
Instituto Politécnico de Leiria
Escola Superior de Tecnologia e Gestão

Departamento de Engenharia Informática
Mestrado em Cibersegurança e Informática Forense

A U T O M AT E D , S C H E D U L E D A N D C I / C D W E B
I N J E C T I O N

mykyta zhygulskyy

Leiria, Fevereiro de 2021

[January 15, 2021 at 18:25 – Version 1]

[January 15, 2021 at 18:25 – Version 1]

Instituto Politécnico de Leiria
Escola Superior de Tecnologia e Gestão

Departamento de Engenharia Informática
Mestrado em Cibersegurança e Informática Forense

A U T O M AT E D , S C H E D U L E D A N D C I / C D W E B
I N J E C T I O N

mykyta zhygulskyy
Número: 2180074

Projeto realizada sob orientação do Professor Ricardo Gomes (ricardo.p.gomes@ipleiria.pt).

Leiria, Fevereiro de 2021

[January 15, 2021 at 18:25 – Version 1]

mailto:ricardo.p.gomes@ipleiria.pt

[January 15, 2021 at 18:25 – Version 1]

A C K N O W L E D G E M E N T S

I thank my advisor Ricardo Jorge Pereira Gomes, for all the guidance and availability
along this path, for all the help, for all the technologies and tools that were taught
to me, and more especially for many of the doubts solved, and also in the way of
thinking, problem-solving. I would also like to thank Professor Mário Antunes for
providing me this advisor for the implementation of this project.

i

[January 15, 2021 at 18:25 – Version 1]

[January 15, 2021 at 18:25 – Version 1]

A B S T R A C T

This report is made within the Curricular Unit (UC) Project, in the 2nd year of
the Master in Cyber-security and Forensic Informatics (MCIF) provided by the
Polytechnic Institute of Leiria (IPL). The purpose of this project is to study SQL
Injection vulnerabilities in web applications. According to OWASP (Open Web
Application Security Project) [20][19], this is one of the more prevalent attacks on
web applications. As part of this work a web application was implemented, which
can from a URL address, go through all the endpoints of the target application
and test for SQL Injection vulnerabilities. The application also makes allows for
scheduling of the tests and it is integrable with Continuous Integration / Continuous
Delivery (CI/CD) environments. According to the literature on the subject, there
are several algorithms that can be employed to test for existing SQL Injection
vulnerabilities in a web application. In this document, we analyze them both from
a theoretical and an implementation point of view. In order to better understand
the subject, and produce a useful tool in this space. With the development of this
project, we concluded that it is possible to integrate SQL vulnerability tests, with
CI/CD pipeline and automate the development process of an application, with the
execution of SQL injection tests in an automated way.

iii

[January 15, 2021 at 18:25 – Version 1]

[January 15, 2021 at 18:25 – Version 1]

R E S U M O

Este relatório é feito no âmbito da Unidade Curricular (UC) Projecto, no 2º ano do
Mestrado em Cibersegurança e Informática Forense (MCIF) fornecido pelo Instituto
Politécnico de Leiria (IPL). O objectivo deste projecto é o estudo das vulnerabilidades
de SQL Injection em aplicações web. Segundo o OWASP (Open Web Application
Security Project)[20][19], este é um dos ataques mais comuns a aplicações web.
Como parte deste trabalho, foi implementada uma aplicação web, que pode a partir
de um endereço URL, analisar todos os endpoints da aplicação alvo e testar as
vulnerabilidades de SQL Injection. A aplicação também permite o agendamento
dos testes e é integrável com ambientes de Integração Contínua / Entrega Contínua
(CI/CD). De acordo com a literatura sobre o assunto, existem vários algoritmos que
podem ser utilizados para testar as vulnerabilidades de SQL Injection existentes
numa aplicação web. Neste documento, analisamo-los tanto do ponto de vista teórico
como do ponto de vista da implementação. A fim de melhor compreender o assunto,
e produzir uma ferramenta útil neste espaço. Com o desenvolvimento deste projecto,
concluímos que é possível integrar testes de vulnerabilidade SQL, com a pipeline
CI/CD e automatizar o processo de desenvolvimento de uma aplicação, com a
realização de testes de injecção SQL de uma forma automatizada.

v

[January 15, 2021 at 18:25 – Version 1]

[January 15, 2021 at 18:25 – Version 1]

TA B L E O F C O N T E N T S

Acknowledgements i
Resumo iii
Abstract v
Table of Contents vii
List of Figures ix
List of Acronyms xiii

1 introduction 1

2 literature review 3
2.1 Software vulnerabilities . 3

2.1.1 Injection . 3
2.1.2 The Other Most Common Application Security Risks 4
2.1.3 SQL Injection . 6

2.2 Injection Vulnerabilities Detection Techniques 8
2.3 Scanning and Detections Tools . 9
2.4 DevOps . 15

2.4.1 Containers . 16
2.4.2 Infrastructure as Code . 17
2.4.3 CI/CD . 17

3 architecture 21
3.1 Login Sessions DVWA . 23
3.2 Application Data Base Architecture 24

3.2.1 Data Base Architecture List View 25
3.3 Continuous Integration and Continuous Delivery 28

4 development 33
4.1 Application . 33

4.1.1 Testing Application . 33
4.2 Infrastructure . 34

4.2.1 DigitalOcean . 34
4.2.2 Terraform Configuration . 34
4.2.3 CI/CD Mechanism . 35

4.3 Choices . 35

vii

[January 15, 2021 at 18:25 – Version 1]

table of contents

4.4 Used applications . 36
4.4.1 Ansible . 36
4.4.2 Minikube . 36

5 test and results 37
5.1 Tests Setup . 37
5.2 Test Scenarios . 38
5.3 DVWA (DAMM VULNERABLE WEB APP) 38
5.4 Testing Mechanisms . 39
5.5 Management Scheduling . 39

6 conclusion 43

bibliography 45

viii

[January 15, 2021 at 18:25 – Version 1]

L I S T O F F I G U R E S

Figure 1 Sql Injection Query . 4
Figure 2 XML External Entities . 5
Figure 3 Broken Access Control . 5
Figure 4 Cross-Site Scripting (XSS) 5
Figure 5 Insecure Deserialization . 6
Figure 6 SQL Injection Example . 7
Figure 7 SQL Injection Example [64] 7
Figure 8 SQL Injection Example [64] 7
Figure 9 Boolean-based blind SQL injection 10
Figure 10 SQLmap Databases . 12
Figure 11 SQLmap Tables . 13
Figure 12 SQLmap Columns . 13
Figure 13 SQLmap Table Data . 13
Figure 14 jSQL Injection . 14
Figure 15 SQLiv . 14
Figure 16 Grabber . 14
Figure 17 BBQSQL . 15
Figure 18 DevOps Lifecycle . 16
Figure 19 Architecture . 21
Figure 20 MVC Flow . 22
Figure 21 DVWA User Token. 23
Figure 22 DVWA Welcome Page. 23
Figure 23 Application Relational Data Base 24
Figure 24 Intall doctl . 29
Figure 25 GitHub Secret . 29
Figure 26 Build Docker images and Apply to Kubernetes cluster . . . 29
Figure 27 Webhook . 30
Figure 28 GitHub actions webhook . 31
Figure 29 Terraform Config . 34
Figure 30 PDO::Query Not sanitized 37
Figure 31 Testing Mechanism Diagram 38
Figure 32 Create New Task . 40
Figure 33 Create Task Api . 40
Figure 34 Manage Tasks . 40

ix

[January 15, 2021 at 18:25 – Version 1]

list of figures

Figure 35 Test Results . 41

x

[January 15, 2021 at 18:25 – Version 1]

list of figures

xi

[January 15, 2021 at 18:25 – Version 1]

[January 15, 2021 at 18:25 – Version 1]

L I S T O F A C R O N Y M S

API Application Programming Interface.

CD Continuous Delivery.

CI Continuous Integration.

CNI Container Networking Interface.

CSI Container Storage Interface.

CSS Cascading Style Sheets.

DNS Domain Name System.

DVWA Damn Vulnerable Web Application.

HCL HashiCorp Configuration Language.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IaC Infrastructure as Code.

IPL Polytechnic Institute of Leiria.

IT Information Technology.

JSON JavaScript Object Notation.

LDAP Lightweight Directory Access Protocol.

MCIF Master in Cybersecurity and Computer Forensics.

MVC Model View Controller.

ORM Object-Relational Mappers.

OS Operating system.

xiii

[January 15, 2021 at 18:25 – Version 1]

List of Acronyms

OWASP Open Web Application Security Project.

PDO PHP Data Objects.

PHP Hypertext Preprocessor.

PII Personally Identifiable Information.

REST Representational State Transfer.

SaaS Software as a Service.

SMB Server Message Block.

SMTP Simple Mail Transfer Protocol.

SQL Structured Query Language.

SQLi SQL injection.

UC Curricular Unit.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

VM Virtual Machine.

XML Extensible Markup Language.

XPath XML Path Language.

XSS Cross-Site Scripting.

XXE XML External Entity.

xiv

[January 15, 2021 at 18:25 – Version 1]

1
I N T R O D U C T I O N

This project started with the idea of deepening the knowledge of software vulner-
ability attack vectors, with the focus from the start on injection vulnerabilities.
Reviewing the literature it became apparent that SQL injection vulnerabilities were
among not only the most prevalent but also the most costly.

The focus then became learning more about the internals SQL injection vulner-
abilities and its detection techniques, as discussed in chapter 2, but also putting
them in the context of the software development life cycle, in particular within the
context of CI/CD processes and pipelines.

In order approach this problem with the ability to carry out incremental testing,
of our understanding of the environment and the tools we might need to address
it, we started by focusing yet again on a subset of the techniques for detecting
SQL injection vulnerabilities, discussed in more detail on chapter 2, 3 and 4, and
developed a web application that can execute those techniques on all local endpoints
present on any web page. This implied a first step of managing to identify those
endpoints in an way that required close to none user interaction, which we achieved
by recursively parsing all the linked pages on the website and interpreting the
requirements of each endpoint.

This application was built on the PHP Laravel framework which allowed us to
take advantage of a number of built-in design patterns and tools, like the Model-
View-Controller design pattern or the Eloquent Object-Relational Mapping tool.
As described in the 3 and 4 chapters this application allows for multiple ways to
execute the tests separated in three major ways. First my a simple manual task
definition, secondly by a time base schedule and third using a REST endpoint. The
implementation of these options allows the application to be used in a number of
different scenarios and contributes heavily to its usefulness.

Having the first iteration of our testing application ready we started to look
deeper at the software life cycle part of the problem. This was particularly insightful
because we discovered that almost all, if not all, the tools in this space are targeted
at security professionals and that means they required a fair set of knowledge to
configure, operate and even interpret its results. We wanted to design a way to
obfuscate most of this knowledge requirement by allowing our tool to integrate with
existing frameworks and processes of Continuous Development. So the focus became

1

[January 15, 2021 at 18:25 – Version 1]

introduction

how to create an environment to learn, experiment, and ultimately create a tool to
bridge this gap.

Finally this process ended by our need to have this validated outside our local
environments, and so the infrastructure on Digital Ocean and usage on GitHub’s
workflows and Actions became the final piece of the puzzle.

For this, we took to the latest set of DevOps tools, like Infrastructure-as-code
with Terraform, and containers and their orchestration with Docker and Kubernetes.
Terraform allowed us to create our infrastructure in a real world provider in a
controllable and replicable way. This is very important on project list this that
require a lot of iterative work and so our infrastructure needed to be rebuilt a lot of
times. Kubernetes was a way for us to not only deploy our testing application in a
manageable way but also to provide a usable environment for our test application
(DVWA) and it’s life cycle.

As its better detailed on the following chapters all theses steps were necessary to
have a firm grasp of the problem and to provide a tool that can be a first attempt
at bridging the gap between security and development.

2

[January 15, 2021 at 18:25 – Version 1]

2
L I T E R AT U R E R E V I E W

This chapter describes the state of the art, in the various topics that the work
proposes, such as software vulnerabilities, security risks of the most common applica-
tions, SQL injections, Techniques of Detection of Injection Vulnerabilities, Scanning
and Detection Tools, DevOps, Containers, Docker, Kubernetes, Infrastructure such
as Code, CI/CD, and CI/CD tools.

2.1 software vulnerabilities

Increasingly, the vulnerability of software and the risks it can cause in companies is
one of the most important and worrying issues for companies. These can lead to
the loss or disclosure of private data, financial consequences and loss of reputation
can be fatal for the company. According to current cybersecurity statistics [61], the
average cost of a malware attack on a company is $2.6 million. The average cost of
a data breach is $3.9 million, the average cost of the lost business is $1. 42 million,
companies will fall victim to a rescue attack every 14 seconds at that time, 50% of
large companies (with over 10,000 employees) spend $1 million or more annually on
security, with 43% spending $250,000 to $999,999, being SQL Injection one of the
most common security risks [19], these attacks and their causes are in part possible
because of SQL Injection vulnerabilities.

2.1.1 Injection

According to OWASP which is an international organization dedicated to enhancing
the security of web applications, based on the documents "The Ten Most Critical
Web Application Security Risks" [20] and "The Ten Most Critical API Security
Risks" [19], Injection in one of 10 most common type of attacks present in Web
Application, Injection flaws can be found in SQL, LDAP, XPath, or NoSQL queries;
OS commands; XML parsers, SMTP Headers, expression languages and ORM
queries, injection flaws occur when unreliable data are sent as part of a command
or query. The attack can then trick the target system into executing unwanted
commands. An attack can also provide access to protected data to untrusted
agents[69], in figure 1 SQL query is demonstrated in which the parameters sent by

3

[January 15, 2021 at 18:25 – Version 1]

literature review

Figure 1: Sql Injection Query

the users, are not expected data but SQL command, which makes the answer not
as expected, because the data the user sends is not treated correctly, so the user
input is interpreted as a command and not as a parameter for the query, and in the
case of the query in figure 1, a user is always returned, regardless of its existence.
The most popular tool among all available SQL injection tools is SQLmap [66], it
is the open source tool, this tool facilitates the exploitation of the SQL injection
vulnerability of a web application and takes over the database server. It comes with
a powerful detection engine that can easily detect most vulnerabilities related to
SQL injection [8].

2.1.2 The Other Most Common Application Security Risks

In this work we selected the vulnerabilities of SQL injections, although there are
other vulnerabilities that also need to be addressed as they have great impact and
importance in the management and implementation of a web application today, and
the work in this project can be augmented to support testing agains these in the
future [55].

1. Broken Authentication - Application functions related to authentication
and session management are often implemented incorrectly, a possible attack
scenario, filling of credentials, the use of known password lists, is a common
attack. If an application does not implement automated threat protection or
credential filling, the application can be used as a password oracle to determine
whether the credentials are valid.

2. Sensitive Data Exposure - Do not properly protect sensitive data, such
as financial, healthcare, and PII, a possible attack scenario, the password
database uses unsalted or simple hashes to store everyone’s passwords. A file
upload flaw allows an attacker to retrieve the password database. All the
unsalted hashes can be exposed with a rainbow table of pre-calculated hashes.
Hashes generated by simple or fast hash functions may be cracked by GPUs,
even if they were salted.

4

[January 15, 2021 at 18:25 – Version 1]

2.1 software vulnerabilities

3. XML External Entity(XXE) - Use External entities to disclose internal
files using the file URI handler, internal SMB file shares on unpatched Windows
servers, internal port scanning, remote code execution, and denial of service
attacks, such as the Billion Laughs attack, a possible attack scenario, the
attacker attempts to extract data from the server, figure 2.

Figure 2: XML External Entities

4. Broken Access Control - Restrictions on what authenticated users are
allowed to do are not properly enforced. Attackers can exploit these flaws to
access unauthorized functionality and/or data, such as access to other user
accounts, view sensitive files, modify other user data, change access rights,
and others, a possible attack scenario, an attacker simply modifies the ‘acct’
parameter in the browser to send whatever account number they want. If not
properly verified, the attacker can access any user’s account, figure 3.

Figure 3: Broken Access Control

5. Security Misconfiguration - Incorrect configuration or insecure default
configurations, a possible attack scenario, the application server comes with
sample applications that are not removed from the production server. These
sample applications have known security flaws attackers use to compromise the
server. If one of these applications is the admin console, and default accounts
weren’t changed the attacker logs in with default passwords and takes over.

6. Cross-Site Scripting (XSS) - XSS flaws occur whenever an application
includes untrusted data in a new web page without proper validation or
escaping, a possible attack scenario, the application uses untrusted data in the
construction of the following HTML snippet without validation or escaping,
figure 4.

Figure 4: Cross-Site Scripting (XSS)

7. Insecure Deserialization - Occur when an application receives hostile seri-
alized objects. Insecure deserialization leads to remote code execution. Even if

5

[January 15, 2021 at 18:25 – Version 1]

literature review

deserialization flaws do not result in remote code execution, serialized objects
can be replayed, tampered or deleted to spoof users, conduct injection attacks,
and elevate privileges, a possible attack scenario, PHP forum uses PHP object
serialization to save a “super” cookie, containing the user’s user ID, role,
password hash, and other state, figure 5, an attacker changes the serialized
object to give themselves admin privileges.

Figure 5: Insecure Deserialization

8. Using Components with Known Vulnerabilities - Components, such
as libraries, frameworks, and other software modules, run with the same
privileges as the application. If a vulnerable component is exploited, such an
attack can facilitate serious data loss or server takeover.

9. Insufficient Logging & Monitoring - Ineffective or missing integration
with incident response allows attackers to further attack systems, maintain
persistence, pivot to more systems, and tamper, extract or destroy data, a
possible attack scenario, an attacker uses scans for users using a common
password. They can take over all accounts using this password. For all other
users, this scan leaves only one false login behind. After some days, this may
be repeated with a different password.

2.1.3 SQL Injection

Given the vastness of possible vulnerabilities, and the fact that it is one that is
testable in an automatable way we decided to focus on it for this project. It was
decided to focus mainly on SQL Injection, as it is the most used Injection type
of attack [3], with the objective of developing an application, which performs the
vulnerability test automatically, implementing some existing vulnerability testing
techniques that will be described below.

An SQL injection attack consists of the insertion or "injection" of a SQL query
through the customer’s input data into the application. A successful SQL injection
exploit can read sensitive data from the database, modify data from the database
(Insert/Update/Delete), perform database administration operations, an attacker
may escalate an SQL injection attack to compromise the underlying server or other
back-end infrastructure or perform a denial of service attack, some of the possible
examples of SQL Injection are demonstrated in the figures, 6, figure 7 and figure 8
[63] [64].

6

[January 15, 2021 at 18:25 – Version 1]

2.1 software vulnerabilities

Figure 6: SQL Injection Example

Figure 7: SQL Injection Example [64]

Figure 8: SQL Injection Example [64]

Currently, web applications are parts of our daily lives, such as access to online
bank accounts, online shopping, and others. These applications generally interact
with databases to access persistent data, which contains personal information. These
applications have been continuously targeted by highly motivated malicious users
to acquire monetary gain. Currently, in application development, customers are not

7

[January 15, 2021 at 18:25 – Version 1]

literature review

concerned with the security that the application has, and are more focused on the
functionality of the application, until the moment an incident occurs. That is why
it is the developers and system administrators who are responsible for the security
of the application.

In order to automate this process, there are automatic vulnerability scanners,
which provide vulnerability testing mechanisms to ensure that applications are
minimally secure before they go into production [35].

In the following section we explain the existing techniques to detect SQLI vulner-
abilities.

2.2 injection vulnerabilities detection techniques

Two important characteristics of SQL injection attacks are the injection mechanism
and different kinds of attacks that can be carried out. Below are some examples of
SQL injection attack techniques [53].

1. In-band SQLi: It’s one of the easiest to exploit, compared to other types. The
attacker injects malicious code into a web application and the results are
usually returned to the attacker’s screen, Error-based SQLi is an example of
an In-band SQLi [53].

2. Error-based SQLi: This technique is based on the error messages what are
returned by database server after some reserved characters or malicious codes
are posted on a form of a web application. That gives the attacker some
information about the structure of the database and data stored inside the
database [58]. This technique works when the target web application has been
configured to disclose error messages which are used for testing during the
phase of application development and should be disabled or logged to a file
with restricted access. This technique is effective enough for an analyst to
enumerate an entire database, tables, and the stored data.

3. Double Query-based SQLi: This technique uses a combination of two queries
in a single query, with the purpose that the backend database returns the error
message what usually contains information the attacker is trying to extract.

4. Blind SQLi: This technique is more complex because it requires that the
attacker creates a well constructed logical query that will inject into a web
application, “forcing” the application to return a different result and observe
the result of this query in a backend database. This technique takes more time
because the parameters are injected without knowing the database structure.
And the results of these attacks are not dumped on the screen of the user or
visible to the attacker thereby getting its name Blind SQL injection. There

8

[January 15, 2021 at 18:25 – Version 1]

2.3 scanning and detections tools

are two types of Blind SQL Injection, the Boolean-based blind SQLi, and
time-based Blind SQLi.

a) Boolean-based Blind SQLi: This technique consists of sending a valid
SQL query, then changing the query and compare whether the query
returns a TRUE or FALSE result. Depending on the result, the content
within the HTTP response will change, or remain the same, can conclude
if the endpoint is injectable or not [1].

b) Time-based Blind SQLi: This technique sends queries to the database
which causes a delay in the amount of time, it takes the database to
respond. To create this delay in time, the attacker must build a proper
query to force the server to work. The response time indicates to the
attacker whether the result of the query is TRUE or FALSE.

5. Union-based SQL injection: this injection technique that leverages the UNION
SQL operator to combine the results of two or more SELECT statements into
a single result. The combined results are then returned as part of the HTTP
response, which could be displayed on the web page. This technique works
when the web application page passes directly the output of the statement
SELECT within a for loop or similar so that each line of the query output is
printed on the page content [46].

In this project we implemented the Boolean-based Blind SQLi technique because
it seems to be one of the most interesting and simple techniques to understand,
which consists of sending requests, forcing the application to return a different value,
changing the payload of each request, and checking whether or not the response
remained the same, it is possible to verify this process in the figure 9 [9].

2.3 scanning and detections tools

There are several types of vulnerability scanners, with different costs and features,
below are some examples of them [70], and in the end, some of the applications that
were tested.

2.3.0.1 Paid Tools

1. Rapid7 Nexpose - is a vulnerability scanner that aims to support the entire
vulnerability management lifecycle, including discovery, detection, verification,
risk classification, impact analysis, reporting, and mitigation. It integrates
with Rapid7’s Metasploit for vulnerability exploitation. It is sold as standalone

9

[January 15, 2021 at 18:25 – Version 1]

literature review

Figure 9: Boolean-based blind SQL injection

10

[January 15, 2021 at 18:25 – Version 1]

2.3 scanning and detections tools

software, an appliance, virtual machine, or as a managed service or private
cloud deployment. User interaction is through a web browser [50] [49].

2. Netsparker - is an web application security scanner automatically detects SQL
Injection, Cross-site Scripting (XSS) and other vulnerabilities in all types of
web applications [47] [48].

3. Acunetix - is an automated web application security testing tool that audits
your web applications by checking for vulnerabilities like SQL Injection, Cross
site scripting, and other exploitable vulnerabilities [74] [2].

4. ManageEngine Vulnerability Manager Plus - allows the detection, and assess-
ment of vulnerabilities to their elimination with an automated patch workflow,
all aspects of vulnerability management are facilitated with a centralized
console. It is also possible to manage security settings, harden web servers,
mitigate zero-day vulnerabilities, perform end-of-life audits, and eliminate
risk software. Simplify vulnerability management with a remotely deployable
agent, web-based interface, and infinite scalability [43].

2.3.0.2 Free Tools

1. Nmap - is a free and open-source network scanner.Used to discover hosts
and services on a computer network by sending packets and analyzing the
responses [52].

2. OpenVAS - is a software framework of several services and tools offering
vulnerability scanning and vulnerability management[54].

3. Arachni - is an Open Source, feature-full, modular, high-performance Ruby
framework aimed towards helping penetration testers and administrators
evaluate the security of web applications [5].

4. XssPy - is a python tool for finding Cross Site Scripting vulnerabilities in
websites [78].

5. w3af - is an open-source web application security scanner. The project provides
a vulnerability scanner and exploitation tool for Web applications [73].

6. Nikto - is a free software command-line vulnerability scanner that scans
webservers for dangerous files/CGIs [51].

7. OWASP ZAP - is an open-source web application security scanner. It is
intended to be used by both those new to application security as well as
professional penetration testers [56].

8. Grabber - is a web application scanner. Basically it detects some kind of
vulnerabilities in website [30].

11

[January 15, 2021 at 18:25 – Version 1]

literature review

9. Golismero - is an open source framework for security testing [28].

10. OWASP Xenotix XSS - is an advanced Cross Site Scripting (XSS) vulnerability
detection and exploitation framework [57][40].

2.3.0.3 Tested Tools

1. Sqlmap - is an open source penetration testing tool that automates the process
of detecting and exploiting SQL injection flaws, have a powerful detection
engine, many niche features for the ultimate penetration tester and a broad
range of switches lasting from database fingerprinting, over data fetching from
the database, to accessing the underlying file system and executing commands
on the operating system via out-of-band connections [66], SQLmap has features
such as detection of the database used, existing tables, the structure of the
database tables, and data from the tables, these features are possible to view
in the figures 10, 11, 12 and figure 13.

Figure 10: SQLmap Databases

2. jSQL Injection - is a lightweight application used to find database information
from a distant server, this application has characteristics like the visualization
of the structure of the database in interface mode, this feature is possible to
visualize in the figure 14 [36].

3. SQLiv - is a Python-based scanning tool that uses Google, Bing, or Yahoo for
targeted scanning, focused on reveal pages with SQL Injection vulnerabilities,
this feature is possible to visualize in the figure 15 [65].

4. Burp Suite Community Edition - is an integrated platform for performing
security testing of web applications. Its various tools work seamlessly together
to support the entire testing process, from initial mapping and analysis of

12

[January 15, 2021 at 18:25 – Version 1]

2.3 scanning and detections tools

Figure 11: SQLmap Tables

Figure 12: SQLmap Columns

Figure 13: SQLmap Table Data

an application’s attack surface, through to finding and exploiting security
vulnerabilities [12].

13

[January 15, 2021 at 18:25 – Version 1]

literature review

Figure 14: jSQL Injection

Figure 15: SQLiv

Figure 16: Grabber

5. Grabber - is a web application scanner that detects some kind of vulnerabilities
in websites is simple, not fast but portable and adaptable, is designed to scan
small websites such as personal sites, forums, and other sites of the same type
[29], figure 16.

6. BBQSQL - is a blind SQL injection framework written in Python, useful for
attacking complicated SQL injection vulnerabilities, it is a semi-automatic
tool, allowing a little customization for triggering the results of SQL injection,

14

[January 15, 2021 at 18:25 – Version 1]

2.4 devops

Figure 17: BBQSQL

it is built to be agnostic to the database and is extremely versatile, it also
has an intuitive UI to make setting up attacks much easier, in figure 17, it is
possible to observe the great possibility of the parameters to configure, in the
SQL injection attack configuration [7].

The tested applications were chosen to be tested because most were already
installed by default in the Kali Linux Operating System [37]. The applications
tested do not support the integration with the CI/CD pipeline and the capture of
the Login Session of it was implemented in the developed application.

2.4 devops

DevOps is a set of practices that work to automate and integrate processes between
software development and IT teams. It aims to reduce and automate the systems
development lifecycle so they can build, test, and launch software more quickly and
reliably [76][16]. The DevOps life cycle consists of six phases, plan, build, integrate
and implement continuously (CI/CD), monitor, operate, and respond to continuous
feedback, figure 18.

The developed project is included in the Build phases, where the application is
being built, Continuous Integration and Continuous Deployment with the CI / CD
mechanism, and Continuous Feedback with the scheduling mechanism.

15

[January 15, 2021 at 18:25 – Version 1]

literature review

Figure 18: DevOps Lifecycle

2.4.1 Containers

A container is a standard software unit that packages code and all its dependencies,
which allows programmers to isolate their application from its environment, and
runs quickly and reliably from one computing environment to another [75][15].

2.4.1.1 Docker

Docker is a tool designed to make it easier to create, deploy, and run applications
by using containers. The containers allow the application to be separated into parts
according to its needs or dependencies, which will be treated as an entire application
and will be executed in other systems in the same way. The Docker is a bit like a
virtual machine, with some advantage it allows applications to use the same Linux
kernel, which removes the extra layer and gives an increase in performance [77].

2.4.1.2 Kubernetes

Kubernetes is an open source system for managing containerized applications across
multiple hosts. It provides basic mechanisms for deployment, maintenance, and
scaling of applications [38]. Haff and Henry wrote "Kubernetes, or k8s, is an open
source platform that automates Linux container operations. It eliminates many of
the manual processes involved in deploying and scaling containerized applications"
[10].

16

[January 15, 2021 at 18:25 – Version 1]

2.4 devops

Benefits of Kubernetes

1. Availability. Kubernetes clustering has very high fault tolerance built-in,
allowing for extremely large scale operations.

2. Auto-scaling. Kubernetes can scale up and scale down based on traffic and
server load automatically.

3. Extensive Ecosystem. Kubernetes has a strong ecosystem around Container
Networking Interface (CNI) and Container Storage Interface (CSI) and inbuilt
logging and monitoring tools [39].

In the project developed, Kubernetes manages the containers and the necessary
resources for them and ensures that they are always available.

2.4.2 Infrastructure as Code

IaC is the process of managing and provisioning computer data centers through
machine-readable definition files, rather than physical configuration of interac-
tive hardware or configuration tools[32], which can be in conjunction with the
application’s source code and evolve with it.

2.4.2.1 Terraform

Terraform is a tool for building, changing, and versioning infrastructure safely and
efficiently. Users define and provision data center infrastructure using a declarative
configuration language known as HCL, or optionally JSON. The infrastructure
Terraform can manage includes low-level components such as compute instances,
storage, and networking, as well as high-level components such as DNS entries,
SaaS features, etc[33][68]. In the developed project, Terraform allows us to have the
configuration of the infrastructure described in a file, from which it is possible to
create it automatically.

2.4.3 CI/CD

Continuous integration and continuous delivery (CI/CD) is a practice that enables
development teams to deliver high-quality code more frequently and reliably [14][21],
with a continuous integration strategy, the new code changes in an application
are regularly created, tested, and merged into a shared repository. In order to
ensure that those changes do not corrupt the application. And with a continuous
delivery strategy refers to continuous delivery and/or continuous deployment of

17

[January 15, 2021 at 18:25 – Version 1]

literature review

the application in a live production environment automatically [59]. Apart from
tailor-made software or large vulnerability detection software packages integrated
into enterprise environments, there are no tools available to add to the CI/CD
process elements of vulnerability detection in a simple way for development teams
or DevOps.

CI / CD pipelines traditionally focus on functionality, but due to the distributed
nature of current software and the number of cyberattacks the non-functional aspects
have also started to be addressed. As a result, pipelines must not only maintain
functional tests but also include specific safety tests, such as checking imported
libraries with Software Composition Analysis tools such as OWASP Dependency-
Check or Retire.js, analyzing and hardening the infrastructure by using, for example,
Inspec, Nmap, or cloud-based tools, checking for secrets out in the open with
git-secrets or similar solutions, targeting specific issues with SQLMap, SSLyze, and
others [13].

Here are some examples of CI/CD tools in use in the industry.

CI/CD Tools

1. Github Actions - are a relatively new feature to Github that allow, to set up
CI/CD workflows using a configuration file right in your Github repository
[22] [23].

2. Jenkins - is a free and open source automation server, helps automate the
parts of software development related to building, testing, and deploying,
facilitating continuous integration and continuous delivery [34].

3. Gitlab CI/CD - is a free and self-hosted Continuous Integration tool built
into GitLab CI/CD, has a community edition, and provides git repository
management, issue tracking, code reviews, wikis, and activity feeds [25] [26].

4. Travis CI - is a hosted continuous integration service used to build and test
software projects hosted at GitHub and Bitbucket, was the first CI service
which provided services to open-source projects for free, however free open-
source plans were removed in the end of 2020 [71].

5. GoCD - is an open-source tool that is used in software development to help
teams and organizations automate the continuous delivery of software. It
supports automating the entire build-test-release process from code check-in
to deployment [27].

In conclusion, the area of analysis and detection of vulnerabilities is both vast
and mature, and to some extent, the same can be said for the area of CI/CD. So it
would be expected that the volume of attacks dependent on software vulnerabilities
would be decreasing, however, this is not the case. In the analysis of the state of

18

[January 15, 2021 at 18:25 – Version 1]

2.4 devops

the software, we concluded that more work is needed in linking these two areas of
computer science, and this project is our contribution.

19

[January 15, 2021 at 18:25 – Version 1]

[January 15, 2021 at 18:25 – Version 1]

3
A R C H I T E C T U R E

The architecture used in this project is the Client-Server model, in which the client
makes the request to the server using a computer network, the server is always
listening for requests, in order to receive an order, it will handle that request and
return the response to the user.

In our case, the server is a Web application, implemented using the Laravel
framework, and it communicates with the MariaDB database.

As we can see in figure 19, our application receives the request from the user that
must include an URL to be tested, it then does a set of requests to that URL to
collect all the testable URLs it can find. The application does this by parsing the
HTML and looking for all references to local URLs (URLs with the same hostname,
or without explicit hostnames). After that first set of requests, it goes through all
the URLs and runs the vulnerability testing on each one.

Finally, it returns the result to the user with the list of tested URLs and the
status for each test.

Figure 19: Architecture

The testing mechanisms are explained in further detail in the "Testing Mechanisms"
section

21

[January 15, 2021 at 18:25 – Version 1]

architecture

With the purpose of supporting the usage of the Testing Application in CI/CD
pipelines our application also exposes a REST endpoint that receives the URL to
be tested and an authentication token. In this case the user / browser components
of figure 19 are a simple HTTP request to our REST endpoint.

Another feature of application testing that has some advantages is to continuously
test live applications. To support this approach our Testing Application also supports
scheduling a test to be done in the future as a one-off test or as a periodic event.
The details of this functionality are explained in the "Scheduling and Management"
section.

Laravel applications use the MVC model (Model View Controller), which is a
software architecture pattern that separates the logic of the application, the user
interface and the components responsible for communicating with the database, in
figure 20 we can see the MVC flow, which starts with the user making a request, that
request goes through a certain route, which will reach a controller, the controller will
execute some logic, for example, communicate with the model, which is connected
to the database, and this, in turn, will return some data that will be presented to
the user.

Figure 20: MVC Flow

22

[January 15, 2021 at 18:25 – Version 1]

3.1 login sessions dvwa

3.1 login sessions dvwa

A mechanism has been implemented to capture login sessions in order to support
testing of vulnerabilities in authorized endpoints.

Before the SQL injection test runs, cookies, and other session state elements, are
captured. At the moment it is only implemented for the DVWA application, but the
mechanism was built to support other types of applications, for this purpose, there is
a table in the database that stores the type of application that the Test Application
supports for testing and some new fields in the tables tasks and endpoints. That
stored information will be used in injection tests, in addition, the code structure
has been designed in such a way that the new type of application to be supported
is easy to integrate with the rest of the application. For the DVWA application, the
session capture has the following procedures:

• A GET request is made the DVWA login page.

• Capture "user_token" that is present in the login page source code, figure
21.

Figure 21: DVWA User Token.

• Save in the DataBase the PHP SESSION TOKEN Cookie also comes with a
response, to use in the next requests to this page.

• Then a POST request is executed on the login page with the captured
"user_token" and the Cookie that was returned by the DVWA application.

• In case of the answer redirects to the Home page, it means that the login is
done successfully and now it is possible to use the application to execute SQL
Injection tests, figure 22.

Figure 22: DVWA Welcome Page.

23

[January 15, 2021 at 18:25 – Version 1]

architecture

The SQL Injection applications that were tested do not support the capture of
sections except the "The Burp Suite" application, which supports something similar,
more flexible and global, but a more complex, which requires configuration by the
user[12], so this feature has been implemented that allows automatic capture of
the session and subsequent testing of SQL injections, without the need for prior
configuration by the user.

3.2 application data base architecture

The implemented application use relational database MariaDB[44], so that the test
results are persistent. The database is constituted by several tables as we can see in
schema present in figure 23.

Figure 23: Application Relational Data Base

The table "Users", which contains the users of the application, has the column
"api_token", which is used by the users to create tasks from our REST endpoint,
and column admin, which is a flag column to indicate if the user is admin.

Table "Tasks" stores the tasks that the users create, That table has the field
"task" which is the name of the task to be executed, field "URL" is the address of
the application that the user wants to test, and the date when the test should be
executed, all the tasks are associated to the user who created them from by foreign
key "user_id".

24

[January 15, 2021 at 18:25 – Version 1]

3.2 application data base architecture

The table "Endpoint" contains the URL field that is the endpoint for the test
that was executed, the type of endpoint, the code returned to the test execution
and if it is injectable or not, each endpoint belongs to a specific task.

The table "Parameters" stores the parameters associated with each endpoint and
the table "injection_responses", which has the answers of the tests executed to
each endpoint, that can be used for later analysis and execution of other types of
SQL attack techniques.

Injection_Response table stores the response of the requests that are made in the
injection tests, the response status, URL, request parameters, and the endpoint_id
that is the foreign key of the endpoints table.

Application_Types table saves the types of application that can be tested, used
for session capture.

Payloads table stores detailed information about the payloads, their testing depth,
the risk that is applied, where the payload is applied, identifier if the injected
payload was successful, and others, the explanation of them is further below.

The following are the detailed structures of the various tables for easy reference.

3.2.1 Data Base Architecture List View

3.2.1.1 Users Table

• id (BIGINT) - Data base primary key, user identifier.

• name (VARCHAR) - User Name.

• email (VARCHAR) - User Email.

• password (VARCHAR) - User Password Hash.

• api_token (VARCHAR) - User Api access token.

• admin (BOOLEAN) - Admin flag.

3.2.1.2 Tasks Table

• id (BIGINT) - Data base primary key, task identifier.

• task (VARCHAR) - Task Name.

• url (VARCHAR) - Url of application to test.

• Execute (DateTime) - Execute Date and Time.

• toRun (BOOLEAN) - Flag of the task, if the task was tested.

25

[January 15, 2021 at 18:25 – Version 1]

architecture

• injectable (BOOLEAN) - Flag if url is injectable.

• user_id (BIGINT Foreign) - User Identifier.

• hasAdditionInformation_id (BOOLEAN) - Flag if the task has additional
information.

• loginUrl (VARCHAR) - Login URL of application to test.

• loginUserName (VARCHAR) - Login username of application to test.

• loginPassword (VARCHAR) - Login password of application to test.

• customCookies (VARCHAR) - Personalized cookies that the user can pass.

• requestCookiesHeaderString (VARCHAR) - Cookies that is used in the
injection test.

• application_type_id (BIGINT Foreign) - Application identifier.

3.2.1.3 Endpoints Table

• id (BIGINT) - Data base primary key, endpoint identifier.

• url (VARCHAR) - Url to test

• title (VARCHAR) - Page title

• type (VARCHAR) - Page type

• status (INT) - Page request status

• isCrawled (BOOLEAN) - Flag of the endpoint, if the endpoint was tested

• injectable (BOOLEAN) - Flag if url is injectable

• task_id (BIGINT Foreign) - Task Identifier

3.2.1.4 Parameters Table

• id (BIGINT) - Data base primary key, parameter identifier.

• name (VARCHAR) - Parameter Name

• endpoint_id (BIGINT Foreign) - Endpoint Identifier

3.2.1.5 Injection_Responses Table

• id (BIGINT) - Data base primary key, response identifier.

• response (LONGTEXT) - Response

• status (VARCHAR) - Request status

26

[January 15, 2021 at 18:25 – Version 1]

3.2 application data base architecture

• type (VARCHAR) - Request type

• url (VARCHAR) - Request url

• requestParameters (VARCHAR) - Request parameters String

• endpoint_id (BIGINT Foreign) - Endpoint Identifier

3.2.1.6 Injection_Responses Table

• id (BIGINT) - Data base primary key, response identifier.

• response (LONGTEXT) - Response

• status (VARCHAR) - Request status

• type (VARCHAR) - Request type

• url (VARCHAR) - Request url

• requestParameters (VARCHAR) - Request parameters String

• endpoint_id (BIGINT Foreign) - Endpoint Identifier

3.2.1.7 Application_Types Table

• id (BIGINT) - Data base primary key, application identifier.

• status (VARCHAR) - Application name

3.2.1.8 Payloads Table

• id (BIGINT) - Data base primary key, payload identifier.

• title (VARCHAR) - Title of the test.

• stype (INT) - SQL injection family type.

• level (INT) - From which level check for this test.

• risk (INT) - Likelihood of a payload to damage the data integrity.

• clause (VARCHAR) - In which clause the payload can work.

• where (INT) - Where to add our <prefix> <payload><comment> <suffix>
string.

• vector (VARCHAR) - The payload that will be used to exploit the injection
point.

• request_payload (VARCHAR) - The payload to test for.

• request_comment (VARCHAR) - Comment to append to the payload,
before the suffix.

27

[January 15, 2021 at 18:25 – Version 1]

architecture

• request_char (VARCHAR) - Character to use to bruteforce number of
columns in UNION query SQL injection tests.

• request_columns (VARCHAR) - Range of columns to test for in UNION
query SQL injection tests.

• response_comparison (VARCHAR) - Perform a request with this string
as the payload and compare the response with the <payload> response. Apply
the comparison algorithm.

• response_grep (VARCHAR) - Regular expression to grep for in the
response body.

• response_time (VARCHAR) - Time in seconds to wait before the re-
sponse is returned.

• response_union (VARCHAR) - To test for UNION query (inband) SQL
injection.

• details_dbms (VARCHAR) - What is the database management system
(e.g. MySQL).

• details_dbms_version (VARCHAR) - What is the database manage-
ment system version (e.g. 5.0.51).

• details_os (VARCHAR) - What is the database management system
underlying operating system.

With the Data Base architecture developed, it is quite simple to add other SQL
injection techniques and also other applications to capture the Login Session.

3.3 continuous integration and continuous delivery

Since one of the goals of our Testing Application is to integrate with CI/CD pipelines,
we included the implementation of that feature by using our code repository tool
- GitHub - and it’s GitHub Actions feature. In the application that is the target
of the SQL Injection tests, a configurable automated process (called Workflow in
GitHub Actions) was developed, triggered by each push to the repository.

3.3.0.1 GitHub action procedures:

1. Fetch the latest version of the application.

2. Install the doctl command-line client24.

a) Pass Digital Ocean token by GitHub Secrets 25.

28

[January 15, 2021 at 18:25 – Version 1]

3.3 continuous integration and continuous delivery

Figure 24: Intall doctl

Figure 25: GitHub Secret

3. Save Digital Ocean cluster kubeconfig.

4. Build Docker images and apply them to Kubernetes cluster 26.

Figure 26: Build Docker images and Apply to Kubernetes cluster

5. Execute "webhook.sh" file that is in the root of the repository 27.

a) Make POST request to our test application API, which will create a new
task and perform the SQL Injection tests.

6. In case Success response.

a) Workflow will apply the current images to the production cluster.

7. In case of any endpoint be injectable of SQL Injection.

a) Workflow is terminated without publishing the application in production
28.

29

[January 15, 2021 at 18:25 – Version 1]

architecture

Figure 27: Webhook

b) Return list of injectable endpoints.

The set of elements designed and implemented allows us to have a high degree
of confidence that this approach provides a meeting between the disciplines of
Security and CI/CD in order to allow, without effort or acquisition of new skills by
development teams, a greater surface of timely detection of software vulnerabilities.
At the moment the proposed architecture focuses on one type of SQLI vulnerabilities,
but it is easily expanded to support not only more types but other vulnerabilities.

30

[January 15, 2021 at 18:25 – Version 1]

3.3 continuous integration and continuous delivery

Figure 28: GitHub actions webhook

31

[January 15, 2021 at 18:25 – Version 1]

[January 15, 2021 at 18:25 – Version 1]

4
D E V E L O P M E N T

This chapter describes the application that has been implemented, namely, how
the SQL Injection mechanism works, the first application that was used as a
target application for testing, the infrastructure used, and the settings for its
implementation, the CI/CD mechanism, some of the choices made during the
development of the project, and some of the tools used for its implementation.

4.1 application

An application was implemented using the Laravel framework [41]. The main tool
that is used to execute tests is Guzzle, a PHP HTTP client[18], this allows us
to make outgoing HTTP requests in a simple and quick mannager[31]. The test
starts with the GET request to the URL address of the web application the user
wants to test, the system analyzes the HTML response, and tries to find the links
to the subsections of the test application. This process is recursive and the same
applies to all links found. At the end of the endpoint search process, the SQL
Injection vulnerability test will be executed, using the "Boolean-based Blind SQLI"
Technique, explained in the Literary Review section. After all the endpoints are
tested, the results are returned and contain which of them suffers from an SQL
Injection vulnerability.

4.1.1 Testing Application

At the beginning of the project, a very simple application was implemented in order
to have SQL injection vulnerability, which served as a target for the execution of
SQL injection tests. But over time there was a need to change the target of the tests
to a more reliable application and the DVWA application was chosen because its
goal is to help security professionals test their skills and tools in a legal environment.

33

[January 15, 2021 at 18:25 – Version 1]

development

4.2 infrastructure

The following sub-sections describe our infrastructure components and the decisions
that were made.

4.2.1 DigitalOcean

DigitalOcean is a cloud computing provider that offers an Infrastructure as a Service
(IaaS) platform. It is very popular among open source developers, offers a reliable
and easy to use virtual server, object storage as well as managed services linke
Kubernetes [17][60]. DigitalOcean offers us the service with which it is possible to
create our infrastructure, automatically, since it has the integration with tools such
as Terraform and dispose our application for the internet.

4.2.2 Terraform Configuration

Figure 29: Terraform Config

The Kubernetes cluster is created using the terraform tool in which resources are
defined with the necessary pool. As we can see in figure 29 our pool is composed of
three nodes of a specific type. Kubernetes will always try to make sure that the
defined infrastructure is up and running, and since this is a managed cluster on
Digital Ocean all the underlying resources are created automatically. Terraform
allows us to have the guarantee that we can create the necessary infrastructure
from nothing without human intervention, and as our project is based on the idea
that automation mechanisms allow sustainable results this feature is indispensable.

34

[January 15, 2021 at 18:25 – Version 1]

4.3 choices

4.2.3 CI/CD Mechanism

In order to make sure our Testing Application can indeed be used inside a CI/CD
pipeline we used GitHub Actions to define a simple pipeline as an example.

A workflow (name for pipeline in GitHub Actions) was configured, workflow starts
with install the doctl command-line client with past token created through Digital
Ocean, which enables it to interact with DigitalOcean services[67]. Then the Docker
images are built and applied to the Kubernetes cluster. Next, an HTTP POST will
be sent to the API endpoints of our test application.

The current application will be tested, at the end of which a response will be
returned and in case of success the workflow will apply the current images to the
production cluster, if there is any endpoint that is vulnerable to SQL Injection, the
execution flow is terminated without publishing the application in production. The
CI/CD mechanism allows us to call the test application automatically, without the
need for someone to interact with it, and to apply the new version of the application
that has been tested, automatically, in production, in case of test success. A more
detailed layout of this process is described in it’s own chapter.

4.3 choices

Throughout the life of the project, it was necessary to make some choices for the
project to come to an end with the main objective of the completed application.
One of them was at the beginning of the project we started to use the Laravel Dusk
test tool[42], but at the end of the implementation, it was observed that it had some
of the limitations as session capture, as this point was considered important and
interesting to explore, it was decided to use HTTP requests with the Guzzle tool.

Another choice that was made is to publish the implemented application and
the application that will be tested (DVWA) for the Internet, which solves a series
of limitations that the approach of building applications within a GitHub Actions
CI/CD pipeline and makes the scenario equal to production, thus the applications
are totally independent and the GitHub Actions CI/CD pipeline only interacts with
the applications.

The implementation of the necessary services using the Kubernetes orchestraor
was another change the project had. In its first implementation, the publication of
the application was through the application of Ansible, which installed the services
and configured the necessary services in a resource created through the Terraform
tool. This strategy was changed because the necessary services are now managed

35

[January 15, 2021 at 18:25 – Version 1]

development

through Kubernetes. Although they are the same way hosted and requested, through
the Terraform application to DigitalOcean services.

4.4 used applications

Although these applications are not used in the final application, they were important
for the process of discovery of these areas and preliminary testing of the concept
and proposed approaches.

4.4.1 Ansible

Ansible is an open-source software provisioning, configuration management, and
application-deployment tool enabling infrastructure as code[4].

4.4.2 Minikube

Minikube implements a local lightweight Kubernetes cluster. That creates a VM on
your local machine and by deploying a simple cluster containing only one node[72][24].
This was used as our target cluster during development.

36

[January 15, 2021 at 18:25 – Version 1]

5
T E S T A N D R E S U LT S

5.1 tests setup

Figure 30: PDO::Query Not sanitized

The test application was adapted from the application that was developed in
the Applications for the Internet course of the Computer Engineering BsC. The
application is constituted by a list of users, in which it is possible to add a new
user, change an existing one, or delete it. It was developed using the languages PHP,
HTML, and CSS (using the Bootstrap CSS framework).

The application was changed to be injectable, in figure 30 we can see executing
of the SQL query with parameters passage without prepared statements [62], which
makes the application injectable if the parameters are not sanitized. The sanitized
parameters are when the user’s input goes through methods that will remove any
illegal character from the data.

37

[January 15, 2021 at 18:25 – Version 1]

test and results

5.2 test scenarios

5.3 dvwa (damm vulnerable web app)

DVWA is a free web application, implemented with PHP/MySQL, and is used
to practice some of the most common web vulnerabilities, with various levels of
difficulty, with a simple and direct interface, which will be used as an application
that will be tested with a developed application. There is an image of the dock with
a DVWA application, which will be used in the integration of the application with
the CI/CD pipeline. DVWA application help web developers better understand the
processes of securing web applications and to aid both students and teachers to
learn about web application security in a controlled class room environment [6].

The test engine starts by taking the address of the application to be tested and
view all the code on the page looking for HTML <a> tags to which the "href"
attribute will be extracted and add to the endpoints to be tested, from the URL
that is added extracts all the parameters of the query if they exist and adds them
to the parameters of the endpoint, and also looks for all the HTML <form> tags
look for the action attribute to validate if the URL is valid and then add it to
the endpoint to test after, and also all inputs present in the form will extract the
name from the input and add it to the parameters of the endpoint. This research is
recursive, after this task end, all found endpoints are tested, in figure 31 we can
view this process in the diagram.

Figure 31: Testing Mechanism Diagram

38

[January 15, 2021 at 18:25 – Version 1]

5.4 testing mechanisms

5.4 testing mechanisms

At the moment, only one mechanism has been implemented, Boolean-based Blind
SQLi. This attack is typically slow (especially on large databases) since an attacker
would need to enumerate a database, character by character[45]. The effectiveness
of data extraction with this technique depends on the number of requests made to
the database[11]. In figure 9, it is demonstrated in a simple way how the testing
mechanisms works.

5.5 management scheduling

In the Testing Application, a scheduling mechanism was implemented, so that
users can run the tests, in more desirable periods of time, so as not to disturb the
smooth functioning of the user’s applications, and to support recurring tests of live
applications.

This mechanism is implemented with the functionality available by the Laravel
framework called "Task Scheduling" and for its operation, just need to add a new
line in the server’s crond, this command will execute the "schedule:run" command
in the application folder every minute.

* * * * * cd / path-to-your-project \&\& php artisan schedule :

run >> / dev / null 2> \& 1

This defines the scheduled task to run every minute at which time we check the
database for tasks to run and run them.

In the figure 32, we can see one of the possible ways of creating a new task in
the application, in which it is necessary to define the task name, the URL we want
to test and the date on which we want the task to be executed, which can also be
created with a POST request to the application API. In figure 33, it is demonstrated
the creation of the task from a POST request, where the data are sent in the request
and not filled in the platform form.

After creating the Task, the application will execute the task at the appropriate
time and save the test result in the Database. The test results are accessible to the
user that created them in the Tasks tab as we can see in figure 34. After the test
run, when clicking on the task it is possible to view the test result, figure 35.

39

[January 15, 2021 at 18:25 – Version 1]

test and results

Figure 32: Create New Task

Figure 33: Create Task Api

Figure 34: Manage Tasks

40

[January 15, 2021 at 18:25 – Version 1]

5.5 management scheduling

Figure 35: Test Results

41

[January 15, 2021 at 18:25 – Version 1]

[January 15, 2021 at 18:25 – Version 1]

6
C O N C L U S I O N

This project was a journey in learning, experimentation, development, and infras-
tructure management, and although it had the focus on detecting SQL Injection
vulnerabilities it provided an overview of a large part of the software development
cycle. One key insight taken from this project is that the multiple aspects of software
development should not live in isolation, security cannot live in it’s walled garden,
and neither can development or infrastructure.

As a result of the scope of this project, the first major benefit was the broadening
of knowledge both in dept in some case as in breath on others. Understanding the
internals of an SQL Injection vulnerability and it’s detection techniques is much
more powerful in the full context of the life of a piece of software.

The second result, but by no means less relevant, was the production of an
application and it’s surrounding processes that can be used as a model for bridging
the gap between security and development or DevOps. Although the market has no
shortage of security tools targeting the detection of software vulnerabilities, there
seems to be a significant gap in this space. Most, if not all, tools have an underlying
requirement of a big set of skills and knowledge. Our contribution to this space is
a way to bridge this gap by providing a tool that can obfuscate that requirement
and allow teams, that have experience and knowledge in other fields of the software
development world, to reap the benefits of a security tool directly in their normal
workflow.

As a personal note, this project allowed me to learn, what are Containers, DevOps,
deepen my knowledge in SQL Injection, and know tools like Docker, Kubernetes,
Terraform, Ansible, that some of them, I use every day now.

We conclude by suggesting that what we produced in this project could and
should be augmented, not only on the security aspect, by implementing new testing
techniques or new vulnerability targets, but also on the software development life
cycle component by making it integrable with other types of mechanisms in the
CI/CD space.

43

[January 15, 2021 at 18:25 – Version 1]

[January 15, 2021 at 18:25 – Version 1]

B I B L I O G R A P H Y

[1] Acunetix. Types of SQL Injection (SQLi). url: https://www.acunetix.com/

websitesecurity/sql-injection2/.

[2] Acunetix Web Vulnerability Scanner. Dec. 2020. url: https://hakin9.org/

acunetix-web-vulnerability-scanner/.

[3] Akamai. Web Attack Visualization. Mar. 2020. url: https://www.akamai.

com/uk/en/resources/our-thinking/state-of-the-internet-report/

web-attack-visualization.jsp.

[4] Ansible (software). url: https : / / en . wikipedia . org / wiki / Ansible _

(software).

[5] Arachni Package Description. Dec. 2020. url: https://tools.kali.org/

web-applications/arachni.

[6] avishek. WHAT IS DVWA AND WHY ETHICAL HACKER LOVE THIS!
June 2018. url: https://khannasecurity.com/blog/what-is-dvwa-and-

why-ethical-hacker-love-this/.

[7] BBQSQL. Dec. 2020. url: https://tools.kali.org/vulnerability-

analysis/bbqsql.

[8] Best Free and Open Source SQL Injection Tools. Feb. 2019. url: https://

resources.infosecinstitute.com/topic/best-free-and-open-source-

sql-injection-tools/.

[9] Boolean-based blind SQL injection. Dec. 2020. url: https://www.rangeforce.

com/blog/how-to-prevent-blind-sql-injection.

[10] Kevin Casey. How to explain Kubernetes in plain English. Sept. 2020. url:
https://enterprisersproject.com/article/2017/10/how- explain-

kubernetes-plain-english.

[11] Alex Chapman. Blind SQL injection optimization. Jan. 2017. url: https:

//ajxchapman.github.io/security/2017/01/14/blind-sql-injection.

html.

[12] Configuring Burp’s Session Handling rules. url: https://portswigger.

net/support/configuring-burp-suites-session-handling-rules.

[13] Daitan. Enable Security into CI/CD pipeline with DevSecOps. Dec. 2019. url:
https://medium.com/swlh/enable-security-into-ci-cd-pipeline-

with-devsecops-9370c93d87a1.

45

[January 15, 2021 at 18:25 – Version 1]

https://www.acunetix.com/websitesecurity/sql-injection2/
https://www.acunetix.com/websitesecurity/sql-injection2/
https://hakin9.org/acunetix-web-vulnerability-scanner/
https://hakin9.org/acunetix-web-vulnerability-scanner/
https://www.akamai.com/uk/en/resources/our-thinking/state-of-the-internet-report/web-attack-visualization.jsp
https://www.akamai.com/uk/en/resources/our-thinking/state-of-the-internet-report/web-attack-visualization.jsp
https://www.akamai.com/uk/en/resources/our-thinking/state-of-the-internet-report/web-attack-visualization.jsp
https://en.wikipedia.org/wiki/Ansible_(software)
https://en.wikipedia.org/wiki/Ansible_(software)
https://tools.kali.org/web-applications/arachni
https://tools.kali.org/web-applications/arachni
https://khannasecurity.com/blog/what-is-dvwa-and-why-ethical-hacker-love-this/
https://khannasecurity.com/blog/what-is-dvwa-and-why-ethical-hacker-love-this/
https://tools.kali.org/vulnerability-analysis/bbqsql
https://tools.kali.org/vulnerability-analysis/bbqsql
https://resources.infosecinstitute.com/topic/best-free-and-open-source-sql-injection-tools/
https://resources.infosecinstitute.com/topic/best-free-and-open-source-sql-injection-tools/
https://resources.infosecinstitute.com/topic/best-free-and-open-source-sql-injection-tools/
https://www.rangeforce.com/blog/how-to-prevent-blind-sql-injection
https://www.rangeforce.com/blog/how-to-prevent-blind-sql-injection
https://enterprisersproject.com/article/2017/10/how-explain-kubernetes-plain-english
https://enterprisersproject.com/article/2017/10/how-explain-kubernetes-plain-english
https://ajxchapman.github.io/security/2017/01/14/blind-sql-injection.html
https://ajxchapman.github.io/security/2017/01/14/blind-sql-injection.html
https://ajxchapman.github.io/security/2017/01/14/blind-sql-injection.html
https://portswigger.net/support/configuring-burp-suites-session-handling-rules
https://portswigger.net/support/configuring-burp-suites-session-handling-rules
https://medium.com/swlh/enable-security-into-ci-cd-pipeline-with-devsecops-9370c93d87a1
https://medium.com/swlh/enable-security-into-ci-cd-pipeline-with-devsecops-9370c93d87a1

bibliography

[14] et al. David Stacy. Practicing Continuous Integration and Continuous Delivery
on AWS. June 2017. url: https : / / d0 . awsstatic . com / whitepapers /

DevOps/practicing- continuous- integration- continuous- delivery-

on-AWS.pdf.

[15] Developers bring their ideas to life with Docker. url: https://www.docker.

com/why-docker.

[16] DevOps. url: https://en.wikipedia.org/wiki/DevOps.

[17] DigitalOcean. Jan. 2016. url: https://searchcloudcomputing.techtarget.

com/definition/DigitalOcean.

[18] Michael Dowling.Guzzle Documentation. 2015. url: https://docs.guzzlephp.

org/en/stable/index.html.

[19] The OWASP Foundation. The Ten Most Critical API Security Risks. 2019.
url: https : / / raw . githubusercontent . com / OWASP / API - Security /

master/2019/en/dist/owasp-api-security-top-10.pdf.

[20] The OWASP Foundation. The Ten Most Critical Web Application Security
Risks. 2017. url: https://www.owasp.org/images/b/b0/OWASP_Top_10_

2017_RC2_Final.pdf.

[21] Somya Garg. Automated Cloud Infrastructure, Continuous Integration and
Continuous Delivery using Docker with Robust Container Security. Feb. 2019.
url: https://www.researchgate.net/publication/331131851_Automated_

Cloud_Infrastructure_Continuous_Integration_and_Continuous_Delivery_

using_Docker_with_Robust_Container_Security.

[22] Github Actions. Dec. 2020. url: https://github.com/features/actions.

[23] Github Actions. Dec. 2020. url: https://www.freecodecamp.org/news/

what- are- github- actions- and- how- can- you- automate- tests- and-

slack-notifications/.

[24] GitHub kubernetes/minikube. url: https : / / github . com / kubernetes /

minikube.

[25] GitLab CI/CD. Dec. 2020. url: https://docs.gitlab.com/ee/ci/.

[26] GitLab CI/CD. Dec. 2020. url: https://www.lambdatest.com/blog/

jenkins-vs-gitlab-ci-battle-of-ci-cd-tools/.

[27] GoCD. Dec. 2020. url: https://www.gocd.org/.

[28] GoLismero. Dec. 2020. url: https://github.com/golismero/golismero.

[29] Grabber. Dec. 2020. url: https://tools.kali.org/web-applications/

grabber.

[30] Grabber Package Description. Dec. 2020. url: https://tools.kali.org/

web-applications/grabber.

46

[January 15, 2021 at 18:25 – Version 1]

https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://www.docker.com/why-docker
https://www.docker.com/why-docker
https://en.wikipedia.org/wiki/DevOps
https://searchcloudcomputing.techtarget.com/definition/DigitalOcean
https://searchcloudcomputing.techtarget.com/definition/DigitalOcean
https://docs.guzzlephp.org/en/stable/index.html
https://docs.guzzlephp.org/en/stable/index.html
https://raw.githubusercontent.com/OWASP/API-Security/master/2019/en/dist/owasp-api-security-top-10.pdf
https://raw.githubusercontent.com/OWASP/API-Security/master/2019/en/dist/owasp-api-security-top-10.pdf
https://www.owasp.org/images/b/b0/OWASP_Top_10_2017_RC2_Final.pdf
https://www.owasp.org/images/b/b0/OWASP_Top_10_2017_RC2_Final.pdf
https://www.researchgate.net/publication/331131851_Automated_Cloud_Infrastructure_Continuous_Integration_and_Continuous_Delivery_using_Docker_with_Robust_Container_Security
https://www.researchgate.net/publication/331131851_Automated_Cloud_Infrastructure_Continuous_Integration_and_Continuous_Delivery_using_Docker_with_Robust_Container_Security
https://www.researchgate.net/publication/331131851_Automated_Cloud_Infrastructure_Continuous_Integration_and_Continuous_Delivery_using_Docker_with_Robust_Container_Security
https://github.com/features/actions
https://www.freecodecamp.org/news/what-are-github-actions-and-how-can-you-automate-tests-and-slack-notifications/
https://www.freecodecamp.org/news/what-are-github-actions-and-how-can-you-automate-tests-and-slack-notifications/
https://www.freecodecamp.org/news/what-are-github-actions-and-how-can-you-automate-tests-and-slack-notifications/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://docs.gitlab.com/ee/ci/
https://www.lambdatest.com/blog/jenkins-vs-gitlab-ci-battle-of-ci-cd-tools/
https://www.lambdatest.com/blog/jenkins-vs-gitlab-ci-battle-of-ci-cd-tools/
https://www.gocd.org/
https://github.com/golismero/golismero
https://tools.kali.org/web-applications/grabber
https://tools.kali.org/web-applications/grabber
https://tools.kali.org/web-applications/grabber
https://tools.kali.org/web-applications/grabber

bibliography

[31] HTTP Client. url: https://laravel.com/docs/8.x/http-client.

[32] Infrastructure as code. url: https://en.wikipedia.org/wiki/Infrastructure_

as_code.

[33] Introduction to Terraform. url: https://www.terraform.io/intro/index.

html.

[34] Jenkins. Dec. 2020. url: https://www.jenkins.io/.

[35] Henrique Madeira José Fonseca Marco Vieira. Testing and comparing web
vulnerability scanning tools for SQL injection and XSS attacks. Jan. 2008. url:
https://www.researchgate.net/publication/4322871_Testing_and_

Comparing_Web_Vulnerability_Scanning_Tools_for_SQL_Injection_

and_XSS_Attacks.

[36] jSQL Injection. Dec. 2020. url: https://tools.kali.org/vulnerability-

analysis/jsql.

[37] Kali. url: https://www.kali.org/.

[38] Kubernetes. url: https://github.com/kubernetes/kubernetes.

[39] Kubernetes. url: https://www.docker.com/products/kubernetes.

[40] Chandar Kumar. 12 Open Source Web Security Scanner to Find Vulnerabilities.
Jan. 2020. url: https://geekflare.com/open-source-web-security-

scanner/.

[41] Laravel Framework. url: https://laravel.com/.

[42] Connor Leech. Use Laravel Dusk, browser automation and PHP to programmat-
ically surf the web. Aug. 2018. url: https://medium.com/employbl/use-

laravel- dusk- browser- automation- and- php- to- programmatically-

surf-the-web-7dc3b2232220.

[43] ManageEngine Vulnerability Manager Plus. Dec. 2020. url: https://www.

capterra.com/p/185510/ManageEngine-Vulnerability-Manager-Plus/.

[44] MariaDB. Dec. 2020. url: https://mariadb.com/.

[45] Sonali Mishra. SQL Injection Detection Using Machine Learning. May 2019.
url: https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=

1727&context=etd_projects.

[46] BALAJI N. SQLMAP-Detecting and Exploiting SQL Injection- A Detailed
Explanation. Dec. 2018. url: https://gbhackers.com/sqlmap-detecting-

exploiting-sql-injection.

[47] Netsparker. Dec. 2020. url: https://www.netsparker.com/.

[48] Netsparker Security Scanner. Dec. 2020. url: https://sourceforge.net/

software/product/Netsparker/.

47

[January 15, 2021 at 18:25 – Version 1]

https://laravel.com/docs/8.x/http-client
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://www.terraform.io/intro/index.html
https://www.terraform.io/intro/index.html
https://www.jenkins.io/
https://www.researchgate.net/publication/4322871_Testing_and_Comparing_Web_Vulnerability_Scanning_Tools_for_SQL_Injection_and_XSS_Attacks
https://www.researchgate.net/publication/4322871_Testing_and_Comparing_Web_Vulnerability_Scanning_Tools_for_SQL_Injection_and_XSS_Attacks
https://www.researchgate.net/publication/4322871_Testing_and_Comparing_Web_Vulnerability_Scanning_Tools_for_SQL_Injection_and_XSS_Attacks
https://tools.kali.org/vulnerability-analysis/jsql
https://tools.kali.org/vulnerability-analysis/jsql
https://www.kali.org/
https://github.com/kubernetes/kubernetes
https://www.docker.com/products/kubernetes
https://geekflare.com/open-source-web-security-scanner/
https://geekflare.com/open-source-web-security-scanner/
https://laravel.com/
https://medium.com/employbl/use-laravel-dusk-browser-automation-and-php-to-programmatically-surf-the-web-7dc3b2232220
https://medium.com/employbl/use-laravel-dusk-browser-automation-and-php-to-programmatically-surf-the-web-7dc3b2232220
https://medium.com/employbl/use-laravel-dusk-browser-automation-and-php-to-programmatically-surf-the-web-7dc3b2232220
https://www.capterra.com/p/185510/ManageEngine-Vulnerability-Manager-Plus/
https://www.capterra.com/p/185510/ManageEngine-Vulnerability-Manager-Plus/
https://mariadb.com/
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1727&context=etd_projects
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1727&context=etd_projects
https://gbhackers.com/sqlmap-detecting-exploiting-sql-injection
https://gbhackers.com/sqlmap-detecting-exploiting-sql-injection
https://www.netsparker.com/
https://sourceforge.net/software/product/Netsparker/
https://sourceforge.net/software/product/Netsparker/

bibliography

[49] Nexpose. Dec. 2020. url: https://sectools.org/tool/nexpose/.

[50] Nexpose Vulnerability Scanner. Dec. 2020. url: https://www.rapid7.com/

products/nexpose/.

[51] Nikto. Dec. 2020. url: https://github.com/sullo/nikto.

[52] Nmap. Dec. 2020. url: https://nmap.org/.

[53] Rami J. Haddad Olajide Ojagbule Hayden Wimmer. “Vulnerability Analysis
of Content Management Systems to SQL Injection Using SQLMAP”. In:
(2018).

[54] OpenVAS. Dec. 2020. url: https://github.com/greenbone/openvas.

[55] OWASP Top 10 Security Risks & Vulnerabilities. Feb. 2020. url: https://

sucuri.net/guides/owasp-top-10-security-vulnerabilities-2020/.

[56] OWASP ZAP. Dec. 2020. url: https://github.com/zaproxy/zaproxy.

[57] OWASP-Xenotix-XSS-Exploit-Framework. Dec. 2020. url: https://github.

com/ajinabraham/OWASP-Xenotix-XSS-Exploit-Framework.

[58] Razman Hakim Abdul Raman. “ENHANCEDAUTOMATED-SCRIPTING
METHOD FOR IMPROVED MANAGEMENT OF SQL INJECTION PEN-
ETRATION TESTS ON A LARGE SCALE”. In: (2019).

[59] RedHat. What is CI/CD? url: https://www.redhat.com/en/topics/

devops/what-is-ci-cd.

[60] Margaret Rouse. The Benefits of DigitalOcean – Review. url: https://

miloszkrasinski.com/the-benefits-of-digitalocean/.

[61] Security Spending and Cost Statistics. Nov. 2020. url: https://www.varonis.

com/blog/cybersecurity-statistics/.

[62] Kevin Smith. Protect Your PHP Application from SQL Injection. Apr. 2018.
url: https://kevinsmith.io/protect-your-php-application-from-

sql-injection.

[63] SQL Injection. Dec. 2020. url: https : / / owasp . org / www - community /

attacks/SQL_Injection.

[64] SQL injection. Dec. 2020. url: https://portswigger.net/web-security/

sql-injection.

[65] SQLiv. Dec. 2020. url: https://github.com/the-robot/sqliv.

[66] SQLMAP. Dec. 2020. url: http://sqlmap.org/.

[67] Andrew Starr-Bochicchio. GitHub Actions for DigitalOcean. June 2020. url:
https://github.com/digitalocean/action-doctl/blob/v2/README.md.

[68] Terraform (software). url: https://en.wikipedia.org/wiki/Terraform_

(software).

48

[January 15, 2021 at 18:25 – Version 1]

https://sectools.org/tool/nexpose/
https://www.rapid7.com/products/nexpose/
https://www.rapid7.com/products/nexpose/
https://github.com/sullo/nikto
https://nmap.org/
https://github.com/greenbone/openvas
https://sucuri.net/guides/owasp-top-10-security-vulnerabilities-2020/
https://sucuri.net/guides/owasp-top-10-security-vulnerabilities-2020/
https://github.com/zaproxy/zaproxy
https://github.com/ajinabraham/OWASP-Xenotix-XSS-Exploit-Framework
https://github.com/ajinabraham/OWASP-Xenotix-XSS-Exploit-Framework
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://miloszkrasinski.com/the-benefits-of-digitalocean/
https://miloszkrasinski.com/the-benefits-of-digitalocean/
https://www.varonis.com/blog/cybersecurity-statistics/
https://www.varonis.com/blog/cybersecurity-statistics/
https://kevinsmith.io/protect-your-php-application-from-sql-injection
https://kevinsmith.io/protect-your-php-application-from-sql-injection
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/sql-injection
https://github.com/the-robot/sqliv
http://sqlmap.org/
https://github.com/digitalocean/action-doctl/blob/v2/README.md
https://en.wikipedia.org/wiki/Terraform_(software)
https://en.wikipedia.org/wiki/Terraform_(software)

bibliography

[69] Top 10 Most Common Software Vulnerabilities. July 2020. url: https://

www.perforce.com/blog/kw/common-software-vulnerabilities.

[70] Top 15 Paid and Free Vulnerability Scanner Tools in 2020. Jan. 2020. url:
https://www.dnsstuff.com/network-vulnerability-scanner.

[71] Travis CI. Dec. 2020. url: https://travis-ci.com/.

[72] Using Minikube to Create a Cluster. Oct. 2020. url: https://kubernetes.io/

docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/.

[73] W3af. Dec. 2020. url: http://w3af.org/.

[74] Web Application Security with Acunetix. Dec. 2020. url: https://www.

acunetix.com/vulnerability-scanner/web-application-security/.

[75] What is a Container? url: https://www.docker.com/resources/what-

container.

[76] What is DevOps? url: https://www.atlassian.com/devops/what-is-

devops.

[77] What is Docker? url: https://opensource.com/resources/what-docker.

[78] XssPy - Web Application XSS Scanner. Dec. 2020. url: https://github.

com/faizann24/XssPy.

49

[January 15, 2021 at 18:25 – Version 1]

https://www.perforce.com/blog/kw/common-software-vulnerabilities
https://www.perforce.com/blog/kw/common-software-vulnerabilities
https://www.dnsstuff.com/network-vulnerability-scanner
https://travis-ci.com/
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
http://w3af.org/
https://www.acunetix.com/vulnerability-scanner/web-application-security/
https://www.acunetix.com/vulnerability-scanner/web-application-security/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.atlassian.com/devops/what-is-devops
https://www.atlassian.com/devops/what-is-devops
https://opensource.com/resources/what-docker
https://github.com/faizann24/XssPy
https://github.com/faizann24/XssPy

[January 15, 2021 at 18:25 – Version 1]

	Acknowledgements
	Resumo
	Abstract
	Table of Contents
	List of Figures
	List of Acronyms
	1 Introduction
	2 LITERATURE REVIEW
	2.1 Software vulnerabilities
	2.1.1 Injection
	2.1.2 The Other Most Common Application Security Risks
	2.1.3 SQL Injection

	2.2 Injection Vulnerabilities Detection Techniques
	2.3 Scanning and Detections Tools
	2.4 DevOps
	2.4.1 Containers
	2.4.2 Infrastructure as Code
	2.4.3 CI/CD

	3 Architecture
	3.1 Login Sessions DVWA
	3.2 Application Data Base Architecture
	3.2.1 Data Base Architecture List View

	3.3 Continuous Integration and Continuous Delivery

	4 Development
	4.1 Application
	4.1.1 Testing Application

	4.2 Infrastructure
	4.2.1 DigitalOcean
	4.2.2 Terraform Configuration
	4.2.3 CI/CD Mechanism

	4.3 Choices
	4.4 Used applications
	4.4.1 Ansible
	4.4.2 Minikube

	5 Test And Results
	5.1 Tests Setup
	5.2 Test Scenarios
	5.3 DVWA (DAMM VULNERABLE WEB APP)
	5.4 Testing Mechanisms
	5.5 Management Scheduling

	6 Conclusion
	 Bibliography

