
Instituto Politécnico de Leiria
Escola Superior de Tecnologia e Gestão
Departamento de Engenharia Informática

Mestrado em Eng.ª Informática – Computação Móvel

D IG ITAL FORENS IC ARTIFACTS OF SQL ITE -BASED
WINDOWS 10 APPL ICAT IONS

luís miguel antónio andrade

Leiria, Novembro de 2020

Instituto Politécnico de Leiria
Escola Superior de Tecnologia e Gestão
Departamento de Engenharia Informática

Mestrado em Eng.ª Informática – Computação Móvel

D IG ITAL FORENS IC ARTIFACTS OF SQL ITE -BASED
WINDOWS 10 APPL ICAT IONS

luís miguel antónio andrade
Número: 2180234

Dissertação realizada sob orientação do Professor Patrício Rodrigues Domingues e
Professor Miguel Monteiro de Sousa Frade.

Leiria, Novembro de 2020

AGRADECIMENTOS

Quero agradecer, em primeiro lugar, aos meus orientadores, Professor Patrício Ro-
drigues Domingues e Professor Miguel Monteiro de Sousa Frade, por todo o tra-
balho e ajuda que dedicaram a mim e à minha dissertação. Especialmente por
nunca terem desistido ou perdido a confiança em mim, quando a minha motivação
estava num ponto mais baixo.

Gostaria de agradecer também a dois amigos, Bruce Coelho e Luís Paulo, que
me ajudaram quando foi necessário a testar certos cenários para a dissertação. Sem
eles não teria conseguido realizar todos os testes necessários à realização do meu
trabalho.

i

RESUMO

OWindows 10 é um dos Operating System (OS) mais populares e utilizado. Contém
vários serviços, como o Windows Push Notification Services (WNS) e o Timeline,
que usam bases de dados SQLite. O Windows 10 tem também uma plataforma, Uni-
versal Windows Platform (UWP), para suportar o desenvolvimento de aplicações.
As aplicações desta plataforma podem guardar os seus dados em bases de dados
SQLite, como o Photos da Microsoft e o Messenger do Facebook.

Esta dissertação estuda, numa perspetiva de análise digital forense, dois compo-
nentes do Windows 10, o ambiente Your Phone, e o WNS. O primeiro consiste de
uma aplicação Android, Your Phone Companion (YPC), e uma aplicação UWP,
Your Phone. O último é um sistema do Windows 10 que disponibiliza o serviço de
notificações. No âmbito desta dissertação foram desenvolvidos scripts para analisar
esses componentes, extraindo-se os artefactos forenses considerados mais relevantes.
As soluções desenvolvidas estão integradas com o conhecido software de análise
forense Autopsy.

Para ajudar a desenvolver e manter estas soluções de forense digital que analisam
artefactos produzidos por aplicações UWP, foi desenvolvido o UWP scanner. Trata-
se de um analisador de aplicações focado na deteção de alterações ao nível das bases
de dados SQLite empregue por aplicações UWP. Esta ferramenta ajuda a manter
um histórico da evolução das bases de dados utilizadas por certas aplicações UWP.

iii

ABSTRACT

Windows 10 is one of the most popular and widely used Operating System (OS). It
contains services, such as Windows Push Notification Services (WNS) and Timeline,
that use SQLite databases. Windows 10 also has a platform, Universal Windows
Platform (UWP), to support application development. The platform applications
can store their data in SQLite databases, such as Microsoft’s Photos and Facebook’s
Messenger.

This dissertation studies, from a digital forensic analysis perspective, two compo-
nents of Windows 10, the Your Phone environment, and WNS. The former consists
of the Android application Your Phone Companion (YPC), and the desktop UWP
application Your Phone. The latter is the notification system of Windows 10 which
provides the notification service. In the scope of this dissertation, several scripts
were developed to analyze these components, extracting the forensic artifacts con-
sidered to be relevant. The developed solutions are integrated with the known
digital forensics analysis software Autopsy.

To help develop and maintain digital forensic solutions to analyze the digital
forensic artifacts produced by UWP applications, the UWP scanner was developed.
It is an application analyzer focused on detecting changes in SQLite databases of
UWP applications. This tool allows us to keep a history of the evolution of the
databases used in certain UWP applications.

v

TABLE OF CONTENTS

Acknowledgments i
Resumo iii
Abstract v
Table of contents vii
List of Figures ix
List of Tables xi
List of Acronyms xiii

1 introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 2
1.4 Contributions . 3
1.5 Organization of the dissertation . 4

2 background 5
2.1 Digital forensics . 5

2.1.1 Autopsy . 5
2.2 Databases: definition and origins . 8
2.3 SQLite . 9

2.3.1 In detail . 9
2.3.2 In mobile devices and apps 15
2.3.3 Microsoft, Windows 10, and UWP 16

2.4 Windows 10’s Your Phone and YPA 18
2.4.1 Previous work . 18

3 uwp applications 21
3.1 Universal Windows Platform . 21
3.2 Keeping up with apps’ updates . 22

3.2.1 Server schema and rules . 25
3.2.2 Delving into the script . 25

4 your phone 31

vii

table of contents

4.1 Applications . 31
4.1.1 Your Phone Companion . 32
4.1.2 Desktop application . 38

4.2 Your Phone Analyzer . 54
4.2.1 Ingest module . 54
4.2.2 Communications Visualization 57
4.2.3 Report module . 59

5 windows notifications 65
5.1 WNS and Action Center . 65

5.1.1 User data . 68
5.1.2 NotifAnalyzer . 71

5.2 Standalone script . 71
5.3 Autopsy ingest module . 73

5.3.1 Integration with YPA . 74
5.3.2 Running in a digital forensics image 75

6 conclusions 77
6.1 Future work . 78

bibliography 81

Appendices

a appendix a 89

b appendix b 93

declaração 99

viii

L I ST OF F IGURES

Figure 1 Autopsy GUI . 6
Figure 2 Autopsy workflow . 7
Figure 3 Autopsy Communications Visualization 8
Figure 5 PRAGMAs of an SQLite3 database. 12
Figure 4 PRAGMA command syntax. 12
Figure 6 CREATE VIRTUAL TABLE command syntax. 14
Figure 7 UWP overview. 16
Figure 8 Your Phone in the Microsoft Store 17
Figure 9 Data directory hierarchy of an UWP application. 22
Figure 10 Scanner architecture. 23
Figure 11 Example of a scanner execution. 23
Figure 12 Scanner database dashboard. 24
Figure 13 List of monitored apps in the scanner. 28
Figure 14 Scanner displaying YourPhone’s evolution. 29
Figure 15 YPC screens. 32
Figure 16 YPC’s screen for pre 7.0 Android devices. 33
Figure 17 Android API level distribution. 34
Figure 18 Share a link with YPC. 34
Figure 19 YPC notification in the smartphone. 35
Figure 20 YPC local data path tree. 37
Figure 21 Your Phone interface. 39
Figure 22 Your Phone messages and calls interface. 40
Figure 23 Your Phone settings interface, with Media Controls. 41
Figure 24 YPC’s Media Controls notification. 41
Figure 25 Your Phone local data path tree. 42
Figure 26 Your Phone interface for disabling notifications. 53
Figure 27 YPA’s artifacts in Autopsy’s interface. 55
Figure 28 YPA’s ingest module GUI. 56
Figure 29 Communications Visualization of a case using YPA. 58
Figure 30 YPA’s report module GUI. 59
Figure 31 YPA’s report module - Conversations page. 60
Figure 32 YPA’s report contact modal. 61

ix

list of figures

Figure 33 YPA’s report module - Address book page. 61
Figure 34 YPA’s report module - Photos page. 62
Figure 35 YPA’s report module - Photos’ modal. 62
Figure 36 YPA’s report module - Call history page. 63
Figure 37 YPA’s report module - Apps page. 63
Figure 38 WNS’s diagrams of the data flow of a push notification . . . 66
Figure 39 Windows 10 Action Center and notification settings. 67
Figure 40 Types of Windows 10 notifications. 68
Figure 41 Different Windows 10 notification toasts. Source: Microsoft

Docs (2020b). 68
Figure 42 NotifAnalyzer’s flow diagram 71
Figure 43 NotifAnalyzer standalone script execution. 72
Figure 44 NotifAnalyzer standalone script toast. 73
Figure 45 NotifAnalyzer’s artifacts in Autopsy’s interface. 73
Figure 46 NotifAnalyzer’s ingest module GUI. 74
Figure 47 YPA’s integration with notifications from NotifAnalyzer. . . 75
Figure 48 NotifAnalyzer artifacts ran on a forensic disk image. 76
Figure 49 YPC’s content.db. 94
Figure 50 YPC’s eventstore. 95
Figure 51 YPC’s YourPhoneSettings. 95
Figure 52 YPC’s ContentTransferDatabase. 96
Figure 53 YPC’s com.google.android.datatransport.events. . . . 96
Figure 54 YPC’s com.microsoft.appcenter.persistence. 97

x

L I ST OF TABLES

Table 1 Types of temporary SQLite files. 11
Table 2 Scanner dependencies. 25
Table 3 Android permissions declared by Your Phone Companion . . 36
Table 4 Databases of Your Phone - version 1.20071.95.0 43
Table 5 Fields of table call_history / calling.db database 44
Table 6 Fields of table contact / contacts.db database 45
Table 7 Fields of table phonenumber / contacts.db database 46
Table 8 Record for notification of a group of WhatsApp messages in

table notifications . 47
Table 9 Tables of database phone.db 48
Table 10 Record of a conversation in phone.db’s conversation table 49
Table 11 Record of an MMS in phone.db’s mms table 50
Table 12 Fields of table media / photos.db database 51
Table 13 Record for Your Phone Companion in table phone_apps . . 52
Table 14 YPA’s recovered data artifacts. 56
Table 15 YPA’s Your Phone artifacts. 57
Table 16 YPA’s native artifacts. 58
Table 17 WNS’ wpndatabase.db tables 69
Table 18 Notification handler from WNS 70
Table 19 WhatsApp notification artifact from NotifAnalyzer. 74

xi

list of tables

xii

xiii

List of Acronyms

L I ST OF ACRONYMS

ADB Android Debug Bridge.

API Application programming interface.

CLI Command-line interface.

DBMS Database Management System.

DLL Dynamic-link libraries.

FTS Full-Text Search.

GPL GNU Public License.

GUI Graphical User Interface.

NoSQL Not only SQL.

OS Operating System.

OSDFCon Open Source Digital Forensics Conference.

SDK Software Development Kit.

SEQUEL Structured English Query Language.

SMIL Synchronized Multimedia Integration Language.

SQL Structured Query Language.

SSL Secure Sockets Layer.

TSK The Sleuth Kit.

URI Uniform Resource Identifier.

UWP Universal Windows Platform.

xiv

List of Acronyms

WAL Write-Ahead Log.

WNS Windows Push Notification Services.

YPA Your Phone Analyzer.

YPC Your Phone Companion.

xv

1
INTRODUCTION

The SQLite database has been gaining traction within the Microsoft software ecosys-
tem. This is particularly evident in Windows 10, where a plethora of services and
applications have adopted SQLite databases as data containers. This chapter intro-
duces the significance of these databases in Windows 10, and explores the motiva-
tion and objectives of the dissertation.

1.1 context

Microsoft’s Windows 10 is one of the most popular desktop OSs, with over 75% of
the desktop market of OSs in most of 2020, according to NetMarketShare (2020a)
and StatCounter GlobalStats (2020a).

SQLite is the most deployed database engine, even more than all the other
database engines combined, according to SQLite (2020e). It is estimated that there
are over a trillion SQLite databases in active use, heavily due to its usage in mobile
devices (SQLite, 2020e)

Android is also a very popular OS, in this case for mobile devices. According to
NetMarketShare (2020b) and StatCounter GlobalStats (2020b), Android is almost
as popular for mobile as Windows 10 is for desktop, with over 70% market share
worldwide for most of 2020.

Windows 10’s UWP mimics Android’s and iOS ecosystem. It contains a store,
Microsoft Store, which allows the user to install or update applications, just like
Google’s Play Store or Apple’s App Store. These three OS also have applications
from their store installed by default on a user’s device. In a mobile OS it is very
common to use certain mechanisms, such as SQLite databases, to store user data.
Windows 10’s UWP applications share this similarity, as shall be seen later.

Digital tools are frequently involved in crimes, either directly - hacking, crypto-
mining, data stealing, etc - or indirectly as tools of communications and data shar-
ing (photos, videos, etc). Thus, when a criminal situation needs to be investigated,
often there is the requirement of analyzing devices for digital forensic artifacts. The

1

introduction

complexity of modern OS and applications, coupled to large volume of data makes
for a high demand on digital forensic examiners.

1.2 motivation

An important motivation for this work is to study, from a digital forensic point of
view, the usage of SQLite databases within the Windows OS, exploring forensic
artifacts.

Two different scenarios are analyzed: Microsoft’s Your Phone ecosystem and
WNS, as both rely on SQLite databases. The former links an Android smartphone
to Windows 10, and can allow for indirect access to certain data of the smartphone
in a forensic examination, while the latter is a Windows 10 service that holds user
and system notifications, which can result in interesting forensic data. Both of these
Windows components have a considerable amount of users. Your Phone is installed
by default in Windows 10 since version 18091, and its Android app, YPC, has over
100 million downloads in the Play Store. WNS notifications are also enabled by
default in Windows 10.

Complementary, another driving motivation is to develop open source software
tools that can assist digital forensic examiners to easily deal and process the arti-
facts from the studied scenarios. This is fulfilled by developing software seamlessly
integrates with the Autopsy software, which is well known within the digital foren-
sic community. Indeed, due to the current data deluge in digital forensics, solutions
are needed that can assist digital forensic practitioners in their demanding tasks
(Olivier, 2020; Quick and Choo, 2014).

1.3 objectives

The focus of the dissertation is in digital forensics of SQLite3 databases used in
Windows applications and services. As such, the objectives are: i) to survey SQLite
from a digital forensics point of view, ii) identify Windows 10 components that
use SQLite, iii) provide detailed analysis on these components, iv) and to develop
tools or solutions to extract digital forensic artifacts from their databases.

A challenge that surfaced when attempting to accomplish these initial objectives
was the maintenance of the developed solutions. As such, another objective is to

1 https://docs.microsoft.com/en-us/windows/application-management/apps-in-windows-10

2

https://docs.microsoft.com/en-us/windows/application-management/apps-in-windows-10

1.4 contributions

ease the development process and maintanenance of these solutions, as the OS is
in constant evolution. It is also important to retain a repository of information
regarding the updates of certain applications.

1.4 contributions

The main contributions of this work are:

• In-depth study of the Your Phone ecosystem, that is, the Windows Your
Phone application and Android application YPC.

• Development of the Autopsy module Your Phone Analyzer (YPA), which
parses the Your Phone SQLite databases allowing to i) import the main
relevant forensic artifacts within Autopsy, and ii) to produce HTML-based
reports.

• In-depth study of WNS, with emphasis on the main SQLite database.

• Development of the Python 3 script NotifAnalyzer to parse and extract the
main relevant digital forensic artifacts, exporting them in a JSON format

• Development of the Autopsy module “Windows Notifications Analyzer”, which
relies on the NotifAnalyzer script to import the WNS-related artifacts within
Autopsy.

• Development of the UWP scanner solution to detect changes and updates of
certain Windows applications.

• Paper published in the international scientific journalDigital Forensics2: Patri-
cio Domingues et al. (2019). “Digital forensic artifacts of the Your Phone ap-
plication in Windows 10”. In: Digital Investigation 30, pp. 32–42. url: https:
//www.sciencedirect.com/science/article/pii/S1742287619301239.

• Submission of the paper “Keeping track of UWP application changes for
digital forensic purposes” (Luis Miguel Andrade, Patricio Domingues, Miguel
Frade) to ConfTele’20213.

• All the developed code and tools are available at the following GitHub ad-
dresses:

i) https://github.com/labcif/YPA/ (Andrade et al., 2020);

2 https://www.journals.elsevier.com/digital-investigation
3 http://conftele2021.ipleiria.pt/

3

https://www.sciencedirect.com/science/article/pii/S1742287619301239
https://www.sciencedirect.com/science/article/pii/S1742287619301239
https://github.com/labcif/YPA/
https://www.journals.elsevier.com/digital-investigation
http://conftele2021.ipleiria.pt/

introduction

ii) https://github.com/L-Andrade/UWPAppsScanner (Andrade, 2020).

1.5 organization of the dissertation

The remainder of the dissertation is organized as follows. Chapter 2 gives the nec-
essary background of the tools used or studied. Chapter 3 details how the UWP
works internally for applications, and the development of the UWP scanner solution.
Chapter 4 contains the study of Your Phone Windows 10 and Android applications,
and the development of YPA. Chapter 5 consists of the examination of WNS, and
the development of the NotifAnalyzer script and its Autopsy module counterpart.
Lastly, Chapter 6 contains the conclusions and a summary of the dissertation. This
last chapter also lists possible future work.

4

https://github.com/L-Andrade/UWPAppsScanner

2
BACKGROUND

This chapter contains the background required to understand the study, analysis,
and development that is present in the next chapters of the dissertation. It defines
digital forensics; databases, their origins and necessity, categorizing and differen-
tiating implementations and architectures. After these principles, the dissertation
will dive into SQLite and the mobile database ecosystem, which is then followed by
the potential value of these databases, focusing on Microsoft’s Windows 10, which
contains several of these SQLite artifacts.

2.1 digital forensics

Årnes (2017) defines digital forensics as applying forensic science to digital informa-
tion, and a digital investigation as investigations in the digital domain. The book
then goes more in depth about these terms.

The work presented in this dissertation is meant to aid in these so called digital
investigations, first in the form of documenting how certain applications or tools
work (such as the internals of the Your Phone app, and tools used by the app itself -
like SQLite3), and by providing scripts to analyze according to the documentation
and findings. One of the goals is to bring to light anything that might be used
as evidence by a practicioner, often termed as digital forensic artifact, or simply
forensic artifact.

2.1.1 Autopsy

The Sleuth Kit (TSK)’s Autopsy is an easy to use, open-source Graphical User
Interface (GUI)-based program to TSK and other digital forensics tools that allows
the user to analyze hard drives and smart phones (The Sleuth Kit, 2019). Autopsy
can be extended through three types of modules, i) file ingest, ii) data source ingest,
iii) and report. The first two can be classified as ingest modules. Figure 1 shows the

5

background

Figure 1: Autopsy GUI

GUI of Autopsy, in this case the interface where a practicioner can choose which
ingest modules to be run in a data source.

Autopsy installs certain modules by default, such as Exif Parser1, PhotoRec
Carver2, Recent Activity3, and others. The community can also develop their own,
and the creators of Autopsy incite the community to do so. These modules are
usually written in Java or Jython (Python for Java). The latter is based on Python
2.74. An official repository containing third-party modules can be found at https:
//github.com/sleuthkit/autopsy_addon_modules, and the workflow of Autopsy
can be seen in Figure 2.

Internally, a centerpiece of Autopsy is the Blackboard. It allows modules to com-
municate with each other and the UI (Basis Technology, 2017). Modules post their
results as artifacts to the blackboard, and they are displayed in the interface, on
the left-hand side, under Results, which can be seen in Figure 1.

1 http://sleuthkit.org/autopsy/docs/user-docs/4.17.0/_e_x_i_f_parser_page.html
2 https://sleuthkit.org/autopsy/docs/user-docs/4.17.0/photorec_carver_page.html
3 http://sleuthkit.org/autopsy/docs/user-docs/4.17.0/recent_activity_page.html
4 https://www.jython.org/

6

https://github.com/sleuthkit/autopsy_addon_modules
https://github.com/sleuthkit/autopsy_addon_modules
http://sleuthkit.org/autopsy/docs/user-docs/4.17.0/_e_x_i_f_parser_page.html
https://sleuthkit.org/autopsy/docs/user-docs/4.17.0/photorec_carver_page.html
http://sleuthkit.org/autopsy/docs/user-docs/4.17.0/recent_activity_page.html
https://www.jython.org/

2.1 digital forensics

Figure 2: Autopsy workflow. Source: Basis Technology (2016)

2.1.1.1 Ingest modules

As mentioned before, these modules have two variants: data source and file. The
difference between these variants is simple, the first runs on a data source and
the second runs for each file found (Basis Technology, 2019). Looking at it in a
programmer’s perspective, a file ingest runs a for loop (module runs once per file)
while the data source receives a list of files (module runs once for the whole data
source). Another difference between a file ingest and data source module is that
the former includes files that are found via carving or inside ZIP files, while the
latter does not (Autopsy, 2015).

Ingest modules are tipically run immediately after adding a data source, and its
purpose is to find artifacts in files and add them to the blackboard. These modules
can take some time to finish, evidently depending on the size of the data source
that is being analyzed.

2.1.1.2 Report modules

Generally, report modules are ran after ingest modules, and tend to take less time to
finish. These modules usually take the artifacts created by the ingest modules and
enhance this information, either by creating relations, or by computing statistics, or
other visual aids of the information, such as graphs. Reports end with one or more
files, depending on the developer. The most common report formats are HTML,
Excel, and CSV. Some modules even allow the user to choose the desired format,
from an array of options. These formats are widely spread and can be opened in
any OS.

7

background

Figure 3: Autopsy Communications Visualization. Source: Basis Technology (2018)

2.1.1.3 Communications Visualization

This feature was introduced in Autopsy 4.6.0, and improved upon in the next
version, 4.7.0 (Basis Technology, 2018). Figure 3 shows an example of how Commu-
nications Visualization can be seen. It will look different depending on the modules
that are ran by the user, and the artifacts that are extracted from the data source.
It is a way to sort through large amounts of messages, be it emails, SMS, MMS,
etc, and it makes visualizing the relation between the sender and receiver easier
(Carrier, 2018).

To add artifacts to this interface, a developer needs to use Autopsy’s native arti-
facts, and he/she must create an account in Autopsy’s Communications Manager.
Each account type, which can be a phone, email, credit card, among other types5,
has a different unique identifier. In the case of a phone account, the unique identi-
fier is the phone number, and it can be a limitation since it must be a valid phone
number. There are times that text messages are received from contacts without
an explicit phone number, where the display name is Google, GitHub, or any other
service that sends messages under its name.

2.2 databases: definition and origins

Starting simply: what is a database? According to Abiteboul et al. (1995), a
database is “a large amount of data stored in a computer” and follows that thought
stating that the software that manages this data is called a Database Management

5 http://sleuthkit.org/sleuthkit/docs/jni-docs/4.10.1/classorg_1_1sleuthkit_1_
1datamodel_1_1_account_1_1_type.html

8

http://sleuthkit.org/sleuthkit/docs/jni-docs/4.10.1/classorg_1_1sleuthkit_1_1datamodel_1_1_account_1_1_type.html
http://sleuthkit.org/sleuthkit/docs/jni-docs/4.10.1/classorg_1_1sleuthkit_1_1datamodel_1_1_account_1_1_type.html

2.3 sqlite

System (DBMS). In the scope of this dissertation, this definition is acceptable -
considering modern mobile phones are practically pocket computers.

Relational databases date back to 1970, then called Structured English Query
Language (SEQUEL) (Kline et al., 2004). Nowadays, these databases are referred
to as Structured Query Language (SQL) or relational databases.

Oracle (2019) defines a database as “an organized collection of structured in-
formation, or data, typically stored electronically in a computer system”, which is
simple and to the point. This definition has held, even since Not only SQL (NoSQL)
has entered the field. Vaish (2013) claims that NoSQL is used to refer to any class
of databases that do not follow the traditional relational DBMS. These databases
have schemaless data representation, falling into the category of data, not struc-
tured information, in Oracle (2019)’s definition (Vaish, 2013).

Google’s Bigtable is considered to be one of the first types of NoSQL databases,
which was released in February 2005 (Chang et al., 2008; Li and Manoharan, 2013;
Wikipedia contributors, 2019).

2.3 sqlite

SQLite is an open-source relational database. That does not, however, mean that
it is open-contribution. SQLite is the most deployed database engine, and it is
estimated to be over one trillion SQLite databases in active use (SQLite, 2020e),
mostly due to its usage in Android OS, iOS, and many mobile applications. Due to
the enormous quantity and potential value of these artifacts, it is important to study
how the software works, its quirks, and algorithms - such as record deletion and
alteration - to understand how it can then be used as evidence in digital forensics
cases.

2.3.1 In detail

According to About SQLite: “SQLite is an in-process library that implements a
self-contained, serverless, zero-configuration, transactional SQL database engine”,
(SQLite, 2020a). Unlike other SQL databases, SQLite is an embedded SQL database
engine, which means it does not run in a separate server, and reads/writes to
ordinary disk files. A complete database can be held in a single file. With all features
enabled, the SQLite library can be less than 600KiB, depending on platform and

9

background

compiler settings (SQLite, 2020a). All in all, SQLite is a very lightweight database
engine, perfect for local storage in any device, easily exported to other devices due
to its small and single files.

An atomic commit means that either all changes occur within a single transaction,
or none of them occur. SQLite, like other transactional databases, implements this
feature, and as a default it uses a rollback journal (SQLite, 2020b; SQLite, 2020i).
Another option to the rollback journal is Write-Ahead Log (WAL), which will be
explained further. The rollback journal is a disk file which contains the database
name and a -journal suffix. Whenever a database is to be changed, it is first
saved in this journal file (SQLite, 2019b). Although it is enabled by default, the
rollback journal can be disabled. The behaviour of the rollback journal, like many
other features of SQLite, can be changed using a PRAGMA statement6.

2.3.1.1 Temporary files in SQLite3

According to Temporary files used by SQLite, “One of the distinctive features of
SQLite is that a database consists of a single disk file. This simplifies the use of
SQLite since moving or backing up a database is a simple as copying a single file.
It also makes SQLite appropriate for use as an application file format. But while
a complete database is held in a single disk file, SQLite does make use of many
temporary files during the course of processing a database” (SQLite, 2020g).

There are, at the time of writing, nine distinct types of temporary SQLite files.
These types are listed in Table 1.

Rollback journals are used to implement atomic commit and rollback capabilities.
A WAL file is an alternative to a rollback journal when the database is operating
in WAL mode. Shared-memory files are related to a journal mode, WAL, and exist
only to allow multiple processes to access the same database in WAL mode.

Super-journal files are used when a single transaction affects multiple databases
under a single database connection using ATTACH. At least two of the affected
databases must not be in WAL mode, along with other requirements, in order to
create this file. A statement journal file is used to rollback partial results of a single
statement within a larger transaction.

TEMP databases are created when using the CREATE TEMP TABLE syntax, and
are only visible to the database that issued that statement. This separate database

6 https://www.sqlite.org/pragma.html#pragma_journal_mode

10

https://www.sqlite.org/pragma.html#pragma_journal_mode

2.3 sqlite

Table 1: Types of temporary SQLite files.

type description

Rollback journals To implement atomic commit/rollback capabilities
Super-journals Single transaction affects multiple databases
Write-Ahead Log files Alternative to rollback journal
Shared-memory files To allow access by multiple processes to a database in

WAL mode
Statement journals Used to rollback partial results of a single statement
TEMP databases When using CREATE TEMP DATABASE commands
Materializations of Result of a subquery needs to be stored
views and subqueries
Transient indices Used in certain SQL language features
Transient databases Created by a VACUUM command
used by VACUUM

can also have an associated rollback journal. This file is deleted when the database
connection is closed.

Materializations of views and subqueries occur when the result of a subquery
needs to be stored in a temporary file. When the query is concluded, the file is
deleted. Transient indices are used in certain SQL language features. The tempo-
rary file is autmatically deleted at the end of the statement that uses it. Transient
databases used by VACUUM are created by the VACUUM command. It creates a
temporary database, and then builds the entire database into that temporary file,
which then copies the content of the temporary file into the original database and
deletes the temporary file.

2.3.1.2 PRAGMA

PRAGMA statements are exclusive to SQLite, and are used to modify the operation
of SQLite or query internal SQLite data. It can be used like other commands, such
as SELECT and INSERT, but is different in (SQLite, 2020f):

• No guarantees of backwards compatibility, can be removed or added as nec-
essary in new versions.

• No error messages: unknown pragmas are ignored.

• Some pragmas take effect during compilation.

11

background

Figure 5: PRAGMAs of wpndatabase.db, shown in DB Browser for SQLite.

It seems the second item exists to avoid errors due to the first. This should
allow SQLite’s developers to deprecate or remove statements without breaking any
existing software, however, there are still some pragmas which are deprecated and
not removed to support backwards compatibility, such as temp_store_directory7.
The syntax for PRAGMA statements can be seen in Figure 4. A pragma can have
the value of either one (true) or zero (false). Also, a pragma may have an optional
schema-name, which is the name of an attached database, or main or temp for
the main and temp databases respectively. In some pragmas, this schema-name is
meaningless. Figure 5 shows a screenshot of DB Browser for SQLite8, a tool which
can be used to check the PRAGMA values of a SQLite database, among many
other features. In this case, it is showing the PRAGMA values of a wpndatabase.db
database, which is the SQLite database that supports WNS (Chapter 5).

Figure 4: PRAGMA command syntax. Source: SQLite (2020f).

7 https://www.sqlite.org/pragma.html#pragma_temp_store_directory
8 https://sqlitebrowser.org/

12

https://www.sqlite.org/pragma.html#pragma_temp_store_directory
https://sqlitebrowser.org/

2.3 sqlite

At the time of writing, there are seventy pragma statements, some of which are
deprecated. Some pragmas will be explored the next. Nevertheless, a list of the
existing pragmas can be found at https://www.sqlite.org/pragma.html, in the
“List of PRAGMAs” section.

The following pragmas are important in the scope of this dissertation:
i) auto_vacuum9, ii) user_version10, iii) journal_mode11. Next, we detail each
of these pragmas. Pragma auto_vacuum has three possible modes, NONE, FULL,
and INCREMENTAL. The last two modes correspond to an enabled state, mean-
ing the database wipes the records that are deleted, overwriting them with ze-
ros and thus eliminating any chance of recovery. The key difference between FULL

and INCREMENTAL is that the latter does not automatically perform the vacuum.
Fortunately for digital practicioners, this option if disabled by default, using the
NONE mode. The user_version is a rather simple pragma and is entirely up to
the application to manage, and has no impact in an SQLite database itself. The
journal_mode pragma gets or sets the journaling mode, and has five possible modes,
DELETE, TRUNCATE, PERSIST, MEMORY, WAL, OFF. The DELETE mode is the default
journaling mode. It controls how the journal files are stored and processed, which
are used to roll back transactions or handle unrecoverable errors. The journal files
are required for both auto-commit and explicit transactions (Kreibich, 2010).

2.3.1.3 Write-Ahead Log (WAL)

As specified in a previous section, WAL is an alternative to rollback journals. Like
the rollback journal, WAL uses ordinary disk files. These files have the suffixes
-wal and -shm (shared-memory) (SQLite, 2020i). A read-only WAL-mode database
can be opened if these files exist, or those files can be created if the database is
immutable (read-only and cannot be modified, even by a process with elevated
privileges) (SQLite, 2020h).

The -wal file is cross-platform, exists for as long as the database is open, and is
usually deleted when the last connection to the database closes or a checkpoint oc-
curs (SQLite, 2020i). In case of apps that are started when the OS starts and killed
only when the OS is killed, this file might almost always exist. If the last process to
have the database open does not exit cleanly, or if the SQLITE_FCNTL_PERSIST_WAL
is used, it might persist on the disk. If this file is separated from its database file,
the database can end up with lost transactions or even corrupted. It is enabled with

9 https://www.sqlite.org/pragma.html#pragma_auto_vacuum
10 https://www.sqlite.org/pragma.html#pragma_user_version
11 https://www.sqlite.org/pragma.html#pragma_journal_mode

13

https://www.sqlite.org/pragma.html
https://www.sqlite.org/pragma.html#pragma_auto_vacuum
https://www.sqlite.org/pragma.html#pragma_user_version
https://www.sqlite.org/pragma.html#pragma_journal_mode

background

Figure 6: CREATE VIRTUAL TABLE command syntax. Source: SQLite (2020c).

the journal_mode PRAGMA statement, using the WAL value, and two other state-
ments can be defined for it, i) wal_checkpoint, and ii) wal_autocheckpoint. The
first causes a checkpoint operation, which consists of moving the WAL transactions
to a database, on a certain database or on all attached databases, if database

is omitted (SQLite, 2020f; SQLite, 2020i). The second defines when a checkpoint
should be ran, after N pages. The default threshold is 1000 pages (SQLite, 2020i).

2.3.1.4 Full-Text Search (FTS)

Full-Text Search (FTS) is a common and effective way to facilitate searching for
something. Users can input a term, or series of terms, which can be connected by a
binary operator or group together in a phrase, and the full-text query system finds
the best matches according to those terms.

For SQLite3, there are four extension modules for FTS, from FTS1 to FTS5. FTS1
and FTS2 are obsolete. The tables created by these modules are virtual tables, and
are in many ways equal to normal tables, data can be added, modified, and removed
using the same commands (SELECT, SELECT, UPDATE, DELETE) (SQLite, 2020d).

To use this SQLite feature, one has to create virtual tables using the CREATE

VIRTUAL TABLE command syntax (SQLite, 2020c). The full syntax can be seen in
Figure 6.

The sole purpose of this feature is to speed up and/or facilitate a user’s search,
meaning that there is not much value in these tables from a forensics point of view,
as the data on these tables is already present elsewhere (most likely in their original
tables).

14

2.3 sqlite

2.3.2 In mobile devices and apps

SQLite is actually present in most mobile device OS (Android and iOS) by default,
and mobile applications, and each device can have hundreds of these databases
(SQLite, 2020e). This subsection aims to briefly summarize the options and recom-
mendations of various frameworks to implement local storage in their apps.

Due to its lightweight and administration-less capabilities, SQLite is a good
choice for local caching or data storing in mobile devices (SQLite, 2019a). An-
droid has full native support for SQLite and any database created by an app is
solely accessible by the own app (Android Developers, 2019a). In the present-day
there are two main libraries in the block to ease the implementation of SQLite in
Android, Cash App’s SQLDelight, and Google’s Room, which is the recommended
option by Google (Android Developers, 2019b; Cash App, 2019). For iOS native,
Apple recommends CoreData, which is a framework for managing an object graph,
and can use SQLite at its core (Apple Developer Documentation, 2019; Jacobs,
2016). Nevertheless, there are still popular libraries to help implement SQLite, such
as SQLite.swift12 and FMDB13. Flutter is one of the most recent cross-platform
framework for mobile development, created by Google14. In their documentation,
developers searching for local storage are directed to a plugin, sqflite15 which is an
SQLite plugin for Flutter (Flutter, 2019). React Native has a different approach
to local storage - as its web counterpart, the most popular library is Redux, which
does state management (Facebook, 2019). There is another library that augments
Redux and adds the persistence functionality - redux-persist16 - which is a promi-
nent solution. Redux-persist allows developers to choose their own storage engine,
which can in turn be SQLite, although it does not seem that popular17. On the
side of Xamarin, Microsoft also proposes SQLite out of the box (Microsoft Docs,
2018c). Finally, Ionic offers two options for local storage: i) Ionic Offline Storage,
which is a NoSQL solution, and ii) Ionic Storage, which prioritizes SQLite (Ionic
Documentation, 2019). This covers the most popular frameworks and their choices
for local caching or data storing, which supports the idea that SQLite has a lot of
importance in the mobile ecosystem.

12 https://github.com/stephencelis/SQLite.swift
13 https://github.com/ccgus/fmdb
14 https://flutter.dev/
15 https://pub.dev/packages/sqflite
16 https://github.com/rt2zz/redux-persist
17 https://github.com/prsn/redux-persist-sqlite-storage

15

https://github.com/stephencelis/SQLite.swift
https://github.com/ccgus/fmdb
https://flutter.dev/
https://pub.dev/packages/sqflite
https://github.com/rt2zz/redux-persist
https://github.com/prsn/redux-persist-sqlite-storage

background

Figure 7: UWP overview. Source: Microsoft Docs (2018b).

2.3.3 Microsoft, Windows 10, and UWP

Microsoft and SQLite are tightly coupled. Microsoft Docs (2018a) has the follow-
ing statement in their documentation: “The Windows version of SQLite is main-
tained by Microsoft in coordination with SQLite.org”. Moreover, Microsoft’s Entity
Framework also has SQLite support (Microsoft Docs, 2016). Windows’ build 18362
introduced tools and an Software Development Kit (SDK) to help developers create
UWP18 apps (Microsoft Docs, 2019a). UWP apps are secure apps that use a com-
mon API on all devices that run Windows 10, and are able to adapt to the user’s
device. These apps are available in the Microsoft Store, and can interact with Win-
dows Timeline (Horsman et al., 2019). Developers can choose their programming
language from C#, C++, Visual Basic, to Javascript (Microsoft Docs, 2018b). An
overview of UWP can be seen in Figure 7, and the Microsoft Store, displaying Your
Phone, in Figure 8.

Microsoft understands SQLite’s advantages of an open-source, lightweight, server-
less, client-side database, and UWP apps can use SQLite to store data (Microsoft
Docs, 2018a). It seems Microsoft wants to give developers a way to create native
Windows 10 apps, with interoperability between devices. Microsoft is already ship-
ping UWP apps in Windows 10 from the get-go, such as Your Phone, Photos,
Skype, among others. The first two apps are available from a clean Windows 10 in-
stallation since versions 1809 and 1703 respectively, and both use SQLite databases
locally (Domingues et al., 2019; Microsoft Docs, 2019b). The interaction between
UWP apps and Windows Timeline is important. Timeline has been available since
Windows 10’s April 2018 Update and it essentially shows snapshots of the user’s

18 Complete UWP details: https://docs.microsoft.com/en-us/windows/uwp/.

16

https://docs.microsoft.com/en-us/windows/uwp/

2.3 sqlite

Figure 8: Your Phone in the Microsoft Store.

activity (Windows support, 2018). It is imaginable that Timeline will be the epi-
center of the data of UWP apps, and it is important to note that Timeline also
takes advantage of SQLite databases, which is valuable from the digital forensic
point of view (Horsman et al., 2019).

2.3.3.1 In digital forensics

Data inside an SQLite database is simple to fetch. One needs only the database,
and a tool, such as DB Browser for SQLite, to query it. In this manner, the user
can query all the current data and PRAGMA values. These can be valuable of
course, however one must look at the possibility of recovering deleted records, or
seeing what is left behind by a temporary file, such as a WAL file (Casey et al.,
2019).

By default, SQLite does not delete records, it simply marks them as deleted,
which means it is likely to find records, in full or partially, in the unallocated
area within a SQLite database (Meng and Baier, 2019). WAL files store the latest
changes to a database, and it is a richful source to recover deleted SQLite informa-
tion (Meng and Baier, 2019). “Ten years of critical review on database forensics

17

background

research” highlights the importance of database forensics. Articles Chopade and
Pachghare (2019), and Meng and Baier (2019) delve into the importance, reliabil-
ity, and results of certain SQLite recovery tools.

The software created with this dissertation relies heavily on open-source tools,
namely Daniels (2020)’s undark, Meng and Baier (2019)’s bring2lite, Miller and
Bryce (2019)’s WAL-Crawler, and DeGrazia (2015)’s SQLite-Deleted-Records-
Parser.

The higher number of SQLite data recovery tools used, the higher the chance a
practicioner has of recovering meaningful data. There are no tools which can handle
all corners of SQLite, according to Chopade and Pachghare (2019). It is important
when creating software that automates the process of analyzing SQLite databases
to give the choice of using these tools, as it might bring additional value to the
practicioner, and each tool might complement another. This dissertation applies
this advice, resorting to four different tools for recovering SQLite records.

2.4 windows 10’s your phone and YPA

As specified in Subsection 2.3.3, Your Phone is a Windows 10 UWP application.
This application uses SQLite databases heavily, which in turn use WAL. It has an
Android counterpart, YPC19, which at the time of writing has over 100 million
downloads. Your Phone requires a smartphone with Android 7.0 or newer to use.
The author of this dissertation has worked beforehand with three others to study
the desktop application, which at the time used a single SQLite database, and
create a two-part Autopsy module, YPA20 (Domingues et al., 2019). YPA is open-
source, and is licensed under GNU Public License (GPL) version 321. Your Phone
leaves databases on the user’s disk. As can be expected, these databases contain
valuable information regarding the user’s phone and phone usage. YPA extracts
the data left behind by these databases and creates an easy-to-read HTML report.

2.4.1 Previous work

Since the work documented in “Digital forensic artifacts of the Your Phone appli-
cation in Windows 10” (Domingues et al., 2019), Your Phone has been updated

19 https://play.google.com/store/apps/details?id=com.microsoft.appmanager&hl=en
20 https://github.com/labcif/YPA
21 https://github.com/labcif/YPA/blob/master/LICENSE

18

https://play.google.com/store/apps/details?id=com.microsoft.appmanager&hl=en
https://github.com/labcif/YPA
https://github.com/labcif/YPA/blob/master/LICENSE

2.4 windows 10’s your phone and YPA

and saw meaningful additions to not only the database schema, but the number of
SQLite databases. While YPA was still functional on both old and newer versions
of the software, it was fundamental to update the module to support the new fea-
tures of Your Phone and fix some breaking changes from these recent updates. At
that time, YPA had the following key features:

• Extract SMS and MMS from Your Phone’s databases.

• Create an HTML report with the extracted data.

• Use undark and SQLite-Deleted-Records-Parser to recover deleted data.

These features will be expanded on in Chapter 3, along with their improvements
and additions in the most recent YPA updates. It is also possible to see the state
of the repository at that time22.

Further will be presented the ongoing development solely by the author, and the
changes of Your Phone since the publication of the paper (Domingues et al., 2019).

22 https://github.com/labcif/YPA/tree/c26c2388a140f2ad332c3715a95eb7b0387759dc

19

https://github.com/labcif/YPA/tree/c26c2388a140f2ad332c3715a95eb7b0387759dc

3
UWP APPL ICAT IONS

This chapter contains details about the findings and development for analysing
UWP applications. One of the objectives of this work was to analyse UWP apps.
Most of these apps consist of the same thing - a desktop application with local
SQLite databases, following the framework imposed by UWP, developed by Mi-
crosoft and installed by default in Windows 10.

3.1 Universal Windows Platform

Contrary to regular Windows applications, UWP applications have to adhere to
a rigid directory layout. Specifically, the executable file(s) and specific Dynamic-
link libraries (DLL)s are kept in an appropriate directory hierarchy based at C:

\ProgramFiles\WindowsApps\, considering that the OS is installed in the C:\ par-
tition. For example, Your Phone’s executable and DLLs are located at C:\Program
Files\WindowsApps\Microsoft.YourPhone_1.20101.99.0_x64__8wekyb3d8bbwe

where 1.20101.99.0 is the application version, x64 indicates that the application
is for a 64-bit Windows 10 version, and 8wekyb3d8bbwe is the producer ID of the
application - in this case, Microsoft.

The data of the UWP application is kept in a different directory, localized by the
user’s application data directory. For example, data from Your Phone are kept
in the subdirectory Microsoft.YourPhone_8wekyb3d8bbwe of the parent direc-
tory C:\Users\%USERNAME%\AppData\Local\Packages\, where %USERNAME% is the
user’s Windows 10 username. The directory hierarchy within an application’s data
directory is normalized. It is comprised of eight subdirectories, as shown in Figure
9.

Applications often need to persist data. UWP applications usually resort to
SQLite. The connection between UWP and SQLite was previously established in
Section 2.3.3. From the digital forensic point of view, SQLite databases are well
known, and well supported by digital forensic software.

21

uwp applications

Figure 9: Data directory hierarchy of an UWP application.

3.2 keeping up with apps’ updates

From a forensic point of view, it is fundamental to know the potential artifacts of an
application, especially those from databases. Some UWP applications are evolving
at a fast pace, such as Your Phone going from one database in its first version to
eight. It is important to know when apps are updated and the schema database
changes that can occur. In this way, to detect any alterations in UWP applications,
the UWP Apps Scanner was developed1.

It is hard to know if apps are locally up to date, and it is also complicated to
know if the app is being used in a certain Windows machine. For example, even
though Your Phone is installed by default in a computer, it is possible that the
databases are not created, since the app could have not been started yet or the
device setup has not been yet completed. To avoid doing manual checks for every
single UWP app, an architecture was idealized, which can be seen in Figure 10.
The idea is a script that checks the local machine, and tells the user if the machine
has new additions or is running an older version, compared to other users. Figure
11 shows the scanner being executed.

The steps of the scanner are as follows:

1. Get configuration and data from the server database.

2. The server returns the data. Expected data are the applications data, and
the schema version of the scanner.

3. If the scanner is up-to-date, it will compute according to the returned data.

1 https://github.com/L-Andrade/UWPAppsScanner

22

https://github.com/L-Andrade/UWPAppsScanner

3.2 keeping up with apps’ updates

Figure 10: Scanner architecture.

Figure 11: Example of a scanner execution.

4. If an application is not up-to-date in the server, the scanner will update the
server with its data.

Most of the logic is in the third step. It is the step where the scanner checks
its own version, and each application locally. It first checks the version of the
application, and if it is the same or newer, it will check each database the application
might have for the tables and the value of user_version PRAGMA.

The fourth step is done for each app that is updated locally, but not on the
server.

Ideally, the user would run this script every once in a while, to know if the local
instance is in synch with the server, and up to date. If the script tells the user
there are updates to an app, it is time to investigate and update any necessary tool
that might have been impacted. This scanner was entitled UWPAppsScanner, and
henceforth it will be referred to as “scanner”. It is an open-source Python script
and it is available under a GPL 3.0 license.

It is intended that the scanner has most capabilities, but it is still necessary to
have the information centralized, being able to supply several users and mantain a
version history, including the date/time and version of an update (the date being
when the scanner receives the update information, not the date of the app update
itself). If the script functioned only locally, it would not be of much use to others,
and all the data generated by the first users would not be accessible to new users,
who might want to create backwards compatible tools that interact with a certain
application.

23

uwp applications

Figure 12: Firebase Console’s Realtime Database dashboard of the scanner’s database.

Since the scanner server does not require much computation and serves mostly as
a source of truth and data, it is not required to implement a solution from scratch.
For this reason, Firebase’s Realtime Database2 was chosen. Realtime Database
requires almost no effort for maintainability, and its free plan is enoughto keep the
solution free to run and use. It also has numerous libraries to communicate with it,
easing the development of the scanner. Essentially, it is an easy-to-use JSON file
in the cloud.

Figure 12 shows how the database looks in the Firebase Console dashboard. In
the given example, only two UWP applications are considered: Microsoft Your
Phone (seen expanded), and Microsoft Photos. The console dashboard is easier to
check and navigate than the JSON that is outputted by the script. Unfortunately,
the access to this dashboard can not be freely shared with everyone.

The scanner uses Python 3.7, and depends on the external libraries listed in
Table 2.

2 https://firebase.google.com/docs/database

24

https://firebase.google.com/docs/database

3.2 keeping up with apps’ updates

Table 2: Scanner dependencies.

Dependency Description

pyrebase4a Handle Firebase Realtime Database.
filetypeb Check a file’s mime type.

dictdifferc Difference between two Python dictionaries.
pywin32d Windows 10 Python extensions.

a https://github.com/nhorvath/Pyrebase4
b https://github.com/h2non/filetype.py
c https://github.com/inveniosoftware/dictdiffer
d https://github.com/mhammond/pywin32

3.2.1 Server schema and rules

The database schema is one of the critical points of the scanner. It defines what is
saved and what other users can see. The information gathered needs to be not only
of the apps, but of the user reporting changes and the time of those changes. This
way, it is possible to have an history of updates, and to see the difference between
updates. An example of the database can be seen in JSON format in Listing 4. In
this example, the object dbs is shortened after its first appearence, to avoid visual
clutter.

As the tool is available to everyone, the Application programming interface (API)
key is also open to everyone. There is a need for security to avoid having breaking
changes to the schema which could even result in loss of data. This issue is solved
by adding rules to the database3. As can be seen by the rules in Listing 1, the write
access to the database is always declined. Only users with an administrator Service
account4 key file (JSON format) associated to the Realtime Database can update
the data. A user of the scanner can use the –key option to define the path to the
key file. After using this argument, the path is saved in a local JSON file so that
the user does not have to keep using this option.

3.2.2 Delving into the script

The following subsections explain the internals of the script, to understand how the
objectives were accomplished.

3 https://firebase.google.com/docs/database/security
4 https://firebase.google.com/support/guides/service-accounts

25

https://github.com/nhorvath/Pyrebase4
https://github.com/h2non/filetype.py
https://github.com/inveniosoftware/dictdiffer
https://github.com/mhammond/pywin32
https://firebase.google.com/docs/database/security
https://firebase.google.com/support/guides/service-accounts

uwp applications

Listing 1: Server database schema rules.

1 {
2 "rules": {
3 ".read": true,
4 "schema_version": {
5 ".read": true,
6 ".write": false
7 },
8 "apps": {
9 ".read": true,

10 "$app": {
11 ".write": false
12 }
13 }
14 }
15 }

Listing 2: Scanner execution with the version argument.

1 C:\Users\luixa\Desktop\Dissertation\UWPAppsScanner>python3
uwp_apps_scanner.py --version↪→

2 Your script is outdated.
3 Local is at version 3.
4 Server is at version 9.

3.2.2.1 Control local and server

The script is also updated from time to time to add features and correct bugs.
Thus, the script always checks whether the local version is the most up-to-date one.
Indeed running an older version might break the schema of the server data. The
server has a schema_version attribute, with an integer value. Every time there
is an update to the scanner which adds or changes other attributes, this integer
should be incremented. The script also contains a schema_version constant, which
should be updated accordingly, by downloading or pulling the scanner updates.

Running the script with the version argument will show the user the local
version of the scanner and also say if it is up to date with the server. With this, it
is safe to use the script with multiple users and/or computers. Listing 2 shows the
output of this argument.

3.2.2.2 Get or export server data

There are three possible arguments for this feature: i) info, ii) infohistory, and
iii) export. The first two options get the available information from the server and
print it in the user’s command-line. The key difference between the two being that

26

3.2 keeping up with apps’ updates

infohistory also prints the update history of an app. On the other hand, export,
as the name indicates, exports all the information to a JSON file. This can be useful
to save backups, or accessing the information offline.

3.2.2.3 Check app version

To check an app version, the win32api Python module was used. With this module,
it is possible to fetch the version number of an executable file, based on the high
and low order values of FileVersionMS (major) and FileVersionLS (minor), which
form the version code using the formula high major, low major, high minor,

low minor such as 5.0.1.0. The scanner compares the local app version with the
server version, one integer at a time, from the most impactful to the least.

Cases where the local version is equal to the server will be discussed next.

3.2.2.4 Calculate differences

As seen in Table 2, the scanner depends on dictdiffer to calculate differences
between two dictionaries. This is a very important part of the algorithm behind
the scanner. When the local version of an application is the same as the server’s,
but the content is not the same, it is of paramount importance to the user to know
what is different between local and server, as the user can then update the server
with the development local data, or on the contrary, see that the local data might
not be up-to-date.

The script receives JSON-formatted data from the server, which is then handled
internally as a dictionary. The data fetched from the local databases of an UWP app
is also handled as a dictionary, so all the script has to do is calculate the difference
between the two dictionaries. The dictionaries vary a lot between applications.
For example, at the time of writing, Your Phone is comprised of eight databases,
each with a few tables, while Photos has only one database, but with more than
a hundred tables. By comparing both sources of data, the scanner computes the
differences between local and server, and the user can then choose whether he/she
wishes to create a new update entry at the server.

3.2.2.5 Add to history

Whenever there is an update in the server, an entry is also added to the history
in the server. This history serves to keep track of app updates and users. Each

27

uwp applications

Figure 13: List of monitored apps in the scanner.

entry contains information about the user who performed the information update
(time of the update, the Windows username, and the Windows version), the app
version of the app in question, and all the database information at that time of that
update (database list, including tables and user_version). This allows the scanner
to behave as a sort of version control, containing data about each app version. In
the future, someone who receives an UWP app’s databases to analyse can use this
scanner’s information to at least know when that version was first reported, what
data to expect, and if there are currently new versions of the software.

3.2.2.6 Database and table data

UWP apps in the script are scanned for SQLite databases. Depending on the option
chosen by the user, it might be all the apps, or a single one using the app option.
Whenever a database of this type is found (using filetype and the mime type
application/x-sqlite3), the scanner gets all the tables of that database, and
the user_version PRAGMA value. Microsoft’s UWP apps use this PRAGMA.
When there are differences in the database schema, it contains an update to the
user_version aswell. Other app publishers, such as Facebook with theirMessenger
app, do not use this PRAGMA.

3.2.2.7 Getting a list of monitored apps

By using the apps option, the user can check all the apps that are being monitored.
The appsdetail option delivers the same list, but with additional details, such
as when each app was last updated, and its list of databases. Figure 13 shows an
example of the detailed output.

3.2.2.8 Application evolution

Since the server has a history of records per application, it is possible to create a
detailed output of the evolution if the server has sufficient data of that application.
The longer the app has been in the scanner, the more history records it can have.

28

3.2 keeping up with apps’ updates

Figure 14: Scanner displaying YourPhone’s evolution.

However, it can also depend on often an app is updated. If the app does not see
many updates, the evolution will not have much information.

There are two options to check the evolution: –evolution, and –appevo. The
former lists the evolution for all applications in the server. The latter receives an
application name, and shows the evolution for that app only. If there is no applica-
tion with that name in the server, it prints a list of all apps in the server. As can
be seen in Figure 14, from Your Phone’s version 1.19112.113.0 to 1.19122.89.0, a
three tables were added to the contacts database: contactdate, emailaddress,
and postaladdress. The rcs_conversation table was also added to the phone

database. Also seen at the bottom of Figure 14, from version 1.19122.89.0 to
1.19122.138.0, the calling database was added.

29

4
YOUR PHONE

This chapter is about the findings of the Your Phone ecosystem. Your Phone is a
UWP application. Its purpose is to create a link between the user’s Android phone
and Windows 10 computer, allowing the user to reply to text messages, receive and
manage notifications, make and receive calls, and share resources between these
two classes of devices effortlessly. How does Microsoft do it?

4.1 applications

To achieve the computer/smartphone link, it is necessary to have some sort of com-
munication from the phone to the user’s computer. For this purpose, Your Phone
requires that the user installs the YPC app from the Play Store1. This app then
connects with its desktop counterpart, Your Phone. YPC already accounts over 100
million installs, a remarkable number, placing YPC on the top apps in the Google
Play Store2. All this popularity increases the probability of a given Windows 10
computer to have a functional Your Phone link to one or more smartphones, there-
fore having some potential value in digital forensics investigations. It is possible to
gather most content of a phone without accessing the phone at all, circumventing
common issues of investigating mobile devices, such as the unavailability of a direct
access to the internal memory of the device (Distefano et al., 2010). The devices
of Your Phone environment are linked to each other through a Microsoft cloud
account. The account can be either from the hotmail.com or outlook.%domain%
domains, where for the latter %domain% can be a country domain, such as pt or
the most common com domain. YPC needs to be configured with a cloud account,
and it is accessible through the app’s settings menu. This is an account solely at
the application level. On the Windows 10 device, the account is configured at the
OS level, committing the account to the whole machine. Attaching Windows 10 to
a cloud account is done through the Your account info interface.

1 https://play.google.com/store/apps/details?id=com.microsoft.appmanager&hl=en
2 AppBrain’s Google Play statistics for YPC: https://www.appbrain.com/app/

your-phone-companion-link-to-windows/com.microsoft.appmanager

31

https://play.google.com/store/apps/details?id=com.microsoft.appmanager&hl=en
https://www.appbrain.com/app/your-phone-companion-link-to-windows/com.microsoft.appmanager
https://www.appbrain.com/app/your-phone-companion-link-to-windows/com.microsoft.appmanager

your phone

(a) Initial YPC screen. (b) YPC settings screen.

Figure 15: YPC screens.

In the next section, the contents of YPC are explored. It will detail the app’s
permissions, features, and data stored in the user’s device. In the following subsec-
tion, the same is done for the desktop counterpart, Your Phone. Following those
two subsections, YPA is explored as a tool to extract data (and consequently add
any possible valuable information) left behind by Your Phone. The initial screen
of YPC can be seen in Figure 15a.

4.1.1 Your Phone Companion

YPC requires an Android 7.0 phone (API level 24) to function, but it can be
installed on devices with Android 4.4 (API level 19) or higher. While a phone with
a lower API level can install the app, it blocks those lower versions of using most
features, meaning that the app can be developed as if its minimum level was higher.

32

4.1 applications

Figure 16: Your Phone Companion (YPC)’s screen for pre 7.0 Android devices.

A user with a pre-7.0 device sees the screen shown in Figure 16. The Android 7.0
requirement has existed since at least February of 2019 (when the work of YPA
was started). The only feature that can be used with a pre-7.0 device is sharing
links of webpages between the phone and computer.

Figure 17 shows the distribution of API levels from May 2019 to May 2020.
In June, pre-7.0 Android devices accounted for 28.3 percent of Android devices
(according to Statcounter’s data), so there must be a strong reason for Microsoft
to disregard this big of an amount of users - it can only be assumed that this
number was bigger back in February. It might be related to their analytics and
user statistics back then, but it is easier to believe it was due to platform reasons.

The YPC app does not have many features by itself, as can be seen in Figure 15a.
From the phone, the most a user can do is i) link to a computer, ii) see Microsoft
advertising its other Android apps, iii) go to Settings, which can be seen in Figure
15b (where the user can be redirected to the app in the Play Store, offer direct
feedback to Microsoft, sync on-demand, and some other small options), and iv)
share links from phone to the computer (only feature available to pre-7.0 Android
devices). The latter can be triggered by using the default Android sharing interface
and clicking the YPC option: Continue on PC. When this option is selected, the
screen in Figure 18 is shown, where the user can select a connected machine to

33

your phone

Figure 17: Android API level distribution, May 2019 - May 2020. Source: https:
//gs.statcounter.com/android-version-market-share/mobile-tablet/
worldwide

Figure 18: Share a link with YPC.

share the link. In the case shown in Figure 18, two Windows machines connected
to the smartphone via Your Phone: DESKTOP-I6LKRM5, and DESKTOP-L7P4235. The
link can be opened on either the user’s or the OS’ default browser, results may vary.
In case the user has no active session at the selected machine, the browser is still
launched and is accessible whenever the users logs in. If a machine is turned off, that
option is greyed out and displays a message that the PC is not available. Lastly, if
the user clicks on Continue later, it will send a notification to all the machines.

Also seen in Figure 18 is a phone using YPC linked to multiple Windows 10
computers. However, it can not synchronize the phone content with all linked com-
puters at the same time, only one. Syncing with one of the devices, disconnects
it from the other, and the notification on the phone (seen in Figure 19) updates
to the connected computer. The links remain, nonetheless. The notification shown

34

https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide

4.1 applications

Figure 19: YPC notification in the smartphone.

in Figure 19 stays while the computer and phone are connected, and lasts a while
longer after the desktop is turned off (probably until the phone tries to sync and
fails since the desktop disconnected).

4.1.1.1 Permissions

The many features of Your Phone rely heavily on sensitive user data. This data is
protected in an Android phone by permissions3. Google states that “the purpose
of a permission is to protect the privacy of an Android user. Android apps must
request permission to access sensitive user data”. As such, YPC must request the
user for permission to access certain OS features in the user’s phone.

Table 3 shows the permissions declared by YPC, and while there are a lot of
permissions requested compared to other apps, it is understandable seeing as each
major feature of Your Phone requires a different Android permission (reading SMS,
sending an SMS, calls, bluetooth pairing...). The location permission is misleading,
but it is necessary since a Bluetooth scan can be used to gather information about
the location of the user (Android Developers, 2020). Some of these permissions are
required to be requested to the user (e.g. contacts, messages), while others just
need to be declared by the application (e.g. internet connectivity). A permission
being requested can also depend on the Android version of the user’s phone.

4.1.1.2 User app data

It is possible to fetch the local data of an Android application, such as files and
databases. It is a simple method, using Android Debug Bridge (ADB)’s backup
functionality, and works as long as the app has not disabled it4. The package name
for YPC is

3 https://developer.android.com/guide/topics/permissions/overview
4 https://blog.shvetsov.com/2013/02/access-android-app-data-without-root.html

35

https://developer.android.com/guide/topics/permissions/overview
https://blog.shvetsov.com/2013/02/access-android-app-data-without-root.html

your phone

Table 3: Android permissions declared by Your Phone Companion

permission observation

Identity Find/add/remove accounts on the device
Location Precise location (GPS and network-based)

Wi-Fi View Wi-Fi connections
Storage Read and write USB storage

SMS Read text messages (SMS/MMS). Send SMS
Camera Take pictures and record videos
Phone Read call log/phone status and identity

Device/Apps History List of running apps
Contacts Read Contacts
Bluetooth Access settings and pair

Other Download files without notification
Other Receive data from the Internet
Other Full network access
Other Set an alarm
Other Pair with Bluetooth
Other View network connections
Other Modify system settings
Other Disable screen lock
Other Prevent device from sleeping
Other Create accounts and sets passwords

36

4.1 applications

COM.MICROSOFT.APPMANAGER
├── db
├── ef
├── f
│ ├── appcenter
│ │ └── database_large_payloads
│ ├── aria
│ ├── crash
│ │ ├── 172102
│ │ ├── 174131
│ │ ├── 174141
│ │ ├── 174149
│ │ ├── 175011
│ │ ├── 175014
│ │ ├── 252121
│ │ ├── 252123
│ │ ├── 254117
│ │ ├── 254120
│ │ ├── 255140
│ │ ├── 255142
│ │ ├── 256082
│ │ ├── 256093
│ │ ├── 257078
│ │ └── 257082
│ └── error
│ └── minidump
│ └── new
└── sp

Figure 20: YPC local data path tree.

com.microsoft.appmanager - it can be seen in the page link for the app in the
Play Store5.

This process was followed using a OnePlus 7 with OxygenOS 10.0 (Android 10).
The folder structure of the result can be seen in Figure 20.

In Appendix B are the diagrams of the SQLite databases found in YPC’s local
app data. In all these databases there is a room_master_table6. This means that
YPC uses Google’s architecture component “Room”, seeing as this is the library’s
master table that contains metadata information. Multiple databases in one appli-
cation is not a recommended practice or usually seen, due to the complexity of
having multiple connections, where each connection is quite expensive. This might
be well handled by the app though, as a result of most of the app’s work being
done in the background. The app does not require to be opened to communicate
with the user’s personal computer, as it runs in the background.

YPC’s databases do not have much information about or of the user, meaning
that they do not have much forensic value. Most of the content seem to be used to
control or aid the exchange of information between the phone app and desktop app.
A few of the databases also contain WAL files. Below are some of the databases
found in the app data:

5 https://play.google.com/store/apps/details?id=com.microsoft.appmanager, notice the end
of the URL

6 https://developer.android.com/reference/androidx/room/Room#MASTER_TABLE_NAME

37

https://play.google.com/store/apps/details?id=com.microsoft.appmanager
https://developer.android.com/reference/androidx/room/Room#MASTER_TABLE_NAME

your phone

- Database eventstore, Appendix B, Figure 50, table agent_service_event:
it might hold a log message of the form Connected to machine M, where M
is the Windows name of the Windows 10 device.

- Database YourPhoneSettings, Appendix B, Figure 51, table settings: it
holds the smartphone’s applications that can produce notifications and whether
these notifications should be forwarded to Your Phone Windows 10 devices.

- Database com.google.android.datatransport.events, Appendix B, Fig-
ure 53, table event_metadata: this table holds some data regarding the device
hardware and OS, such as the model, the SDK-version and the OS-build.
This database is created by the Android Firebase SDK7.

Inside the f directory, there are some files and other directories. Among those,
one stands out: %ID%.cdp, where %ID% stands for a unique identifier linked to the
user’s email address. The extension .cdp is short for Certificate Distribution Point.
This file holds information about the phone, IP addresses, and computers that are
connected to that phone. This can be valuable to identify Windows 10 computers
that might not be known in the investigation, or to link a computer to a phone in
an investigation. Inside the file, there is a key StableUserId with the value of the
filename, meaning that the filename is from the value of that key. With this cdp
file are a cer and key files, with the same naming (%ID%.cdp).

The rest of the files left by the app are XML files, which some are from Shared
Preferences8. However, some of those Shared Preferences XML files have some
interesting flags, such as telemetry_consent_shown (which is in home_view.xml),
but it has no other content.

4.1.2 Desktop application

The analyzed version of Your Phone was 1.20101.99.0, from November 2020.

Opposite to YPC, the desktop application, which henceforth will be mentioned as
just Your Phone, has a lot of features. Your Phone was originally installed through
the Windows Store, although since Windows 10 version 19.03 it now comes with a
clean installation, with updates available through the Windows Store.

7 https://github.com/firebase/firebase-android-sdk/blob/master/transport/
transport-runtime/src/main/java/com/google/android/datatransport/runtime/
scheduling/persistence/SchemaManager.java

8 https://developer.android.com/reference/android/content/SharedPreferences.html

38

https://github.com/firebase/firebase-android-sdk/blob/master/transport/transport-runtime/src/main/java/com/google/android/datatransport/runtime/scheduling/persistence/SchemaManager.java
https://github.com/firebase/firebase-android-sdk/blob/master/transport/transport-runtime/src/main/java/com/google/android/datatransport/runtime/scheduling/persistence/SchemaManager.java
https://github.com/firebase/firebase-android-sdk/blob/master/transport/transport-runtime/src/main/java/com/google/android/datatransport/runtime/scheduling/persistence/SchemaManager.java
https://developer.android.com/reference/android/content/SharedPreferences.html

4.1 applications

Figure 21: Your Phone interface.

Your Phone has two executables, YourPhone.exe and YourPhoneServer.exe.
The former is the executable used by the scanner to track Your Phone’s version.
These executables are both in C:\ProgramFiles\WindowsApps\%YourPhoneDIR%

where %YourPhoneDIR% is Microsoft.YourPhone, the numeric version of Your
Phone, and the Microsoft publisher ID, 8wekyb3d8bbwe, all concatenated with
_ as separators. The latter is visible in other UWP apps that belong to Microsoft.

4.1.2.1 Interface

The Your Phone interface is fairly straightforward. It can be seen in Figure 21.
It has a side bar with six options, where each changes the main view, except the
Pin app to taskbar option. All options show the same title and refresh option. The
refresh option allows the user to manually sync the phone and computer.

The default selected side bar option is Notifications, which displays an image if
the user has no notifications, or the user’s phone notifications. The user can take
action from this screen, as is also seen in the Figure 21 (Mark as read and Delete).
These actions depend on the app that sent this notification. The notifications shown
in this screen also show on Windows’ Action Center, using WNS. Also worth men-
tioning that the Customize button redirects to the Settings screen, with an inner
option selected (Features).

The Messages option shows the user’s messages – SMS and MMS from the last 30
days. The user can read, send and reply to messages without leaving the computer,
as shown in the left image of Figure 22. The user can also search through the
phone’s contact list when sending messages (by choosing who to send the message
to). However, the user cannot delete messages within YPC.

39

your phone

Figure 22: Your Phone messages (left) and calls interface (right).

Photos shows the phone’s photos. From this screen, the user can choose a photo,
open it with any desktop application, copy, save, or share. However, any changes
on a photo are not synchronized back to the phone’s photo.

The Calls screen only has content if the user’s computer has Bluetooth. If it
does not, it says the feature does not work with the computer. What Your Phone
does not tell the user is that it still has the user’s call log (if the user granted that
permission). Your Phone could show the call log even if the user had no Bluetooth,
due to the call log being present in the database. Anyway, in case the user has
Bluetooth and connects the phone, he/she can see the call log, search contacts,
and perform calls. This is shown on the right side of Figure 22. Calls will use the
computer’s sound and microphone devices.

Settings screen shows a lot of options for the user to customize his Your Phone
experience, which can be seen in Figure 23. In this last Figure, there’s also what
appears like a Spotify notification, showing what is playing on the phone (bottom
left corner). This is more than a simple notification, it is the Media Controls9. That
is why it does not appear in the Notifications screen, even though it appears in the
notifications database, as will be seen further. It also features actions for the user,
in this case Previous, Play/Pause, Next (same order as in the Figure’s).

An easy to miss detail is the phone’s battery near the top left corner, seen in
all of the Figures 21, 22, and 23. In all these cases, the phone is low on battery. It
shows the percentage of the battery as a tooltip by hovering the icon.

Despite not having a contact view or screen, the user can search the contacts
from both Messages and Calls. This is important, since it means Your Phone also
stores the user’s contact list. As mentioned above, Your Phone can also have the

9 https://developer.android.com/guide/topics/media/media-controls

40

https://developer.android.com/guide/topics/media/media-controls

4.1 applications

Figure 23: Your Phone settings interface and Media Controls (bottom left corner).

Figure 24: Your Phone Companion’s Media Controls notification.

call log, even if not connected by Bluetooth to the phone. These are two seemingly
important assets in a digital forensics point of view.

Both Messages and Calls screens show content up to 30 days old. Even in visible
conversations that have happened in the current month, it will not show older
content. The two are also ordered from most recent to oldest.

The Photos screen shows up to 2000 photos/screenshots taken by the smartphone.
It presents the photos sorted from the most recent to the oldest, like the previously
mentioned screens. The newer photos have both a thumbnail and full sized local file,
while the older ones have only a thumbnail. Old photos can have a full sized photo
by exporting the photo or by opening the full size screen in Your Phone. It also
shows a Syncing from your phone... message while fetching the photo. When Your
Phone fetches a photo from the phone, it is downsized to no larger than 1.5 MiB.
The original aspect ratio and filename are mantained, but the EXIF metadata is
only partially preserved (Camera Model Name and Maker fields).

41

your phone

C:\USERS\LUIXA\APPDATA\LOCAL\PACKAGES\MICROSOFT.YOURPHONE_8WEKYB3D8BBWE
├───AC
│ ├───GEH
│ ├───Temp
│ └───TokenBroker
│ └───Cache
├───AppData
├───LocalCache
│ ├───Indexed
│ │ └───4f8a528c-d374-4791-b081-bf8f739b997f
│ │ └───System
│ │ └───Database
│ ├───Local
│ │ └───Microsoft
│ └───Roaming
│ └───Microsoft
│ └───Windows
│ └───Start Menu
│ └───Programs
├───LocalState
├───RoamingState
├───Settings
├───SystemAppData
│ └───Helium
└───TempState

Figure 25: Your Phone local data path tree.

4.1.2.2 User local data

The user data is stored in %LOCALAPPDATA%\Packages\Microsoft.YourPhone_

8wekyb3d8bbwe. %LOCALAPPDATA% is mapped to C:\Users\%USERNAME%\AppData\

Local, where %USERNAME% corresponds to the Windows 10’s username. This means
that Your Phone can be used by multiple users in the same desktop, and needs
to be accounted for when developing software to automate the extraction of data
from the files in this directory. As seen before, 8wekyb3d8bbwe is Microsoft’s pub-
lisher ID. Figure 25 shows the path tree of the local data. It should be empha-
sized that TempState holds quite a few directories, each named after the package
name of a mobile app that is installed in the device, following an integer (e.g
com.microsoft.appmanager_48). Most of these directories are empty, except a
few (some of the ones with the highest integer) which contain a png image file with
the app’s icon.

From the directories seen in Figure 25, only one holds meaningful data -
LocalCache, which contains a subdirectory (inside Indexed) with fix blocks of hex-
adecimal symbols, separated by dashes, which is a GUID that corresponds to the
ID assigned by Microsoft. Inside this directory lies the System\Database subdirec-
tory, which contains the Your Phone databases, the “holy grail” of data of Your
Phone. The number of databases in this directory has increased over time, starting
from one SQLite3 database (phone.db) to, at the moment of writing, eight SQLite3
databases.

These databases are listed in Table 4. Each database will be explored in the next
sections. All these databases are accompanied with their respective WAL files.

42

4.1 applications

Table 4: Databases of Your Phone - version 1.20071.95.0

name description

calling.db Call log
contacts.db Contact lists

deviceData.db Device-related data (e.g. wallpaper)
notifications.db Pending phone notifications

phone.db SMS/MMS/RCS
photos.db Photos and metadata

settings.db List of phone apps
sharedcontent.db Not populated yet

Before detailing each database, bear in mind that the tables content_sequence
and sqlite_sequence are not accounted for. All databases contain the latter, as
SQLite3 creates it automatically for databases that contain an AUTOINCREMENT

column10. For the former, notifications.db and settings.db are missing it -
this table is probably used internally by Your Phone, but it has no meaningful
data.

The date/time fields are in UTC, unless stated otherwise. When mentioning
filetime64, it is short for Microsoft Filetime, which is the number of 100 ns
intervals since January 1st 160111. UNIX is the UNIX Epoch, the number of seconds
since January 1st 1970, and UNIXms is the same, but in milliseconds.

4.1.2.3 calling.db

The only table in this database is call_history. Table 5 shows the fields of this
table with a brief description of each field.

This table keeps the user’s call log of the last month. Each row is a call, with
the phone number of the other party, duration of the call (in seconds), and the
start date/time. The field call_type is an integer with four known types: 1 is
incoming, 2 is outgoing, 3 is missed, 5 is declined, and 6 is blocked. Value 4 was not
found during our research, so it is not possible to determine if it exists or not, and
which state it corresponds to. It might also have been deprecated or discontinued
internally. is_read can be either 0 (seen) or 1 (missed/not seen). Calls that have
is_read with value 1 have call_type with value 3 (missed). This does not mean

10 https://sqlite.org/autoinc.html
11 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/

2c57429b-fdd4-488f-b5fc-9e4cf020fcdf

43

https://sqlite.org/autoinc.html
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/2c57429b-fdd4-488f-b5fc-9e4cf020fcdf
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/2c57429b-fdd4-488f-b5fc-9e4cf020fcdf

your phone

Table 5: Fields of table call_history / calling.db database

field type description

call_id integer Primary key
phone_number text Called/calling phone number

duration integer Duration of the call (seconds)
call_type integer 1=incoming 2=outgoing 3=missed 5=declined

start_time integer GMT date/time start of call (filetime64)
is_read integer 0 = seen, 2 = not taken/not seen

last_update_time integer GMT date/time last data update (filetime64)
phone_account_id integer Always the same with only one phone/SIM card

that call_type 3 always has value 1 for is_read. The value can be 0 if the missed
call was purposely silenced in the phone, but not declined - e.g. when someone
calls another person and the second person silences his phone (by clicking the lock
screen button). The last_update_time field records when the call (table row) was
last updated. Usually, the value corresponds to start_time plus the duration of
the call and a small delay (under 60 seconds) or higher. Both last_update_time

and start_time are in filetime 64-bit format. The last field, phone_account_id,
always had the same value. It was observed as always 1 in one desktop/phone pair,
and as 8935101811520418416 in another pair. It is suspected that the field is used
for multi-SIM card support, since Your Phone can handle phones with more than
one active SIM12.

4.1.2.4 contacts.db

This database contains 38 tables, and while that might seem like a lot of tables, 32
of those are FTS tables, which do not have much forensic value. The information
present in most of these FTS tables is present in other tables. As mentioned in
Section 2.3.1.4, these are used to ease searching for something. If the user types
either the display name or nickname of a person in the contact search (be it in
the Calls or Messages screens), it will appear. Unfortunately, other fields are not
updating to their actual values yet in contacts.db, so searching for those fields
retrieves no values.

From the other six tables, only two hold data, contact and phonenumber. The
other four tables are empty in the current Your Phone version, but might have
some importance in the future.

12 https://www.windowscentral.com/your-phone-app-now-supports-dual-sim-insiders

44

https://www.windowscentral.com/your-phone-app-now-supports-dual-sim-insiders

4.1 applications

Table 6: Fields of table contact / contacts.db database

field type updates description

contact_id integer Yes Primary key
display_name text Yes Contact’s full display name

nickname text Yes Contact’s nickname
last_updated_time integer Yes GMT date/time last updated (filetime)

thumbnail blob Yes Linked photo thumbnail
checksum integer Yes Changes when contact is updated
company text No Empty

job_tile text No Empty
notes text No Empty

name_prefix text No Empty
name_suffix text No Empty
given_name text No Empty

middle_name text No Empty
family_name text No Empty

Each row in the contact table matches an entry in the user’s phone contact
list, with the display_name, last_updated_time timestamp, and the thumbnail

if available, which corresponds to a contact’s photo. Updating a contact’s prefix,
suffix, middle name, and/or surname in the phone does not populate the inde-
pendent columns in this table (such as name_prefix, name_suffix), but it does
append these values to the contact’s display name as follows: %PREFIX% %NAME%

%MIDDLE NAME% %SURNAME%, %SUFFIX%. There are more fields that are empty and
not updated, such as company and job_title. These fields can be seen in Table 6,
along if the field is updated or not.

Table phonenumber is a simpler table. It has its own ID column, along with a
mandatory contact’s ID, which is a foreign key and can be linked to the contact

table. The table has the phone_number and display_phone_number fields, which
for a row contain the same number with different formats: the former contains the
international code, such as +351 for Portugal and no whitespaces, while the second
might also contain the international code but is formatted with certain spacings
and serves as a display-friendly name. There is also a phone_number_type field
which is an integer that maps to a type of phone number as follows: 1 is home, 2

is mobile, 3 is work, 4 is work mobile, 5 is main, and 6 is for any other label the
phone might have. All these fields can be seen in Table 7.

The other four tables of this database are: i) contactdate, ii) contacturl, iii)
emailaddress, and iv) postaladdress. As mentioned above, and like many other
fields in the contact table, these are empty.

45

your phone

Table 7: Fields of table phonenumber / contacts.db database

field type description

phone_number_id integer Primary key
contact_id integer Called/calling phone number

phone_number text Clean phone number (no spaces)
display_phone_number text Display-friendly phone number

phone_number_type integer 1=home, 2=mobile, 3=work, 4=work mobile, 5=main,
6=other

label integer Empty
checksum integer Updates when row is updated

4.1.2.5 deviceData.db

The only table in this database is wallpaper. It contains a row with the current
wallpaper, which can have the blob of the wallpaper (it is nullable, and for some
included phone wallpapers the blob is null, e.g. in the case of a OnePlus 7), which
can then be shown in Your Phone. Forensically, this database does not have much
value as of yet, unless the wallpaper is an important or incriminating photo.

4.1.2.6 notifications.db

This database has only one table: notifications. It stores the notifications that
are displayed in the phone screen, such as a message, missed phone call, or any other
notification. It can also have the Media Controls notification, such as a song that
is playing on Spotify, or a YouTube video that is being cast to another device (e.g.
smart television). The phone media controls can be seen in Figure 24, and the Your
Phone variant can be seen in Figure 23. Notifications can only be sent from the
phone to the desktop if the user has the setting enabled for that certain app. The
user can change these settings at any time, and the interface for enabling/disabling
the notification forwarding from the phone to the desktop is shown in Figure 26.

From a forensic point of view, the most important fields are json and post_time.
The former holds the full JSON representation of that notification alert, including
the app name and other JSON fields of the originator of that alert. The post_time
represents the date/time (filetime64) when the notification was posted. Whenever
a notification is dismissed from the phone, the row is deleted, and due to that
the probability of capturing certain records is not evident, although recovery tools,
such as undark, bring2lite to name a couple of open source software, can be used

46

4.1 applications

Table 8: Record for notification of a group of WhatsApp messages in table notifications

name description

id 6
notification_id 0|com.whatsapp|1|

3fu8LLvJtKLhn8VIWAQJ8bOKh+RBjudquZ/c4+D7JQY=|
10250

package_name com.whatsapp

json Shown in Listing 5 (Appendix A)
post_time 132484855169050000

state 0
anonymous_id 52DC3EF6-1A85-4B7D-A12D-41B71AB60790

to attempt to recover deleted data, as shall be seen later on (Daniels, 2020; Meng
and Baier, 2019).

A table row from notifications corresponding to a WhatsApp notification of
multiple messages can be seen in Table 8, while the JSON can be seen in Listing 5.

As can be seen in Table 8 and Listing 5, notification_id is the concatenation
of multiple fields of the JSON, such as the package name, tag, and the value of the
notification_id field is the same as the JSON’s key value. As a side note, the
post_time field is set with the 64-bit filetime value of 132484855169050000, which
corresponds to Thursday, October 29th, 2020 10:51:56PM.

4.1.2.7 phone.db

Unlike the other databases, the name of this database, phone.db, can be mis-
leading and reflects the architecture of the first version of Your Phone, where this
database held all the data for Your Phone (Domingues et al., 2019). Since then, the
phone.db database has been heavily modified, as it has the highest PRAGMA value
for user_version out of all of the Your Phone databases - 31, comparing to the
other highest user_version values 10, of settings.db and contacts.db. These
modifications have added support for multiple SIM cards and RCS, while leav-
ing behind legacy databases such as message_to_address, and mms_to_address,
which are no longer used, and are empty now. The full list of tables of this database
can be seen in Table 9.

As a side note, this database shows the fast evolution of Your Phone, and the
Scanner (3.2) allows us to always be up-to-date with these constant changes.

47

your phone

Table 9: Tables of database phone.db

table legacy empty description

conversation No No Conversation threads table
message No No SMS table

message_to_address Yes Yes Legacy SMS table
mms No No MMS table

mms_address Yes Yes Legacy MMS table
mms_part No No Attached MMS data
rcs_chat No Unknown RCS table

rcs_conversation No Unknown RCS table
rcs_filetransfer No Unknown RCS table
sending_message No No Messages not yet sent

subscription No No One record per phone SIM
sync No No Synchronization data

This database mostly contains tables holding data linked to phone-based messag-
ing, such as SMS, MMS, and RCS. The table message holds the data and metadata
of SMS from the last 30 days. Besides the text of the message, which is kept in
the body field, the message table holds the status (1 is unread, 2 is read), the
from_adress that identifies the sender (empty for a sent SMS), and type, which is
1 for a received message, and 2 for a sent one. The timestamp (filetime64) records
the date/time the SMS was sent/received. The subscription_id acts as a for-
eign key, linking to the subscription table. This table keeps the data about the
SIM cards attached to the phone - one record per SIM card - and the associated
configurations. Besides the primary key subscription_id, the other fields of this
row have fairly straightforward names such as country_iso, is_mms_enabled, and
is_rcs_supported. A less straightforward field name is name, which in certain
cases holds the SIM card provider (e.g. Vodafone), while in others is simply set to
SIM1. A subscription row holds 27 fields at the time of writing.

Another foreign field of the message table is thread_id, which links to the
conversation’s table primary key. It identifies the thread to which a message
belongs to. A thread is a set of messages, be it SMS, MMS, or RCS, that are
shared among the same recipients (can be one or more). The recipient list is under
the recipient_list field, where recipients are separated by a comma if there is
more than one (e.g. contact1,contact2). Other fields are counters for the conver-
sation, such as unread_count, which is the number of unread messages in Your
Phone (phone_unread_count is the number of messages that are not read yet in
the phone), and msg_count, which is the total number of messages, while has_rcs
is 0 when there are no RCS messages in the conversation. Finally, timestamp

48

4.1 applications

Table 10: Record of a conversation in phone.db’s conversation table

field value

thread_id 43
recipient_list 938******

timestamp 132485692195370000
msg_count 12

unread_count 0
has_rcs 0

checksum 40876
phone_unread_count 1

holds the date/time of the last exchanged message. A very interesting thing about
the conversation table from a forensics point of view is that the records from
conversations that have no messages in Your Phone are still preserved in this
conversation table. This occurs when the conversations are still present in the
phone, but no longer processed by Your Phone due to the 30-day expiration. These
records can be easily identified as all fields are zero, except for thread_id and
the recipient_list. Table 10 shows an example of a conversation row, with a 64-
bit Filetime formatted timestamp - 132485692195370000, corresponding to Friday,
October 30th, 2020 10:06:59PM

For MMS, there are three tables in phone.db: mms, mms_address, and mms_part.
As previously mentioned, mms_address no longer contains any data and is a legacy
table. Table mms holds a row per MMS sent/received, recording the thread_id

(which, like SMS messages, links to conversation), status with a value of 1 (un-
read) or 2 (read), type with a value of 1 (received) or 2 (sent). Similarly to message,
mms has a subscription_id which links to the subscription table. Table 11 shows
a record of an MMS.

As the name indicates the mms_part table holds parts for MMS messages. For an
MMS comprised of two parts, for example text and photo, there are three records:
the two parts plus the record that keeps the Synchronized Multimedia Integration
Language (SMIL) data. SMIL is an XML markup language for interactive multime-
dia presentations (Bulterman and Rutledge, 2008). Within the context of an MMS,
it serves to configure the presentation of the MMS on the screen of the phone. Table
11 holds a record of an MMS from the mms table.

49

your phone

Table 11: Record of an MMS in phone.db’s mms table

name description

message_id 1
thread_id 16 (associated conversation thread)

status 2 (read)
type 2 (sent)

subscription_id 1 (associated SIM card)
subject (empty text)
charset 0

timestamp 132485707550000000
pc_status 1

from_address insert-address-token (default value for sent MMS)
checksum 1

There are three tables for RCS messages: rcs_chat, rcs_conversation, and
rcs_filetransfer. Without an RCS compatible phone, it is not possible to address
these tables and verify that they are already in-use by Your Phone.

Lastly, the table sending_message, as the name suggests, holds messages sent
from Your Phone which have not yet been sent by the phone. This can occur when
either the computer or phone have no internet access. As soon as the connection is
established, the messages in this table are sent and the record is deleted from the
table.

4.1.2.8 photos.db

There are two tables in photos.db: photo and media. The photo table has stopped
seeing use in recent Your Phone versions, and is now considered legacy. In older
versions, this table would hold up to 25 photos/screenshots. This table is no longer
synchronized with Your Phone, so if there was any data left by an older syn-
chronization, it is still retrievable. For installations after this table has stopped
seeing updates, this table is empty. Similarly, these older photos/screenshots (up
to 25) from the first versions of Your Phone might still be found in the filesys-
tem, in the directory \%LOCALAPPDATA\%\LocalCache\Indexed\\%GUID\%\User\

\%PHONENAME\%\Recentphotos, where LOCALAPPDATA and GUID have the same val-
ues as explained before, and PHONENAME is the phone’s display name (e.g. Aquaris,
OnePlus 7) (Domingues et al., 2019).

50

4.1 applications

Table 12: Fields of table media / photos.db database

field type existed in photos description

id integer As photo_id Primary key
name text Yes Media file name in the phone

last_updated_time integer Yes Date/time of last update (filetime64)
taken_time integer Yes Date/time when media taken

(filetime64)
orientation text No Media angle (values: 0/90/180/270)

last_seen_time integer No Date/time last media access
in Your Phone (filetime64)

mime_type text No Media file mimetype
height integer No Media resolution height
width integer No Media resolution width
size integer Yes Media size (in bytes)
uri text Yes content://media/external/

images/media/ %ID%

thumbnail blob Yes Blob of media thumbnail
media blob As blob Blob of full media (or null)

checksum integer No Updates when row is updated

In more recent versions of Your Phone, photos and media are kept in the media
table. The fields of this table are summarized in Table 12.

In the old photos table, uri was the full phone path to the image. In the new
media table, it is content://media/external/images/media/ %ID%, where ID is
the media ID. The media’s table new fields suggest that Your Phone has support
for multiple media types, but at the time of writing it only has photos inside, with
the mimetype image/jpeg.

Both thumbnail and media can be null. media is not null when the file is syn-
chronized with the phone, normally when the photo is not a month old. Once it
is a month old and is not manually loaded, it is null. thumbnail is usually not
null, and contains a much more reduced image, but keeps the aspect ratio too (an
image with the resolution 4608 × 3456 is reduced to 320 × 240, keeping its 4/3 as-
pect ratio, however it has over 200 times fewer pixels as the original). The reduced
photos are primarily used to show the thumbnails in the Your Phone interface, but
it might also be to preserve the bandwidth usage while transfering photos from the
phone to the computer, and disk space of the Windows 10 desktop, as holding the
maximum of 2000 photos in the database might require more than 2 GiB of disk
space, considering the maximum storage size of 1.5 MiB per photo (Section 4.1.2.1)
kept in the media table.

51

your phone

Table 13: Record for Your Phone Companion in table phone_apps

name description

app_name Your Phone Companion
package_name com.microsoft.appmanager

version 1.20101.99.0
etag 252

favorite_rank NULL

blob Application icon (blob)

Other fields are name, and taken_time, the latter holding the date/time of when
the photo was taken. The table has two more GMT date/times, last_updated_time
and last_seen_time. The former is the timestamp of when the photo was last syn-
chronized within Android, and the latter corresponds when the photo was last
displayed in Your Phone. The fields height, width, and size hold the dimensions
of the original photo.

4.1.2.9 settings.db

The settings.db database possesses three tables: phone_apps, phone_requests,
and settings. Of these three, phone_requests has no records.

The table phone_apps contains all the apps installed in the smartphone. Each
row is an app, and contains the self explanatory fields: app_name, package_name,
and version. Other fields are blob, which is the app’s icon, favorite_rank, which
has the value NULL for all records (even for apps with rating and reviews), and etag,
which has the same value for all records: 252 (the value itself can be different for
a user, but it is the same for all records anyway). An example of a record of this
table can be seen in Table 13 - in this case it is the record of YPC.

The settings table does not have many columns. It holds the settings of Your
Phone relative to the applications installed on the phone. The table fields are
setting_group_id, setting_key, setting_type, and setting_value. The first
two form the primary key, which has some significance as will be seen ahead.

The value of setting_group_id is NotificationSyncSetting for all rows, leaving
the suspicion that this is the only available setting at the moment of writing.

The table contains this setting with a value for some of the apps present in the
test phone that can use push notifications. The criteria is that the app must have

52

4.1 applications

Figure 26: Your Phone interface for disabling notifications.

sent at least one notification. It serves as a way to tell the phone which notifications
can be pushed from the phone to the desktop.

setting_value contains an integer that represents if the setting is active or not.
In the case of NotificationSyncSetting, 0 means that the notification is not delivered
to the desktop, and 1 means it is. The user can enable or disable this setting in the
desktop. To do so the user needs to disable it via Your Phone - Settings - Features
- Notifications (or by clicking Customize in the notification screen) and disable the
app notification there - all apps are shown in this list, even the ones that can not
push notifications. Figure 26 shows this menu. As soon as it is disabled, the table
is updated with the new value. The disabled notifications in Your Phone do not
appear in notifications.db either. By accessing Notifications & action settings in
the Windows 10’s System settings, the user can disable notifications from appearing
in the Action Center, but they are still delivered to Your Phone. This last method
does not update the value of setting_value either.

The field setting_key is the package name of the app in question, and is nat-
urally the same value as phone_apps’s package_name. Lastly, the setting_type

field always has the same value, 11. The purpose of this field is unclear.

Since settings_group_id and setting_key form the primary key of this table,
Your Phone can have multiple settings for an app. As of now, only Notification-
SyncSetting has been observed.

53

your phone

4.1.2.10 sharedcontent.db

This database has two tables: sharedcontent and shareduri. In the studied ver-
sion of Your Phone, both tables have no data. Even sqlite_sequence is empty.
From the database, table, and column names, it is likely that it will have content
related to sharing something from the phone. Perhaps when sharing a link from
the phone, using the native Android sharing interface implemented in YPC, and
other media sharing between the phone and computer.

This database was first spotted in June 14th 2020 according to the scanner. This
is still the most recent Your Phone database, and it might see use in future releases.

4.2 your phone analyzer

YPA is an open source Autopsy module, licensed under a GPL 3.0 license13. Au-
topsy is a well known open source software that combines several tools under a
GUI to form a versatile solution for digital practitioners. Autopsy is detailed in
Section 2.1.1. Autopsy can be extended by external modules, and that is exactly
what YPA is, adding support for Your Phone within Autopsy.

Autopsy plugins can be developed either in Java, or Jython 2.7, which is Python
code that is ran within a JVM environment. In reality, YPA is comprised of two
Autopsy Jython modules: i) a data source ingest module and ii) a report module.
The latter is entirely dependent on the first, and it this approach can be described as
a two-part module, giving the practitioner full control of how the data is presented.

4.2.1 Ingest module

The ingest module is responsible for finding Your Phone databases, extracting
information from their content into Autopsy’s Blackboard, which is the artifact
repository. The data is then displayed in Autopsy’s interface, as shown in Figure
27, which displays data from the user Demo.

The artifacts shown in Figure 27 will be explained further in this section. Every
artifact follows the naming YourPhone: User %USER% - %ARTIFACT%, where the
%USER% is the Windows 10 user, and %ARTIFACT% is the actual artifact name. The
app prefix is to distinguish the artifacts from the many other artifacts that a case

13 https://github.com/labcif/YPA/blob/master/LICENSE

54

https://github.com/labcif/YPA/blob/master/LICENSE

4.2 your phone analyzer

Figure 27: YPA’s artifacts in Autopsy’s interface.

might have, while the user is to distinguish from the many users a computer might
have with Your Phone - YPA has support for multiple users in the same machine.

After downloading YPA from its repository14, all that is left for the user is to
run the ingest module. YPA requires little to no work to run, as the only thing
that the practitioner needs to do is put the module in the correct Autopsy folder.
The practitioner is greeted by the GUI shown in Figure 28.

The practitioner can then choose which recovery data tools he/she wants, from a
list of i) undark (Daniels, 2020), ii) SQLite-Deleted-Records-Parser (DeGrazia,
2015), iii) WAL-Crawler (Miller and Bryce, 2019), and iv) bring2lite (Meng
and Baier, 2019). The last tool, bring2lite, has two separate options, as the
practitioner can choose whether he/she wants to run another WAL tool or not.
SQLite-Deleted-Records-Parser will be henceforth referred as MDG-Parser.

The settings chosen by the practitioner are saved, and kept for the next time the
module is ran. undark and MDG-Parser are enabled by default, as their runtime is
relatively short.

As previously explained, Your Phone, for many of its databases tables, keeps
records only of the last 30 days. This makes the data recovery tools a very impor-
tant asset for YPA, as executing all these tools gives higher chances of recovering
important user data, possibly from a time period older than 30 days. Furthermore,
YPA implements these tools without requiring the practitioner to install anything
else by him/herself, functioning in a plug-and-play manner.

Of course, the data produced by these tools is often not structured enough to
create the same artifacts that can be extract from the plain SQLite databases, and
as such, the artifacts produced by these tools are usually in a free text format, leav-

14 https://github.com/labcif/YPA

55

https://github.com/labcif/YPA

your phone

Figure 28: YPA’s ingest module GUI.

Table 14: YPA’s recovered data artifacts.

artifact tool attributes

Rows recovered undark Data recovered from unvacuumed row
(free text)

Rows recovered MDG-Parser Type (unallocated/free block), Offset,
Length, Data (free text)

bring2lite DB body bring2lite Page and row content (free text)
WAL Crawled WAL-Crawler Frame, Salt-1, Salt-2, Frame Offset,

Cell, Cell Offset, ROWID, Data (free text)
WAL bring2lite bring2lite Page and row content (free text)

ing the practitioner to interpret the results. Table 14 shows the artifacts produced
by these tools.

The last two artifacts from Table 14 are extracted from the database’s WAL files,
while the other artifacts are directly from the SQLite databases.

After the practitioner chooses the data recovery tools for his/her investigation,
YPA attempts to find Your Phone databases (phone.db). Once a database is found,
it will extract all available data from that database, and find other Your Phone
databases that should be in the same directory as phone.db, and extract data from
those tables too. Table 15 shows the artifacts extracted from these databases and
tables.

It is worth noting that as YPA queries the databases, it also runs the requested
data recovery tools, creating the aforementioned artifacts for each tool.

56

4.2 your phone analyzer

Table 15: YPA’s Your Phone artifacts.

artifact database table

Call history calling.db & contacts.db call_history, phonenumber
& contact

Contacts contacts.db contact & phonenumber

Database settings All databases -
Notifications notifications.db notifications

Phone apps settings.db phone_apps

Phone settings settings.db settings

Photos photos.db media & photo

Recent photos - -
SMS phone.db & contacts.db message, phonenumber,

conversation & contact

MMS phone.db & contacts.db mms, mms_address,
phonenumber & contact

YPA copies the databases from the data source into a temporary folder, and the
copies are where the queries are executed, in order to not tamper any data. For the
WAL files, the same procedure is applied when using the data recovery tools.

Each of these artifacts from Table 15 are the result of the rows from a query to the
databases’ tables. It can also be seen that some artifacts are from a certain database
and contacts.db. Some queries need this database attached in order to add more
details to the artifact, such as the contact display name of whom performed a call or
sent a message, instead of just having the phone number. Attaching a database with
SQLite is simple - ATTACH DATABASE %DB_PATH% AS %ALIAS%, where %DB_PATH% is
the path to the database to be attached, and %ALIAS% is the alias that can be later
used in queries.

The Recent photos artifacts is related with the older photo directory of Your
Phone. Even though Your Phone no longer puts photos in that directory, YPA still
checks for them. These image files are not dependent on any database queries.

4.2.2 Communications Visualization

Other than the data recovery artifacts and Your Phone artifacts, YPA also indexes
native Autopsy artifacts. These artifacts can be seen in Table 16. Autopsy’s Com-
munications module uses the native artifacts to populate its interface. YPA does

57

your phone

Table 16: YPA’s native artifacts.

artifact artifact id based of

Call Logs TSK_CALLLOG YPA’s Call history
Messages TSK_MESSAGE YPA’s SMS

Figure 29: Communications Visualization of a case using YPA.

not add as much data to these artifacts as it does for its own artifacts, as the native
artifacts should be paired with native attributes.

Autopsy 4.15.0 has introduced a condition to the communication accounts that
does not allow non-valid phone numbers (such as messsages from services, e.g.
Google, GitHub), and with that condition the amount of YPA and native artifacts
can be different. Nevertheless, this feature allows for a great visualization of the
user’s communications, as can be seen in Figure 29. It is worth mentioning that this
condition is still present in Autopsy 4.17.0, which is the version which the module
was last tested.

The interface shown in Figure 29 shows information about the selected account
in the right part of the interface - this account can be seen with a green dotted
square around the account’s circle. From this interface, the practitioner can see
the messages, call logs and other details. It also allows filtering by data sources,
account types, and between dates (most of these filters are in the left side of the
interface).

58

4.2 your phone analyzer

Figure 30: YPA’s report module GUI.

4.2.3 Report module

Following the flow of a conversation can be a pain in Autopsy’s interface, as it is a
table of artifacts, which can be out of order or with other conversations inbetween.
The report module of YPA’s primary objective was to give the user a better interface
to follow these conversations, while also allowing the user to export Your Phone
data to a format that can be interpreted in most devices. The report module then
evolved to present more data to the practitioner.

The report module can also handle multiple Windows 10 users, usually showing
to which user a certain conversation or table row belongs to.

The dates shown in the report module are all in the UTC+0 timezone and
formatted with ISO 8601, unless stated otherwise.

The GUI for YPA’s report module can be seen in Figure 30. It only has an
option to choose the order that the practitioner wants for the address book. A
label is shown in the GUI if the case has no artifacts created by YPA, as the report
module requires the ingest to be ran, as it uses the artifacts created by the ingest.

Running the report module generates five HTML files from the templates - one
for each page of the report: i) Conversations, ii) Address book, iii) Photos, iv) Call
history, and v) Apps. The initial page, Conversations, can be seen in Figure 31. The
templates contain the skeleton of a page, however the rest of the HTML content is
generated by the module, using BeautifulSoup415.

15 https://www.crummy.com/software/BeautifulSoup/bs4/doc/

59

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

your phone

Figure 31: YPA’s report module - Conversations page.

At the top of Figure 31 is the navigation bar, where the practitioner can choose
a page to display. On the left side is the side bar with all conversations. Each
conversation option has the phone number, Windows 10 user, contact display name
(if the contact is saved, n/a if it is not saved), number of exchanged messages and
the date of the last sent or received message. Messages sent have a darker gray
background, while received messages have a lighter gray.

Clicking on a contact’s message will display a modal with the contact’s informa-
tion. If the message is not from a contact, it will do nothing. The modal can be
seen in Figure 32.

The Address book page shows the contacts found in Your Phone databases. A
thing that the report module does over the ingest here is that it extracts the
thumbnail blobs from the contacts database, giving the practitioner an automated
way to see these images. In case the contact does not have a thumbnail, a default
image is shown. Figure 33 shows a contact with a default image, and another with
an image from the contact’s thumbnail. The thumbnail is usually a small resolution
(e.g. 320 × 240), and due to that there is no click for fullscreen functionality.

For the Photos page, YPA also extracts the media from the photos.db database.
If the media is null, it checks if the media thumbnail is also null. If both the media
and thumbnail are null, it shows the same default image as the Address book page.
Other than the image, it shows some other information about the photo, present
in the photo artifact. Figure 34 shows the Photos page. Clicking in a photo opens

60

4.2 your phone analyzer

Figure 32: YPA’s report contact modal.

Figure 33: YPA’s report module - Address book page.

61

your phone

Figure 34: YPA’s report module - Photos page.

Figure 35: YPA’s report module - Photos’s modal.

it in a modal, which can be seen in Figure 35. This modal also gives the option to
see the photo in fullscreen.

The remaining pages, Call history and Apps are shown in Figures 36 and 37
respectively. Apps’ Play Store Link is created from each app’s package name and
the URL prefix of the Play Store.

62

4.2 your phone analyzer

Figure 36: YPA’s report module - Call history page.

Figure 37: YPA’s report module - Apps page.

63

5
WINDOWS NOTIF ICAT IONS

Microsoft WNS were introduced in Windows 8, allowing developers to send toast,
tile, badge, and raw updates from their own cloud service to a Windows application
(Microsoft Docs, 2015). These services will be explored in the following sections,
along with the relevant forensic findings of any user data left behind. Software
was developed to analyze the data, a standalone script and an Autopsy module.
This software was then integrated with YPA, due to Your Phone sending these
notifications. In fact, as the Your Phone UWP application makes a massive use of
Windows notifications, as it mirros Android notifications, this chapter references
whenever appropriate the Your Phone application.

5.1 WNS and action center

WNS are comprised of two services: i) a system service, referred as Windows Push
Notification System Service, and ii) a user service known as Windows Push Notifi-
cation User Service. Both these services can be queried in the Windows 10 Services
interface, where they also have a small description.

The description in Windows’ Services for the system service is: “This service
runs in session 0 and hosts the notification platform and connection provider which
handles the connection between the device and WNS server”. The system service
handles notifications related to the Windows OS, such as Windows Defender, Win-
dows updates, and Bluetooth device pairing.

For the user service, the description is “This service hosts Windows notifica-
tion platform which provides support for local and push notifications. Supported
notifications are tile, toast and raw.”.

Since Microsoft Docs (2015), WNS have joined the Windows 10 UWP ecosystem
(Microsoft Docs, 2020c). In fact, based on the documentation these services have
not changed much - from the 2015 Windows 8 documentation to the 2020 UWP
Windows 10, there are some differences in the wording of how WNS works, but

65

windows notifications

Figure 38: WNS’ diagrams of the data flow of a push notification. Left Microsoft Docs
(2015), right Microsoft Docs (2020c).

the overall idea is the same. Even the diagrams of both documentations are very
similar, as shown in Figure 38.

Since the steps are almost the same, only the most recent descriptions will be
specified below (Microsoft Docs, 2020c):

1. App requests a push notification channel from WNS.

2. Windows asks WNS to create the channel. This channel is returned to the
calling device in a form of a Uniform Resource Identifier (URI).

3. Notification channel URI is returned to the app by WNS.

4. The app sends the URI to a cloud service. The URI is stored in the service,
so that it can be accessed when sending notifications. The URI serves as an
interface between the app and the cloud service, and it is the developer’s
responsibility to implement the interface safely and with security standards.

5. When the cloud service has an update to send, it notifies WNS using the
channel URI, via an HTTP POST request with the notification payload, over
Secure Sockets Layer (SSL). This step requires authentication.

6. WNS receives the request and routes the notification to the appropriate de-
vice.

Notifications can also be sent locally, via a NuGet package for UWP apps (Mi-
crosoft Docs, 2020a), and there is even a Python package to send notifications1.

These notifications are shown to the user in the Action Center, which was brought
from Windows Phone back in 2014 to a pre-release version of Windows 10 (Fingas,
2014). Figure 39a shows the Action Center. To open it, a user has to click the icon

1 https://github.com/jithurjacob/Windows-10-Toast-Notifications

66

https://github.com/jithurjacob/Windows-10-Toast-Notifications

5.1 WNS and action center

(a) Windows 10’s Action Center. (b) Windows 10 notification settings.

Figure 39: Windows 10 Action Center and notification settings.

(outlined with a red square in the Figure). From there, the user can see his/her
current notifications, and has access to some quick actions, such as Night light,
or VPN. The user can also click, on the top right, Manage notifications to be
redirected to a settings panel where the user can choose which apps are allowed
to send notifications, edit the quick actions, and other notification settings. The
settings screen can be seen in Figure 39b.

There are three types of notifications: i) badges (Figure 40a), ii) tiles (Figure
40b, and iii) toasts (Figure 40c). Badges can be used with tiles and toasts, the
latter can be seen in Figure 40c. Badges can have be numeric, with values between
1 and 99. Above 99 is represented by 99+.

Toasts are notifications that pop up from the right bottom corner of the screen.
The name stems from the similarity of toast popping out of a toaster. There is
a wide variety of toasts, some interactive, such as Quick reply text box (seen in
Your Phone message notifications), Progress bar, and Context menu actions, among
others (Microsoft Docs, 2020b). Figure 41a shows a toast with a reply box, Figure
41b shows a toast with a progress bar, and Figure 41c shows a toast with button
icons.

67

windows notifications

(a) Badge (b) Tile (c) Toast (green), and badge
(red)

Figure 40: Types of Windows 10 notifications.

(a) Quick reply text box.
(b) Progress bar. (c) Button icons.

Figure 41: Different Windows 10 notification toasts. Source: Microsoft Docs (2020b).

5.1.1 User data

Windows 10 resorts to SQLite3 databases to handle the notifications and configura-
tions of the Action Center - wpndatabase.db. For each service there is one database.
These databases are located in the %LOCALAPPDATA%\Microsoft\Windows\
Notifications directory for each Windows 10 user, and C:\Windows\System32\

config\systemprofile\AppData\Local\Microsoft\Windows\Notifications for
the system service. Just like Your Phone’s databases, these databases have WAL
enabled, and the WAL file can be found in the same directory of each database.
The databases are identical, and have eight tables, listed in Table 17.

The tables from wpndatabase.db revolve around notification handlers. The table
for handlers is NotificationHandler. Some of the other tables have a handler’s
attributes, and are linked to a handler by the HandlerId.

HandlerAssets contains the handler’s assets, such as Display name, in a key-
value format (AssetKey and AssetValue columns). These assets are not mandatory.
In a Your Phone enabled system, there is a handler per app in the user’s phone,
and each of these handlers has three AssetKeys: i) IconUri, ii) DisplayName, and
iii) LaunchArgs.

68

5.1 WNS and action center

Table 17: WNS’ wpndatabase.db tables

name description

HandlerAssets Notification handler’s assets
HandlerSettings Notification handler’s settings

Metadata Database metadata and WNS settings
Notification Handler’s notifications

NotificationData Extra Notification data
NotificationHandler Notification handlers

TransientTable Unknown
WNSPushChannel Applications WNS URIs

All IconUri have the same value: ms-appx:///Assets/AppTiles/AppIcon.png
- this is probably the Your Phone icon, which shows in all Windows 10’s Your Phone
notifications in the Action Center. The DisplayName is the app’s name in the phone,
and finally LaunchArgs seems to be a sort of deeplink to open the Your Phone
app in a certain page. Some examples are ms-phone://phonenotifications/,
ms-phone://calling/, and ms-phone://messages/. When a user clicks a noti-
fication with this deeplink, he is redirected to Your Phone with a specific page
selected - the first should open Your Phone in the Notifications page, the second
in Calls, and the third in Messages. IconUri and LaunchArgs do not seem to have
much forensic value as they are more for display and usability, but DisplayName
allows to easily link a notification to a phone app.

HandlerSettings contains the handlers’ settings, also in a key-value format
(SettingKey and Value) - the value seems to have only two possible values, 0
or 1. These do not seem to have much value.

Notification consists of the handlers’ notifications. A notification has a Payload,
which might have several types since it also has a PayloadType, but all observed
notifications have this set as Xml, which results in a Payload with an XML string.
Other notable fields of this table are ArrivalTime, and ExpiryTime, which are
both 64-bit filetimes. The former is when the notification arrives, and the latter
is when the notification expires, which is up to three days of the arrival, but can
change according to the app developer. Type is the notification type, from tile,
toast, badge, or toastCondensed. NotificationData can contain extra notifica-
tion information, in a key-value format (Key and Value fields), however this table
never seemed to be populated in the observations.

69

windows notifications

Table 18: Notification handler from WNS

column type value

RecordId integer 159

PrimaryId text Microsoft.YourPhone_8wekyb3d8bbwe!

YourPhoneNotifications_com.whatsapp

WNSId text (empty)
HandlerType text app:immersive

WNFEventName int64 NULL

SystemDataPropertySet blob NULL

CreatedTime datetime 2020-08-18 20:57:40

ModifiedTime datetime 2020-08-18 20:57:40

ParentId text Microsoft.YourPhone_8wekyb3d8bbwe!

App

ContainerSid text NULL

When a notification is removed from the Action Center, it is removed from the
Notification table. Consequently, clearing all of the Action Center’s notification
clears the whole table. Just like with Your Phone, these records might be recoverable
using data recovery tools.

An example of a notification handler can be seen in Table 18. In this case, it
is a Your Phone handler, from the app WhatsApp. As can be seen by the Ta-
ble, the PrimaryId is generated from Your Phone’s prefix (Microsoft.YourPhone_
8wekyb3d8bbwe!) and the app’s package name (com.whatsapp, separated by a _).
The field WNSId is always empty for Your Phone handlers, as it does not use a cloud
service for notifications. The ParentId seems to follow similar logic to PrimaryId,
Your Phone’s prefix plus App, indicating that the parent of this handler is the Your
Phone app.

The table TransientTable seems to be a caching mechanism for notifications
that are sent by a cloud service, but there were no records observed from this table.

Lastly, table WNSPushChannel contains information about which apps can send
notifications from their cloud service using a URI, as previously explored.

70

5.2 standalone script

Figure 42: NotifAnalyzer’s flow diagram

5.1.2 NotifAnalyzer

NotifAnalyzer is a Python 3 script and Autopsy module. It can be used as a stan-
dalone script, or in Autopsy as an ingest module. It is licensed under a GPL 3.0
license, and hosted in the same repository as YPA2.

Figure 42 shows a diagram of how NotifAnalyzer works when executed from Au-
topsy. When ran, the standalone script processes the wpndatabase.dbs producing
as output a JSON file.

By having a standalone script and an Autopsy module that executes the stan-
dalone, it is possible to process the WNS databases without depending on Autopsy,
and thus practitioners can use NotifAnalyzer without using Autopsy. This does how-
ever have other drawbacks, as the practitioner must have Python installed in the
machine, and the script dependencies must be installed by the user manually, when
compared to YPA which requires no setup other than the installation of Autopsy.
However, Python is nowadays a must have interpreter in a forensic practitioner’s
machine, and installing modules is straightforward with Python’s pip utility.

5.2 standalone script

The standalone Python 3 script receives the path to a wpndatabase.db and extracts
the data from this SQLite database to a JSON file. Figure 43 shows the execution of
this script. The JSON output file is formatted in a certain way, for easy readibility
and processing. It contains the user_version of the database, which like Your
Phone databases is important since Microsoft uses it as version control, and assets.
The assets are a list of the notification handlers with their most important fields,
the handler’s assets (in a list), handler’s notifiations (also in a list), and the AppName
of the handler, which is only populated if the handler has an asset with the key

2 https://github.com/labcif/YPA/

71

https://github.com/labcif/YPA/

windows notifications

Figure 43: NotifAnalyzer standalone script execution.

Listing 3: Output JSON example of NotifAnalyzer.

1 {
2 "user_version": 7,
3 "assets": {
4 "159": {
5 "HandlerId": 159,
6 "HandlerPrimaryId": "Microsoft.YourPhone_8wekyb3d8bbwe!YourPhoneNoti c

fications_com.whatsapp",↪→
7 "ParentId": "Microsoft.YourPhone_8wekyb3d8bbwe!App",
8 "WNSId": "",
9 "HandlerType": "app:immersive",

10 "WNFEventName": null,
11 "SystemDataPropertySet": null,
12 "CreatedTime": "2020-08-18 20:57:40",
13 "ModifiedTime": "2020-08-18 20:57:40",
14 "OtherAssets": [],
15 "Notifications": [],
16 "AppName": "WhatsApp"
17 }
18 }
19 }

DisplayName. Listing 3 shows an example of an output of NotifAnalyzer. In order
to display all that data about a handler, the script queries NotificationHandler,
HandlerAssets, and Notification.

The script also attempts to format the notification payload, if the type is Xml, in
a fail-safe manner. It first tries to use lxml3 to format it. If this fails, it will fallback
to adding a newline after every >, and in case that fails, it will finally fallback to
the original value of the payload. This is done in order to aid whoever is parsing
the output to easily display the notification payload.

As a side note, if the script is ran and Python’s win10toast is installed, it will
display a Windows 10 notification to the practitioner with the elapsed time - this
is optional, and the package is not required for the script to function. The toast
notification can be seen in Figure 44.

3 https://lxml.de/

72

https://lxml.de/

5.3 autopsy ingest module

Figure 44: NotifAnalyzer standalone script toast.

Figure 45: NotifAnalyzer’s artifacts in Autopsy’s interface.

5.3 autopsy ingest module

The Autopsy module adds to the standalone script. As can be spotted in Figure 42,
it runs the script and creates the artifacts from the output JSON file. The artifacts
can be seen in Figure 45.

Since it is needed to run the script from outside of the Autopsy environment, it
is required that the practitioner has Python installed. Figure 46 shows the GUI
for NotifAnalyzer’s ingest module. It has a text field to input the path to Python,
and the same options as YPA for the data recovery tools. The artifacts produced
from the result of the data recovery tools are the same as for YPA, but they have
the WPN prefix, as is shown in Figure 45. The database version artifact contains the
database user_version PRAGMA value.

TheHandler other assets artifacts are the assets of a handler, except DisplayName
which is already in the Notification handler artifact under App name (Your Phone).
The Notification handler artifact contains all the fields shown in the JSON in List-
ing 3. The Notification artifact itself is the most important one, as it contains the
notification payload and the app that displayed it. It can also contain the phone
app that displayed it, if the notification was from Your Phone. Table 19 shows an
example of a notification artifact, in this case a message from WhatsApp, sent by
Your Phone. The Payload was cut since it is quite long.

73

windows notifications

Figure 46: NotifAnalyzer’s ingest module GUI.

Table 19: WhatsApp notification artifact from NotifAnalyzer.

attribute value

App name WhatsApp
Type toast

Content format Xml
Payload <toastlaunch="ms-phone://phonenotifications/?dev(...)

Expiry time 2020-10-09 18:55:14 BST
Arrival time 2020-10-06 18:55:14 BST

The data recovery tools are very important for NotifAnalyzer, as WNS’ local
database is even more prone to the deletion of data, and the amount of recovered
data is much higher for notifications than Your Phone, as is evidenced by the
difference in artifacts seen in Figures 27 and 45, which are from the same computer
using Your Phone and Windows notifications.

5.3.1 Integration with YPA

Since Your Phone can be very tied to Windows 10 notifications, a small integration
between the two Autopsy modules was created. When running YPA’s report, noti-
fications are tied to a phone app in the Apps page of the report. Figure 47 shows
the button in the Apps table (inside the red rectangle), and when the button is
clicked, the notifications of that app appear in a modal, also shown in the Figure.
This is where the formatting of the payload has value, as it is much easier to read
it when formatted. It also has an horizontal scrollbar.

74

5.3 autopsy ingest module

Figure 47: YPA’s integration with notifications from NotifAnalyzer.

5.3.2 Running in a digital forensics image

To test NotifAnalyzer on a normal environment, it was ran on a digital forensics
image. James (2020)’s Desktop Disk Image (E01) image has a Windows 10 installa-
tion, with version 10.0.19041.14. The test was performed in a Windows 10 desktop,
with Autopsy 4.17.0, and all NotifAnalyzer’s data recovery tools enabled. Figure
48 shows the artifacts found by NotifAnalyzer.

As can be seen in Figure 48, this Windows installation contains several users:
Admin, Administrator, mortysmith, and ricksanchez. The systemprofile user
is the system’s Notification database, and is the only database that does not contain
any active notifications, and that had a WAL file present. The user databases do
not have any standout notification handler, in this case. Some of the notifications
are weather tiles (from Washington D.C.), others are ads to a game and a notes
application. While there seem to be no relevant notifications in this image, as
it was an image set for digital forensic training purposes, therefore without real
usage. In real cases, it is possible to see a vast amount of recovered data artifacts
from bring2lite, and if any user in this image had a messaging app such as
Facebook’s Messenger, it would probably be an important source of information,
and the recovery tools could play a relevant part getting older notifications.

4 https://thecollectionbook.info/windows/10-v2004/4762

75

https://thecollectionbook.info/windows/10-v2004/4762

windows notifications

Figure 48: NotifAnalyzer artifacts ran on a forensic disk image.

76

6
CONCLUS IONS

SQLite has been gaining importance within the Microsoft software ecosystem. These
databases are usually left in a user’s computer, as it usually functions as a local
data source, and Windows 10 leaves a lot of these behind, both from applications
and services.

UWP is a platform inside Windows 10. It contains a plethora of applications, from
Microsoft and third-party developers. Some of these applications come bundled
with the OS, others can be obtained from the Microsoft Store. Updates for these
applications are also from the Store.

Your Phone is an UWP application. It can be an important asset for digital
forensics when a smartphone cannot be accessed, either because the phone data
is inaccessible, or the phone is missing. The user’s Your Phone data can be found
in SQLite databases that the application leaves behind. These databases can have
some meaningful data, such as SMS, call log, and MMS from the last 30 days, up
to 2 000 photos/screenshots, and the address book with all contacts. Your Phone
can also be used by multiple users if a computer is shared, further increasing the
possibility of valuable data. This dissertation goes in depth on how Your Phone
works, including its Android counter-part, YPC. YPA is a module developed to
extract and import into Autopsy the digital forensic artifacts of Your Phone. YPA
can then create dynamic HTML reports to display the artifacts in a user-friendly
manner. Since multiple Your Phone features keep data only for the last 30 days,
having the ability to recover deleted records can extend this 30-day period. YPA
uses several data recovery tools in order to accomplish this. The same occurs with
the capability of recovering data from the unallocated space of the databases.

WNS are comprised of two services, one for the user and another for the system.
They are responsible to deliver various types of notifications - badges, tiles, and
toasts - to applications. UWP applications can easily integrate with these services,
but it is not restricted to just these applications. The services rely on two identi-
cal databases, wpndatabase.db, which likewise are for the user and system. The
value of these notifications depend heavily on the installed applications, and on the
usage of the aforementioned applications. For instance, a messaging application

77

conclusions

such as Facebook’s UWP Messenger application might hold some relevant received
messages. The NotifAnalyzer.py and associated Autopsy module analyze all Win-
dows 10 wpndatabase.db found, parsing all notifications and notification handlers.
The lifespan of the notifications is rather short, up to just three days. Just like with
Your Phone, it can be very valuable to recover the records of these databases. The
Autopsy module uses the same data recovery tools as YPA to overcome this. The
limited scope and timespan of notifications are not expected to yield a large vol-
ume of meaningful forensic artifacts. Nonetheless, in situations where other more
traditional sources of data are not available, or have failed to deliver useful data,
notifications can still provide valuable artifacts.

These applications and services are in constant evolution, and as such it is nec-
essary to keep updating the developed software. A solution was created for this,
UWPAppsScanner, which additionally keeps a history of the databases and schemas
found for the specified applications.

6.1 future work

Using the UWP scanner, it is possible to keep the developed software up-to-date.
For future work, the software should be updated to account for any updates each
application or service might receive that impact the functionality of the software.
New features and database schemas should also be studied and added to the current
solutions.

Some of these new functionalities from Your Phone support screen mirroring
and using Android applications directly in Windows 10 when paired with Samsung
devices1. It is important to study how these interactions are done, and if it leaves
any data on the Android app or the Windows 10 computer. This was not possible
in this dissertation due to the lack of Samsung hardware.

The NotifAnalyzer Autopsy module is planned to have a report module of its
own, other than the integration with YPA.

Other than the continuous development and maintenance for the already devel-
oped software, additional scripts could be written to support other Windows 10
applications and services, such as Timeline. The work done on the SQLite data

1 https://twitter.com/AnalyMsft/status/1291551347435692033, https://www.onmsft.com/
news/windows-10-your-phone-app-can-now-run-multiple-android-apps-simultaneously-
on-select-devices

78

https://twitter.com/AnalyMsft/status/1291551347435692033
https://www.onmsft.com/news/windows-10-your-phone-app-can-now-run-multiple-android-apps-simultaneously-on-select-devices
https://www.onmsft.com/news/windows-10-your-phone-app-can-now-run-multiple-android-apps-simultaneously-on-select-devices
https://www.onmsft.com/news/windows-10-your-phone-app-can-now-run-multiple-android-apps-simultaneously-on-select-devices

6.1 future work

recovery tools can be applied to all future Autopsy modules, and applications can
be added to be tracked in the scanner with minimal setup.

79

BIBL IOGRAPHY

Abiteboul, Serge, Richard Hull, and Victor Vianu (1995). Foundations of Databases.
Addison-Wesley. isbn: 0-201-53771-0. url: http://webdam.inria.fr/Alice/.

Andrade, Luís Miguel (2020). UWP Apps Scanner. Version 1.0. doi: 10.5281/
zenodo.4291091. url: https://doi.org/10.5281/zenodo.4291091.

Andrade, Luís Miguel et al. (2020). Your Phone Analyzer for Autopsy and Noti-
fAnalyzer. Version 1.1. doi: 10.5281/zenodo.4291064. url: https://doi.
org/10.5281/zenodo.4291064.

Android Developers (2019a). Data and file storage overview. [Online; accessed 3-
November-2019]. url: https://developer.android.com/guide/topics/
data/data-storage#db.

— (2019b). Room Persistence Library. [Online; accessed 2-November-2019]. url:
https://developer.android.com/topic/libraries/architecture/room.

— (2020). Bluetooth overview. [Online; accessed 06-November-2020]. url: https:
//developer.android.com/guide/topics/connectivity/bluetooth.

Apple Developer Documentation (2019). Core Data. [Online; accessed 3-November-
2019]. url: https://developer.apple.com/documentation/coredata.

Årnes, André (2017). Digital forensics. John Wiley & Sons.
Autopsy (2015). Python Autopsy Module Tutorial #1: The File Ingest Module. [On-

line; accessed 17-November-2020]. url: https://www.autopsy.com/python-
autopsy-module-tutorial-1-the-file-ingest-module/.

Basis Technology (2016). Autopsy User Documentation: UI Layout. [Online; ac-
cessed 29-December-2019]. url: https://sleuthkit.org/autopsy/docs/
user-docs/4.1/uilayout_page.html.

— (2017).Autopsy: Module Development Overview. [Online; accessed 09-November-
2020]. url: https://www.sleuthkit.org/autopsy/docs/api-docs/4.2/
platform_page.html.

— (2018). Autopsy 4.7 Includes Link Analysis, Database Viewers, Triage, and
More. [Online; accessed 29-December-2019]. url: https://www.autopsy.com/
autopsy-4-7-includes-link-analysis-database-viewers-triage-and-

more/.

81

http://webdam.inria.fr/Alice/
https://doi.org/10.5281/zenodo.4291091
https://doi.org/10.5281/zenodo.4291091
https://doi.org/10.5281/zenodo.4291091
https://doi.org/10.5281/zenodo.4291064
https://doi.org/10.5281/zenodo.4291064
https://doi.org/10.5281/zenodo.4291064
https://developer.android.com/guide/topics/data/data-storage#db
https://developer.android.com/guide/topics/data/data-storage#db
https://developer.android.com/topic/libraries/architecture/room
https://developer.android.com/guide/topics/connectivity/bluetooth
https://developer.android.com/guide/topics/connectivity/bluetooth
https://developer.apple.com/documentation/coredata
https://www.autopsy.com/python-autopsy-module-tutorial-1-the-file-ingest-module/
https://www.autopsy.com/python-autopsy-module-tutorial-1-the-file-ingest-module/
https://sleuthkit.org/autopsy/docs/user-docs/4.1/uilayout_page.html
https://sleuthkit.org/autopsy/docs/user-docs/4.1/uilayout_page.html
https://www.sleuthkit.org/autopsy/docs/api-docs/4.2/platform_page.html
https://www.sleuthkit.org/autopsy/docs/api-docs/4.2/platform_page.html
https://www.autopsy.com/autopsy-4-7-includes-link-analysis-database-viewers-triage-and-more/
https://www.autopsy.com/autopsy-4-7-includes-link-analysis-database-viewers-triage-and-more/
https://www.autopsy.com/autopsy-4-7-includes-link-analysis-database-viewers-triage-and-more/

bibliography

Basis Technology (2019). Autopsy User Documentation: Ingest Modules. [Online;
accessed 29-December-2019]. url: https://sleuthkit.org/autopsy/docs/
user-docs/4.13.0/ingest_page.html.

Bulterman, Dick CA and Lloyd W Rutledge (2008). SMIL 3.0: flexible multimedia
for Web, mobile devices and daisy talking books. Springer Publishing Company,
Incorporated.

Carrier, Brian (2018). Messaging App Forensics with Autopsy. [Online; accessed
29-December-2019]. url: http://www.osdfcon.org/presentations/2018/
Brian-Carrier-Messaging-App-Forensics-with-Autopsy.pdf.

Casey, Eoghan, Alex Nelson, and Jessica Hyde (2019). “Standardization of file recov-
ery classification and authentication”. In: Digital Investigation 31, p. 100873.

Cash App (2019). SQLDelight - Generates typesafe Kotlin APIs from SQL. [Online;
accessed 2-November-2019]. url: https://github.com/cashapp/sqldelight.

Chang, Fay et al. (2008). “Bigtable: A distributed storage system for structured
data”. In: ACM Transactions on Computer Systems (TOCS) 26.2, p. 4.

Chopade, Rupali and Vinod Keshaorao Pachghare (2019). “Ten years of critical
review on database forensics research”. In: Digital Investigation 29, pp. 180–
197.

Daniels, Paul L. (2020). Undark - a SQLite deleted and corrupted data recovery
tool. Website (access on 2020-08-08). http://pldaniels.com/undark/.

DeGrazia, Mari (2015). SQLite-Deleted-Records-Parser: recovering deleted entries
in SQLite database. Website (access on 2020-08-08). https://github.com/
mdegrazia/SQLite-Deleted-Records-Parser.

Distefano, Alessandro, Gianluigi Me, and Francesco Pace (2010). “Android anti-
forensics through a local paradigm”. In: digital investigation 7, S83–S94.

Domingues, Patricio et al. (2019). “Digital forensic artifacts of the Your Phone
application in Windows 10”. In: Digital Investigation 30, pp. 32–42. url: https:
//www.sciencedirect.com/science/article/pii/S1742287619301239.

Facebook (2019).More Resources - Popular libraries. [Online; accessed 3-November-
2019]. url: https://facebook.github.io/react- native/docs/more-
resources#popular-libraries.

Fingas, Jon (2014). Windows 10 brings Windows Phone’s notification center to the
desktop. [Online; accessed 04-November-2020]. url: https://www.engadget.
com/2014-10-21-windows-10-action-center.html.

Flutter (2019). Flutter for Android developers - How do I access SQLite in Flutter.
[Online; accessed 3-November-2019]. url: https://flutter.dev/docs/get-
started/flutter- for/android- devs#how- do- i- access- sqlite- in-

flutter.

82

https://sleuthkit.org/autopsy/docs/user-docs/4.13.0/ingest_page.html
https://sleuthkit.org/autopsy/docs/user-docs/4.13.0/ingest_page.html
http://www.osdfcon.org/presentations/2018/Brian-Carrier-Messaging-App-Forensics-with-Autopsy.pdf
http://www.osdfcon.org/presentations/2018/Brian-Carrier-Messaging-App-Forensics-with-Autopsy.pdf
https://github.com/cashapp/sqldelight
http://pldaniels.com/undark/
https://github.com/mdegrazia/SQLite-Deleted-Records-Parser
https://github.com/mdegrazia/SQLite-Deleted-Records-Parser
https://www.sciencedirect.com/science/article/pii/S1742287619301239
https://www.sciencedirect.com/science/article/pii/S1742287619301239
https://facebook.github.io/react-native/docs/more-resources#popular-libraries
https://facebook.github.io/react-native/docs/more-resources#popular-libraries
https://www.engadget.com/2014-10-21-windows-10-action-center.html
https://www.engadget.com/2014-10-21-windows-10-action-center.html
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-i-access-sqlite-in-flutter
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-i-access-sqlite-in-flutter
https://flutter.dev/docs/get-started/flutter-for/android-devs#how-do-i-access-sqlite-in-flutter

bibliography

Horsman, Graeme, Alex Caithness, and Costas Katsavounidis (2019). “A Forensic
Exploration of the Microsoft Windows 10 Timeline”. In: Journal of forensic
sciences 64.2, pp. 577–586.

Ionic Documentation (2019). Data Storage. [Online; accessed 3-November-2019].
url: https://ionicframework.com/docs/building/storage.

Jacobs, Bart (2016). What is the difference between CoreData and SQLite. [Online;
accessed 23-November-2019]. url: https://cocoacasts.com/what-is-the-
difference-between-core-data-and-sqlite/.

James (2020). Case 001 - The Stole Szechaun Sauce - DFIR Madness. [Online;
accessed 14-November-2020]. url: https://dfirmadness.com/the-stolen-
szechuan-sauce/.

Kline, Kevin, Daniel Kline, and Brand Hunt (2004). SQL in a nutshell: a desktop
quick reference. O’Reilly Media, Inc.

Kreibich, Jay (2010). Using SQLite. " O’Reilly Media, Inc."
Li, Yishan and Sathiamoorthy Manoharan (2013). “A performance comparison

of SQL and NoSQL databases”. In: 2013 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM). IEEE, pp. 15–
19.

Meng, Christian and Harald Baier (2019). “bring2lite: A Structural Concept and
Tool for Forensic Data Analysis and Recovery of Deleted SQLite Records”. In:
Digital Investigation 29, S31–S41. issn: 1742-2876. doi: https://doi.org/
10.1016/j.diin.2019.04.017. url: http://www.sciencedirect.com/
science/article/pii/S1742287619301677.

Microsoft Docs (2015). Windows Push Notification Services (WNS) overview (Win-
dows Runtime apps). [Online; accessed 04-November-2020]. url: https://
docs.microsoft.com/en-us/previous-versions/windows/apps/hh913756(v=

win.10)?redirectedfrom=MSDN.
— (2016). SQLite Database Provider - EF Core. [Online; accessed 16-November-

2019]. url: https://docs.microsoft.com/en-us/ef/core/providers/
sqlite/?tabs=dotnet-core-cli.

— (2018a). Use a SQLite database in a UWP app. [Online; accessed 16-November-
2019]. url: https://docs.microsoft.com/en- us/windows/uwp/data-
access/sqlite-databases.

— (2018b). What’s a Universal Windows Platform (UWP) app. [Online; accessed
23-January-2020]. url: https://docs.microsoft.com/en-us/windows/uwp/
get-started/universal-application-platform-guide.

83

https://ionicframework.com/docs/building/storage
https://cocoacasts.com/what-is-the-difference-between-core-data-and-sqlite/
https://cocoacasts.com/what-is-the-difference-between-core-data-and-sqlite/
https://dfirmadness.com/the-stolen-szechuan-sauce/
https://dfirmadness.com/the-stolen-szechuan-sauce/
https://doi.org/https://doi.org/10.1016/j.diin.2019.04.017
https://doi.org/https://doi.org/10.1016/j.diin.2019.04.017
http://www.sciencedirect.com/science/article/pii/S1742287619301677
http://www.sciencedirect.com/science/article/pii/S1742287619301677
https://docs.microsoft.com/en-us/previous-versions/windows/apps/hh913756(v=win.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/apps/hh913756(v=win.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/apps/hh913756(v=win.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/ef/core/providers/sqlite/?tabs=dotnet-core-cli
https://docs.microsoft.com/en-us/ef/core/providers/sqlite/?tabs=dotnet-core-cli
https://docs.microsoft.com/en-us/windows/uwp/data-access/sqlite-databases
https://docs.microsoft.com/en-us/windows/uwp/data-access/sqlite-databases
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide

bibliography

Microsoft Docs (2018c). Xamarin.Forms - Local databases. [Online; accessed 3-
November-2019]. url: https://docs.microsoft.com/en- us/xamarin/
xamarin-forms/data-cloud/data/databases.

— (2019a). What’s new in Windows 10, build 18362 - UWP apps. [Online; ac-
cessed 21-November-2019]. url: https://docs.microsoft.com/en- us/
windows/uwp/whats-new/windows-10-build-18362.

— (2019b).Windows 10 - Apps. [Online; accessed 21-November-2019]. url: https:
//docs.microsoft.com/en-us/windows/application-management/apps-

in-windows-10.
— (2020a). Send a local tile notification - UWP applications. [Online; accessed

04-November-2020]. url: https://docs.microsoft.com/en-us/windows/
uwp/design/shell/tiles-and-notifications/sending-a-local-tile-

notification.
— (2020b). Toast content - UWP applications. [Online; accessed 10-November-

2020]. url: https://docs.microsoft.com/en-us/windows/uwp/design/
shell/tiles-and-notifications/adaptive-interactive-toasts.

— (2020c). Windows Push Notification Services (WNS) overview - UWP applica-
tions. [Online; accessed 04-November-2020]. url: https://docs.microsoft.
com / en - us / windows / uwp / design / shell / tiles - and - notifications /

windows-push-notification-services--wns--overview.
Miller, Preston and Chapin Bryce (2019). Learning Python for Forensics: Leverage

the power of Python in forensic investigations. Packt Publishing Ltd.
NetMarketShare (2020a). Operating system market share. [Online; accessed 20-

November-2020]. url: https://netmarketshare.com/operating-system-
market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%

3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%

2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%

2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%

22 % 2C % 22sort % 22 % 3A % 7B % 22share % 22 % 3A - 1 % 7D % 2C % 22id % 22 % 3A %

22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%

22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%

2C%22segments%22%3A%22-1000%22%7D.
— (2020b).Operating system market share (mobile). [Online; accessed 20-November-

2020]. url: https://netmarketshare.com/operating- system- market-
share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%

7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%

7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%

3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%

84

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/data/databases
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/data/databases
https://docs.microsoft.com/en-us/windows/uwp/whats-new/windows-10-build-18362
https://docs.microsoft.com/en-us/windows/uwp/whats-new/windows-10-build-18362
https://docs.microsoft.com/en-us/windows/application-management/apps-in-windows-10
https://docs.microsoft.com/en-us/windows/application-management/apps-in-windows-10
https://docs.microsoft.com/en-us/windows/application-management/apps-in-windows-10
https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-and-notifications/sending-a-local-tile-notification
https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-and-notifications/sending-a-local-tile-notification
https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-and-notifications/sending-a-local-tile-notification
https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-and-notifications/adaptive-interactive-toasts
https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-and-notifications/adaptive-interactive-toasts
https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-and-notifications/windows-push-notification-services--wns--overview
https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-and-notifications/windows-push-notification-services--wns--overview
https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-and-notifications/windows-push-notification-services--wns--overview
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D

bibliography

7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%

22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-

11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-

1000%22%7D.
Olivier, Martin (2020). “Digital Forensics and the Big Data Deluge—Some Con-

cerns Based on Ramsey Theory”. In: IFIP International Conference on Digital
Forensics. Springer, pp. 3–23.

Oracle (2019).What is a database. [Online; accessed 3-November-2019]. url: https:
//www.oracle.com/database/what-is-database.html.

Quick, Darren and Kim-Kwang Raymond Choo (2014). “Impacts of increasing vol-
ume of digital forensic data: A survey and future research challenges”. In: Dig-
ital Investigation 11.4, pp. 273–294.

SQLite (2019a). Appropriate uses for SQLite. [Online; accessed 3-November-2019].
url: https://www.sqlite.org/whentouse.html.

— (2019b). File locking and concurrency in SQLite version 3. [Online; accessed 23-
January-2020]. url: https://www.sqlite.org/lockingv3.html#rollback.

— (2020a). About SQLite. [Online; accessed 23-January-2019]. url: https://www.
sqlite.org/about.html.

— (2020b). Atomic commit in SQLite. [Online; accessed 23-January-2020]. url:
https://www.sqlite.org/uri.html.

— (2020c). CREATE VIRTUAL TABLE. [Online; accessed 17-November-2020].
url: https://www.sqlite.org/lang_createvtab.html.

— (2020d). FTS3, FTS4, and FTS5 extensions. [Online; accessed 28-October-
2020]. URLs: https://www.sqlite.org/fts3.html and https://sqlite.

org/fts5.html.
— (2020e).Most widely deployed SQL database engine. [Online; accessed 23-November-

2019]. url: https://www.sqlite.org/mostdeployed.html.
— (2020f). PRAGMA statements. [Online; accessed 23-November-2019]. url: https:

//www.sqlite.org/pragma.html.
— (2020g). Temporary files used by SQLite. [Online; accessed 10-November-2020].

url: https://www.sqlite.org/tempfiles.html.
— (2020h).Uniform Resource Identifiers. [Online; accessed 23-January-2020]. url:

https://www.sqlite.org/uri.html.
— (2020i).Write-Ahead Logging. [Online; accessed 23-November-2019]. url: https:

//www.sqlite.org/wal.html.
StatCounter GlobalStats (2020a). Desktop Operating System Market Share World-

wide. [Online; accessed 20-November-2020]. url: https://gs.statcounter.
com/os-market-share/desktop/worldwide.

85

https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://www.oracle.com/database/what-is-database.html
https://www.oracle.com/database/what-is-database.html
https://www.sqlite.org/whentouse.html
https://www.sqlite.org/lockingv3.html#rollback
https://www.sqlite.org/about.html
https://www.sqlite.org/about.html
https://www.sqlite.org/uri.html
https://www.sqlite.org/lang_createvtab.html
https://www.sqlite.org/fts3.html
https://sqlite.org/fts5.html
https://sqlite.org/fts5.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/pragma.html
https://www.sqlite.org/pragma.html
https://www.sqlite.org/tempfiles.html
https://www.sqlite.org/uri.html
https://www.sqlite.org/wal.html
https://www.sqlite.org/wal.html
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide

bibliography

StatCounter GlobalStats (2020b). Mobile Operating System Market Share World-
wide. [Online; accessed 20-November-2020]. url: https://gs.statcounter.
com/os-market-share/mobile/worldwide.

The Sleuth Kit (2019). The Sleuth Kit (TSK) & Autopsy: Open Source Digital
Forensics Tools. [Online; accessed 23-November-2019]. url: https : / / www .
sleuthkit.org/.

Vaish, Gaurav (2013). Getting started with NoSQL. Packt Publishing Ltd.
Wikipedia contributors (2019). Bigtable — Wikipedia, The Free Encyclopedia. [On-

line; accessed 2-November-2019]. url: https://en.wikipedia.org/w/index.
php?title=Bigtable&oldid=921053442.

Windows support (2018). Get help with timeline. [Online; accessed 21-November-
2019]. url: https : / / support . microsoft . com / en - us / help / 4230676 /
windows-10-get-help-with-timeline.

86

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.sleuthkit.org/
https://www.sleuthkit.org/
https://en.wikipedia.org/w/index.php?title=Bigtable&oldid=921053442
https://en.wikipedia.org/w/index.php?title=Bigtable&oldid=921053442
https://support.microsoft.com/en-us/help/4230676/windows-10-get-help-with-timeline
https://support.microsoft.com/en-us/help/4230676/windows-10-get-help-with-timeline

APPENDICES

87

A
APPENDIX A

In this appendix are some JSON examples. Listing 4 shows the database schema of
the UWP scanner server database, and Listing 5 shows a WhatsApp notification’s
JSON.

Listing 4: Database schema example.

1 {

2 "apps" : {

3 "App1" : {

4 "dbs" : {

5 "Database1" : {

6 "tables" : ["Table1", "Table2"],

7 "user_version" : 214

8 }

9 },

10 "exe" : "AppExecutable.exe",

11 "file_count" : 10,

12 "history" : {

13 "Entry1" : {

14 "app_version" : [2019, 19081, 22010, 0],

15 "dbs" : { ... },

16 "updated_at" : "2020-01-09 22:40:08.915149",

17 "user" : "Luis",

18 "windows_ver" : "Windows-10-10.0.18362-SP0"

19 }

20 },

21 "path" : "AppPath",

22 "updated_by" : {

23 "app_version" : [2020, 19081, 28230, 0],

24 "dbs" : { ... },

25 "updated_at" : "2020-02-16 04:26:00.367377",

26 "user" : "Luis",

27 "windows_ver" : "Windows-10-10.0.18362-SP0"

28 },

29 "version" : [2020, 19081, 28230, 0]

30 }

31 },

32 "schema_version" : 4

33 }

Listing 5: Example JSON of WhatsApp notification.

89

appendices

1 {

2 "id":1,

3 "key":"0|com.whatsapp|1|3fu8LLvJtKLhn8VIWAQJ8bOKh+RBjudquZ/c4+D7JQY=\n|10250",

4 "groupKey":"0|com.whatsapp|g:group_key_messages",

5 "tag":"3fu8LLvJtKLhn8VIWAQJ8bOKh+RBjudquZ/c4+D7JQY=\n",

6 "packageName":"com.whatsapp",

7 "appName":"WhatsApp",

8 "isClearable":true,

9 "isGroup":true,

10 "isOngoing":false,

11 "featureFlags":3,

12 "platform":0,

13 "version":"29",

14 "flags":8,

15 "eventCount":6,

16 "priority":0,

17 "postTime":1604011916905,

18 "timestamp":1604011908000,

19 "notificationClass":0,

20 "notificationActions":[

21 {

22 "actionName":"Reply",

23 "isActionInlineReply":true,

24 "actionIndex":0

25 },

26 {

27 "actionName":"Mark as read",

28 "isActionInlineReply":false,

29 "actionIndex":1

30 }

31],

32 "template":"android.app.Notification$MessagingStyle",

33 "text":"Sticker",

34 "title":"Luis ZeC",

35 "showWhen":true,

36 "messages":[

37 "Sticker",

38 "Sticker",

39 "Sticker",

40 "Sticker",

41 "Sticker",

42 "Sticker"

43],

44 "senderNames":[

45 "Luis ZeC",

46 "Luis ZeC",

47 "Luis ZeC",

48 "Luis ZeC",

49 "Luis ZeC",

50 "Luis ZeC"

51],

52 "importance":2

53 }

90

appendices

91

B
APPENDIX B

In this Appendix are the diagrams of the local databases found in a user’s YPC.

93

appendices

generated by SchemaCrawler 16.8.1
generated on 2020-06-14 00:01:15

android_metadata [table]
locale TEXT

content_view [table]
content_type INTEGER NOT NULL
id INTEGER NOT NULL
created_seq_no INTEGER NOT NULL
modified_seq_no INTEGER NOT NULL
checksum INTEGER

room_master_table [table]
id INTEGER
identity_hash TEXT

Figure 49: YPC’s content.db.

94

appendices

generated by SchemaCrawler 16.8.1
generated on 2020-06-14 00:03:40

agent_service_event [table]
uid INTEGER NOT NULL

 auto-incremented
"timestamp" INTEGER NOT NULL
agent_service_state INTEGER NOT NULL
event_id INTEGER NOT NULL
details_json TEXT
instance_id TEXT NOT NULL
version INTEGER NOT NULL

android_metadata [table]
locale TEXT

content_access_event [table]
uid INTEGER NOT NULL

 auto-incremented
start_time INTEGER NOT NULL
duration INTEGER NOT NULL
content_type INTEGER
access_was_useful INTEGER NOT NULL

FcmNotificationEvent [table]
uid INTEGER NOT NULL

 auto-incremented
"timestamp" INTEGER NOT NULL
fcm_message_id TEXT
original_priority INTEGER
received_priority INTEGER
app_standby_bucket INTEGER
is_doze_mode_active INTEGER

room_master_table [table]
id INTEGER
identity_hash TEXT

Figure 50: YPC’s eventstore.

generated by SchemaCrawler 16.8.1
generated on 2020-06-14 00:01:54

android_metadata [table]
locale TEXT

room_master_table [table]
id INTEGER
identity_hash TEXT

settings [table]
setting_group_id TEXT NOT NULL
setting_key TEXT NOT NULL
setting_type INTEGER NOT NULL
setting_value TEXT NOT NULL

Figure 51: YPC’s YourPhoneSettings.

95

appendices

generated by SchemaCrawler 16.8.1
generated on 2020-06-14 00:02:46

android_metadata [table]
locale TEXT

copypaste [table]
id INTEGER NOT NULL
data BLOB
uri TEXT
markForDeletion INTEGER NOT NULL
type TEXT
_size INTEGER NOT NULL
_display_name TEXT

dragdrop [table]
id INTEGER NOT NULL
filePath TEXT
uri TEXT
markForDeletion INTEGER NOT NULL
type TEXT
_size INTEGER NOT NULL
_display_name TEXT
transactionCorrelationId TEXT
fileCorrelationId TEXT
internalFileSize INTEGER NOT NULL

room_master_table [table]
id INTEGER
identity_hash TEXT

Figure 52: YPC’s ContentTransferDatabase.

generated by SchemaCrawler 16.8.1
generated on 2020-06-14 00:02:18

android_metadata [table]
locale TEXT

event_metadata [table]
_id INTEGER
event_id INTEGER NOT NULL
name TEXT NOT NULL
"value" TEXT NOT NULL

events [table]
_id INTEGER
context_id INTEGER NOT NULL
transport_name TEXT NOT NULL
timestamp_ms INTEGER NOT NULL
uptime_ms INTEGER NOT NULL
payload BLOB NOT NULL
code INTEGER
num_attempts INTEGER NOT NULL
payload_encoding TEXT

transport_contexts [table]
_id INTEGER
backend_name TEXT NOT NULL
priority INTEGER NOT NULL
next_request_ms INTEGER NOT NULL
extras BLOB

Figure 53: YPC’s com.google.android.datatransport.events.

96

appendices

generated by SchemaCrawler 16.8.1
generated on 2020-06-14 00:03:06

android_metadata [table]
locale TEXT

logs [table]
oid INTEGER

 auto-incremented
priority INTEGER
target_token TEXT
log TEXT
type TEXT
target_key TEXT
persistence_group TEXT

Figure 54: YPC’s com.microsoft.appcenter.persistence.

97

