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1. Introduction

Since the beginning of 2020, the world is struck by the coronavirus, o�cially named
COVID-19. At this moment, the virus is still spreading among people all over the world.
Figure 1.1 shows the number of reported COVID patients per day in the Netherlands from
February 27, 2020 to January 27, 2021. Importantly, the virus is only detected on people
that are tested. Therefore, the actual number of COVID patients is presumable higher
than the numbers shown in Figure 1.1. Natural questions arise; `how fast does the virus
spread?', `what is the infection rate?' and `which factors a�ect this rate and how?'. Note
that the amount of untested, and hence undetected, COVID patients, who for example
do not have any symptoms, does a�ect the spread of the virus. This thesis gives insight
in how to tackle the kind of questions mentioned above, and shows in particular how to
deal with unobserved factors that a�ect the rate(s) of interest.

Figure 1.1: Number of reported COVID patients per day in the Netherlands from February
27, 2020 to January 27, 2021. The author's own reporting date, September 4, is shown in
red. (Source: RIVM )
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Research objective

Throughout this thesis we consider a class of models known as population processes.
Population processes are stochastic processes that record the dynamics of the number
of individuals in a population, and have many di�erent applications in a broad range of
areas such as biology, economics and operations research. They are, for example, suitable
for modeling the spread of infectious diseases when the individuals are considered to be
the infected people in a population. However, it is important to emphasize that the
individuals in population processes do not necessarily have to be people. For instance,
one could also think of a model for a population of animals, a model for molecules in a
cell, or even a model for the number of visits to a website.

Population processes are stochastic processes, hence transitions in the population size
do not occur at �xed times, but according to some probabilistic mechanism. Further-
more, population processes are often modelled as Markov processes which means that the
transition probabilities do not depend on the past, but on the current population size
only. An important feature of population processes is that transitions correspond either
to an increase or decrease in the population size. These two types of transitions are often
referred to as births and deaths, or the analog terminology arrivals and departures is used,
respectively. The lifetime of an individual is the time between its birth and its death. A
speci�c class of population processes is the class of birth-death (bd) processes, where tran-
sitions can only increase or decrease the population by one at a time. A commonly used
assumption for population processes is that there is no interference between individuals
in a population, in the sense that the lifetimes of the individuals are independent. Under
this independence assumption the resulting bd process can be seen as an in�nite-server
queue, a key model originating from queueing theory.

It is usually assumed that the lifetimes are exponentially distributed, and that the
births follow a Poisson process. However, in many situations the dynamics of the popu-
lation is a�ected by exogenous, often unobservable, factors, as we noticed for the COVID
data. Think of temperature a�ecting the spread of a bacteria or weather conditions
a�ecting the mobility of individuals. This results in a higher variability in some, or all,
model parameters, which we want to include in the population process. We do this by
adding an underlying stochastic process to the model, referred to as the background pro-
cess, which a�ects the parameters of the population process. Together, the population
process and the background process form a bivariate Markov process. For clari�cation we
continue with an example.

Example 1.1. We consider a population process of which the births follow a Poisson
process and the lifetimes of the individuals are independent and exponentially distributed.
The background process is a continuous time Markov process with two states, of which the
state determines the rate of the Poisson process. While the background process is in state
1, the parameter of the Poisson process is equal to λ1. However, as soon as the background
process jumps to state 2, the parameter of the Poisson process switches to λ2, see Figure
1.2 for a schematic representation. This speci�c example is also known as a Markov-
modulated process, in which the parameters switch between multiple distinct values at
the jump times of a modulating background process. To illustrate how the background
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process a�ects the population size, we include the results of a simulation of this example,
see Figure 1.3. It shows the population size in the upper panel simultaneously with the
state of the background process in the lower panel. There are �uctuations visible that are
clearly the result of the changes in the state of the background process. Note that in this
example only the births are a�ected by the background process. This thesis will consider
models in which the deaths are a�ected by the background process as well.

1

2

Pois(λ1)

Pois(λ2)

Background process Poisson process

Figure 1.2: Schematic representation of a background process a�ecting the rate of a
Poisson process.

We are interested in answering questions regarding the parameters of a bivariate model
consisting of a population process together with an underlying background process. To
this aim, we need reliable techniques to estimate the model parameters, including those
related to the background process. The di�culty in �nding these techniques is largely
determined by what exactly can and cannot be observed. Throughout this thesis, we make
the following three model assumptions, which make the statistical inference challenging:

◦ The background process cannot be observed. The challenge is to still infer the
parameters of the background process, and how this process a�ects the population
process.

◦ Only the population size is observed. The challenge is to infer the parameters from
the birth- and death processes separately from observations of the net e�ect of these
processes.

◦ The population process can be observed only at a �nite number of deterministic
points in time, which re�ects the fact that in most practical situations it is infeasible
to observe the process continuously in time. The challenge here lies in the fact that
it is unknown what happened in between two consecutive observations.

Note that the combination of the second and the third assumption increases the degree
of complexity substantially. For example, if the births and deaths are discretely observed
separately, information is lacking on the exact times of the births and deaths in between
two consecutive observations. However, if the population size is discretely observed only,
additional information is lacking on the number of births and the number of deaths in
between two consecutive observations. Combined with the �rst assumption, this results
in complex inverse problems.
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Figure 1.3: Upper panel: number of individuals in the population. Lower panel: state of
the background process.

Statistical inference for population processes

Population processes a�ected by underlying background processes have been studied con-
siderably over the years. However, inverse problems for these models are considered sub-
stantially less often. In the individual chapters we present extensive surveys on existing
literature. Here we would like to provide and highlight a few important contributions.

With regard to statistical inference for population processes, we mention [18, 19, 24, 67,
70] for various parameter estimation procedures. In these papers, the population process
is not a�ected by an unobserved background process, but the analysis is complicated by
the fact that the population is observed at discrete times only, which means that the
individual births and deaths are not observed directly. In [31, 32], statistical inference is
performed for population processes that are a�ected by a Markovian background process.
More speci�cally, these papers study parameter estimation problems for Markovian binary
trees, based on continuous-time observations. For the case of discrete-time observations,
parameter estimation results for the class of Markovian arrival processes are given in
[50, 15]. The data in these last two papers directly concern the cumulative birth process,
as the models do not include deaths, however here the analysis is complicated by both an
unobserved background process and by discrete-time observations.

In the context of queueing theory, there is a body of work on statistical inference for
population processes as well. As mentioned above, in�nite-server queues can be viewed as
a speci�c type of population processes. In the terminology of queueing theory, arrivals and
departures are used as the analog for births and deaths, respectively. For in�nite-server
queues, the service times can be viewed as the lifetimes of the individuals. In�nite-server
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queues have been studied extensively, and attention has been paid to in�nite-server queues
in a random environment. We refer to [47] for more background information on these kind
of models. The steady-state behavior and moments of in�nite-server queues in a random
environment, with known parameters, are analyzed in [48]. For more speci�c analysis on
Markov-modulated in�nite-server queues, performed under particular scaling of the model
parameters, we refer to [12, 13, 14]. The papers above do not perform any statistical in-
ference, but give insight in important properties of the models. Parameter estimation
procedures have been proposed for in�nite-server queues that are not a�ected by unob-
served background processes. We mention [55], where the estimation of the arrival rate
is performed, based on the method of moments and the maximum likelihood procedure.
Here it is assumed that all arrivals and departures are observed, without knowing which
departure belongs to which arrival. In [11] a parametric and a non-parametric proce-
dure are derived for estimating the arrival rate and the service time distribution based on
continuous-time observations of the population size.

The complexity of inverse problems for population processes depends on both the com-
plexity of the model and, as described before, the assumptions regarding the observations.
When looking at the three model assumptions listed above, it stands out that in existing
literature often one of the listed assumptions is included, sometimes even two. However,
to the best of our knowledge there is no existing literature that includes all three of the
listed model assumptions. The research in this thesis distinguishes itself by the fact that
all three model assumptions are included in the inverse problems.

Thesis outline

This thesis covers a wide range of models which all have in common that they are popu-
lation processes a�ected by an unobserved background process. The aspects in which the
models di�er, result in a need of speci�c inference techniques. In line with the di�erent
chapters of this thesis we present an overview of our contributions with emphasis on the
di�erences in the models and the techniques.

The �rst class of models covered in this thesis is a certain class of Markov-modulated
population processes. Example 1.1 above already introduced this model for the special
case of a two-state-background process. Chapter 2 considers Markov-modulated popu-
lation processes of which the background process can have any �nite number of states.
A method is established to estimate all model parameters, including those related to the
modulation, based on discrete-time observations of the population process. The EM al-
gorithm is used to develop an algorithm for �nding maximum likelihood estimates of the
parameters. This algorithm iteratively maximizes the likelihood function and at the same
time updates the parameter estimates.

The class of Markov-modulated population process considered in Chapter 2 can be
extended to the more general class of continuous-time quasi birth-death processes. Chap-
ter 3 introduces this class of models in terms of a bivariate Markov process. The goal
is to evaluate the likelihood function based on discrete-time observations of the popula-
tion process. To achieve this, we need insight in the transient behaviour of the bivariate
Markov process. It is shown how the time-dependent distribution of the Markov process
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can be numerically approximated in an accurate and e�cient way, using the so-called
Erlangization technique. With this time-dependent distribution, the likelihood can be
evaluated and numerically maximized to �nd maximum likelihood estimates.

Chapter 4 can be seen as a follow-up chapter to Chapter 3. It considers a class of
processes, which we call the class of on/o�-seq-L processes, inspired by a speci�c biological
application, namely, the number of mRNA molecules in single living cells. An on/o�-seq-
L process can be seen as a birth-death process of which the births are regulated by an
on/o� mechanism and follow a sequential process consisting of multiple steps. The goal is
to evaluate the likelihood function based on discrete-time observations of the population
process, and to estimate all model parameters. This in turn is applied to real-life mRNA
data. An important step in reaching this goal, is the realization that an on/o�-seq-L
process is a special case of the quasi birth-death process covered in Chapter 3. Hence, we
can rely on the technique introduced in Chapter 3 to approximate the likelihood function
for the on/o�-seq-L process.

Where the �rst chapters consider one-dimensional population processes, Chapter 5
covers multivariate population processes, in which the population lives on a multi-node
(rather than single-node) network. Besides the births and deaths that can occur on each
node, individuals can move along the edges between the nodes of the network. In addition,
the multivariate population process is again considered under Markov-modulation. The
goal is to estimate all model parameters, based on discrete-time observations of the mul-
tivariate population process. Note that the model parameters now include the birth- and
death parameters corresponding to each node, the parameters related to the movement
along the edges, and the parameters related to the modulation. To deal with the high
complexity of this model, a discrete-time population process is considered, in contrast
to the continuous-time models in the chapters before. The likelihood function is then
accurately approximated by applying saddlepoint approximations, which is a technique
highly suitable for the network structure of the model. The likelihood function can again
be numerically maximized to �nd maximum likelihood estimates.

All Chapters 2�5 described above, contain an extensive simulation study to investigate
the accuracy of the inference method. Chapter 6 completes the thesis with concluding
remarks on the di�erences between the models and the techniques and with a look-out on
further research. Chapters 2�5 can be read independently of each other, but Chapter 4
refers back to the Erlangization technique introduced in Chapter 3. Chapters 2,3 and 5
of this thesis are based on the following papers, respectively.

(i) M. de Gunst, B. Knapik, M. Mandjes and B. Sollie. Parameter estimation for a
discretely observed population process under Markov-modulation. Computational
Statistics & Data Analysis, 140: 88�103, 2019.

(ii) M. Mandjes and B. Sollie. A numerical approach for evaluating the time-dependent
distribution of a quasi birth-death process. Under revision.

(iii) M. de Gunst, S. Hautphenne, M. Mandjes and B. Sollie. Parameter estimation for
multivariate population processes: a saddlepoint approach. Stochastic Models, 37:
168�196, 2021.



2. Markov-modulated population processes

A Markov-modulated independent sojourn process is a population process in which in-
dividuals arrive according to a Poisson process with Markov-modulated arrival rate, and
leave the system after an exponentially distributed time. A procedure is developed to
estimate the parameters of such a system, including those related to the modulation. It
is assumed that the number of individuals in the system is observed at equidistant time
points only, whereas the modulating Markov chain cannot be observed at all. An algo-
rithm is set up for �nding maximum likelihood estimates, based on the EM algorithm and
containing a forward�backward procedure for computing the conditional expectations. To
illustrate the performance of the algorithm the results of an extensive simulation study
are presented.

2.1 Introduction

Population processes have been studied extensively, owing to their applicability in a broad
range of areas such as biology, medicine, economics and operations research. A speci�c
type of population process is one in which individuals arrive in a system, but once in
the system they do not interfere with each other, and their sojourn times�that is, the
times the individuals spend in the system�are independent. In queueing theory, this is
conveniently called an in�nite-server queue. A commonly imposed assumption is that of
Poisson arrivals, but in many real life systems the arrival process is substantially more
variable, for example alternating between busy and quiet periods. In such situations the
Markov-modulated Poisson process (MMPP) is a more suitable alternative. The MMPP is
a doubly stochastic Poisson process of which the rate is determined by a �nite, continuous-
time Markov chain, also referred to as the background process, such that the rate switches
between distinct values at the jump times of the modulating Markov chain.

In this chapter we consider a population process with independent sojourn times�
or of the in�nite server type�fed by an MMPP arrival process, and will refer to it as
a Markov-modulated independent sojourn (MMIS) process. This class of models can
be seen as birth-death processes under modulation, and has applications across various
disciplines, see for example, [5, 48, 65]. We note that in queueing theory this process is
also known as the M/M/∞ queue in a random environment [48]. For more background
information on this kind of stochastic models, see for example [47, Ch. 3 and 6]. We also
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remark that the cumulative arrival process is a counting process.

We are interested in estimating the unknown parameters of this system�including
those related to the modulation. We assume that the population size can be observed,
but the modulating Markov chain cannot. More speci�cally, the number of individuals
present is recorded only at equidistant points in time, which re�ects the fact that in
most practical situations it is infeasible to observe the process continuously in time. We
further assume that the times the individuals spend in the system are independent and
exponentially distributed with a constant (that is, non-modulated) rate parameter. Since
in many applications the departure rate can be controlled or is otherwise known, we
develop our estimation procedure for the case that this rate parameter is known. We then
show that under a natural additional assumption, the departure rate parameter can be
estimated together with the parameters of the arrival process in a similar way.

An analysis of the MMIS process in terms of generating functions and moments can
be found in [48], while asymptotic properties have been investigated in [4, 14]; see also the
recent paper [52]. In the setting of queueing systems several parameter estimation pro-
cedures have been proposed for the analysis of in�nite-server queues with non-modulated
Poisson arrivals. We mention the method of moments and the maximum likelihood proce-
dure for estimating the arrival rate developed in [55]. Here it is assumed that all arrivals
and departures are observed, without knowing which departure belongs to which arrival.
Another relevant reference is [11], in which a parametric and a non-parametric procedure
are derived for estimating the arrival rate based on continuous-time observations of the
population size, as well as a non-parametric estimation method based on the idle and
busy periods.

Outside the setting of queueing systems, substantial attention has been paid to param-
eter estimation for counting processes which are a�ected by a hidden background process.
Because of the hidden background process, missing data are intrinsic to estimation in this
context, and the EM algorithm [25] plays an essential role. The �rst class of models with a
hidden background process for which parameter estimation was considered, is the class of
discrete-time hidden Markov models. The Baum�Welch algorithm [56, 69], which is used
for parameter estimation in hidden Markov models, is essentially an EM algorithm. Later
on, various continuous-time processes have been considered as well. It has been shown
how to apply the EM algorithm to the class of phase-type distributions [8], the class of
MMPPs [63, 61] and, more generally, to the class of Markov-modulated Markov processes
[27]. Rydén's EM algorithm for MMPPs can also be used for parameter estimation in
Markovian arrival processes. An improved algorithm for this case has been proposed
in [49]. In this body of literature estimation is performed based on observations of the
counting process, the cumulative arrival process in the MMIS system. This is a marked
di�erence with our setting, in which we wish to learn the system's input parameters from
data on the population size. A speci�c case of parameter estimation for a Markovian
arrival process from population size data is presented in [31], where Markovian binary
trees are considered. This is, again, a setting very di�erent from ours.

To the best of our knowledge, parameter estimation for MMIS processes under the
particular assumptions on the data that we formulated above, has not been studied so
far. In all papers listed above it is assumed that the counting process can be observed
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continuously in time, and as a result, missing data only arise due to the hidden nature
of the background process. Parameter estimation results for arrival processes based on
discretely observed data are known only for the class of Markovian arrival processes [50,
15], for which naturally the EM algorithm was used as well. However, in these papers
the data directly concern the cumulative arrival process as their models do not include
departures, whereas in our setting we only indirectly observe the e�ect of the arrivals,
namely through the population size.

In our context the parameter estimation is seriously complicated by (i) the fact that
the modulating Markov chain of the Markov-modulated arrival process is not observed,
and (ii) that the population size is not observed continuously in time. Issue (i) entails
that it is not known when the arrival rate changes value, and issue (ii) that it is not pos-
sible to deduce from the observations the number of arrivals or the number of departures
between two consecutive observations. To deal with these complications we treat the
modulating continuous-time Markov chain and the number of arrivals between two con-
secutive observations as missing data, and, making use of the EM algorithm, develop an
explicit algorithm to �nd maximum likelihood estimates of the parameters. Our approach
borrows some elements of the one proposed by Okamura et al. [50], but the adaptation
of their estimation algorithm to our setting is not straightforward. Although we end up
with the same type of parameter updates as the ones they employ, the computations of
these updates require major adjustments to the steps of their algorithm. In particular, we
use a di�erent method to obtain the required transition probabilities and we rede�ne the
forward and backward vectors. The conditional expectations in the parameter updates
can be expressed as integrals containing these vectors in a similar way as in [50], but the
computations of these integrals now demand solving a signi�cantly more involved system
of di�erential equations.

The remainder of this chapter is organized as follows. In Section 2.2 we de�ne our
statistical model, the MMIS process, and we state the estimation problem. In Section 2.3
we derive the estimation algorithm. We investigate the accuracy of the proposed estima-
tion method by a simulation study in Section 2.4. Section 2.5 discusses an extension in
which the departure rate is not known and estimated as well. The chapter concludes with
a discussion in Section 2.6.

2.2 Model and estimation

We consider an MMIS process where the arrivals follow an MMPP driven by a modulating
continuous-time Markov chain of which each state corresponds to a di�erent arrival rate
value. In this section the mathematical formulation of this model and the corresponding
estimation problem are presented.
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2.2.1 Markov-modulated independent sojourn process

The modulating continuous-time Markov chain with state space {1, . . . , d}, d ≥ 2, that
de�nes the state of the arrival process at time t, will be denoted by {Xt}t≥0. Its transition
rate matrix is given by Q = (qij)

d
i,j=1 and its initial state distribution at t = 0 by π =

(π1, . . . , πd)
>. We de�ne qi = −qii =

∑
j 6=i qij as the total rate at which the Markov chain

jumps out of state i. The MMPP models the cumulative arrival process {At}t≥0 with
corresponding time-inhomogeneous arrival rate λ(t). This rate stochastically alternates
between d di�erent rates λ1, . . . , λd in such a way that λ(t) = λi if Xt = i, for i =
1, . . . , d. We assume that the sojourn times are independent and identically exponentially
distributed with rate µ > 0.

Let {Mt}t≥0 be the population size at time t. Then {Mt, Xt}t≥0 is a joint Markov
process with corresponding transition probabilities

pij(m,m
′; t) = P(Mt = m′, Xt = j |M0 = m,X0 = i), (2.1)

for all t ≥ 0 and m,m′ ≥ 0. For each combination of m and m′, we de�ne for t > 0, the
d× d transition matrix Pt(m,m

′) containing these transition probabilities by

[Pt(m,m
′)]ij = pij(m,m

′; t). (2.2)

We assume that the process {Mt} is observed at n+1 equidistant time points tk = k∆ for
some �xed ∆ > 0, 0 ≤ k ≤ n, and denote the corresponding observations by m0, . . . ,mn.
These n + 1 observations constitute the available data set. Associated with these data,
we will write Mk

l for the vector (Mtl , . . . ,Mtk)
>, and mk

l for the vector of observations
(ml, . . . ,mk)

>, 0 ≤ l ≤ k ≤ n.
For the forthcoming analysis, it will be convenient to introduce a number of additional

random variables. The indicator random variable for the event that at time t = 0 the
background process is in state i will be denoted by Bi, that is,

Bi = 1{X0=i}, i = 1, . . . , d.

We also de�ne, for all k = 1, . . . , n and i = 1, . . . , d, the following random variables
corresponding to the k-th interval

(
tk−1, tk

]
:

Z
[k]
i = the total amount of time spent in state i by {Xt};

Y
[k]
ij = the total number of state transitions of {Xt} from state i to j (j 6= i);

A
[k]
i = the total number of arrivals while the background process is in state i.

Finally, in the sequel we will write X = {Xt : 0 ≤ t ≤ tn}, Y =
∑n

k=1

∑d
i=1

∑
j 6=i Y

[k]
i,j and

A = {A[k]
i : i = 1, . . . , d, k = 1, . . . , n}. We see that Y equals the total number of jumps

of {Xt} in (0, tn]. Let J1, . . . , JY be the corresponding jump times of {Xt}, and J0 = 0.
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The corresponding states after the jumps will be denoted by S0, . . . , SY , so that Sl = XJl ,
l = 0, . . . , Y .

2.2.2 Parameter estimation

Our goal is to estimate the unknown parameters of an MMIS process given the number of
states d, and observations m0, . . . ,mn of Mt0 , . . . ,Mtn . We consider the setting that the
departure rate µ is time-independent and known, and we thus concentrate on estimating
the parameter vector θ = (πi, qij, λi : i, j ∈ {1, . . . , d}, j 6= i)>. The estimate will be

denoted by θ̂ = (π̂i, q̂ij, λ̂i : i, j ∈ {1, . . . , d}, j 6= i)>.

Let v = (1, . . . , 1)> be a vector of size d. By taking into account the background
process {Xt} at the observation times and using (2.1) and (2.2), we �nd that the likelihood
function L0 is given by

L0(θ |Mn
0 ) = Pθ(Mn

0 = mn
0 )

=
∑

x0,...,xn

Pθ(Mt0 = m0, Xt0 = x0, . . . ,Mtn = mn, Xtn = xn)

= π>
( n∏
k=1

P∆(mk−1,mk)
)
v. (2.3)

Maximum likelihood estimation based on (2.3) is problematic, since the likelihood is
expressed in terms of matrix multiplications. These matrix multiplications appear due to
the fact that we observe the process {Mt} only at discrete time points and because the
process {Xt} is unobserved. As indicated above, we will use the EM algorithm to tackle
the estimation problem.

2.3 The algorithm

The EM algorithm starts with an initial input value θ0 and then updates the estimate
θ̂ iteratively. Each iteration in the EM algorithm consists of an expectation step and a
maximization step, which together produce a parameter update θ̃ = (π̃i, q̃ij, λ̃i : i, j ∈
{1, . . . , d}, j 6= i)> from a parameter input θ′ = (π′i, q

′
ij, λ

′
i : i, j ∈ {1, . . . , d}, j 6= i)>. The

key here is that, instead of maximizing the loglikelihood L0 based on the observed data,
the loglikelihood L based on a larger data set is maximized. This larger data set, called
the complete data set, consists of the observed data and missing data. The missing data
can be missing observations, or, as in our case, conveniently chosen unobserved data.

In Section 2.3.1 we describe the expectation and maximization steps and derive ex-
pressions for the parameter updates π̃i, q̃ij and λ̃i. Sections 2.3.2�2.3.5 elaborate on how
to compute these expressions explicitly. Section 2.3.6 summarizes the entire algorithm
with which the parameter estimates can be obtained.
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2.3.1 Parameter updates

To perform the expectation and maximization steps, we consider (A,X) as the missing
data, so that (Mn

0 , A,X) is the complete data set. The loglikelihood function of the
complete data is then

logL(θ|Mn
0 , A,X) = logPθ(Mn

0 |A,X) + logPθ(A,X). (2.4)

For the expectation step of the EM algorithm, we have to compute

Eθ′
[

logL(θ |Mn
0 , A,X)

∣∣Mn
0 = mn

0

]
= Eθ′

[
logPθ(Mn

0 |A,X)
∣∣Mn

0 = mn
0

]
+ Eθ′

[
logPθ(A,X)

∣∣Mn
0 = mn

0

]
. (2.5)

For the maximization step we compute

θ̃ = arg max
θ

Eθ′ [logL(θ|Mn
0 , A,X)|Mn

0 = mn
0 ]

= arg max
θ

Eθ′ [logPθ(A,X)|Mn
0 = mn

0 ]. (2.6)

Note that (2.6) follows from (2.5) because the �rst term on the right hand side of (2.4)
� and hence also of (2.5) � only depends on the known departure rate µ and not on the
unknown parameter θ. Hence, given A and X, the arrivaltimes in each state follow a
uniform distribution by a well-known property of the homogeneous Poisson process, and
therefore Pθ(Mn

0 |A,X) translates into a probability on the departures only.

To �nd the parameter update θ̃ the expectation Eθ′ [logPθ(A,X)|Mn
0 = mn

0 ] needs to
be computed. We �rst observe that

Pθ(A,X) = Pθ(A|X)Pθ(X). (2.7)

By using the partition of the interval (0, tn] into the observation intervals (tk−1, tk], k =
1, . . . , n, we see that

Pθ(A |X) =
n∏
k=1

d∏
i=1

(λiZ
[k]
i )A

[k]
i

(A
[k]
i )!

e−λiZ
[k]
i . (2.8)

For the computation of Pθ(X) we do not use this partition, but consider the entire interval
(0, tn]. We have

Pθ(X) = πS0

Y∏
y=1

(
qSy−1Sye

−qSy−1

(
Jy−Jy−1

))
e−qSY

(
tn−JY

)
. (2.9)
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Combining (2.7), (2.8) and (2.9), and rewriting the obtained expression by aggregating
all terms with πi, all terms with qij and all terms with λi, we �nd

logPθ(A,X) =
d∑
i=1

log(πi)Bi +
∑
i

∑
j 6=i

n∑
k=1

(
Y

[k]
i,j log(qij)− qijZ [k]

i

)

+
d∑
i=1

n∑
k=1

(
A

[k]
i log(λi)− λiZ [k]

i

)
+

d∑
i=1

n∑
k=1

(
A

[k]
i log(Z

[k]
i )− log(A

[k]
i !)

)
.

(2.10)

Substituting this result into (2.6) and solving the equation for θ̃, we obtain the parameter
updates

π̃i = Eθ′ [Bi|Mn
0 = mn

0 ],

q̃ij =

∑n
k=1 Eθ′

[
Y

[k]
i,j

∣∣Mn
0 = mn

0

]∑n
k=1 Eθ′

[
Z

[k]
i

∣∣Mn
0 = mn

0

] ,
λ̃i =

∑n
k=1 Eθ′

[
A

[k]
i

∣∣Mn
0 = mn

0

]∑n
k=1 Eθ′

[
Z

[k]
i

∣∣Mn
0 = mn

0

] .
(2.11)

In the next three sections, we further elaborate on how to compute these parameter
updates explicitly.

2.3.2 Transition probabilities

Before the parameter updates of (2.11) can be computed, some preliminary steps need
to be taken. First we show how to obtain approximations of the transition probability
matrices de�ned in (2.2), which will be used in the next steps.

Exact computation of the transition probability matrices is not feasible, since the com-
putation of the transition probabilities would need taking the exponent of the transition
rate matrix of {Mt, Xt}, which is problematic for systems with in�nite state space. We
therefore approximate our MMIS process by a process in which the population size is
bounded from above by a �nite number C. In other words, we consider the same system
as described above but now with the restriction that there can be at most C individuals
in the system. New arrivals are blocked whenever the system is full. Because of this
restriction, the system will behave slightly di�erently, but we can choose C large enough
such that P(Mt = m) is negligible for m > C for all t. The transition probabilities of
the original system can then be well approximated by the transition probabilities of the
process with population size bounded by C, and we can use

Pt(m,m
′) ≈ PC

t (m,m′), (2.12)

where PC
t (m,m′) is the analog of Pt(m,m

′) for the system with population size bounded
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by C.

For the system with population size bounded by C we can �nd the transition proba-
bilities by taking the exponent of its d(C + 1)× d(C + 1) transition rate matrix RC . This
transition rate matrix has a tridiagonal form and is given by

RC =



R0 R1

0µId R0−µId
. . .

2µId
. . . R1

. . . R0−(C−1)µId R1

0 CµId Q−CµId


,

where Id is the d × d identity matrix, R1 = diag{λ1, . . . , λd} and R0 = Q − R1. The
t-time transition probability matrix is obtained by taking the matrix exponent of RCt.
Note that this probability matrix is a composition of the d× d block matrices PC

t (m,m′)
in which, for �xed 0 ≤ m,m′ ≤ C, the (i, j)-th entry is equal to the transition probability
pCij(m,m

′; t). More speci�cally, let us de�ne, for 0 ≤ i ≤ C, ei as the d(C + 1)× d matrix
which consists of the identity matrix Id at the (i+ 1)-th block and zeros elsewhere. Then

PC
t (m,m′) = e>m [eR

Ct] em′ . (2.13)

2.3.3 Forward and backward vectors

We will now introduce the forward and backward vectors that are involved in the EM-
algorithm for the MMIS process and show how to compute them. These forward and
backward vectors will be used to obtain the conditional expectations in (2.11).

The forward vector fk,θ(m,u) is de�ned for k = 0, . . . , n, m ≥ 0 and 0 ≤ u ≤ ∆, as
the vector of length d with i-th entry

[fk,θ(m,u)]i = Pθ(Mk
0 = mk

0,M(tk+u)− = m,X(tk+u)− = i). (2.14)

The backward vector bk,θ(m,u) is de�ned for k = 0, . . . , n− 1, m ≥ 0 and 0 ≤ u ≤ ∆, as
the vector of length d with i-th entry

[bk,θ(m,u)]i = Pθ(Mn
k = mn

k |M(tk−u)+ = m,X(tk−u)+ = i). (2.15)

In the above, the notation M and X with indices (tk + u)− and (tk − u)+ indicates the
values of M and X just before time (tk + u) and just after time (tk − u), respectively.

To compute fk,θ(m,u) and bk,θ(m,u) in an e�cient way, we �rst consider the special
cases fk,θ = fk,θ(mk, 0) and bk,θ = bk,θ(mk, 0). In view of (2.1) and (2.2) we have for
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i = 1, 2,

[fk,θ]i =
∑

x0,...,xk−1

πx0

k∏
l=1

Pθ(Mtl = ml, Xtl = xl|Mtl−1
= ml−1, Xtl−1

= xl−1)

=
[( k∏

l=1

P∆(ml−1,ml)
)>
π
]
i
,

and

[bk,θ]i =
∑

xk+1,...,xn

n∏
l=k+1

Pθ(Mtl = ml, Xtl = xl|Mtl−1
= ml−1, Xtl−1

= xl−1)

=
[( n∏

l=k+1

P∆(ml−1,ml)
)
v
]
i
.

Since, for k = 1, . . . , n,

fk,θ = P∆(mk−1,mk)
>fk−1,θ, with initial condition f0,θ = π, (2.16)

and for k = 0, . . . , n− 1,

bk,θ = P∆(mk,mk+1)bk+1,θ, with initial condition bn,θ = v, (2.17)

we see that fk,θ and bk,θ can be computed recursively. After the computation of f1,θ, . . . , fn,θ
and b0,θ, . . . , bn−1,θ by the recurrence relations (2.16) and (2.17), respectively, the general
versions fk,θ(m,u) and bk,θ(m,u) can be computed by

fk,θ(m,u) = Pu(mk,m)>fk,θ,

and

bk,θ(m,u) = Pu(m,mk)bk,θ,

which can be evaluated using (2.12) and (2.13).

2.3.4 Conditional expectations

Having seen how to compute the transition probability matrices of (2.2) and the forward
and backward vectors, which are necessary tools for the computation of the conditional
expectations in (2.11), we are ready to derive expressions for these conditional expecta-
tions in terms of the fk,θ(m,u) and bk,θ(m,u). Below we will make frequent use of the
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de�nitions (2.14) and (2.15) of these forward and backward vectors.

As a start, we note that

Eθ′
[
Bi

∣∣Mn
0 = mn

0

]
=

1

Pθ′(Mn
0 = mn

0 )
Eθ′
[
Bi 1{Mn

0 =mn0 }
]
. (2.18)

In (2.18) Bi can be replaced by Y
[k]
i,j , Z

[k]
i or A

[k]
i , to obtain an analogous relationship

for the other conditional expectations in (2.11). Since Pθ′(Mn
0 = mn

0 ) on the right-hand
side of these relations is given by (2.3), we only need expressions in terms of the for-

ward and backward vectors for the expectations Eθ′
[
Bi 1{Mn

0 =mn0 }
]
, Eθ′

[
Y

[k]
i,j 1{Mn

0 =mn0 }
]
,

Eθ′
[
Z

[k]
i 1{Mn

0 =mn0 }
]
and Eθ′

[
A

[k]
i 1{Mn

0 =mn0 }
]
.

First, we observe that Eθ′
[
Bi 1{Mn

0 =mn0 }
]
is simply computed by

Eθ′
[
Bi 1{Mn

0 =mn0 }
]

= Pθ′(X0 = i,Mn
0 = mn

0 ) = π′i[b0,θ′ ]i. (2.19)

Second, for Eθ′
[
Y

[k]
i,j 1{Mn

0 =mn0 }
]
, we have that

Eθ′
[
Y

[k]
i,j 1{Mn

0 =mn0 }
]

=

∫ ∆

0

Pθ′(X(tk−1+τ)− = i,X(tk−1+τ)+ = j,Mn
0 = mn

0 )dτ

=

∫ ∆

0

∞∑
m=0

Pθ′(Mn
k = mn

k |X(tk−1+τ)+ = j,M(tk−1+τ)+ = m)q′ij

Pθ′(Mk−1
0 = mk−1

0 , X(tk−1+τ)− = i,M(tk−1+τ)− = m)dτ, (2.20)

where in the second step we conditioned on the population size at time τ , and used the
Markov property. The last integral in (2.20) can be rewritten in terms of the forward and
backward vectors fk,θ(m,u) and bk,θ(m,u), to obtain

Eθ′
[
Y

[k]
i,j 1{Mn

0 =mn0 }
]

=

∫ ∆

0

∞∑
m=0

[fk−1,θ′(m, τ)]iq
′
ij[bk,θ′(m,∆− τ)]jdτ. (2.21)

In a similar way, we have for Eθ′
[
Z

[k]
i 1{Mn

0 =mn0 }
]
,

Eθ′
[
Z

[k]
i 1{Mn

0 =mn0 }
]

=

∫ ∆

0

Pθ′(Xtk−1+τ = i,Mn
0 = mn

0 )dτ

=

∫ ∆

0

∞∑
m=0

Pθ′(Mk−1
0 = mk−1

0 ,Mtk−1+τ = m,Xtk−1+τ = i)

Pθ′(Mn
k = mn

k |Mtk−1+τ = m,Xtk−1+τ = i)dτ. (2.22)
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Rewriting (2.22) in terms of fk,θ(m,u) and bk,θ(m,u), we get

Eθ′
[
Z

[k]
i 1{Mn

0 =mn0 }
]

=

∫ ∆

0

∞∑
m=0

[fk−1,θ′(m, τ)]i[bk,θ′(m,∆− τ)]idτ. (2.23)

Lastly, we �nd the expression for Eθ′
[
A

[k]
i 1{Mn

0 =mn0 }
]
. Let At be the event that an arrival

occurs at time t > 0. Then

Eθ′
[
A

[k]
i 1{Mn

0 =mn0 }
]

=

∫ ∆

0

Pθ′(Aτ , Xτ = i,Mn
0 = mn

0 )dτ

=

∫ ∆

0

∞∑
m=0

Pθ′(Mk−1
0 = mk−1

0 ,M(tk−1+τ)− = m,X(tk−1+τ)− = i)

Pθ′(M(tk−1+τ)+ = m+ 1, X(tk−1+τ)+ = i |M(tk−1+τ)− = m,X(tk−1+τ)− = i)

Pθ′(Mn
k = mn

k |M(tk−1+τ)+ = m+ 1, X(tk−1+τ)+ = i) dτ,

and rewriting in terms of fk,θ(m,u) and bk,θ(m,u) yields

Eθ′
[
A

[k]
i 1{Mn

0 =mn0 }
]

=

∫ ∆

0

∞∑
m=0

[fk−1,θ′(m, τ)]iλ
′
i[bk,θ′(m+ 1,∆− τ)]i dτ. (2.24)

We note that the obtained results (2.21), (2.23) and (2.24) are very similar, but that there
are some minor but crucial di�erences. The entries of the forward and backward vectors
di�er per expression and the variable in the backward vector is equal to m + 1 in (2.24)
in contrast to m in (2.21) and (2.23).

2.3.5 Di�erential equations method

In order to use equations (2.21), (2.23) and (2.24) for computing the parameter updates of
(2.11), we need a method to compute the integrals on their right-hand sides in an e�cient
way. For this we propose a di�erential equations method.

Because [fk−1,θ′(m, τ)]i is negligible for m > C, we may truncate the sums in (2.21),
(2.23) and (2.24) at the �nite bound C. Next, we introduce, for 0 ≤ m,m′ ≤ C and t > 0,
the d× d matrix

Gk,θ(m,m
′, t) =

∫ t

0

bk,θ(m
′, t− τ)fk−1,θ(m, τ)>dτ, (2.25)
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so that the conditional expectations in (2.11) become equal to

Eθ′
[
Y

[k]
i,j

∣∣Mn
0 = mn

0

]
=

q′ij
Pθ′(Mn

0 = mn
0 )

C∑
m=0

[Gk,θ′(m,m,∆)]i,j, (2.26)

Eθ′
[
Z

[k]
i

∣∣Mn
0 = mn

0

]
=

1

Pθ′(Mn
0 = mn

0 )

C∑
m=0

[Gk,θ′(m,m,∆)]i,i, (2.27)

Eθ′
[
A

[k]
i

∣∣Mn
0 = mn

0

]
=

λ′i
Pθ′(Mn

0 = mn
0 )

C−1∑
m=0

[Gk,θ′(m,m+ 1,∆)]i,i. (2.28)

To facilitate the computation of (2.26)�(2.28), we derive a system of di�erential equations
for Gk,θ(m,m

′, t).

For fk,θ(m,u) and bk,θ(m,u) a system of di�erential equations can be easily obtained
from the derivatives of the corresponding transition probabilities while making use of
(2.13), (2.14) and (2.15). For the forward vector, this yields for 1 ≤ m ≤ C − 1,

d

du
fk,θ(0, u) = R>0 fk,θ(0, u) + µfk,θ(1, u),

d

du
fk,θ(m,u) = R>1 fk,θ(m− 1, u) +R>0 fk,θ(m,u)

+ (m+ 1)µfk,θ(m+ 1, u)−mµfk,θ(m,u),

d

du
fk,θ(C, u) = Q>fk,θ(C, u) +R>1 fk,θ(C − 1, u)− Cµfk,θ(C, u),

(2.29)

with initial condition f0,θ(m0, 0) = π, and for the backward vector we �nd for 0 ≤ m ≤
C − 1,

d

du
bk,θ(m,u) = R1bk,θ(m+ 1, u) +R0bk,θ(m,u)

+mµbk,θ(m− 1, u)−mµbk,θ(m,u),

d

du
bk,θ(C, u) = Qbk,θ(C, u) + Cµbk,θ(C − 1, u)− Cµbk,θ(C, u),

(2.30)

with initial condition bn,θ(mn, 0) = v. Furthermore, from (2.25) we get

d

dt
Gk,θ(m,m

′, t) =

∫ t

0

d

dt
bk,θ(m

′, t− τ)fk−1,θ(m, τ)>dτ + bk,θ(m
′, 0)fk−1,θ(m, t)

>. (2.31)

Combining the di�erential equations for the backward vectors from (2.30) and (2.31), we
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obtain, for m = 0, . . . , C, the following system of di�erential equation for Gk,θ(m,m
′, t):

d

dt
Gk,θ(m,m

′, t) = R1Gk,θ(m,m
′ + 1, t) +R0Gk,θ(m,m

′, t) +m′µGk,θ(m,m
′ − 1, t)

−m′µGk,θ(m,m
′, t) + bk,θ(m

′, 0)fk−1,θ(m, t)
>, 0 ≤ m′ ≤ C − 1

d

dt
Gk,θ(m,C, t) = QGk,θ(m,C, t) + CµGk,θ(m,C − 1, t)

− CµGk,θ(m,C, t) + bk,θ(C, 0)fk−1,θ(m, t)
>.

(2.32)

Note that these di�erential equations contain the term bk,θ(m
′, 0)fk−1,θ(m, t)

>, in which
fk−1,θ(m, t) depends on the variable of di�erentiation t. Therefore, the di�erential equa-
tions for the forward vectors in (2.29) are needed to solve the di�erential equations for
Gk,θ(m,m

′, t).

Analyzing the system of di�erential equations in (2.32) a bit further, we observe that
the system can be split into d independent systems of di�erential equations. For this,
we consider each column of the matrix Gk,θ(m,m

′, t) separately. Let the j-th column of
Gk,θ(m,m

′, t) be denoted by [Gk,θ(m,m
′, t)]j. Then for each j = 1, . . . , d, we stack the

j-th columns of the matrices Gk,θ(0,m
′, t), . . . , Gk,θ(C,m

′, t), into d(C + 1)-dimensional
vectors of the form

Gk,θ(m
′, t)j =


[Gk,θ(0,m

′, t)]j

[Gk,θ(1,m
′, t)]j

...

[Gk,θ(C,m
′, t)]j

 .

From (2.32) it follows that

d

dt
Gk,θ(m

′, t)j = RCGk,θ(m
′, t)j + ck,θ(t)j, (2.33)

where ck,θ(t)j is a vector containing [fk−1,θ(m
′, t)]j[bk,θ]1 and [fk−1,θ(m

′, t)]j[bk,θ]2 at its
entries 2m′ + 1 and 2m′ + 2 respectively, and zeros elsewhere. We note that for each
j = 1, . . . , d, (2.33) is a linear system of di�erential equations for which the solution is
equal to

Gk,θ(m
′, t)j =

∫ t

0

eR
C(t−s)ck,θ(t)jds.
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2.3.6 Summarized algorithm

In Sections 2.3.1�2.3.5, we elaborated on the expectation and maximization steps to �nd
the parameter updates. Iteratively repeating the above obtained building blocks for com-
puting the parameter updates results in the complete algorithm for obtaining estimates
of the arrival parameters. The algorithm is presented below.

Algorithm

1 Determine initial values θ0 = (π0
i , q

0
ij , λ

0
i : i, j ∈ {1, . . . , d}, j 6= i)> and set θ′ = θ0.

2 Compute fk,θ′ for k = 1, . . . , n− 1 and bk,θ′ for k = 0, . . . , n− 1 by recurrence relations (2.16)

and (2.17).

3 Compute Gk,θ′(m,m,∆) and Gk,θ′(m,m + 1,∆) for all m = 0, . . . , C and k = 1, . . . , n by

solving di�erential equations (2.32).

4 Compute conditional expectations (2.19), (2.26), (2.27) and (2.28) for all k = 1, . . . , n.

5 Compute parameter updates according to (2.11).

6 If stopping criterion is not satis�ed, set θ′ = θ̃ and go to step 2; else stop algorithm and use

�nal parameter update θ̃ as parameter estimate θ̂ = (π̂i, q̂ij , λ̂i : i, j ∈ {1, . . . , d}, j 6= i)>.

Remark 1. The stopping criterion for the algorithm can be chosen in di�erent ways.
As proposed in [50], a reasonable choice is to let the stopping criterion depend on the
di�erence in the loglikelihood functions based on the observed data. In this case the
stopping criterion would be given by∣∣∣ logL0(θ̃ |Mn

0 = mn
0 )− logL0(θ′ |Mn

0 = mn
0 )
∣∣∣ < ε, (2.34)

where ε can be chosen arbitrarily small. Another possibility is to let the stopping criterion
depend on the di�erence between the obtained parameter updates. The stopping criterion
would then be

‖θ̃ − θ′‖
‖θ′‖

< ε.

Remark 2. The observation times t0, . . . , tn are de�ned as equidistant time points with
tk = k∆. However, the current approach can be applied with general, non-equidistant
time points as well. For this, de�ne the sequence ∆1, . . . ,∆n of lengths of the observation
intervals, hence ∆k = tk − tk−1 and tk =

∑k
i=1 ∆i. The parameter estimates in (2.11) will

stay the same, but the integrals in (2.21), (2.23) and (2.24) will have upper bound ∆k

instead of ∆, and hence, the Gk,θ′ matrices in (2.26)�(2.28) will depend on ∆k instead of
∆. The algorithm in Section 2.3.6 will remain completely the same.
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Remark 3. The main di�erences between the steps in the algorithm above and the one
presented in [50] are the following. In our algorithm the forward and backward vectors
featuring in step 2 are rede�ned in terms of population size (instead of arrivals), and we
need a di�erent method to obtain the transition probabilities required to compute these
vectors. Additionally, the di�erential equations appearing in step 3 are more involved,
since the Gk,θ(m,m

′, t) matrices here are de�ned in terms of population size as well, and
therefore require a di�erent solution method. Moreover, our model includes departures
and our algorithm enables the estimation of the departure rate (see Section 2.5 below),
which is not considered in [50].
Remark 4. With the algorithm not only point estimates, but also bootstrap con�dence
intervals can be obtained, see Section 2.4.1 below.

2.4 Simulations

In this section, we investigate the accuracy of the proposed algorithm by means of a
simulation study. The algorithm was applied to several simulated data sets with varying
values of the model parameters, including the time between two observations, ∆, and
the sample size n. We simulated the MMIS process with two states, that is d = 2, and
considered examples in the relevant regime where the background process is relatively slow
with respect to the arrival process. If the background process is too fast, the modulated
arrival process will be averaged to a Poisson process with a homogeneous rate equal to
λ∞ = π1λ1 + π2λ2 (see [4]), and as a consequence the modulation will not be detectable
from data on the population size.

The algorithm was implemented in MATLAB with the likelihood-based stopping cri-
terion (2.34). Choosing the initial values is a pragmatic procedure and depends on the
data setting. Here, the e�ect of the choice on the initial value for π is negligible, since the
parameter updates for π quickly converge to a 0-1 vector. For this reason, the initial value
π0 was set to (0.5, 0.5), and the results on π̂ were omitted in this section. We used a rough
guess on the trace of the background process in combination with moment estimators to
�nd the initial values for the other parameters. There is no crucial di�erence between
the implementation of the algorithm for d > 2 and for d = 2. The analysis presented in
Section 2.3.5 reveals that as d increases by one, only the length of the vectors Gk,θ(m

′, t)i
and the size of the matrix RC change, both by C + 1. Importantly, in the vast majority
of real life processes for which an MMPP is an appropriate model, the number of states
is low, and typically 2.

In Section 2.4.1, we discuss the in�uence of ∆ and n on the parameter estimates by
varying the values of ∆ and n. In Section 2.4.2, we explore the in�uence of the timescale
of the background process {Xt} on the parameter estimates by varying the values of the
parameters q1 and q2.
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2.4.1 In�uence of ∆ and n

We considered the MMIS process with parameter values π = (1, 0)>, q1 = 0.3, q2 = 0.9,
λ1 = 4, λ2 = 18, and µ = 0.6. We simulated 100 times the complete path up to
time T = tn = n∆ of the background process {Xt} and the corresponding population
process {Mt} with these parameter values. From this we computed for each of the 100
simulations for various values of ∆ and n the realization of the data vector (Mt0 , . . . ,Mtn),
which corresponds to the available data if one would observe the number of individuals
at times t0, . . . , tn only. To investigate the in�uence of the interval length ∆, we �xed the
total observation time T = 100, and considered ∆ = 0.1, ∆ = 0.05 and ∆ = 0.025. To
investigate the in�uence of the number of observations n, we �xed ∆ = 0.05 and chose
n = 500, n = 1000, n = 2000, n = 3000 and n = 4000. Because for n = 2000 we could use
the data vectors that were already computed from the 100 simulations for the combination
T = 100 and ∆ = 0.05, from each simulation with ∆ = 0.05 four additional data vectors
had to be generated for the other values of n.

Results

The results of the �rst part of the study, where we considered the three di�erent values
of ∆, are presented in Table 2.1. This table shows for each ∆ (rows) and each parame-
ter (columns), the mean of the 100 estimates together with the corresponding standard
deviation between brackets. All rows are quite similar, from which we can conclude that
∆ = 0.1 is already small enough to obtain estimates which lie close to the true parameter
values. However, as ∆ decreases there is a small decrease in the standard deviations,
hence the estimates become more accurate as ∆ decreases.

n ∆ q1 q2 λ1 λ2

1000 0.1 0.321 (0.105) 0.955 (0.370) 3.883 (0.372) 17.952 (1.528)
2000 0.05 0.321 (0.101) 0.954 (0.346) 3.902 (0.344) 17.911 (1.416)
4000 0.025 0.317 (0.089) 0.958 (0.320) 3.945 (0.323) 17.960 (1.346)

Table 2.1: Mean of estimates of 100 data sets, with corresponding standard deviation
between brackets. True parameter values: q1 = 0.3, q2 = 0.9, λ1 = 4, λ2 = 18.

For the second part of the study, where we examined increasing values of n, the results
are shown in Table 2.2 and Figures 2.1�2.4. Table 2.2 contains for each sample size (rows)
and for each parameter (columns), the mean values of the 100 estimates together with
the corresponding standard deviation between brackets. Figures 2.1�2.4 show histograms
of the 100 estimates for the parameters q1, q2, λ1 and λ2, respectively, where each �gure
contains �ve histograms corresponding to the �ve di�erent values of n. We see from Table
2.2 that the means of the estimates lie closer to the true parameter values for larger values
of n. Furthermore, the standard deviations decrease as n increases, which means that the
estimates become more accurate when n gets larger. The decrease in standard deviation
is also visible in the histograms. Each �gure shows that the estimates are concentrated
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around the true parameter value, but their standard deviation clearly decreases as n
becomes larger. In addition, the histograms look more and more bell-shaped, which is
indicative of the distributions of the estimators becoming approximately normal when n
increases.

n q1 q2 λ1 λ2

500 0.445 (0.441) 1.205 (0.897) 3.899 (0.847) 17.270 (3.780)
1000 0.345 (0.152) 1.026 (0.556) 3.918 (0.483) 17.751 (2.004)
2000 0.321 (0.101) 0.954 (0.346) 3.902 (0.344) 17.911 (1.416)
3000 0.315 (0.083) 0.935 (0.281) 3.942 (0.266) 18.028 (1.224)
4000 0.316 (0.076) 0.940 (0.228) 3.969 (0.236) 18.087 (1.044)

Table 2.2: Mean of estimates of 100 data sets, with corresponding standard deviation
between brackets for ∆ = 0.05. True parameter values: q1 = 0.3, q2 = 0.9, λ1 = 4, λ2 = 18.

Figure 2.1: Histograms of the obtained estimates for q1, with n increasing from left to
right.
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Figure 2.2: Histograms of the obtained estimates for q2, with n increasing from left to
right.

Figure 2.3: Histograms of the obtained estimates for λ1, with n increasing from left to
right.
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Bootstrap con�dence intervals

We note that this kind of simulation can also be used to construct bootstrap con�dence
intervals from a real data set. Suppose that a real data set is available with sample size
n and interval length ∆, and that with the estimation algorithm the parameter estimates
q̂1, q̂2, λ̂1 and λ̂2 have been obtained. Bootstrap con�dence intervals for these parameters
can then be computed by similar simulations as above in the following way. Choose B > 0
large, for example B = 1000, and simulate B new data sets with sample size n and interval
length ∆ using the parameter values q̂1, q̂2, λ̂1 and λ̂2. Compute for each simulated data
set the corresponding parameter estimates using the estimation algorithm. This yields
for each parameter, B bootstrap estimates. These, together with the original estimate,
can then be used to construct the con�dence interval. As our results above illustrate, the
larger the sample size n, the more accurate the parameter estimates will be. Hence, the
larger the sample size n, the smaller the con�dence intervals will be.

Figure 2.4: Histograms of the obtained estimates for λ2, with n increasing from left to
right.

2.4.2 In�uence of the speed of the background process

We now �x ∆ = 0.05 and n = 4000 and consider the same parameter values as in the
previous section, but speed up the background process by varying the values of q1 and q2.
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We investigated the following four scenarios, where we kept the ratio q2/q1 = 3 �xed:

1. q1 = 0.1, q2 = 0.3;

2. q1 = 0.3, q2 = 0.9;

3. q1 = 0.5, q2 = 1.5;

4. q1 = 1.5, q2 = 4.5.

Results

Table 2.3 shows, for each setting (rows) and for each parameter (columns), the mean
values of the 100 estimates together with the corresponding standard deviation between
brackets. The mean estimates lie close to the true parameter values for each of the four
settings. However, the standard deviations clearly increase as the speed of the background
process becomes higher (q1 and q2 increase). The slower the background process, the easier
it is for the algorithm to distinguish the two states and the more accurate the estimates
become.

q1 q2 λ1 λ2

1. 0.108 (0.037) 0.321 (0.105) 3.967 (0.194) 17.953 (0.718)
2. 0.316 (0.076) 0.940 (0.228) 3.968 (0.236) 18.087 (1.044)
3. 0.528 (0.131) 1.555 (0.343) 3.934 (0.299) 18.036 (1.189)
4. 1.535 (0.396) 4.485 (1.150) 3.897 (0.472) 17.964 (1.738)

Table 2.3: Mean of estimates of 100 data sets, with corresponding standard deviation
between brackets, for four settings of the parameter values with ∆ = 0.05 and n = 4000.

2.5 Estimation of the departure rate µ

Let the departure rate µ now be an unknown parameter which we also want to estimate.
In this case the unknown parameter vector is θ = (πi, qij, λi, µ : i, j ∈ {1, . . . , d}, j 6= i)>.
In many situations an appropriate assumption would be that an arriving individual does
not leave the system in the same observation interval as in which it arrived. We will
show that under this assumption the parameter µ can be estimated along with the other
parameters of the system in a similar way to the one in Section 2.3.1. Again, let Mn

0 be
the observed vector and (A,X) be the missing data. For the purpose of this section we
start with rewriting the loglikelihood function of the complete data by conditioning on X
only, instead of on A and X as we did in (2.4). We have

logL(θ|Mn
0 , A,X) = logPθ(Mn

0 , A|X) + logPθ(X). (2.35)
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In Section 2.3.1, Pθ(X) is computed, so the second term on the right hand side of (2.35)
can be rewritten using (2.9). However, to �nd an expression for the �rst term, a few
minor computations need to be made. We use the partition of the interval (0, tn] into the
observation intervals (tk−1, tk], k = 1, . . . , n, to obtain

logPθ(Mn
0 , A|X)

= log

( n∏
k=1

Pθ(Mk, A
[k]
1 , . . . , A

[k]
d |Mk−1, X)

)
= log

( n∏
k=1

Pθ(Mk|A[k]
1 , . . . , A

[k]
d ,Mk−1, X) · Pθ(A[k]

1 |X) · . . . · Pθ(A[k]
d |X)

)

=
n∑
k=1

logPθ(Mk|A[k]
1 , . . . , A

[k]
d ,Mk−1, X) +

n∑
k=1

d∑
i=1

logPθ(A[k]
i |X).

(2.36)

First, we note that the probability in the �rst term on the right hand side of (2.36)
converts into a probability on the number of departures in the k-th interval (tk−1, tk]. By
the additional assumption, newly arrived individuals in (tk−1, tk] cannot leave the system
in this interval. Therefore, only individuals that are already present in the system at time
tk−1 can leave the system in (tk−1, tk]. We thus have

Pθ(Mk|A[k]
1 , . . . , A

[k]
d ,Mk−1, X) =

(
Mk−1

Dk

)
(1− e−µ∆)Dk(e−µ∆)Mk−1−Dk , (2.37)

for all 0 ≤ Dk ≤Mk−1 and zero otherwise. Here Dk = Mk−1−Mk+
∑d

i=1 A
[k]
i , the number

of departures in the k-th interval (tk−1, tk]. Next, we observe that for the second term on
the right hand side of (2.36) it holds that

Pθ(A[k]
i |X) =

(λiZ
[k]
i )A

[k]
i

(A
[k]
i )!

e−λiZ
[k]
i , i = 1, . . . , d. (2.38)

By combining (2.37) and (2.38), (2.36) becomes

logPθ(Mn
0 , A|X)

=
n∑
k=1

[
log

(
Mk−1

Dk

)
+Dk log(1− e−µ∆)− µ∆(Mk−1 −Dk)

+
d∑
i=1

A
[k]
i log(λi) + A

[k]
i log(Z

[k]
i )− log(A

[k]
i !)− λiZ [k]

i

]
, 0 ≤ Dk ≤Mk−1.

(2.39)

Using (2.9), (2.35) and (2.39), we can rewrite the loglikelihood function of the complete
data by aggregating all terms with πi, all terms with qij, all terms with λi and all terms
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with µ. This yields

logL(θ|Mn
0 , A,X)

=
d∑
i=1

log(πi)Bi +
∑
i

∑
j 6=i

n∑
k=1

(
Y

[k]
i,j log(qij)− qijZ [k]

i

)

+
d∑
i=1

n∑
k=1

(
A

[k]
i log(λi)− λiZ [k]

i

)
+

d∑
i=1

n∑
k=1

(
A

[k]
i log(Z

[k]
i )− log(A

[k]
i !)

)
+

n∑
k=1

(
log

(
Mk−1

Dk

)
+Dk log(1− e−µ∆)− µ∆(Mk−1 −Dk)

)
.

(2.40)

It can be seen that (2.40) and (2.10) are precisely the same except for the additional last
term on the right hand side of (2.40), which depends on µ and does not depend on the
other parameters. Hence, we obtain the same parameter updates for πi, qij and λi as in
Section 2.3.1, while the additional parameter update for µ will be based on the last term
on the right hand side of (2.40).

Let the parameter update for µ be denoted by µ̃. Since not only the �rst four terms

on the right hand side of (2.40), but also log
(
Mk−1

Dk

)
does not depend on µ, we see from

(2.40) that

µ̃ = arg max
µ

Eθ′ [logL(θ|Mn
0 , A,X)|Mn

0 = mn
0 ]

= arg max
µ

Eθ′
[

n∑
k=1

(
log

(
Mk−1

Dk

)
+Dk log(1− e−µ∆)− µ∆(Mk−1 −Dk)

)∣∣∣∣Mn
0 = mn

0

]

= arg max
µ

(
log(1− e−µ∆)

n∑
k=1

Eθ′ [Dk|Mn
0 = mn

0 ]− µ∆

n∑
k=1

Eθ′ [(Mk−1 −Dk)|Mn
0 = mn

0 ]
)
.

(2.41)

Solving equation (2.41) for µ and using Dk = Mk−1−Mk+
∑d

i=1 A
[k]
i yields the parameter

update

µ̃ =
1

∆
log

( ∑n
k=1mk−1∑n

k=1 mk −
∑d

i=1

∑n
k=1 Eθ′

[
A

[k]
i

∣∣Mn
0 = mn

0

]). (2.42)

Note that this parameter update depends on
∑n

k=1 Eθ′
[
A

[k]
i

∣∣Mn
0 = mn

0

]
, i = 1, . . . , d, which

are already computed in updating the parameters λi, see (2.11). Hence, the parameter
update of µ can be obtained in addition to the other parameter updates without much
extra computational e�ort. The algorithm for �nding maximum likelihood estimates for
the new parameter vector θ = (πi, qij, λi, µ : i, j ∈ {1, . . . , d}, j 6= i)> is the same as that
in Section 2.3.6 with the single addition of computing µ̃ according to (2.42) in step 5 of
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the algorithm.

µ0 = 0.1
n q1 q2 λ1

500 0.446 (0.459) 1.200 (0.902) 3.927 (0.855)
1000 0.346 (0.154) 1.020 (0.549) 3.940 (0.514)
2000 0.321 (0.102) 0.949 (0.343) 3.922 (0.361)
n λ2 µ
500 17.380 (3.811) 0.620 (0.061)
1000 17.850 (2.073) 0.615 (0.043)
2000 18.016 (1.483) 0.614 (0.030)

µ0 = 1.7
n q1 q2 λ1

500 0.442 (0.458) 1.196 (0.894) 3.945 (0.858)
1000 0.342 (0.152) 1.018 (0.547) 3.954 (0.512)
2000 0.318 (0.100) 0.945 (0.342) 3.935 (0.360)
n λ2 µ
500 17.417 (3.829) 0.621 (0.061)
1000 17.897 (2.068) 0.616 (0.043)
2000 18.051 (1.480) 0.615 (0.030)

Table 2.4: Mean of estimates of 100 data sets, with corresponding standard deviation
between brackets, for ∆ = 0.05 and µ0 = 0.1 in the upper part and µ0 = 1.7 in the
bottom part. True parameter values: q1 = 0.3, q2 = 0.9, λ1 = 4, λ2 = 18, µ = 0.6.

To investigate the accuracy of the algorithm presented in this section, and for a proper
comparison with the results in Section 2.4, we extended the simulation study of Section 2.4
by using the same data vectors and corresponding initial values, but adding the parameter
update µ̃ in (2.42) to the algorithm. Various initial values µ0 for µ were taken, of which
for two values, µ0 = 0.1 and µ0 = 1.7, the results are shown. Table 2.4 shows for each
sample size (rows) and for each parameter (columns), the mean values of the 100 estimates
together with the corresponding standard deviation between brackets, with µ0 = 0.1 and
µ0 = 1.7 respectively. Our experiments show that the choice of µ0 has a minor e�ect
on the estimates, as each of the µ0 values leads to very similar results. We see in Table
2.4 that the means of the estimates for µ lie close to the true parameter value and the
corresponding standard deviations are small. This can be explained by the fact that the
parameter µ is not a�ected by the modulation. We also see that the standard deviations
decrease as n increases, which is also visible in Figure 2.5. Here the histograms of the 100
estimates for µ are shown with increasing value of n, and µ0 = 0.1. The histograms show
that the estimates for µ are concentrated around the true parameter value, and they have
a bell-shape, indicating the distribution of the estimator being approximately normal.
Finally, the values in Tables 2.2 and 2.4 illustrate that the estimates and corresponding
standard deviations of the other parameters are barely in�uenced by the estimation of µ.
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Figure 2.5: Histograms of the obtained estimates for µ, with n increasing from left to
right, and µ0 = 0.1.

2.6 Discussion

In this chapter we developed an algorithm for �nding estimates of the parameters of an
MMIS process. The proposed algorithm numerically approximates the maximum likeli-
hood estimates of the parameters based on observations of the population size at equidis-
tant time points. The algorithm is an iterative EM-type algorithm, in the spirit of the
one that Okamura et al. [50] developed. It is stressed that they did not consider depar-
tures but rather assumed discrete-time observations of the cumulative arrival process, and
therefore some major adjustments to the steps in their approach were required to obtain
our estimation algorithm.

We have investigated the accuracy of the proposed algorithm by means of an exten-
sive simulation study. The results showed that the estimates are concentrated around the
true parameter values and become more accurate as the sample size increases. In addi-
tion, the results indicated that for su�ciently large n the distributions of the estimators
become approximately normal. Furthermore, the estimates got more accurate when the
background process becomes slower, as it is easier for the algorithm to detect the di�erent
states. However, to retain a high accuracy, the sample size n, and hence T = n∆, must be
large such that the background process jumps often enough during the total observation
time T . Moreover, for larger d, n must also be larger to retain a similar accuracy.

The run-time of the algorithm depends on various parameters. In the �rst place, the
run-time of a single iteration in the algorithm is linear in n. However, as n increases
the algorithm is likely to converge more quickly, implying that the number of iterations
required will decrease in n. In addition, the run-time of the algorithm increases in d. The
run-time of one iteration in the algorithm is mainly determined by step 3 in Section 2.3.6,
and from Section 2.3.5 we know that the computational e�ort of this step increases in d.
However, as we mentioned before, Markov-modulation is typically used to model situations
for which d is small (typically 2). We �nally mention that the number of iterations needed
for convergence of the algorithm, and hence the run-time, tends to be large if the length
of the observation intervals, ∆, is large, or if the initial parameter values are far away
from the true parameter values.
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There are many interesting directions for future research based on our results. We
note that the estimation algorithm that we developed is built on the assumption that we
know the number of states d. The choice of the dimension d from the data is a model
selection problem which is outside the scope of this chapter, but could be explored in a
follow-up project. Another research theme could relate to generalizing the sojourn time
distribution, where non-parametric estimation could be explored. One could also consider
more general inter-arrival times, since for some applications exponential inter-arrival times
may not be a suitable �t.
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3. Quasi birth-death processes

Continuous-time quasi birth-death (qbd) processes can informally be seen as birth-death
processes of which the parameters are modulated by an external continuous-time Markov
chain. The aim is to numerically approximate the time-dependent distribution of the re-
sulting bivariate Markov process in an accurate and e�cient way. An approach based on
the Erlangization principle is proposed and formally justi�ed. Its performance is investi-
gated and compared with two existing approaches: one based on numerical evaluation of
the matrix exponential underlying the qbd process, and one based on the uniformization
technique. It is shown that in many settings the approach based on Erlangization is faster
than the other approaches, while still being highly accurate. We demonstrate the use of
the developed technique in the context of the evaluation of the likelihood pertaining to
a time series, which can then be optimized over its parameters to obtain the maximum
likelihood estimator. More speci�cally, through a series of examples with simulated and
real-life data, we show how it can be deployed in model selection problems that involve
the choice between a qbd and its non-modulated counterpart.

3.1 Introduction

Birth-death (bd) processes are continuous-time Markov processes where transitions can
only increase or decrease the state by one�usually referred to as births and deaths,
respectively. These well-known processes are widely used and have applications in many
areas such as biology, epidemiology and operations research. In some real-life systems,
however, it is likely that there is a higher variability in the birth- and/or the death rates
than modelled by a conventional bd process. Observe for example the data in Figure 3.1,
displaying the annual counts of the female population of the whooping crane (see [66] for
the original data, and [24] for the female counts). There are some �uctuations visible in
the evolution of the population size, which could be indicative of a higher variability in
some, or all, model parameters. One wonders whether speci�c generalizations of the bd
process could be more suitable for this data. The major aim of this chapter is to develop
methodologies that can be used to rigorously compare the �t of a conventional bd process
with more general alternatives.
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Figure 3.1: Yearly population count of female whooping cranes arriving in Texas each
autumn.

An example of a more general alternative to the conventional bd process is the quasi
birth-death (qbd) process. The population process, called the level process, in a qbd pro-
cess is given by a bd process of which the transition rates are modulated by a continuous-
time Markov chain, called the phase process. This means that the transition rates of
the qbd process switch between multiple distinct values at the jump times of the phase
process. Together, the level and the phase process form a bivariate Markov process. In
an even more general qbd process, the number of states of the phase process can depend
on the current value of the level process. This leads to a so-called level-dependent qbd
process, which is the process that we consider in this chapter. Over the years, various
properties of level-dependent qbd processes have been studied. We refer to e.g. [16] for
calculations concerning the equilibrium distribution, [57] for the computation of certain
matrices that play an important role in the qbd context, and [43] for a characterization
of the process' running maximum.

In the above whooping crane example, one would like to statistically compare the
scenario of the data stemming from a conventional bd process with that of the data stem-
ming from the more general qbd process. In order to do so, a prerequisite is that we have
a methodology to compute, for both models, the likelihood of our dataset. This, in turn,
requires techniques for the evaluation of the time-dependent probabilities corresponding
to bd and qbd processes. In this chapter we investigate di�erent approaches to compute
the time-dependent probabilities of the joint Markov process of level and phase in the
level-dependent qbd process. In particular, we propose, justify and test an approach
based on the so-called Erlangization principle, which we compare with existing alterna-
tives. Then we point out through a series of experiments, including the whooping crane
example, how such techniques can be used in determining whether a bd process or a qbd
process yields the better �t.

In order to numerically evaluate probabilities pertaining to bd and qbd processes,
various methods have been developed. For all practical purposes, it is natural to let the
underlying Markov chain live on a �nite state space. A commonly applied approach to
compute the time-dependent distribution boils down to computing the matrix exponential
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of the transition rate matrix, say Q, of the corresponding Markov chain (of which the
states, in the qbd case, encode all level/phase combinations). More precisely, the (i, j)-th
entry of eQt provides us with the probability of being in state j at time t given that the
initial state was i, where in the qbd context, i and j correspond to speci�c phase/level
combinations. It is known, however, that the computation of matrix exponentials may
involve various numerical complications; see e.g. the survey [46]. Various novel, more
sophisticated approaches are being developed [2], but, citing [46], `none are completely
satisfactory'. Alternatively, one could solve the linear system of di�erential equations
resulting from the Kolmogorov equations. As argued in e.g. [59], this method has various
intrinsic problems as well. Most notably, if the underlying system is large, the Q matrix
is ill-conditioned, or the di�erential equations are sti�, the evaluation can be slow and/or
inaccurate.

Owing to the special structure of the transition rate matrix (i.e., the Q-matrix having
non-negative o�-diagonal entries, row sums equal to 0), another approach is possible. In
the uniformization technique the continuous-time Markov chain is converted to a discrete-
time Markov chain (say with transition matrix P ) of which the jump times correspond
to a Poisson process with a constant rate (say σ). Here P and σ are chosen in such a
way that the newly de�ned process and the original continuous-time Markov chain are
statistically identical, i.e. all distributional properties are equivalent. The distribution of
the continuous-time Markov chain at time t can thus be obtained by weighing matrices
P k by the probabilities that the Poisson process has jumped k times in [0, t], and sum-
ming these over k (k = 0, 1, . . .). This method performs well in many cases, but it has
disadvantages as well. Evidently, in numerical computations the above summation has
to be truncated at some �nite threshold, where the issue is to choose this threshold high
enough to make sure that the error made is negligible. In addition, to compute all k-step
transition matrices P k, the corresponding matrix multiplications need to be executed,
which may make the procedure prohibitively slow. Uniformization was introduced in the
1950s in [35]; see also [28, 29, 45] for other seminal contributions; an extensive discussion
on its pros and cons can be found in [68].

In this chapter we discuss an alternative approach, based on the Erlangization princi-
ple, which has previously been explored (in other contexts) in e.g. [7, 58, 43]. It uses the
fact that, although the computation of the distribution of the state of the Markov chain at
a deterministic time is challenging, its counterpart at an exponentially distributed epoch
just requires solving a system of linear equations. A second observation is that the sum of
k independent exponentially distributed random variables with mean t/k�corresponding
to an Erlang distribution with scale parameter k and shape parameter k/t�converges to
the deterministic number t as k grows large. Combining these two properties, the idea
is to evaluate the transition probabilities at an exponentially distributed epoch with pa-
rameter k/t, and to raise the resulting matrix to the power k. It is tempting to believe
that our deterministic-time transition probabilities are accurately approximated by this
procedure as long as k is chosen large enough. This approach has the inherent advantage
that the number of matrix multiplications is limited: if k is a power of two, it su�ces
to square the exponential-time transition matrix log2 k times. Importantly, we can prove
the theoretical correctness of the approach, in that we show that it becomes increasingly
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precise as k → ∞, with an argumentation that relies on large-deviations theory. By
means of a series of numerical examples, we also show that this approach is in many
settings computationally faster than the approaches based on the matrix exponential and
uniformization, without compromising the accuracy.

Going back to the whooping crane data from Figure 3.1, an interesting question re-
mains if a qbd process indeed provides a better �t to the data than a conventional bd
process, as one might suspect from the graph. In the last section of this chapter we investi-
gate this type of model selection problems, both with simulated and real-life data. By the
techniques discussed in this chapter, we can compute the likelihood pertaining to a time
series, thus enabling the evaluation of maximum likelihood estimates. In this respect, note
that all three approaches (i.e., matrix exponential, uniformization, Erlangization) can be
applied in the qbd as well as the bd setting. As the class of qbd processes contains the
class of bd processes, evidently the former by de�nition leads to a better �t, but this
comes at the price of additional parameters. To `fairly' compare the two models, taking
into account the corresponding numbers of parameters, we perform the model selection
relying on the celebrated Akaike information criterion (aic).

The remainder of this chapter is organized as follows. The level-dependent qbd process
and its corresponding time-dependent distribution are de�ned in Section 3.2. Section 3.3
shows how the transition probabilities at an exponentially distributed epoch can be com-
puted by solving a system of linear equations. The �ndings of Section 3.3 are then used in
Section 3.4 to motivate the Erlangization approach; in addition the theoretical correctness
of this approach is established. Section 3.5 experimentally investigates the performance
of the three approaches discussed above. Section 3.6 discusses the model selection prob-
lem of choosing between bd processes and qbd processes, using examples with simulated
as well as real-life data, with all likelihood computations relying on Erlangization. We
conclude the chapter, in Section 3.7, with a brief discussion.

3.2 Model and preliminaries

In this section we introduce the class of qbd processes that will be considered in this
chapter. Next, we de�ne the object of our study, viz. the time-dependent distribution of
the corresponding bivariate Markov process, and brie�y discuss established approaches to
numerically evaluate it.

3.2.1 Model

A qbd process is a bivariate process comprising levels and phases. The level process, in
the sequel denoted by {Mt}t>0, attains values in {0, 1, . . . , C} for some C ∈ N. The phase
process is denoted by {Xt}t>0; when the level Mt equals m, the phase Xt attains values
in {1, . . . , dm}, for some dm ∈ N. In many applications the number of phases is uniform
in the level, or, more concretely, dm = d ∈ N for all m ∈ {0, . . . , C}. The birth-death
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nature of the process is re�ected by the fact that at any transition the level can increase
or decrease by at most 1.

We provide a more precise description of the model {Mt, Xt}t>0 by formally de�ning
the corresponding transition rates.

◦ In the �rst place, Q(m), form ∈ {0, 1, . . . , C}, is a transition rate matrix of dimension
dm × dm that corresponds to a continuous-time Markov chain living on the state
space {1, . . . , dm}. Its elements are denoted by q

(m)
ij ; they are non-negative for i 6= j

and in addition the row sums are zero. Whenever Mt = m, a jump from phase i to
phase j that leaves the level unchanged occurs with rate q

(m)
ij , for i 6= j. In addition,

we de�ne the total rate out of phase i (while the level remains at m),

q
(m)
i := −q(m)

ii =
∑
j 6=i

q
(m)
ij ;

here the sum on the right hand side should be understood to be over all j ∈
{1, . . . , dm} such that j 6= i.

◦ In the second place, there are transitions in which the level goes up by 1, while at
the same time the phase potentially changes as well. For m ∈ {0, 1, . . . , C − 1},
the matrix Λ(m) has dimension dm × dm+1. Its (i, j)-th element contains the rate

λ
(m)
ij > 0 at which the level increases by 1 while simultaneously the phase jumps

from i to j; note that i = j is allowed (under the proviso that i 6 min{dm, dm+1}).
Throughout this chapter we write

λ
(m)
i :=

dm+1∑
j=1

λ
(m)
ij ,

to denote the total rate corresponding to an increase in level from phase i, with
i ∈ {1, . . . , dm}.

◦ Finally, there are transitions in which the level goes down by 1, again potentially
simultaneously with a phase change. The (i, j)-th element of the matrixM(m), which

has dimension dm× dm−1 for m ∈ {1, 2, . . . , C}, contains the rate µ(m)
ij > 0 at which

the level decreases by 1 while the phase jumps from i to j; again, i = j is allowed
(if i 6 min{dm−1, dm}). We compactly write for the total rate of a decrease in level
from phase i, with i ∈ {1, . . . , dm},

µ
(m)
i :=

dm−1∑
j=1

µ
(m)
ij .

In this work we assume that the matrices Q(m), Λ(m), and M(m) are such that the joint
Markov process {Mt, Xt}t≥0 is irreducible, implying that, with positive probability any
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level/phase pair can be reached from any other level/phase pair in any amount of time.
The number of states of this process is D :=

∑C
m=0 dm. We let Q be the D×D transition

rate matrix of {Mt, Xt}t≥0, that is,

Q :=



Q̄(0) Λ(0) 0 · · · 0 0

M(1) Q̄(1) Λ(1) · · · 0 0

0 M(2) Q̄(2) · · · 0 0
...

...
...

. . .
...

0 0 0 · · · Q̄(C−1) Λ(C−1)

0 0 0 · · · M(C) Q̄(C)


,

where Q̄(m) is de�ned as Q(m) with the diagonal entries adapted such that the row sums
of Q are zero. More precisely, the de�nition of Q̄(m) entails that the diagonal of Q consists
of entries of the form −σ(m)

i , where (for m ∈ {0, 1, . . . , C} and i ∈ {1, . . . , dm})

σ
(m)
i := q

(m)
i + λ

(m)
i 1{m<C} + µ

(m)
i 1{m>0}. (3.1)

These rates σ
(m)
i are to be interpreted as the `total �ux' when the level is m and the phase

is i. For later reference we de�ne the largest entry among these �uxes by

σ := max
m∈{0,1,...,C}

(
max

i∈{1,...,dm}
σ

(m)
i

)
. (3.2)

We �nally introduce the D × D matrix Pt that describes the process' time-dependent
distribution. It contains probabilities of the type

pij(m,m
′; t) := P(Mt = m′, Xt = j |M0 = m,X0 = i), (3.3)

with the states ordered in the same way as is done in Q. The remainder of this section is
devoted to describing two often used methods to numerically evaluate Pt, with which we
compare our method in Section 3.5.

3.2.2 Time-dependent probabilities: matrix exponential

It is commonly known that Pt, as given in (3.3), can be expressed as a matrix exponential,
i.e., Pt = eQt. As argued extensively in [46], the numerical evaluation of such matrix
exponentials is a delicate issue. In numerical computing environments various types of
algorithms have been implemented. Matlab's implementation expm(·) is based on the
algorithm developed in [33], and is claimed to be highly accurate; see also the further
re�nements in [2].
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Approximation 3.1 (Matrix exponential). Pt is approximated by

P
(m)
t := expm(Qt), (3.4)

based on Matlab's implementation expm(·).

3.2.3 Time-dependent probabilities: uniformization

An alternative existing approach to obtain time-dependent probabilities relies on uni-
formization. The main idea is to convert the continuous-time Markov chain to a discrete-
time Markov chain of which the jump times follow a Poisson process with a constant
rate. For the qbd process we let this uniform rate be σ, as de�ned in (3.2). De�ne, with
self-evident notation,

P(m,i),(m′,j) :=

{
σ−1Q(m,i),(m′,j) if (m, i) 6= (m′, j),

1− σ−1
∑

(m′,j)6=(m,i) Q(m,i),(m′,j) if (m, i) = (m′, j),

or, equivalently, Q = σP − σI. To Observe that by de�nition of σ all these entries are
in [0, 1]; in fact, P is a transition probability matrix of a discrete-time Markov chain.
Sampling the number of jumps in (0, t] of this discrete-time Markov chain according to a
Poisson distribution with parameter σt, we �nd that

Pt = eQt = e(σP−σI)t =
∞∑
k=0

e−σt
(σt)k

k!
Pk,

The following approximation is based on this representation.

Approximation 3.2 (Uniformization). For a given ` ∈ N, Pt is approximated by

P
(u,`)
t :=

∑̀
k=0

e−σt
(σt)k

k!
Pk. (3.5)

A question is: how to select a value of ` to make sure that the error made is below
some allowable threshold ε > 0? To this end, realize that, trivially, as `→∞,

0 6 pij(m,m
′; t)− p(u,`)

ij (m,m′; t) 6 P(Pois(σt) > `+ 1)→ 0,

where Pois(σt) denotes a Poisson random variable with mean σt. This bound entails that
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one could use for example the Cherno� bound to �nd the ` for which P(Pois(σt) > `+ 1) < ε:

P(Pois(σt) > `+ 1) 6 inf
θ>0

e−θ(`+1) E eθPois(σt)

= inf
θ>0

e−θ(`+1) eσt(e
θ−1) =

(
σt

`+ 1

)`+1

e`+1−σt; (3.6)

equating the right-hand side to ε yields an ` with the desired property.

Note that an important advantage of uniformization is its implementational simplicity:
the matrix P is trivially computed fromQ, and it is straightforward to evaluate its powers.
The main disadvantage of uniformization is that many matrix multiplications are needed,
as the approximation uses all matrices Pk for k = {0, 1, . . . , `}; particularly when σ is
relatively large, implying that ` has to be chosen large as well, the procedure may become
rather time consuming. To remedy this disadvantage of uniformization, we pursue an
alternative approach, based on the concept of Erlangization. This approach combines
two ideas: (i) if the time horizon is exponentially distributed rather than deterministic,
then the corresponding transition probability follows simply by solving a linear system
of equations, and (ii) one can approximate a deterministic number by a sum of a large
number of independent exponentially distributed random variables with an appropriately
chosen parameter. Section 3.3 �rst elaborates on property (i). Then, in Section 3.4, it
is pointed out how, based on these two properties, Pt can be e�ciently and accurately
approximated. In Section 3.5 we numerically compare the performance of Erlangization
with the matrix exponential approach (3.4) and uniformization (3.5).

3.3 Time-dependent probabilities at exponential epochs

The main goal of this section is to show that the evaluation of the distribution of {Mt, Xt}
at an exponentially distributed epoch essentially reduces to solving a linear system of
equations. Let Tη be an exponentially distributed random variable with mean η−1 (with
η > 0), independent of {Mt, Xt}t>0. We de�ne

πij(m,m
′; η) := P(MTη = m′, XTη = j |M0 = m,X0 = i).

We now point out how to compute these probabilities πij(m,m
′; η), withm,m′ ∈ {0, 1, . . . , C},

i ∈ {1, . . . , dm}, and j ∈ {1, . . . , dm′}. Recall the de�nition of σ
(m)
i in (3.1). The standard
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`Markovian reasoning' yields

πij(m,m
′; η)

=
dm∑

i′=1,i′ 6=i

q
(m)
ii′

(σ
(m)
i + η)

πi′j(m,m
′; η) +

dm+1∑
i′=1

λ
(m)
ii′

(σ
(m)
i + η)

πi′j(m+ 1,m′; η) 1{m<C}

+

dm−1∑
i′=1

µ
(m)
ii′

(σ
(m)
i + η)

πi′j(m− 1,m′; η) 1{m>0} +
η

(σ
(m)
i + η)

1{m=m′,i=j}.

Multiplying both sides of the equation with σ
(m)
i + η results in

(σ
(m)
i + η) πij(m,m

′; η)

=
dm∑

i′=1,i′ 6=i

q
(m)
ii′ πi′j(m,m

′; η) +

dm+1∑
i′=1

λ
(m)
ii′ πi′j(m+ 1,m′; η) 1{m<C}

+

dm−1∑
i′=1

µ
(m)
ii′ πi′j(m− 1,m′; η) 1{m>0} + η 1{m=m′,i=j}.

The sum of the coe�cients on the right equals σ
(m)
i + η, making this system of linear

equations strictly diagonally dominant, and therefore non-singular [34, Thm 6.1.10]. As
a consequence, the system can be numerically solved in πij(m,m

′; η) through various
e�cient evaluation techniques, such as the iterative Jacobi and Gauss-Seidel methods [9,
Section VIII.6].

The above linear system can be written in a compact matrix form. De�ne the dm ×
dm′ matrix Πη(m,m

′) as the matrix whose (i, j)-th entry is πij(m,m
′; η). In addition,

let Σ(m) := diag{σ(m)
1 , . . . , σ

(m)
dm
} and Q̌(m) := diag{q(m)

1 , . . . q
(m)
dm
}; the matrix I(m) is an

identity matrix of dimension dm. We thus obtain

(Σ(m) + ηI(m))Πη(m,m
′) = (Q(m) + Q̌(m))Πη(m,m

′) + Λ(m)Πη(m+ 1,m′)1{m<C}

+ M(m)Πη(m− 1,m′)1{m>0} + ηI(m)1{m=m′}.

Observe that in the above linear equations the level at time Tη is constant (namely,
m′). We can therefore solve the matrices Πη(m,m

′) (with m = 0, 1, . . . , C) for each m′

separately; notice that for a given m′ this concerns dm′ D equations in equally many
unknowns.

We de�ne Πη as a D × D matrix, which is a block matrix of which the components
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are the matrices Πη(m,m
′):

Πη :=



Πη(0, 0) Πη(0, 1) Πη(0, 2) · · · Πη(0, C)

Πη(1, 0) Πη(1, 1) Πη(1, 2) · · · Πη(1, C)

Πη(2, 0) Πη(2, 1) Πη(2, 2) · · · Πη(2, C)
...

...
...

. . .
...

Πη(C, 0) Πη(C, 1) Πη(C, 2) · · · Πη(C,C)


. (3.7)

This matrix Πη will appear in the approximation of Pt based on Erlangization, introduced
in the next section.

3.4 Erlangization

In this section, we discuss the approach based on Erlangization to approximate Pt. We
�rst introduce the approximation and then provide the theoretical correctness of this
approach. Let S`,t be an Erlang-distributed random variable with rate parameter `/t and

shape parameter `. Let P
(e,`)
t be a D ×D matrix with entries

p
(e,`)
ij (m,m′; t) := P(MS`,t = m′, XS`,t = j |M0 = m,X0 = i).

It is clear that P
(e,`)
t = (Π`/t)

`, with Πη as de�ned in (3.7), owing to the fact that an
Erlang random variable with rate parameter µ and shape parameter k can be written as
the sum of k independent and identically distributed exponential random variables with
rate µ. We propose the following approximation.

Approximation 3.3 (Erlangization). For a given ` ∈ N, Pt is approximated by,

P
(e,`)
t = (Π`/t)

`. (3.8)

As we will argue below, P
(e,`)
t converges to Pt as ` → ∞. The above idea is usually

referred to as `Erlangization': the time t > 0 is approximated by the Erlang time S`,t.
This distribution has mean t and variance t2/`, so that the corresponding coe�cient of
variation converges to 0 as `→∞.

Our goal is to assess how much pij(m,m
′; t) di�ers from p

(e,`)
ij (m,m′; t). The resulting

bounds are then used to show that this di�erence vanishes as ` grows large. We start by
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establishing an upper bound. For any given ε ∈ (0, t),

p
(e,`)
ij (m,m′; t)

= P(MS`,t = m′, XS`,t = j
∣∣ |S`,t − t| 6 ε,M0 = m,X0 = i)P(|S`,t − t| 6 ε)

+ P(MS`,t = m′, XS`,t = j
∣∣ |S`,t − t| > ε,M0 = m,X0 = i)P(|S`,t − t| > ε)

6 P(MS`,t = m′, XS`,t = j | |S`,t − t| 6 ε,M0 = m,X0 = i) + P(|S`,t − t| > ε).

Note that P(MS`,t = m′, XS`,t = j | |S`,t − t| 6 ε,M0 = m,X0 = i) is equal to the
transition probability pij(m,m

′;S`,t) additionally imposing the condition that |S`,t−t| 6 ε.
The di�erence between this probability and pij(m,m

′; t) can thus be at most ε times the
maximum slope of pij(m,m

′; s) for s in [t− ε, t+ ε]. Hence

p
(e,`)
ij (m,m′; t) 6 pij(m,m

′; t) + ε

(
sup

s∈[t−ε,t+ε]

∣∣∣∣ d

ds
pij(m,m

′; s)

∣∣∣∣
)

+ P(|S`,t − t| > ε).

Recall that Q is the transition rate matrix of the D-dimensional continuous-time Markov
process {Mt, Xt}t>0 and σ := maxm,i σ

(m)
i . Then, using the Kolmogorov equations in

combination with the triangle inequality, uniformly in s > 0,∣∣∣∣ d

ds
pij(m,m

′; s)

∣∣∣∣ 6 ∑
m′′,j′

pij′(m,m
′′; s)

∣∣Q(m′′,j′),(m′,j)

∣∣ 6 ∑
m′′,j′

pij′(m,m
′′; s)σ = σ.

We proceed by �nding an upper bound on P(|S`,t−t| > ε). Noting that S`,t can be written
as `−1 times an Erlang random variable S̄`,t with rate parameter 1/t and shape parameter
`,

P(|S`,t − t| > ε) = P(|`−1S̄`,t − t| > ε) = P(`−1S̄`,t − t < −ε) + P(`−1S̄`,t − t > ε). (3.9)

We can majorize both probabilities on the right-hand side by using the Cherno� bound.
Starting with P(`−1S̄`,t − t > ε), we have

P(`−1S̄`,t − t > ε) = P(S̄`,t > `(ε+ t)) 6 inf
θ>0

e−θ `(ε+t)E eθS̄`,t .

Using the moment generating function of the Erlang distribution, we �nd that

e−θ `(ε+t)E eθS̄`,t =

(
e−θ(ε+t)

1− tθ

)`
,
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implying that

P(`−1S̄`,t − t > ε) 6 inf
θ>0

(
e−θ(ε+t)

1− tθ

)`
=

(
inf
θ>0

e−θ(ε+t)

1− tθ

)`
= e−`ε/t

(
1 +

ε

t

)`
.

In a similar way we can majorize P(`−1S̄`,t − t < −ε):

P(`−1S̄`,t − t < −ε) 6 e`ε/t
(

1− ε

t

)`
.

Combining these upper bounds with equation (3.9), we conclude

P(|S`,t − t| > ε) 6 e`ε/t
(

1− ε

t

)`
+ e−`ε/t

(
1 +

ε

t

)`
=: Ψ`,t(ε). (3.10)

We thus �nd, uniformly in ε ∈ (0, t),

p
(e,`)
ij (m,m′; t) 6 pij(m,m

′; t) + ε · σ + Ψ`,t(ε).

Now take ε = `−α with α > 0. Using elementary Taylor expansions, it can be shown that
Ψ`,t(ε) behaves as exp(−`1−2α/t2), which converges to 0 as `→∞ for all α < 1/2. To see
this, �rst note that

e`ε/t
(

1− ε

t

)`
= exp

(
`

t
ε+ ` log

(
1− ε

t

))
. (3.11)

Now consider the exponent in the right-hand side of (3.11). Plugging in ε = `−α and
using Taylor expansions, one indeed obtains

1

t
`1−α + ` log

(
1− 1

t
`−α
)

= − 1

t2
`1−2α + o(`1−3α).

A similar analysis can be performed for the other term in the de�nition of Ψ`,t(ε). We
conclude that, for all α < 1/2, Ψ`,t(`

−α) converges to 0 as ` → ∞. Upon combining the
above, and picking α = 1

3
, the desired upper bound follows:

lim sup
`→∞

p
(e,`)
ij (m,m′; t) 6 lim sup

`→∞
pij(m,m

′; t) + `−1/3 · σ + Ψ`,t(`
−1/3) = pij(m,m

′; t).
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We proceed by deriving a lower bound, which is established using elements that re-
semble those used in the upper bound. It is based on the inequality

p
(e,`)
ij (m,m′; t)

> P(MS`,t = m′, XS`,t = j |M0 = m,X0 = i, |S`,t − t| 6 ε) · P(|S`,t − t| 6 ε)

>
(
pij(m,m

′; t)− ε · σ
)
·
(
1− P(|S`,t − t| > ε)

)
> pij(m,m

′; t)− ε · σ −Ψ`,t(ε).

Pick again ε = `−1/3, so as to obtain

lim inf
`→∞

p
(e,`)
ij (m,m′; t) > pij(m,m

′; t).

The following theorem summarizes the above �ndings, thus justifying the use of the
Erlangization procedure.

Theorem 1. For any ` ∈ N, t > 0, and ε ∈ (0, t), with σ de�ned as in (3.2) and Ψ`,t(ε)
de�ned as in (3.10), ∣∣∣ p(e,`)

ij (m,m′; t)− pij(m,m′; t)
∣∣∣ 6 ε · σ + Ψ`,t(ε).

In addition, for any t > 0,

lim
`→∞

p
(e,`)
ij (m,m′; t) = pij(m,m

′; t).

Note that the advantage of Erlangization is that the number of matrix multiplications
is low, in comparison with uniformization. More precisely, picking ` a power of two, one
just needs to square Π`/t only log2 ` times. The disadvantage is that the computation of
the matrix Π`/t requires the solution of C + 1 linear systems (the j-th being of dimension
dj D, j = 0, 1, . . . , C).

3.5 Performance analysis of Erlangization

In this section we examine the performance of the Erlangization approximation of Pt,
as given by (3.8). We compare it with the matrix exponential approach given by (3.4)
as well as uniformization (3.5). We study the accuracy (i.e., error) and e�ciency (i.e.,

computational time) of the Erlangization approximation. To assess the error we use P
(m)
t

in (3.4) as benchmark, since the sophisticated implementation expm(·) that Matlab is
using is highly accurate and has been tested intensively. In the Erlangization approach
we in particular vary ` to investigate its in�uence on the accuracy and e�ciency. For the
uniformization approach, we use the smallest value of ` such that, for the parameters of
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the speci�c example, the Cherno� bound (3.6) is below ε = 10−4. In the sequel we refer
to the Erlangization approach by `E', to the matrix exponential approach by `M', and to
the uniformization approach by `U'.

In our performance analysis we focus on three qbd processes that are e�ectively the
modulated counterparts of frequently used bd processes. In all three settings the modu-
lating process (also referred to as environmental process) is of dimension 2, irrespectively
of the level m ∈ {0, 1, . . . , C}. In other words, we have that dm = d = 2, so that

Q(m) =

(
−q1 q1

q2 −q2

)

In addition, we let λ
(m)
ij = 0 for i 6= j, which (informally) means that an increase in level

cannot occur at the same time as a phase jump. The three settings are parameterized by
a function f(m,C), in the sense that

λ
(m)
i = λ

(m)
ii := f(m,C)λi,

for a known positive function f(m,C) and parameter λi > 0. Similarly, we let µ
(m)
ij = 0

for i 6= j, and de�ne
µ

(m)
i = µ

(m)
ii := g(m,C)µi,

for a known positive function g(m,C) and parameter µi > 0. Hence, there are at most
six parameters in these models: q1, q2, λ1, λ2, µ1, and µ2. We proceed by detailing the
dynamics underlying the three models.

Experiment 3.1 (In�nite-server queue). Here we consider a system, which can also been
seen as a population process, in which individuals arrive according to some arrival process
and are served in parallel, in the literature also known as an in�nite-server queue [40, 42].
The special feature is that the Poissonian arrival rate as well as the exponential service rate
depend on the state of the modulating process, so that the system at hand is a Markov-
modulated in�nite-server queue [4, 12, 13]. This concretely means that f(m,C) = 1
and g(m,C) = m (the latter re�ecting that the individuals are served in parallel), with
Λ(m) = diag{λ1, λ2} and M(m) = diag{mµ1,mµ2}. We impose a truncation at level C.

Experiment 3.2 (Linear birth-death process). In this setting we consider the stochastic
version of the classical Malthusian growth model, also known as the linear birth-death
model [24, 38]: the rate upward as well as the rate downward is proportional to the number
of individuals present. This concretely means that f(m,C) = m and g(m,C) = m. The
rates of moving upward and downward are modulated, which entails that in this case
Λ(m) = diag{mλ1,mλ2} and M(m) = diag{mµ1,mµ2}. We again impose a truncation
at C.

Experiment 3.3 (SIS-type model). The SIR model is a so-called compartmental model
used to describe epidemic growth, that keeps track of the number of susceptible indivi-
duals, the number of infectious individuals, and the number of recovered individuals; see
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e.g. the textbook treatments in [3, 6, 21]. In a related variant, the SIS model, recovered
individuals eventually become susceptible again. In this experiment we consider a model
of the latter type, which, in the non-modulated context, has the following dynamics.
There are C individuals, to be divided into infected and healthy. Let Mt be the number
of healthy individuals. WhenMt = m, an arbitrary healthy person becomes infected with
rate λ(C−m); as a result the rate from m to m+ 1 is λm(C−m). Every infected person
becomes healthy again independently of the state of all other individuals; as a result, the
rate from m to m− 1 is mµ. If we add modulation, then the λ and µ become dependent
on the environmental process. We thus get that in this model f(m,C) = m(C −m) and
g(m,C) = m, so that the upward rates become Λ(m) = diag{m(C −m)λ1,m(C −m)λ2},
whereas the downward rates are given by M(m) = diag{mµ1,mµ2}.

We start, in Section 3.5.1, with an extensive analysis of Experiment 3.1, the in�nite-
server queue. In particular we study the impact of the parameters ` and C on the accuracy
(i.e., error) and e�ciency (i.e., computational time) of the Erlangization approximation,
and compare these with the other two approaches. In Section 3.5.2 we consider Experi-
ments 3.2 and 3.3.

Importantly, whenever presenting computational times, we report the time it takes to
evaluate the entire matrix P

(e,`)
t (P

(m)
t and P

(u,`)
t likewise), providing us with p

(e,`)
ij (m,m′; t)

for all m,m′ = 0, . . . , C. Furthermore, we use Matlab's implementation timeit(·) to
evaluate the computational times (where timeit(·) calls the speci�ed function multiple
times, measures the time required each time, and �nally outputs the median of all these
values).

3.5.1 Analysis of Experiment 3.1

We consider Experiment 3.1 with the parameter values q1 = 0.015, q2 = 0.045, λ1 =
2, λ2 = 9 and µ1 = µ2 = 0.3, hence the phase process does not a�ect the service rate, and
let C = 60. We compute the transition probability pij(m,m

′; t), as de�ned in (3.3), using
the three approaches that we discussed. The results for i = j = 1, m = 10 and t = 1 for
varying m′, are graphically presented in Figure 3.2. To also get insight into the accuracy
for values of m′ in which the probability of interest is small, we have in addition included
Table 3.1. It shows that Erlangization yields highly accurate results already for ` =
128 = 27 (which, remarkably, only requires seven matrix multiplications, besides solving
a system of linear equations). The performance slightly degrades when the probability
of interest is (extremely) small, say in the range of 10−5�10−6. The last row displays the
computational time (in seconds) corresponding to the various values of `, which shows
that Erlangization performs well compared with the alternative approaches. Furthermore,
we observe that the various computational times for the Erlangization approach are just
mildly a�ected by the value of `. This is explained by the fact that for these values of `,
most of the computational time is consumed by the time it takes to solve the system of
linear equations that yields Π`/t. In other words, only a small portion of the computational
time is due to repeatedly squaring this matrix. For higher values of ` we do observe that
the computational times grow, but rather slowly.
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Figure 3.2: In�nite-server queue: pij(m,m
′; t) with i = j = 1, m = 10, t = 1 and C = 60,

computed with the three di�erent methods. Erlangization with ` = 128. Parameter
values: q1 = 0.015, q2 = 0.045, λ1 = 2, λ2 = 9 and µ1 = µ2 = 0.3.

Extensive additional experimentation showed that changing the values of the param-
eters q1, q2, λ1, λ2, µ1 = µ2 hardly has any impact on the accuracy of the Erlangization
approach. We only saw a slight drop in accuracy when the parameter values were chosen
in such a way that (with high probability) m′ will be much higher, or much lower, than m.
In this respect we refer to Figure 3.3 where µ1 = µ2 = 3, and m = 50, with C = 60 and
` = 128 = 27. Increasing ` (as a power of two), for example to ` = 1024 = 210, such that
the exponent increases a few steps, typically returns approximations with a su�ciently
high accuracy, while the computational time remains low. This is also why in the sequel
we often take this value of `. When we investigate the impact of C on the e�ciency,
this value of ` makes sure that the accuracy is su�ciently high, such that the focus lies
completely on the computational time.
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Figure 3.3: In�nite-server queue: pij(m,m
′; t) with i = j = 1, m = 50, t = 1 and C = 60,

computed with the three di�erent methods. Erlangization with ` = 128. Compared to
Figure 3.2, we now consider µ1 = µ2 = 3.
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Evidently, computational times increase in C; we proceed by investigating this relation
for the three methods. We do so by increasing C from 25 to 500 in steps of 25 and
50. The results are shown in Figure 3.4. We see that the computational times for the
matrix exponential method and Erlangization are essentially of the same order. For
small values of C, the Erlangization method is faster, whereas for higher values of C the
matrix exponential method is faster. The computational times for the uniformization
method, however, are signi�cantly longer. This is in line with what we expected, since
uniformization typically needs a large number of matrix multiplications.

To systematically assess the impact of C on the computational time, which we denote
by T , we �t the curve T = αCβ. This we do by applying least squares to log T =
logα + β logC. We thus �nd that the time of Erlangization is close to quadratic in
C (β = 2.12), the cpu time of the matrix exponential method is subquadratic in C
(β = 1.59), whereas the cpu time of uniformization is superquadratic in C (β = 2.40);
see also Figure 3.4.
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Figure 3.4: In�nite-server queue: cpu times (in seconds) corresponding to the approxi-
mation of Pt with t = 1, for the three di�erent methods. Erlangization with ` = 1024.
Parameter values: q1 = 0.015, q2 = 0.045, λ1 = 2, λ2 = 9 and µ1 = µ2 = 0.3.

3.5.2 Other experiments

To explore if other settings yield similar results, we investigate the two other experiments
as well. We consider Experiment 3.2 with parameter values q1 = 0.3, q2 = 0.9, λ1 =
λ2 = 0.19, µ1 = 0.16, µ2 = 0.08 (i.e., the phase process does not a�ect the birth rate)
and C = 300, and we consider Experiment 3.3 with parameter values q1 = 0.1, q2 = 0.4,
λ1 = 0.0035, λ2 = 0.01, µ1 = µ2 = 0.3 (i.e., the phase process does not a�ect the recovery
rate) and C = 100. We brie�y present the results, focusing on the di�erences with the
results of Experiment 3.1.

We �rst revisit the accuracy of the Erlangization approximation of pij(m,m
′; t) and

the in�uence of ` on the accuracy. We conclude that the accuracy achieved in Experiments
3.2 and 3.3 strongly resembles the accuracy of Experiment 3.1, across a broad range of
values of `. Already for small ` the approximations are highly accurate, and the accuracy
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improves as ` increases. Figures 3.5 and 3.6 show the counterparts of Figure 3.2, with
` = 128, i = j = 1, m = 10 and t = 1 for varying m′ as before, and illustrate the similarity
in accuracy between the three experiments.
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Figure 3.5: Linear birth-death process : pij(m,m
′; t) with i = j = 1, m = 10, t = 1

and C = 300, computed with the three di�erent methods. Erlangization with ` = 128.
Parameter values: q1 = 0.3, q2 = 0.9, λ1 = λ2 = 0.19, µ1 = 0.16 and µ2 = 0.08.
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Figure 3.6: SIS-type model : pij(m,m
′; t) with i = j = 1, m = 10, t = 1 and C = 100,

computed with the three di�erent methods. Erlangization with ` = 128. Parameter
values: q1 = 0.1, q2 = 0.4, λ1 = 0.0035, λ2 = 0.01 and µ1 = µ2 = 0.3.

We now examine the impact of C on the computational time, with t = 1. Figure 3.7
shows for each speci�c approximation the computational times corresponding to the three
experiments. The main conclusion from Figure 3.7 is that the observations for Experiment
3.2 to a large extent agree with those for Experiment 3.1, but that Experiment 3.3 behaves
rather di�erently. For the matrix exponential approach and Erlangization approach, the
computational times corresponding to the three experiments roughly coincide. However,
for uniformization the computation times for Experiment 3.3 strongly deviate from the
computational times of the other experiments.
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Figure 3.7: cpu times (in seconds) measured for the three experiments and the three di�er-
ent methods; from the top to bottom panel, Matrix exponential method, Uniformization
method and Erlangization method with ` = 1024. Parameter values in�nite-server queue:
q1 = 0.015, q2 = 0.045, λ1 = 2, λ2 = 9, µ1 = µ2 = 0.3 and C = 60. Parameter values
linear birth-death process: q1 = 0.3, q2 = 0.9, λ1 = λ2 = 0.19, µ1 = 0.16, µ2 = 0.08 and
C = 300. Parameter values SIS-type model: q1 = 0.1, q2 = 0.4, λ1 = 0.0035, λ2 = 0.01,
µ1 = µ2 = 0.3 and C = 100.
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When �tting the curve T = αCβ, the di�erence described above becomes clearly
visible. Table 3.2 shows the computed values of β for the di�erent experiments and the
di�erent approximation approaches. Erlangization and the matrix exponential method
lead to roughly the same β in all three experiments. This re�ects that the computational
time is essentially determined by the value of C, and is not a�ected by the choice of
f(m,C) and g(m,C), and hence not by the magnitude of the entries. For uniformization,
however, the number of terms needed strongly depends on the magnitude of the entries
of the Q-matrix, leading to a stronger growth of the computational time for the SIS-type
model.
Remark 1. The fact that uniformization is slow for the SIS-type model can be understood
as follows. The number of terms needed in (3.5), which in turn determines the number
of matrix multiplications to be performed, is σt increased by some margin that makes
sure that P(Pois(σt) 6 `+ 1) is su�ciently small. Recall that σ is the (absolute value of)
the largest diagonal entry of Q. For the in�nite-server model and the linear birth-death
model, this largest entry is of the order C. For the SIS-type model, however, recalling
that f(m,C) = m(C −m), the largest entry is of the order C2. As a consequence, the
number of terms in (3.5) is relative large, leading to a relatively long computational time.

Experiment E U M
In�nite-server 2.1199 2.4038 1.5916
linear birth-death 2.0833 2.5318 1.5911
SIS-type model 2.0593 3.1206 1.6576

Table 3.2: Table with β values for the di�erent experiments and di�erent approaches.
Erlangization with ` = 1024. Parameter values as in Figure 3.7.

3.6 Model selection

We started our chapter with a motivating example: can we statistically distinguish
whether data stems from a qbd or from its non-modulated counterpart? We argued
that to answer this question, we need machinery to evaluate the likelihood corresponding
to a given time series. Now that we have at our disposal techniques to evaluate probabili-
ties of the type (3.3), we return to our model selection problem of distinguishing between
qbd processes and conventional (non-modulated, that is) bd processes. In this section
we do so, using both simulated data and real-life data.

We wish to distinguish between the following four scenarios:

1. No modulation on neither the birth rate λ nor the death rate µ, i.e.,
θ = (λ, µ)

2. Modulation on the birth rate λ only (µ1 = µ2), i.e., θ = (q1, q2, λ1, λ2, µ)

3. Modulation on the death rate µ only (λ1 = λ2), i.e., θ = (q1, q2, λ, µ1, µ2)
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4. Modulation on both the birth rate λ and the death rate µ, i.e., θ =
(q1, q2, λ1, λ2, µ1, µ2)

We start by considering the setting of Experiment 3.1 with simulated data, and then
use the model of Experiment 3.2 to analyze the whooping crane data featured in the
introduction. We investigate which of these scenarios provides the best �t for the data,
using the commonly used Akaike information criterion. This criterion includes a penalty
that equals twice the number of estimated parameters (i.e., two times 2, 5, 5, and 6 in
the above four scenarios), thus preventing over�tting from happening.

In all experiments below there is a time interval ∆ > 0 so that the observations
correspond to measurements performed at times 0,∆, 2∆, . . . , n∆ for some n ∈ N. We
call these observations m0, . . . ,mn. With θ the vector of parameters, the likelihood is

L(θ |m0, . . . ,mn) = Pθ(M0 = m0, . . . ,Mn∆ = mn). (3.12)

Regarding scenarios 2, 3, and 4, note that the modulating process is not observed. How-
ever, with x = (x0, . . . , xn) ∈ {1, 2}n+1, we can rewrite (3.12) as∑

x∈{1,2}n+1

Pθ(M0 = m0, X0 = x0, . . . ,Mn∆ = mn, Xn∆ = xn)

=
∑

x∈{1,2}n+1

n∏
i=1

pxi−1,xi(mi−1,mi; ∆), (3.13)

where it is noted that the probabilities in the last expression are of the type (3.3), and

can be evaluated with the techniques discussed in this chapter. Importantly, there is no

need to enumerate all paths x ∈ {1, 2}n+1. Instead we can evaluate (3.13) e�ciently by,

abbreviating pxi−1,xi(m[i]) ≡ pxi−1,xi(mi−1,mi; ∆), evaluating the matrix product

α

(
p11(m[1]) p12(m[1])

p21(m[1]) p22(m[1])

)(
p11(m[2]) p12(m[2])

p21(m[2]) p22(m[2])

)
· · ·

(
p11(m[n]) p12(m[n])

p21(m[n]) p22(m[n])

)
1,

(3.14)

where α = (α1, α2) is the distribution of X0 and 1 is an all-ones vector. Note that the

matrices in (3.14) are given as blocks in P
(e,`)
t . Maximization of the likelihood gives us

the maximum likelihood estimate θ̂ for θ. As we will discuss below, this likelihood can
be used in model selection problems. In the experiments below, all calculations involving
probabilities of the type pxi−1,xi(m[i]) have been performed by the Erlangization approach.

3.6.1 Simulated data

We consider the setting of Experiment 3.1. We simulate data (n = 2000) with parameter
values q1 = 0.015, q2 = 0.045, λ1 = 0.2, λ2 = 0.9, µ = 0.03, ∆ = 1 and C = 50. This
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means that the true model for this data is an in�nite-server queue with modulation on λ
only. Based on this simulated data, we perform the model selection based on the Akaike
information criterion, i.e., using aic = 2N − 2 logL(θ̂), with N the dimension of the
parameter vector θ.

parameter scenario
1. 2. 3. 4.

q̂1 n/a 0.0120 0.0953 0.0122
q̂2 n/a 0.0456 0.0357 0.0462

λ̂1 (or λ) 0.3373 0.2093 0.3374 0.2097

λ̂2 n/a 0.8904 n/a 0.8790
µ̂1 (or µ) 0.0302 0.0312 0.0175 0.0314
µ̂2 n/a n/a 0.0361 0.0299

logL(θ̂) −2370.1 −2306.5 −2368.2 −2306.4
aic 4744.1 4622.9 4746.4 4624.8

Table 3.3: Experiment 3.1, simulated data: parameter estimates, loglikelihood value and
aic for the four di�erent scenarios (n = 2000), with ` = 1024 and C = 50. True parameter
values: q1 = 0.015, q2 = 0.045, λ1 = 0.2, λ2 = 0.9, µ = 0.03 with ∆ = 1.

From Table 3.3 we observe that the aic value is smallest for scenario 2, which agrees
with the ground truth of the simulated data (i.e., it succeeds in �nding the scenario
with modulation on the parameter λ only). Interestingly, the number of observations has
impact on the conclusions drawn. To illustrate this, see Table 3.4 showing the results
using the �rst 101 data points of the dataset only (i.e., n = 100 instead of n = 2000). The
aic value is now minimized by scenario 1, the scenario without modulation, indicating
that the dataset is too short to detect the modulation.

parameter scenario
1. 2. 3. 4.

q̂1 n/a 0.5265 0.5484 2.4 · 10−7

q̂2 n/a 0.5548 0.5715 0.7045

λ̂1 (or λ) 0.2351 0.2343 0.2351 0.2351

λ̂2 n/a 0.2360 n/a 0.5651
µ̂1 (or µ) 0.0281 0.0281 0.0280 0.0281
µ̂2 n/a n/a 0.0282 0.0769

logL(θ̂) −104.10 −104.10 −104.10 −104.10
aic 212.20 218.20 218.20 220.20

Table 3.4: Experiment 3.1, simulated data: parameter estimates, loglikelihood value and
aic for the four di�erent scenarios (n = 100), with ` = 1024 and C = 50. True parameter
values: q1 = 0.015, q2 = 0.045, λ1 = 0.2, λ2 = 0.9, µ = 0.03 with ∆ = 1.
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3.6.2 Whooping crane population

We proceed by considering the linear birth-death setting of Experiment 3.2 in relation to
the four scenarios mentioned above. We use the whooping crane data [24, 66], as displayed
in Figure 3.1, of annual counts of the female population of the whooping crane n = 69.
From Figure 3.1 we could suspect that a model with modulation could lead to a better
�t than a model without modulation. We (conservatively) set C = 200. The outcomes
of the model selection procedure are shown in Table 3.5. As it turns out, the aic value
is smallest for scenario 1, i.e., the setting corresponding with no modulation. One should
bear in mind, though, that the number of observations in this dataset is low, making the
detection of modulation (involving 5 or 6 parameters) di�cult. Additional literature on
parameter estimation for linear birth-death models can be found in e.g. [18, 19, 20, 24, 70].

parameter scenario
1. 2. 3. 4.

q̂1 n/a 0.9338 0.7948 0.9504
q̂2 n/a 0.2034 0.5084 0.1571

λ̂1 0.1928 0.1588 0.1789 0.1206

λ̂2 n/a 0.1966 n/a 0.1889
µ̂1 0.1492 0.1462 0.0969 3.7 · 10−7

µ̂2 n/a n/a 0.1603 0.1574

logL(θ̂) −179.66 −179.65 −179.57 −179.40
aic 363.32 369.31 369.14 370.80

Table 3.5: Whooping crane data: parameter estimates, loglikelihood value and aic for
the four di�erent scenarios (n = 69), with ` = 1024 and C = 200.

3.7 Concluding remarks

We have examined various approaches to compute the tine-dependent distribution of
qbd processes, with emphasis on the Erlangization approach. This approach has prov-
able asymptotic correctness properties, and is, in terms of computational time, typically
relatively fast. The latter property pays o� in particular in settings where many time-
dependent probabilities have to be evaluated. In this context, one could think of instances
in which a function of the time-dependent probabilities is to be optimized over a set of
model parameters, e.g. when performing maximum likelihood estimation.

Our study was motivated by model selection problems, in which one wishes to dis-
tinguish between models with and without modulation, i.e., between qbd processes and
their bd counterparts. Through a series of experiments, with simulated as well as real-life
data, we have shown how the techniques for computing time-dependent distributions can
play a role in this context.

Our Erlangization approach gives rise to various directions for further research. For
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the class of qbd processes, the method's �rst step (solving the system of linear equations
that yield the probabilities at exponential epochs) can exploit the convenient underlying
structure, thus allowing an e�cient numerical algorithm. We anticipate, however, that
Erlangization has the potential to be applied more widely. One could think of multi-type
population models, where various types of individuals are considered, which can in turn
interact with each other. Another interesting extension concerns the multivariate model
in which a population of individuals lives on a network and can move between its nodes.
In this respect we refer to Chapter 5, approximating time-dependent probabilities in such
a network, relying on saddlepoint approximations. The crucial simpli�cation made in
Chapter 5 is that a discrete-time model is considered, as opposed to the continuous-
time model featuring in the present chapter. It would therefore be interesting to explore
whether an Erlangization-based approach could be developed for the continuous-time
setting of such a network population process.
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4. Population model for mRNA transcription

A birth-death process of which the births follow a hypoexponential distribution with L
phases and are controlled by an on/o� mechanism, is a population process which we
call the on/o�-seq-L process. It is a suitable model for the dynamics of a population of
mRNA molecules in single living cells. Motivated by this biological application, a method
is presented to compute maximum likelihood estimates of the model parameters, based
on observations of the population size at discrete time points. It is shown that the on/o�-
seq-L process can be seen as a quasi birth-death process, and the Erlangization technique
can be used to approximate the likelihood function. To investigate the performance of
the resulting estimation method, an extensive simulation-based numerical study is carried
out. Numerical complications related to the likelihood maximization are analyzed and
solutions are presented. The estimation method is applied to real mRNA data, and a
model selection procedure is performed on the number of phases and the on/o� mechanism
in the on/o�-seq-L process.

4.1 Introduction

Birth-death (BD) processes are continuous-time Markov processes with two types of tran-
sitions; births which increase the state by one, and deaths which decrease the state by one.
BD processes are suitable to model the dynamics of the number of individuals in a popula-
tion, and are widely used in a broad range of areas such as biology, ecology and operations
research. The research in this chapter is motivated by a speci�c biological application:
the number of mRNA molecules in a single living cell. The evolution of a population of
mRNA molecules can be modelled by a BD process, since the population can increase
(production) or decrease (degradation) by one molecule at a time. However, it is known
that the production of mRNA molecules is a sequential process consisting of multiple
phases [44, 64], and that the production is regulated by an on/o� mechanism [53], which
we will refer to as the on/o� switch. To model the population of mRNA molecules in a
realistic way, we therefore extend the basic BD process by including these two features to
the model. This results in what we call the on/o�-seq-L process, which is also considered
in [30]. The on/o� switch in the on/o�-seq-L process is a mechanism that decides if the
next birth of an individual can be set in motion or not. Births can be initiated only while
the switch is turned on. If the switch turns o�, it needs to be switched back on before
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a birth can be initiated. Once a birth is initiated, it takes L sequential exponentially
distributed phases before a new individual is born and the population increases by one.

We are interested in performing statistical inference for the on/o�-seq-L process, and
its application to a real data set of mRNA counts in cells. Motivated by the structure of
this real data set, we consider an inference problem based on a data set that consists of
multiple time series, which is a broadly applicable data setting. The goal is to estimate the
model parameters based on observations of the population size at discrete time points,
and to perform model selection on the on/o� switch and on the number of phases L
in the birth process. This kind of inference problem has been studied before in the
context of mRNA transcription. We mention [37], where maximum likelihood estimates
are computed and a model selection procedure is performed for a stochastic model with
a sequential birth process. However, in contrast to the on/o�-seq-L process, an on/o�
mechanism is not included in that model. In [30, 51], maximum likelihood estimation
and a model selection procedure are performed for the on/o�-seq-L process. However, in
these studies the likelihood function is computed from observations of the transcription
intervals, that is, the time between two consecutive mRNA births. These intervals are
not observed precisely and censoring is needed to compute the likelihood function. In
this chapter, we make use of the fact that the on/o�-seq-L model is actually a special
case of a quasi birth-death (QBD) process. This means that the Erlangization technique
introduced in Chapter 3 can be applied to evaluate the likelihood function from the
population size, instead of the transcription intervals.

The remainder of this chapter is organized as follows. In Section 4.2, we mathemati-
cally de�ne the on/o�-seq-L process and introduce the corresponding likelihood function
and estimation problem. Section 4.3 shows that the on/o�-seq-L process belongs to the
class of QBD processes, and therefore the Erlangization method introduced in Chap-
ter 3 can be used to approximate the likelihood. By an extensive numerical study in
Section 4.4, we investigate the accuracy of the resulting estimation method for the on/o�-
seq-L process. In addition, we explore numerical complications related to the likelihood
maximization. Section 4.5 describes in detail the biological process of mRNA transcrip-
tion, which is the motivating application of this chapter. A model selection procedure is
performed for di�erent on/o�-seq-L processes, based on data of mRNA counts in single
cells. The chapter is concluded by a discussion in Section 4.6.

4.2 Mathematical model and estimation problem

In this section we formally introduce the class of on/o�-seq-L processes together with
the necessary notation. We then de�ne the estimation problem and the corresponding
likelihood function.
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4.2.1 The on/o�-seq-L process

The on/o�-seq-L process can be viewed as a BD process with two speci�c features in
the birth process. First, the births follow a hypoexponential distribution�that is a sum
of exponentially distributed phases�instead of the often used exponential distribution.
Second, the births are controlled by a so-called on/o� switch, which means that births
can be initiated only while the switch is turned on. Because of this speci�c structure,
the on/o�-seq-L process is modelled as a two-dimensional Markov process, consisting of
the population process together with an underlying background process. We start with
the mathematical de�nition of this background process, which can be viewed as a process
that keeps track of the status of the birth process. We then de�ne the population process
and complete the de�nition with the two-dimensional Markov process and its transition
rates.

Let {Xt}t≥0 be a continuous-time Markov chain modeling both the on-o� switch of
the process and the exponential phases of the birth process. Its state space is given by
E = {0, 1, . . . , L}. The state Xt = 0 corresponds to the state where the on/o� switch is
turned o�, and will be referred to as the o�-state. Importantly, births cannot be initiated
in this state. The switch needs to switch back on �rst, leading to the state Xt = 1, which
we refer to as the on-state. Births can only be initiated from this state. Once a birth
is initiated, the process runs through states 1, . . . , L and back to state 1, corresponding
to the sequential, exponential phases of the birth process. A schematic representation
is given in Figure 4.1 for the model with L = 3. When the L exponential phases are
completed, a new individual is born and the population increases by one. During this
birth process, the switch remains on.

0 1 2 3
qo�

qon λ1 λ2

λ3

Figure 4.1: Schematic representation of the {Xt} process in the on/o�-seq-3 model. The
dotted line indicates the transition that results in a birth of a new individual. Parameters
qoff , qon, λ1, λ2 and λ3 denote the transition rates.

Let {Mt}t≥0 be the population process, with Mt equal to the total number of indi-
viduals in the system at time t. The birth process that increases the population size
is described above. The population size decreases according to a general death process,
where the lifetimes of the individuals are assumed to follow an exponential distribution,
independently of each other, and independently of {Xt}. The entire model is described
by the two-dimensional, time-homogeneous Markov process {Xt,Mt}t≥0. Combining the
de�nitions of {Xt} and {Mt}, we can de�ne the transition rates of this joint process.

First, we have the two rates associated with the on-o� mechanism. These rates cor-
respond to jumps of Xt between states 0 and 1 while the state of Mt remains unchanged.
When Mt = m, we have, for all m ≥ 0, the transition rate qon for the transition from
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(0,m) to (1,m) and the rate qoff for the transition from (1,m) to (0,m). Note that qon and
qoff do not depend on m. Secondly, we have the rates associated with the sequential birth
phases, where the state of Mt remains unchanged until the completion of the �nal phase.
For all L ≥ 2 we have rates λi for the transitions from (i,m) to (i+1,m), i ∈ 1, . . . , L− 1,
and for all L ≥ 1 we have rate λL for the transition (L,m) to (1,m+ 1). Note that after
completion of the �nal phase, the process {Xt} returns to state 1 from which the system
can either be turned o�, or a new birth can be initiated. Last, we have the rates associ-
ated with the deaths. The lifetimes of the individuals follow an exponential distribution
with parameter µ, independently of each other. This means that the total death rate
is proportional to the total number of individuals in the population. Furthermore, the
lifetimes are not a�ected by the state of {Xt}. Hence for all i ∈ 1, . . . , L and m > 0, we
have rate mµ for the transition (i,m) to (i,m− 1).

4.2.2 Likelihood evaluation

We combine all model parameters of the on/o�-seq-L process in the parameter vector
θ = (qon, qo�, λ1, . . . , λL, µ)>. As mentioned above, the goal is to estimate θ based on
observations of the population size at discrete time points, and to perform model selection
on the on/o� switch and on the number of phases L in the birth process. To �nd maximum
likelihood estimates, we need a reliable method to evaluate the likelihood function of the
data with respect to θ.

The available data set consists of multiple times series corresponding to N independent
experiments. Let ∆ > 0 be the time between two consecutive observations, and let
n+ 1 be the number of observations in a single experiment corresponding to observation
times 0,∆, 2∆, . . . , n∆. We assume that in each experiment the process {Mt} is observed
at these observation times, resulting in observations m

(k)
0 , . . . ,m

(k)
n for experiments k =

1, . . . N . We introduce the corresponding data vectors mk
0,n = (m

(k)
0 , . . . ,m

(k)
n )>, k =

1, . . . N . The loglikelihood function based on the N independent experiments is then
equal to

logL(θ|m(1)
0,n, . . . ,m

(N)
0,n ) =

N∑
k=1

logL(θ|m(k)
0,n). (4.1)

We can rewrite the likelihood function, L(θ|m(k)
0,n), for a single data vector mk

0,n, by con-
ditioning on the states of the background process {Xt} at the observation times. To this
end, we de�ne the transition probabilities

pxx′(m,m
′; t) := P(Mt = m′, Xt = x′|M0 = m,X0 = x).
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Then

L(θ|m(k)
0,n) =

∑
x0,...,xn∈E

n∏
i=1

pxi−1xi(m
(k)
i−1,m

(k)
i ; ∆). (4.2)

In the next section we show that the on/o�-seq-L process can be seen as a QBD
process. This means that the Erlangization technique introduced in Chapter 3 can be
applied to approximate the transition probabilities in (4.2), and hence the likelihood
function (4.1). A requirement to apply the Erlangization technique is that the population
sizeMt is bounded from above by a constant C > 0. By the nature of the BD process, the
state ofMt can only increase by one at a time. This means that for each data vector m

(k)
0,n,

we can choose a constant C ∈ N large enough such that for all x, x′ ∈ E, m(k)
i < m′ and

i = 1, . . . , n, the transition probability pxx′(m
(k)
i ,m′; ∆) is negligible for m′ > C. Hence,

we can bound the population size by this constant C.

4.3 Quasi birth-death framework

In this section we show that the on/o�-seq-L process belongs to the class of QBD pro-
cesses, using the framework as described in Chapter 3. As argued in the previous section,
we can assume that the population process {Mt} attains values in {0, 1, . . . , C} for some
C > 0.

Let, as in Chapter 3, Q(m), m = 0, . . . , C, be the transition rate matrix on state
space E = {0, 1, . . . , L} corresponding to all jumps of Xt that leave the state of Mt = m
unchanged. Note that, in the setting of this chapter, Q(m) is actually independent of m.
For example, for L = 3 and all m ∈ {0, 1, . . . , C}, we have

Q(m) =


−qon qon 0 0

qo� −qo� − λ1 λ1 0

0 0 −λ2 λ2

0 0 0 0

 .

For i 6= j, each element [Q(m)]ij corresponds to the jump from Xt = i to Xt = j while
Mt = m, and the diagonal elements [Q(m)]ii are such that the row sums are zero.

Next, we introduce the matrix Λ(m) on E, of which the elements correspond to the
jumps that increase Mt by one, while Xt jumps from state i to j. Note that for the
on/o�-seq-L process, all λ

(m)
ij are zero except for the one corresponding to the completion

of the �nal phase of the birth process (if m ≤ C − 1). Hence for L = 3, and m ≤ C − 1,
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we have

Λ(m) =


0 0 0 0

0 0 0 0

0 0 0 0

0 λ3 0 0

 .

At last, we introduce the matrix M(m) on E, of which the elements correspond to the
jumps that decrease Mt by one, while Xt jumps from state i to j. Deaths leave the state
of the background process unchanged, hence all µ

(m)
ij are zero for i 6= j. We have

M(m) =


mµ 0 0 0

0 mµ 0 0

0 0 mµ 0

0 0 0 mµ

 .

We observe that we can write down the transition rate matrix of the joint process
{Xt,Mt} in terms of the matrices Q(m), Λ(m) and M(m) in the same way as in Chapter 3.
The total number of states of {Xt,Mt} is D = (L+ 1)(C + 1), and the D ×D transition
matrix is equal to

Q :=



Q̄(0) Λ(0) 0 · · · 0 0

M(1) Q̄(1) Λ(1) · · · 0 0

0 M(2) Q̄(2) · · · 0 0
...

...
...

. . .
...

0 0 0 · · · Q̄(C−1) Λ(C−1)

0 0 0 · · · M(C) Q̄(C)


,

where Q̄(m) is de�ned as Q(m) with the diagonal entries adapted such that the row sums
of Q are zero. This means that, in contrast to Q(m), the diagonal entries of Q̄(m) depend
on m.

We conclude that the on/o�-seq-L process can be seen as a special case of a QBD
process. This means that we can use the results in Chapter 3 to approximate our like-
lihood function in a reliable and accurate way. Using the Erlangization technique we
can approximate the likelihood L(θ|m(k)

0,n) corresponding to a single data vector m
(k)
0,n as

given in (4.2), which in turn can be used to approximate the likelihood function (4.1)
corresponding to N independent experiments. The maximum likelihood estimate θ̂ of θ
can be obtained by numerical optimization of the likelihood over the domain D of θ.
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4.4 Numerical study

In this section we investigate the accuracy of the estimation method for the on/o�-seq-L
process as described above, by means of a simulation-based numerical study. In addition,
we identify numerical complications related to the likelihood maximization that we need
to take into account, and investigate how to solve them.

Each model setting considered in this section corresponds to a �xed number of phases
L and to a �xed parameter vector θ = (qon, qo�, λ1, . . . , λL, µ)>. In our simulation studies,
the model setting and the size of the data were chosen �rst, by �xing L and θ, and �xing n
and N . Next, the data vectors mk

0,n, for k = 1, . . . , N , were simulated B times, for B > 0
large and the estimation method was applied to each of the B groups of data vectors. Here
the parameter ` in the Erlangization approximation was �xed at ` = 2048 and the domain
D was chosen as [0, b]L+3 for a �xed upper bound b > 0. This resulted in B estimates
for the parameter vector θ, which we denote by θ̂i, i = 1, . . . , B. By analyzing these
parameter estimates, we obtained insight in the performance of the estimation method.
We performed simulation studies for a variety of model settings and present our �ndings
with the use of a couple of illustrative examples.

4.4.1 Imposing constraints

The �rst example concerns the on/o�-seq-2 process with parameters qon = 0.1, qoff = 0.2,
λ1 = 2, λ2 = 1 and µ = 0. This means that we start with a model in which only births
occur and no deaths, and we consider µ as a known parameter. Hence, in this example
θ = (qon, qoff , λ1, λ2)>. The size of the data set was �xed, with n = 120 and N = 375. The
results of a simulation study with B = 1000 and b = 10 are presented in Table 4.1 and
Figure 4.2. Table 4.1 shows, for each parameter, the sample mean of the 1000 estimates
and the corresponding sample standard deviation. We observe that the sample means
for qo�, λ1 and λ2 do not match with the true parameter values, and the corresponding
standard deviations are substantial. This is also re�ected in Figure 4.2, which shows, for
each parameter, the histogram of the 1000 estimates. The histograms for qo�, λ1 and λ2

clearly consist of two peaks. The estimates corresponding to one parameter vector θ are
displayed in one color, either blue or red, depending on the peak in which the estimate
for qo� belongs. It shows that there is a one-to-one relation between peaks of the di�erent
parameters. Whenever the estimate for qo� lies in the lower peak (red), the estimate for
λ1 lies in the lower peak and the estimate for λ2 lies in the higher peak, and the other way
around (blue). We observe that the peaks correspond approximately to the two parameter
vectors θ1 = (0.1, 0.1, 1, 2)> (red), and θ2 = (0.1, 0.2, 2, 1)> (blue). Note that the blue
peaks correspond to the true parameter values of this setting.

By means of further analysis of the on/o�-seq-2 process, we can explain why we �nd
two peaks in Figure 4.2. The main reason is that the parameter vectors θ1 and θ2 lead
to two stochastic processes that are hard to distinguish. This becomes clear by analyzing
the distribution of the inter-birth times, the times between consecutive births. Note that
these times are i.i.d. We denote the corresponding random variable by T . The time
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qon qo� λ1 λ2

mean 0.1066 0.1625 1.7079 1.3115
sd 0.0036 0.0480 0.4780 0.5315

Table 4.1: Mean values of 1000 estimates, with corresponding standard deviations.
On/o�-seq-2 process with true parameter values: qon = 0.1, qo� = 0.2, λ1 = 2, λ2 = 1.

Figure 4.2: Histograms of 1000 estimates. On/o�-seq-2 process with true parameter
values: qon = 0.1, qo� = 0.2, λ1 = 2, λ2 = 1.

between two births always starts in the on-state, and consists of the time it takes to go
back and forth between the on- and o�-state, and the time it takes to go through the
sequential exponential birth phases. Let G ∈ {1, 2, . . . } be a geometrically distributed
random variable with parameter p = λ1/(λ1 + qoff), such that G − 1 can be interpreted
as the number of on/o� loops of which the inter-birth time T consist. Then T can be
written as the geometric sum

T =
G−1∑
i=0

Ai + Ã, (4.3)

where A0 = 0, the Ai, for i ≥ 1, are independent and identically distributed as the sum
of two exponential random variables with rates λ1 + qoff and qon, and Ã is distributed as
the sum of two exponential random variables with rates λ1 + qoff and λ2.

Using expression (4.3) for T , we can study its distribution, starting with the expecta-
tion and variance of T . Using Wald's equation on the geometric sum, we see that

E[T ] = E[G− 1]E[A1] + E[Ã]

=

(
qoff + λ1

λ1

− 1

)
·

(
1

qoff + λ1

+
1

qon

)
+

(
1

qoff + λ1

+
1

λ2

)
=

1

λ1

+
1

λ2

+
qoff

qon · λ1

.
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Similarly, with Wald's equation for the variance, we �nd

Var[T ] = E[G− 1]Var[A1] + E[A1]2 Var[G− 1] + Var[Ã]

=

(
qoff + λ1

λ1

− 1

)
·

(
1

(qoff + λ1)2
+

1

q2
on

)

+

(
1

qoff + λ1

+
1

qon

)2

·

(
qoff(qoff + λ1)

λ2
1

)
+

1

(qoff + λ1)2
+

1

λ2
2

=
1

λ2
1

+
1

λ2
2

+
2qoffλ1 + q2

off + 2qonqoff

λ2
1q

2
on

.

Interestingly, when computing the expectation and standard deviation of T for the earlier
de�ned parameter vectors θ1 and θ2, we observe almost no di�erence. Parameter θ1

gives expectation 2.5 with standard deviation 4.92 and parameter θ2 gives expectation
2.5 with standard deviation 4.82. This means that, for sample sizes of a realistic size, the
distribution of T will be indistinguishable for both parameter vectors. This is con�rmed
by simulations of the distribution of T . For both θ1 and θ2, B = 1000 realizations of the
inter-birth time T were simulated according to (4.3). Figure 4.3 shows the corresponding
empirical distribution functions for θ1 in red, and θ2 in blue. We see that the distribution
functions are almost identical, which explains why the two parameter settings θ1 and θ2

are indistinguishable, and two peaks appear in Figure 4.2.

Figure 4.3: Empirical distribution function of T based on 1000 simulated realizations of
T for parameter vectors θ1 (red) and θ2 (blue).

Intuitively, we can also understand why θ1 and θ2 virtually lead to the same stochastic
process. Note that in our true parameter setting θ2, the values for qon and qoff are relatively
small compared with the values for λ1 and λ2, hence the phase process dominates the
on/o� switch. Because of this timescale separation, the time spent in the o�-state between
two consecutive births is negligible, and the inter-birth time mainly consist of the two
exponential phases with parameters λ1 and λ2. Interchanging the two phases will therefore
have a modest e�ect on the inter-birth times, as long as the probability of jumping from



68 Chapter 4. Population model for mRNA transcription

state Xt = 1 to Xt = 2 stays the same. This probability is equal to λ1/(λ1 + qoff), hence
if qoff is adjusted in the right way, the new situation virtually yields the same stochastic
process. This is exactly what describes the di�erence between θ2 and θ1. The parameter
values for λ1 and λ2 are swapped, and the probability λ1/(λ1 + qoff) = 10/11 in both
situations.

We conclude that in some parameter settings, the shape of the likelihood function is
such that numerical maximization can lead to multiple estimates of θ. A way to overcome
this numerical complication is by imposing constraints when maximizing the likelihood
function. Table 4.2 and Figure 4.4 show the results of a simulation study equal to the
one above, with the only di�erence that the likelihood functions are maximized under the
constraint λ1 ≥ λ2, making it no longer possible to interchange λ1 and λ2. We see from
Table 4.2 that the mean values of the 1000 estimates lie close to the true parameter values,
and that the standard deviations for the last three parameters decreased considerably.
Figure 4.4 shows us that the histograms of all parameters only have one peak now that
we imposed the constraint on λ1 and λ2.

qon qo� λ1 λ2

mean 0.1066 0.1911 1.9910 1.0004
sd 0.0036 0.0096 0.0960 0.0278

Table 4.2: Mean values of 1000 estimates, with corresponding standard deviations, ob-
tained under the constraint λ2 ≥ λ1. On/o�-seq-2 process with true parameter values:
qon = 0.1, qo� = 0.2, λ1 = 2, λ2 = 1.

Figure 4.4: Histograms of 1000 estimates obtained under the constraint λ2 ≥ λ1. On/o�-
seq-2 process with true parameter values: qon = 0.1, qo� = 0.2, λ1 = 2, λ2 = 1.

4.4.2 The in�uence of n and N

In this section we investigate the in�uence of n and N on the accuracy of the estimation
method. To illustrate our �ndings, we use the example as above, hence qon = 0.1, qo� =
0.2, λ1 = 2, λ2 = 1, with the small adjustment that the death rate of the simulated data,
µ, now equals 0.3. Hence, we analyze a model in which both births and deaths occur, and
of which the death rate µ is an unknown parameter as well. Note that the distribution
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of T does not depend on the value of µ, hence we again need to impose the constraint
λ1 ≥ λ2 when maximizing the likelihood function.

To investigate the in�uence of n on the accuracy of the estimation method, we per-
formed simulations for increasing values of n with N = 350 �xed. We chose n = 50,
n = 100, n = 200, n = 500 and n = 1000. The results for B = 1000 and b = 10 are
shown in Table 4.3 and Figures 4.5�4.9. In a few cases, the estimate θ̂ ended up at the
boundary of the domain D over which the likelihood function was maximized. This nu-
merical issue was easily solved by enlarging the domain, after which the estimate ended
up in the interior of D. Table 4.3 shows, for the increasing values of n, the sample mean
of the 1000 estimates, with the sample standard deviation between brackets. We see that,
for all �ve parameters, the sample means lie closer to the true parameter values as n
increases. Furthermore, the standard deviations decrease as n increases. This is also seen
in Figures 4.5�4.9, which show for each parameter the histograms of the 1000 estimates
for the increasing values of n. In each �gure, the limits of the x-axis are equal for the
�ve histograms, which makes it immediately visible that the histograms become narrower
when n increases.

n qon qo� λ1

50 0.1151 (0.0069) 0.1732 (0.0249) 1.9214 (0.2848)
100 0.1072 (0.0045) 0.1847 (0.0190) 1.9607 (0.2063)
200 0.1035 (0.0032) 0.1911 (0.0133) 1.9756 (0.1455)
500 0.1015 (0.0018) 0.1967 (0.0091) 1.9913 (0.0934)
1000 0.1007 (0.0013) 0.1979 (0.0063) 1.9924 (0.0635)

n λ2 µ
50 1.0311 (0.1049) 0.3009 (0.0057)
100 1.0132 (0.0717) 0.3005 (0.0039)
200 1.0082 (0.0468) 0.3004 (0.0028)
500 1.0035 (0.0284) 0.3002 (0.0018)
1000 1.0023 (0.0194) 0.3001 (0.0013)

Table 4.3: Mean values of 1000 estimates for increasing values of n and N = 350, with
corresponding standard deviation between brackets. On/o�-seq-2 process with true pa-
rameter values: qon = 0.1, qo� = 0.2, λ1 = 2, λ2 = 1, µ = 0.3.

We have seen that the accuracy of the estimation method can be increased by choosing
a higher value of n. However, in practical situations it is not always possible to increase n.
This is, for example, the case in the application studied in Section 4.5. One experiment
measures the number of mRNA molecules in a single cell over time, but the lifetime of a
cell is limited. The number of experiments N , however, can be increased. To investigate
the in�uence of N on the accuracy of the estimation method, we performed simulations for
increasing values of N with n = 100 �xed. We considered N = 200, N = 350, N = 500,
N = 750 and N = 1000. The results for B = 1000 and b = 10 are given in Table 4.4.
For each value of N , this table shows again the sample mean of the 1000 estimates with
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Figure 4.5: Histograms of the obtained estimates of qon for increasing values of n.

Figure 4.6: Histograms of the obtained estimates of qo� for increasing values of n.

the sample standard deviation between brackets. We see that for each parameter, the
mean values lie close to the true parameter value, but do not improve as N increases.
This means that the bias of the estimates is mainly determined by the value of n, which
is related to how much information is given by one experiment. However, Table 4.4 also
shows that the standard deviations do decrease as N increases, and in this way provides
insight in how the accuracy increases as a function of N .

4.4.3 On/o�-seq-3 process

In the �rst part of the numerical study, we have analyzed the on/o�-seq-2 process. In
this section we explore the numerical complications related to the likelihood maximiza-
tion for the on/o�-seq-L process with L > 2, and we investigate the accuracy of the
estimation method for the on/o�-seq-3 process. First note that for L > 2, the model is
partially unidenti�able, since interchanging the parameters λ2, . . . , λL yields an identically
distributed process {Mt}. Hence, when performing likelihood maximization, a �xed order
of these parameters should be chosen.

The analysis on the inter-birth times of the on/o�-seq-2 process can be extended for
L > 2. The inter-birth time T can still be written as the geometric sum in (4.3), but
Ã is now distributed as the sum of L exponential random variables with rates λ1 + qoff ,
λ2, . . . , λL. This means that E[T ] and Var[T ] only change by factors 1

λ3
+ · · · + 1

λL
and
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Figure 4.7: Histograms of the obtained estimates of λ1 for increasing values of n.

Figure 4.8: Histograms of the obtained estimates of λ2 for increasing values of n.
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Similarly, with Wald's equation for the variance, we �nd
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This means that the same reasoning holds as for the on/o�-seq-2 process, and additional
constraints on λ1 with respect to λ2, . . . , λL are needed to make sure that the likelihood
function has a unique maximum.

To investigate the accuracy of the estimation method for the on/o�-seq-3 process,
we performed a variety of simulation studies. We present our �ndings by means of two
di�erent examples. The �rst example is the on/o�-seq-3 process with parameters qon =
0.2, qo� = 0.5, λ1 = 0.5, λ2 = 2, λ3 = 4 and µ = 0.1. Table 4.5 and Figure 4.10 show the
simulation results for this example under the constraint λ1 ≤ λ2 ≤ λ3, with B = 1000,
b = 10 and data size n = 1000, N = 350. Table 4.5 shows, for each parameter, the
sample mean and corresponding sample standard deviation of the 1000 estimates. We
see that the mean values for parameters qon, λ2, λ3 and µ lie close to the true parameter
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Figure 4.9: Histograms of the obtained estimates of µ for increasing values of n.

N qon qo� λ1

200 0.1072 (0.0059) 0.1849 (0.0252) 1.9642 (0.2679)
350 0.1072 (0.0045) 0.1847 (0.0190) 1.9607 (0.2063)
500 0.1071 (0.0038) 0.1848 (0.0151) 1.9639 (0.1701)
750 0.1072 (0.0031) 0.1850 (0.0124) 1.9627 (0.1376)
1000 0.1072 (0.0027) 0.1849 (0.0106) 1.9609 (0.1176)

N λ2 µ
200 1.0199 (0.0971) 0.3005 (0.0054)
350 1.0132 (0.0717) 0.3005 (0.0039)
500 1.0097 (0.0577) 0.3006 (0.0032)
750 1.0082 (0.0459) 0.3007 (0.0027)
1000 1.0078 (0.0384) 0.3007 (0.0023)

Table 4.4: Mean values of 1000 estimates for increasing values of N and n = 100, with
corresponding standard deviation between brackets. On/o�-seq-2 process with true pa-
rameter values: qon = 0.1, qo� = 0.2, λ1 = 2, λ2 = 1, µ = 0.3.

values. The mean values for parameters qoff and λ1, however, exceed the true parameter
values. This is also visible in Figure 4.10, which shows for each parameter the histogram
of the 1000 estimates. The histograms for qoff and λ1 show some outliers which increase
the corresponding means. This example con�rms that when L increases it becomes more
di�cult to accurately estimate all model parameters from the data. This is supported by
the fact that the variance of T increases when L grows. Hence, as to be expected, for
larger L more data is needed (i.e. by increasing n) to obtain a similar accuracy as for
models with a smaller L.

For some applications it may be more realistic to assume that all λi, i = 1, . . . , L,
are equal. Under this assumption, the accuracy of the estimation method may increase
substantially. We illustrate this by the second example. We consider the on/o�-seq-3
process with parameters qon = 0.25, qoff = 1, λ1 = λ2 = λ3 = λ = 10 and µ = 2, hence
θ = (qon, qoff , λ, µ)>. The results of a simulation study with B = 1000, b = 50, n = 120
and N = 375 are presented in Table 4.6 and Figure 4.11. Table 4.6 shows, for each
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qon qo� λ1 λ2 λ3 µ
mean 0.2008 0.5441 0.5360 1.9895 3.9995 0.1000
sd 0.0037 0.1463 0.1139 0.4370 0.7865 0.0006

Table 4.5: Mean values of 1000 estimates, with corresponding standard deviations. True
parameter values: qon = 0.2, qo� = 0.5, λ1 = 0.5, λ2 = 2, λ3 = 4, µ = 0.1.

Figure 4.10: Histograms of 1000 estimates. On/o�-seq-3 process with true parameter
values: qon = 0.2, qo� = 0.5, λ1 = 0.5, λ2 = 2, λ3 = 4, µ = 0.1.

parameter, the sample mean and corresponding sample standard deviation of the 1000
estimates. We see that the mean values of the parameters are close to the true parameter
values. This is re�ected in Figure 4.11, which shows for each parameter the histogram of
the 1000 estimates. The histograms are nicely shaped around the true parameter values.
Note that the size of the data in this example is substantially smaller than in the previous
example.

qon qo� λ µ
mean 0.2547 0.9727 10.1153 2.0282
sd 0.0049 0.0253 0.2028 0.0451

Table 4.6: Mean values of 1000 estimates, with corresponding standard deviations. True
parameter values: qon = 0.25, qo� = 1, λ = 10 and µ = 2.
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Figure 4.11: Histograms of 1000 estimates. On/o�-seq-3 process with true parameter
values: qon = 0.25, qo� = 1, λ = 10 and µ = 2.

4.5 mRNA transcription

In this section we apply the estimation method for the on/o�-seq-L process, as described
at the end of Section 4.3, to real data of mRNA counts. We �rst describe in detail the
biological process of mRNA transcription, and then describe a model selection procedure
that we performed on the data with respect to various on/o�-seq-L processes.

4.5.1 Biological background

Proteins play a major role in the structure and functioning of cells. In fact, all physio-
logical processes in cells depend on proteins. The information needed for the synthesis of
proteins is stored in the DNA; think of it as a collection of recipes. Speci�c parts of the
DNA, called genes, contain the information for a particular protein, and can be seen as
one recipe. When a protein is needed, the information in the corresponding gene is used
for the synthesis of this protein in a process called gene expression. Gene expression takes
place in two steps, see Figure 4.12. In the �rst step, called transcription, the information
in the gene is copied into an mRNA molecule. In the second step, called translation, the
copied information in the mRNA molecule is used to make the corresponding protein. By
transcription, multiple identical mRNA molecules can be produced from one gene, and
by translation each of these mRNA molecules can produce multiple identical proteins. In
this way, the proteins can be synthesized with their own e�ciency according to the needs
of the cell, despite the fact that each cell contains only one or two copies of a speci�c
gene. Interestingly, gene expression is constructed in this way in all cells, from bacteria
to humans. We focus on the transcription step in gene expression. It is known that in
bacteria the stochasticity in gene expression stems largely from transcription [36], which
is why a stochastic model for this process is appropriate.

DNA mRNA Protein
transcription translation

Figure 4.12: Steps of protein synthesis.

The transcription of mRNA molecules is a complex process. After the transcription



4.5 mRNA transcription 75

of an mRNA molecule has been initiated, it takes multiple sequential phases before the
molecule is eventually produced. Biologically, mRNA transcription takes place through
the following steps: �rst, the molecule RNA polymerase binds to the DNA and slides
along the DNA to �nd a transcription start site, called promoter. Once it has found a
start site it binds �rmly and the transcription begins. The RNA polymerase moves along
the gene while copying the genetical code step by step. Once it reaches the stop site, it
releases itself and the new mRNA transcript from the DNA. From there, the process can be
repeated to produce more mRNA molecules. The mRNA transcription can be controlled
by a process called gene repression. The promoter can bind to repressors for a period
of time in which RNA polymerase cannot reach the start site to initiate transcription.
This causes the promoter to switch between an active state, free from repressors, and an
inactive state, bound by repressors.

The on/o�-seq-L process has been found to be a realistic model for mRNA transcrip-
tion [51, 30], and combines the active/inactive switch of the promoter with the sequential
phases of transcription. The phases in the transcription process that contribute to the
transcription rate the most are called rate limiting, and di�er per promoter. Phases that
are relatively fast compared to other phases generally do not need to be included in the
model. Likewise, it depends on the promoter whether or not the active/inactive mech-
anism has a (substantial) e�ect on the transcription dynamics. If the time spent in the
inactive state is relatively short compared to the time spent in the active state, it could
be decided not to include an on/o� mechanism in the model. The model that leads to the
best representation of the transcription process can be identi�ed either based on biological
considerations or by means of a statistical model selection procedure.

4.5.2 Model selection

In this section we describe a model selection procedure that we performed for mRNA
data corresponding to the so-called λ RM promoter [30], which were kindly provided by
prof. A.S. Ribeiro from Tampere University, Finland. The available data set consists of
measurements on the number of mRNA molecules in a total of 775 single cells, hence
N = 775. Each cell was measured every minute over a period of two hours, hence ∆ = 1
and n = 121. We used the on/o�-seq-L process to describe the data and applied the
Erlangization method as described in Section 4.3 to evaluate the likelihood function and
obtain maximum likelihood estimates. We performed our model selection on six di�erent
models, arising from the combination of whether or not there is an on/o� mechanism, and
if the birth process consists of 1, 2 or 3 phases. This means that next to the on/o�-seq-1,
on/o�-seq-2 and on/o�-seq-3 models, we considered the seq-1, seq-2 and seq-3 models in
which the on/o� mechanism is omitted. In line with [30], we assumed that λ1 ≤ λ2 ≤ λ3.

The results of the model selection, with b = 10, are shown in Table 4.7. This table
shows for each model the maximum likelihood estimates of the parameters in the �rst �ve
columns, the sixth column presents the corresponding likelihood values, and the Akaike
information criterion (AIC) is shown in the last column. We see that the model that
leads to the best �t should contain an on/o� mechanism, since the lowest AIC values are
found for these models. Because these values are close to each other, we computed the
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qon qo� λ1 λ2 λ3 logL AIC
seq-1 - - 0.0144 - - -3569.9 7141.8
seq-2 - - 0.0144 8.9245 - -3569.4 7142.7
seq-3 - - 0.0144 9.9536 9.9875 -3569.3 7144.6
on/o�-seq-1 0.0249 0.0608 0.0496 - - -3475.2 6956.5
on/o�-seq-2 0.0303 0.4089 0.2220 0.2221 - -3474.8 6957.6
on/o�-seq-3 0.0312 0.4410 0.2314 0.2314 9.9983 -3475.6 6961.3

Table 4.7: Model selection for the λ RM promoter data with λ1 ≤ λ2 ≤ λ3. The columns
show the maximum likelihood estimates, the loglikelihood values, and the AICs, respec-
tively.

relative likelihood values to give more insight in the di�erences. Let L̂i be the maximum
likelihood value for the on/o�-seq-i model corresponding to the results in Table 4.7. Then

the relative likelihood, L̂2/L̂1, is equal to 0.5769, and the relative likelihood, L̂3/L̂1, is
equal to 0.0907. These values are not close to 1, which indicates that the on/o�-seq-
1 model seems to be the best model for this type of data, in line with the �ndings of
[30]. Note that the AIC-based conclusion that a model with three phases is least suitable
for the data is supported by the fact that the maximum likelihood estimates of λ3 are
relatively large with respect to the other parameters. Then comparing the maximum
likelihood estimates for the on/o�-seq-1 model in Table 4.7 with the results in [30], we
see that the estimates are of the same order of magnitude, but do not match precisely.
This can be explained by the fact that in [30], the likelihood function is computed from
observations of the transcription intervals and not from the mRNA counts. As mentioned
in the introduction of this chapter, these intervals are not observed precisely and therefore
censoring is needed to compute the likelihood function.

4.6 Discussion

Motivated by a biological application, we have studied the on/o�-seq-L process, a BD
process with births occurring according to a sequential process consisting of multiple
phases and regulated by an on/o� mechanism. We have mathematically de�ned the
on/o�-seq-L process and have shown that it can be seen as a QBD process. The latter
enables the use of the Erlangization technique as introduced in Chapter 3 to approximate
the likelihood function. Maximum likelihood estimates can then be obtained by numerical
optimization of this likelihood.

In a numerical study, we have investigated the accuracy of this estimation method
for the on/o�-seq-L process, and have explored numerical complications related to the
likelihood maximization. We have shown that for some parameter settings the shape of
the likelihood function is such that numerical maximization can lead to multiple estimates
of θ. It is therefore necessary to impose constraints on the order of λ1, . . . , λL when
maximizing the likelihood function. Under these constraints, the estimation method works
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as expected. We have seen that the estimation method yields accurate results, and that
the accuracy improves as n or N increases. As illustrated for L = 3, the estimation
method can also be applied for processes with L > 2, but more observations are needed
to obtain a similar accuracy as for L = 2.

We note that the results that we obtained hold for a parameter setting where the phase
process dominates the on/o� switch. That is, the values for qon and qo� are relatively small
compared to the values for λ1, . . . , λL. However, parameter settings for which this is not
the case should also be explored. Recall that the random variable G−1, as in the de�nition
of T (4.3), can be seen as the number of on/o� loops of which the inter-birth time consists.
Furthermore, E[G − 1] = qoff/λ1, hence the ratio of these two parameters play a major
role in how the process behaves. We suspect that there are three di�erent regimes that
need to be distinguished with respect to the timescales of the parameters:

◦ λ1 is substantially higher than qoff . In this case E[G − 1] is small and the phase
process dominates the on/o� switch. This regime corresponds to the settings studied
in Section 4.4.

◦ λ1 is substantially smaller than qoff . In this case E[G − 1] is large and the on/o�
switch dominates the phase process. In view of performing statistical inference on
the model, this does not seem to be a relevant regime in any practical situation.
Only very view births will occur and therefore the on/o� mechanism will not be
detectable from data on the population size.

◦ Both λ1 and qoff are of the same order of magnitude. In view of performing statistical
inference on the model, this seems to be a relevant regime when E[G − 1] ≤ c, for
some constant c small enough. At the same time, we expect it to be a complicated
regime with its own numerical complications. Preliminary simulation studies suggest
that, unless n is large, the value of c will be hard to distinguish from the data, and
hence the corresponding parameters are hard to estimate.

The possible regimes leads us to an important direction for further research. It is
interesting to investigate whether there are more relevant regimes and how this can be
con�rmed mathematically. Moreover, the parameter estimation method should be ex-
plored for the last regime, in which all parameters are of the same order of magnitude.
Here, one of the questions is whether it is possible to �nd constraints on the model pa-
rameters under which the likelihood maximization will result in accurate estimates.
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5. Multivariate population processes

We consider discrete-time multivariate population processes under Markov modulation.
Our objective is to estimate the model parameters, based on periodic observations of the
network population vector. These parameters relate to the arrival, routing and departure
processes, but also to the (unobservable) Markovian background process. When opting
for the classical likelihood-based approach, the evaluation of the likelihood is problematic.
We show however, how an accurate saddlepoint approximation can be used. Numerical
experiments illustrate our method and show that even under relatively complicated con-
ditions the parameters are estimated relatively precisely.

5.1 Introduction

Population processes are stochastic processes that record the dynamics of the number
of individuals in a population. Owing to their widespread use in for instance biology,
ecology, and chemical reaction networks, they have become a key object of study in
statistics and applied probability. In its simplest form a population process describes
the �uctuations of the population size at a single location. Many practically relevant
situations, however, correspond to considerably more general settings. In the �rst place,
the population process often lives on a multi-node (rather than single-node) network. This
means that individuals can enter and leave the nodes of the network, but in addition they
can move between its nodes. Secondly, in many situations the dynamics of the population
are a�ected by exogenous, often unobservable, factors; think of temperature a�ecting the
spread of bacteria or weather conditions a�ecting the mobility of the individuals. In these
cases it is desirable to add an underlying modulating process to the model, referred to as
the background process.

Due to the ubiquity of multivariate modulated population processes across a wide
range of scienti�c disciplines, there is a clear need for sound statistical techniques to
estimate the underlying parameters. In this chapter we devise such a method based on
observations of the network population vector. We do so in a discrete-time context, with
the background process corresponding to a �nite state-space Markov chain. This means
that we are in the context of Markov modulation, with the values of the parameters
pertaining to the arrival, routing, and departure processes being a function of the state
of the background process.
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In the setting considered, parameter estimation can be seen as a highly challenging
inverse problem. When developing an estimation procedure, one needs to cope with two
major intrinsic complications.

◦ In the �rst place, as we have access to the network population vector only, we do not
observe the number of arrivals, the number of individuals that are routed between
each of the node pairs, and the number of departures, but only the net e�ect of these
processes. This e�ectively means that in general we cannot trace how individuals
have moved through the network.

◦ The second complication is that we assume that we cannot observe the background
process (making its state a hidden variable). The challenge is to infer from the obser-
vations the parameters of the Markovian background process, and the (background-
state dependent) parameters pertaining to the arrival, routing, and departure pro-
cesses.

There is a considerable body of work on inverse problems for continuous-time popula-
tion processes. In the �rst place we refer to for example [24, 67, 18, 19, 70] for parameter
estimation procedures for univariate birth-death processes without modulation. In these
papers the case is considered where the population is observed at discrete times only,
hence the individual births and deaths are not observed directly. In addition there are
various papers on estimation techniques for in�nite-server queues (which can be seen as
population processes in which the times the individuals spend in the system are inde-
pendent of each other) without modulation. In this context we mention [55], in which
the service-time distribution is estimated without direct observations of the service times,
and [11], which treats the estimation of the arrival rate and the service-time distribution
from observations of the population size. A separate branch of the literature focuses on
parameter estimation for stochastic processes with a Markovian, unobserved background
process. In this respect we mention [31, 32], which concentrate on the class of Marko-
vian binary trees and continuous-time observations or demographic data. In addition,
when focusing on a Markovian arrival process only, rather than the resulting population
process, in [15, 50] estimation procedures based on discrete-time observations are pre-
sented. We �nally refer to Chapter 2, in which a parameter estimation procedure for a
univariate population process under Markov modulation is proposed and assessed, based
on discrete-time observations of the population size.

The work presented in this chapter concerns parameter estimation for a multivariate
population process, and can as such be seen as part of the broader area of network science.
There is a strong relation with the subdiscipline that focuses on the statistical analysis
of network data. We refer to [41, Chapters 8 and 9] for more background on statistical
procedures for stochastic processes on networks. It is noted, though, that existing theory
predominantly concentrates on situations in which the routing process on the network�
often referred to as the network �ow�is fully observed, which contrasts with the situation
considered in this chapter.

Importantly, to the best of our knowledge, there are no procedures available for esti-
mating the parameters of modulated multivariate population process, based on observa-
tions of the network population vector. One could pursue an approach based on maximum
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likelihood, but evaluating the likelihood is generally problematic. The main di�culty lies
in the complexity of the model, in terms of the size of the underlying network and the fact
that there is a modulating background process. As a consequence, typically no closed-
form expression for the likelihood can be given; in addition, in the special cases where it
is possible to obtain such an explicit expression, there are often numerical complications.
We therefore take another approach, which combines the following two ideas:

◦ Due to the structure of the model, it is possible to set up a procedure to compute
for each point in time the joint moment generating function (mgf) pertaining to the
network population vector.

◦ We then apply the technique of saddlepoint approximation to compute an approx-
imation of the likelihood, and maximize this approximation over the unknown pa-
rameters. The saddlepoint approximation provides a (typically highly accurate)
approximation of the probability mass function of a random vector, based on the
corresponding joint mgf.

The saddlepoint technique has been developed in the 1950s by Daniels [22]; for a text-
book treatment see e.g. [17]. For speci�c models closed-form expressions for saddlepoint
approximations have been obtained. In this respect we refer to [1] for explicit approxima-
tions of the transition densities and cumulative distribution functions of Markov processes,
whereas in [23] general birth processes are considered. The references [10, 60] provide ex-
tensive general accounts of the use of saddlepoint techniques in statistics. A few papers
where saddlepoint expansions have been used to approximate the likelihood are [54] which
considers the context of the INAR(p) model, [26] where the focus is on the distribution of
the sum of independent non-identically distributed binomial random variables, and [24]
which aims at estimating the birth and death rates of a linear birth-and-death process.

We proceed by discussing this chapter's main contributions in more detail. First and
foremost, to our best knowledge, we are the �rst to develop a parameter estimation proce-
dure in the highly general and comprehensive setup of a multivariate population process
under Markov modulation, based on periodic observations of the network population vec-
tor. Our approach is likelihood-based, but only in special (small) networks the likelihood
can be computed in closed form, which is why we approximate the likelihood relying
on the saddlepoint approximation. A prerequisite for using the saddlepoint technique is
the availability of the mgf corresponding to the network population vector at multiple
points in time. We present an e�cient technique to evaluate this mgf, by computing
the mgf of the network population vector at one observation time conditionally on the
population vector at the previous observation time. Then this mgf is used to approximate
the likelihood, which numerically boils down to solving a convex optimization problem.
Subsequently the approximated likelihood is maximized over the parameter space to �nd
approximate values for the maximum likelihood estimates of the model parameters. The
last contribution concerns numerical experiments, which assess the performance of our
parameter estimation technique. They show that even under relatively complicated con-
ditions (modulation, a multi-node system), following our approach, the parameters can
be estimated relatively precisely. The examples involve single- and multi-node networks,
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with and without modulation, and illustrate the factors that a�ect the procedure's per-
formance.

The remainder of this chapter is organized as follows. In Section 5.2 we formally
de�ne the multivariate population process under Markov modulation, and we state the
estimation problem. Section 5.3 focuses on two examples of small networks (a single-node
model and a tandem network of two nodes), showing how in these cases the likelihood can
be computed explicitly. This section also points out how the expressions for the likelihood
become increasingly involved if the number of network nodes increases. In Section 5.4 we
show how the likelihood can be evaluated using saddlepoint approximations; this section
also includes the method to compute the mgf of the network population vector. We show
how the approximation of the likelihood can be used to estimate the model parameters,
and investigate the accuracy of this estimation method by numerical studies in Section 5.5.
We conclude the chapter with a discussion in Section 5.6.

5.2 Model and estimation

As mentioned in the introduction, this chapter considers a population process on a net-
work with �nitely many nodes. Individuals can arrive at each of the nodes, follow a
probabilistic route through the network, and potentially leave the network. We impose
Markov modulation: all parameters in the model are driven by a discrete-time Markov
chain, where each state corresponds to a di�erent set of parameter values. In this section,
we �rst present a detailed mathematical description of our Markov modulated multivariate
population process, and then state the corresponding parameter estimation problem.

We throughout adopt the convention that vectors are printed in bold; we denote by
x(k) the k-th entry of the vector x. As usual, random variables and matrices are denoted
by capital letters. We use 〈x,y〉 to denote the inner product of x and y (whose dimensions
are then assumed to be compatible). We write N0 := N ∪ {0}.

5.2.1 The model

We start by introducing the background process {Xk}k∈N0 . This is an irreducible discrete-
time Markov chain with �nite state space E = {1, . . . , d}, d ∈ {2, 3, . . .}. We de�ne by
P = (pij)

d
i,j=1 the corresponding (d×d) transition probability matrix, α the corresponding

initial state distribution (i.e., αi := α(i) = P(X0 = i)), and π the (unique) stationary
distribution. Recall that π>P = π>. The background process modulates the network's
dynamics in a way we make precise below.

We study a network with L ∈ N nodes on which we de�ne the multivariate population
process {M k}k∈N0 , where the vectorM k records the number of individuals present at the
L nodes at time k. This population process is the result of an arrival process, a routing
mechanism by which individuals jump between the nodes, and a departure process. We
now introduce these individual ingredients.

◦ Denote by {Ak}k∈N the arrival process, where Ak ∈ NL represents a vector that
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counts the number of arrivals at each of the L nodes at time k. We assume that
these arrivals stem from a parametric class, where the parameters depend on the
value of Xk−1, i.e., the state of the background process at time k − 1; the arrival
process is thus Markov modulated. More precisely, given Xk−1 = i, for some i ∈ E,
the moment generating function (mgf) of the arrivals at time k is assumed to exist
and given by (for s ∈ RL)

φk,i(s) := E[e〈s,Ak〉|Xk−1 = i], (5.1)

with the corresponding cumulant generating function (cgf) denoted by ψk,i(s) :=
log φk,i(s). In the sequel, we let the individual components ofAk be time-homogeneous

and independent, and letAk(`) have a Poisson distribution with parameter λ
(`)
i > 0,

given Xk−1 = i. In this case

ψk,i(s) ≡ ψi(s) =
L∑
`=1

λ
(`)
i (es(`) − 1). (5.2)

We emphasize that the use of other choices of the arrival process is straightforward,
as long as the mgf de�ned in (5.1) exists and is known.

◦ The routing and departure processes are Markov modulated as well. To describe
these processes, we �rst de�ne for each ` ∈ {1, . . . , L} the vector-valued process

{D(`)
k }k∈N, where D

(`)
k ∈ NL+1. For `′ between 1 and L, D

(`)
k (`′) counts the number

of individual jumps out of node ` towards node `′ at time k, whereas theD
(`)
k (L+1)

records the number of individuals that leave the network from node ` at time k.
We say that a jump from a node to itself is the same as staying at the node.
Importantly, in our model all individuals can move independently of each other

through the network and do not have to wait for each other. Let r
(`,`′)
i ∈ [0, 1] be

the probability of an individual at node ` to jump to node `′ at an arbitrary time
point when the background state is i. Also,

r
(`,0)
i := 1−

L∑
`=1

r
(`,`′)
i

(which is a number in [0, 1]) denotes the probability of an individual to leave the
network from node ` at any time point at which the background state is i. If
r

(`,0)
i = 0, individuals cannot leave the network from node ` when the background
process is in state i. Note that for each k > 0, given M k−1 and Xk−1, the vectors

D
(`)
k are independent. In addition, for a given ` the vectorD

(`)
k follows a multinomial

distribution.

In our model we let the change of the background process happen after the arrivals, the
routing and the departures. We remark, however, that this choice does not impose any
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restriction: in the very same manner we can deal with the analogous model in which the
background process jumps before the arrivals, the routing and the departures.

Furthermore, both the routing and the departures occur before the arrivals, which
implies that newly arrived individuals can only leave the node the next timeslot at the
earliest. It is also possible to assume that the arrivals occur before the departures and
routing. This leads to a slightly di�erent model, in which individuals who leave the system
in the same interval as they arrive are included in both the arrival process and departure
process, although they are not visible in the population process {Mk}.

We proceed by introducing various quantities related to {M k} that play a crucial role
in our analysis. In the sequel we will work intensively with the mgf of M k given M k−1

and Xk−1 = i (with k ∈ N and i ∈ E): for s ∈ RL,

ξi(s |m) := E[e〈s,Mk〉|M k−1 = m, Xk−1 = i] = E[e〈s,M1〉|M 0 = m, X0 = i],

with the corresponding cgf ζi(s |m) := log ξi(s |m). Furthermore, we de�ne for all ob-
servation pairs m,m′ ∈ NL

0 , k ∈ N and i ∈ E the one-step transition probabilities

ti(m
′ |m) = P(M k = m′ |M k−1 = m, Xk−1 = i)

= P(M 1 = m′ |M 0 = m, X0 = i),

and the diagonal matrix

T (m′ |m) = diag
{
t1(m′ |m), . . . , td(m

′ |m)
}
. (5.3)

Note that ξi(s |m) and ti(m
′ |m) do not depend on k due to time-homogeneity.

5.2.2 Parameter estimation

The objective of this chapter is to estimate the model parameters from observations of the
population process. We now specify these unknown parameters and the available data.

Throughout we assume that the network population process {M k} can be observed at
time points k = 0, 1, . . . , n for some n ∈ N. We denote the corresponding observations by
m0,m1, . . . ,mn, so that the set {m0, . . . ,mn} ∈ NL×(n+1)

0 comprises the available data.

Let

θ =
(
αi, pij, λ

(`)
i , r

(`,`′)
i : i, j ∈ {1, . . . , d}, ` ∈ {1, . . . , L}, `′ ∈ {0, . . . , L}

)>
be the unknown parameter vector corresponding to the model. Our goal is to estimate θ
given the observation m0, . . . ,mn. The resulting estimate will be denoted by

θ̂ =
(
α̂i, p̂ij, λ̂

(`)
i , r̂

(`,`′)
i : i, j ∈ {1, . . . , d}, ` ∈ {1, . . . , L}, `′ ∈ {0, . . . , L}

)>
.
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We estimate θ by maximum likelihood, which requires the evaluation of the likelihood
function. We make the common assumption that P(M 0 = m0) = 1. By taking into
account all possible paths of the background process {Xk} (at times k = 0, . . . , n − 1),
and using (5.3), the likelihood function can then be written as

L(θ |m0, . . . ,mn) = Pθ(M 0 = m0, . . . ,Mn = mn)

=
∑

x0,...,xn−1∈E

Pθ(M 0 = m0, X0 = x0, . . . ,Mn−1 = mn−1, Xn−1 = xn−1,Mn = mn)

= α>T (m1 |m0)P T (m2 |m1)P · · ·P T (mn |mn−1)1,

(5.4)

where 1 = (1, . . . , 1)>. We conclude that, in order to compute the likelihood L(θ |m0, . . . ,mn),
it is a prerequisite to be able to evaluate, for any pair of vectors m′ and m and for any
i ∈ E, the probability ti(m′ |m).

5.3 Small networks: explicit approach

In this section we present a few examples of `small' networks in which the one-step prob-
abilities ti(m

′ |m) can be computed explicitly. We �rst consider the special case of a
single-node model with Poisson arrivals, also known as a Markov-modulated in�nite-server
queue, and then treat a speci�c two-node tandem network. For larger networks, transi-
tions from m to m′ could correspond to a large number of potential scenarios (in terms
of the numbers of individuals arriving, being routed to another node, and departing),
making explicit evaluation prohibitive.

5.3.1 Single-node model

1
λi ri

1− ri

Figure 5.1: Schematic representation of the single-node model

Consider a model with a single node at which individuals arrive according to the arrival
process {Ak}k∈N, which is now a univariate random variable. More precisely, Ak ∈ N0

is the number of arrivals in the k-th timeslot. Let, as before, {Xk}k∈N0 be a Markovian
background process with d states. We assume that for each state i ∈ E, Ak given Xk−1 = i
has a Poisson distribution with parameter λi > 0, and individuals can either leave the
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node with probability ri ∈ [0, 1], or stay at the node with probability 1 − ri (see Figure
5.1). Let the process {Dk}k∈N count the number of individuals that leave the node per
timeslot, whereas {Mk}k∈N0 keeps track of the population size at the node. The idea is
to compute ti(m

′ |m), by conditioning on the number of departing individuals at time
k = 1. It follows that

ti(m
′ |m) =

m∑
m̌=0

P(Mk = m′ |Dk = m̌,Mk−1 = m,Xk−1 = i)

· P(Dk = m̌ |Mk−1 = m,Xk−1 = i)

=
m∑

m̌=max{0,m−m′}

(λi)
m′−(m−m̌)

(m′ − (m− m̌))!
e−λi

(
m

m̌

)
(ri)

m̌(1− ri)m−m̌.

5.3.2 Tandem network

We now consider a tandem model with two nodes, in which individuals arrive at the
�rst node, then either jump to the second node or stay at the �rst node, and from
the second node either leave the system or stay at the second node. We again have a
Markovian background process {Xk}k∈N0 modulating the parameters in the model. We
assume that individuals arrive at the �rst node according to the arrival process {Ak}k∈N,
where Ak given Xk−1 = i is Poisson distributed with parameter λi > 0. Recall that

D
(1)
k (2) represents the number of individuals jumping from the �rst to the second node.

Given the state of the background process being i ∈ E, each individual makes this jump
with probability r

(1,2)
i ∈ [0, 1], or stays at the �rst node with probability 1− r(1,2)

i . From

the second node, individuals leave the network with probability r
(2,0)
i ∈ [0, 1], or stay at

the node with probability 1− r(2,0)
i (see Figure 5.2).

1 2
λi r

(1,2)
i r

(2,0)
i

1− r(1,2)i 1− r(2,0)i

Figure 5.2: Schematic representation of the tandem network

We can compute ti(m
′ |m) for this model, by conditioning on the number of indivi-

duals that jump from the �rst node to the second node. After some elementary algebra
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we �nd

ti(m
′ |m) =

m(1)∑
m̌=0

P(M k = m′ |D(1)
k (2) = m̌,M k−1 = m, Xk−1 = i)

· P(D
(1)
k (2) = m̌ |M k−1 = m, Xk−1 = i)

=

m̌up∑
m̌=m̌low

(λi)
a

a!
e−λi

(
m(2)

b

)
(r

(2,0)
i )b(1− r(2,0)

i )m(2)−m̌

·
(
m(1)

m̌

)
(r

(1,2)
i )m̌(1− r(1,2)

i )m
′(1)−m̌. (5.5)

Here m̌low := max{0,m(1) −m′(1),m′(2) −m(2)}, m̌up := min{m(1),m′(2)} are the
lower and upper bounds of the sum, respectively. In addition, a := m′(1) −m(1) + m̌
denotes the number of arrivals to the �rst node, and b := m(2)−m′(2) + m̌ the number
of departures from the second node.

In the above two examples we observe that one can develop explicit expressions for
ti(m

′ |m), but already in the example of the two-node tandem the expression becomes
quite involved. When trying to extend our expressions to tandems with more nodes, or
even to more general networks, the expressions will become increasingly complex as the
dimension of the underlying network grows. As pointed out in e.g. [26], the computation
e�ectively requires a complete enumeration over all possible con�gurations, which makes
this explicit approach infeasible for larger networks. A solution to this problem for such
networks is to, instead of pursuing exact calculation of ti(m

′ |m), resort to its saddlepoint
approximation. We detail this procedure in the next section.

5.4 General networks: saddlepoint approximation

The main objective of this section is to set up an accurate and computationally e�cient
approximation for the probabilities ti(m

′ |m). As pointed out in Section 5.3, for multi-
node models it is typically infeasible to evaluate ti(m

′ |m) explicitly, which motivates the
need for such approximative techniques. We rely on the saddlepoint approach [22, 60],
which approximates a random variable's probability mass function through its mgf. In
Section 5.4.1 we point out in detail how this technique works. A complication is that the
saddlepoint machinery does not work for states at the boundary of the state space of {Mk}.
For such points an alternative computation scheme is proposed in Section 5.4.2, which
is a combination of the saddlepoint approximation with exact computations. Examples
that assess the procedure's numerical performance are provided in Section 5.4.3.
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5.4.1 Interior states: saddlepoint approach

Aiming at applying the saddlepoint approach to approximate ti(m
′ |m), we need to be

able to evaluate the mgf ξi(s |m), where we recall the notation

ξi(s |m) = E[e〈s,Mk〉|M k−1 = m, Xk−1 = i].

The corresponding cgf is denoted by ζi(s |m) := log ξi(s |m). In order to evaluate
ξi(s |m), observe that the `-th component of M k is equal to

◦ the number M k−1(`) that was present at node ` at time k − 1,

◦ decreased by the number of individuals that leave node ` at time k (either by jumping
to another node or by leaving the network),

◦ increased by external arrivals at node ` at time k, and

◦ increased by the number of individuals that were at node ˇ̀ at time k− 1 and jump
to node ` at time k, over all ˇ̀∈ {1, . . . , L}.

Recall that D
(`)
k (L+ 1) represents the number of individuals that leave the network from

node ` at time k. Summarizing the above, the following identity links M k and M k−1:

M k(`) = M k−1(`)−
L+1∑
ˇ̀=1

D
(`)
k (ˇ̀) +Ak(`) +

L∑
ˇ̀=1

D
(ˇ̀)
k (`). (5.6)

For ease of notation, both sums in (5.6) contain the variable D
(`)
k (`) corresponding to

ˇ̀ = `, counting the number of individuals that stay at node `. Recall that conditionally
onM k−1 = m and Xk−1 = i, the vectors D

(`)
k are independent, and that for a given ` the

entries of D
(`)
k have a multinomial distribution. Due to these properties and using (5.6),

we �nd

ξi(s |m) = e〈s,m〉 φi(s)

· E
[

exp
( L∑
`=1

s(`)
( L∑

ˇ̀=1

D
(ˇ̀)
k (`) −

L+1∑
ˇ̀=1

D
(`)
k (ˇ̀)

))∣∣∣M k−1 = m, Xk−1 = i
]

= e〈s,m〉 φi(s)

·
L∏

ˇ̀=1

E
[

exp
( L∑
`=1

s(`)D
(ˇ̀)
k (`) −

L+1∑
`=1

s(ˇ̀)D
(ˇ̀)
k (`)

)∣∣∣M k−1 = m, Xk−1 = i
]
. (5.7)

To obtain (5.7), we have used a change of summation in the �rst term of the exponent,

a change of variables in the second term of the exponent, and the fact that the D
(`)
k (ˇ̀)
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are independent in `. Continuing from (5.7), reordering the terms in the exponent, we
conclude that we have

ξi(s |m) = e〈s,m〉 φi(s)

·
L∏

ˇ̀=1

E
[

exp
( L∑
`=1

(s(`)− s(ˇ̀))D
(ˇ̀)
k (`) − s(ˇ̀)D

(ˇ̀)
k (L+ 1)

)∣∣∣M k−1 = m, Xk−1 = i
]
.

Finally using the multinomial property, we arrive at the following result.

Lemma 1. For s ∈ RL and m ∈ NL
0 , and for any i ∈ E,

ξi(s |m) = e〈s,m〉 φi(s)
L∏

ˇ̀=1

( L∑
`=1

r
(ˇ̀,`)
i es(`)−s(ˇ̀) + r

(ˇ̀,0)
i e−s(ˇ̀)

)m(ˇ̀)

= φi(s)
L∏

ˇ̀=1

( L∑
`=1

r
(ˇ̀,`)
i es(`) + r

(ˇ̀,0)
i

)m(ˇ̀)

. (5.8)

Having the expression for ξi(s |m) at our disposal, we now point out how this can be
used in the saddlepoint-based approximation of ti(m

′ |m). To this end, we �rst note that
by taking logarithms on both sides of Equation (5.8), we obtain

ζi(s |m) = ψi(s) +
L∑

ˇ̀=1

m(ˇ̀) log

( L∑
`=1

r
(ˇ̀,`)
i es(`) + r

(ˇ̀,0)
i

)
. (5.9)

It is known that any (joint) cgf is a convex function, which implies that ζi(s |m) is convex
(in s). De�ne for v,m ∈ NL

0 , the corresponding multivariate Legendre-Fenchel transforms
by

Ii(v |m) := sup
s
Ii(v, s |m),

where Ii(v, s |m) := 〈s,v〉 − ζi(s |m).
Let Si(m) ⊆ NL

0 the set of states that can be reached from m in one time step when
the background state is i. More concretely,

Si(m) =

{
m′ : m′(`) =

L∑
`′=1

k`′,` + k`,
(
(k`′,`)

L
`′,`=1, (k`)

L
`=1

)
∈ Ki(m)

}
,

where Ki(m) is the subset of NL2×L
0 consisting of

(
(k`′,`)

L
`′,`=1, (k`)

L
`=1

)
such that

(A) For all ` = 1, . . . , L,
∑L

`′=1 k`,`′ 6 m(`) (i.e., the sum of individuals leaving node `
cannot be more than m(`));

(B) For all ` = 1, . . . , L,
∑L

`′=1 k`,`′ = m(`) if r
(`,0)
i = 0 (i.e., the sum of individuals
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jumping from node ` to the other nodes must be exactly m(`) if r
(`,0)
i = 0 );

(C) For all ` = 1, . . . , L, k`′,` = 0 if r
(`′,`)
i = 0, and k` = 0 if λ

(`)
i = 0 (i.e., jumps and

arrivals cannot occur if the corresponding parameter equals zero).

We denote by Si(m)◦ the `interior' of Si(m), to be understood as Si(m) minus its bound-
aries.

For any v ∈ Si(m)◦ there is a unique optimizing vector s∗v for which Ii(v, s
∗
v |m)

= Ii(v |m), which is called the saddlepoint; see [17, Chapter 1] for more details. By
the de�nition of Ii(v, s |m), this saddlepoint is the unique solution of the system of L
�rst-order conditions

v(`′) =
∂ψi(s)

∂s(`′)
+

L∑
ˇ̀=1

m(ˇ̀) r
(ˇ̀,`′)
i es(`′)

/( L∑
`=1

r
(ˇ̀,`)
i es(`) + r

(ˇ̀,0)
i

)
, (5.10)

where the right hand side of (5.10) is the `′-th entry of the gradient of the cgf, that is the
vector of �rst partial derivatives with respect to the entries of s. Let Σi(v |m) be the
L× L Hessian matrix of the cgf evaluated at the saddlepoint with (`′, `′′)-th entry given
by

Σ
(`′,`′′)
i (v |m) =

∂2ζi(s |m)

∂s(`′) ∂s(`′′)

∣∣∣∣
s=s∗v

.

Note that by taking another partial derivative of the right hand side of (5.10), we �nd for
`′ 6= `′′

∂2ζi(s |m)

∂s(`′) ∂s(`′′)
=

∂2ψi(s)

∂s(`′) ∂s(`′′)
+

L∑
ˇ̀=1

m(ˇ̀)
−r(ˇ̀,`′)

i es(`′)r
(ˇ̀,`′′)
i es(`′′)(∑L

`=1 r
(ˇ̀,`)
i es(`) + r

(ˇ̀,0)
i

)2 ,

while for `′ = `′′

∂2ζi(s |m)

∂s(`′) ∂s(`′′)
=
∂2ψi(s)

∂s2(`′)
+

L∑
ˇ̀=1

m(ˇ̀)
r

(ˇ̀,`′)
i es(`′)

(∑
` 6=`′ r

(ˇ̀,`)
i es(`) + r

(ˇ̀,0)
i

)(∑L
`=1 r

(ˇ̀,`)
i es(`) + r

(ˇ̀,0)
i

)2 .

We can now present the saddlepoint approximation [17, 22]. In the statement below,
|D| denotes the determinant of the matrix D.

Approximation 5.1. For m ∈ NL
0 , m

′ ∈ S(m)◦, and for any i ∈ E, the saddlepoint
approximation of ti(m

′ |m) is given by

ti(m
′ |m) ≈ (2π)−L/2 |Σi(m

′ |m)|−1/2
exp

(
− Ii(m′ |m)

)
. (5.11)

Observe that the complexity of evaluating this approximation is relatively low. More
speci�cally, to evaluate ti(m

′ |m) the maximization of an L-dimensional concave function
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needs to be performed and the determinant of a (L × L)-matrix needs to be computed.
To evaluate the full (diagonal) matrix T (m′ |m), this has to be done d times. The
computation of the likelihood L(θ |m0, . . . ,mn) then takes 2n matrix multiplications,
with matrices of size d×d, where n of these multiplications can be done relatively e�ciently
as they involve a diagonal matrix.
Remark 1. In the model considered, individuals jump between nodes until they leave the
network. Interestingly, a `branching variant' of this model, in which there is the option
of a single individual splitting into multiple individuals, can also be dealt with. This
variant is also referred to as a multitype branching process with immigration in a random
environment; see [39, 62] for an analysis of its limiting distribution. In this case, when an
individual moves from ` to `′ (with the background process being in state i), the number
of individuals that end up at `′ is not necessarily 1, but is distributed as a random variable

W
(`,`′)
i ∈ N0 with mgf w

(`,`′)
i (s) (assumed to exist). Then for s ∈ RL and m ∈ NL

0 , and
for any i ∈ E, the mgf ξi(s |m) becomes

ξi(s |m) = φi(s)
L∏

`′=1

( L∑
`=1

r
(`′,`)
i w

(`′,`)
i (s(`)) + r

(`′,0)
i

)m(`′)

.

Observe that the resulting network is not necessarily stable; we do not further comment
on the stability condition of this model. In another variant that can be dealt with, each
individual that leaves ` can potentially cause arrivals at all nodes simultaneously, rather
than at just one node.

5.4.2 States at the boundaries

Above we introduced an approximation for ti(m
′ |m) withm′ ∈ Si(m)◦, which leaves us

with the question what should be done for the `boundary points' m′ ∈ Si(m) \ Si(m)◦.
In the �rst place we recall (see [17, Chapter 1]) that for these points the saddlepoint
approximation cannot be used, as a consequence of the fact that the optimizing s∗m′
cannot be determined. To show how we remedy this, we �rst use the illustrative examples
of the single-node model and the tandem network featured in Section 5.3. As we will
observe, in these cases the transition probabilities can be found explicitly for the boundary
states. Later in this subsection we will set up a general (exact) procedure to compute the
transition probabilities for boundary states.

◦ For the single-node model, Si(m) = N0, and thus Si(m) \ Si(m)◦ = {0}. Now
consider m′ = 0. For this boundary point an easy explicit expression for ti(m

′ |m)
can be given. We have the explicit expression

ti(0 |m) = e−λi(ri)
m,

since there should be no new arrivals, and all individuals that were present at the
node have to leave.
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◦ We continue by considering the tandem network. A �rst observation is that for
this network there are multiple boundary points to take into account. There are no
external arrivals at the second node, because this node is only fed by individuals
moving from the �rst to the second node. As a consequence, we have

Si(m) =
{
m′ ∈ N2

0 : max{0,m(1)−m′(1)} 6m′(2) 6m(1) +m(2)
}
.

To verify this, note that the maximum number of individuals at the second node at
time k cannot be larger than the total network population at time k − 1, and the
minimum number of individuals cannot be smaller than the minimum in�ow from
node 1.

Now consider a boundary point m′ in S(m) \ S(m)◦. The claim is that again for
all these boundary points an easy explicit expression for ti(m

′ |m) can be given. It
is for example readily checked that, in self-evident notation,

ti
(
(m′(1),m(1) +m(2))> |m

)
= P

(
Pois(λi) = m′(1)

) (
r

(1,2)
i

)m(1)(
1− r(2,0)

i

)m(2)
.

Notice that this probability corresponds to a scenario in which all individuals present
at node 1 have to move to node 2, and all those present at node 2 have to stay.
Importantly, in this case the complicated combinatorial expression (5.5) reduces to
a considerably easier expression, essentially due to the fact that at boundary points
the transition corresponds to a very speci�c scenario.

With the above examples in mind, let us go back to the general network setting with
L nodes. For ease we restrict ourselves to the situation where λ

(`)
i > 0 and r

(`,0)
i > 0 for

all i ∈ {1, . . . , d} and all ` ∈ {1, . . . , L}. This means that at each node external arrivals
and departures are possible for all states of the background process. The immediate
consequence is that

Si(m) \ Si(m)◦ = {m′ : ∃` ∈ {1, . . . , L} : m′(`) = 0}.

The situation in which some of the λ
(`)
i and r

(`,0)
i are 0 requires a bit more administration,

but can be handled similarly (as in the above tandem example). Now �x an m′ ∈
Si(m)\Si(m)◦, a boundary point. We de�ne by N(m′) all nodes of the new con�guration
m′ that contain zero individuals, i.e., N(m′) := {` ∈ {1, . . . , L} : m′(`) = 0}. Let E(m′)
be the corresponding event de�ned as E(m′) := {∀` ∈ N(m′),M k(`) = 0}. Then,
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because {M k = m′} ⊆ E(m′), and using elementary rules for conditional probabilities,

ti(m
′ |m) = P(M k = m′ |M k−1 = m, Xk−1 = i)

= P(M k = m′ |E(m′),M k−1 = m, Xk−1 = i)

· P(E(m′) |M k−1 = m, Xk−1 = i). (5.12)

For the boundary points m′, ti(m
′ |m) can be (approximately) evaluated by evaluating

the two factors in (5.12) separately. As we will see, the second factor can be computed
exactly, whereas for the �rst one we can set up a saddlepoint approximation in the way
demonstrated in Section 5.4.1.

To evaluate the second factor in (5.12), we observe that (i) at time 1, no arrivals are
allowed in the nodes of N(m′), and (ii) individuals present at the nodes in {1, . . . , L} at
time 0 should either leave the network or move to a node in the complement of N(m′).
More speci�cally, they cannot move to, or stay in, a node in N(m′). As a consequence,
we have the exact expression

P(E(m′) |M k−1 = m, Xk−1 = i) =
∏

`∈N(m′)

e−λ
(`)
i ·

L∏
`=1

( ∑
`′ /∈N(m′)

r
(`,`′)
i + r

(`,0)
i

)m(`)

.

(5.13)

We now concentrate on the �rst factor in (5.12), which can be computed using a saddle-
point approximation. To this end, we �rst observe that the occurrence of the event E(m′)
(i.e.,M k(`) = 0 for all ` ∈ N(m′)) changes the distribution of the random vectorsAk and
Dk; in the sequel we denote the random vectors under this condition by Ãk and D̃k. To
describe the distribution of Ãk and D̃k, we use the following `renormalized' probabilities,
for `′′ 6∈ N(m′):

r̃
(`′,`′′)
i =

r
(`′,`′′)
i∑

`′′ /∈N(m′)

r
(`′,`′′)
i + r

(`′,0)
i

, r̃
(`′,0)
i =

r
(`′,0)
i∑

`′′ /∈N(m′)

r
(`′,`′′)
i + r

(`′,0)
i

.

We then make the following observations.

◦ Since we have independent Markov-modulated Poisson arrivals at each of the nodes,
the components of Ãk are independent, with Ãk(`) having a Poisson distribution

with parameter λ
(`)
i for all ` /∈ N(m′), whereas Ãk(`) ≡ 0 for all ` ∈ N(m′). Recall

that no arrivals are allowed in the nodes of N(m′) due to the condition imposed.

◦ The random vectors D̃
(`′)

k , for `′ = 1, . . . , L, are independent. More speci�cally D̃
(`′)

k

has a multinomial distribution that attains values in the complement of N(m′)
or {L + 1}, where the latter option corresponds to leaving the network, with its
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parameters being given by m(`′) and the probabilities(
(r̃

(`′,`′′)
i )`′′ 6∈N(m′), r̃

(`′,0)
i

)
.

Recall that individuals present at any of the nodes should either leave the network
or move to (or stay at) a node in the complement of N(m′).

Similar to (5.6), conditionally on E(m′), we thus have the representation

M k(`) = M k−1(`) + Ãk(`) +
L∑

ˇ̀=1

D̃
(ˇ̀)

k (`)−
L+1∑
ˇ̀=1

D̃
(`)

k (ˇ̀).

We can now proceed as in Section 5.4.1, to obtain the mgf of M k, conditionally on the
event {E(m′),M k−1 = m, Xk−1 = i}. Using the above �ndings, we �nd that it equals,
with s now being a vector with zeroes at the positions that correspond to the elements
in N(m′),

E[e〈s,Mk〉 |E(m′),M k−1 = m, Xk−1 = i]

= φ̃i(s)
L∏

ˇ̀=1

( ∑
`/∈N(m′)

r̃
(ˇ̀,`)
i es(`) + r̃

(ˇ̀,0)
i

)m(ˇ̀)

,

where
φ̃i(s) =

∏
`/∈N(m′)

eλ
(`)
i (es(`)−1).

Observe in particular the similarity with the result stated in Lemma 1. Using this mgf, we
can use a saddlepoint technique to approximate P(M k = m′ |E(m′),M k−1 = m, Xk−1 =
i) in (5.12) by following the same argument as in Section 5.4.1, evidently only including the
non-zero elements ofm′. We observe that the dimension of this saddlepoint approximation
is now L−#{N(m′)}, which is smaller than L as a consequence ofm′ ∈ Si(m)\Si(m)◦.

In summary, according to (5.12) the probability ti(m
′ |m) can be factorized into two

probabilities. The probability corresponding to the nodes included in N(m′) can be
computed explicitly according to (5.13), whereas the probability corresponding to the
remaining nodes can be evaluated relying on the saddlepoint approximation of reduced
dimension.

5.4.3 Numerical assessment of approximations

We can illustrate the accuracy of the saddlepoint approximation for the single-node model
and the tandem network, by comparing the explicit approach from Section 5.3 with the
saddlepoint approach from Section 5.4.
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Example 5.1. Single-node model. Consider the example of the single-node model in-
troduced in Section 5.3.1, where we computed ti(m

′ |m) explicitly. In this example
Si(m) = N, assuming that λi > 0 and ri > 0, so that Si(m)\Si(m)◦ = {0}. Using the sad-
dlepoint approach we can, for m′ ∈ Si(m)◦, approximate ti(m

′ |m) using Approximation
1. Recall from (5.2) that for the Poisson arrivals at the node we have ψi(s) = λi(e

s − 1).

Using (5.9) with r
(1,1)
i = 1− ri and r(1,0)

i = ri, we �nd the cgf

ζi(s |m) = λi(e
s − 1) +m log

(
(1− ri)es + ri

)
.

It requires a few standard steps to verify that the saddlepoint s∗v can be found by solving

v = w(s) := λie
s +m

(1− ri)es

(1− ri)es + ri
; (5.14)

observe that the right-hand side of (5.14) is a positive, increasing function in s, with
w(s)→ 0 as s→ −∞ and w(s)→∞ as s→∞. This means that for any v > 0, there is
a unique solution s∗v. More concretely, es

∗
v can be found in a standard manner by solving

the quadratic equation

−λi(1− ri)e2s +
(
v(1− ri)− λiri −m(1− ri)

)
es + vri = 0.

In our one-dimensional context we have

Σi(v |m) =
∂2ζi(s |m)

∂s2

∣∣∣∣
s=s∗v

.

Using that (5.14) holds when s = s∗v, we thus �nd

Σi(v |m) =
λi(1− ri)e2s∗v + vri

(1− ri)es∗v + ri

We have now collected all ingredients to evaluate the saddlepoint approximation (5.11).
Concerning m′ ∈ Si(m)\Si(m)◦ = {0}, we evidently have ti(0 |m) = e−λi (ri)

m as we saw
before.

In Figure 5.3 we show the numerically obtained approximation in the single-node set-
ting. It displays three examples which provide a good re�ection of the accuracy typically
achieved by the saddlepoint approach. In particular, they illustrate that the accuracy
improves as the value of m increases, which is a known feature of saddlepoint approxima-
tions.
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Figure 5.3: Saddlepoint approximation and exact computation of ti(m
′ |m) for the single-

node model as a function of m′, for increasing values of m; from the top to bottom panel,
m = 1,m = 3 and m = 7. Parameter values: i = 1, λ1 = 4 and r1 = 0.3.
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Example 5.2. Tandem network. To further assess the accuracy of the saddlepoint ap-
proximation, we consider the example of the tandem network with two nodes, as in-
troduced in Section 5.3.2. We compute ti(m

′ |m) explicitly, and compare it with its
saddlepoint-based counterpart. We do this for m′ ∈ Si(m)◦; note that we already dis-
cussed above how to deal with the boundary points m′ ∈ Si(m) \ Si(m)◦. We can
compute the cumulant generating function ζi(s |m) from (5.9). From the fact that we
have Poisson arrivals, we know that ψi(s) follows from (5.2). The cgf equals

ζi(s |m) =λi(e
s(1) − 1) +m(1) log

(
(1− r(1,2)

i )es(1) + r
(1,2)
i es(2)

)
+m(2) log

(
(1− r(2,0)

i )es(2) + r
(2,0)
i

)
.

Hence, for v ∈ Si(m)◦ the saddlepoint s∗v can be found by solving the equations

v(1) = λie
s(1) +m(1)

(1− r(1,2)
i )es(1)

(1− r(1,2)
i )es(1) + r

(1,2)
i es(2)

v(2) = m(1)
r

(1,2)
i es(2)

(1− r(1,2)
i )es(1) + r

(1,2)
i es(2)

+m(2)
(1− r(2,0)

i )es(2)

(1− r(2,0)
i )es(2) + r

(2,0)
i

.

Having found the solution s∗v, the approximation (5.11) is readily evaluated.

Numerical results for a few representative examples are presented in Figure 5.4. The
upper panel in Figure 5.4 shows a cross section at the peak of the joint distribution of
m′(1) and m′(2), the middle panel shows a cross section close to the peak, and the
bottom panel shows a cross section further away from the peak. Our �ndings con�rm the
approach's high accuracy that we observed earlier.

5.5 Parameter estimation

In this section, we show how the saddlepoint approximation of the likelihood�developed
in the previous section�can be used to estimate the model parameters, and we assess the
accuracy of this estimation method by applying it to simulated data.

As argued before, we can use the saddlepoint approximation in (5.11) to approximate
the probabilities ti(mk |mk−1) for each pair of observations (mk−1,mk) (k = 1, . . . , n)
and each i ∈ E, so as to evaluate the likelihood (5.4). This likelihood is then to be
maximized over the model parameters (in the appropriate parameter space) to �nd the
parameter estimate θ̂. We do this numerically, relying on the built-in solver fmincon of
matlab.
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Figure 5.4: Saddlepoint approximation and exact computation of ti(m
′ |m) for the tan-

dem network as a function of m′. Parameter values: i = 1, λ1 = 0.5, r
(1,2)
1 = 0.5 and

r
(2,0)
1 = 0.2. Throughout we have �xed m = (5, 5)>. Upper panel: we vary m′(1), with
m′(2) = 7. Middle panel: we varym′(2), withm′(1) = 1. Bottom panel: we varym′(1),
with m′(2) = 4.
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The solver fmincon needs an initial value for θ. There are various ways to choose this
value.

◦ In case the parameter space is �nite, a naïve approach would be to sample the initial
value uniformly on the parameter space.

◦ Another approach is to let the routing be uniform, in the sense that for any in-
dividual all next nodes are equally likely; for example in a fully connected graph

(i.e., the situation that all r
(`,`′)
i are positive), we could set r

(`,1)
i = r

(`,2)
i = · · · =

r
(`,L)
i = r

(`,0)
i = (L + 1)−1 for all i ∈ E and ` = 1, . . . , L. Likewise, the transition

probabilities pij could be initialized with 1/d.

◦ Alternatively, the initial θ can be determined using moment estimators, or, if avail-
able, additional information on the parameters can be used to set a suitable initial
value.

In the remainder of this section, we specify the initial values that we used for each
numerical experiment. As is commonly known, the maximum likelihood approach has the
intrinsic issue that there can be local maxima. It is therefore strongly advised to follow
the usual procedure to work with multiple initial values (and to record the one providing
the highest likelihood).
Remark 2. Observe that for example in a model with d = 2, swapping the states
in the parametrization results in an observationally equivalent model. In case of such
identi�ability issues, additional constraints need to be imposed on the parameters. In the
single-node case of d = 2 with an environment-dependent arrival rate, such a constraint
could for instance be λ2 ≥ λ1.
Remark 3. We note that, by the structure of expression (5.4), the evaluation of the
likelihood is linear in n and cubic in d. The complexity of the saddlepoint-based approx-
imation is relatively low, due to the concavity of the functions Ii(v, s |m).

To illustrate the broad applicability of the method, we perform numerical experiments
for a set of intrinsically di�erent networks. We speci�cally investigate the in�uence of the
number of observations n on the estimates: throughout, we evaluate the estimators for
n = 100, n = 500, n = 1000, and n = 2000. For each network and each value of n, we
simulate 100 data sets, to each of which we apply the estimation method to obtain the
parameter estimates. We present and discuss our �ndings in this section. We use the two
examples from Sections 5.3 and 5.4, i.e., the single-node and the tandem, but we start
with an experiment featuring a larger network with a di�erent structure: a circle network.

Experiment 5.1. Circle network. We consider a network of �ve nodes in a circle. The
individuals can move clockwise through the network from one node to the next. In this
experiment we primarily concentrate on the e�ect of the network structure, and therefore
we do not impose modulation (i.e., we consider the setting d = 1). In addition, we let
the network be homogeneous, in the sense that the arrival processes, the probabilities
of leaving the network, and the probabilities of being forwarded to the next node, re-
spectively, are the same for any node. More concretely, we work with three parameters
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λ
(1)
1 = . . . = λ

(5)
1 := λ, r

(1,0)
1 = . . . = r

(5,0)
1 := r0, and r

(1,2)
1 = r

(2,3)
1 = . . . = r

(5,1)
1 := r1.

This means that at each node arrivals occur according to a Poisson process with rate
λ, and any individual present at the node leaves with probability r0, or jumps to the
following node in the circle with probability r1. Note that, as a result, individuals stay
at a node with probability 1− r0 − r1; see Figure 5.5 for a pictorial illustration.

1

2

3

4

5

λ
r0

r1

1− r0 − r1

Figure 5.5: Schematic representation of the circle network of 5 nodes

Despite the fact that there is no modulation, direct evaluation of the likelihood is
challenging. As pointed out earlier, the high complexity essentially lies in the fact that
we observe the network population vector only, and not the arrival, routing and departure
processes. An exact evaluation of the likelihood would require taking into account all paths
of the arrival, routing and departure processes that match with the observed values of the
network population vector, which for our �ve-node circle network would be infeasible. This
motivates why we resort to evaluating the likelihood using the saddlepoint approximation.

In our experiments we use simulated data that are generated using the parameter
values λ = 1.5, r1 = 0.3, and r0 = 0.1. The maximum likelihood estimation procedure
using fmincon is initialized at λ = 1, r1 = 1

3
and r0 = 1

3
. Experiments with other initial

values lead to similar results. The numerical output is shown in Table 5.1 and Figures 5.6�
5.8. Table 5.1 contains, for each sample size (rows) and parameter (columns), the mean
value of the 100 estimates, together with the corresponding standard deviation between
brackets. We see that the mean values in Table 5.1 lie close to the true parameter values,
and that (as expected) the standard deviations decrease as n increases. This is visible in
the histograms as well, displayed in Figures 5.6�5.8. Each �gure shows, for a given value
of n and one of the three parameters, the histogram of the 100 estimates. For each of the
three parameters, we intentionally chose the same horizontal axis in all four pictures, so
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as to provide insight into the speed at which the width of the peak decreases as n grows.

n λ r1 r0

100 1.4902 (0.4319) 0.3143 (0.0317) 0.1003 (0.0271)
500 1.5081 (0.1613) 0.3070 (0.0131) 0.1006 (0.0104)
1000 1.5197 (0.1034) 0.3059 (0.0086) 0.1013 (0.0062)
2000 1.5103 (0.0679) 0.3072 (0.0057) 0.1007 (0.0045)

Table 5.1: Circle network : mean of estimates of 100 data sets, with corresponding stan-
dard deviation between brackets. True parameter values: λ = 1.5, r1 = 0.3, r0 = 0.1.

Figure 5.6: Circle network : histograms of the obtained estimates for λ, with n increasing
from left to right.

Figure 5.7: Circle network : histograms of the obtained estimates for r1, with n increasing
from left to right.

Figure 5.8: Circle network : histograms of the obtained estimates for r0, with n increasing
from left to right.
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Experiment 5.2. Single-node model. As a second example, we study the single-node
model as introduced in Section 5.3.1. We consider the setup with r := r1 = r2, which
means that only the arrival rate is a�ected by the modulation, not the departure proba-
bility r. In our simulations we use the parameter values λ1 = 5, λ2 = 15, r = 0.1, p12 = 0.1
and p21 = 0.2. The initial values in the algorithm that maximizes the log-likelihood are
based on moment estimators. The results of the maximum likelihood estimates are shown
in Table 5.2 and Figure 5.9.

n λ1 λ2 r
100 5.6507 (2.7007) 14.9201 (3.1332) 0.1081 (0.0259)
500 4.8028 (1.8180) 14.5595 (1.7340) 0.0991 (0.0174)
1000 5.0127 (2.3698) 14.2682 (1.9638) 0.1024 (0.0168)
2000 5.2278 (2.1442) 14.6499 (2.4113) 0.1024 (0.0150)

n p12 p21

100 0.1266 (0.1525) 0.2331 (0.1869)
500 0.1240 (0.1011) 0.1977 (0.0630)
1000 0.1432 (0.1559) 0.2047 (0.1011)
2000 0.1398 (0.1629) 0.2147 (0.1136)

Table 5.2: Single-node model : mean of estimates of 100 data sets, with corresponding
standard deviation between brackets. True parameter values: λ1 = 5, λ2 = 15, r =
0.1, p12 = 0.1, p21 = 0.2.

Figure 5.9: Single-node model : histograms of the obtained estimates for r, with n increas-
ing from left to right.

Table 5.2 contains for each sample size (rows) and parameter (columns), the mean
value of the 100 estimates, together with the corresponding standard deviation between
brackets. The mean values of the estimates lie relatively close to the true parameter
values, but the standard deviations �uctuate and do not always decrease in n. The his-
tograms in Figure 5.9, featuring estimates for r, however, visually show that the estimates
get increasingly concentrated around their respective averages. We observe that the val-
ues in the table are a�ected by outliers in the estimates. As we mentioned earlier, when
maximizing the likelihood we cannot exclude the possibility of ending up in local optima.
In the circle network we have not come across this phenomenon, but in our experiments
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with modulation there have been a few runs in which we have. The histograms in Fig-
ure 5.9 show these outliers near 0.05 and 0.15. In the histograms of the other parameters
(not included in this chapter), similar outliers appear.

To control this issue, it is advised to run the maximization algorithm for multiple
di�erent initial values of the parameters, and choose the parameter estimates that result
in the highest likelihood value. Results of the maximum likelihood estimates based on
this procedure, using four di�erent, randomly chosen, initial values of the parameters, are
shown in Table 5.3. Table 5.3 shows that the standard deviations improved considerably
in comparison with the results in Table 5.2. In particular, the outliers have disappeared
resulting in standard deviations that decrease in n.

A subtlety is that the accuracy of the saddlepoint approximation for background state
i degrades when λi approaches 0. This is because in the regime of this arrival rate being 0,
mk > mk−1 cannot happen, thus e�ectively creating a boundary state; cf. the discussion
in Section 5.4.2. We followed the pragmatic remedy of imposing an explicit lower bound
on the arrival rates (in our experiments we took 0.01).

n λ1 λ2 r
100 5.1469 (1.9209) 15.2419 (2.4189) 0.1015 (0.0221)
500 5.0155 (0.4463) 14.9568 (0.6144) 0.1004 (0.0051)
1000 5.0690 (0.3602) 15.0828 (0.4532) 0.1011 (0.0044)
2000 5.0195 (0.2274) 15.0482 (0.3116) 0.1004 (0.0027)

n p12 p21

100 0.1107 (0.0543) 0.2445 (0.1492)
500 0.1007 (0.0179) 0.2019 (0.0357)
1000 0.0987 (0.0138) 0.1971 (0.0289)
2000 0.1004 (0.0106) 0.2067 (0.0242)

Table 5.3: Single-node model : mean of estimates of 100 data sets, with corresponding
standard deviation between brackets. True parameter values: λ1 = 5, λ2 = 15, r =
0.1, p12 = 0.1, p21 = 0.2.

Experiment 5.3. Tandem network. We continue by considering a two-node tandem
network with modulation, as introduced in Section 5.3.2. In this experiment we assume
P is known and given by

P =

(
0.9 0.1

0.2 0.8

)
.

We run simulations for this model with true parameters λ1 = 1, λ2 = 4, r(1,2) = 0.1
and r(2,0) = 0.25. In our likelihood maximization routine we choose the initial values
λ1 = 1, λ2 = 1, r(1,2) = 0.5, and r(2,0) = 0.5. Experiments with other initial values provide
similar output. The results are presented in Table 5.4, showing for each sample size
(rows) and parameter (columns), the mean value of the 100 estimates, together with the
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corresponding standard deviation between brackets. In line with the �rst two experiments,
we observe that the mean values in Table 5.4 lie close to the true parameter values. The
standard deviation �uctuates somewhat, but this e�ect can again be mitigated by working
with multiple initial values.

n λ1 λ2 r(1,2) r(2,0)

100 1.6896 (0.8324) 3.5884 (1.0424) 0.1169 (0.0157) 0.2893 (0.0415)
500 1.3161 (0.4669) 3.9394 (0.7301) 0.1076 (0.0096) 0.2692 (0.0230)
1000 1.1441 (0.4291) 3.9505 (0.5430) 0.1054 (0.0083) 0.2633 (0.0224)
2000 1.1610 (0.5968) 3.7440 (0.7026) 0.1052 (0.0103) 0.2645 (0.0258)

Table 5.4: Tandem network : mean of estimates of 100 data sets, with corresponding
standard deviation between brackets. True parameter values: λ1 = 1, λ2 = 4, r(1,2) =
0.1, r(2,0) = 0.25.

5.6 Discussion and Concluding Remarks

In this chapter we considered a discrete-time multivariate population process under Markov
modulation. We showed how the likelihood can be evaluated using saddlepoint approx-
imations, and how this can be used to estimate the model parameters. We emphasize
the model's high degree of generality, covering a wide variety of networks with di�erent
sizes and structures, and on top of that the possibility to include modulation. More-
over, the maximum-likelihood estimation approach is capable of estimating parameters
based on observations of the network population vector only. In other words, the num-
ber of arrivals, jumps, and departures are not observed, but only the net e�ect of these
processes together, while the modulating background process is not observed at all.

We illustrated the accuracy of the saddlepoint approximation through two examples,
namely a single-node model and a tandem network. For these examples the likelihood can
still be computed explicitly, and hence the explicit computation can be compared with the
saddlepoint approximation. In a series of numerical tests we found that the di�erences
between the two are typically small.

Then we investigated the accuracy of the maximum-likelihood estimation method
through a number of numerical studies. We focused on three di�erent settings correspond-
ing to networks with di�erent sizes and structures. In all examples accurate estimates are
obtained. Moreover, working with multiple initial values to eliminate the outliers, results
in standard deviations that decrease as the sample size grows.

The estimation method in general produces accurate estimates, but in a few cases the
maximization ends up in a local maximum, as a consequence of the speci�c shape of the
likelihood surface. One e�ective way to control it is by using multiple di�erent initial
values, choosing the outcome that results in the highest likelihood value. To be sure that
the estimation method correctly tracks down modulation, it is important that the e�ect of
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the background state is visible in the data. More concretely, one can imagine a parameter
setting in for example the single-node model with two states, in which the e�ect of the
higher arrival rate on the population size is essentially cancelled out by a higher departure
probability, such that the states cannot be distinguished.

We believe that the results presented in this chapter o�er various interesting oppor-
tunities for further research. In the �rst place, note that in our setup we assumed that
the number of states d is known. Choosing d from the data is a model selection problem
and falls outside the scope of this chapter, but would be worth studying in greater detail.
Second, we focused on a discrete-time setting, allowing the computation of the cgf s, and
thus facilitating the application of the saddle-point technique, but one wonders whether
a similar approach could be followed for our model's continuous-time counterpart. The
major complication is that if the background process evolves continuously in time, it is
not directly clear how to compute the cgf s.

Various adaptations of our model could be considered as well. In this chapter, we con-
sidered only one type of individual, and (conditionally on a realization of the background
process) all individuals move independently of each other through the network. Instead
one could study multi-type models, or models with routing and departure probabilities
that depend on the population vector before and/or after the transition, besides the state
of the background process.
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6. Concluding Remarks

In this thesis we considered various types of population processes of which the parameters
are a�ected by an underlying background process. In the �rst chapter, we introduced
the challenges that arise for statistical inference of the model parameters for this kind
of models. In Chapters 2�5 we showed a collection of techniques to overcome these
challenges, where each chapter focuses on a di�erent model and a suitable estimation
technique. We showed how the EM algorithm can be used to estimate the parameters
of population processes under Markov-modulation. We used the Erlangization technique
to evaluate the likelihood function for quasi birth-death processes, and applied this to
mRNA data. Lastly, we introduced the saddlepoint technique and how it can be used to
evaluate the likelihood function for multivariate population processes under modulation.
This �nal chapter takes a closer look at the di�erences between the various models and
techniques considered in the previous chapters. We obtain a clear view on the applicability
and limitations of the approaches, and identify topics for follow-up research.

Models

Looking back at the various models that we analyzed throughout this thesis, we observe
that they can be subdivided in two classes of models. On the one hand, we have the
class of univariate, continuous-time populations processes, and on the other hand, the
class of multivariate, discrete-time population processes. In the �rst part of this thesis,
we considered various univariate, continuous-time population processes, all of which are
actually within the class of quasi birth-death processes. We have seen that both the
Markov-modulated population processes from Chapter 2, and the on/o�-seq-L processes
from Chapter 4 are special cases of a quasi birth-death process. In the last part of this
thesis, that is Chapter 5, we have seen the broad class of multivariate, discrete-time
population processes, in which the population processes are de�ned on an underlying
network.

It goes without saying that one would like to develop inference techniques that are
applicable to a broad class of models. At the same time, there is a natural trade-o�
between the generality of the model and the possibilities in terms of inference techniques.
When narrowing down the class of models considered, typically one can come up with
more powerful inference techniques.
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Inference techniques

In this section, we re�ect on the inference techniques developed in this thesis to identify
their strong and weak points. In Chapter 2 we applied the EM algorithm. In situations
with missing data, this is a technique that iteratively computes maximum likelihood
estimates and the corresponding likelihood value. The EM algorithm is an attractive
technique because of the fact that it yields accurate results, but application of the EM
algorithm can be quite involved. This leads us to two main complications of the EM
algorithm.

◦ Evaluation of the expectation- and maximization steps can become complicated
or even infeasible for more general models. This became apparent in Chapter 2,
Section 2.5. Here the goal was to estimate the death rate along with the other
model parameters using the EM algorithm. This is complicated by the fact that
the population size is only known at the observation times, and not in between two
consecutive observations, while the total death rate is proportional to the popu-
lation size. We were able to work around this complication by including a model
assumption, namely, that the birth and death of each individual cannot occur in
the same observation interval. One can imagine, however, that such a solution may
not always be reasonable or solve the problem.

◦ For larger models, the amount of missing data increases substantially and rendering
the computations will become extremely complex. This in particular holds for mod-
els like the multivariate population processes that we have studied in Chapter 5. In
these models, the underlying network structure could give rise to relatively many
unobserved movements of the individuals. Although it is potentially possible to
apply the EM algorithm for these models, it would again involve a sizeable amount
of missing data, and therefore computations will become extremely complicated.

We conclude that, while the EM algorithm may be a powerful inference technique for
the class of univariate Markov-modulated population processes, it does not seem to be
a suitable estimation technique for the more general class of quasi birth-death processes,
where the rates can depend on the population size in various ways. Furthermore, it does
not seem to be a suitable estimation technique for the class of multivariate population
processes either, because of the increasing amount of missing data.

Besides the EM algorithm, we have developed two other likelihood-based techniques
in this thesis, one that exploits the Erlangization technique and another that makes
use of saddlepoint approximations. Unlike what is done with the EM algorithm, with
these techniques we �rst approximate the likelihood and then maximize it numerically
to �nd maximum likelihood estimates. The Erlangization technique is applicable to a
broad class of models. We have seen that to apply this technique, one needs to compute
the transient probabilities at exponential epochs. This comes down to solving a system of
linear equations, which can be written in a compact matrix form. An important advantage
is that the rates in these matrices can take all kinds of structures. However, there is one
main complication when applying the Erlangization technique.



109

◦ The matrix Pt which describes the desired transient distribution, is evaluated in
its entirety, see (3.8). Its dimensions are equal to D, the size of the state space of
the joint Markov process {Mt, Xt}. This means that the size of this matrix may
increase rapidly as soon as the model becomes large, for example when the phase
process {Xt} is de�ned on a large set of states. As a result, the computational time
will severely increase, since multiple matrix multiplications have to be executed to
evaluate the approximation in (3.8), or the computation can even become infeasible.

We see that the Erlangization technique does not seem to be a suitable technique for
the class of multivariate population processes, since for these models, the matrix Pt will
become prohibitively large as the size of the underlying network grows.

The saddlepoint technique is highly suitable for evaluating likelihood functions for
network models, as long as we resort to discrete-time (rather than continuous-time) mod-
els. It relies on the computation of moment generating functions, and therefore it is a
convenient technique when dealing with convolutions of random variables, as in the case
of network models. Moreover, an advantage of considering the population processes in
discrete time is that the likelihood function can be written as a product of matrices of
smaller size, see equation (5.4); more speci�cally, the dimensions of these matrices are
equal to the size of the state space of the background process, i.e. not of that of the joint
Markov process. The fact that the saddlepoint technique relies on the computation of
moment generating functions can also be a drawback, leading us to a main complication
of this technique.

◦ It is not always obvious how to compute the necessary moment generating functions,
especially if we would be interested in continuous-time processes under modulation.
In this kind of models, the model parameters can switch in between two consecutive
observations, instead of on the observation times only. Therefore, it may not be
clear how the separate components in the convolution (5.6) are distributed, and
hence, how to compute the moment generating functions.

Despite the fact that the saddlepoint technique is an e�ective tool for statistical inference
of multivariate population processes in discrete time, we conclude that this technique does
not seem suitable for the continuous-time quasi birth-death processes from Chapters 2�4.

Further research

The above discussion with respect to the various models and techniques in this thesis
suggests interesting directions for further research. Naturally, the combination of the two
types of models that we considered, leads to a class of models that we did not study.
Namely, multivariate population processes under modulation, considered in continuous
time. A question is whether it is possible to perform statistical inference for this class
of models, and whether it is possible to do that using the techniques considered in this
thesis. Inverse problems as studied in this thesis seem highly challenging for continuous-
time multivariate population processes.

The population processes that we have studied can be extended in many other in-
teresting ways. One may think of multi-type population processes, in which multiple
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types of individuals are considered, which in turn can interact with each other. Other
opportunities concern the independence assumption on the individuals in the population.
Throughout this thesis, the lifetimes of the individuals, and the movement of the indi-
viduals in the multivariate processes, are assumed to be independent. However, it could
also be relevant to consider models with certain dependency structures between the indi-
viduals. We see possibilities in solving inverse problems for this kind of extended models
with use of the techniques considered in this thesis. Especially the saddlepoint technique
seems to give possibilities for more general classes of multivariate population processes.
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Summary

Population processes are stochastic processes that record the dynamics of the number of
individuals in a population, and have many di�erent applications in a broad range of areas.
Population processes are often modelled as Markov processes, and have the important
feature that transitions correspond either to an increase or a decrease in the population
size. These two types of transitions are often referred to as births and deaths. A speci�c
class of population processes is the class of birth-death processes, where transitions can
only increase or decrease the population by one at a time. In many real-life situations the
dynamics of a population is a�ected by exogenous, often unobservable, factors. Therefore,
this thesis considers population processes of which the parameters are a�ected by an
underlying stochastic process, referred to as the background process. The aim is to �nd
reliable inference techniques to estimate the parameters, including those related to the
background process, from discrete-time observations of the population size.

The statistical inference is complicated severely by the fact that a substantial part
of the process is unobserved. First, the underlying background process is not observed.
Second, only the population size is observed, which is the net e�ect of all the transitions
in the dynamics of the population. Last, the population size is observed in discrete time,
hence the transitions in between two consecutive observations are not observed. In this
thesis we show a collection of techniques to overcome these complications for a variety of
population processes. The aspects in which the models di�er, ask for speci�c inference
techniques.

For a certain class of Markov-modulated population processes, we show how the well-
known EM algorithm can be used to estimate the model parameters. In these models,
the background process is a �nite, continuous-time Markov chain and the parameters of
the population process switch between distinct values at the jump times of this Markov
chain. An algorithm is presented that iteratively maximizes the likelihood function and
at the same time updates the parameter estimates.

A generalization of the conventional birth-death process, involving a background pro-
cess, is the quasi birth-death process. We use the Erlangization technique to evaluate the
likelihood function for this kind of processes, which can then be maximized numerically
to obtain maximum likelihood estimates. A speci�c model in the class of quasi birth-
death processes is a birth-death process of which the births follow a hypoexponential
distribution with L phases and are controlled by an on/o� mechanism. We call this the
on/o�-seq-L process, and use it to model the dynamics of populations of mRNA molecules
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in single living cells. Numerical complications related to the likelihood maximization are
analyzed and solutions are presented. Based on real-life data, we illustrate the estimation
method, and perform a model selection procedure on the number of phases and on the
on/o� mechanism.

Last, we consider a class of discrete-time multivariate population processes under
Markov-modulation. In these models, the population process is de�ned on a network with
�nitely many nodes. In addition to the births and deaths that can occur at each of the
nodes, the individuals follow a probabilistic route through the network. We introduce the
saddlepoint technique and show how it can be used to evaluate the likelihood function
based on observations of the network population vector. The likelihood function can
again be maximized numerically to obtain maximum likelihood estimates. Throughout
the thesis, the accuracy of the inference methods is investigated by extensive simulation
studies.



Samenvatting

Populatieprocessen zijn stochastische processen die de veranderingen in het aantal in-
dividuen in een populatie beschrijven. Ze hebben veel verschillende toepassingen in
een breed scala van onderzoeksgebieden. Populatieprocessen worden vaak gemodelleerd
als Markov processen en hebben het belangrijke kenmerk dat veranderingen uitsluitend
overeenkomen met een toename of een afname van de populatiegrootte. Deze twee soorten
veranderingen worden vaak aangeduid als geboorte en sterfte. Een speci�eke klasse van
populatieprocessen is de klasse van geboorte-sterfte-processen, waarin de populatiegrootte
met maar één individu tegelijk kan veranderen. In veel praktijksituaties worden de ve-
randeringen in een populatie beïnvloed door exogene, vaak niet waarneembare, factoren.
Daarom beschouwt dit proefschrift populatieprocessen waarvan de parameters worden
beïnvloed door een onderliggend stochastisch proces, ook wel het achtergrondproces ge-
noemd. Het doel is om betrouwbare technieken te vinden om, op basis van discrete-tijds
observaties van de populatiegrootte, de parameters in het model te schatten, inclusief de
parameters die gerelateerd zijn aan het achtergrondproces.

Het toepassen van statistische methoden wordt bemoeilijkt door het feit dat het proces
slechts in beperkte mate wordt geobserveerd. Ten eerste wordt het onderliggende achter-
grondproces niet geobserveerd. Ten tweede wordt alleen de populatiegrootte geobserveerd,
wat het netto-e�ect is van alle veranderingen in de populatie. Ten slotte wordt de popula-
tiegrootte geobserveerd op discrete tijdstippen, waardoor alle veranderingen tussen twee
opeenvolgende observaties niet bekend zijn. In dit proefschrift bespreken we een aantal
technieken waarmee voor verschillende populatieprocessen de parameters geschat kunnen
worden, ondanks deze complicaties. De punten waarop de modellen verschillen, vragen
hierbij om speci�eke statistische methoden.

Voor een bepaalde klasse van Markov-gemoduleerde populatieprocessen laten we zien
hoe het bekende EM-algoritme kan worden gebruikt om de parameters te schatten. In deze
modellen is het achtergrondproces een eindige, continue-tijds Markovketen waarbij met
elke toestandswisseling de parameters van het populatieproces veranderen. Er wordt een
iteratief algoritme gepresenteerd dat in elke stap tegelijkertijd de likelihood maximaliseert
en de parameterschattingen verbetert.

Het toevoegen van een achtergrondproces aan de gebruikelijke geboorte-sterfte-processen
resulteert in de bredere klasse van quasi-geboorte-sterfte-processen. We gebruiken de Er-
langisatietechniek om de likelihood voor dit soort processen te evalueren, die vervolgens
numeriek kan worden gemaximaliseerd om maximum likelihood-schattingen te verkrijgen.
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Een speci�ek model in de klasse van quasi-geboorte-sterfte-processen is een geboorte-
sterfte-proces waarbij de geboorten hypo-exponentieel verdeeld zijn met L fasen, en die
worden gecontroleerd door een aan/uit-mechanisme. We noemen dit het on/o�-seq-L-
proces en gebruiken het als model voor populaties van mRNA-moleculen in levende cellen.
Numerieke complicaties die te maken hebben met het maximaliseren van de likelihood
worden geanalyseerd en oplossingen worden gepresenteerd. Op basis van echte data il-
lustreren we de schattingsmethode en voeren we een modelselectieprocedure uit op het
aantal fasen en op het aan/uit-mechanisme.

Tenslotte beschouwen we een klasse van discrete-tijds multivariate populatieprocessen
onder Markov-modulatie. In deze modellen leeft de populatie op een netwerk met een
eindig aantal knooppunten. Naast dat op elk punt geboorte en sterfte kan plaatsvinden,
leggen de individuen een probabilistische route door het netwerk af. We introduceren
de zadelpunttechniek en laten zien hoe deze kan worden gebruikt om de likelihood te
evalueren op basis van observaties van de netwerkpopulatievector. De likelihood kan op-
nieuw numeriek gemaximaliseerd worden om maximum likelihood-schattingen te verkri-
jgen. We onderzoeken de nauwkeurigheid van alle in het proefschrift geïntroduceerde
schattingsmethoden aan de hand van uitgebreide simulatiestudies.
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