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 13 

Forest fires are usually viewed within the context of a single fire season, in which weather 14 

conditions and fuel supply can combine to create conditions favourable for fire ignition – 15 

usually from lightning or human activity – and spread1–3. But some fires exhibit 16 

overwintering behaviour, in which fires smoulder through the non-fire season and flare-up 17 

in the subsequent spring4,5. Boreal forests, with deep organic soils favourable for 18 

smouldering6 and accelerated climate warming7 may present unusually favourable 19 

conditions for overwintering. Still, the extent of overwintering in boreal forests and the 20 
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underlying factors influencing overwintering behaviour remain unclear. Here we show that 21 

overwintering fires in boreal forests are associated with hot summers generating large fire 22 

years and deep burning into organic soils, conditions that have become more frequent in our 23 

study areas in recent decades. Our results are based on an algorithm to detect overwintering 24 

fires in Alaska, USA, and Northwest Territories, Canada, using field and remote sensing 25 

datasets. Between 2002 and 2018, overwintering fires were responsible for 0.8 % of the total 26 

burned area; however, in one year this amounted to 38 %. The spatiotemporal predictability 27 

of overwintering fires could be leveraged by fire management agencies to facilitate early 28 

detection, which may result in reduced carbon emissions and firefighting costs. 29 

Arctic-boreal regions are warming faster than the global average7,8, and are estimated to store more 30 

than twice as much carbon as the Earth’s atmosphere in their organic soils9. Fires are a natural 31 

disturbance in boreal forests and release carbon from above- and belowground carbon pools into 32 

the atmosphere. A large fraction of the carbon emissions from fires in northern high latitudes 33 

originates from belowground carbon pools as these fires often burn deep into organic soils10–12. In 34 

a warming climate, boreal fire regimes are intensifying and fires may burn deeper into organic 35 

soils and thereby threaten soil carbon reservoirs10,13. Moreover, increasing summer temperatures 36 

in northern high latitudes lead to more severe fire weather14 and more lightning ignitions2 that 37 

enable fires to burn more area, although regional differences in decadal burned area trends exist 38 

and the relatively short length of consistent burned area time series influences the interpretation15. 39 

Containment expenses increase exponentially with fire size, and therefore large fires constitute the 40 

majority of the budget allocated to fire management agencies in the USA and Canada16,17. The 41 

stagnant fire management budgets18 in the USA and Canada are under pressure because of the 42 

increasing threats of climate warming and continued expansion of dwellings into the wildland 43 
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urban interface. Prevention and aggressive initial attack on undesired fires may be a viable way to 44 

lower firefighting costs16,18. 45 

Traditionally, the fire season in high latitudes begins with the lightning season in June or early-46 

season human activities like debris burning2,3,19. Once ignited, boreal fires can smoulder in organic 47 

soils during periods when weather does not favour flaming spread, and, after days or months, re-48 

emerge under weather conditions that favour flaming1,20,21. Smouldering boreal fires often remain 49 

undetected, especially in remote areas, which poses challenges for fire managers1. Recently, fire 50 

managers in Alaska, USA, and the Northwest Territories, Canada, started reporting an increasing 51 

number of extreme manifestations of this holdover phenomenon. In such cases, some fires 52 

hibernate in deep organic soil layers for seven to eight months during the winter and re-emerge 53 

early the next fire season, in what can appear to be a new ignition. Limited and often anecdotal 54 

evidence of these overwintering fires exists in recent Alaskan fire management reports and 55 

operating plans22,23, as well as news reports24. Overwintering, or “zombie” fires, are an 56 

understudied phenomenon in boreal forests and may have severe implications for fire management, 57 

human health, and climate4,5. 58 

Detection of large overwintering fires 59 

Overwintering fires typically undergo four temporal stages. Towards the end of a fire season, the 60 

fire seemingly stops burning as flaming spread ceases (Fig. 1A). Unnoticed, it smoulders during 61 

winter under the snow cover (Fig. 1B). As soon as fire weather facilitates fire spread the following 62 

fire season, the fire flames up (Fig. 1C, Extended Data Fig. 1), thereby burning additional area 63 

(Fig. 1D). This sequence of events allows for the identification of spatial and temporal 64 

characteristics of overwintering fires. First, newly burned areas of an overwintering fire are found 65 
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near the original burn scar, and second, they require no additional ignition source and can therefore 66 

re-emerge early in the fire season, before the main lightning season. 67 

We developed an algorithm to retrospectively identify and map overwintering fires based on these 68 

two spatiotemporal characteristics (Extended Data Fig. 2). We analysed the locations of 45 small 69 

overwintering fires reported by fire managers in Alaska and the Northwest Territories between 70 

2005 and 2017 to determine a suitable threshold for the distance between a holdover and its fire of 71 

origin. With small fires we refer to fires whose re-emergence remained undetected in the Moderate 72 

Resolution Imaging Spectroradiometer (MODIS) active fire product25. Small overwintering fire 73 

sizes ranged from 0.04 to 42.5 ha, and 78 % of the fires burned less than 1 ha. We found that 89 % 74 

of these small overwintering fires started within the fire perimeter from the year before, and 93 % 75 

travelled less than 500 m over the winter (Extended Data Fig. 3). Our results are consistent with 76 

laboratory experiments on boreal peat, which have shown that smouldering fires spread around 77 

100 - 250 m/yr (10 - 30 mm/h) depending on oxygen supply and water and mineral contents of the 78 

peat6. We therefore adopted a threshold of 1000 m to search for overwintering flare-ups in the 79 

vicinity of burned area from the year before. The 1000 m threshold was chosen because it is the 80 

approximate nadir pixel size of the MODIS active fire product that we used to detect fires.   81 

In Alaska and Northwest Territories, fine fuels are conducive to flaming spread as early as mid- to 82 

late May, even before convective thunderstorm activity starts26. The timing of dry fuel availability 83 

is dependent on the onset of snowmelt in spring, which varies in time and space23. Spring snow 84 

melt is dependent on winter and spring temperatures and precipitation and therefore a suitable 85 

proxy of spring and winter weather conditions, and has been shown to be an effective predictor of 86 

fire activity27. To capture the annual variability in dry fuel availability, we based the temporal 87 

constraint of our algorithm on the regional yearly snowmelt day, which we calculated from the 88 
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MODIS daily fractional snow cover product (MODSCAG)28. We analysed the difference between 89 

the regional snowmelt day and the detection dates of the 45 reported overwintering fires, and found 90 

that overwintering fires re-emerged on average 27 days (standard deviation: 18.5 days) after the 91 

regional snowmelt onset. Regionally, overwintering fires on average re-emerged at the end of May 92 

(Julian day: 150, standard deviation: 17.9 days). We therefore used the 90th percentile of 48 days 93 

after the regional snowmelt onset as the temporal threshold within the detection algorithm for 94 

overwintering fires. Since the satellite product detects fires on average two days later than fire 95 

managers, we increased the temporal threshold to a total of 50 days. Lastly, in addition to the 96 

spatial and temporal constraints, our algorithm eliminated fires that started close to human 97 

infrastructure or close in space and time to a recorded lightning strike (Extended Data Fig. 4). 98 

Excluding areas close to infrastructure means some overwintering fires may be missed, but 99 

eliminates a larger number of false positives from spring pile burning and other anthropogenic 100 

influences around settlements. 101 

In addition to the 45 small reported overwintering fires, which we used for algorithm development, 102 

we used a subset of nine larger overwintering fires (mean size: 20312, standard deviation: 24185 103 

ha), which were large enough to be detected by the MODIS active fire product, as validation data 104 

for our algorithm (Supplementary Table 1). We extracted the re-emergence date and distance to 105 

burn scars of the antecedent year for all ignitions from the Alaskan Fire Emissions Database 106 

(AKFED)29, and applied our detection algorithm to them. We detected seven out of nine of the 107 

large field-verified overwintering fires. 108 

Furthermore, we identified 20 previously unreported large overwintering fires in Alaska and the 109 

Northwest Territories between 2002 and 2018 (Supplementary Table 2). Large overwintering fires 110 

constitute 0.8 % of the total burned area and 0.5 % of the total carbon emissions, yet their relative 111 
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contribution can be substantial in individual years and amounted to more than 5 % in three years 112 

in Alaska (2007, 2008 and 2010) and two years in the Northwest Territories (2002 and 2015). For 113 

example, in Alaska in 2008, the contribution of a single overwintering fire that burned 13700 ha 114 

amounted to 38 % of the annual burned area. 115 

Temporal drivers of overwintering fires 116 

Years with large annual burned area more frequently produced overwintering fires (Fig. 2). Fire 117 

season temperature and annual burned area were strongly correlated for both Interior Alaska 118 

(Extended Data Fig. 5, Spearman’s ρ = 0.59, p < 0.001) and the Northwest Territories (ρ = 0.41, 119 

p = 0.097), and we found increasing temperature trends in both areas, and in burned area for 120 

Interior Alaska (Fig. 2). Temperature trends differed within regions and the largest warming was 121 

observed in western Interior Alaska and central Northwest Territories (Extended Data Fig. 5). 122 

Fire season temperature and burned area correlated strongly with the number of overwintering 123 

fires in both regions (Fig. 2, Extended Data Fig. 6). Several fires of the large fire years 2009 and 124 

2015 in Alaska and the extreme 2014 fire season in the Northwest Territories overwintered. 125 

While burned area in the antecedent year is prerequisite for the occurrence of overwintering 126 

fires, we found that fires survived winter following the six hottest summers in the Northwest 127 

Territories, whereas overwintering was not observed after the seven coolest summers. Our results 128 

based on average fire season temperature are further supported by an analysis that focused on 129 

extreme temperatures (Extended Data Figure 7). We found that the number of hot days that 130 

surpassed the longer-term 90th percentile of daily maximum temperature during the fire season 131 

correlated strongly with annual burned area (Alaska: ρ = 0.71, p < 0.001; Northwest Territories: 132 

ρ = 0.50, p = 0.001), and with the number of fires that overwintered. Large scale climatic drivers 133 

thus govern the survival and growth of overwintering fires. In autumn, fires in boreal regions are 134 
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usually extinguished by substantial rain events1. Extended fire seasons and droughts associated 135 

with climate warming30,31 may counteract the natural fire extinction in autumn and instead 136 

increase the chances of fires entering a smouldering phase. An important driver modulating the 137 

emergence of large overwintering fires may therefore be warm and extreme summers that 138 

facilitate long and large fire seasons31,32. Within our time series, we found no evidence that 139 

winter and spring meteorology or the snowmelt timing influence the survival of large 140 

overwintering fires (Extended Data Tables 1 and 2). 141 

Our reference data on overwintering fires contained five times as many small fires that were 142 

undetected by satellite imagery, as large, detected fires, suggesting that, when re-emerging in 143 

spring, these fires usually remain relatively small and undetected, and only occasionally grow 144 

large when fire weather conditions favour fire spread. Large overwintering fires on average 145 

experienced more severe fire weather at the time of the flare-up than small overwintering fires 146 

(Extended Data Table 3), yet this relationship may partly be confounded by interacting effects of 147 

fire spread direction and limited fuel availability in the burned area of the antecedent year. 148 

Spatial drivers of overwintering fires 149 

For a fire to overwinter it needs to burn deep into the organic soil or underneath tree roots so that 150 

the organic soil can protect and insulate from adverse winter conditions33. Severe fires burn deep 151 

into the soil organic layers34 and may thus help sustain the smouldering phase of overwintering 152 

fires during winter. We analysed burn depth data from AKFED, and found that, on average, fires 153 

that promoted overwintering had burned deeper into the organic soil layer than those that stopped 154 

burning at the end of the fire season for both Alaska (14.0 cm vs. 12.6 cm, p = 0.07) and the 155 

Northwest Territories (16.7 cm vs. 14.1 cm, p = 0.02) (Fig. 3, Table 1), indicating that deep 156 

burning may facilitate overwintering of fires. Regionally, burn depth is correlated with the 90th 157 
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percentile of daily maximum temperate in summer in both regions (Extended Data Fig. 7, 158 

Alaska: ρ = 0.56, p = 0.02, Northwest Territories: ρ = 0.48, p = 0.047). Extreme temperatures 159 

have increased since 1979 in western Interior Alaska and central and southern Northwest 160 

Territories (Extended Data Fig. 5). 161 

Burn depth in organic layers is co-influenced by fire weather, topographic landscape position and 162 

vegetation and soil characteristics11,12,35,36. We compared topographic indicators, pre-fire tree 163 

cover and tree species dominance, and carbon in the organic soil layer of fires that produced 164 

overwintering fires to those that did not facilitate overwintering (Table 1). Overwintering fires 165 

were associated with flat, low-elevation areas, both in Alaska and the Northwest Territories (Fig. 166 

4, Table 1). Lowland terrain in Alaska and the Northwest Territories typically features thick 167 

organic soil. Indeed, overwintering fires occur more often in areas with higher carbon contents in 168 

the upper soil layer (0 - 30 cm) in Alaska (p = 0.003), however, this driver was not significant in 169 

the Northwest Territories. Tree cover and species modulate fire severity by their influence on 170 

fuel availability and connectivity37. We found that fires that produced overwintering fires have a 171 

higher tree cover (p = 0.001) and a larger fraction of black spruce (p = 0.09) in Alaska, yet these 172 

drivers were not significant in the Northwest Territories. Fires occur in more varied landscapes 173 

with regard to soil carbon content and forest composition in Alaska compared to the Northwest 174 

Territories (Table 1), which may explain why some of these drivers were significant in Alaska 175 

but not in the Northwest Territories. 176 

Climate change and fire management 177 

We identified three main drivers of overwintering fires that are influenced directly by climate 178 

warming: summer temperature extremes, large annual fire extent and deep burning. Higher 179 

temperatures in boreal regions lead to intensified drought and elongated fire seasons32. Longer 180 
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fire seasons allow fires to spread faster and grow larger, thereby leading to large area burned38. 181 

Summer heat and drought induce deep drying of surface organic fuels, and are thus associated 182 

with higher fire severity and deep burning12. Increasing summer temperatures associated with 183 

climate warming may thus promote the survival of overwintering fires in the future. Likewise, 184 

earlier onset of spring fire weather conditions may lead to a larger fraction of these fires growing 185 

large. At the same time, ecosystem shifts towards a dominance of deciduous vegetation due to 186 

increasing fire severity39 and higher temperatures40 may constrain the occurrence of 187 

overwintering fires in the future. Hence, the fate of overwintering fires in the changing boreal 188 

biome will depend on counteracting processes that facilitate or constrain their occurrence. 189 

Overwintering fires are currently a relatively rare phenomenon in boreal forests. Yet, because of 190 

their long duration and extended smouldering phase, overwintering fires may substantially 191 

influence soil functioning and post-fire recovery trajectories34. We estimated that large 192 

overwintering fires in Alaska and the Northwest Territories emitted 3.5 (standard deviation: 1.1) 193 

Tg carbon between 2002 and 2018, 64 % of which occurred during the 2015 NWT and 2010 194 

Alaska fire seasons. The contribution of smouldering combustion is generally underestimated in 195 

carbon emission estimates from boreal fires20. Thus, our estimate is likely conservative, since 196 

overwintering fires exhibit a substantial smouldering phase and may burn deeper than our 197 

emissions model currently predicts. In addition, smouldering fires emit relatively more methane 198 

and less carbon dioxide in comparison to flaming fires41, yet methane has a much larger global 199 

warming potential42.  200 

Carbon emissions from overwintering fires currently contribute 0.5 % of the total carbon 201 

emissions from fires in Alaska and Northwest Territories, yet this fraction may grow larger with 202 

climate warming. We have shown that overwintering fires have temporal and spatial 203 
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predictability. Space- and airborne monitoring of the edges of burn scars from the preceding year 204 

in lowland forested peatlands early in the fire season, and especially after a year with large 205 

burned area, may prove beneficial for detecting and suppressing flare-ups from overwintering 206 

fires while they are small. Fire suppression has shown to be most successful and cost-effective 207 

when applied early and on small fires16,17. Out of the 26 overwintering fires for which we had 208 

suppression cost data in Alaska, the single largest fire caused 80 % ($2.2 million) of the total 209 

costs incurred by all overwintering fires (Supplementary Tables 1 and 2). Early detection and 210 

attack on overwintering fires could thus contribute to savings in the fire management budget that 211 

is under increasing pressure18. In addition, targeted monitoring and early suppression of 212 

overwintering fires could help fire managers preserve terrestrial carbon stores when suppression 213 

is part of a climate change mitigation strategy. 214 
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Table 1. Spatial variables differ for fires that produced overwintering fires compared to fires that 314 

did not produce overwintering fires. P-values are based on Welch t-test. Analysis is based on all 315 

(small and large, reported and newly identified) overwintering fires. References for data sources 316 

are given in the methods.  317 

Region Variable Source µoverwinter (± s.d.) µother (± s.d.) p 

Alaska 

Burn depth 
Alaska Fire Emissions 
Database v3 

14.0 cm (± 3.6) 12.6 cm (± 3.3) 0.067 

NWT 16.7 cm (± 4.4) 14.1 cm (± 3.3) 0.019 

Alaska 

Elevation  ArcticDEM 

214.5 m (± 149.5) 402.7 m (± 358.7) < 0.001 

NWT 270.5m (± 95.4) 356.9 m (± 224.0) 0.001 

Alaska 

Slope  ArcticDEM 

2.51° (± 2.94) 6.71° (± 6.95) < 0.001 

NWT 1.86° (± 1.20) 2.90° (± 4.08) 0.001 

Alaska 

Fraction tree cover 
MODIS vegetation continuous 
fields product (MOD44B) 

0.37 (± 0.16) 0.27 (± 0.17) 0.001 

NWT 0.23 (± 0.09) 0.24 (± 0.12) 0.87 

Alaska 

Fraction black spruce  

Fuel Characteristic 
Classification System 

0.35 (± 0.25) 0.25 (± 0.23) 0.09 

NWT 
Beaudoin et al. (2018)43 

0.28 (± 0.17) 0.23 (± 0.16) 0.34 

Alaska 

Organic carbon content in 
upper    (0-30 cm) soil 
layer 

Northern Circumpolar Soil 
Carbon Database 

14.87 kg/m2 (± 7.4) 9.5 (± 5.1) 0.003 

NWT 8.3 kg/m2 (± 5.0) 9.3 (± 6.1) 0.42 

  318 
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Fig. 1. Landsat 8 false-colour time series of a 2015 fire in Alaska that generated an 319 

overwintering fire in 2016. A burn scar at the end of the fire season (white perimeter, A) had 320 

seemingly extinguished but was smouldering under the snow layer (B) until favourable 321 

conditions enabled the fire to re-emerge (C) thereby creating additional burned area (blue 322 

perimeter, D). Fire perimeters were taken from the Alaska Large Fire Database. The Landsat 323 

composites used the spectral bands centred at 2.20 μm (red), 0.86 μm (green) and 0.65 μm 324 

(blue). Imagery was plotted in R. 325 

  326 
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Fig. 2. Temporal drivers of overwintering fires and their long-term trends. Burned area is 327 

correlated with the average daily maximum temperature of May – September for Alaska (a, e, 328 

Spearman’s ρ = 0.59, p < 0.001) and Northwest Territories (b, f, ρ = 0.41, p < 0.01), and is 329 

increasing in Alaska (p = 0.10). May – September maximum temperatures are increasing in 330 

Alaska (p = 0.04) and Northwest Territories (p = 0.01). The number of large overwintering fires 331 

correlates with the May – September temperatures in Alaska (e, ρ = 0.54, p = 0.03) and 332 

Northwest Territories (f, ρ = 0.77, p < 0.001), and with burned area from the year in Alaska (c, e, 333 

ρ = 0.49, p = 0.05) and Northwest Territories (d, f, ρ = 0.44, p = 0.08). Large overwintering fires 334 

include flare-ups from official reports and additional fires identified by our algorithm. Dashed 335 

lines represent significant trends, shaded areas their 95% confidence interval. White areas in a 336 

and b refer to the period from 2001 to 2018. Extended Data Figure 6 offers scatterplots of all 337 

correlations for visual inspection. 338 
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Fig. 3. Burn scars that generate overwintering fires (light gray) had burned deeper into the soil 340 

organic layer compared to fire scars that did not generate overwintering fires (dark gray) in 341 

Alaska (a, p = 0.07) and Northwest Territories (b, p = 0.02). Vertical lines represents the median, 342 

plus (+) signs the mean, and lower and upper hinges correspond to 25th and 75th percentiles. 343 

Whiskers extend up to 1.5 times the interquartile range, sample points beyond that are 344 

represented as dots. We included overwintering fires from government reports and our algorithm. 345 

  346 
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Fig. 4. Overwintering flare-ups (blue dots) predominantly occur in lowland areas of Alaska (a) 347 

and the Northwest Territories (b). Small overwintering fires that were not detected by the 348 

Moderate Resolution Imaging Spectroradiometer active fire products are represented as small 349 

dots. Large fires (reported and identified by our algorithm) are represented by large dots. White 350 

areas represent data gaps in the ArcticDEM. Maps were plotted in R. 351 

  352 
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Methods 353 

Verified overwintering fires. Fire managers in Alaska and Canada routinely document 354 

information on all fires detected in their territory. These data are assembled in the Alaska Wildland 355 

Fire Maps (AWFP; https://fire.ak.blm.gov/predsvcs/maps.php) and the Canadian National Fire 356 

Database (CNFD)19. These databases contain the discovery date and location of fires as well as 357 

numerous fire attributes such as the size, end date, estimated costs and fire cause. Fire managers 358 

attribute ignition causes based on expert knowledge, ground truth or helicopter data, and other 359 

sources such as satellite imagery and lightning data. Causes in the fire databases only include 360 

human and lightning sources. With rising awareness of overwintering fires, however, some fire 361 

managers sparsely started documenting these re-emerging fires in a separate database. We 362 

assembled the timing and location of re-emergence of 54 overwintering fires, 42 in Alaska (AK), 363 

USA, and 12 in Northwest Territories (NWT), Canada, from these fire management reports. The 364 

key characteristics of the overwintering fires used in our study can be found in Supplementary 365 

Table 1. Cost data for the fires in Supplementary Tables 1 and 2 were taken from interagency 366 

Incident Status Summaries (209 reports) and provided by the Bureau of Land Management, where 367 

available, and supplemented by the estimated costs listed in the AWFP database. 368 

Burned area, ignition locations. burn depth and carbon emissions. We derived the burned area 369 

and day of burning for Alaska and Northwest Territories between 2001 to 2018 at 500 m spatial 370 

resolution using the Alaskan Fire Emissions Database (AKFED) version 329, which was updated 371 

with input from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 62,25. 372 

Daily burned area was retrieved by combining fire perimeter data from the AWFP and the CNFD, 373 

and remotely sensed surface reflectance and active fire data from MODIS. After integration of 374 
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MODIS Collection 6, total burned area and carbon emissions remained within 5 % of previous 375 

estimates2,44. 376 

The location of the first day of burning of a fire marks the ignition point. We therefore 377 

extracted the location and timing of ignitions from local minima within the day of burning variable, 378 

denoting the earliest burn date, within each fire perimeter. Fires originating from multiple separate 379 

ignitions sometimes grow together in a multi-ignition fire complex. Our algorithm therefore 380 

allowed for several ignition points per fire perimeter by using a local minimum search radius of 5 381 

km. Although MODIS provides daily coverage of active fires and burned area, the actual ignition 382 

location can be obscured if clouds are present, or if a fire starts several hours before the satellite 383 

overpass and spreads fast. In these cases, the local minimum contained multiple pixels with the 384 

same day of burning. When multiple neighbouring pixels burned at the same day, we estimated 385 

the ignition location as the centroid of these pixels and calculated the spatial uncertainty of the 386 

ignition locations from the standard deviation in the x and y coordinates of these burned pixels. 387 

The spatial standard deviation of the ignition location is as a measure for the ignition location 388 

uncertainty. Since the native resolution of the MODIS active fire data is 926.6 m, we added a 389 

buffer of 1 km to all ignition locations. For fires with multiple burned pixels on the start date, we 390 

extended this 1 km buffer with the spatial standard deviation of the ignition location. 391 

Burn depth and emissions were also derived from AKFED version 3, which predicts carbon 392 

consumption and burn depth based on remotely sensed pre-fire tree cover, the differenced 393 

Normalized Burn Ratio, and temperature and the drought code at the day of burning using a 394 

nonlinear multiplicative regression model (R2 = 0.39)2. The model was developed using field 395 

observations from black spruce (Picea mariana) ecosystems. Primary sources of uncertainties that 396 

influence the carbon consumption estimate include the unexplained variance in the regression 397 
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model, the underlying land cover classifications, and consumption scaling for non-black spruce 398 

ecosystems. To eliminate uncertainties from consumption scaling in our spatial analysis, we 399 

excluded burn scars with high dominance (more than 90 %) of ecosystems other than black spruce. 400 

Pixel-level uncertainties in carbon consumption were within 20-25 % of the pixel-level 401 

predictions44. 402 

We used fire perimeter data form CLFD and AWFP to calculate burned area for 1975 to 2000. 403 

Since these fire perimeters do not account for unburned islands in the mapped area, we normalised 404 

their burned area with AKFED burned area. As in Veraverbeke et al. (2017)2, we assumed that 405 

uncertainties in fire perimeter mapping have reduced since the integration of Landsat imagery in 406 

fire mapping around 197545. The minimum mapping unit (MMU) for the CNFD was 200 ha, and 407 

changed over time for AWFP, from 405 ha before 1987 to 40.5 ha between 1987 and 2014, and 408 

finally to 4.5 ha starting from 2015. We calculated the ratio of AKFED burned area, which has a 409 

MMU of 25 ha, over the ratio of burned area retrieved from the fire perimeters between 2001 and 410 

2018. To remove uncertainties due to the MMU, we calculated separate ratios excluding all 411 

perimeters smaller than 405 ha and 40.5 for Alaska, and all fires smaller than 200 ha for the 412 

Northwest Territories. We multiplied the burned area estimates with the according ratio per region 413 

and, in the case for Alaska, time frame. The derived ratios were 0.971 for the Northwest Territories 414 

and 0.829 for fires larger than 405 ha, and 0.825 for fires larger than 40.5 ha in Alaska. 415 

Lightning data and lightning ignition attribution. We acquired data on lightning strikes 416 

between 2001 and 2018 detected by the Alaskan Lightning Detection Network (ALDN)46 and the 417 

Canadian Lightning Detection Network (CLDN)47, which contained information on location and 418 

timing of cloud-to-ground lightning strikes. The ALDN was started by the Bureau of Land 419 

Management Alaska Fire Service (BLM-AFS) in 1976 and has since gradually increased in 420 
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detection accuracy, efficiency and coverage. The detection accuracy is highest for interior Alaska 421 

and decreases towards the coast. A significant upgrade to the system in 2000 led to an increased 422 

detection accuracy and efficiency of 0.5 - 2 km and 80 – 90 %, respectively46. The replacement of 423 

the Impact lightning system with a Time of Arrival (TOA) system in 2012 resulted in a further 424 

1.5-fold increase in the detection efficiency, and an increased accuracy stemming from the 425 

counting of strokes per flash instead of lightning flashes48.  426 

Lightning data from the CLDN is available since 1998 and provided by Environment and 427 

Climate Change Canada. The CLDN was upgraded gradually, with the largest changes in Northern 428 

Canada comprising the addition of two sites in northern Yukon in 2003 and sensor upgrades in 429 

NWT and Yukon in 2008 and 201047,49. For southern NWT, where most of the lightning activity 430 

takes place, the CLDN detects approximately 80-90 % of the lightning flashes with a positional 431 

accuracy of 500 m50. At the periphery of the sensor network, the efficiency decreases to about 432 

70 % with positional accuracies between 12 and 22 km. Lightning detection and accuracy 433 

decreases to approximately 30 % 300 km beyond the sensor network. Towards north-eastern 434 

NWT, accuracy and efficiency markedly decline due to a lack of sensor sites. 435 

Between 2001 and 2018, the positional accuracies of the ALDN and CLDN vary substantially 436 

in time and space. We therefore adapted a conservative estimate of 2 km for the overall accuracy 437 

of the sensor networks and buffered all detected lightning strikes in AK and NWT using this 2 km 438 

buffer.  439 

We used a spatial and a temporal constraint to assess if an ignition may have been caused by 440 

lightning. Both, the ignition locations as well as the lightning locations contain location 441 

uncertainties. For the spatial constraint, we thus overlaid all ignition locations including their 442 

spatial uncertainty buffer with the buffered lightning strikes of the same year. Subsequently, we 443 
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compared the date of the lightning strike with the ignition date. Fires often smoulder for several 444 

days after a lightning strike before they are detected, yet the lag time between a lightning strike 445 

and the ignition detection in boreal forests of North America is not known. Lag times of two or 446 

three days have been inferred for fires in Australia, Finland and Florida, U.S.51–53. We extended 447 

the lag time threshold to six days to account for longer holdover times that may occur due to the 448 

prolonged smouldering in organic soils in boreal North America. Thus, we classified fires with a 449 

lightning strike up to six days before the ignition date as started by lightning. We also accounted 450 

for a temporal uncertainty of one day in ignition timing54. We thereby identified 85 % of the 451 

lightning ignitions as reported in the AWFP and CNFD (Extended Data Figure 4A). 452 

Infrastructure data. We used vector data on roads and other infrastructure elements to assess if 453 

an ignition may have been caused by anthropogenic activity. For Alaska, the Alaska Infrastructure 454 

1:63,360 shapefile (2006) provided by the Department of Natural Resources comprises all roads 455 

and trails, and power and electrical lines. The same infrastructure elements are available from 456 

various infrastructure datasets of NWT including the 2010 Road Network File by Statistics 457 

Canada55 and the Roads 1M dataset by the Government of Yukon56, which we combined here. 458 

In Alaska, 99 % of ignitions up to 5 km from settlements are human-induced3. We used all 459 

fires classified as human-ignited by the AWFP and CNFD to derive a distance threshold from our 460 

data. First, we calculated the distance between each ignition point including its uncertainty buffer 461 

and its nearest infrastructure element for all ignition points that fell within a distance of 5 km of 462 

an infrastructure element. Then, we derived a statistical distribution of these distances for all fires 463 

that were classified as human-ignited in the official fire databases. 75 % of the ignitions were 464 

within 1 km of an infrastructure element (Extended Data Figure 4B). We therefore classified fires 465 

that fell within 1 km of an infrastructure element as human-ignited. 466 
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Snow cover data. We determined the regional first snow-free day of spring between 2001 and 467 

2018 from the MODIS daily fractional snow cover product (MODSCAG)28. MODSCAG 468 

computes the snow fraction of each 500 m pixel using spectral mixture analysis and has shown to 469 

outperform normalized difference snow index-based methods, especially during periods of 470 

accumulation and melt57. We flagged a pixel as snow-free when its fractional snow cover dropped 471 

below 15 %. We determined the period between March 21 (Julian day 80) and July 1 (Julian day 472 

182) as spring season and selected the first snow-free day of each pixel during this period. Pixels 473 

that were still snow covered by July 1 were flagged as permanent snow cover and excluded from 474 

the analysis. We also excluded pixels with persistent missing data due to cloud cover on four or 475 

more days preceding the first snow-free day detection. The resulting retrieval contained data for 476 

98 % of interior Alaska and 87 % of interior Northwest Territories. 477 

For a regional estimate, we calculated the yearly mean of the first snow-free day within the 478 

interior boreal regions of Alaska and the Northwest Territories. For Alaska this refers to the 479 

intermontane boreal ecoregions between the Brooks Range and the Alaska Range, excluding the 480 

coastal Bering ecoregions58. For NWT we selected the taiga plains and taiga shield ecozones in 481 

Northwest Territories59. Only pixels that contained data for all years and had not burned during 482 

the 18-year timeframe were included in the regional mean.  483 

Climate and fire weather data. We extracted meteorological data from North America Regional 484 

Reanalysis60 (NARR) for our climate analysis. NARR provides climate reanalysis data since 1979 485 

at a 32 km resolution based on the NCEP Eta atmospheric model and the Regional Climate Data 486 

Assimilation System. We extracted 3-hourly air temperature at 2m, relative humidity, wind speed 487 

and precipitation over Alaska and the Northwest Territories, and calculated monthly means of the 488 

3-hour period that included local solar noon. We derived vapour pressure deficit (VPD) and fire 489 
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weather variables following the Canadian Fire Weather Index System (CFWIS)61 from 490 

meteorological variables. 491 

Detection of large overwintering fires. 45 of the ground-truthed overwintering fires (10 from 492 

NWT and 35 from AK, in the following referred to as ‘small fires’) were too small to be detected 493 

from the MODIS active fire product that was used within AKFED25 (Supplementary Table 1). We 494 

used the spatial and temporal characteristics of these 45 small fires to derive spatial and temporal 495 

thresholds for a detection algorithm for larger overwintering fires that can be detected from 496 

MODIS imagery. The nine remaining overwintering fires from the fire management reports were 497 

large enough to be detected by MODIS and were used as reference data for validation of the 498 

detection algorithm (Extended Data Fig. 2).  499 

Overwintering fires re-emerge within or in close proximity to burned area from the year 500 

before and earlier in the year than the majority of lightning- and human-ignited fires. We calculated 501 

the shortest distance between each of the 45 small overwintering fire locations reported by fire 502 

managers and any area burned in the previous year based on our burned area product and derived 503 

a threshold of 1 km based on the statistical distribution of these distances (Extended Data Figure 504 

3) and the spatial resolution of our satellite product. Distributions of the difference between the 505 

detection date of the small overwintering fires and the regional snowmelt served for a temporal 506 

threshold. We chose a threshold of 48 days, which comprises the 90 % quantile of the distribution. 507 

On average, fires are detected by our satellite product within 1.7 days of the discovery date of the 508 

fire agencies. We therefore extended the threshold by two days to account for the differences in 509 

data sources. We applied both thresholds to all ignitions detected by MODIS between 2002 and 510 

2018 to identify potential overwintering fires. From these, we further excluded ignitions that were 511 

likely caused by lightning by filtering out all ignitions in spatiotemporal vicinity of a lightning 512 
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strike. We intersected ignitions and lightning strikes including their spatial uncertainties (2 km for 513 

all lightning strikes and the individual positional inaccuracy of each ignition) and allowed for a 514 

lag time of six days between lightning strikes and ignition in combination with an uncertainty of 515 

one day in the ignition timing. We also excluded ignitions with a likely human origin when these 516 

occurred with 1 km of infrastructure, thereby accounting for the spatial uncertainty of the ignitions 517 

location. 518 

Uncertainty of our algorithm. Our estimate of the number of overwintering fires based on these 519 

four constraints and moderate resolution satellite data is likely conservative. For the Northwest 520 

Territories, for example, some estimates suggest that about one third of all fires in 2015 were 521 

caused by overwintering flare-ups62. Our algorithm however only classified 4 % of the ignitions 522 

to be overwintering fires, although 17.5 % of the ignitions were within a 1 km distance from a 523 

previous year fire. Many of these ignitions occurred close to a human infrastructure element or 524 

late in the season and were therefore removed by our algorithm to avoid false positives. However, 525 

our reference data on overwintering fires suggest that 35 % of the small fires are indeed found 526 

within our infrastructure buffer, and emergence dates as late as July have been reported by fire 527 

managers.  528 

Furthermore, many overwintering fires occur in unburned islands or stay relatively small and 529 

are therefore not detected by the MODIS active fire product. The Visible Infrared Imaging 530 

Radiometer Suite (VIIRS) active fire detection data product63 has a higher spatial resolution of 375 531 

m and is therefore capable of detecting smaller fires. Indeed, using VIIRS data we could detect a 532 

further 8 of the 31 overwintering fires that were too small to be detected by MODIS. However, 533 

VIIRS data are only available from 2012 onward, which renders it less useful than MODIS for the 534 

analysis of longer time periods. 535 
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Spatial drivers of overwintering fires. We extracted burn depth from AKFED for all burn scars. 536 

We excluded burn scars with high dominance (more than 90 %) of white spruce, pine and 537 

deciduous ecosystems because the burn depth model was developed for black spruce ecosystems. 538 

We tested the statistical difference in mean burn depth between burn scars that produced 539 

overwintering fires and those that did not using Welch’s t-test64,65. We thereby assumed that 540 

overwintering fires were caused by the closest fire of the previous year.  541 

A variety of datasets were used to analyse additional spatial drivers. The analysis was carried 542 

out analogous to the burn depth analysis by comparing the mean over the entire burn scar between 543 

fires that produced overwintering fires and those that did not using Welch’s t-test. We extracted 544 

the elevation and slope for all burn scars from the 100 m resolution ArcticDEM v3.066,67. 545 

ArcticDEM provides high-resolution (up to 2 m) digital surface models of the Artic from 0.32 to 546 

0.5 m resolution panchromatic satellite imagery of the DigitalGlobe collection including 547 

WorldView-1 (2007), WorldView-2 (2009), WorldView-3 (2014), and GeoEye-1 (2008)68. 548 

Annual Terra MODIS Vegetation Continuous Fields Collection 6 data at 250 m resolution 549 

(MOD44B)69 for the years 2000-2017 were used to derive pre-fire tree cover for each burn scar. 550 

Tree species fractions were taken from the Fuel Characteristic Classification System layer of the 551 

year 200170–72 for Alaska, and from 43,73 for the Northwest Territories. We aggregated the tree 552 

species into black spruce (Picea mariana), white spruce (Picea glauca), deciduous, tundra-grass-553 

shrub and non-vegetated ecosystems, and pine (only present in the Northwest Territories) as 554 

described in 2. Organic carbon content in the upper organic soil layer (0-30 cm depth) was extracted 555 

from the Northern Circumpolar Soil Carbon Database74. 556 

Temporal drivers of overwintering fires. We analysed the relationship between the number of 557 

overwintering fires, annual burned area and daily maximum temperatures from NARR on a 558 
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regional scale. Based on scatterplots between all three variables, we chose Spearman correlations 559 

because of non-linearity (Extended Data Fig. 6a, b, e), the presence of outliers (Extended Data Fig. 560 

6d) and small sample sizes (Extended Data Fig. 6 c-f, n = 17). P-values were computed for all 561 

correlations. 562 

To analyse the influence of winter and spring weather, we computed Spearman’s correlations 563 

between overwintering fires and the regional snowmelt, as well as winter and spring temperature, 564 

vapour pressure deficit, precipitation and relative humidity. Analogous to the spatial drivers 565 

analyses, we also tested for differences in the snowmelt date and fire weather variables in spring 566 

between fire scars that facilitated overwintering, and those that did not using Welsh’s t-test. For 567 

the fire weather variables, we hereby took the average of the 50 days after the average snowmelt 568 

of each fire. We further compared vapour pressure deficit and fire weather variables at the day of 569 

detection for small and large overwintering fires using Welsh’s t-test to assess the influence of 570 

spring fire weather on the growth of overwintering fires. 571 
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Extended Data: 682 

Extended Data Fig. 1. Aerial view of the Seven Mile Slough Fire in Alaska on 9 May, 2011. 683 

Smouldering hotspots (a) had overwintered and burned in the duff layer below the spruces of an 684 

unburned island. Green tree crowns of the fallen trees (b) in the original unburned island (perimeter 685 

approximated in black) suggest that tree roots were damaged due to subsurface burning. (Photo by 686 

Eric Miller) 687 

  688 
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Extended Data Fig. 2. Workflow used to detect large overwintering fires. First, ignition 689 

locations, dates, and causes according to official fire databases were extracted. In four steps, the 690 

algorithm filters these ignitions by date, distance to an old fire scar, and co-occurrence of 691 

lightning strikes and infrastructure elements. Small overwintering fires that were not detected by 692 

satellite products were used to derive thresholds for the algorithm. 693 
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Extended Data Fig. 3. Overwintering fires emerge earlier after the seasonal snowmelt (a) and 695 

closer to a fire scar from the year before (b) than other fires. Other fires refer to all fires not 696 

classified as overwintering in official fire databases. Day since regional snowmelt was calculated 697 

from the timing of the ignition points from the Alaskan Fire Emissions Database when possible, 698 

complemented with data from government sources for small fires. 699 
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Extended Data Fig. 4. Histograms of (a) lag time between lightning strikes and ignition 701 

detections and (b) distance to road for human ignitions. Human and lightning ignitions were 702 

characterized based on the Alaskan Wildland Fire Maps (AK) and Canadian National Fire 703 

Database (NWT). The black lines indicate the thresholds used to eliminate potential overwintering 704 

fires due to spatial proximity to infrastructure and spatiotemporal proximity to lightning strikes. 705 
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Extended Data Fig. 5: Average and extreme temperature trends for interior Alaska and the 707 

Northwest Territories a, b, Average of the daily maximum temperature of the summer months 708 

May – September. c, d, Its 90th percentile. e, f, Number of hot days surpassing the 90th percentile. 709 

Panels a, c, e show data for interior Alaska, and panels b, d, f for the taiga plains and taiga shield 710 

of the Northwest Territories. 711 
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Extended Data Fig. 6: Scatter plots and Spearman correlations of summer temperature, 713 

burned area and overwintering flare-ups. a, b, Daily mean maximum temperature between 714 

May and September (MJJAS) and annual burned area. c, d, Antecedent year’s burned area and 715 

the number of overwintering flare-ups. e, f , MJJAS maximum temperature and the number of 716 

overwintering flare-ups. Panels a, c, e show data for Alaska, and panels b, d, f for the Northwest 717 

Territories. 718 

 719 

720 
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Extended Data Fig. 7: Scatter plots and Spearman correlations of temperature extremes 721 

and burned area, overwintering flare-ups and burn depth. a, b, Number of MJJAS hot days 722 

(days with a maximum temperature hotter than the 1979-2020 90th percentile) and burned area. c, 723 

d, Number of MJJAS hot days and overwintering ignitions. e, f, 90th percentile of MJJAS 724 

temperature and average burn depth. Panels a, c, e show data for Alaska, and panels b, d, f for 725 

the Northwest Territories. 726 
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Extended Data Tab. 1: Correlation of winter and spring meteorology with the number of 728 

overwintering flare-ups in Alaska and Northwest Territories. Results that are significant on a 729 

0.1 level are shaded light grey, and those on a 0.05 level dark grey. 730 

Region Variable - Oct Nov Dec Jan Feb Mar Apr May 

Alaska 
Regional  

snow melt 

-0.22 
        

Northwest Territories -0.06 
        

           

Alaska 
Average 

temperature 
 

0.04 0.17 0.05 -0.05 0.16 0.22 0.18 0.08 

Northwest Territories 
 

0.37 -0.06 0.08 0.24 0.11 0.29 -0.14 0.22 
           

Alaska 
Vapour Pressure 

Deficit (VPD) 
 

-0.24 -0.07 0.23 -0.08 0.06 0.06 0.1 0.3 

Northwest Territories 
 

0.19 -0.07 -0.03 0.21 0.22 0 -0.41 0.37 
           

Alaska 

Total precipitation 

 -0.38 0.06 -0.23 0.13 -0.07 0.08 -0.2 -0.02 

Northwest Territories 
 

-0.16 0.28 0.01 -0.09 0.05 0.06 0 -0.08 
           

Alaska 

Relative humidity 

 0.48 0.12 -0.07 0.22 0.06 0.18 -0.31 0.12 

Northwest Territories 
 

-0.11 -0.47 0.11 0.21 -0.11 0.04 0.16 0.04 
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Extended Data Tab. 2: Average first snow-free day, vapour pressure deficit (VPD) and 732 

moisture codes and fire danger indices for days 0 to 50 after the snowmelt did not differ 733 

significantly for burn scars that produced overwintering fires and those that did not. P-734 

values are based on Welch t-test. Analysis is based on all (small and large, reported and newly 735 

identified) overwintering fires. 736 

Region Variable µoverwinter (± s.d.) µother (± s.d.) p 

Alaska 

First snow-free day 

117.9 (± 13.6) 122 (± 12.3) 0.23 

Northwest Territories 128.7 (± 9.3) 130.8 (± 12.5) 0.35 
     

Alaska 

Vapour Pressure Deficit (VPD) 

836.8 (± 176.2) 804.5 (± 210) 0.45 

Northwest Territories 1125.8 (± 295.3) 1115.2 (± 246.8) 0.88 
     

Alaska 
Fine Fuel Moisture Code 

(FFMC) 

77.7 (± 5) 76.5 (± 5.6) 0.31 

Northwest Territories 81.9 (± 3.8) 80.7 (± 4.7) 0.19 
     

Alaska 

Duff Moisture Code (DMC) 

21.8 (± 8.2) 21.9 (± 10) 0.97 

Northwest Territories 34 (± 13.4) 33.6 (± 13.9) 0.9 
     

Alaska 

Drought Code (DC) 

121.9 (± 36.6) 134.9 (± 39.7) 0.16 

Northwest Territories 166.1 (± 35.7) 172.1 (± 46.5) 0.48 
     

Alaska 

Initial Spread Index (ISI) 

3.8 (± 1.2) 3.8 (± 1.3) 0.92 

Northwest Territories 6.1 (± 1.9) 6 (± 1.8) 0.93 
     

Alaska 

Buildup Index (BUI) 

14.6 (± 5.2) 14.8 (± 6.6) 0.84 

Northwest Territories 22.6 (± 8.4) 23 (± 10.3) 0.84 
     

Alaska 

Fire Weather Index (FWI) 

5.2 (± 2.3) 5.2 (± 2.7) 0.95 

Northwest Territories 9.7 (± 4.1) 9.6 (± 4.2) 0.9 
     

Alaska 

Daily Severity Rating (DSR) 

0.9 (± 0.6) 0.9 (± 0.7) 0.89 

Northwest Territories 2.4 (± 1.4) 2.3 (± 1.6) 0.97 
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Extended Data Tab. 3: Moisture codes and fire danger indices at the day of detection by 738 

the AKFED product for overwintering fires smaller and larger than 1 km2. Bold numbers 739 

represent significant differences at p < 0.1. 740 

Region Variable µsmall (≤ 1 km2) (± s.d.) µlarge (> 1 km2) (± s.d.) p 

Alaska 

Vapour Pressure Deficit (VPD) 

928.7 (± 483.6) 1138.4 (± 515.3) 0.43 

Northwest Territories 1634.2 (± 654.7) 1610.7 (± 528.8) 0.95 
     

Alaska 

Fine Fuel Moisture Code (FFMC) 

83.5 (± 7.3) 88.2 (± 3.8) 0.14 

Northwest Territories 84.8 (± 6.5) 82.9 (± 19.4) 0.68 
     

Alaska 

Duff Moisture Code (DMC) 

25.3 (± 20.0) 34.8 (± 19.4) 0.36 

Northwest Territories 62.0 (± 44.3) 62.8 (± 35.7) 0.97 
     

Alaska 

Drought Code (DC) 

127.4 (± 54.4) 156.6 (± 41.3) 0.26 

Northwest Territories 277.2 (± 87.7) 271.3 (± 68.7) 0.91 
     

Alaska 

Initial Spread Index (ISI) 

4.6 (± 3.0) 8.7 (± 4.1) 0.05 

Northwest Territories 7.1 (± 5.4) 7.5 (± 5.7) 0.90 
     

Alaska 

Buildup Index (BUI) 

16.4 (± 11.6) 22.4 (± 11.3) 0.32 

Northwest Territories 39.6 (± 26.2) 52.5 (± 38.6) 0.49 
     

Alaska 

Fire Weather Index (FWI) 

6.1 (± 4.6) 13.2 (± 7.3) 0.05 

Northwest Territories 15.1 (± 14.1) 18.4 (± 16.7) 0.71 
     

Alaska 

Daily Severity Rating (DSR) 

0.9 (± 1.0) 3.1 (± 2.7) 0.08 

Northwest Territories 4.8 (± 7.0) 7.1 (± 8.6) 0.61 
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