ω〉 = 0. (A9)

In other words, contracting out two Majorana dimers that cross each other flips the parity of the resulting dimer. For our example,
the corresponding diagram has the form

. (A10)

Self-contractions also allow for special cases involving dimers on the contracted edge itself, which we will now prove, as
well. First, consider the case where one of the contracted edges contains a local dimer, such as the contraction

. (A11)

The contracted path contains contributions from three parities. Without loss of generality, we assume that the local dimer is
located on the N th edge, so that we start with the conditions

(γ2N−1 + i p2N−1,2Nγ2N )|χ〉 = [(1 − p2N−1,2N ) f †
N + (1 + p2N−1,2N ) fN ]|χ〉 = 0, (A12)

(γa + i pa,2N−2 γ2N−2)|χ〉 = 0, (γb + i pb,2N−3 γ2N−3)|χ〉 = 0. (A13)

In our example (A11), a = 2 and b = 7. The first line simply becomes f †
N |χ〉 = 0 for p2N−1,2N = −1 and fN |χ〉 = 0 for

p2N−1,2N = +1. The latter case implies that
∫

d f †
N |χ〉 = 0 as well, as Grassmann integrations and annihilators act equivalently.

We now prove that these assumptions for the uncontracted |χ〉 imply that

(γa + i pa,2N−2 p2N−1,2N pb,2N−3 γ b)|ω〉 = 0 (A14)

for the contracted |ω〉, similar to (A5) and (A6). The proof is similar to the previous setup:

(γa + i pa,2N−2 p2N−1,2N pb,2N−3 γ b)|ω〉 =
∫

d f †
N d f †

N−1 e f †
N−1 f †

N (γa + i pa,2N−2 p2N−1,2N pb,2N−3 γ b)|χ〉

= pa,2N−2

∫
d f †

N d f †
N−1 e f †

N−1 f †
N (p2N−1,2N γ2N−3 − i γ2N−2)|χ〉
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= 2pa,2N−2

∫
d f †

N d f †
N−1 e f †

N−1 f †
N

{
− fN−1|χ〉 for p2N−1,2N = −1

f †
N−1|χ〉 for p2N−1,2N = +1

= 2pa,2N−2

{
− ∫

d f †
N d f †

N−1 f †
N−1 f †

N fN−1|χ〉∫
d f †

N d f †
N−1 f †

N−1|χ〉

= 2pa,2N−2

{∫
d f †

N d f †
N−1 f †

N−1 fN−1 f †
N |χ〉∫

d f †
N−1 f †

N−1

∫
d f †

N |χ〉
= 0. (A15)

Again, crossing the two initial paths so that a > b introduces an additional minus sign to the contracted parity. The next case to
consider contains a Majorana pair across the two contracted edges, such as in the diagram

. (A16)

Note that this kind of contraction always contains a crossing. Again without loss of generality, we assume that the dimer on the
contracted edges connects Majorana modes 2N − 3 and 2N . The full conditions for the uncontracted state are

(γ2N−2 + i p2N−2,2N γ2N )|χ〉 = [i ( f †
N−1 − fN−1) − p2N−2,2N ( f †

N − fN )]|χ〉 = 0, (A17)

(γa + i pa,2N−1 γ2N−1)|χ〉 = 0, (γb + i pb,2N−3 γ2N−3)|χ〉 = 0, (A18)

with a = 3 and b = 7 in Eq. (A16). The first condition can be rewritten into the form

(p2N−2,2N f †
N−1 + i f †

N )|χ〉 = (p2N−2,2N fN−1 + i fN )|χ〉. (A19)

We now prove the contracted state fulfills

(γa − i pa,2N−1 p2N−2,2N pb,2N−3 γ b)|ω〉 = 0. (A20)

Note that additional minus sign in comparison to (A14) due to the crossing. The proof is given by

(γa − i pa,2N−1 p2N−2,2N pb,2N−3 γ b)|ω〉 =
∫

d f †
N d f †

N−1 e f †
N−1 f †

N (γ a −i pa,2N−1 p2N−2,2N pb,2N−3 γ b)|χ〉

= −pa,2N−1

∫
d f †

N d f †
N−1 e f †

N−1 f †
N (p2N−2,2N γ2N−3 + iγN2−1)|χ〉

= −2pa,2N−1

∫
d f †

N d f †
N−1 e f †

N−1 f †
N (p2N−2,2N f †

N−1 + i f †
N )|χ〉

= −2pa,2N−1

∫
d f †

N d f †
N−1 (p2N−2,2N f †

N−1 + i f †
N )|χ〉

= −2pa,2N−1

∫
d f †

N d f †
N−1 (p2N−2,2N fN−1 + i fN )|χ〉

= 0. (A21)
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Finally, consider contractions that involve paths that get completely removed by contraction. Up to parities, there are two
possible dimer configurations for such contractions:

, (A22)

(A23)

Clearly, such contractions can only affect the state on the remaining edges by an overall constant C. Unless C = 0, this constant
can be absorbed into an appropriate normalization. But when does C = 0 occur? Let us consider the first diagram (A22), which
can be generalized to the conditions

(γ2N−3 + i p2N−3,2N−2 γ2N−2)|χ〉 = 0, (A24)

(γ2N−1 + i p2N−1,2N γ2N )|χ〉 = 0. (A25)

We claim that the contracted state vector |ω〉 vanishes if (p2N−3,2N−2, p2N−1,2N ) ∈ {(1,−1), (−1, 1)}. These two cases
correspond to either fN−1|χ〉 = 0 and f †

N |χ〉 = 0 or f †
N−1|χ〉 = 0 and fN |χ〉 = 0. It is easy to see that the contraction

|ω〉 =
∫

d f †
N d f †

N−1 e f †
N−1 f †

N |χ〉 =
∫

d f †
N d f †

N−1 |χ〉 +
∫

d f †
N d f †

N−1 f †
N−1 f †

N |χ〉 (A26)

is annihilated in either case (recall that integrals
∫

df †
k act like annihilation operators fk). The second diagram (A22),

corresponding to the conditions

(γ2N−3 + i p2N−3,2N γ2N )|χ〉 = 0, (A27)

(γ2N−2 + i p2N−2,2N−1 γ2N−1)|χ〉 = 0, (A28)

is more involved. We seek to prove that |ω〉 vanishes if (p2N−3,2N , p2N−2,2N−1) ∈ {(1,−1), (−1, 1), (−1,−1)}, i.e., for at least
one odd parity. In terms of creation and annihilation operators, these three cases can be rewritten as

fN−1|χ〉 =

⎧⎪⎪⎨
⎪⎪⎩

fN |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (1,−1)

fN |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (−1, 1)

− f †
N |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (−1,−1)

, (A29)

f †
N−1|χ〉 =

⎧⎪⎪⎨
⎪⎪⎩

f †
N |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (1,−1)

− f †
N |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (−1, 1)

fN |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (−1,−1)

. (A30)

For the first two cases, the contraction (A26) turns into

|ω〉 =
∫

d f †
N d f †

N |χ〉 ±
∫

d f †
N d f †

N−1 f †
N−1 f †

N−1|χ〉 = 0. (A31)

For the third case, we get

|ω〉 =
∫

d f †
N d f †

N−1 (1 − f †
N fN )|χ〉 =

∫
d f †

N d f †
N−1 fN f †

N |χ〉 = 0. (A32)

To summarize, we see that a self-contracted loop leads to vanishing contracted state if the total parity of the loop is odd, as
postulated in the main text. Even-parity loops contribute an overall constant C �= 0 to the contracted state.
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APPENDIX B: GRAPHICAL COMPUTATION OF ENTANGLEMENT ENTROPIES

In this section, we derive formula (63) for the entanglement entropy SA of a Majorana dimer state using diagrammatic tools
and extend it to the computation of Rényi entropies S(n)

A . Furthermore, we generalize these proofs to full the HyPeC with arbitrary
bulk input, recovering previously known conditions on the boundary regions A [5]. Following (75), we can visualize a density
matrix ρ = |ψ〉〈ψ | of some Majorana dimer state vector |ψ〉 as

. (B1)

Here we are effectively using a Choi-Jamiolkowski isomorphism, representing a density matrix as a state in a doubled Hilbert
space. In order to produce a reduced density matrix ρA of some subsystem A, we sum over a complete set of states projected onto
the edges that are part of AC (the complement of A), which we saw in Eq. (72) to be equivalent to a contraction. For instance, the
green-shaded subsystem A in the following example leads to a reduced density matrix of the form

.

(B2)

We have omitted Majorana labels for clarity. In the first step, we used (72) to relate partial trace and contraction, and then applied
(74) in the second, yielding proper normalization factors. The third step merely uses (72) in reverse. In summary, we see that
normalization (requiring trρA = 1 at each step) leads to a simple rule: Each contraction that glues two pairs of dimer together
produces a factor of 1/

√
2.

The entanglement entropy now follows from the eigenvalue spectrum of ρA. We can compute the eigenstates by projecting a
full basis of Majorana dimer states onto the contracted edges of |ψ〉. For simplicity, we choose the basis of local Fock states, i.e.,
with dimers only between the Majorana modes on each edge. As two edges are contracted out, there are four such basis states,
of which only two are nonvanishing. These eigenvectors |ψA,1〉 and |ψA,2〉 are given by

, . (B3)
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Here, both diagrams represent normalized states. To see that our construction indeed yields eigenstates of ρA, consider the
eigenvalue equation for the second eigenvector |ψA,2〉:

2

. (B4)

With a similar diagram for ρA|ψA,1〉 it is found that both eigenvalues are 1/2. Thus, the entanglement entropy is given by

SA = −trA ρA log ρA = − 1
2 log 1

2 − 1
2 log 1

2 = log 2. (B5)

We find that evaluating SA reduces to counting the dimers connecting the “ket” edges with the “bra” edges, which determines
how mixed ρA is. In general, any reduced density matrix contains 2m “mixing dimers” that span an eigenspace of 2m orthogonal
dimer states (whose diagrammatic representation is not unique for m > 1). The entanglement entropy follows as

SA = −2m

(
1

2m
log

1

2m

)
= m log 2. (B6)

Equivalently, as 2m dimers connect A with the complementary (contracted) region AC, each dimer contributes 1
2 log 2 to the

entanglement entropy SA, as in Eq. (63).
Using a similar strategy, we can compute the Rényi entropy S(n)

A = log(trρn
A)/(1−n). This requires evaluating the nth power

of the reduced density matrix ρA. As an example, consider the square of (B2):

(B7)

Thus, it follows that ρn
A = ρA/2n−1, and hence S(n)

A = log(trρA/2n−1)/(1−n) = log 2. This property of a “flat Rényi spectrum,”
i.e., S(n)

A = SA, holds for any Majorana dimer state. For a generic ρA, (B7) involves n − 1 contractions of 2m mixing dimers,
leading to the following analog of (B6) for Rényi entropies:

S(n)
A = 1

1 − n
log trρn

A = 1

1 − n
log

trρA

2m(n−1)
= m log 2 = SA. (B8)

Note that this property of a flat entanglement spectrum is a proven feature of stabilizer codes states [44], thus making
Majorana dimers ideal for the study of stabilizers. Contrary to the stabilizer picture, however, we can also diagrammatically
evaluate the entanglement entropy for classes of superpositions, as we will now see. First, we take a look at superpositions
of input states of the HyPeC. Consider a single tile of the [[5, 1, 3]] code. For arbitrary bulk input, the boundary state is
given by

. (B9)

On the right-hand side, we have used a new notation for superpositions of [[5, 1, 3]] computational basis states with complex
factors α and β. Normalization requires |α|2 + |β|2 = 1. We now show that the reduced density matrix ρA of this superposition
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becomes an identity on the subsystem A when it consists of only two edges [A = (1, 2)] or one edge [A = (1)]:

(B10)

(B11)

Note that the actual values for α and β do not change ρA, and thus the entanglement spectrum is the same for any superposition
of the [[5, 1, 3]] logical code states. As we can easily see, S(1) = log 2 and S(1,2) = 2 log 2, identical to the result for the
logical code states. The corresponding eigenstates are simply a complete basis of Majorana dimers on one or two edges,
respectively.

Let us now consider the |A| = 3 case. We easily find the entanglement entropy SA = SAC = 2 log 2. The eigenstates of ρA can
be found, as in Eq. (B3), by starting with the state vector |ψ〉 and contracting a complete basis on the edges in AC, yielding four
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eigenstates. We compute the first one explicitly:

(B12)

The remaining three eigenstates are given by

(B13)

To see that these are eigenstates, we do not need to actually evaluate these contractions. Instead, using (B10), we compute the
eigenvalue equation for the first eigenvector as follows:

(B14)

The equations for the other eigenstates follow equivalently, leading to an entanglement entropy SA = 2 log 2 (i.e., m = 2). For
more than one tile, we can generalize (B14) for local superpositions, i.e., superpositions that factorize along the tiles. As an
example, consider a |ψ ′〉 resulting from contracting two states of the form (B9):

(B15)

Here we have defined the contraction operator Cj↔k contracting the jth edge of the first dimer state on the kth edge of the
second. We can now show that (B14) generalizes if we extend region A → A′ onto a neighboring pentagon tile. The reduced
density matrix becomes

(B16)

Note that a normalization factor of 2 appears as a result of the unresolved contraction within both |ψ ′〉 and 〈ψ ′|. To see that the
eigenvalue spectrum of ρ ′

A′ is the same as that of ρA, we simply extend the eigenvectors (B12) and (B13) onto the region A′ by
contracting them with the first pentagon, which is equivalent to contracting a complete basis on the extended vector |ψ ′〉. For the
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first eigenvector, we thus find

(B17)

The complete eigenvalue equation can be resolved by applying (B10) and (B11) successively:

(B18)

Again, this procedure holds for all eigenstates, leading to the same eigenvalue spectrum as for ρA. Thus, we see that “gluing”
[[5, 1, 3]] tiles onto a region A on an original tile only projects the eigenvalues onto a larger space of Majorana dimer states,
leaving their eigenvalues invariant. This procedure can also be extended to cases where a subsystem B and its complement BC
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both cover different tiles, as in the following example:

. (B19)

Here, we have rotated the configuration (B15) for easier visualization; as before, the adjoint part of ρ ′
B is on the right. Even in

this configuration, we can construct a set of eigenvectors by projecting a complete dimer basis onto BC:

(B20)

Explicitly, the eigenvalue equation for |ψ0,0,0
B 〉 is given by

(B21)

Again, after repeating this procedure for all eight eigenstates, we find that the entanglement entropy corresponds to the result
for a fixed logical input, SB = 3 log 2. An important condition for computing reduced density matrix eigenstates in this way is
that when projecting a complete basis of eigenvectors onto |ψ〉, the resulting states must be orthogonal. This is always the case
when no dimers connect sites within region AC. If they do, we can still simplify the reduced density matrix to an effective density
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matrix of a reduced state, as in the following example for a region C:

(B22)

(B23)

Instead of 2|CC| = 32 eigenstates, as in the previous example, we now only find 2|γC | = 8, where γC is the complement region of
C after simplifying ρC (with ∂γC = ∂C; here, γC = C). This is because a basis set contracted onto CC of the original state does
not lead to fully orthogonal states, for example,

(B24)

Thus, we conclude that if by applying (B10) and (B11) a reduced density matrix ρA can be simplified so that no dimers connect
sites within γA, then there are 2|γA| eigenstates with equal eigenvalues and an entanglement entropy SA = |γA| log 2. When such a
simplification is not possible, the entanglement entropy can depend on the bulk input. If we extend the region C → D onto half
of the two-pentagon system, we cannot apply (B10) and (B11):

(B25)
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Because of a dimer connecting Majorana modes within D, an eigenbasis projected onto its edges becomes mixed. Indeed, the
reduced density matrix ρD separates into a sum of parity-even and parity-odd terms, as cross-terms between both vanish:

(B26)

We can thus write

ρD = trDC (α1α2|0̄, 0̄〉 + β1β2|1̄, 1̄〉)(α�
1α

�
2〈0̄, 0̄| + β�

1β
�
2〈1̄, 1̄|) + trDC (α1β2|0̄, 1̄〉 + β1α2|1̄, 0̄〉)(α�

1β
�
2〈0̄, 1̄| + β�

1α
�
2〈1̄, 0̄|)

≡ trDC |ψ+〉〈ψ+| + trDC |ψ−〉〈ψ−|. (B27)

We have defined as |ψ±〉 the parity-even and parity-odd part of the total state vector |ψ〉. For each of the two states, we can
still apply our previous approach of finding the eigenbasis by projecting a complete dimer basis on the state itself, yielding
SD(ψ+) = SD(ψ−) = 3 log 2, as three dimers connect D and DC . Following the rules for the entanglement of superpositions for
biorthogonal states [57], we can now compute the entanglement entropy of the full state as

SD = 〈ψ+|ψ+〉SD(ψ+) + 〈ψ−|ψ−〉SD(ψ−) + h2(〈ψ+|ψ+〉)

= 3 log 2 + h2(|α1α2|2 + |β1β2|2) � 4 log 2, (B28)

where we have used the binary entropy function x �→ h2(x) := −x log x − (1 − x) log(1 − x). We are thus in a position to
compute the entanglement entropy even for complicated superpositions of dimer states.

Assuming a boundary region A that can be simplified using (B10) and (B11), however, we can easily compute the
entanglement entropy of the full HyPeC independent of the bulk input. For this, we follow the steps laid out in Eqs. (B18), (B21),
and (B22) for the construction of reduced density matrices and their eigenstates. Using our previous notation for superpositions,
an example is given by

(B29)
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The normalization depends on the number NC of internal contractions. We omitted the superposition labels α, β for clarity, but
still assume only local superpositions within each tile. Given a boundary region A, we first simplify the reduced density matrix
ρA as in Eq. (B22), being left with a wedge W bounded by minimal cut (or “bulk geodesic”) γA:

(B30)

Here, NC,W is the number of (still unresolved) contractions in the wedge W . The eigenstate basis of ρA can again be constructed
by projecting a complete basis of dimer states onto the edges of γA, leading to a 2|γA|-dimensional space of states, where |γA| is
the number of edges along the cut. For illustration, we consider the eigenstate with all-even projections:

(B31)
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The eigenvalue equation can be evaluated with the same techniques that we have used for reducing (B18) and (B21),

(B32)

Thus, we find the same entanglement entropy as for the case of fixed logical input states, SA = |γA| log 2 (with |γA| = 5). Our
procedure is equivalent to the greedy algorithm [5], which in dimer language is manifested through the reduction steps (B11)
and (B10). As for the greedy algorithm, our approach only applies when both A and its complement AC are reduced to the same
γA after simplification. In that case, we can draw the following conclusion about the reduced density matrix:

(B33)

033079-33

CHAPTER 4. PUBLICATIONS 126



A. JAHN, M. GLUZA, F. PASTAWSKI, AND J. EISERT PHYSICAL REVIEW RESEARCH 1, 033079 (2019)

As a result, we find a flat spectrum of Rényi entropies S(n)
A = SA = |γ | log 2. When reductions from A and AC are not equivalent,

i.e., when the greedy algorithm does not converge to a geodesic, dimers will be “lost” during each power of ρA, and S(n)
A will

decrease with n.

APPENDIX C: CONTRACTION ORDER

Contracting Majorana dimer states on a given tiling can give rise to ambiguities regarding contraction order: Before
contraction, each tile has its own ordering of indices, some of which are contracted out and some remain on the edges of
the final geometry. We consider here the HyPeC with its underlying spin tensor network description, of which the Majorana
dimers form an effective representation. Let us start with the simplest case of a 0̄ (read: “logical zero”) input everywhere in the
bulk and a successive contraction of neighboring tiles, starting from the center:

(C1)

As all tiles have been filled with even-parity input states, the dimer parities of the fully contracted state is entirely independent
of the initial ordering: As shown in Eq. (59), any cyclic permutation (i.e., pivot shifts) of the initial tiles or at intermediate
contraction steps would have left the dimer parities invariant. For a general bulk input, however, the initial index labeling does
matter: The 1̄ input has odd parity and its dimer parities thus change under cyclic permutations, as shown in Eq. (60). Thus,
whenever a 1̄ tile is contracted in, the total parity of the contraction changes, and while the total parity is odd, any cyclic
permutation leads to a string of Z edge operator, as discussed in Sec. III D. This leads to the following contraction rule for
arbitrary fixed bulk input:

Lemma 4 (Dimer parities of the fixed-input HyPeC). Contracting fixed [[5, 1, 3]] code states on a pentagon tiling is equiva-
lent to multiplying dimer parities of contracted dimer pairs (regardless of the initial orientation of tiles) and adding Z strings
between the pivots of pairs of tiles with 1̄ input. If the number of 1̄ inputs is odd, then an additional Z string connects the pivot
of the unpaired 1̄ tile with the pivot of the full contraction.

Proof. Without loss of generality, consider a particular contraction order and initial tile orientation. Whenever the total parity
of the contraction at any step is even, contracting a 1̄ tile will cause pivot shifts in all following contraction steps to produce Z
strings, until another 1̄ tile is reached and total parity becomes even again. The starting and end points of these Z strings are the
pivots of the first and second 1̄ tiles. If the number of 1̄ tiles is even, then the final contraction will contains Z strings between
each successive pair of 1̄ tile pivots. If it is odd, then the Z string from the last 1̄ tile will continue until the boundary of the full
contraction. Consider the previous contraction for a pair of 1̄ tiles, with pivots of the odd tiles (whose orientation is now relevant)
shown by a small circle:

(C2)
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During the first iteration of contractions, the last contraction involves the first 1̄ tile and makes the contraction parity odd. We
thus need to mark it with a pivot, which is simply the pivot of the original 1̄ tile. To contract the other 1̄ tile, a pivot shift is
required, which produces a Z string (red line):

(C3)

The contraction is now again parity even (the pivots “cancel each other out”), and the rest of the contraction can be performed
without worrying about orientations:

(C4)

This result is independent of the ordering of the previous contraction, as we can freely deform the Z strings through the 0̄ tiles:

(C5)

To indicate the action of the Z strings on the full contraction, we have omitted the spaces between tiles in the previous diagram.
Furthermore, the result is independent of the initial orientations of the 1̄ tiles, as rotating these is equivalent to extending or
shortening the Z strings, as we have found in Eq. (59):

(C6)

033079-35

CHAPTER 4. PUBLICATIONS 128



A. JAHN, M. GLUZA, F. PASTAWSKI, AND J. EISERT PHYSICAL REVIEW RESEARCH 1, 033079 (2019)

Contracting more than two 1̄ tiles will create Z strings between pairs of them, in the order in which we contracted. This ordering,
however, also does not affect the final contraction, as we can change this pairing using the same rules:

(C7)

The same rules apply if we have an odd number of 1̄ tiles in the bulk. As the entire contraction now has odd parity, it also requires
a pivot, which pairs up with the last 1̄ tile in the ordering. Again, this choice of a “last” tile does not change the outcome:

(C8)

Note that in the last step, we pushed Z strings through two pentagon tiles. Consistent with the lemma above, moving the boundary
pivot of the full contraction extends the Z string attached to it along the boundary, which is the expected behavior for a cyclic
permutation of an odd-parity dimer state. �

Lemma 4 now allows us to make some statements on the distance between Majorana boundary states for different bulk inputs.
Let us define the Majorana weight w as the number of Majorana operators (i.e., dimer parity flips) required to transform one
state into another. Given a boundary state vector |0̄, 1̄, 1̄, 0̄, . . .〉 for an arbitrary bulk input, what is the lowest wmin with respect
to a state with any other bulk input? We claim the following:

Lemma 5 (Majorana distance of HyPeC boundary states). The boundary states of the HyPeC for fixed logical input in the
bulk have a code distance w > 2 between any two inputs.

Proof. We will now show that starting from any fixed-input HyPeC boundary state, no number of logical input flips in the
bulk can lead to a state which is closer that w = 3 to the original one. This bound is clearly saturated for such an input flip 0̄ ↔ 1̄
of a tile on the boundary, which flips three dimer parities. If we instead push the input flip further into the bulk, we will produce
a Z string from the boundary (or annihilate one, if the original contraction is parity odd). The further in the bulk the flip occurs,
the longer the Z string grows, increasing w. Because of the hyperbolic geometry, there is also no way that the dimer flips by
neighboring 1̄ insertions can cancel each out. For neighboring pairs of 1̄ insertions, we always find w > 3:

, (C9)
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. (C10)

We have defined w relative to the all-0̄ input, but the result clearly holds for insertions on any fixed code input. When non-
neighboring pairs are added, the resulting Z strings cause additional dimer flips:

. (C11)

Similarly, adding even more pairs to make two Z strings “cancel” out does not bring down w:

. (C12)

As a result, it is impossible to produce Majorana dimer states on the boundary of the fixed-input HyPeC that can be mapped to
each other with less than w = 3 Majorana operators. The underlying reason for this can be found in the geometrical construction:
The number of possible boundary configurations 2M on L boundary edges increases much faster than the 2N configurations on
the N bulk tiles, as the geometry is hyperbolic. �

The property w > 2 resembles the code properties of the HyPeC: Because the tiles corresponding to [[5, 1, 3]] code states, it
requires three Pauli-type operations (“errors”) to map one code state to another. Thus, it requires at least three Pauli errors on the
boundary to map any HyPeC state to another one. Here, we found that it also requires at least three “Majorana errors” to perform
such a mapping. This is not a trivial result, as the number of Pauli operations corresponding to just two Majorana operations
already grows in the distance between the two sites on which the Majorana operators act. For example,

γ 2 γ2k−1 = i X1Z2Z3 . . . Zk−1Xk . (C13)

In general, applying two Majorana operators γ j and γ k at some distance on the boundary produces a Z string between the edges
on which γ j and γ k act. Fortunately, the [[5, 1, 3]] code states upon which the HyPeC are built allow for the expression of long
Z strings as an action of just two Pauli operators as

(C14)
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(C15)

Here, we have used the 0̄ input for illustration. The relative sign between the left- and right-hand side of these equations changes
when using the 1̄ input instead, corresponding to a “phase flip” in the language of quantum error correction. We conclude that a
pair of Majorana operators on the boundary of the HyPeC is related, up to a complex phase, to no more than two Pauli operators
acting on tiles on the boundary. As each of these tiles corrects one Pauli errors, no overlap between states for different bulk
inputs can be produced with such an operation, supporting our earlier geometrical explanation.
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Central to the AdS/CFT correspondence is a precise relationship between the curvature of an anti–de Sitter
(AdS) space-time and the central charge of the dual conformal field theory (CFT) on its boundary. Our work
shows that such a relationship can also be established for tensor network models of AdS/CFT based on regular
bulk geometries, leading to an analytical form of the maximal central charges exhibited by the boundary states.
We identify a class of tensors based on Majorana dimer states that saturate these bounds in the large curvature
limit, while also realizing perfect and block-perfect holographic quantum error correcting codes. Furthermore,
the renormalization group description of the resulting model is shown to be analogous to the strong disorder
renormalization group, thus giving an example of an exact quantum error correcting code that gives rise to a
well-understood critical system. These systems exhibit a large range of fractional central charges, tunable by the
choice of bulk tiling. Our approach thus provides a precise physical interpretation of tensor network models on
regular hyperbolic geometries and establishes quantitative connections to a wide range of existing models.

DOI: 10.1103/PhysRevA.102.042407

I. INTRODUCTION

Years before the formulation of the holographic princi-
ple, Brown and Henneaux noticed a peculiar property of
anti–de Sitter (AdS) space-time, a solution to Einstein’s
equation with constant negative curvature: At its asymptotic
boundary, the generators of the symmetry group SO(2, 2) of
(2+1)-dimensional AdS3 space-time form a Virasoro algebra
describing a two-dimensional conformal field theory (CFT)
with an effective central charge depending on the curvature
of the AdS bulk. Rather than a mathematical coincidence,
the AdS/CFT correspondence [1] propelled this observation
to the cornerstone of a holographic duality between gravity
in (d+2)-dimensional AdSd+2 space-time and a CFT on its
(d+1)-dimensional boundary, with an equivalent action de-
scribing both sides of the duality [2]. A key motivation for the
holographic principle was the discovery that a black hole’s en-
tropy scales with its horizon area rather than its volume [3,4].
The Bekenstein-Hawking entropy formula

SBH = Ahor

4G
, (1)

where Ahor is the horizon area and G the gravitational constant,
has a surprising generalization in the context of AdS/CFT:
The entanglement entropy SA [5] of a boundary region A
follows the Ryu-Takayanagi (RT) formula [6]

SA = |γA|
4G

, (2)

where |γA| is the area of an extremal surface γA in the
bulk whose boundary ∂γA matches the boundary ∂A. In 2+1

dimensions, γA is simply a geodesic curve and |γA| its length.
Both formulas (1) and (2) suggest an encoding of information
in Planckian pieces of area of size ∼G = l2

p (in 3+1 bulk
dimensions).

While the AdS/CFT correspondence is formulated in the
continuum, tensor networks [5,7–10] have become a popular
approach for models built on a discretized AdS space-time,
as they naturally incorporate the RT formula in the form of
an upper bound on entanglement and yield boundary quan-
tum states that can be efficiently computed. The multiscale
entanglement renormalization ansatz (MERA) [11], a ten-
sor network that well approximates critical boundary states,
was identified as a possible realization of discrete hologra-
phy [12,13], but the bulk geometry of the MERA cannot be
directly related to an AdS time slice [14–16]. Instead, regular
hyperbolic tilings have recently been used as the basis of
numerous discrete holographic models [17–23], elucidating
many aspects of AdS/CFT, particularly its deep connection
to quantum error correction [17,24], However, a clear inter-
pretation of the resulting boundary states in terms of a critical
system, as is possible for the MERA, remained elusive.

Resolving this question, we show that tensor networks on
regular tilings lead to boundary quantum states whose sym-
metries naturally discretize conformal symmetries on time
slices, allowing their maximal central charges to be analyt-
ically computed for any tiling. Relating this central charge
to the scalar curvature of the tiling then results in a discrete
generalization of the Brown-Henneaux (BH) formula [25]. We
demonstrate these properties using a class of tensor networks
based on Majorana dimer states, whose exact central charges
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are computed and are shown to saturate the upper bound
in the strong-curvature limit. This class of states includes
the widely studied hyperbolic pentagon code (HyPeC), an
instance of the HaPPY codes [17], a toy model for quantum
error correction in AdS/CFT. In this paper, we argue that these
dimer models are a discrete approximation of a CFT with an
aperiodic structure, the inflation rules of the tiling providing a
local renormalization group transformation identified with the
strong-disorder renormalization group (SDRG). The discrete
boundary thus exhibits quasiregular symmetries, describing a
CFT discretization that breaks translation invariance and pos-
sesses disorder on all length scales. Such critical systems have
been extensively studied in the condensed matter literature,
but no connection to holographic models had been known
until now.

II. CENTRAL CHARGES AND CURVATURE

In global AdS coordinates, AdS3 space-time takes the form

ds2 = −(1 + r2/α2)dt2 + α2dr2

α2 + r2
+ r2dφ, (3)

where α is the AdS radius. The scalar curvature or Ricci scalar
R of AdSd space-time with d = 2+1 dimensions is given by

R = −d (d − 1)

α2
= − 6

α2
, (4)

corresponding to a negative cosmological constant � =
−1/α2. An AdS3 time slice can be more conveniently mapped
to the Poincaré disk with

ds2 = 4α2 dρ2 + ρ2dφ2

(1 − ρ2)2
. (5)

Global and Poincaré disk coordinates are related by a radial
transformation r = 2αρ/(1 − ρ2) and the time-slice con-
straint dt = 0. The global radius is defined in r ∈ [0,∞[, so
the AdS boundary is mapped from r = ∞ to ρ = 1. Con-
sider an asymptotically AdS space-time, i.e., one described
by Eq. (5) near the AdS boundary. In this asymptotic region
ρ → 1, a bulk geodesic γA corresponding to a boundary re-
gion A will be unaffected by massive deformations further in
the bulk, simply following a radial direction (see Fig. 1). At
two different cutoff radii ρ1 < ρ2 close to unity, the subsystem

FIG. 1. (a) Continuous and (b) discretized geodesic γA in the
Poincaré disk with a deformation in the center and a boundary
cutoff shown as a dashed curve. In the asymptotic region towards
the boundary, the shape of γA is independent of bulk deformations.

length � = |A| at each cutoff is given by

�(k) = 2αρk

1 − ρ2
k

	φ ≈ α

1 − ρk
	φ, (6)

where 	φ is the Poincaré disk angle subtended by A. The
difference in geodesic length |γA| between both cutoffs is
given by the lengths of two radial segments:

|γ (2)
A | − |γ (1)

A | = 2
∫ ρ2

ρ1

2α

1 − ρ2
dρ ≈ 2α ln

�(2)

�(1)
. (7)

Compare this with the entanglement entropy of a conformal
field theory for a small subsystem (	φ � 2π ), given by [26]

SA = c

3
ln

(
2�

	φε
sin

	φ

2

)
≈ c

3
ln

�

ε
, (8)

where ε denotes the lattice spacing and c is the central charge
of the CFT. Assuming that the RT prescription holds, we
recover the Brown-Henneaux formula [25]

c = 3α

2G
. (9)

III. DISCRETE TENSOR NETWORK MODELS

A natural discretization of an AdS time slice, or equiv-
alently, the Poincaré disk, is given by a regular hyperbolic
tiling (Fig. 1). A regular {n, k} tiling, with k n-gon tiles at each
vertex, is hyperbolic if the sum of inner angles of each n-gon
is smaller than (n − 2)π , i.e., when 1/n + 1/k < 1/2. We can
relate such a discretized bulk geometry to a quantum state by
identifying each n-gon tile with a rank-n tensor and contract-
ing them over all edges, forming a tensor network [5,7–10].
The uncontracted edges on the boundary are then identified as
the physical sites of a boundary state. As the Poincaré disk (1)
can contain infinitely many tiles, a prescription for construct-
ing the tiling towards the asymptotic boundary is needed.
Starting with a given tile/tensor, we iteratively “grow” our ge-
ometry by contracting layers of tensors in inflation steps, each
step corresponding to a UV cutoff. A discretized boundary
region A at such a discrete cutoff does not follow a constant
radius ρ in the Poincaré disk, with its length � being larger
than expected for a radial cutoff in the continuum. Similarly,
as shown in Fig. 1, discretized geodesic cuts γA no longer
follow a smooth curve, with their lengths |γA| also being larger
than in the continuum. However, we can still define a discrete
analog to the RT formula (2) as a bound on the entanglement
entropy of a boundary region A, given by

SA � |γA|
s

ln χ, (10)

with ∂A = ∂γA and s being the length of each individual edge.
The bond dimension χ of each tensor index is assumed to be
constant throughout the network.

In analogy to the previous section, we now derive a dis-
cretized form of the Brown-Henneaux formula (9) from the
relative growth of boundary and geodesic lengths � = |A| and
|γA| under inflation of the tiling. We specifically consider ver-
tex inflation, whereby an inflation step consists of filling each
open vertex with tiles. Vertices are labeled by their number
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FIG. 2. Vertex inflation of (a) the {3, 7} and (b) the {4, 5} tiling,
with vertices labeled by type and each inflation layer color-coded.

of neighbors up to the given inflation level. First consider the
n = 3 case, the triangular hyperbolic tiling, whose vertex in-
flation is shown in Fig. 2 (left). We start with a single triangle
with three vertices, each of which has two neighbors. The first
inflation step gives each vertex k−2 additional neighboring
vertices, two of which are shared with its previous neigh-
bors. Thus, the inflation step adds k−3 new vertices for each
old one. After the first inflation step, all boundary vertices
have either three or four neighbors, two of which are other
boundary vertices. Denoting vertices with two, three, and four
neighbors with the letters a, b, and c, respectively, this pattern
is summarized in the inflation rule

a �→ bk−4c, b �→ bk−5c, c �→ bk−6c, (11)

where we encode the boundary vertices as a string of a, b,
and c, ak denoting k repetitions of a. The inflation rule for any
hyperbolic {n, k} tiling produces a quasiregular sequence [27]
exhibiting self-similarity: After sufficiently many inflation
steps, any starting sequence will lead to a sequence with the
same distribution of letters. In this steady state the relative
frequency of letters is given by the largest eigenvalue of the
substitution matrix M, where Mi, j is the number of j vertices
resulting from applying the inflation rule on an i vertex. For
the {3, k} tiling, it is given by

M =
(0 k − 4 1

0 k − 5 1
0 k − 6 1

)
. (12)

Here the rows and columns correspond to (a, b, c) vertices.
The largest eigenvalue of M,

λ = 1
2

(√
k2 − 8k + 12 + k − 4

)
, (13)

is the scaling factor of the sequence (and sufficiently large
subsystems thereof) in the steady state, i.e., after many in-
flation steps. The scaling of discrete geodesics can also be
computed: Coarse-graining a subsystem A of the sequence by
a deflation step maps the two vertices that bound A (and a few
of its neighbors) onto two vertices at a lower inflation layer.
For the {3, 7} tiling, this corresponds to removing two edges
from the geodesic γA, one on either end. Thus, the average dif-
ference in entanglement entropy between both layers, denoted
as 	SA, is bounded by 2 ln χ . Relating this to (8) leads to the

central charge bound

c{3,k} = 3 	SA

ln λ
� 6 ln χ

ln
√

k2−8k+12+k−4
2

=: cmax
{3,k}. (14)

Generalizing this result to arbitrary hyperbolic {n, k} tilings
leads to further complications. For the {4, k} tiling (Fig. 2,
right), the vertex inflation rule is

a �→ b(ab)k−3, b �→ b(ab)k−4. (15)

Again a and b denote vertices with two and three neighbors
up to a given inflation layer. The substitution matrix and its
largest eigenvalues are found to be

M =
(k − 3 k − 2

k − 4 k − 3

)
, λ =

√
k2 − 6k + 8 + k − 3. (16)

Unfortunately, the change of geodesic length under deflation
now depends on the vertices involved: As we can see in Fig. 2
(right), the deflation a ← � b still only involves moving along
one edge, but the deflation a ← � a involves two. To determine
the average change in geodesic length per deflation step, we
first compute the left and right eigenvectors of M for the
eigenvalue λ, given by

�l =
(√

8 − 6k + k2

k − 2

)
, �r =

(√
8 − 6k + k2

k − 4

)
. (17)

When divided by their total sum, the components of �l give the
relative frequencies P(a) and P(b) of a and b vertices in the
steady state. This is not a probabilistic process; however, the
relative frequencies can be captured on the formal level by a
discrete Markov chain. In this sense, we now wish to compute
the probability of a deflation step i ← � j. Each vertex type
corresponds to a state with transition probabilities to other
states under a deflation step. After sufficiently many steps, the
probability of reaching any given state becomes independent
of the starting point. While Mi, j ∝ P(i �→ j|i) is the (relative)
transition probability of reaching a j vertex from an i one, we
can construct the deflation matrix D giving the probability of
the reverse process,

Di, j = P(i ← � j| j) = P(i �→ j|i)P(i)∑
k P(k �→ j|k)P(k)

= Mi, j li∑
k Mk, j lk

= Mi, j li
λ l j

. (18)

The eigenvector �p of D with eigenvalue 1 now encodes the
average probability of reaching each vertex type through de-
flation. We find pi = liri, as∑

j

Di, j p j =
∑

j

Mi, j lir j

λ
= liri = pi. (19)

We normalize �p so that
∑

i pi = 1. If an inflation step i �→ j
adds Ei, j edges to a geodesic ending at an i vertex, i.e., adding
Ei, j ln χ to the entanglement bounded by the cut, then the
average entanglement entropy loss per deflation step is given
by

	SA �
∑
i, j

Di, jEi, j p j ln χ = 1

λ

∑
i, j

Mi, jEi, j lir j ln χ. (20)
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TABLE I. Maximal central charges cmax for the boundary state of a bond dimension χ tensor network embedded into a vertex-inflated
regular {n, k} tiling. The last column contains the slope of cmax with respect to the AdS radius α, given in terms of the geodesic edge length d .
Full derivations are given in Appendix A.

Maximal central charge cmax Slope cmax/α

k = 3 k = 4 k = 5 k = 6 General k k → ∞ k → ∞
n = 3 6 ln χ

ln
√

k2−8k+12+k−4
2

6 ln χ

ln(k−4)
12 ln χ

s

n = 4 9 ln χ

ln(
√

3+2)
9 ln χ

ln(2
√

2+3)
9 ln χ

ln(
√

k2−6k+8+k−3)

9 ln χ

ln(2k−6)
18 ln χ

s

n = 5 10 ln χ

ln(
√

3+2)
10 ln χ

ln 3
√

5+7
2

10 ln χ

ln 4
√

6+10
2

10 ln χ

ln
√

9k2−48k+60+3k−8
2

10 ln χ

ln(3k−8)
20 ln χ

s

n = 6 12 ln χ

ln(2
√

2+3)
12 ln χ

ln(2
√

6+5)
2 ln χ

ln(4
√

3+7)
12 ln χ

ln(2
√

k2−5k+6+2k−5)

12 ln χ

ln(4k−10)
24 ln χ

s

n = 7 66 ln χ

5 ln 3+√
5

2

66 ln χ

5 ln(
√

15+4)
66 ln χ

5 ln
√

165+13
2

66 ln χ

5 ln(
√

15+4)
66 ln χ

5 ln 5k−12+√
(5k−10)(5k−14)

2

66 ln χ

5 ln(5k−12)
132 ln χ

5s

n = 8 15 ln χ

ln(
√

3+2)
15 ln χ

ln(2
√

6+5)
15 ln χ

ln(3
√

7+8)
15 ln χ

ln(2
√

30+11)
15 ln χ

ln(
√

9k2−42k+48+3k−7)

15 ln χ

ln(6k−14)
30 ln χ

s

n = 9 114 ln χ

7 ln 5+√
21

2

114 ln χ

7 ln(
√

35+6)
114 ln χ

119 ln 7+√
357

2

114 ln χ

7 ln(2
√

42+13)
114 ln χ

7 ln
7k+

√
(16−7k)2−4−16

2

114 ln χ

7 ln(7k−16)
228 ln χ

7s

n → ∞ 3(n+2) ln χ

2 ln(n−4)
3(n+2) ln χ

2 ln(2(n−3))
3(n+2) ln χ

2 ln(3n−8)
3(n+2) ln χ

2 ln(4n−10)
3(n+2) ln χ

2 ln((n−2)(k−2)−2)
3n ln χ

2 ln(nk)
3n ln χ

s

We thus call E the entanglement matrix. The central charge
bound for the hyperbolic {n, k} tiling thus becomes

c{n,k} � cmax
{n,k} = 6

∑
i, j Mi, jEi, j lir j ln χ

λ ln λ
. (21)

For the {4, k} case, the entanglement matrix is simply

E =
(1 2

1 2

)
, (22)

which yields a central charge bound

cmax
{4,k} = 9 ln χ

ln(
√

k2 − 6k + 8 + k − 3)
. (23)

Equation (21) can be used to derive central charge bounds
for arbitrary {n, k} tilings. For k > 3, the inflation rules are
as follows:

n = 3 : n > 3 :
a �→ bk−4c, a �→ an−4b(an−3b)k−3

,

b �→ bk−5c, b �→ an−4b(an−3b)k−4
.

c �→ bk−6c.

(24)

As before, the letters a, b, c correspond to vertices with two,
three, and four neighbors. In the k = 3 case we also require
three letters a, b, c, where c now denotes a vertex to the right
of a b-type vertex, leading to

a �→ c an−5b, b �→ c an−6b, c �→ ∅. (25)

Here ∅ is the empty set, i.e., the letter disappears. While (24)
and (25) reproduce the quasiregular sequences resulting from
vertex inflation, these forms are not sufficient to describe
the propagation of geodesics for n > 4. This requires distin-
guishing vertices by the graph distance of their neighboring
vertices to the center, which determines which paths from
one inflation layer to the next correspond to discretized radial
geodesics. As in the continuous case, where we considered
radial geodesics in an asymptotically AdS geometry, our tiling
can be nonregular in the center; only the tiling structure near
the boundary of the Poincaré disk is relevant to the central

charge of the boundary state. The maximum central charges
resulting from the full calculation for an arbitrary {n, k} tiling
are summarized in Table I. The corresponding inflation rules
and matrices M and E are given in Appendix A.

IV. CURVATURE OF REGULAR TILINGS

An {n, k} tiling embedded into the Poincaré disk is con-
structed of identical n-gons with an angle of 2π/k at each
corner (see Fig. 3). The geodesic length P1P2 = s between
two points P1 and P2 of the tiling determines the length be-
tween all other points in the tiling. The parameters n and
k further fix the angles β = �(OP1, OP2) = 2π/n and γ =
�(P1P2, P1O) = �(P2O, P2P1) = π/k. The hyperbolic law of
cosines then states that

cos β = − cos2 γ + sin2 γ cosh
s

α
. (26)

Note that this form of the law of cosines holds for a Gaussian
curvature K = R/2 = −1/α2 of the time-slice metric. Using
this relation we can now express the AdS3 radius in terms of

FIG. 3. Sketch of a {5, 4} tiling in the Poincaré disk with three
reference points and one edge marked.
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FIG. 4. Central charge bounds and AdS radii for {n, k} tilings,
with the continuum Brown-Hennaux formula for G = s/4 ln χ

shown as a dashed line. The data series start at k = 7 for n = 3, k = 5
for n = 4, and k = 4 for both n = 5 and n = 6 (first data point of
each series in the upper-right corner).

the tiling parameters as

s

α
= 2arcosh

(
cos π

n

sin π
k

)
= 2 ln

(2k

π
cos

π

n

)
+ O(k−2). (27)

Thus, s/α diverges logarithmically in the large k limit. Note
that the hyperbolic area A = α2(n − 2n/k − 2) is finite in this
limit.

We can now directly relate the previously derived bounds
on central charges c to the AdS radius α of the correspond-
ing AdS geometry, with the results for various choices of n
shown in Fig. 4. These bounds can be compared to the contin-
uum Brown-Henneaux prescription (9), with the gravitational
constant G fixed through the RT formula: The length of a
discretized minimal geodesic γA corresponding to a boundary
region A can be written as |γA| = Ns, where N is the number
of edges that γA consists of (note that N → ∞ in the asymp-
totic limit). As each edge contributes ln χ to SA, we find

SA = |γA|
4G

= Ns

4G
!= N ln χ. (28)

We can thus rewrite (9) as

cmax = 6α ln χ

s
. (29)

Comparing this to the behavior of boundary states of {n, k}
tilings in Fig. 4, we find that these bounds are always
above (29). This implies that tensor networks with the
same bulk curvature and entanglement entropy growth as a
continuum model can always be constructed by choosing ap-
propriate tensors. Furthermore, we find a linear regime at large
k in all tilings with the slope depending on n. For example,

lim
k→∞

cmax
{3,k}s

α{3,k} ln χ
= 12, lim

k→∞
cmax
{4,k}s

α{4,k} ln χ
= 18. (30)

The general coefficients are given in Table I. Note that they
are significantly larger than the continuum value at small
curvature, and increase monotonically with n. At small k, a
second linear regime appears, with a slope much closer to the
Brown-Henneaux form, e.g.,

cmax
{3,7} − cmax

{3,8}
α{3,7} − α{3,8}

≈ 6.38
ln χ

s
. (31)

As a tiling of lower curvature is a better approximation of
a continuous geometry, a result closer to the BH formula is
not unexpected; however, fixing n while varying k appears to
produce a central charge shift relative to the BH result that
remains constant for a large range of k, even as the curvature
increases significantly.

V. STRONG DISORDER RENORMALIZATION

Having established the previous bounds on entanglement
entropy asymptotics, we will consider cases when the central
charge can be calculated exactly. Interestingly, the method
that allows for such an exact calculation is deeply related
to a very early approach to real-space renormalization group
transformations that were originally introduced in Ref. [28]
and later extended in Ref. [29] to study the ground states, low-
energy excitations, and spatiotemporal correlations of random
quantum spin chains. This technique, called the SDRG [30]
has recently again gained considerable attention due to its
role in studying many-body localization [31], quantum criti-
cal Floquet dynamics [32], and models with highly area-law
breaking ground states (rainbow states) [33] (see Ref. [34],
and references therein for recent development).

We now describe the basic results of SDRG on some ape-
riodic singlet models that share the quasiregular symmetries
of the boundary states described previously. One example
is given by the Fibonacci XXZ chain that is defined by the
Hamiltonian

H =
∑

i

Ji
(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + 	Sz

i Sz
i+1

)
, (32)

where Sα
i (with α = x, y, z) refers to spin- 1

2 operators. The
site-dependent couplings Jb > Ja > 0 are modulated accord-
ing to the aperiodic Fibonacci sequence obtained from the
inflation rule

a �→ ababa, b �→ aba. (33)

The SDRG procedure predicts that for this aperiodic Hamil-
tonian the ground state (in the large system size limit) is
characterized by fully entangled pairs of sites [35,36]. For
example, inflating the letter b twice leads to a Hamiltonian
with the ground state given by

(34)

where each double line denotes a singlet bond. The entangle-
ment entropy of a subsystem A of such a singlet state is simply
computed by counting the number of singlets connecting it to
its complement AC. For example, in the state

(35)
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we find five singlets passing through the cuts between A and
AC, resulting in an entanglement entropy SA = 5 ln 2.

Applying the SDRG procedure to this model [35], it fol-
lows that one can systematically obtain the ground state
corresponding to the Hamiltonian after inflating the letter b for
n times by iterating the inverse of the renormalization steps,
giving rise to the inflation rules

(36)

(37)

Newly added singlets are highlighted. Intuitively, the fine-
graining effected by the inflation rule places two sites within
a singlet closer to each other than uncoupled neighbors. Iter-
atively applying the inflation rule creates states with nonlocal
entanglement. Each inflation step thus adds short-range en-
tanglement on successively fine-grained scales, similar to the
entanglement renormalization produced by the MERA [37].
Due to its strong disorder, i.e., strong aperiodicity on all
scales, this singlet model can be inflated locally without
changing the quasiregular symmetry of the state. For suffi-
ciently large regions A, the dependency of the entanglement
entropy on the region size |A| can be computed from the ape-
riodic symmetries themselves and the central charge can be
obtained analytically [35]. For example, the Fibonacci XXZ
chain has an effective central charge

cFib =
(
3 − 3√

5

)
ln 2

ln(2 + √
5)

≈ 0.7962. (38)

The corresponding entanglement scaling is shown in Fig. 5
(top), showing the result of seven successive applications of
the inflation rules (36) and (37) onto one singlet. Rather than a
smooth logarithmic entanglement scaling with � = |A| that we
find in translation-invariant critical systems, a characteristic
feature of multiscale aperiodicity is a linear growth of SA

in fixed intervals of ln �, with SA at the endpoints of these
intervals growing logarithmically.

In the next section, we give concrete examples of such
multiscale aperiodic models as the boundary states of regular
hyperbolic tilings and calculate their exact central charges.
Distinct from usual singlet models, we consider fractionalized
fermionic modes with large effective central charges. The
entangled pairs in these models exhibit crossing, requiring a
new approach to computing their entanglement entropies.

VI. MAJORANA DIMER MODELS

An efficiently contractible class of tensor networks with
a holographic interpretation is given by Majorana dimer
states [23]: This versatile class of states corresponds to the
intersection of stabilizer and free fermionic states; as part of
the latter, they can also be efficiently described by matchgate
tensor networks [19]. In particular, the hyperbolic pentagon
code (HyPeC), a toy model of holographic quantum error
correction [17], can be expressed in this form. This model is
based on the [5,1,3] stabilizer code, which encodes one logical

FIG. 5. Fibonacci singlets (top) and {5, 4} HyPeC Majorana
dimers (bottom) shown in a disk projection along with their corre-
sponding scaling of entanglement entropy SA with subsystem size
� = |A|. The translation-invariant form [26] with effective central
charge c = cFib from (38) and c = cd

{5,4} from (B7) are shown as
dashed curves.

qubit in five physical spins with a code distance of three, i.e.,
correcting one Pauli error [38,39]. The tensors corresponding
to its encoding isometry between logical and physical states
are now contracted along a {5, 4} tiling, with each pentagon
edge corresponding to a physical tensor leg. After contraction
of this bulk tensor network, both the physical legs on the
boundary of the contracted geometry as well as one logical leg
per pentagon remain uncontracted. The whole tensor network
thus serves as an isometry between bulk and boundary sites,
with the bulk information fault-tolerantly encoded into the
boundary as expected from continuum AdS/CFT [24]. While
this model was originally formulated in terms of spin degrees
of freedom, it can be mapped to fermions under a Jordan-
Wigner transformation mapping Pauli operators (σ x, σ y, σ z )
to Majorana operators γ k , obeying γ j, γ k = 2δ j,k , via

γ 2k−1 = (σ z )⊗(k−1)⊗σ y⊗(12)⊗(r−k), (39)

γ 2k = (σ z )⊗(k−1)⊗σ x⊗(12)⊗(r−k). (40)

Note that we have swapped the definition of even and odd
operators with respect to Ref. [23] to simplify the following
visualizations. In this effective fermionic language, the two
logical basis states 0̄ and 1̄ that span the logical qubit space of
the [[5,1,3]] code become Gaussian, as the stabilizer Hamil-
tonian is quadratic in Majorana operators when the parity is
fixed. Furthermore, these basis states are composed of paired
Majorana modes—Majorana dimers—and can be represented
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graphically as

(41)

In this visualization, each edge of a pentagon tile is identified
with two Majorana modes, with each arrow j → k between
two modes j and k corresponding to a term i γ j γ k in the
stabilizer Hamiltonian. The orientation of each arrow relative
to the mode ordering gives it an associated dimer parity p j,k ,
with p j,k = +1 for j < k (blue) and p j,k = −1 for j > k (or-
ange). The dimer pattern becomes clearer when exchanging
the ordering of odd and even Majorana modes, leading to

(42)

We will use this dual representation in all bulk plots, as it
makes the dimer paths along the tiling more apparent. The
usefulness of the Majorana dimer picture comes from the
simplicity of contracting tensors representing Majorana dimer
states such as (41): Contraction pairs up dimers along the
contracted edges, with each new dimer’s parity being the
product of the old parities [23]. In addition, computing the
entanglement entropy SA of a connected subsystem A of a
Majorana dimer state (or contraction thereof) reduces to sim-
ply counting the dimers between A and its complement AC,
each contributing ln(2)/2 to SA. While the HyPeC is generally
composed of arbitrary logical bulk states, i.e., superpositions
of 0̄ and 1̄, orthogonality conditions between the contracted
states ensure that two-point correlation functions still exhibit a
dimer structure, i.e., vanishing correlations between Majorana
modes unconnected by dimers. Similarly, basis state super-
positions affect the entanglement entropies of the HyPeC by
corrections that depend on the logical states in residual bulk
regions only for certain boundary regions [17].

Beyond the HyPeC, whose logical states on each tile are
represented by perfect tensors that maximally entangle each
possible subsystem A with the remaining sites, Majorana
dimer states also represent block perfect tensors, where this
condition is relaxed to only hold for connected subsystems. A
suitable pair of logical eigenstates 0̄n and 1̄n can be found for
any n = 4m + 1, m ∈ N. For instance, for n = 9 the logical
basis is given by

(43)

or equivalently,

(44)

With the tools developed in the previous sections, the av-
erage entanglement entropy [5], and by extension the central
charge, can be computed for any regular tiling based on Majo-
rana dimer states. We begin with the n = 5 case of the HyPeC.
For simplicity, we consider edge inflation rather than vertex
inflation in the following calculation: At each step, the tiles
on all open edges are added to the contraction. The more com-
plicated case of vertex inflation, which is more generalizable
to arbitrary {n, k} tilings, will be treated in Appendix B. The
edge inflation rules for the {5, 4} tiling are

a �→ caab, b �→ cab, c �→ ∅. (45)

where the letters label boundary edges. On the level of the
{5, 4} tiling, these inflation rules can be visualized as follows:

(46)

(47)

We have combined the rules for b and c as they always ap-
pear in the combination bc. A boundary region ending at the
marked letter, as well as its inflated version, is highlighted in
green. Figure 6 (bottom) shows how these inflation rules act
on the whole tiling, starting with a central pentagon (the se-
quence a5). To see the change in dimer structure more clearly,
one can project the boundary onto a line. The inflation rules
are then given by

(48)

(49)

The new dimers added at each step are drawn in a lighter
color, while the ones that are extended from the previous layer
are drawn darker. As we are interested in entanglement prop-
erties, the dimer parities (which we previously color-coded)
are irrelevant here.

Having associated geometrical features of the inflated
tiling with a specific dimer configuration, we can now exactly
calculate the entanglement entropy that each inflation step
produces. As in the previous section, first consider a deflation
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FIG. 6. Edge- and vertex-based inflation of the {5, 4} HyPeC in
the form (42), with inflation layers color-coded. The full tiling in
the original Poincaré disk projection is shown on the left, while
the dimers at the first three inflation layers are shown on the right,
unfolded onto a line (Poincaré half-space projection).

or coarse-graining step that removes dimers and thus, entan-
glement entropy. Consider how a cut (green line) changes
throughout a deflation step:

(50)

(51)

The green number counts the dimers that pass through the cut
to the right of it, i.e., the local entanglement of a boundary
region ending on a given edge. From these diagrams, we now
construct the substitution and entanglement matrices M and E
that describe the Markov process underlying vertex inflation.
While M is constructed as before, the entries of E are now
composed of half the difference in dimer cuts between two
inflation layers for a given substitution, as each dimer carries
ln(2)/2 entanglement. We thus find

M =
(2 1 1

1 1 1
0 0 0

)
, E =

(1 0 1
2 1 2
0 0 0

)
. (52)

FIG. 7. Central charges for the {5, k}, {9, k}, and {13, k} Majo-
rana dimer models (solid curves, bottom to top) and corresponding
geodesic bounds (dashed curves). The continuum Brown-Hennaux
formula for G = s/4 ln χ is shown as a dashed line.

Using (21), which now becomes an equality rather than an
upper bound, this leads to an effective central charge

cd
{5,4}e

= 6 ln 2

ln 3+√
5

2

≈ 4.32, (53)

a result in agreement with previous numerical studies [23].
Note that we used the subscript of {5, 4}e to denote edge
inflation, while all values without such a subscript in this text
refer to vertex inflation. The computation of effective central
charges follows analogously for vertex inflation, which we
can generalize to arbitrary {5, k} tiling with a finite number
of letters. We can further extend this approach to the block-
perfect tensors associated with {4m + 1, k} tilings. The central
charges for these general cases are computed in Appendix B.
The results for m = 1, 2, 3, i.e., the hyperbolic pentagon code
and the block-perfect nonagon and tridecagon codes, are
shown in Fig. 7. For all of these codes, the central charges sat-
urate to their maximum allowed value at large k, with a slope
at small k similar to the Brown-Henneaux value. Explicitly,
at large n and k both the central charge bound and the exact
Majorana dimer value scale as

cd
{4m+1,k} = cmax

{4m+1,k} =
(
6m + 9

2

)
ln χ

ln[(4k − 8)m − k]
+ O(m−1), (54)

with a bond dimension χ = 2 for the dimer model. Thus, we
conclude that for tilings with high curvature (large n and k),
our class of hyperbolic block-perfect codes based on Majo-
rana dimers produce maximal entanglement for any connected
boundary region A. This is equivalent to a statement that
residual bulk regions become negligible in this limit, with a
maximal flow of entanglement through the minimal cut γA.

VII. DISCRETE CONFORMAL TRANSFORMATIONS

In our analysis of central charges of discrete critical sys-
tems, we only considered the behavior of boundary states
under global scaling transformations, corresponding to an
application of inflation rules on all boundary sites at once.
However, global scaling transformations only form a subset
of the conformal algebra. To study the remaining symmetries,
we can equivalently consider the bulk symmetries [25]; in
our time-slice case, these are the symmetries of the Poincaré
disk (5). Whereas the original AdS space-time (3) enjoys an
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FIG. 8. Local scale transformation of Poincaré disk angle φ on
the boundary under a translation in the bulk.

SO(2, 2) symmetry [most apparent in its embedding as a hy-
perboloid in (2+2)-dimensional flat space-time], the Poincaré
disk is only invariant under PSL(2,R) transformations, a sub-
set of the Möbius transformations. If we represent a point in
the disk as a complex number z = ρeiφ , then these transfor-
mations Mθ,v are given by

z �→ z′ = Mθ,v (z) = eiθ w + z

1 + w�z
, (55)

where 0 � θ < 2π and w = w0eiω defines a point in the
Poincaré disk, i.e., with |w| < 1. We can see how these trans-
formations act on the AdS boundary by taking the ρ = ρ0 →
1 limit. We find the following:

(1) A global scale transformation determined by a change
in cutoff ρ0 → ρ ′

0: The total length L of the flat AdS boundary
changes as

L �→ L′ = 1 − ρ0

1 − ρ ′
0

L, (56)

assuming that ρ0 and ρ ′
0 are close to one.

(2) A translation Tθ = Mθ,0 produced by a rotation of
the Poincaré disk. Introducing the boundary coordinate x =
αφ/(1 − ρ0), this corresponds to a transformation

x �→ x′ = x + αθ

1 − ρ0
. (57)

(3) A local scale transformation Dw = M0,w by shifting
the center of the Poincaré disk towards a point w = w0eiω �=
0. Without loss of generality, we now assume that ω = 0. At
ρ → 1, we then find a transformation of the Poincaré angle φ

of the form

φ �→ φ′ = arctan

(
1 − w2

0

)
sin φ(

1 + w2
0

)
cos φ + 2w0

. (58)

This transformation is shown in Fig. 8 for different values of
w0 and general ω. Lengths around the boundary point x =
αω/(1 − ρ0) are stretched to

x �→ x′ = 1 + w0

1 − w0
x, (59)

while those around y = α(π + ω)/(1 − ρ0) are contracted to

y �→ y′ = 1 − w0

1 + w0
y. (60)

We can rewrite any combination of translations and local scale
transformations as a single Möbius transformation Mθ,v =
Tθ ◦ Dv by using the identities

Tθ ◦ Tφ = Tθ+φ, (61a)

Dv ◦ Dw = Targ 1+vw�

1+v�w

◦ D v+w
1+vw�

, (61b)

Dv ◦ Tθ = Tθ ◦ De−iθ v. (61c)

All transformations considered so far preserve orientation.
If we drop this constraint, we also find the following:

(1) An inversion Iv,θ through a bulk reflection around a
geodesic through a point v at normal angle θ , expressed with
the complex conjugate C(z) = z� as

z �→ Iv,θ (z) = Dv ◦ Tθ ◦ C ◦ T−θ ◦ D−v (z)

= D−v ◦ T−2θ ◦ Dv� ◦ C(z). (62)

Note that I2
v,θ = 1, and that any inversion is equivalent to

complex conjugation and a Möbius transformation. For a
boundary coordinate system centered around a boundary an-
gle φ = 0 and “infinity” identified as φ = π , we choose v = x
with x ∈ R and θ = −π/2, leading to a canonical inversion

z �→ Ix(z) = D2x/(1+x2 ) ◦ Tπ ◦ C(z)

= C ◦ Tπ ◦ D−2x/(1+x2 )(z). (63)

(2) By combining inversion and translation, we can also
construct the special conformal transformation

z �→ Kθ,x (z) = Ix ◦ Tθ ◦ Ix(z)

= D2x/(1+x2 )T−θ D−2x/(1+x2 )(z), (64)

which is just an (orientation-preserving) Möbius transforma-
tion.

Discretizing the Poincaré disk with a (regular) tiling breaks
these continuous symmetries. First consider global and local
scaling transformations. Rather than a continuous transforma-
tion (56), global inflation (Fig. 9, top) rescales the subsystem
by an asymptotic constant λ, the eigenvalue of the substitution
matrix for the given tiling. When a tensor network is embed-
ded into a regular tiling, choosing identical tensors that are
invariant under cyclic permutations of indices, thus preserving
the tiling symmetries, leads to boundary states that can be
fine- or coarse-grained by any power of λ under inflation or
deflation.

Next, consider the local scale transformations: A regular
tiling is invariant only under those bulk Möbius transforma-
tions that map tiles onto tiles. As shown in Fig. 9 (center),
this requires a combination of bulk translation and rotation.
At finite cutoff, i.e., finite number of tiles, this reduces the
density of boundary edges in one region of the boundary while
increasing it in the opposing region, just as for the continuous
case shown in Fig. 8.

Finally, special conformal transformations are broken
down into two parts, as they can be composed of inver-
sions and translations: We previously constructed inversions
through a bulk reflection around a geodesic, while in a {n, k}
tiling such transformations only leave the lattice invariant if
we reflect around its (geodesic) edges. Furthermore, transla-
tions are broken down to Zn and Zk rotations when centering
the lattice around tiles and vertices, respectively. The resulting
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FIG. 9. (a) Global scale transformation by growing the hy-
perbolic bulk tiling through vertex inflation. (b) Local scale
transformation by a Möbius transformation composed of a bulk
translation (first step) and a rotation (second step). (c) Successive re-
flections around a bulk edge and its tiling-symmetric rotation (green
lines), with the same effect as a Möbius transformation.

transformation, shown in Fig. 9 (bottom), is again equivalent
to a bulk translation and rotation, yielding no new symme-
tries. Note that while exact translation invariance is broken,
the quasiregular structure of the boundary still exhibits self-
similarity between any sufficiently large subsystems [27].

To exemplify these invariance properties with actual states,
consider the {5, 4} HyPeC in Majorana dimers. By projecting
the dimer endpoints on the Poincaré disk boundary, we can
directly compare the states at different cutoffs, as shown in
Fig. 10. A global scale transformation increases the resolution
of the dimer pattern evenly on the boundary, while a local
scale transformation changes it unevenly (Fig. 10, bottom).
At the same time, the correlation structure of the boundary
states is preserved. The local scale transformation produced
by a bulk Möbius transformation can be seen as a special case
of a local application of inflation and deflation rules. Suitable
combinations of such local and global scalings are equiva-
lent to an inflation rule applied only to a subsystem of the
boundary, leaving the remainder unchanged. Note that these
transformations are independent from the the actual choice of
inflation rule, which fixes the boundary central charge.

VIII. DISCUSSION

In this work we have studied the entanglement entropy
scaling of boundary states of generic hyperbolic tensor net-
works based on regular tilings. This has allowed us to derive
a maximal central charge cmax that such boundary states can
possess, with a saturation of this bound corresponding to
maximal entanglement through the bulk for any connected

FIG. 10. (a) A contraction of a hyperbolic tensor network built
from Majorana dimers (left) leads to a boundary Majorana dimer
state (right). (b) An inflation step on the tiling (right) leads to a
global scale transformation on the boundary state (right). (c) Certain
combinations of Poincaré disk translations and rotations in the bulk
(left) produce a local scaling transformation on the boundary state
(right).

boundary region. We have then related cmax to the radius of
curvature α of the metric into which the tiling is embedded,
leading to a discrete analog of the continuum BH formula,
where we have identified the gravitational constant G via the
RT prescription. We find that these bounds are always above
the continuum value, i.e., that bulk entanglement through a
regular hyperbolic tensor network can be as large as through
a continuum AdS time slice. We have further identified two
distinctly different regimes: At large AdS radius α and central
charge cmax, where the RT identification of G is expected to
hold, we find an approximate relationship

cmax ≈ c0 + 6
α ln χ

s
, (65)

where s is the geodesic length of each edge in the tiling and χ

the bond dimension of the tensor network embedded into the
tiling. The constant c0, which produces an offset compared
to the BH formula, depends on the n-gon tiling and increases
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TABLE II. Relative depth of vertex neighbors to the left and right of a given vertex with depth d .

Type a1 a2 a3 a4 a5 b = b1 b2 b3

dL d − 1 d − 1 d + 1 d − 1 d d + 1 d + 1 d
dR d − 1 d + 1 d − 1 d d − 1 d + 1 d d + 1

with n. As the hyperbolic area of a single n-gon increases with
n as well but remains finite at large k, we may interpret c0 as
counting the additional degrees in each n-gon in the coarse-
grained lattice compared to the continuous Poincaré disk. In
the opposite limit at small α and c, however, we identify a
linear relationship without an offset,

cmax ≈ fn
α ln χ

s
, (66)

where the tiling-dependent constant fn increases with n, tak-
ing its lowest value f3 = 12 for triangular tilings.

Furthermore, we find a specific holographic tensor network
model that saturates these bounds: The HyPeC code, a toy
model for quantum error correction in AdS/CFT. This model
as well as its generalizations can be expressed in the fermionic
language of Majorana dimers, which allows for an exact treat-
ment of its entanglement structure in terms of paired Majorana
modes. Using this picture, we showed how successively larger
contractions of the tensor network produce a strong disorder
renormalization group flow. This allowed us to endow a class
of models of holographic quantum error correction with the
notion of a discretized conformal field theory with aperiodic
structure. The exact central charges resulting from this physi-
cal CFT interpretation were derived and shown to saturate to
cmax at large curvature.

Our approach advances the understanding of boundary
states of holographic tensor network models, with bounds
on central charges for any model based on a regular bulk
geometry, which includes the HaPPY holographic codes [17],
block-perfect CSS codes [21], holographic codes on ideal
regular tilings [20], hyperinvariant tensor networks [18], ran-
dom tensor networks on fixed backgrounds [40], and p-adic
AdS/CFT models [41], whose Bruhat-Tits tree is identified
with a regular tiling [42]. Note that our procedure reverses
the approach of dynamically reconstructing a discrete bulk

geometry from the entanglement structure of a given boundary
state, such as considered in Refs. [43,44]; instead, we started
with a bulk geometry and derived constraints on the boundary
entanglement. We have also shown that the formulation of
quantum error correcting codes in terms of Majorana dimers
is essential for understanding their boundary states and RG
flow. The boundary states of these dimer models extend the
properties of widely studied aperiodic singlet models to frac-
tional fermionic modes with similar entanglement and RG
properties, suggesting that both approaches are representa-
tions of a more general class of aperiodic critical theories.
While the Majorana dimer states are noninteracting, their
use as a code basis in a quantum error correction code such
as the HyPeC generally leads to interacting boundary states
whose correlations and entanglement structure follow those
of the noninteracting basis states. Our results thus show that
entanglement renormalization of CFTs can be performed with
tensor network approaches other than the MERA, realizing
geometries that can be more naturally embedded into an AdS
time slice. Understanding their discrete symmetries will be
crucial for the development of more powerful tensor network
models of AdS/CFT.
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APPENDIX A: GEODESIC INFLATION

In order to build inflation rules for regular tilings that inflate vertices on radial geodesics, we need to label vertices by their
graph distance d to the center of the tiling, or depth. For an {n, k} tiling with n > 5 and k > 3, we first distinguish between
a vertices, which have two neighboring vertices (up to the given inflation layer), and b vertices, which have three. Within the
sequence of vertices at a given layer, we consider the depths dL and dR of the neighbors to the left and right with respect to the
depth d of a given vertex. For b vertices, (dL, dR) = (d + 1, d + 1). However, we need to distinguish five types of a vertices,
listed in Table II. For even n = 2m, only a1 to a3 appear, leading to an inflation rule

a1 �→ am−3
3 b

(
am−2

2 a1am−2
3 b

)k−3
am−3

2 a1, (A1)

a2 �→ am−3
3 b

(
am−2

2 a1am−2
3 b

)k−3
am−2

2 a1, (A2)

a3 �→ am−2
3 b

(
am−2

2 a1am−2
3 b

)k−3
am−3

2 a1, (A3)

b �→ am−2
3 b

(
am−2

2 a1am−2
3 b

)k−4
am−2

2 a1, (A4)
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and a corresponding substitution matrix

M{2m,k} =

⎛
⎜⎝

k − 2 k(m − 2) − 2m + 3 k(m − 2) − 2m + 3 k − 2
k − 2 (k − 2)(m − 2) k(m − 2) − 2m + 3 k − 2
k − 2 k(m − 2) − 2m + 3 (k − 2)(m − 2) k − 2
k − 3 (k − 3)(m − 2) (k − 3)(m − 2) k − 3

⎞
⎟⎠. (A5)

The edge increase from inflation onto a b vertex is always 1, and increases with distance from the nearest b vertex. This is
summarized in the entanglement matrix

E{2m,k} =

⎛
⎜⎜⎜⎜⎝

m + 1
2−k

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6 1

m m+1
2

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6 1

m + 1
2−k

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6

m+1
2 1

m m+1
2

m+1
2 1

⎞
⎟⎟⎟⎟⎠. (A6)

Applying (21) leads to the central charge bound

c{2m,k} � cmax
{2m,k} = 3(m + 1) ln χ

ln {k(m − 1) + √
(k − 2)(m − 1)[(k − 2)m − k] − 2m + 1} , (A7)

where χ is the bond dimension of the underlying tensor network embedded into the {2m, k} tiling. For odd n = 2m+1, the
inflation rule is more complicated and includes all five types of a vertices,

a1 �→ a5am−3
3 b

(
am−1

2 a4a5am−1
3 b

)k−3
am−3

2 a4, (A8)

a2 �→ a5am−3
3 b

(
am−1

2 a4a5am−1
3 b

)k−3
am−1

2 a4, (A9)

a3 �→ a5am−1
3 b

(
am−1

2 a4a5am−1
3 b

)k−3
am−3

2 a4, (A10)

a4 �→ am−3
3 b

(
am−1

2 a4a5am−1
3 b

)k−3
am−1

2 a1, (A11)

a5 �→ a5am−1
3 b

(
am−1

2 a4a5am−1
3 b

)k−3
am−3

2 a4, (A12)

b �→ am−1
3 b

(
am−1

2 a4a5am−1
3 b

)k−4
am−1

2 a4. (A13)

This leads to a substitution matrix

M{2m+1,k} =

⎛
⎜⎜⎜⎜⎜⎝

0 k(m − 2) − 2m + 3 k(m − 2) − 2m + 3 k − 2 k − 2 k − 2
0 (k − 2)(m − 2) k(m − 2) − 2m + 3 k − 2 k − 2 k − 2
0 k(m − 2) − 2m + 3 (k − 2)(m − 2) k − 2 k − 2 k − 2
1 (k − 2)(m − 2) k(m − 2) − 2m + 3 k − 3 k − 2 k − 2
0 k(m − 2) − 2m + 3 (k − 2)(m − 2) k − 2 k − 3 k − 2
0 (k − 3)(m − 2) (k − 3)(m − 2) k − 3 k − 3 k − 3

⎞
⎟⎟⎟⎟⎟⎠. (A14)

The entanglement matrix is given by

E{2m+1,k} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6 m + 1

2−k m + 1
2−k 1

0 m+1
2

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6 m m + 1

2−k 1

0 −2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6

m+1
2 m + 1

2−k m 1

m m+1
2

−2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6 m m + 1

2−k 1

0 −2m2+k(m−2)(m+1)+6
2k(m−2)−4m+6

m+1
2 m + 1

2−k m 1

0 m+1
2

m+1
2 m m 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A15)

The resulting central charge bound is

cmax
{2m+1,k} = 3

(
m − 1

4m−2 + 3
2

)
ln χ

ln
2km+

√
(−2km+k+4m)2−4−k−4m

2

. (A16)

Note that for large n, (A7) and (A16) lead to the same asymptotic behavior,

cmax
{n,k} = (6 + 3n) ln χ

2 ln[2 − 2k + (k − 2)n]
+ O(n−1). (A17)
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For {n, 3} tilings (hyperbolic for n > 6), we also need to distinguish between even and odd n. In the case n = 2m, we find the
inflation rule

a1 �→ am−3
3 bam−3

2 a1, (A18)

a2 �→ am−3
3 bam−2

2 a1, (A19)

a3 �→ am−2
3 bam−3

2 a1, (A20)

b �→ ∅, (A21)

and the substitution and entanglement matrices

M{2m,3} =

⎛
⎜⎝

1 m − 3 m − 3 1
1 m − 2 m − 3 1
1 m − 3 m − 2 1
0 0 0 0

⎞
⎟⎠, E{2m,3} =

⎛
⎜⎜⎜⎝

m − 1 m
2

m
2 1

m m+1
2

m
2 1

m − 1 m
2

m+1
2 1

0 0 0 0

⎞
⎟⎟⎟⎠. (A22)

This yields a maximum central charge

cmax
{2m,3} = 3(m + 1) ln χ

ln(
√

m2 − 4m + 3 + m − 2)
. (A23)

For odd n = 2m + 1, inflation again involves a1 to a5:

a1 �→ a5am−3
3 bam−3

2 a4, (A24)

a2 �→ a5am−3
3 bam−2

2 a4, (A25)

a3 �→ a5am−2
3 bam−3

2 a4, (A26)

a4 �→ a5am−3
3 bam−2

2 a1, (A27)

a5 �→ am−2
3 bam−3

2 a4, (A28)

b �→ ∅. (A29)

This corresponds to

M{2m+1,3} =

⎛
⎜⎜⎜⎜⎜⎝

0 m − 3 m − 3 1 1 1
0 m − 2 m − 3 1 1 1
0 m − 3 m − 2 1 1 1
1 m − 2 m − 3 0 1 1
0 m − 3 m − 2 1 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (A30)

E{2m+1,3} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 m
2

m
2 m − 1 m − 1 1

0 m+1
2

m
2 m m − 1 1

0 m
2

m+1
2 m − 1 m 1

m m+1
2

m
2 0 m − 1 1

0 m
2

m+1
2 m − 1 0 1

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A31)

and gives a central charge bound of

cmax
{2m+1,3} = 3

(
m − 1

4m−2 + 3
2

)
ln χ

ln
√

4m2−12m+5+2m−3
2

. (A32)

Note that even though the inflation rules are different, the bounds (A23) and (A32) agree with the generic {n, k} bounds (A7)
and (A16) derived earlier. Similarly, the {n, k} inflation rules for n = 4 and n = 5 are special, as well, but lead to the same
bounds. The n = 4 case was already covered in the main text. For n = 5, we need to split up b vertices into three categories b1,
b2, and b3. For n = 5, we find the inflation rules

a1 �→ b3(a2a3b1)k−4a2a3b2, (A33)
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a2 �→ b3(a2a3b1)k−4a2a3b1a1, (A34)

a3 �→ b1(a2a3b1)k−4a2a3b2, (A35)

b1 �→ a3b1(a2a3b1)k−4a2, (A36)

b2 �→ a3b1(a2a3b1)k−4a1, (A37)

b3 �→ b1(a2a3b1)k−4a2, (A38)

leading to substitution and entanglement matrices

M{5,k} =

⎛
⎜⎜⎜⎜⎜⎝

0 k − 3 k − 3 k − 4 1 1
1 k − 3 k − 3 k − 3 0 1
0 k − 3 k − 3 k − 3 1 0
0 k − 3 k − 3 k − 3 0 0
1 k − 4 k − 3 k − 3 0 0
0 k − 3 k − 4 k − 3 0 0

⎞
⎟⎟⎟⎟⎟⎠, E{5,k} =

⎛
⎜⎜⎜⎜⎜⎝

0 2 2 1 1 1
2 2 2 1 0 1
0 2 2 1 1 0
0 2 2 1 0 0
2 2 2 1 0 0
0 2 2 1 0 0

⎞
⎟⎟⎟⎟⎟⎠. (A39)

This yields the expected maximum central charge

cmax
{5,k} = 10 ln χ

ln
√

9k2−48k+60+3k−8
2

. (A40)

APPENDIX B: MAJORANA DIMER POLYGON MODELS

We can construct block-perfect Majorana dimer models for an {n, k} tiling for n = 4m+1, m ∈ N. The n = 5 case is simply
the HyPeC model. In the main text, we already computed its central charge under edge inflation, which we now generalize to
vertex inflation. From (24), we find the inflation rule

a �→ abaab, b �→ ab. (B1)

Without loss of generality, we identify each letter with the edge on the left (clockwise) to the vertex it stands for. To distinguish
dimer content, we need to designate four subletters a1, a2, b1, b2. In terms of dimer diagrams, using the convention of (41), the
inflation rule is given by

(B2)

(B3)

.
As in the main text, new dimers added at each step are drawn in a lighter color than those that are extended from the previous

layer. Note that each inflated dimer configuration contains two open dimers on either end of the sequence that connect to the
previous and following sequence within the layer added in a vertex inflation step. The full dimer configuration in the Poincaré
disk is shown in Fig. 6 (top) along with the dimers at the first three inflation layers. When starting from the central pentagon, the
initial sequence is given by (a1)5.

Again, we calculate the central charge by considering the loss of local entanglement through deflation. The corresponding
cuts (green lines) and the number of dimers passing through it (green number) are given by

(B4)
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(B5)

These diagrams lead us to the substitution and entanglement matrices M and E of the Markov process of the form

M =

⎛
⎜⎝

2 1 1 1
1 2 1 1
1 0 1 0
1 0 0 1

⎞
⎟⎠, E =

⎛
⎜⎜⎜⎜⎝

3
2 2 1 1

2 3
2 1 1

1 0 1 0

2 0 0 1

⎞
⎟⎟⎟⎟⎠. (B6)

Turning (21) into an equality, we find the effective central charge

cd
{5,4} = 9 ln 2

ln
(√

3 + 2
) ≈ 4.74. (B7)

Note that this result is larger than cd
{5,4}e

from (53), our result for edge inflation. Instead of a {5, 4} tiling, we can also consider a
general {5, k} tiling with k > 3, using the same perfect tensors on each tile. This corresponds to a vertex inflation rule

a1 �→ a1b1(a2a1b2)k−3, b1 �→ a1b1(a2a1b2)k−4, (B8)

a2 �→ a2b1(a2a1b2)k−3, b2 �→ a1b2(a2a1b2)k−4. (B9)

The substitution and entanglement matrices then take the more general form

M =

⎛
⎜⎝

k − 2 k − 3 1 k − 3
k − 3 k − 2 1 k − 3
k − 3 k − 4 1 k − 4
k − 3 k − 4 0 k − 3

⎞
⎟⎠, (B10)

and

E =

⎛
⎜⎜⎝

1+2(k−3)
1+k−3 2 1 1

2 1+2(k−3)
1+k−3 1 1

1+2(k−4)
1+k−4 2 1 1

2 2 0 1

⎞
⎟⎟⎠. (B11)

This leads us to the central charge

cd
{5,k} =

(
2

10−3k + 10
)

ln 2

ln
[

1
2 (

√
9k2 − 48k + 60 + 3k − 8)

] . (B12)

Note that this model corresponds to a bond dimension χ = 2, hence the ln 2 term in the numerator. Considering the large k limit,
we find

cd
{5,k} = 10 ln 2

ln(3k − 8)
+ O(k−1), (B13)

which is exactly the same limit as the geodesic bound on central charges (Table I). As shown in Fig. 7, this saturation occurs
quickly as k is increased.

For n = 9 and more complex polygons, we have to distinguish two cases: If k = 3, the inflation rule requires five different
types of letters, while only four are needed in the k > 3 case. The inflation rule for the {9, 3} tiling with dimer states (43) follows
from (25) and is given by the following dimer substitutions:

(B14)

(B15)
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The inflation rule for the letters b and c has been combined for the sake of simplicity. The entanglement change under deflation
depends on the cut and is given by

(B16)

(B17)

The substitution and entanglement matrices follow accordingly,

M =

⎛
⎜⎜⎜⎝

2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 1 1
0 0 0 0 0

⎞
⎟⎟⎟⎠, E =

⎛
⎜⎜⎜⎜⎝

3 3 2 1 2
3 5

2 2 1 1
4 4 5

2 1 3
4 4 3 2 3
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠, (B18)

which leads to a central charge

cd
{9,3} = 16 ln 2

ln
√

21+5
2

≈ 7.08. (B19)

We can generalize this result to tilings at higher n = 4m+1, which correspond to an inflation rule

a1 �→ ca2m−3
2 a1a1a2m−3

3 b, b �→ ca2m−3
2 a1a2m−3

3 b, (B20)

a2 �→ ca2m−2
2 a1a2m−3

3 b, c �→ ∅, (B21)

a3 �→ ca2m−3
2 a1a2m−2

3 b. (B22)

The matrices M and E then take the form

M =

⎛
⎜⎜⎜⎝

2 2m − 3 2m − 3 1 1
1 2m − 2 2m − 3 1 1
1 2m − 3 2m − 2 1 1
1 2m − 3 2m − 3 1 1
0 0 0 0 0

⎞
⎟⎟⎟⎠, E =

⎛
⎜⎜⎜⎝

2m − 1 m + 1 m 1 2
2m − 1 m + 1

2 m 1 1
2m m + 2 m + 1

2 1 3
2m m + 2 m + 1 2 3
0 0 0 0 0

⎞
⎟⎟⎟⎠. (B23)

From this we find the central charge

cd
{4m+1,3} =

(
6m + 3

10−8m + 9
2

)
ln 2

ln
√

16m2−24m+5+4m−3
2

. (B24)

Now consider the cases n = 4m+1, k > 3, which correspond to the inflation rules

a1 �→ a2m−2
2 a1a1a2m−3

3 b
(
a2m−1

2 a1a2m−2
3 b

)k−3
, (B25)

a2 �→ a2m−1
2 a1a2m−3

3 b
(
a2m−1

2 a1a2m−2
3 b

)k−3
, (B26)

a3 �→ a2m−2
2 a1a2m−2

3 b
(
a2m−1

2 a1a2m−2
3 b

)k−3
, (B27)

b �→ a2m−2
2 a1a2m−2

3 b
(
a2m−1

2 a1a2m−2
3 b

)k−4
. (B28)

We explicitly compute the {9, 4} tiling, which can be expressed by the dimer inflation rules

(B29)

042407-16

CHAPTER 4. PUBLICATIONS 148



CENTRAL CHARGES OF APERIODIC HOLOGRAPHIC … PHYSICAL REVIEW A 102, 042407 (2020)

(B30)

Under deflation, the letters correspond to the following cuts:

(B31)

(B32)

From this we construct the entanglement and substitution matrices

M =

⎛
⎜⎝

3 5 3 2
2 6 3 2
2 5 4 2
1 2 2 1

⎞
⎟⎠, E =

⎛
⎜⎜⎜⎜⎝

10
3

14
5

7
3 1

7
2

5
2

7
3 1

4 16
5

5
2 1

4 7
2

5
2 1

⎞
⎟⎟⎟⎟⎠. (B33)

We then find the central charge

cd
{9,4} = 81 ln 2

5 ln
(√

35 + 6
) ≈ 4.53. (B34)

For arbitrary k, we find

M =

⎛
⎜⎝

k − 1 3k − 7 2k − 5 k − 2
k − 2 3(k − 2) 2k − 5 k − 2
k − 2 3k − 7 2(k − 2) k − 2
k − 3 3k − 10 2(k − 3) k − 3

⎞
⎟⎠, E =

⎛
⎜⎜⎜⎜⎝

4k−6
k−1

22−9k
7−3k

13−5k
5−2k 1

4k−9
k−2

3k−7
k−2

13−5k
5−2k 1

4 20−9k
7−3k

5
2 1

4 29−9k
10−3k

5
2 1

⎞
⎟⎟⎟⎟⎠, (B35)

leading to

cd
{9,k} = 6 19k−49

7k−18 ln 2

ln
√

49k2−224k+252+7k−16
2

. (B36)

Generalizing even further to arbitrary n = 4m+1 yields the matrices

M =

⎛
⎜⎝

k − 1 −4m + k(2m − 1) + 1 2k(m − 1) − 4m + 3 k − 2
k − 2 (k − 2)(2m − 1) 2k(m − 1) − 4m + 3 k − 2
k − 2 −4m + k(2m − 1) + 1 2(k − 2)(m − 1) k − 2
k − 3 −6m + k(2m − 1) + 2 2(k − 3)(m − 1) k − 3

⎞
⎟⎠, (B37)

E =

⎛
⎜⎜⎜⎜⎝

2m − 2
k−1

−4m(m+1)+k(2m2+m−1)+2
−k+2(k−2)m+1

−4m2+k(m−1)(2m+1)+3
2k(m−1)−4m+3 1

2m + 1
2−k

k−3
k−2 + m −4m2+k(m−1)(2m+1)+3

2k(m−1)−4m+3 1

2m 2(k−2)m2+(k−2)m−k
−k+2(k−2)m+1 m + 1

2 1

2m 2(k−3)m2+(k−3)m−k+1
−k+2(k−3)m+2 m + 1

2 1

⎞
⎟⎟⎟⎟⎠. (B38)
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Finally, the central charge for the {4m+1, k} (block) perfect Majorana dimer model for m � 1, k � 4 follows as

cd
{4m+1,k} = 6

(−3km+k+6m+1
−4km+k+8m+2 + m

)
ln 2

ln
4km+

√
(−4km+k+8m)2−4−k−8m

2

. (B39)

In the large k limit the central charge behaves as

cd
{4m+1,k} = 6 (4m2+2m−1)

4m−1 ln 2

ln[(4m − 1)k − 8m]
+ O(k−1). (B40)
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Chapter 5

Concluding remarks

The confluence of quantum information and high-energy theory has led to exciting
new research directions and will likely stimulate theoretical physics for years to come.
Progress in these directions is still exploratory and many steps are taken in uncertainty
of the eventual destination. Will the foray of quantum information into fundamental
physics simply develop into another branch of methods to study quantum field theory,
similar to how canonical quantization and Feynman diagram techniques already offer
distinct approaches to the same underlying theoretical object? Or will quantum informa-
tion itself form the foundation on which progress towards the fundamental questions of
physics is made? Whatever the future holds, it appears that many boundaries between
traditional subfields will need to be eroded to advance our understanding of nature
beyond its current bounds.

During my doctoral research, I was fortunate to be exposed to ideas from many of
these fields — even including subjects such as condensed matter physics and computer
science — and to be given the chance to use them to build something new. The results
may not amount to any grand discoveries, but they should illustrate how many avenues
there are yet to be explored, and how much richness can come out of simple ingredients,
such as contracted tensors and fermionic pairs. Indeed, compared to the mathematical
finesse of string theory many new approaches from quantum information seem concep-
tually humble at first glance, though deep mathematical ideas are often hidden behind
them. These new approaches, rather than its experimental applications in the shape of
quantum computers, may well turn out to be quantum information’s greatest contri-
bution to modern physics, similar to how the invention of thermodynamics endowed
physics with more than just an efficient description of steam engines.

The future of tensor networks, a topic which many of the preceding pages relate to,
is certainly a bright one: They are already used for purposes far beyond the original
one-dimensional quantum chains for which they were initially conceived, and will likely
shape considerable portions of physics and computer science in the years to come.
Some of the applications to holography, alluded to in the discussion sections of the
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publications contained in this thesis, will likely enrich our understanding of conformal
field theory and perhaps even shed light on the fundamental principles that give rise to
AdS/CFT.
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