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Chapter 1 General introduction

MAJOR DEPRESSIVE DISORDER 

The Size And Burden Of Depression 

Major depressive disorder (MDD) is a common and debilitating mental disorder 
that affects more than 264 million people of all ages worldwide [1]. This 
psychiatric disorder occurs about twice as often in females than males and 
is a leading cause of global disability, with persistent pessimistic projections 
into 2030 [2]. At present, it is considered the second largest contributor to 
the overall global burden of disease in terms of “years lived disability” [3]. 
Importantly, next to the total direct and indirect costs of depression, this 
mental disorder poses a serious personal burden and negatively impacts an 
individual’s quality of life. At worst, depression may lead to suicide, and, sadly, 
this is currently one of the most common causes for death in young individuals 
15-29 years old. 

Clinical And Biological Characteristics of Depression

MDD is diagnosed when a person has a depressive episode that persists 
at least two weeks, involving obvious signs of disturbances in mood, and 
interests and pleasure, present nearly every day. The Diagnostic and Statistical 
Manual of Mental Disorders 5th edition (DSM-5) [4] states that an individual 
must show five (or more) of the nine symptoms, at least including one of the 
two core symptoms of depressed mood and/or diminished interest, to fulfill 
the diagnostic criteria for clinical depression. Important to mention is that 227 
possible combinations of symptoms can thus lead to the same diagnosis. In 
other words, it is possible for two persons with the same diagnosis of MDD 
to show only one overlapping symptom. Moreover, divergent symptoms, for 
instance, increased but also decreased appetite, can both contribute to the 
diagnosis. By design, depression is thus a clinically diverse and heterogeneous 
disorder, including many different symptom profiles.

To date, the etiology and pathophysiology of depression still remains 
complex and relatively unknown, perhaps in part due to its clinical 
heterogeneity. However, twin-based studies typically find a genetic contribution 
of approximately 35% [5]. The latest genome-wide association study (GWAS) 
involving >246,000 MDD patients shows evidence for 87 independently 
associated variants mapping onto 269 genes and complex biological pathways 
related to neurotransmission, response to stimuli, and the prefrontal brain 
regions [6]. Epigenome-wide association studies have identified depression 

associated methylation sites in overlapping blood and brain tissue, mapping 
onto biological pathways important for brain development and function 
[7]. Beyond biological risk factors, psychosocial factors matter as well. 
For instance, personality traits have shown to influence the likelihood of 
depression. Particularly neuroticism has repeatedly and robustly been linked 
to current [8] or future depressive episodes [9]. Neuroticism is a personality 
trait that renders one susceptible to distress, negative affect, and heightened 
responses to threat, loss, and frustration [10]. While it is evident that there are 
substantial trait-like contributions to depression, there also is abundant room 
for social and environmental factors to play a role.

A wide range of environmental risk factors have shown to influence the 
risk and outcome of depression. Broadly speaking, they can be categorized 
into sociodemographic, environmental, and lifestyle factors [11, 12]. Strongest 
effects are commonly reported for childhood trauma exposure including 
physical and sexual abuse, psychological neglect, but also victimization, 
exposure to violence, and other exposures of threat and deprivation, as they 
predispose, increase the risk of, and predict poorer course of depression later in 
life [13–16]. Similarly, negative or personal life events contribute to the disease 
and even suicidal risk [17]. In terms of lifestyle, convergent evidence indicates 
that physical inactivity, smoking, poor diet, and poor sleep are major disease 
contributors [18]. Together, these factors represent commonly observed 
determinants of depression, with some of these links being bidirectional and 
mutually reinforcing.

From a biological perspective, several systems appear to be dysregulated 
in depression [19, 20], specifically those implicated in or sensitive to stress. 
A cluster of metabolic risk factors often occurs, including abdominal obesity, 
increased blood glucose (i.e. hyperglycemia), elevated blood pressure, 
increased triglycerides and decreased HDL cholesterol. From these 
components, abdominal obesity and lipid disturbances are most consistently 
associated with depression [21]. Another line of research indicates that 
depression is associated with dysregulated (innate) inflammation [22], with 
elevated levels of proinflammatory cytokines such as interleukin (IL)-6, and 
C-Reactive Protein (CRP), but no significant longitudinal associations between 
tumor necrosis factor-alpha and depressive symptoms [23]. Yet another line 
of research relates depression to autonomic dysregulations, presumably 
due to disturbed activations of the sympathetic nerves and reduction of 
parasympathetic nerve activity essential to prepare the body for a fight or 
flight response. However, this evidence is relatively inconsistent, might be 
dependent on the type of stressor [24], and seems to be confounded by 
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antidepressant use [25]. Hyperactivity of the hypothalamic-pituitary-adrenal 
(HPA) axis has been reliably implicated in depression, with prolonged stress 
resulting in cortisol releases into the blood. Finally, structural neuroimaging 
studies have consistently found the prefrontal cortex and hippocampus to 
be reduced in volume in depression compared controls [26, 27], as well as 
thinner cortical gray matter in the orbitofrontal cortex, anterior and posterior 
cingulate, insula, and temporal lobes [28, 29].

Furthermore, the clinical heterogeneity of MDD can also be observed on 
an environmental and biological level. The existence of different subtypes of 
depression is supported by studies reporting differential roles of HPA-axis 
function, inflammation, and metabolic syndrome in depressed persons with 
melancholic/typical features, compared to those with atypical depression 
[30]. Melancholic depression is more characterized by decreased appetite 
and weight loss, whereas the atypical subtype of depression is characterized 
by overeating and weight gain. For example, childhood adversities, smoking 
and HPA-axis hyperactivity seem to be more related to typical depression, 
while metabolic syndrome components and higher inflammation are more 
specifically linked to atypical depression [31]. MDD subtypes also seem to 
be characterized by partially distinct polygenic liabilities [32] and differential 
structural brain correlates in both youth [33] and adults [34, 35], further 
highlighting that differential clinical representation may map onto a distinct 
biological profile. Importantly, this is suggested to, at least partly, explain 
blurred effect sizes in pathophysiological research, as well as explain why 
some treatment strategies that work well for some patients, might not work 
for others [36, 37]. More research is needed to further characterize subtypes 
of depression and to get the right treatment, to the right patient group, at the 
right time. 

Comorbidity With Anxiety Disorders & Life Course Perspective 

To date, it is well established from a variety of studies that MDD is commonly 
accompanied by anxiety symptoms. Since this group of patients has increased 
likelihood of presenting suicidal ideation and antidepressant treatment 
resistance (i.e. different clinical representation), the DSM also introduced an 
“anxious distress” specifier for MDD. However, there is not only an overlap 
in symptoms, there are also other significant similarities between MDD and 
anxiety disorders (social phobia, panic disorder, agoraphobia, and generalized 
anxiety disorder) in terms of genetics [38], neurobiological correlates [39], 
shared risk factors [14], and physiological dysregulations [19]. It is therefore 

not surprising that comorbidity levels of depression and anxiety disorders can 
be as high as 75% [40, 41], showing that both mental disorders appear to be 
closely linked [42]. Collectively, the current literature outlines why depression 
and anxiety disorders are or should typically be studied together, as they are 
difficult to fully disentangle, and should perhaps be grouped under the broader 
family of internalizing disorders.

When one considers MDD and frequently co-occurring disorders such as 
dysthymia, (hypo)mania, and anxiety over a long-term course, patients tend 
to move in and out of diagnoses and recovery rates become more pessimistic 
and illness trajectories more chronic [43]. From a life-course perspective 
on mental disorders, diagnoses may even frequently shift among different 
disorders outside of depression and anxiety. Caspi et al. (2020) refer to this 
as “the ebb and flow” of mental disorders over decades [44], demonstrating 
that internalizing (e.g. depression and anxiety), externalizing (e.g. substance 
use disorders), and thought disorder (e.g. obsessive compulsive disorder) 
“families” also frequently co-occur, and presence of one disorder may often 
increase the risk of developing another disorder. To illustrate, at ages 11-
15 years, approximately 32% of the participants with one disorder had a 
comorbid disorder, but at age 45, this percentage was more than 2.5 times as 
high increasing to as much as 85%, suggesting that with longer follow ups, 
participants often seem to have accumulated comorbid mental disorders. 

HUMAN AGING

The Importance of Studying Our Aging Society

Aging has long been a question of scientific interest in a wide range of fields, 
possibly because it is almost a universal trait affecting most species on earth 
with the exception of some bacteria, plants or simple animals [45]. In humans, 
medical and public health improvements have contributed to the global 
trend of extended lifespan. More specifically, the human life expectancy has 
increased more than 35 years over the last 100 years [46]. Our current society 
thus experiences a steep increase in people living into old age. However, 
while some age-related changes such as graying of hair can be considered 
relatively benign, others are more objectively disadvantageous. For example, 
aging is also considered a critical risk factor for chronic diseases such as 
cardiometabolic problems, type 2 diabetes, cancer [47], and chances of death 
[48]. Thus, although human life expectancy has increased, parallel increases 



1514

Chapter 1 General introduction

have been observed in terms of chronic disease and years lived with disability 
[1]. This is partly explained by the fact that diseases can now be treated and 
become non-fatal, even though they still negatively impact a person’s quality 
of life. Still much is unknown about the nature of why we age and the biological 
mechanisms that underpin aging processes. If we can better understand 
the biology of aging and its impact on disease, we may potentially find a 
way to more successful aging, adding more healthy and happy years to our 
lifespan. Within the field of psychiatry, studying aging has been instrumental 
in understanding the somatic consequences and medical comorbidities of 
depression. 

AGING PHENOTYPES IN DEPRESSION 

Somatic Symptoms Of Depression 

Interestingly, the chronic diseases commonly observed at older ages, also 
frequently present themselves in depression [49]. Previous research has 
established that the impact of depression extends much further than the mere 
presence of psychological symptoms. The Inventory of Depression Symptoms 
(IDS) is a reliable instrument to measure signs of depression and provides an 
indication of illness severity. The instrument comprises 50% of items related 
to mood/cognition, but the other 50% of items tap into somatic symptoms 
such as sleeping problems, weight and/or appetite changes, physical energy, 
psychomotor agitation/retardation, and aches, pains or other bodily problems 
[50]. This already suggests that depression is by definition not only considered 
a “mind problem” but also a “body problem”. 

Age-related Comorbidities

A large and growing body of literature has shown that depression increases 
the risk of cardiovascular diseases, including, but not limited to, coronary 
heart disease, peripheral heart disease, and cerebrovascular disease [51]. In 
turn, cardiovascular problems also seem to increase the risk of depression, 
suggestive of a bidirectional relationship. But depression is even further 
associated with poorer somatic health outcomes beyond cardiovascular 
disease. Convergent evidence has been found for chronic diseases in 
depression, illustrated by increased risks of type 2 diabetes, obesity, stroke 
[52, 53], hypertension [54], and metabolic disorders. Moreover, longitudinal 

evidence indicates that depression also increases the risk of age-related 
comorbidities like dementia [55], Alzheimer’s disease [56], and, in some cases 
even cancer [57]. Overall, these findings provide convincing evidence that 
depression has a major adverse impact on somatic health.

Alternatively, studies have suggested that unhealthy lifestyles and poorer 
(self) care may offer an explanation as to why poorer somatic health can 
be observed in depression. Indeed, research linking depression and poorer 
health is limited by fact that behavioral, psychiatric, and somatic conditions 
frequently co-occur, and thus may have confounding effects. For instance, 
longer duration and higher frequencies of smoking, alcohol, and substance 
use have been observed in psychiatric patients compared to controls [58]. In 
addition, obesity, poor diet, and physical inactivity are common depression 
characteristics [51]. However, some studies show that a poorer lifestyle cannot 
fully explain the link between depression and adverse health consequences, 
as statistical models that correct for lifestyle differences show only slightly 
lower effect sizes between depression and e.g. cardiovascular disease [59].

Nevertheless, the most important consequence to consider from the 
established literature is that depression is associated with excess mortality 
[60–63] and life-years lost [64], regardless of the direct or indirect effects 
of the disease itself, including shared and unique associations with poorer 
lifestyle and poorer somatic health. The increased risk of developing aging-
related conditions [65] is a fundamental association of depression that further 
increases the burden of the disease through decreased quality of life [66] and 
increased health care utilization [67]. There are thus two global challenges 
we are currently facing, as psychiatric illness and aging populations are 
both increasing worldwide, highlighting the urgent need to address both 
simultaneously in the same studies.

Cellular Aging In Depression 

To examine the age-related somatic conditions in depression, previous studies 
have mainly focused on measures of cellular aging. At the conception of this 
thesis (April 2016), most of the literature on biological aging in depression 
was focused on telomere length, a marker that becomes progressively shorter 
with increasing age [68]. Robust associations have been found between 
shorter telomere length and depression [69], but also anxiety disorders [70], 
in at-risk [71], adolescent [72], and adult populations [73]. Since then, several 
technological advances have led to more “modern” measures of biological 
aging that will be discussed in the following paragraphs. The most popular 
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algorithms of biological aging rely on epigenetics, and are called “epigenetic 
clocks”. Several epigenetic clocks that accurately track age exist, of which 
the Horvath and Hannum epigenetic clocks are most extensively used and 
validated [74, 75]. 

COMING OF AGE: TECHNOLOGICAL ADVANCES 

Big Data, Machine Learning & High-performance Cluster Computing 

The past decades have seen increasingly rapid advances in the field of 
neuroscience. This section provides some background to the molecular 
and brain imaging developments that were essential for the type of data 
and methods used in the current thesis. In 1975, scientists first found that 
DNA methylation could alter gene expression [76, 77]. In the following three 
decades, the importance of DNA methylation in the context of health and 
disease could be studied with steadily increasing coverage of the epigenome. 
Dramatic technological improvements have made it possible to perform 
high-throughput screening of the whole epigenome with declines in costs 
and expansion of computational power for processing. At present, we can 
measure the methylation statuses of almost all 28 million so-called CpG sites 
in human blood (see [78] for a detailed timeline of methods and applications) 
using cost-effective approaches [79]. This has promoted a shift of focus from 
hypothesis- and theory-driven discovery to data-driven and hypothesis-free 
approaches [80]. Thus, whereas the previous decades were dominated by 
candidate studies with promising leads derived from animal work, today we 
can basically associate all CpG sites that can be methylated in the blood 
epigenome with certain traits to examine the underlying biological patterns. 

In the 1990s, the “Decade of the Brain” was designated in the U.S. to 
promote public awareness of beneficial discoveries from brain research [81]. 
Since then, data collection of (structural) magnetic resonance imaging (MRI) 
scans accelerated its pace due to the wide adoption of this method across 
the globe. Statistical software (e.g. FreeSurfer)[82], brain atlas templates, and 
various other toolboxes were developed to accommodate and sometimes 
automate the analyses of complex neuroimaging data. However, the field 
has also been greatly challenged by low statistical power, software errors, 
and notorious flexibility and researcher degrees of freedom in data analysis 
[83]. Scientists therefore also began to acknowledge the need to harmonize 
data collection, standardize analysis pipelines, and pool multiple datasets 

to obtain better-powered studies in pursuance of robust findings that would 
replicate. Data sharing thus became critically important for creating research 
opportunities, with added benefits of crowdsourcing costly research data. To 
that aim, increasing numbers of international consortia emerged to promote 
team science and scientific collaborative efforts.

Finally, to model the complexity of vast and heterogeneous amounts of 
biological data, intelligent data analysis was needed. Machine learning 
algorithms use statistics to learn correlated patterns in large sample sizes with 
high-dimensional data (e.g. structural brain scans commonly include >35,000 
voxels or 3D pixels). Cutting-edge scientific infrastructures were built for data 
storage and to allow sufficient power to compute complex calculations. Today, 
we are thus amidst exciting times, specifically in the field of neuroscience. 
We have access to unprecedented sample sizes, advanced machine 
learning methods, and high-performance cluster computing. Together, these 
technological advances have increased both the possibility to apply, as well 
as matured state-of-the-art statistical methods to examine high-dimensional 
data and the problem of age prediction. 

QUANTIFICATIONS OF AGING

Concepts Of Chronological And Biological Aging 

As mentioned before, aging is one of the strongest “risk factors” of chronic 
disease, loss of functional capacity, and, perhaps obviously, likelihood of 
mortality [84]. Across the lifespan we can distinguish two different concepts 
of aging, namely, chronological aging on one hand and biological aging on 
the other, although there is no agreed definition on what constitutes biological 
aging [85]. While our chronological age is basically an answer to the question 
of how many candles we can put on our birthday cake, our biological age can 
be quantified in many different ways and is more elusive. The chronological 
age is invariable and is merely based on the passage of time, whereas the 
biological age reflects the functional and biological state of our body, and may 
fall behind or outpace chronological age. The concept of the biological age 
thus aims to explain the inter-individual aging rates between two people of the 
same chronological age, or, to put it bluntly, why two people born on the same 
date may die (from “natural” causes) on diverging moments in time.

Given that it is not possible to obtain a complete picture of the biological 
state of an individual, biological age indicators may provide an approximation. 
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Biological age indicators can be derived from functional, neuroanatomical, 
cellular or molecular measures that are correlated with age, or, “hallmarks of 
aging” [86]. Definitions of biological age indicators often reflect loss of function, 
increased risk to medical conditions and diseases, and closer proximity to 
death. Importantly, a biological age indicator should be a better predictor of 
these reflections than chronological age. The current thesis is mainly focused 
on epigenetic and brain-based proxies of biological aging. 

Modern Tools To Quantify Biological Aging 

Normal aging is accompanied by brain atrophy, cortical thickness  
reductions, and ventricle enlargements [87]. Similarly, stochastic, 
environmental, and individual-specific methylation changes occur during the 
course of healthy aging [88]. Leveraging the natural aging-related biological 
changes that are reasonably consistent across individuals, we can use 
statistical tools to capture these specific patterns and develop predictive 
algorithms that are able to accurately predict one’s chronological age from 
these patterns. For a general overview of the biological age estimation 
procedure see Figure 1. 

Central to this procedure is to use a sufficiently large sample of participants 
of which the chronological age is known such that a “supervised” machine 
learning method can be used. Generally, supervised machine learning refers 
to the approach that a machine learns correlated patterns in the data from 
which the individual’s chronological age is known (i.e. training data), before 
predicting the correct chronological age for newly presented data (i.e. test 
data). The current thesis mostly focused on epigenetic (i.e. CpG sites) and 
brain structure data (i.e. gray matter cortical thickness, surface area, and 
subcortical volumes) to obtain predicted biological age estimates. Importantly, 
by contrasting an individual’s predicted biological age to their chronological 
age, it can be studied whether individuals are biologically younger or older 
than expected on the basis of chronological age. To illustrate, if a person of 40 
years old (i.e. chronological age) is predicted to be 42 years old (i.e. predicted 
biological age), that individual’s biological age based on their biological state 
outpaces their chronological age by +2 years (i.e. predicted age difference or 
biological aging effect). 

Figure 1. Biological age estimation procedure. Several general methodological steps are 
needed to predict an individual’s age from biological data (e.g. DNA methylation patterns 
or brain scans) to result in a predicted biological age. Biological data usually undergoes 
quality checking and some sort of dimension reduction in order to obtain a selection of 
“features” that relate to aging. (A) The obtained features are then used as predictors in a 
regression model with chronological age as “target” or outcome in the training data. (B) The 
validity of the model must then be established by its ability to generalize to test data that 
was not used to fit the model. The weights learned from the training data will be applied to 
the test data to obtain biological age predictions for each individual. (C) Once an optimal 
prediction accuracy is obtained through cross-validation, the model may also further be 
used on completely new and independent individuals to test true generalization power. 
However, this step is dependent on the available data and aim of the study. (D) Predicted 
biological age is compared to chronological age to obtain the predicted age difference or 
the “biological aging effect”. 
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Application of Biological Age Prediction Models to Depression 

The purpose of building a biological age prediction model is to subsequently 
apply it to patient populations with depression and/or anxiety disorders to 
test the hypothesis whether their biological age outpaces chronological aging. 
The difference between one’s chronological and biological age can then also 
be related to other disease characteristics. Understanding the link between 
biological aging and depression will help identify and predict who carry 
measurable risk for increased vulnerability to age-related health problems. 
It is important to mention that age prediction models are not sensitive to 
depression. In other words, biological age prediction models can be applied 
to the general population or other disease populations to examine individual 
deviations from “normal” aging. However, this dissertation primarily seeks to 
specifically explain the biological aging patterns observed in persons with 
depression. 

DATASETS STUDIED IN THIS THESIS

The current thesis primarily used empirical data drawn from three main 
sources: 1) the Netherlands Study of Depression and Anxiety (NESDA)[89], 
2) the Great Smoky Mountains Study (GSMS)[90], and 3) the MDD working 
group of the Enhancing Neuroimaging Genetics through Meta-analysis 
(ENIGMA) consortium [91]. First, the NESDA cohort is an ongoing longitudinal 
study that investigates the course and consequences of depression and 
anxiety disorders, therefore including in-depth assessments of clinical and 
biological characteristics. Between 2004 and 2007, 2,981 participants (78% 
met criteria for depression and/or anxiety disorders) were included that were 
recruited from the general population, primary care, and specialized mental 
health care. A subset of 1,130 participants (18-64 years old) underwent whole 
methylome profiling. A (partly overlapping) subsample of 301 participants (18-
55 years old) took part in the neuroimaging study. Second, the GSMS is a 
unique longitudinal population-based cohort study of 1,420 children recruited 
from 11 predominantly rural counties of North Carolina, the United States of 
America. In 1993, participants were aged 9 to 13 years old at intake, and 
provided detailed assessments of health factors, and blood samples during 
annual assessments until 2015. Participants are now in their early 30s, and 
the current thesis used data from 539 participants (9-35 years old) including 
a total of 1,029 measurements. Third, the ENIGMA consortium is a worldwide 

neuroscience alliance of >1,400 scientists across 43 countries that aims 
to examine fundamental questions in neuroscience and genetics [92]. The 
structure of the consortium comprises different working groups, with the 
ENIGMA MDD working group being the main data source used for this thesis. 
Data from more than 19 cohorts including over 6,900 participants (18-75 
years old) with 38.3% of patients with MDD were included in a pooled mega-
analysis. 

AIMS AND OUTLINE OF THESIS 

This thesis will examine multisystem quantifications of the biological age in 
MDD in pursuance of a better understanding of the complex interplay between 
mental health and biological aging. The overall structure of the thesis takes 
the form of eight chapters, ending with a summary and discussion of the main 
findings. The first aim was to highlight important guideposts for researchers 
interested in making advances in the field of stress, psychopathology, and 
biological aging. Chapter 2 therefore provides a literature overview of the link 
between biological aging and mental health, as well as a description of this 
rapidly expanding field of research, including limitations, current challenges, 
and future recommendations.

The second aim of the current thesis was to conduct experimental 
work to examine biological aging in peripheral tissues. The following two 
chapters operationalize biological aging as measured by DNA methylation, 
or, epigenetic patterns. More specifically, Chapter 3 describes whether major 
depression is cross-sectionally associated with older appearing epigenetic 
patterns in blood, whether depression characteristics have a further impact 
on these patterns, and whether findings replicate in brain tissue. The work in 
Chapter 4 examined longitudinal epigenetic aging patterns from childhood 
and adolescence into young adulthood, and describes whether changes in 
various health risks result in changes in epigenetic aging, a relationship that 
should be observed if the health risk has a causal effect on the epigenetic 
biological age indicator.

The third aim of this thesis was to examine whether premature or advanced 
biological aging observed in peripheral tissues could also be observed in the 
brain as measured from MRI scans. The next two chapters were therefore 
concerned with brain-based biological age indicators. Chapter 5 describes 
the development of a multi-site brain age prediction model and examines 
brain aging in over 6,900 individuals from the ENIGMA consortium, including 
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exploratory associations with several basic harmonized clinical characteristics. 
To further build on those findings, we then applied the developed brain age 
prediction to controls and both depression and anxiety disorder patients from 
the NESDA cohort in Chapter 6, and associated the brain age indicator with 
more detailed clinical, psychological, and biological factors.

The fourth and final aim of the current thesis was to examine multiple 
biological age indicators and to combine and integrate them in one study. 
Chapter 7 therefore investigates intercorrelations between five biological 
clocks based on telomeres and four omics levels, and examines their unique 
and shared associations with a wide range of somatic and mental health 
risks. Finally, a summary of the main findings, together with its discussion and 
(clinical) implications, is provided in Chapter 8.
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ABSTRACT

Aging is associated with complex biological changes that can be accelerated, 
slowed, or even temporarily reversed by biological and non-biological factors. 
This article focuses on the link between biological aging, psychological 
stressors, and mental illness. Rather than comprehensively reviewing this 
rapidly expanding field, we highlight challenges in this area of research and 
propose potential strategies to accelerate progress in this field. This effort 
requires the interaction of scientists across disciplines - including biology, 
psychiatry, psychology, and epidemiology; and across levels of analysis that 
emphasize different outcome measures - functional capacity, physiological, 
cellular, and molecular. Dialogues across disciplines and levels of analysis 
naturally lead to new opportunities for discovery but also to stimulating 
challenges. Some important challenges consist of 1) establishing the 
best objective and predictive biological age indicators or combinations of 
indicators, 2) identifying the basis for inter-individual differences in the rate 
of biological aging, and 3) examining to what extent interventions can delay, 
halt or temporarily reverse aging trajectories. Discovering how psychological 
states influence biological aging, and vice versa, has the potential to create 
novel and exciting opportunities for healthcare and possibly yield insights into 
the fundamental mechanisms that drive human aging.

LIST OF ABBREVIATIONS

BD  Bipolar Disorder
BDNF Brain-derived Neurotrophic Factor
Brain-PAD  Brain-predicted age difference
ccf-mtDNA  Circulating cell-free mitochondrial DNA
DNAm DNA methylation
MDD  Major Depressive Disorder
MHI  Mitochondrial Health Index
mtDNA  Mitochondrial DNA
mtDNAcn  Mitochondrial DNA copy number
nDNA Nuclear DNA
PTSD  Post-traumatic Stress Disorder
SCZ  Schizophrenia
SSRI Selective Serotonin Reuptake Inhibitor
TL  Telomere length

INTRODUCTION

Aging is the strongest risk factor for many chronic illnesses, loss of functional 
capacity, and mortality [1]. It is associated with complex biological changes, 
but there is no consensus on the very definition of aging, nor on the best 
methods to quantify it biologically [2]. Chronological age is based on the 
passage of time and is invariable. But biological age may fall behind or else 
outpace chronological age – it is modifiable. Based on specific molecular 
and other measures discussed below, the rate of biological aging has been 
reported to vary substantially between individuals [2, 3], although the causes 
of such inter-individual differences are mostly unclear. In particular, a major 
gap in knowledge is reflected in our ignorance of the mechanisms for the 
transduction of psychological states, and of psychopathology, into changes 
in biological aging (Figure 1). How do “mind” states influence biological aging 
and vice versa?

Figure 1. Integrative model for the transduction of mental health into biological aging 
and downstream disease manifestations. (Left) Two main domains of mental health are 
considered: 1. Acute and chronic psychosocial stressors, which include distress and other 
subjective experiences; 2. Mental illness and clinical psychopathology (e.g., depression, 
anxiety, schizophrenia, bipolar disorder, etc). (Middle) These factors are transduced into 
biological age indicators, which span functional and physiological, brain structure and 
function, cellular, and molecular levels of analysis. In turn, the reverse association may 
transduce increased biological age into increased vulnerability and resilience to life 
stressors. The mechanisms responsible for the bi-directional flow of information between 
psychological states, psychopathology, and biological age indicators largely remain to 
be defined. (Right) Increased biological aging reflected in individual or combinations of 
biological age indicators manifest in symptoms across multiple interconnected systems, 
represented here as a functional network. Mental health domains can also directly contribute 
to disease manifestations (bottom arrow). Molecular indicators refer to components that are 
inert when in isolation (e.g. DNA, proteins) whereas cellular indicators refer to animated 
“living” components (e.g. breathing mitochondria, dividing/secreting cells).
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This psycho-biological problem is a unique opportunity to make scientific 
progress on two main fronts: First, it is an opportunity to develop new 
measurements and technical approaches to capture meaningful, valid, and 
reproducible measures of biological aging. Second, this interdisciplinary 
problem requires dialogue across research and clinical domains. We see the 
intersection of experiential, psychological, and biological aging processes 
as a platform for the development of new (and possibly radically different) 
concepts and measures that will most faithfully capture human health and 
the aging process. Currently, although we have some quantifiable measures 
of biological aging in humans - biological age indicators - we still know little 
about their causal role in the aging process, and about their modifiability by 
psychological states and psychopathology.

One important shared goal towards enhancing well-being across the lifespan 
is to understand aging as dynamic trajectories determined by a variety of factors. 
Some determinants of biological aging are pre-programmed (“intrinsic”; e.g., 
genetic), while others are affected by the environment (“extrinsic”; e.g., diet, 
adversity) [4]. Most definitions of biological aging include loss of function, 
increased propensity to certain diseases, and closer proximity to death [5]. 
Certain objective biological measures (or “clocks”) may also track biological 
aging. Development and validation of biological age indicators and clarification 
of their mediators and moderators are high priorities, since they may lead to 
a better understanding of the underpinnings of healthy and unhealthy aging 
trajectories. These indicators may also present proximal outcomes, or “early 
warning signs” that portend disease development and may provide a more 
sensitive platform to detect – and intervene upon – meaningful interactions 
between psychological, social, and bio-behavioral factors that influence aging 
trajectories and health outcomes.

Biological age indicators currently being investigated include telomere 
length (TL), epigenetic changes, alterations of mitochondrial function and 
mitochondrial DNA (mtDNA), age-related brain structure and function, and 
transcriptomic, metabolomic, and proteomic changes, among others (see, [2, 
3, 6] for recent reviews). Current topics of investigation include the nature of 
the inter-relationship of these biological age indicators, whether they measure 
the same or different aspects of biological aging, whether they are causally 
involved in the aging process, whether they have a causal role in disease and 
disorders, and the best ways to assess them. The possibility that the aging 
process is accelerated by chronic psychological stress and that it plays a 
role in the pathophysiology of some mental illnesses has been supported by 
observations that chronically stressed or psychiatrically ill individuals are at 
increased risk of acquiring specific age-related diseases and have a reduced 

life expectancy [7–11]. But certain conceptual and methodological obstacles 
are impeding growth in this field and hinder replication of findings across 
laboratories.

Rather than comprehensively reviewing this rapidly expanding field, here 
we focus on highlighting various challenges and arising opportunities for this 
interdisciplinary endeavor. We conclude by proposing strategies to accelerate 
the progress of this field towards a predictive science that can enhance our 
understanding of the psychobiological factors that influence the aging process 
and lifespan. 

The concept of biological aging: Definitions and obstacles

Chronological age is strictly quantitative and requires no more than a calendar 
to measure. Biological age is more elusive as it reflects the functional and 
biological condition of an individual. The difference between biological age 
and chronological age can indicate whether the individual’s biological state is 
“older” or “younger” than would be expected for a given chronological age. This 
is often referred to as “accelerated” or “slowed” aging, respectively. However, 
cross-sectional assessments of biological age do not allow to determine aging 
rates, or to distinguish between “accelerated” and “premature” or “advanced” 
aging (Figure 2). The rate of increase in biological aging over time may also 
exhibit nonlinear behavior, particularly in early life where the measured rate of 
aging may be more rapid than across adult life [3, 12].

Since it is not possible to directly assess the total biological state of a 
person, biological age indicators serve as proxies. Biological age indicators are 
functional, anatomical, biochemical, cellular or molecular measures that are 
correlated with age and that may reflect the health status of specific cell types 
and/or organ systems. The term biomarker, in contrast to indicators as defined 
here, is best used in the context of specific disease or health outcomes. By 
definition, biomarkers must exhibit both sensitivity and specificity in relation to 
the outcome we design them to predict [13]. For aging, a still broadly defined 
process compared to a disease that can be ascertained with certainty, the 
term indicator is rendered more appropriate. Although some biological age 
indicators have undoubtedly established their sensitivity to chronological 
age, few have convincingly demonstrated their specificity - that changes in 
their value occurs specifically in response to the aging process and not in 
response to other pathophysiological process. Some biological age indicators 
are indeed modified by disease states independent of aging, and some as 
discussed below may notably be sensitive to psychological states, namely 
stress and psychopathology.
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Figure 2. Computing age acceleration using cross-sectional and longitudinal data. 
(A) From cross-sectional data, accelerated aging is established when biological age is 
over-predicted relative to the chronological age reference (group regression line). (B) In 
longitudinal data, the rate of aging is directly determined from multiple measurements 
in the same person (also same tissue and cell type). The slope for each individual can be 
compared to the theoretical slope of 1 to ascertain true aging acceleration or deceleration.

Biological age indicators

Aging is a multifaceted and complex process that manifests across multiple 
levels. In recent decades, measurements spanning each of these levels have 
been developed, reflecting our prevailing reductionist scientific approach to 
biomedical sciences. Here, rather than providing an exhaustive overview that 
can be found in recent reviews [2, 6, 14–17], we provide a selective overview 
of aging indicators commonly studied in relation to mental health (Table 1). 
This table, which is illustrative rather than comprehensive, also includes some 
emerging biological age indicators that reflect the development of omics 
technologies and of computational approaches to integrate multiple metrics 
into composite indices, as also discussed in Section 5. Due to space limitation, 
we do not cover self-reported age [18], self-reported perception of aging [19], 
more specific brain measures [20], or inflammatory markers [21], which have 
also been associated with lifespan. We then discuss the practical limitations 
and conceptual challenges commonly associated with these measurements.

General limitations common to biological age indicators

There are limitations inherent to existing biological age indicators: they rely on 
specific organs or tissue types, can be confounded by cell type heterogeneity, 
and represent static measures of dynamic states (Figure 3). These limitations 
apply to most molecular biological age indicators and should represent the 
foundation from which we design research projects, and interpret findings. 
However, these limitations are often not well understood and, instead, only 
considered post-hoc once data is collected and is being analyzed. Here, to be 
consistent with the logic whereby limitations inform research design, method 
development, and data interpretation, we discuss these challenges prior to 
the literature review. Recommendations to overcome some of these limitations 
are also discussed in Section 5.

Organs and tissue types
A common limitation of biological age indicators is that they are generally 
measured in one particular tissue and then used as a general age estimator 
for the person from whom the sample was obtained. However, it is unlikely 
that every tissue - peripheral and central - are entirely synchronized and that 
one tissue accurately reflects the biological age of all other tissues. Tissues 
from multiple organs have been found to age at different rates in terms of 
epigenetic age [87]. With age, mtDNA mutations also accumulate differently 
between brain regions [88–90] and even between cells of a given organ [91]. 
Within the brain, TL also varies between different cortical areas [92]. This 
limitation may also apply to measures of functional capacity. For example, 
there is relatively poor agreement between muscle strength measured from 
handgrip or knee extension, suggesting that the most commonly used metric 
of muscle strength - handgrip strength - is not a proxy for overall muscle 
strength [93]. Developing approaches to measure and perhaps capitalize on 
the heterogeneous nature of aging dynamics across tissues requires further 
research.

Cellular composition and heterogeneity
Tissues such as the brain, heart, muscles, and the blood are composed of 
multiple different cell types. Although all cell types have the same genome, 
they show unique epigenetic, morphological, functional, and molecular 
differences relevant to biological age indicators. For example, different blood 
cell types have different epigenomes [94], telomerase activity and TL [42, 95, 
96], and mitochondrial respiratory capacity [97]. These intrinsic differences 
are inevitable and may introduce bias and confound findings when assessed 
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individually. Similar limitations of cellular heterogeneity also apply to saliva, 
skin, and any tissue such as placenta, brain, and others. However, in many 
cases, the relative cellular composition of these tissues is poorly characterized 
or methods may not be available to effectively disentangle cellular composition 
effects, relative to the true biological aging signal.

Static indicators of dynamic processes
Most biological age indicators reflect the current state of the organism, and 
the biological age of the sampled tissue and cells, at the moment of collection. 
In many cases, it is unknown how dynamic these markers are. In other words, 
how much they change from day-to-day, across the day (i.e., diurnal variation), 
or sometimes even within minutes, as is the case for neuroendocrine mediators 
and blood-based metabolites. It is generally assumed that most biological age 
indicators (and the specific measures that compose some of them) are largely 
stable, changing slowly over the course of years, but that assumption has gone 
untested or proven false for most indicators listed in Table 1. Unrecognized, 
unmeasured, or uncontrolled variability of biological age indicators due to 
regular or irregular changes over time has two undesirable effects: it introduces 
noise that cannot be accounted for, and possibly limits our interpretation of the 
downstream result. Biological age indicators may follow different trajectories 
over time and may theoretically be differentially sensitive to behaviors such 
as sleep, exercise, diet, meditation, and others. Studies with frequently – 
over hours, days, months, and years – repeated measures of biological age 
indicators will be necessary to establish the temporal kinetics for existing and 
new biological age indicators.

Specific limitations to measurements of biological aging

Limitations of functional capacity and physiological measures
A major advantage of functional capacity and physiological measures is the 
high efficiency in terms of costs and collection as well as their integrative 
informativeness, specifically compared to blood-based, molecular and DNA-
based measurements. However, the predictive value of objective functional 
and physiological measures on mortality has mostly been reported in older 
populations (Cooper et al. 2010) and in middle-aged populations [98]. Except 
for some data reporting associations between handgrip strength and mortality 
in male adolescents [26], whether functional capacity measures such as 
walking speed are sensitive to aging and predictive of morbidity and mortality 
in younger populations largely remain to be established.
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Limitations of brain function- and structure-based measures
Normal aging is accompanied by brain atrophy and loss of brain tissue 
volume, which can be quantified non-invasively with magnetic resonance 
imaging (MRI). Voxel-based morphometry and surface-based analysis are two 
commonly used image preprocessing techniques, which may yield divergent 
results [99, 100]. Moreover, the macroscopic volumetric changes observed in 
T1- and T2-weighted MR imaging reflect microscopic changes at the tissue 
and cellular levels, and in many circumstances possibly represent an aggregate 
of multiple cellular mechanisms related to synapses, neurons, and glial cells 
[101]. Thus, what changes in brain volume represent is not fully understood.

Age-related differences in brain function can also be detected with 
functional connectivity [102] and novel analytics on brain response are also 
available. For example, Garrett and colleagues [103] showed that the age-
predictive power of the brain’s signal variability was five times higher than that 
of the conventional method of assessing the average signal across time. But 
functional MRI data has low signal-to-noise ratio, and movement artifacts are 
one source of such noise. Because individuals of different ages might move 
differently in response to assessments, movement artifacts are a possible 
confounder in many study designs. Implementing methods to systematically 
review individual participants’ images and manually separating noise from 
signal [104] could be a useful technique to minimize artifacts. There is evidence 
that manually cleaned BOLD-fMRI data, compared to data preprocessed with 
conventional automatic methods, better predicts chronological age [103], 
emphasizing the importance of data quality and pre-processing procedures in 
conclusions derived from brain-based age indicators.

A popular approach in neuroscience is to use statistical approaches to 
translate complex whole-brain multivariate patterns of aging into a single 
outcome [105], the so-called “brain age” (see [106] for details). Brain age 
algorithms [33, 107–111] generate accurate individual age predictions in 
healthy controls, but show greater prediction errors when applied to patient 
groups [3]. Within this framework, neuropathology may be reflected by the 
trajectory of aberrant normal aging, rather than a different deteriorating pattern 
of pathology. Gutierrez Becker and colleagues [112] show that Gaussian 
Process uncertainty in age estimation may yield a better separation between 
cases and healthy individuals than the prediction error. Nevertheless, brain age 
models have high reliability in terms of test-retest performance at both same 
and different scanners [110, 113], and have shown biologically meaningful 
associations with health, clinical, and neuropsychiatric phenotypes [3].

Limitations of cellular measures
Although cellular measures of aging have been used widely in the laboratory 
setting, they are seldom applied to human (clinical, epidemiological) research. 
For instance, replicative senescence, a cellular measure of aging, involves 
monitoring cells grown in culture, and counting the number of cells over time 
(e.g., [114]. This enables the investigator to count the number of times cells 
divide (i.e., total population doublings or “hayflick limit”), and determine the time 
required per cell division (i.e., population doubling time), which increases as 
cells age and divide more slowly. It should be noted that although senescence 
- defined as the loss of the ability of a cell to grow or divide - is associated 
with aging, it is not equivalent and can be dissociated from chronological age. 
Indeed, other factors such as irradiation can specifically induce senescence, 
even in chronologically young cells, thus reflecting biological aging.

The assessment of cellular bioenergetics, particularly mitochondrial 
content and functions, represents another domain of cellular aging measures. 
These indicators reflect the ability of cells to generate energy through oxygen-
dependent mechanisms (for a review, see [115]. Respiration can be measured 
in whole cells [42] where it mostly reflects cellular energy demand, or in 
permeabilized cells [116] and isolated mitochondria where the intrinsic function 
of the organelle can be directly assessed independent of cellular contributions 
[44]. A major limitation of functional measures on intact cells and mitochondria 
is that measurements must be performed rapidly after blood sampling (within 
minutes to hours), which limits throughput and increases technical variability 
between samples, requiring exceptional standardization of procedures.

Other approaches relying on lysates (homogenized cells or mitochondria) 
from frozen samples allow measurement of enzymatic activity (e.g., telomerase, 
mitochondrial respiratory chain complexes) for multiple samples at once or in 
large batches [40]. A ubiquitous limitation to all measures of biological activity 
(as opposed to inert molecules) is the degradation of cellular and enzymatic 
activities over time when samples are stored under suboptimal conditions. 
An important unknown in this field is the degree to which storage conditions, 
and especially the length of time a sample resides in a freezer, contributes to 
changes in assay results. This issue is worthy of applied investigation, since 
there is commonly a trade-off between freezing samples for shorter periods 
of time vs. freezing samples for longer periods of time to minimize inter-assay 
variability in assaying sequential frozen batches. In contrast to molecular 
analytes that are mostly or fully preserved at -80ºC, samples destined for 
functional measurements should be stored in liquid nitrogen (< -150ºC).
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Limitations of molecular measures
A large fraction of the most widely used biological age indicators are molecular 
in nature. They include DNA methylation (DNAm), metabolites, proteins, 
TL, mtDNAcn, circulating cell-free mtDNA (ccf-mtDNA), mtDNA damage, 
and others. One important consideration to all molecular measures is that 
inadequate handling of fresh samples can alter the concentration of various 
analytes, particularly metabolites. For example, whereas DNA markers are 
believed to be quite stable over minute to days, blood glucose concentration 
decreases within minutes when the blood is left at room temperature [117], 
owing to metabolic activities of white and red blood cells. The same must 
also apply to other metabolites that are detected by metabolomics. Gene 
expression assessed from messenger RNA transcript levels is also subject 
to rapid degradation and special care must be applied to blood destined to 
transcriptomic analyses [118]. These effects are minimized by rapid separation 
of the liquid and cellular components of whole blood by centrifugation 
immediately after blood draw, refrigeration (immediate storage of samples on 
wet ice, 4ºC), and subsequently freezing biological samples in a timely fashion.

Below we discuss specific molecular biological age indicators that have been 
subject of considerable research in relation to stress and psychopathology. 
Although exciting new findings from proteomic [69, 70] and metabolomic [71, 
72] signatures of aging are beginning to arise, they have not been examined in 
relation to psychological factors. In this section, we focus our discussion on 
DNAm, TL, and mtDNAcn.

DNA methylation and epigenetic age
To date, several epigenetic age estimators have been developed from e.g. 
whole blood [64, 119, 120], neonatal cord blood and blood spots [121], 
and skin and blood cells [122]. Many potential confounders may cause 
technical variation in DNAm studies, of which population stratification and 
genetic ancestry are major contributors [123–125]. Therefore, there is also 
reason to assume that genetic variation impacts epigenetic age estimates, 
particularly considering recent studies that report strong genetic links [126]. 
Other potential confounders include smoking [127], sex, and prenatal factors 
[128]. Technically, DNAm arrays can show large variations between individual 
arrays and batches, and methods have been designed to statistically correct 
for these prior to analyses [129, 130].

While the validity of different methylation-based predictors is questioned, 
applications of the original pan-tissue Horvath clock [63] have been successful 
across tissue types and proven accurate even in embryonic brain samples 
[131]. The latest developed skin and blood predictor seems to be even more 

robust across tissue types [122]. More recently, methods using as little as 
3-10 CpG sites from blood samples also accurately predict age [120, 132] and 
mortality risk scores [133].

Whether statistical adjustment for cell type composition should be uniformly 
applied to whole blood-derived DNA to achieve optimal age prediction is the 
subject of ongoing debate. Whereas it has been argued that the Horvath 
method incorporates the estimation of cell type composition from blood and 
may not require cell type adjustment, some have shown that intrinsic (without 
adjustment for cell type composition) and extrinsic (with adjustment for cell 
type composition) age estimates may have a different biological meaning [134]. 
Also important to mention here is that other DNAm-based indicators of aging 
have been developed that are trained on phenotypic markers of age (DNAm 
PhenoAge) rather than chronological age, leading to improved predicted risk 
of mortality [119]. Briefly, phenotypic age is a combination of chronological 
age and nine disease-related biomarkers selected based on their association 
with mortality. The sensitivity of epigenetic predictors to psychosocial stress 
and psychopathology remains a gap of knowledge.

Telomere length
Issues related to TL assessments have been presented elsewhere [53] and will 
not be discussed in detail here. In general, we will note that multiple different 
assays exist, which vary in their cost, required volume, applicability on frozen 
samples, and throughput. Technically, these are important considerations 
that impact the feasibility of clinical and epidemiological studies. Moreover, 
because of the relatively inexpensive and high-throughput capacity of qPCR-
based methods, TL has frequently been measured on total DNA extracted 
from cell mixtures, which can be derived from a variety of sources such as 
buccal swabs (which include both epithelial cells and leukocytes) and whole 
blood (which include a variety of leukocytes). For these measurements, and 
as for mtDNA measurements below, the limitations presented in Section 2.1 
are particularly important. 

mtDNA copy number and circulating cell-free mtDNA
Counting the number of mtDNA molecules per cell, or mtDNAcn, can indirectly 
provide an indication of the bioenergetic state of the cell. The mtDNAcn 
measurements are based on either qPCR (e.g., [135] or derived from whole 
exome or genome sequencing data (e.g., [136] where “counts” of both the 
mitochondrial and nuclear genomes are estimated. The ratio of mtDNA and 
nuclear DNA (nDNA) is then multiplied by 2 to account for the diploid nature of 
the nuclear genome and taken as mtDNAcn [137]. Here, given that cells with 
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different metabolic demand can differ by as much as an order of magnitude in 
their content of mtDNA, cell type differences may have a particularly profound 
effect on this measure. When applied to a homogenous cell population, 
mtDNAcn can provide valuable information. However, most reported studies 
with mtDNAcn have relied on whole blood DNA, which is confounded by cell 
type heterogeneity, and by the presence of platelets. Platelets do not have 
nDNA, but have mtDNA, which artificially inflates mtDNA copy number in 
whole blood preparations [138, 139]. In tissues with less heterogeneity than 
blood, such as skeletal muscle, some have observed no difference in mtDNAcn 
between young and old individuals [140]. The rate of decline in mtDNAcn per 
year also varies widely between studies, possibly as a result of differences in 
methodology and tissue source.

Similarly, measures of ccf-mtDNA are sensitive to cellular contamination 
and biological sample used. Serum (post-coagulation fraction of whole 
blood) may contain substantially more ccf-mtDNA than plasma (liquid fraction 
collected with an anticoagulant) [141]. Sufficient centrifugation speed and 
time are required to successfully eliminate cells, particularly platelets, that 
could artificially inflate serum or plasma ccf-mtDNA [142]. In studies where 
blood samples were not centrifuged at sufficient speeds, ccf-mtDNA levels are 
reportedly higher, making platelet contamination the most likely contributor to 
measured mtDNA levels and thus complicating interpretation of these results.

Associations among biological age indicators

While there is preliminary evidence for some cross-correlations among the 
different biological aging indicators, few have been examined in relation to 
other indicators. This highlights the need for examining multiple markers in 
an integrative study, as e.g. [143] recently showed low agreement between 
eleven quantifications of biological aging, with only modest associations to e.g. 
physical functioning and cognitive decline. Other studies suggest that TL is 
correlated to mtDNAcn [144], but the direction of stress and psychopathology 
effects with mtDNAcn or mitochondrial content (citrate synthase) and TL may 
vary [40, 42, 135, 136]. TL is not correlated with epigenetic age [58, 145, 146], 
although cell type composition adjustments may reveal a modest association 
[134]. Both epigenetic age and TL seem uncorrelated to brain age, and no 
associations were found between brain predicted age difference (brain-PAD) 
and epigenetic predicted age difference [39]. The correlations between the 
Hannum and Horvath clocks vary from relatively strong (r=0.76) to low (r=0.37) 
in independent studies [66, 143], and both clocks showed modest correlations 
(0.10-0.33) to the transcriptomic age indicator by [67]. The microRNA age 

indicator of [68] was modestly correlated to epigenetic age (r=0.3) and 
microRNA expression (r=0.2). Cross-correlations between metabolomic/
proteomic aging and other biological aging indicators remain to be explored.

Do psychological stress and psychopathology influence biological 
aging?

Nearly 15 years have elapsed since Epel and colleagues first described 
the association of psychosocial stress with short leukocyte telomeres in a 
sample of healthy premenopausal mothers of a chronically ill child and 
mothers of healthy children [147]. The association of shortened telomeres 
with stress exposure has since been replicated in a wide variety of studies, 
and this observation stimulated several related lines of research examining 
the relationship between various forms of stress exposure or perceived stress 
and TL across the lifespan. Several excellent qualitative reviews describe and 
critically review this literature [10, 148–151] and meta-analyses now quantify 
the magnitude of these associations and identify potential moderators of 
effects (e.g., [47, 152–156]. More recently, an appreciation of the role of 
mitochondria in the acute stress response and chronic allostatic load [115, 
157, 158] has led to investigations of the association of psychological states, 
stress exposure in relation to mitochondrial functions and mtDNA [40, 135, 
136, 159]. Rather than being a comprehensive review, this section provides a 
brief overview of this field, emphasizing recent developments.

What is (psychological) stress?

Broadly defined, “stress” is the condition of being subjected to a stimulus 
(i.e., stressor) that invokes a response requiring the use of resources to adapt 
or cope [148, 160]. “Stress” may refer to particular life events (e.g., job loss, 
death of a loved one, assault), contexts that are experienced as stressful or 
contain numerous stressors (e.g., poverty, neighborhood violence, famine) or 
the psychological or biological response to such an event or exposure (i.e., 
stress response, perceived stress) [161]. Characteristics of the stressor(s) and 
the stress response may be important determinants of the biological response 
or adaptation and account for heterogeneity in the literature on stress and 
aging. 

While some stressors occur in isolation, it is important to recognize 
that stress-inducing contexts, exposures, and perceptions of stress often 
covary, for example when families living in poverty experience neighborhood 
violence and feel unsafe. In addition, the level of perceived stress may vary 
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substantially within a group exposed to the same stressor. Determinants 
of psychological and biological stress responses include the nature of the 
stressor in terms of type, scope, severity, chronicity, and how predictable and 
controllable the stressor is. Individual and social characteristics influencing 
the level of perceived stress include social, financial, cognitive, emotional, and 
behavioral resources for coping with, controlling, avoiding, and compensating 
for stressors [161]. 

Stress and biological aging: Evidence for a stress-aging axis 
involving telomeres and mitochondria

The literature on the association of stressors and perceived stress on TL is 
now sufficiently large that a number of meta-analyses have been conducted 
on the topic. Meta-analyses of the association between TL and childhood 
psychosocial stressors document significant effects that vary from small to 
medium in size [152, 153, 162]. Moderator analyses suggest larger effects for 
studies that examine more severe exposures [152] and those that include wide 
range of adversity types [153]. In addition to cross-sectional investigations, a 
longitudinal study [163] found that exposure to violence over a 5-year period 
in childhood predicted greater TL attrition, suggesting the possibility of a 
causal relationship. The biological mechanisms whereby adverse or positive 
experiences exert their lasting health effects remain mostly unknown. Effects 
on the germline and stem cells reserves, metabolic reprogramming, and 
rewiring of neural networks and brain circuitry are among many areas that 
deserve further research.

Turning to stressors that occur in adulthood, a significant association 
between perceived stress and shorter TL has been documented in meta-
analyses, though this effect ranged from very small [156] to modest [164] 
in size. Several studies have also shown associations of shorter TL with 
measures of severe or cumulative stress exposure in adulthood (for reviews 
see [10, 149, 165]). Although some studies suggest that childhood adversity 
may account for associations between TL and adult stressors [166, 167], there 
is also evidence that stressors experienced in adulthood prospectively predict 
telomere attrition [168, 169].

Given the growing literature demonstrating the central role that mitochondria 
play in the stress response and the aging process, recent studies have examined 
the association of early life stress with measures of mitochondrial function 
or mtDNAcn. Although mtDNAcn is not a measure of mitochondrial function 
and is impossible to interpret on its own, it is easily measured from stored 
DNA and has been measured in different studies. For example, childhood 

trauma or adversity, as well as adult psychopathology have been linked to 
higher mtDNAcn [135, 136]. In a small study of postpartum women, early life 
adversity was associated with greater cellular respiration reflecting increased 
cellular energy demand, which in turn was positively correlated with levels of 
pro-inflammatory cytokines and childhood maltreatment [159]. In a study of 
caregiving stress, caregivers were found to have reductions in a functional 
index of mitochondrial health (MHI) in blood leukocytes. Mitochondrial health 
was operationalized as a multivariate index designed to reflect functional 
capacity on a “per mitochondrion” basis. In this first study of MHI in mixed 
human leukocytes, the index included biochemical enzymatic activities for 
three mitochondrial enzymes and mtDNAcn. Using this composite index as 
an outcome, this study found that positive mood was associated with higher 
MHI and was a mediator of the association between caregiving and MHI [40]. 
Another study found that suicide attempters have significantly higher plasma 
levels of ccf-mtDNA [80] and another study found elevated ccf-mtDNA levels 
in individuals with major depressive disorder (MDD) [81].

A limitation of this body of research is that certain behavioral, psychiatric 
and medical conditions frequently co-occur with stress exposures and covary 
with TL and other biological processes central to aging, and thus may have 
confounding effects. These include smoking, obesity, dietary influences, 
anxiety, depressed mood, post-traumatic stress disorder (PTSD), medications, 
and cardiometabolic conditions, among others. These influences are not 
uniformly assessed, excluded, or statistically controlled. A meta-analysis on the 
association of early adversity and TL identified that the magnitude of the effect 
was smaller in studies that included participants with medical or psychiatric 
conditions, and participants on medications [153]. This finding suggests that 
the relationship between these conditions and shortened telomeres might 
obscure the effect of stress exposure, or, alternatively, that the psychiatric 
and medical conditions may be primarily responsible for some of the telomere 
effect [10]. Thus, the complex inter-relationships among these exposures, 
behavioral factors, and health conditions should be carefully considered when 
designing studies and analyzing and interpreting results.

Psychopathology and biological aging

Psychiatric disorders are associated with increased risk of aging-related medical 
conditions, including cardiovascular disease, stroke, dementia, diabetes, and 
obesity [7, 170], and early mortality [11]. While part of the association may 
be explained by differences in health behaviors, because individuals with 
psychiatric disorders are more likely to smoke, drink alcohol, eat poorly, and 
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exercise less than others [171], associations between psychiatric disorder 
status and medical morbidity remain significant after adjusting for these factors. 
This has led to the hypothesis that psychiatric conditions may induce or result 
from accelerated or premature biological aging. As reviewed in this review, 
there are multiple biological age indicators, including a range of cellular and 
molecular measures such as TL, mitochondrial dysfunction, oxidative stress, 
gene expression, and others [15]. Notably, inflammation is also a widely-used 
indicator of biological aging [172], coined as “inflammaging” by [21]. However, 
because of its elaborate discussion elsewhere [173], as well as in respect to 
mental health [174], we do not discuss it here. Overall, the following section will 
review the most frequently studied biological age indicators in epidemiological 
psychiatric research, including TL, epigenetic age, brain age, and to a lesser 
extent pro-inflammatory cytokines.

Associations of psychiatric disorders and biological age indicators
Simon and colleagues [175] were the first to report a relationship between 
psychiatric disorders and shorter telomeres in a sample that included MDD, 
bipolar disorder (BD) and anxiety disorder patients. Since then, a large number 
of studies have been conducted in an assortment of psychiatric disorders. MDD 
is among the most frequently studied disorders in this context, possibly as a 
consequence of its relatively well-documented associations with dysregulated 
physical health [7]. Several meta-analyses, the largest one containing >34,000 
subjects from 38 studies, summarized the results and provided consistent 
evidence of an inverse association between TL and depression, generally 
with small to medium effect sizes [47, 155, 176]. Similar meta-analytic results 
were found for anxiety disorders (N>19,000) [48], and PTSD (N>3,800) [50]. 
BD, schizophrenia and other psychotic disorders have been less extensively 
examined. A meta-analysis including 1,100 subjects from 7 studies found no 
difference in TL between BD cases and controls [177]. Two meta-analyses on 
schizophrenia of 1,200 and 1,600 subjects, respectively, found small effects 
for TL differences [49, 178].

The epigenetic age indicator is most frequently examined in individuals 
with PTSD. A meta-analysis using data from 9 cohorts (combined N=2,186) 
found significant, albeit small, associations of greater epigenetic age with 
traumatic stress, but not with PTSD diagnosis [55]. Other studies also found 
such relations using the Horvath predictor [56, 179, 180], consistent with 
enrichment for glucocorticoid response elements [56]. Two recent studies for 
the first time showed “older” epigenetic age in MDD patients versus controls 
[58, 59], while this is not seen in schizophrenia [181, 182].

Furthermore, chronic, low-grade inflammation that increases on average 
with age is captured in the term “inflammaging” - a pro-inflammatory state 
proposed to contribute to the pathogenesis of age-related diseases [183]. An 
increase in the inflammatory response, together with microglial activation, in 
turn, can contribute to psychiatric diseases, such as MDD, schizophrenia, BD, 
and autism [184–186]. The mechanisms responsible for increased inflammation 
in mood disorders remains poorly understood. Recent evidence suggests that 
ccf-mtDNA could contribute to this pro-inflammatory state, although evidence 
is mixed [80, 81, 187]. Related to the bacterial origin of mitochondria, the 
mtDNA is immunogenic. Released mtDNA molecules thereby act as damage 
associated molecular patterns (DAMPs) recognized by toll-like receptors on 
immune cells and trigger immune cell activation [188]. Inflammaging could in 
part be due to increased ccf-mtDNA in older individuals [83].

Increased plasma levels of ccf-mtDNA have been reported in suicidal and 
depressed patients [80]. Worse response to an antidepressant was associated 
with increasing ccf-mtDNA levels over the treatment course, and ccf-mtDNA 
was correlated with antioxidant enzyme glutathione peroxidase, possibly 
as a result of a compensatory response to cellular oxidative stress [81]. An 
experimental study using psychological stress induction in healthy middle-
aged individuals also demonstrated that an acute bout of psychological 
stress may be sufficient to elicit a 2-3 fold increase in serum ccf-mtDNA 
within 30 minutes, suggesting that ccf-mtDNA is dynamically regulated [189]. 
Consistent with previous findings linking ccf-mtDNA levels to cortisol levels 
following a dexamethasone suppression test [80], glucocorticoid stimulation 
of human cells (fibroblasts) induced the release of mtDNA by mitochondria 
within minutes [189]. Thus, the causes of elevated ccf-mtDNA in certain 
psychiatric conditions remain unknown, although clinical and cellular studies 
suggest that canonical neuroendocrine stress mediators, including but not 
limited to glucocorticoids, may be implicated.

In addition, associations have been reported between “older” brain 
age and psychiatric disorders such as borderline personality disorder [36], 
schizophrenia [33, 35, 36], and first-episode psychosis [34], as compared to 
younger in BD [36]. One relatively small study by [35] showed a higher brain-
PAD of +4.0 years in MDD (N=104). However, a preliminary study by [190] 
finds increased brain age in schizophrenia (Cohen’s d=0.55) and BD (d=0.30), 
but not MDD (N=211, d=0.10). In addition, these authors suggest that the 
brain age gap is a genetically modulated trait that is heritable and overlaps 
with polygenic architecture observed in common brain disorders. There is 
also preliminary evidence of an association between psychiatric pathology 
and glycomic-based biological age indicators, which represent sugar-based 
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modifications of proteins, RNA, and DNA molecules. Two studies have 
shown altered protein N-glycosylation profiles in female patients with MDD 
[73] and in PTSD [75], indicative of advanced aging at the glycomic level. 
Associations with other omics-based indicators (transcriptomics, proteomics, 
metabolomics) and their interrelation remain to be explored.

Biological aging and psychopathology: The chicken or the egg?
While robust cross-sectional associations between psychiatric disorders and 
biological aging have been documented - at least for TL - the nature and 
direction of these associations remain unclear. Longitudinal studies have found 
mixed effects (see, e.g. [179, 191–194]. It is currently unknown whether 1) 
psychopathology-associated physiological disturbances accelerate biological 
aging, 2) premature biological aging antedates and is a vulnerability factor that 
causes psychopathology, or alternatively, 3) psychopathology and biological 
aging processes share underlying etiological roots, such as shared genetic 
risks, and happen to be correlated without a causal link between them. Recent 
studies using genomic and causal inference tools are being developed to 
overcome this limitation of observational studies [195]. This challenge, among 
others, as well as recommendations to move the field towards a predictive 
science are discussed in details in Section 5.

Clinical implications

Disorder-specific or transdiagnostic phenomenon?

In a large meta-analysis considering multiple psychiatric disorders and TL, 
including depressive and anxiety disorders, PTSD, bipolar and psychotic 
disorder, no difference in effect sizes between disorders was found [176]. This 
indicates that different DSM-based diagnoses may not be associated with 
meaningful differences in biological aging [9]. Furthermore, several studies 
showed that short TL is associated with the same physiological dysregulations 
that are found in some but not all persons with psychiatric disorders. These 
include increased inflammation, oxidative stress markers, dysregulated HPA-
axis, and metabolic dysregulations [196–199]. While the degree to which 
telomeres are causally related to these mechanisms is unknown, this is 
suggestive of pathways through which telomere shortening and psychiatric 
disorders are interrelated, that are not limited to one diagnostic category. 
The current evidence suggests that short TL may be a non-specific biological 
marker for conditions in which people experience chronic psychological or 
physiological stress, rather than being a marker of a specific psychiatric 

condition. Similarly, the downstream biological ramifications of different 
disorders also overlap, with alterations at the organs and systems level (e.g. 
brain aging patterns, [20]. This evidence leaves us to consider that these 
indicators are not disease-specific nor suitable as diagnostic tools, but rather 
general indicators of psychopathology or abnormal mental states.

Biological age indicators as predictors of treatment outcome

Only a small number of studies have investigated whether biological aging 
indicators predict antidepressant treatment response. The first study 
suggesting such a link showed in a small sample of previously unmedicated 
MDD subjects that low baseline telomerase activity, and a greater increase 
in telomerase activity during eight weeks of selective serotonin reuptake 
inhibitors (SSRI) treatment were associated to superior clinical outcome [200]. 
However, this study lacked a control condition, leaving open the possibility 
that naturally different clinical trajectories contributed to these effects. 
Nevertheless, these findings suggested that depressed patients with relatively 
low baseline telomerase activity may most benefit from therapies that may 
secondarily induce telomerase activation, and that telomerase activation 
may represent a mechanism of antidepressant action, consistent with several 
animal studies (reviewed in [201].

Subsequently, one human study found that shorter leukocyte TL predicted 
worse antidepressant response to an SSRI [202]. To the extent that accelerated 
biological aging is associated with antidepressant response, this effect does 
not seem likely to be confined to a specific treatment modality or drug. Shorter 
TL may also predict worse antidepressant response to pioglitazone, which 
also has antidiabetic effects [203]. Turning to other disorders, in a group of 
bipolar and schizophrenia/psychosis patients, lithium non-responders had 
shorter telomeres than responders [204], and similar associations were found 
linking short TL to poor treatment response [205, 206]. No studies have 
investigated the association between TL and response to psychotherapy 
(e.g., cognitive behavioral therapy), although preliminary evidence suggests 
a positive correlation between mindfulness/meditation practices and telomere 
biology, including increased telomerase activity [154, 207]. Furthermore, an 
increased inflammatory response may hamper the responsiveness to mood 
disorder treatments, and higher baseline inflammation may lead to treatment 
resistance [186, 208]. Changes in ccf-mtDNA levels were also found to be 
associated with SSRI treatment response, with the non-responders showing 
an increase in ccf-mtDNA and responders not changing [81]. A shared genetic 
disposition for inflammation, psychopathology, and treatment responsiveness 
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has also been suggested [209]. Furthermore, inflammatory indicators may 
potentially offer personalized antidepressant recommendations, and could 
eventually guide the development of novel antidepressant treatments [210]. 
Overall, the link between biological age and treatment responsiveness is a 
young field requiring further research.

Can biological aging be reversed with treatment?

One of the most relevant clinical questions in the field of biological aging and 
psychiatry is whether accelerated biological aging is a permanent imprint or 
a reversible process. While this may differ between indicators of biological 
aging, reversibility is at least possible to some extent for some indicators. 
For TL, the main mechanism of restoration is likely telomerase activation. 
Animal and in-vitro research provided evidence that telomerase-associated 
recovery of TL is to some extent possible [211, 212]. Several intervention 
studies have attempted to influence TL in humans (see [8] for an overview). For 
example, recent small controlled studies have shown elongation of telomeres 
in response to highly controlled aerobic exercise verified with actigraphy [213], 
losing and maintaining a weight loss of 10% or greater [214], and meditation-
based interventions [207]. As mentioned above, for the field of psychiatry 
telomerase activation may be a mechanism of antidepressant action. 
Although no strong conclusions can be drawn due to a lack of well-powered 
clinical studies, there are several potential mechanisms by which psychiatric 
medications might modulate telomerase activity or TERT expression, including 
via increased brain-derived neurotrophic factor (BDNF) expression [201]. 
Increased telomerase activity may, in turn, induce clinical effects by promoting 
cellular survival and/or functioning. It should however be noted that increased 
telomerase activity can prevent cell senescence, an anti-cancer mechanism, 
and thus excessive telomerase activity is also associated with increased risk 
of cancer. Thus, while telomerase activation may hold the promise of reducing 
risk of aging-related disease, the risk of less common but very serious cancer 
outcomes must be carefully weighed [215].

Cross-sectional studies show that certain behaviors may provide some 
protection against brain aging. Higher physical activity levels are associated 
with lower brain age [216], and “younger brains” are seen in those that learn 
to play an instrument [217] and those who have practiced meditation for long 
periods [105]. It remains to be elucidated whether brain age is responsive to 
intervention, but a randomized controlled trial (RCT) showed that ibuprofen 
temporarily reduced brain-PAD by 1.1 years in healthy individuals, likely due to 
its acute anti-inflammatory effects [218]. Physical activity may slow age-related 
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DNAm changes in humans [219, 220]. Longitudinal data shows that increasing 
BMI is associated with increasing epigenetic age [221], but in another report, 
epigenetic age from the liver was not “decelerated” after successful weight 
loss over a 9-month period through bariatric surgery [222]. [221] also found 
that consumption of fish, fruits, and vegetables, as well as effects of moderate 
alcohol, education, and income and exercise induced anti-aging effects based 
on epigenetic age (Hannum clock). However, these findings are cross-sectional 
observations rather than longitudinal effects from RCTs. Nonetheless, a recent 
RCT suggests that vitamin D supplementation may decrease epigenetic aging 
based on the Horvath, but not Hannum epigenetic clock [223].

More controlled intervention studies are needed to determine whether 
biological aging indicators are truly modifiable in response to exercise, 
nutritional and/or pharmacological interventions. A common problem to 
observational studies is that behaviors tend to correlate, making it difficult to 
evaluate the specific influence of a given intervention or behavior in isolation. 
Individuals who exercise more tend to practice meditation more frequently, 
eat more plant-based and vegetarian diets, consume less illicit substances, 
etc. An additional problem with observational studies is that it is impossible 
to establish the direction of effects; while exercise may attenuate indicators 
of aging, biologically younger individuals may be more able and inclined to 
exercise.

Key challenges and priorities for future research

There are key challenges to accurately measure and interpret biological age 
indicators and to further our understanding of stress and biological aging. A 
partial list of six major challenges related to priority areas for the field, as well 
as recommendations to overcome them is presented in this section. We also 
summarize essential steps and propose a minimum standard for the design, 
collection, processing, analysis, and reporting of data involving biological age 
indicators (Figure 4).

Challenge 1. Correlation is not causation. It is hazardous to infer causality 
from cross-sectional correlational data [224]. For example, in the case of TL, 
it is possible that telomere shortening reflects states of stress, or responds 
to somatic or psychiatric illness, or at least to biochemical abnormalities 
associated with these states. It is also possible, however, that telomere 
shortening precedes somatic or psychiatric illness [225] or even underlies 
biological changes that causes these conditions. Biological age indicators could 
be entirely independent from directly assessing biological age mechanisms Fi
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that drive the aging process. Changes in biological age indicators could be 
the “canary in the coal mine” [226], representing factors associated with aging 
rather than aging itself.

Recommendation 1: Collect data longitudinally, consider experimentation, and 
choose prediction over explanation. This is a three-part recommendation. First, 
future studies should include longitudinal designs to increase the reliability 
and accuracy of measuring aging [227]. Longitudinal measurements will also 
be important in determining which variables are critical for the maintenance 
of successful aging throughout the lifespan (e.g. absolute levels, change, 
variability), the “recipe” of which may vary between individuals [228]. Moreover, 
it will be critical to determine the optimal intervals of time between repeated 
assessments that are needed to detect meaningful changes in specific 
biological age indicators (see Figure 3). This information about the timing and 
spacing of repeated measures, and real-life constraints, should then be used 
to inform the design and choice of outcome measures when evaluating the 
effectiveness of interventions aiming to influence biological aging.

Second, experimental approaches utilizing cellular (or animal) models allow 
the direct manipulation of a specific (set of) variable(s). Thus, if we assume that 
a given stressor or predictor can be modeled accurately in vitro, experimental 
designs can provide direct causal evidence that a given factor is necessary 
and sufficient to produce a given outcome of interest. For this approach to 
empirically support a biological interaction between stressors and biological 
aging, the biological age indicator also needs to be detectable and meaningful 
in vitro, such as epigenetic age (e.g., [122]. In cases where experimental 
demonstration is not possible, statistical methods such as causal inference 
[229] and genomic methods including Mendelian randomization [195, 230] can 
substantially reinforce our confidence regarding the direction of effects.

Third, in some cases, the number of predictors one wishes to consider is very 
large, either because there is no prior knowledge of their relative importance, 
or because the problem is truly complex – such as human biological aging. In 
such cases, the number of predictors can be large relative to the number of 
individuals, providing insufficient power for traditional inference-based statistics. 
In such cases, machine learning-based predictive modeling may be advisable 
to discover and validate predictive relationships between variables. Whereas 
statistics draw population inferences from a sample, machine learning finds 
generalizable predictive patterns [231]. Using predictive modeling approaches 
that identify and validate combinations of predictors in relation to a particular 

health outcome can increase the likelihood that the identified predictors of 
biological age are robust, specific, and generalizable. An excellent article on 
the value of prediction over explanation in the psychological sciences is [232]. 
Regardless of the analytical approach taken, we should emphasize the value 
of converging evidence collected using different methods, measuring multiple 
(related and unrelated) predictors in parallel, and assessing multiple outcomes 
[233].

Challenge 2. Single biological age indicators are not correlated and 
may be better integrated. Not all measurements of biological aging are 
equally useful or inter-related, and it remains to be elucidated if and how 
different indicators relate to one another and which biological determinants 
are consistent across measures. As previously noted [3], no single biological 
age indicator can currently fully capture the complexity of the aging process, 
nor predict future health outcomes or lifespan with sufficient accuracy. There 
is therefore a need for combined indices that logically integrate multiple 
indicators (Figure 5), hopefully resulting in accurate integrative panels 
that outperform single measurements of biological aging, also previously 
suggested by [2]. Nevertheless, integration of indicators cannot compensate 
for inadequately powered studies, which require large sample sizes to ensure 
high generalizability.

Recommendation 2: Combine machine learning and other artificial 
intelligence techniques to create composite indices and panels of biological 
age indicators relevant to mental health. To date, several efforts to develop 
combined indices have been presented. For example, [145] showed an 
additive effect of combining TL and epigenetic age in explaining the proportion 
of age variance of their model. Similarly, [39] explained significantly more 
variance in the prediction of mortality by combining brain-PAD and the 
Horvath epigenetic predicted age difference, than either indicator alone. 
Other examples include multivariate indicators of aging incorporating 
multiple physiological and functional measures [234] and indices integrating 
multiple enzymatic and molecular measures of mitochondrial content and 
function in blood leukocytes as the MHI in association to psychological 
states (i.e., positive mood) [40]. These constitute early attempts to reverse 
our reductionist inclinations and to move towards integrative metrics that 
will hopefully lead to improved prediction.
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Challenge 3. Biological aging may be tissue- and cell-type specific. 
Related to the above, biological age indicators derived from specific cell or 
tissue types may not generalize to other cells or tissues. Biomarkers assessed 
in blood, for example, represents the average of multiple heterogeneous 
cell types. But cellular or organismal health may be more closely related 
to or reflected by indicators within individual cell types or those with the 
most extreme values (e.g., Flow-FISH, [53]. Furthermore, TL differs across 
leukocyte cell types, such as naïve vs mature T cells [235, 236], and differs in 
different regions of the brain [92]. Moreover, TL of particular cell types can be 
differentially vulnerable to attrition or affected by stress-related pathology [95].

Recommendation 3: Purify cell types using established molecular markers. 
Purification of cell types can be accomplished by a variety of methods (flow 
cytometry, magnetic-activated cell sorting), yielding living cells amenable to 
downstream molecular and cellular analyses [96]. Under certain conditions 
where it is not possible to isolate specific cell subtypes, it may be difficult to 
interpret certain indicators that exhibit large cell type-specific values (such as 
mtDNAcn in blood). In some limited cases where a lot of information is available 
for adjustment, such as for DNAm measured on bead chips (100,000’s of data 
points), it is possible to use statistical approaches, i.e. reference-based [237] 
or reference-free [238], to infer underlying cell type proportions [239] and 
adjust results accordingly. Another interesting application is demonstrated 
in a preliminary study by [240] that uses deconvolution approaches to show 
novel MDD-methylation associations in individual sub-populations of neurons/
glia from bulk brain, as well as in granulocytes/T-cells/B-cells/monocytes 
from bulk blood data. In addition, creative ways to harvest other cell types 
from tissues other than blood could yield increasingly meaningful biological 
age indicators. For example, the DNAm-based skin & blood clock by [122] 
is robust across tissues (e.g. fibroblasts, buccal, endothelial, saliva samples) 
and can, therefore, be applied to many organs, as well as ex vivo. Thus, this 
approach provides extended information on synchronized biological aging, 
independent of sampling source.
 
Challenge 4. Within-group variance may be larger than between-group 
variance. Although group differences in biological age indicators have 
been reported in several psychiatric illnesses [9, 176], these reflect average 
group differences. However, there is often considerable within-groups 
variability and considerable overlap between groups, making it very difficult 
to use most biological age indicators as diagnostic aids. In addition, even 
specific psychopathological diagnoses (e.g., MDD or schizophrenia) often 

include individuals that vary widely in their symptoms and presentation, 
making the search for predictors of mental illnesses defined diagnostically 
somewhat elusive [241]. As [242] suggest, the complex, highly polygenic and 
multifaceted causes of severe mental disorders may only be fully understood 
by mapping patients’ individual signatures, rather than studying the average 
patient. Population-based normal ranges have yet to be reliably determined, 
so biological age indicators may be more useful in detecting within-subject 
changes over time rather than in comparing individuals or in establishing 
actuarial norms. Nonetheless, a recent study utilizing flow-FISH assay 
techniques reported reproducible and definable upper and lower normal 
boundaries for TL in a hospital population [243], indicating that standardization 
of these measures may be achievable. Within-group variance is often due to 
measurable individual differences in behavior, health condition, and lifestyle.

Recommendation 4: Visualize your data, carefully assess known influences, 
move beyond group-based analyses, and use within-person modeling 
approaches. To visualize data where there are multiple measures over time 
per individual, we advocate for spaghetti plots (example with epigenetic age 
and TL can be found in [145], and with cortisol trajectories in [244]. Standard 
measures of variance can also be used to model population variability at different 
timepoints and to compare sub-groups, and more sophisticated mathematical 
approaches can be useful to generate individualized phenotypes [245]. Data 
reduction approaches such as principal component analysis (PCA), partial 
least square discriminant analysis (PLS-DA), and t-distributed stochastic 
neighbor embedding (t-SNE) are also useful to visualize high-dimensional 
data in two or three dimensions and to assess whether subsets of individuals 
in the sample naturally cluster together [246, 247]. This kind of approach can 
provide evidence of shared phenotypes or trajectories that would otherwise 
remain undetectable by standard uni- or multivariate analyses. Other statistical 
approaches to identify different subgroups exhibiting different trajectories in 
biological aging or in clinical course include growth mixture modeling [244], 
and random coefficients linear regression models to examine within-person 
changes over time [248].

 
Challenge 5. Large sample sizes are needed to detect small effect 
sizes. Related to the point above, group differences between individuals 
with certain psychiatric illnesses vs. healthy individuals, even if statistically 
significant, often have small effect sizes that require large sample sizes to be 
demonstrated [58, 59, 176, 249]. Similarly, even using predictive modeling 
and machine learning approaches, small samples sizes are more susceptible 
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to overfitting [232]. It would be informative to pool databases across studies 
and to check for consistency and predictive accuracy across studies, albeit 
at the cost of increasing heterogeneity of the samples studied and of the 
laboratory methods used. [250] argue that larger sample sizes will have 
more generalization power. This is important for creating robust “canonical” 
publicly available prediction models (e.g. Horvath’s epigenetic clock) that can 
be readily applied to smaller studies that cannot permit partitioning their data 
into a training and validation set.

Recommendation 5: Collaborate and harmonize data collection and analysis 
protocols to facilitate data pooling worldwide. Certain types of data may be 
available through crowdsourcing, a data collection process with remarkable 
scalability that may enable identification of robust small effect size effects 
[251]. Large-scale collaborative initiatives like the Enhancing NeuroImaging 
Genetics through Meta-Analysis consortium (ENIGMA) for imaging and 
genetics data may be useful examples [252]. When not possible to replicate 
findings on sufficiently large independent datasets, use cross-validation 
methods to avoid overfitting [232].

Challenge 6. Non-uniform laboratory assays and storage conditions. 
Different assay methodologies can yield relatively different results (e.g. qPCR 
vs. Southern blot for TL assessment, [52], and most assays such as Flow-
FISH assays and qPCR ascertain relative TL rather than absolute length. 
These issues have been discussed in detail elsewhere [53], and the relative 
merits of the different assays have been compared. A more mundane but 
important and under-appreciated caveat is that methodological differences 
can yield spurious results (e.g., length of time a specimen was kept in a 
freezer, freezer temperature, whether whole blood or intact cells vs. cellular 
lysate were frozen, specific batch of reagents used, assay technique, method 
of DNA extraction [for TL] [253–255]. An important issue that has not yet been 
experimentally assessed in multi-year human studies is the relative merit of 
assaying batches of samples at short intervals (e.g., every year) to minimize 
freezer time, compared to keeping all samples frozen until the end of the entire 
multi-year study so that all samples can be assayed simultaneously using 
identical procedures and reagents.

Recommendation 6: Harmonize measurements and storage conditions - 
colder is better. Follow guidelines, where available, to ensure that samples 
are collected and measured with the highest standards. Efforts are currently 
underway to systematically compare methods available to measure TL and 

will hopefully produce specific guidelines that can be implemented at a large 
scale. Figure 4 summarizes some measures that can be considered in the 
design, collection, pre-processing, analysis, and reporting of data to give 
researchers the ability to critically evaluate published results and hopefully 
harmonize methods and datasets.

Summary

Much progress has been made in the last decade towards developing objective 
biological age indicators but several key challenges and opportunities remain. 
Multiple new indicators spanning physiological and functional capacity, 
brain function and structure, and cellular and molecular levels of analysis 
have recently emerged, particularly under the force of ‘omics’ technologies. 
Most indicators show good to excellent correlations with chronological age, 
and some have the ability to predict age-related outcomes such as mortality 
with moderate accuracy (see Table 1). However, some have not yet been 
prospectively studied in large cohorts so their predictive power in relation to 
health outcomes remains unknown. In fact, many proposed biological age 
indicators still require replication and validation in larger independent datasets. 
As a whole, the development of multi-systemic biological age indicators has 
demonstrated that aging occurs not at a single level in a specific cell type, but 
rather manifests somewhat differently in various organs and tissues, cell types, 
and across a number of levels (see Figure 1). Rapidly developing methods 
show that biological age indicators gain in precision and prediction accuracy by 
leveraging biologically-informed approaches to integrate individual indicators 
into more powerful indices and panels of measures.
 In relation to psychological stress and mental health, much work also remains 
to establish to what extent and how psychological states influence the aging 
process. Equally important to mapping these psycho-biological processes 
is to understand the “reverse” causal link whereby accelerated biological 
aging may impact physiological vulnerability and resilience to life stressors 
and psychopathology. A shared objective for our field is to disentangle these 
associations and identify the causal pathways that drive aging and mental health 
trajectories. To do so, we need to address number of key challenges that, if 
adequately met, will yield exciting opportunities to advance our understanding 
of human health.
 To achieve this objective, it will also be essential for clinicians, psychologists, 
epidemiologists, and behavioral scientists to enter in a dialogue with 
experimental biologists. Such dialogue immediately opens new questions that 
would not otherwise arise within the silos of individual disciplines, departments, 
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and laboratories. For example, the joining of ideas around psychosocial stress 
and cellular aging [147], age-related elevation in circulating DNA [256], and 
of psychoneuroimmunology and the pro-inflammatory effects of psychological 
stress [257] has led to the idea that acute psychological stress may rapidly 
trigger immunogenic mtDNA release into the circulation [189]. If met with 
sufficient enthusiasm and resources, these jointly-created interdisciplinary 
questions can subsequently push the development of new laboratory methods, 
statistical and analytical tools, and new theoretical models. The interdisciplinary 
field of human psychobiology is replete with opportunities for innovation and 
discoveries.
 Overall, we believe that developing, validating, and studying predictive 
biological age indicators – and defining how psychological states or psychiatric 
illnesses influence them – will fill important knowledge gaps linking stress and 
mental illness to aging. Achieving this goal will have at least three main positive 
consequences for the biomedical sciences generally. First, it will enable the 
stratification of individuals (and group of individuals) based on their current 
health state and future disease risk, including symptoms, disorders. This notion 
converges with the precision medicine agenda that aims to identify individualized 
predictors of future mental health and disease states [258]. Achieving this goal 
could benefit clinical practice by providing clear and objective guidelines to 
direct health-promoting interventions and treatment delivery in a personalized 
way, specifically one that is most aligned with the individual’s needs [259]. 
Second, achieving this goal will provide objective and sensitive methods to 
evaluate the effectiveness of health-promoting interventions. The efficacy of 
interventions aimed at decreasing or even reversing advanced or premature 
aging, as well as interventions aimed at enhancing well-being and other health 
outcomes would be more effectively assessed using precise and sensitive 
biological age indicators. Finally, mapping stress-sensitive biological age 
indicators will also generate knowledge about human aging that can be taken 
back to the laboratory bench to orient basic biological science. Specifically, 
understanding the basis of normal and abnormal aging processes may identify 
new physiological targets for therapeutic intervention. Thus, an unintended 
consequence of improving existing biological age indicators and developing 
new end points for clinical and epidemiological human research may, in the end, 
create leaps in understanding about the fundamental biological mechanisms 
that explain why we age in the first place.
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ABSTRACT

Major Depressive Disorder (MDD) is associated with increased risk of mortality 
and aging-related diseases. Here, it was examined whether MDD is associated 
with higher epigenetic aging (EA) in blood as measured by DNA methylation 
(DNAm) patterns, whether clinical characteristics of MDD further impact 
these patterns, and whether findings replicate in brain tissue. DNAmAge was 
estimated using all methylation sites in blood of 811 depressed patients and 
319 controls from the Netherlands Study of Depression and Anxiety. The 
residuals of the DNAmAge estimates regressed on chronological age were 
calculated to indicate epigenetic aging (EA). MDD diagnosis and clinical 
characteristics were assessed with questionnaires and psychiatric interviews. 
Analyses were adjusted for socio demographics, lifestyle, and health status. 
Post-mortem brain samples of 74 depressed patients and 64 controls were 
used for replication. Pathway enrichment analysis was conducted using 
ConsensusPathDB to gain insight into the biological processes underlying 
EA in blood and brain. Higher EA was observed in MDD patients compared 
to controls (P=0.008; Cohen’s d=0.18), with a dose-effect with increasing 
symptom severity in the overall sample (P=0.001). Within MDD patients, EA 
was positively associated with childhood trauma scores (P=0.02). The case-
control difference was replicated in an independent dataset of post-mortem 
brain samples (P=0.03). Top significantly enriched Gene Ontology terms 
included neuronal processes. As compared to controls, MDD patients show 
higher epigenetic aging in blood and brain tissue, suggesting that they are 
biologically older than their corresponding chronological age. This effect was 
even more profound in the presence of childhood trauma.

INTRODUCTION

A growing body of literature suggests that Major Depressive Disorder (MDD) is 
associated with increased risk of mortality and aging-related phenotypes and 
diseases, including cardiovascular disease, diabetes, obesity [1], cancer [2], 
cognitive impairment [3], and frailty [4]. Given the associated negative impact 
on the patient’s quality of life and health care costs [5], it is of interest to 
investigate if MDD patients are prone to accelerated aging.  

Current literature provides evidence for advanced biological aging in MDD 
as indicated by shorter telomere length [6, 7] and advanced brain aging [8]. 
Recently, alternative markers of biological age derived from DNA methylation 
have been developed (also known as “epigenetic clocks”). Chronological age 
can be accurately predicted from methylation data and yields estimates of 
DNA methylation age (DNAmAge) [9, 10]. Further, DNAmAge can be studied 
as either “decelerated” or “accelerated” by regressing it on chronological age 
to get a measure of epigenetic aging (EA). Thus, this measure is a promising 
candidate for reliably investigating accelerated or premature aging in MDD.

Previous studies have shown EA in Down syndrome [11], HIV-positive 
patients [12], and obesity [13]. In addition, EA has been associated with 
poorer physical and cognitive fitness [14], increased smoking and alcohol 
use [15], cancer [16], Alzheimer disease [17], cardiovascular disease [16], and 
increased risk of mortality [18]. A few studies have investigated DNAmAge in 
relation to schizophrenia [19, 20], life stress [21], and post-traumatic stress 
disorder [22, 23], with mixed findings. However, studies examining epigenetic 
aging in relation to MDD are currently lacking. 

In this study, we examined whether MDD is associated with higher EA 
in blood, using a large clinically well-phenotyped sample to further explore 
associations with clinical characteristics. Moreover, we aimed to replicate 
findings in post-mortem brain tissue. To examine these aims, we used a 
sequencing based approach [24, 25] that yields almost complete coverage of 
the CpG methylome which allowed us to obtain the most accurate DNAmAge 
estimates for our sample and to better explore the biological processes 
underlying epigenetic aging.
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METHODS 

The Netherlands Study of Depression and Anxiety

Participants were from the Netherlands Study of Depression and Anxiety 
(NESDA), an ongoing longitudinal, multi-center, cohort study designed to 
investigate the long-term course and consequences of depression and 
anxiety disorders [26]. Its 2981 participants (18-65 years) include patients 
with a current or lifetime diagnosis of depression and/or anxiety disorder and 
controls (without any lifetime depressive disorder and/or anxiety disorder). 
Participants were recruited from the general population, general practices, and 
mental health organizations in order to reflect various settings and the entire 
range of psychopathology. Presence of MDD was ascertained with the DSM-
IV based Composite International Diagnostic Interview (CIDI version 2.1 [27]) 
assessed by trained research staff. Exclusion criteria were: a) clinically overt 
primary diagnosis of other psychiatric conditions, e.g. psychotic, obsessive 
compulsive, bipolar, or severe substance use disorder, and b) not being fluent 
in Dutch. The study was approved by the ethical committee of all participating 
centers, and participants provided written informed consent.

A total sample of N=1130 participants were selected that were divided 
into control (no lifetime psychiatric disorders and low depressive symptoms 
(Inventory of Depressive Symptomatology (IDS)<14), n=319) and current MDD 
(within the past 6 months, IDS>14, n=811) groups, leaving out those that did 
not meet criteria for either of the two groups. The sample selection was further 
based on good quality GWAS genotype information available from a previous 
investigation [28]. 

Assessed phenotypes 

Sex, education (in years), and body mass index (BMI) data were collected 
during interviews. Alcohol was calculated as the mean number of drinks/
week. Smoking behavior was represented by cotinine levels, an adequate 
marker for calculating recent tobacco exposure [29]. Physical activity was 
assessed using the International Physical Activity Questionnaire and indicated 
by Metabolic Equivalent Total-minutes per week. Health status was assessed 
as the number of chronic diseases for which participants received medical 
treatment. 

In all subjects, depression severity was measured with the 30-item IDS 
self-report version [30]. Childhood trauma was assessed using the NEMESIS 
childhood trauma interview with personal history questions including a 

structured inventory of trauma exposure during childhood. Finally, frequent 
use of antidepressants was assessed through container inspection and 
categorized using World Health Organization Anatomical Therapeutic Chemical 
classifications: tricyclic antidepressants, selective serotonin reuptake inhibitors, 
and other antidepressants.

In those with MDD, depression duration was measured by the Life Chart 
interview, utilizing a calendar method to assess the percentage of time in 
which symptoms were present during the past four years [31]. Also, current 
comorbid anxiety (panic disorder, generalized anxiety disorder, agoraphobia, 
social phobia) and alcohol disorder, as well as age of onset of depression were 
assessed with the CIDI. A more detailed description of all phenotypes can be 
found in the supplement.

DNA methylation measurements

To assay the methylation status of the approximately 28 million common 
CpG sites in the human genome, we used an optimized protocol for MBD-
seq [25]. With this approach, genomic DNA is fragmented and the methylated 
fragments are then bound to the MBD2 protein that has high affinity for 
methylated DNA. The non-methylated fraction is washed away and only the 
methylation-enriched fraction is sequenced (for more detail, see Supplement). 
This optimized protocol assesses about 94% of the CpGs in the methylome 
[25]. The sequenced reads were aligned to the reference genome (build hg19/
GRCh37) with Bowtie2 [32] using local and gapped alignment. Aligned reads 
were further processed using the RaMWAS Bioconductor package [33] to 
perform quality control and calculate methylation scores for each CpG. 

DNAmAge estimation

While existing algorithms [9, 10] have gone through demonstrations of 
utility and reliability, estimating DNAmAge with those prediction models 
will be suboptimal for the current study. These algorithms were derived 
using methylation data from a different platform in study populations with 
different characteristics (e.g., age distribution). Commonly used methods 
for assaying DNA methylation depend on the Illumina arrays, platforms that 
generate variables representing percentage methylated (ranging from 0 to 1). 
The current study used MBD-seq, generating methylation data that is semi 
quantitative (scores may range from 0-20) [24]. As the weights assigned to 
individual CpGs when making age predictions directly depend on the platform 
and study population, they will not optimally capture the effects of CpGs on 
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age in the current study. Therefore, we “re-calibrated” the DNAmAge estimate 
in a way that is optimal for the current study. It is important to stress that we 
aimed to obtain the best possible DNAmAge estimates for MBD-seq data in 
our sample. We have not developed a new clock to be generalized to data 
from platforms other than MBD-seq. Furthermore, as we already collected 
MBD-seq data, we did not attempt to reduce the predictor set to the smallest 
number of CpGs as pruning sites may reduce the precision of the DNAmAge 
estimates.

Our approach for estimating DNAmAge is similar to the one taken by 
Horvath [10]. Specifically, we used elastic-nets, a variable selection method 
that is particularly useful when the number of predictors is much larger than 
the number of observations [34]. Parameter alpha was set to zero (i.e. ridge 
regression, retaining all sites in the model) where chronological age was used 
as outcome and methylation sites as predictors. To estimate predictive power 
and obtain DNAmAge estimates for each subject, k fold cross validation was 
used with k = 10. Thus, the sample was randomly partitioned into 10 equal 
sized subsamples. Of the 10 subsamples, 9 were used as training data and 
the remaining subsample as validation data. This ensures that in samples with 
the same properties and platform, our results would “replicate” and provide 
unbiased estimates of DNAmAge. In the RaMWAS implementation, a cycle of 
MWAS, marker selection, and estimation via ridge regression was repeated 
in each training dataset with the resulting model applied to the test data to 
obtain unbiased estimates of DNAmAge for each of the k = 10 iterations.

Validation of the use of MBD-seq data to estimate DNAmAge

Several analyses were performed to validate the model. First, the model used 
to estimate DNAmAge contained 80,000 CpGs (Supplementary Table S1, 
available online). 10-fold cross-validation showed that chronological age 
could be predicted very well with a correlation of 0.95 (P<0.001, Figure 1). 
Second, when analyzing assessed phenotypes in NESDA with DNAmAge, 
we confirmed some similar determinants of DNAmAge found in prior studies 
validating our outcome measure (Supplementary Table S3). Male sex [35], 
and higher BMI [13, 36, 37] were associated with higher EA. Third, to validate 
calculation of DNAmAge, we used both ridge regression (current study), as 
well as the lasso method (used by Horvath). The additional elastic-net model 
with parameter alpha set to 0.5, resulted in a quite comparable correlation of 
0.93 between chronological age and predicted DNAmAge in our dataset (vs. 
0.95 with ridge regression and alpha=0), indicating that parameter set point 
did not largely impact our outcome measure. Finally, to ensure no systematic 

bias was introduced by training the model on both cases and controls, we also 
trained the prediction model in controls only. This resulted in a slightly lower 
correlation between DNAmAge estimates and chronological age (r=0.93) since 
the controls represented only a third of our total sample (i.e., lower statistical 
power). However, the correlation between the DNAmAge estimates obtained 
in the full sample and those obtained using controls-only was high (r=0.98, 
P<0.001), indicating that psychiatric status did not impact the estimation of 
DNAmAge. 

Figure 1. DNA Methylation Age Prediction Using Methyl-CpG Binding Domain Protein-
Enriched Genome Sequencing (MBD-seq) in the Netherlands Study of Depression and 
Anxiety. The plot shows the prediction of DNA methylation (DNAm) age using MBD-seq 
across groups in blood. Each circle or triangle represents an individual subject (N=1,130), 
and the lines indicate regression lines (control group [N=319]: r=0.94, p<0.001; major 
depression group [N=811]: r=0.96, p<0.001). The arrows indicate the outcome variable 
epigenetic aging, representing higher epigenetic aging if the individual’s estimated 
DNAm age exceeds chronological age (upward arrow), whereas negative epigenetic aging 
indicates lower epigenetic aging (downward arrow).
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Post-mortem brain samples 

We pooled data of five brain sample collections from four different brain banks 
(Victorian Brain Bank Network, Australia; Harvard Brain Bank; the Netherlands 
Brain Bank; Stanley Medical Institute), including a total of 141 brain samples 
from BA10 and BA25 brain regions. Presence of MDD (n=74) was determined 
by at least one psychiatrist by using information obtained from a family 
member who is well acquainted with the deceased. Controls (n=67) had no 
history of psychiatric disorders. Post-mortem intervals (hours) and pH were 
recorded in brain collections, with the exception of the Harvard Brain Bank. 

To further test the reliability and validity of our methods, we used the same 
approach to predict DNAmAge in these samples with MBD-seq methylation 
data generated from the SOLiD 5500 W platform (Life Technologies). The 
model used to predict DNAmAge contained 100,000 CpGs (supplementary 
Table S2, available online), obtaining a correlation of 0.69 between predicted 
DNAmAge and chronological age. The lower correlation with age is likely 
because the methylation data was generated with an older platform with lower 
quality (e.g. lower alignment of reads) from a more heterogeneous dataset. 
More details about the samples and methods can be found in the supplement. 

Statistical analyses for discovery

To investigate case-control differences in EA, we conducted linear regression 
models with EA as the outcome and all covariates as predictors. To correct 
for the relative abundance of cell types that may be differentially associated 
with MDD an additional model included cell-type proportions as covariates 
[38]. Other linear regression models were used to examine the relationship 
between EA and IDS-score across groups and clinical characteristics within 
MDD patients. All analyses were corrected for all sociodemographic, lifestyle 
and health covariates, using two-tailed tests considering P<0.05 significant. 

Statistical analyses for replication 

Within post-mortem brain samples, we constructed a linear mixed model in R 
using the nlme package to account for the heterogeneity of EA across brain 
collections. Thus, brain collection was entered as random effect and sex as 
fixed effect. The P-value was derived by a likelihood ratio test, hypothesis-
driven one-sided tested, and considered significant at P<0.05.

Bioinformatics analyses 

To perform enrichment tests of top MWAS findings in brain and blood, we 
used the shiftR R-package with 1 million permutations for each test and used 
three thresholds (0.5, 1% and 5%) to define “top findings”. To account for this 
“multiple testing”, shiftR uses the same thresholds in the permutations where 
the test statistic distribution under the null hypothesis is generated from the 
most significant (combination of) thresholds. A more in-depth description is 
provided in the supplement. To gain insight into the overlapping biological 
pathways affecting EA in blood and brain, we used ConsensusPathDB [39] to 
test whether genes harboring EA-associated CpGs were enriched for level-5 
Gene Ontology (GO) terms. Methylation sites with P<1×10-5 were selected 
and had to be within gene boundaries. At least four genes had to be present in 
the GO term to be considered. Finally, we also evaluated the overlap between 
chronological age-associated and EA-associated CpG sites to examine 
whether similar biological processes were involved in chronological and 
biological aging.

RESULTS

Higher epigenetic aging and MDD in NESDA

The mean age of the NESDA sample was 41.5 years (s.d.=13.0 years, range 
18-64 years) with 64.5% of females (Table 1). The groups did not differ in 
age (P=0.67), but the MDD group was more often female (P=0.02) and less 
educated (P<0.001). As anticipated, MDD patients reported higher levels of 
depression severity and use of antidepressants (all P’s<0.001). Childhood 
trauma scores were also higher in the depressed group (P<0.001). 

EA showed (by design) a mean of zero (s.d.=3.58 years), ranging from 
-13.26 to 15.00. MDD patients had significantly higher EA compared to 
controls (b=0.64, t=2.65, P=0.008) (effect size, Cohen’s d=0.18) indicating 
patients were estimated to be 0.64 years (or 7.68 months) older than controls 
after full adjustment for covariates (Table 2). Additional analyses correcting for 
cell type proportions did not change results and produced a Cohen’s d of 0.14 
(Supplement). Consistent with a dose-response effect, a fully-adjusted linear 
regression showed that greater EA was significantly associated with higher 
IDS-score in the overall sample (β=0.10, P=0.001). As expected from the 
high correlation between the DNAmAge estimates generated by both models 
(r=0.98), above mentioned results remained unchanged when performing the 
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same analyses with the DNAmAge estimates from the controls-only model 
(Supplement).

Table 1. Participant characteristics of the Netherlands Study of Depression and Anxiety

Characteristic Controls
(N=319)

MDD
(N=811)

Mean SD Mean SD

Sociodemographic

Age (years) 41.6 14.63 41.5 12.26

Education (years) 13.1 3.15 11.5 3.20

N % N %

Female Sex 188 58.9 541 66.7

Mean SD Mean SD

Lifestyle and health

Body Mass Index 25.2 4.50 25.9 5.31

Cotinine levels (ng/ml) 70.9 200.8 103.3 183.9

Alcohol intake (mean number of drinks/week) 7.10 7.11 6.32 9.12

Physical activity (1000 MET-minutes/week) 3.91 2.86 3.49 3.17

Number of chronic diseases 0.46 0.74 0.69 0.92

Mean SD Mean SD

Clinical characteristics

Severity (Inventory of Depressive Symptoms score) 5.02 3.54 33.8 10.9

Childhood trauma index score 0.30 0.69 1.23 1.24

Age of onset (years) NA NA 27.0 12.5

Symptom duration (% time in the past 4 years) NA NA 0.39 0.30

N % N %

Comorbid anxiety disorder NA NA 538 66.4

Comorbid alcohol disorder NA NA 270 33.3

Antidepressant use

Tricyclic antidepressants 0 0.0 38 4.7

Selective serotonin reuptake inhibitor 1 0.3 243 30.0

Other antidepressants 0 0.0 90 11.2

Mean SD Mean SD

Epigenetic Aging

EA -0.45 3.37 0.18 3.65

Abbreviations: MDD, major depressive disorder; MET-minutes, metabolic equivalent 
of number of calories spent per minute; NA, not applicable; Epigenetic Aging (EA), 
unstandardized residuals of DNAmAge regressed on chronological age.

Exploratory analyses of epigenetic aging and clinical characteristics 

Within MDD cases, we found EA to be positively associated with childhood 
trauma scores (β=0.09, P=0.02, see Table 3). The association between 
EA and IDS-score in the overall sample did not remain significant when 
analyzed only within MDD patients (β=0.05, P=0.21), likely due to reduced 
variation in symptom severity. No further significant associations with clinical 
characteristics were found. 

Table 2. Estimated marginal means of epigenetic aging by major depressive disorder 
status and association with depression severity in the overall sample in basic- and fully 
adjusted analyses

Model Controls
(N=319)

MDD
(N=811)

MDD versus 
Controls

IDS-score

Mean SE 95% 
CI

Mean SE 95% 
CI

P-value Cohen’s 
d

β P-value

Basic 
adjusteda

-0.51 0.20 -0.90, 
-0.11

0.20 0.13 -0.05, 
0.45

0.004 0.20 0.12 <0.001

Fully 
adjustedb

-0.46 0.20 -0.86, 
-0.06

0.18 0.13 -0.07, 
0.43

0.008 0.18 0.10 0.001

Abbreviations: SE. standard error; CI, confidence intervals; MDD, major depressive disorder; 
IDS, Inventory of Depressive Symptoms. aAdjusted for sex and education. bAdjusted for sex, 
education, body mass index, cotinine levels, alcohol use, physical activity, and number of 
chronic diseases. 

Table 3. Associations between epigenetic aging and clinical characteristics in major 
depressive disorder patients (N=811)

Variable β Pa

Severity (IDS score) 0.05 0.21

Duration -0.02 0.58

Age of Onset 0.03 0.42

Comorbid anxiety disorder -0.02 0.53

Comorbid alcohol dependence disorder 0.05 0.21

Childhood trauma index score 0.09 0.02
Antidepressant Use 
 Tricyclic antidepressant 0.02 0.67

 SSRI -0.04 0.31

Other antidepressant -0.04 0.29

Abbreviations: Epigenetic aging, the residuals of DNA methylation age regressed on 
chronological age; IDS, Inventory of Depressive Symptoms; SSRI, selective serotonin reuptake 
inhibitor. aAnalyses are adjusted for sex, education, body mass index, cotinine levels, alcohol 
use, physical activity, and number of chronic diseases.
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Further analyses revealed that MDD patients with childhood trauma showed 
the highest EA compared to controls without childhood trauma (P=0.001, 
Cohen’s d=0.29), highlighting that this MDD and childhood trauma subgroup is 
associated with the highest EA (Supplementary Figure S1). Important to note, 
more severe symptomatology of chronic MDD was correlated with childhood 
trauma (r=0.39, P<0.001), making it difficult to discern which of these two 
factors drives increased EA. Linear regression indeed showed that both 
childhood trauma (β=0.08, P=0.01) and depression severity scores (β=0.07, 
P=0.03) were significant predictors of EA when analyzed in the same model. 

Replication in post-mortem brain samples 

The mean age of the post-mortem brain samples was 55.2 years (s.d.=19.3, 
age range 20-100), with 45.4% of females. Groups were matched on age and 
sex. Mean post-mortem interval was 35.1 hours (s.d.=21.1) and mean pH 
was 6.51 (s.d.=0.25) across samples. EA was uncorrelated to pH or Post-
mortem interval (both P’s>0.05). Table 4 shows an overview of the descriptive 
characteristics by brain collection. Only the control (n=67) and MDD (n=74) 
samples from the same brain collection were included in analyses (see 
supplement for more detail).

Our replication findings in independent brain samples supported our 
findings in NESDA and again showed that the EA was higher in MDD cases 
than in controls (b=1.11, χ2=3.41, P=0.03). The beta indicates that the MDD 
group was estimated to be on average 1.11 years older than controls. The 
phenotype information available from the post-mortem samples was limited, 
and therefore we were unable to attempt any replication of the exploratory 
clinical associations observed for e.g., childhood trauma in NESDA. 

Enrichment testing and gene ontology analyses 

When evaluating the overlap between both epigenetic aging indicators, we 
found that after correcting for multiple testing the top 1% findings from the 
EA MWAS in blood were significantly enriched for CpGs in the top 0.5% of 
the EA MWAS from brain (odds ratio=1.19, P<0.001). To examine possible 
processes underlying epigenetic aging in both tissues, we performed pathway 
analyses on the 1084 overlapping CpGs associated with EA, leading to 330 
genes (90.7%) that were present in at least one GO category. Subsequently, 
this resulted in 53 significantly enriched GO terms (Supplementary Table S4, 
available online). Top GO terms included neurogenesis (P-value=9.79×10-9), 
neuron differentiation (P-value=5.34×10-8) and regulation of neuron death 

Table 4. Descriptive characteristics of the post-mortem brain samples 

Characteristic Controls
(N=67)

MDD
(N=74)

Brain collection 1* N=30 N=30
Mean SD Mean SD

 Age (years) 51.63 12.94 51.93 18.61
N % N %

 Female sex 17 56.7 18 60.0
 Post-mortem interval (hours) 47.04 14.63 41.74 15.74
 pH 6.32 0.21 6.50 0.28

Brain collection 2 N=4 N=3
Mean SD Mean SD

 Age (years) 77.00 12.25 83.00 13.00
N % N %

 Female sex 1 25 1 33.3
 PMI (hours) NA NA NA NA
 pH NA NA NA NA

Brain collection 3 N=9 N=3
Mean SD Mean SD

 Age (years) 85.67 8.57 86.44 8.37
N % N %

 Female sex 6 66.7 2 66.7
 Post-mortem interval (hours) 5.28 0.78 6.59 1.93
 pH 6.56 0.15 6.49 0.23

Brain collection 4 N=11 N=22
Mean SD Mean SD

 Age (years) 48.00 11.95 42.32 11.15
N % N %

 Female sex 4 36.4 10 45.5
 Post-mortem interval (hours) 26.72 9.79 30.14 12.84
 pH 6.64 0.19 6.65 0.13

Brain collection 5 N=13 N=10
Mean SD Mean SD

 Age (years) 51.15 8.35 48.80 8.35
N % N %

 Female sex 0 0 1 10
 Post-mortem interval (hours) 24.00 15.00 49.00 49.50
 pH 6.69 0.18 6.64 0.23

Note: N is number of samples left after quality control. Abbreviations: MDD, major depressive 
disorder; NA, not applicable. *Brain collection 1 contains tissue dissected from BA25, all 
other collections contain tissue from BA10.
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(P-value=4.67×10-5), indicating that several MDD-relevant pathways were 
enriched in the cross-tissue EA indicators. 

DISCUSSION

To the best of our knowledge, this is the first time higher epigenetic aging in 
MDD patients compared to controls is shown. Exploratory analyses suggested 
even more pronounced epigenetic aging in MDD patients with more childhood 
trauma. The case-control difference in blood was replicated in post-mortem 
brain tissue. Finally, analyses showed significantly enriched neuronal pathways 
associated with the overlap between EA-associated CpGs from blood and 
brain tissue. 

Replication of our main finding in post-mortem brain tissue bolstered 
confidence in the observed higher epigenetic aging in MDD. Moreover, the 
significantly enriched overlap suggests that at least some processes affecting 
epigenetic aging are at play in both blood and brain. There is some evidence 
that blood and brain show concordance in methylation [40] and epigenetic 
aging [10]. However, considering the interactions between stress, central 
and peripheral immune processes, and neurobiology [41], it is plausible and 
likely EA in MDD is also dictated by many systemic processes. Nonetheless, 
more work is needed to confirm higher epigenetic aging findings and better 
characterize advanced aging associated genes and their implications in MDD. 

DNAmAge is just one of the several available markers of biological aging 
[35]. The current study confirms advanced or premature biological aging in 
MDD with a novel platform and is consistent with literature regarding telomere 
length as a biological marker of aging in MDD [7, 42]. Also, in line with 
other studies [43, 44], post-hoc analyses between telomere length and EA 
showed non-significant relationships, suggesting that both measures likely 
independently track different aspects of biological aging. Similarly, other post-
hoc analyses showed that telomere length did not alter this study’s findings 
when accounted for, providing further evidence that EA captures significant 
aging signal different from telomere length (supplementary results).

We found that childhood trauma was positively associated with higher 
epigenetic aging in MDD patients. It seems conceivable that MDD and 
accumulated stress throughout the lifetime due to childhood trauma may alter 
the epigenetic landscape and influence genomic regulation and function [45]. 
However, this study did not further identify additional relationships between 
higher epigenetic aging and more cumulative clinical characteristics such as 

earlier onset age or longer duration of MDD. Rather, our findings suggest that 
higher epigenetic aging in MDD may be largely driven by severity of disease. 

Alternatively, childhood trauma may produce long-lasting epigenetic “scars” 
that impact MDD and advanced or premature aging processes later in life. 
Individuals with childhood trauma and depressive disorders have earlier onset 
age, higher symptom severity, more comorbidities, increased suicidality, and 
poorer treatment response than patients without childhood trauma [46, 47]. As 
Teicher & Samson (2013) suggest, presence of childhood trauma is associated 
with a clinically and neurobiologically distinct subtype of depression. 

Strikingly, three out of ten top GO categories enriched across tissues 
included neuronal pathways. Epigenetic mechanisms are critical in early 
brain development, adult neurogenesis, and late-stage brain maturation [48]. 
Being processes that all seem markedly aberrant in MDD [49], the implicated 
pathways suggest EA in MDD directly contributes to disease symptomatology. 
Additionally, the degree of overlap between the top 1% findings of EA from 
blood/brain and top 0.5% findings of chronological age in NESDA (odds ratio: 
85.31, P<0.001/odds ratio: 1.64, P<0.001) was highly significant, suggesting 
that biological aging is overlapping with the same epigenetic processes 
underlying chronological aging.

Although effect sizes such as those observed in the current study are 
common in MDD research (e.g. oxidative stress, brain-derived neurotrophic 
factor, and cortisol yield effect sizes ranging from 0.15-0.31 [50–52]), it is 
possible that this is an underestimate. The reason is that DNAmAge is estimated 
from the residuals of the regression of methylation data on chronological age. 
This residual variance comprises two components: i) true unique variance 
associated with DNAmAge and ii) measurement errors. However, because the 
residual variance is very small (the correlation between chronological age and 
methylation data was 0.95), even small measurement errors can have a large 
negative effect on the reliability of the DNAmAge that is defined as: reliability = 
Var(DNAmAge)/[Var(DNAmAge)+VAR(errors of measurement)]. As a less than 
perfect reliability will attenuate the correlation of DNAmAge and MDD status, 
the real effect size may have been underestimated.

Strengths of this study are the replication in post-mortem brain tissue and 
inclusion of a large clinically well-characterized and representative sample 
including many potential confounders that did not explain our findings. Given 
the full methylome coverage, we were also able to examine which biological 
pathways seemingly underlie epigenetic aging. However, the findings of our 
study should also be considered against some limitations. A direct comparison 
of our MBD-seq-based epigenetic clock and existing Illumina array-based 
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clocks was not possible and beyond the current scope. However, a side-
by-side comparison is an interesting endeavor for a future methodological 
paper. Furthermore, with the current cross-sectional data we were not able 
to disentangle whether greater EA in MDD truly reflects aging acceleration 
over time or if subjects have increased EA from birth or before adulthood that 
continues to be stable thereafter [53]. Future studies with longitudinal designs 
are needed to distinguish the two possibilities. 

In conclusion, our findings show that DNAmAge from both the blood and 
brain of MDD patients is higher than their corresponding chronological age, 
which may contribute to their increased risk for mortality and aging-related 
diseases. Further, higher childhood trauma scores correlated with higher 
epigenetic aging in MDD patients. Taken together, our findings suggest that 
higher methylation aging in MDD is present in both blood and brain, and 
that higher epigenetic aging largely overlaps with the same underpinnings 
associated with chronological aging. Further research is needed to investigate 
the causal relationships between age-associated alterations in DNA 
methylation and MDD. 
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SUPPLEMENTARY MATERIALS

Epigenetic Aging in Major Depressive Disorder

SUPPLEMENTARY METHODS

Assessed phenotypes 

Body Mass Index (BMI) was calculated as weight (kilograms) divided by 
squared length (meters). Smoking behavior was represented by cotinine 
levels, an adequate marker for calculating recent tobacco exposure and 
discriminating smokers from non-smokers [1]. Physical activity was assessed 
using the International Physical Activity Questionnaire and indicated by 
overall energy expenditure in Metabolic Equivalent Total-minutes per week. 
Health status was assessed as number of chronic diseases (heart disease, 
epilepsy, diabetes, osteoarthritis, cancer, stroke, intestinal disorders, ulcers, 
and lung-, liver-, and thyroid disease) for which participants received medical 
treatment. In line with earlier work, a cumulative childhood trauma index (CTI) 
was created that reported the sum of the categories that were scored from 
0 to 2 (0: never happened, 1: sometimes, 2: happened regularly), resulting in 
an index score ranging from 0-8 [2]. Finally, frequent use of antidepressants 
was assessed through container inspection and categorized using World 
Health Organization Anatomical Therapeutic Chemical (ATC) classifications: 
antidepressants (tricyclic antidepressants (ATC code N06AA), selective 
serotonin reuptake inhibitors (ATC code N06AB), and other antidepressants 
(ATC codes N06AF, N06AG, N06AX). Childhood trauma was assessed using 
the NEMESIS childhood trauma interview with personal history questions 
including a structured inventory of trauma exposure during childhood 
(emotional neglect, psychological abuse, physical abuse, sexual abuse, and 
important life-events in early life). 

Quality control of MBD-seq data in NESDA

Of the 1200 samples from participants eligible for methylome-wide sequencing, 
34 samples were excluded because of failed methylation enrichment (n=16) 
or failed library construction (n=18) where we did not have sufficient DNA 
available for a repeated assay. Reads aligning to loci without CpGs (non-CpGs) 
represent “noise” caused by, for example, imperfect enrichment leading to 
non-methylated fragments being sequenced. We used a threshold of 0.05 for 

“non-CpG/CpG coverage ratio” to remove samples with high “noise” levels 
(n=10), leaving an average ratio of 0.010 (SD=0.005) in the remaining samples. 
For 10 samples, sequence variants called from the methylation data did not 
match the genotype information, indicating that a sample swap or sample 
contamination may have occurred. As it is not possible to determine whether 
the sample handling errors occurred in the GWAS or in the MWAS data, we 
conservatively excluded all 10 samples from further analysis. We used the 
R function ‘pcout’ in the ‘mvoutliers’ package (with the upper boundary for 
outlier detection set to 15, the scaling constant set to 0.5, and the boundary 
for final outliers set to 0.2) to identify multidimensional outliers using principal 
components of the methylation data as input. Fourteen samples were 
multidimensional outliers and omitted. Finally, two samples were removed 
after DNAm age residual estimation because there were determined to be 
extreme outliers as they were both more than seven standard deviations away 
from the mean.

This left a sample of 1130 subjects. The mean number of reads for these 
samples was 59,954,723. The average alignment rate was 99.2%. We 
performed quality control (QC) for multi- and duplicate-reads. Although reads 
often map to multiple genomic locations, in most cases, a single alignment can 
be selected because it is clearly better than other alignments. In the case of 
multi-reads, multiple alignments are about equally good (in terms of alignment 
score). When Bowtie2 encounters a set of equally good alignments, it uses a 
pseudo-random number to select one primary alignment. Duplicate-reads are 
reads that start at the same nucleotide positions. When sequencing a whole 
genome, duplicate-reads often arise from artifacts in template preparation or 
amplification. However, in the context of sequencing an enriched genomic 
fraction such as methyl-CG binding domain sequencing (MBD-seq), duplicate-
reads are increasingly likely to occur because reads originate from a smaller 
fraction of the genome. We therefore allow for three reads to occur at the 
same location but for instances where more than 3 (duplicate) reads start at 
the same position, we reset the read count to 1 implicitly assuming excess 
reads are tagging a single clonal fragment. This left an average of 48,653,227 
reads per sample (=81.9% of all reads).

To identify CpGs, we combined reference genome sequence (hg19/
GRCh37) with common SNPs calculated on the European superpopulation 
from 1000 Genomes (Phase 3). To avoid including sites that are CpGs in only 
a very small proportion of subjects, we excluded CpGs created by SNPs with 
minor allele frequency <1%. This resulted in 27,916,990 CpGs. CpGs in loci 
prone to alignment errors, e.g., in repetitive regions, were eliminated prior 
to the analysis. To identify these CpGs, we used RaMWAS to perform the 
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in-silico alignment experiment outlined elsewhere.[3] In this experiment, the 
vast majority of CpGs (89.3%) were located in regions that showed perfect 
alignment coverage and only 1.3% (365,223 CpGs) showed evidence of 
alignment problems defined as 15% or more reads from this locus not aligning 
properly. These CpGs with alignment problems were removed from further 
analyses. Finally, we eliminated 5,682,206 CpGs with average coverage less 
than 0.3 or having zero coverage in over 70% of the samples. This resembles 
filtering GWAS SNPs on minor allele frequency and avoids statistical problems 
associated with analyzing sparse data that is the result of sites that are not 
methylated in almost any subject in the study. This left a total of 21,869,561 
CpGs.

Cell type measurements 

To estimate cell type proportions, we used reference methylomes[4, 5]
requirements for cell processing, and timely cell analysis. In a diverse array 
of diseases and following numerous immune-toxic exposures, leukocyte 
composition will critically inform the underlying immuno-biology to most 
chronic medical conditions. Emerging research demonstrates that DNA 
methylation is responsible for cellular differentiation, and when measured in 
whole peripheral blood, serves to distinguish cancer cases from controls.\\n\\
nRESULTS: Here we present a method, similar to regression calibration, for 
inferring changes in the distribution of white blood cells between different 
subpopulations (e.g. cases and controls. Whole blood samples of six 
subjects were used to isolated cells with 5 clusters of differentiation (CD3, 
CD19, CD20, CD14, and CD15) that capture the most common cell types in 
blood (T-cells, B-cells, monocytes, and granulocytes). Cell populations were 
isolated by positive selection using EasySep™ kits (Stemcell technologies) 
that apply magnetic nanoparticles coated with antibodies against a particular 
surface antigen (CD molecules). All reference methylomes were generated 
using MBD-seq. In a previous paper we showed that the estimated cell type 
proportions effectively controlled for cell type heterogeneity in methylome-
wide association studies [6].

We further validated our cell type proportion estimates by correlating them 
with automated counts from 337 subjects obtained with the Abbott Sapphire 
system that uses optical scatter and impedance. We only had automated cell 
counts for these subjects 2-3 and 5-6 years after the methylation measurement 
and the cross-year correlation was 0.589. This correlation is attenuated by the 
fact that cell counts will have changed over the 2 to 3-year period but serves 
as a comparison. The correlation between MBD-seq estimates at baseline 

and automated counts 2-3 years later was 0.534 and only slightly lower. This 
suggests that the reliability of MBD-seq estimates of cell type proportions was 
comparable to that of automated counts as typically used in clinical settings.

Post-mortem brain samples for replication

Here, we summarize the post-mortem brain samples used in the replication 
analysis. Diagnosing disease in subjects providing post-mortem brain samples 
can be challenging [7]neurochemistry, and molecular pathways of genes 
associated with bipolar disorder (BPD. In most cases one or two psychiatrists 
determine the diagnosis by using information obtained from a family member 
who is well acquainted with the deceased. This technique has been validated 
for axis I and II diagnoses [8, 9]social support and suicidal behavior among 
individuals who attempted suicide. Subjects were 80 psychiatric inpatients 
(aged 50-91 yrs and has shown to have high inter-rater agreement [10]. We 
pooled the data of six brain collections from four different brain banks that are 
described in detail below.
 The first subsample included post-mortem brain tissue from 30 MDD cases 
and 30 matched controls, obtained from the Victorian Brain Bank Network, 
Australia [11]. For MDD cases, DSM-IV diagnoses were confirmed post-mortem 
by two psychiatrists, using clinical case histories and the Diagnostic Instrument 
for Brain Studies (DIBS)[12]. The controls had no history of psychiatric symptoms 
or substance abuse (as determined by both information from relatives and 
medical records) and were age/sex matched to the cases. The tissue samples 
were dissected from the cerebral cortex (BA25) for each subject. 
 The second subsample included 3 cases and 4 controls from the Harvard 
Brain Bank [13]. Family members initially reported diagnoses at the time of 
death and next of kin were asked to complete a questionnaire/participate in a 
phone interview to provide further details. A staff psychiatrist then reviewed the 
clinical records and family questionnaires to confirm or correct the psychiatric 
diagnosis.

The third subsample included 9 cases and 9 controls from the Netherlands 
Brain Bank [14]each with its own promoter providing a mechanism for tissue-
specific fine-tuning of GR levels. Recently epigenetic methylation of these GR 
promoters was shown to modulate hippocampal GR levels. Here we investigate 
in post-mortem brain tissues whether in MDD HPA axis hyperactivity may be 
due to epigenetic modulation of GR transcript variants.Levels of GRα, GRβ 
and GR-P transcripts were homogeneous throughout the limbic system, with 
GRα being the most abundant (83%. Reports by family members of a lifetime 
diagnosis of MDD was confirmed post-mortem by a certified psychiatrist on 
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the basis of the medical records following DSM-IV criteria. Controls never 
received any psychiatric diagnosis or long-term psychotropic medication.

The fourth and fifth independent replication samples included BA10 
samples from the Stanley Medical Research Institute (SMRI)[15]. The first 
consisted of 22 MDD cases (with or without psychosis) and 11 controls. 
The second collection comprised 10 (non-psychotic) cases and 13 controls. 
The SMRI uses DSM-IV diagnoses made by two senior psychiatrists on the 
basis of medical records and, when necessary, telephone interviews with 
family members. Diagnoses of unaffected controls are based on structured 
interviews by a senior psychiatrist with family member(s) to rule out Axis I 
diagnoses. In addition to the balanced MDD case-control collections, we also 
used methylome data from the same brain bank and brain region BA10 from 
an additional 78 individuals (25 schizophrenia cases, 18 bipolar cases and 25 
controls) that were solely used to train the DNAmAge prediction model, but 
were excluded from all replication analyses. 

MBD-seq data from post-mortem brain samples

To study the CpG methylome of the post-mortem brain samples we again 
used the MBD-seq approach. All brain samples were assayed using the same 
MBD-seq protocol [16]. In short, we used ultrasonicaton to shear genomic 
DNA into an average of 150 bp fragments. Next, we performed enrichment with 
MethylMiner™ (Invitrogen), following the same procedure as was described 
for the blood samples, to capture the methylated fraction of the genome. 
Barcoded sequencing libraries were manually created for each methylation 
capture, were pooled in equal molarities, sequenced on a SOLiD5500 
wildfire instrument (Life technologies) with 50bp reads and were aligned 
with Cushaw3[17]. As for the MBD-seq data from blood, the aligned MBD-
seq data from brain was processed and analyzed using RaMWAS (RaMWAS: 
Fast Methylome-Wide Association Study Pipeline for Enrichment Platforms. 
https://bioconductor.org/packages/ramwas). 

Quality control of MBD-seq data from post-mortem brain samples 

Quality control for the post-mortem brain tissues largely followed the procedures 
used for the blood samples (see above). A summary of the samples available 
after QC is reported in Table 2. The mean number of reads after sample quality 
control was 57.5 million (SD = 18.6 million). The average alignment rate was 
77.9%. After removing multi- and duplicate-reads, an average of 27.7 million 
reads (SD = 10.2 million reads) per sample remained. As previously described 

[3], to identify regions showing alignment problems, we conducted an in silico 
alignment experiment using the appropriate settings (50bp reads aligned with 
CUSHAW3 [17]). With these settings 7.9% of the CpGs were removed from 
further analyses. After also excluding sporadically methylated CpGs (average 
coverage <0.3), 18.9 million CpGs remained for statistical analysis.

DNA methylation prediction model in post-mortem brain samples 

To maximize the sample size of the data used for age prediction, we pooled all 
methylation data from post-mortem brain (regions BA10 and BA25) samples 
(N=211) available that had been generated using the same MBD-seq protocol 
and sequenced on the SOLiD system. Using the same 10-fold resampling 
approach as was described for the blood samples, chronological age could 
be predicted with a correlation of 0.69 (P<0.001) using 100,000 CpGs 
(Supplementary Table S2, available online). The brain data included a subset 
of MDD patients (n=74) and matched controls (n=67) without psychiatric 
diagnosis used to examine case-control differences. We again regressed 
chronological age on DNAmAge, and used the unstandardized residuals as 
outcome measure.

Enrichment testing

To perform enrichment tests analysis of top MWAS findings in brain and blood, 
we used the R package shiftR. ShiftR cross-classifies CpGs as being in the top 
or bottom of the two MWAS. Using the resulting 2 by 2 tables as input, shiftR 
tests the null hypothesis that the enrichment odds ratio equals one. To perform 
these tests, it uses circular permutations [18]due to the large number of tests, 
standard analysis techniques impose highly stringent significance thresholds, 
leaving potentially associated SNPs undetected, and much of the trait genetic 
variation unexplained. Pathway- and network-based methodologies applied 
to GWAS aim to detect associations missed by standard single-marker 
approaches. The complex and non-random architecture of the genome makes it 
a challenge to derive an appropriate testing framework for such methodologies. 
We developed a rapid and simple permutation approach that uses GWAS SNP 
association results to establish the significance of pathway associations while 
accounting for the linkage disequilibrium structure of SNPs and the clustering 
of functionally related elements in the genome. All SNPs used in the GWAS are 
placed in a \”circular genome\” according to their location. Then the complete 
set of SNP association P values are permuted by rotation with respect to 
the genomic locations of the SNPs. Once these \”simulated\” P values are 
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assigned, the joint gene P values are calculated using Fisher’s combination 
test, and the association of pathways is tested using the hypergeometric 
test. The circular genomic permutation approach was applied to a human 
genome-wide association dataset. The data consists of 719 individuals from 
the ORCADES study genotyped for ~300,000 SNPs and measured for 51 
traits ranging from physical to biochemical measurements. KEGG pathways  
(n = 225 that destroy possible association signals while preserving the 
correlational structure between adjacent CpGs. Thus, it generates an empirical 
test statistic distribution under the null hypothesis that takes into account 
the dependency between CpGs. We used 1 million permutations for each 
enrichment test. Three thresholds of 0.5, 1 and 5% were specified to define 
the “top” MWAS findings. To account for this “multiple testing”, the same 
thresholds were used in the permutations where the test statistic distribution 
under the null hypothesis is generated from most significant (combination of) 
thresholds. Of the overlapping sites in each comparison, only those below a 
combined q-value<0.1 were considered for pathway analysis.

SUPPLEMENTARY RESULTS

Accelerated aging and covariates 

In addition, to further validate our main outcome measure, we examined the 
impact of all selected covariates on epigenetic aging (EA, unstandardized 
residuals of DNAmAge regressed on chronological age) with one multiple linear 
regression model (Supplementary Table S3). As expected based on earlier 
results [19–21] higher EA was associated with male sex (β=-0.11, P<0.001). In 
addition, higher EA was associated with increased body mass index (β=0.08, 
P=0.007) and low physical activity (β=-0.07, P=0.03). There was no relationship 
between EA and education (in years), cotinine levels, alcohol consumption or 
the number of chronic diseases under treatment (all Ps>0.05). 

DNA methylation prediction model trained in controls-only

We repeated the between-group comparison of EA that was based on the 
prediction model trained in controls-only, rather than the full sample. This 
“controls-only model” included 10,000 CpGs, compared to the 80,000 CpG 
sites used in the “full sample model”. 10-fold cross-validation showed that 
chronological age could be predicted less precise, with a less slightly reliable 
correlation of 0.93 (P<0.001).

EA (from “controls only model”) showed a normal distribution with, 
by design, a mean of zero (s.d.=3.92 years), ranging from -13.21 to 15.17. 
Depressed patients had significantly higher EA compared to controls (mean 
EA ± s.e. (CI) MDD: 0.21 ± 0.14 (-0.07, 0.48), controls: -0.52 ± 0.22 (-0.96, 
-0.08); F(1,1121)=7.46, P=0.006, effect size (Cohen’s d)=0.18) after full adjustment 
for covariates. Consistent with a dose-response association, a fully-adjusted 
linear regression showed that higher EA was significantly associated with 
higher IDS-score in the overall sample (b=0.10, P=0.002). Thus, although the 
“controls only model” resulted in a less accurate prediction of chronological 
age, likely due to the fact that it is trained in only 1/3 of the sample, results 
remained unchanged. 

SUPPLEMENTARY TABLE S3. The relationship between all selected covariates and 
epigenetic aging

β P-value

Sex (M/F) -0.11 <0.001

Education (in years) 0.01 0.72

BMI 0.08 0.007

Cotinine levels (ng/ml) 0.04 0.15

Alcohol consumption (mean number of drinks/week) -0.03 0.30

Physical activity (MET-minutes/week) -0.07 0.03

Number of chronic diseases 0.001 0.98

Abbreviations: epigenetic aging, unstandardized residuals of DNAmAge regressed on 
chronological age; M, Male; F, female; BMI, Body Mass Index; MET, Metabolic Equivalent 
Total (MET level * minutes of activity * events per week). 

Cell type proportion correction 

To examine whether the between-group difference in EA was not confounded 
by differences in blood cell composition, we performed additional analyses 
including cell type proportions (CD03, CD14, CD15) as covariates. Given 
that these cell type proportion estimates were highly dependent on some 
lab technical covariates, we also included those variables as covariates in 
the model. The analysis of covariance model showed that the between-
group difference in EA remained significant (F(1,1102)=3.92, P=0.048, effect size 
(Cohen’s d)=0.14). Overall, these results indicate that MDD disease status 
explained the difference in EA independent from blood cell composition. 
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Accelerated aging and childhood trauma

To gain further insight into the association of EA with childhood trauma, 
we conducted a one-way analysis of variance of fully-adjusted EA against 
groups of controls and MDD patients with and without childhood trauma (CT, 
yes≥1 and no=0) Bonferroni-corrected for multiple testing. This revealed that 
MDD patients with CT showed the highest EA compared to controls without 
CT (P=0.001, Cohen’s d=0.29), highlighting that this MDD+CT subgroup is 
associated with the highest EA (Supplementary Figure S1). 

Supplementary Figure S1. Epigenetic aging (EA) in major depressive disorder (MDD) 
and childhood trauma (CT). Mean EA by control and MDD group, with and without 
presence of CT. The means are adjusted for sex, education, body mass index, smoking, 
drinking, physical activity, and somatic diseases. The error bars represent 95% confidence 
intervals.
 

Post-hoc analyses with telomere length

To investigate the relationship of our main outcome measure with another 
biological aging marker available in our dataset (for detailed methods and 
telomere assays, see [22]diabetes, obesity and cancer. This suggests 
mechanisms of accelerated biological aging among the depressed, which 
can be indicated by a shorter length of telomeres. We examine whether MDD 
is associated with accelerated biological aging, and whether depression 
characteristics such as severity, duration, and psychoactive medication do 
further impact on biological aging. Data are from the Netherlands Study of 
Depression and Anxiety, including 1095 current MDD patients, 802 remitted 
MDD patients and 510 control subjects. Telomere length (TL), we performed 
post-hoc age-corrected partial and non-adjusted bivariate correlations 
between telomere length (TL) and EA. The results showed non-significant 
relationships of r=-0.03, P=0.34 and r=-0.03, P=0.37, respectively. Thus, EA 
and TL were not significantly correlated in our study.

Additional post-hoc analyses showed that TL did not change any of the 
study’s findings when added as a covariate to the analysis of covariance model. 
Significantly higher EA was still uniquely observed in the MDD group (mean 
EA ± s.e. MDD: 0.18 ± 0.13, controls: -0.46 ± 0.20; F(1,1120)=7.00, P=0.008). 
There were also significant main effects of sex, BMI, and physical activity (all 
Ps<0.05). However, there was no effect of TL on EA (F(1,1120)=0.07, P=0.79).

To further investigate whether TL was associated with sociodemographic 
and lifestyle parameters, we performed a similar multiple linear regression 
model as performed with EA. As was expected from a previous study[22]
diabetes, obesity and cancer. This suggests mechanisms of accelerated 
biological aging among the depressed, which can be indicated by a shorter 
length of telomeres. We examine whether MDD is associated with accelerated 
biological aging, and whether depression characteristics such as severity, 
duration, and psychoactive medication do further impact on biological aging. 
Data are from the Netherlands Study of Depression and Anxiety, including 
1095 current MDD patients, 802 remitted MDD patients and 510 control 
subjects. Telomere length (TL, shorter TL was significantly associated to 
male sex (b=0.08, P=0.009), BMI (b=-0.11, P=0.001), and increased alcohol 
intake (b=-0.08, P=0.01). TL was not associated to education, cotinine levels, 
physical activity or number of chronic diseases under treatment (all Ps>0.05). 
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ABSTRACT

Cross-sectional studies have identified a variety of correlates of epigenetic 
aging. However, it is unclear whether these correlates make epigenetic clocks 
“tick faster” (i.e., accelerate biological aging). In this longitudinal study, we 
examined whether a change in psychiatric problems, lifestyle variables or 
adversities at a particular time point (wave) was accompanied by a change in 
epigenetic aging. Such covariance is a necessary, but not sufficient, condition 
for a causal link between correlates and epigenetic aging. Our data consisted 
of 539 individuals (9-35 years old) and 1,029 measurements. Results showed 
that changes in correlates at a wave were often unaccompanied by a change 
in epigenetic aging at that wave. We therefore caution against interpreting 
associations with epigenetic aging in cross-sectional studies as being causal 
effects of the correlate.

INTRODUCTION

 Recent years have shown a rapid increase in the number of articles examining 
the so-called “biological age”. Biological age is different from chronological 
age because it reflects the individual’s biological state, rather than the years 
that have passed since birth. The most promising and accurate indicators 
of biological age are based on DNA methylation levels[1]. These so-called 
“epigenetic clocks” track the aging process with correlations between DNA 
methylation predicted age (DNAm age) and chronological age of typically 
over 0.90 [2–4]. Importantly, by contrasting the DNAm age to chronological 
age, it can be studied whether individuals are biologically younger or older 
than expected on the basis of chronological age. From here on we refer to this 
difference as “epigenetic aging”.

Studies have shown associations between epigenetic aging and age-related 
morbidities and, most importantly, mortality [5, 6]. Correlations of epigenetic 
aging have also been found with traumatic stress including childhood trauma 
[7], depression [8, 9], bipolar disorder [10], alcohol use disorder, metabolic 
syndrome components [11, 12], body mass index (BMI), and psychosocial 
factors [13]. However, as the vast majority of studies are cross sectional, it 
remains to be elucidated if these epigenetic correlates make epigenetic clocks 
“tick faster” (i.e., accelerate biological aging). Alternatively, the direction of 
effects may be the other way around or associations may be caused by “third” 
variables that affect both the correlate and epigenetic aging. For example, 
individuals who are more prone to health problems may also be predisposed 
to age faster biologically due to genetic or environmental factors.

Longitudinal studies have the potential to shed light on the causal status 
of epigenetic correlates. However, existing longitudinal studies have mainly 
focused on epigenetic aging trajectories over time rather than studying 
causality [14, 15]. Studying potential causal contributors to epigenetic aging 
is critical and may ultimately inform prevention and treatment regimens, 
especially for younger populations when age-related comorbid conditions 
have not manifested yet [16].

The current study thus examines whether cross-sectionally identified 
correlates such as psychiatric problems, lifestyle variables, and adversities 
have the potential to play a causative role in epigenetic aging. This may 
provide valuable insight as to whether epigenetic aging drives the identified 
correlates, or whether epigenetic aging is a consequence of these correlates 
[17]. In this article we address this knowledge gap by examining DNAm age 
estimated from blood in individuals aged 9 to 35 years old. Importantly, 
we collected longitudinal information for both DNAm age and a variety of 
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variables previously identified as cross-sectional correlates of epigenetic 
aging [18]. We tested whether a change in these correlates at a particular 
wave was accompanied by a change in epigenetic aging. Such covariance is 
a necessary, but not sufficient, condition for causality.

METHODS

The Great Smoky Mountains Study

The Great Smoky Mountain Study (GSMS) is a longitudinal study of 1,420 
participants from the southeast United States [19]. Of these individuals, 539 
are included in the current study. GSMS started in 1993 when participants were 
children aged 9 to 13. Clinical data and blood spots were collected annually 
until age 16, and then again around ages 19, 21, 25 and 30. Subset sampling 
of the current study included enrichment for childhood trauma exposure. 
Although conducted separately, interviews were completed by both a parent 
figure and the participant until the age of 16. After 16 years, interviews were 
conducted with the participant only. Both parents and participants signed 
informed consent or assent forms. The study was approved by Institutional 
Review Boards at Duke University and Virginia Commonwealth University.

Measures

We examined linked patterns between the epigenetic aging metric and a 
selection of correlates. Some correlate assessments temporally coincided 
with the methylation assessments, while others showed variable time lags. 
Time lags are explicitly reported in the specific sections of the investigated 
correlates.

Physical development
Data on height (cm) and weight (kg) were measured during interviews. BMI 
was assessed as kg/m2, where kg was a person’s weight in kilograms and m2 
their height in meters squared. There was no time lag between these and the 
methylation assessments.

Psychiatric problems and trauma
Depression and anxiety symptoms were assessed as follows: before age 
16, both the child and parent completed a structured clinical interview 
using the Child and Adolescent Psychiatric Assessment (CAPA)[20]. After 

age 16 the Young Adult Psychiatric Assessment (YAPA)[21], the upward 
extension of the CAPA, was used. Depression and anxiety symptoms were 
reported with a 3-month recency, introducing a time lag ranging anywhere 
between 0 to 3 months compared to the methylation assessment. Cumulative 
childhood trauma exposure was assessed by taking the sum of events 
concerning exposure to violence, sexual trauma, and other injury or trauma. 
Impairments were assessed as a cumulative score of the total number of 
functional impairments measured by summarizing dichotomous indicators 
across 17 areas of disrupted functioning in areas such as relationship with 
parents, teachers, peers, ability to complete chores at home, and disrupted 
schoolwork [22]. As the cumulative scores reflect sum scores of all previous 
wave assessments, potential temporal differences between the cumulative 
score and corresponding methylation assessments were limited.

Social environment
Being impoverished was positive if one met the poverty guidelines updated 
periodically in the Federal Register by the U.S. Department of Health and 
Human Services under the authority of 42 U.S.C. 9902(2).

Substance use
Smoking tobacco, drinking alcohol, and cannabis use was also assessed. 
Either of the substance use categories were positive if reported through 
self- (adult) or parent (childhood) reports. Smoking was coded as one if the 
participant regularly smoked in the past three months. Alcohol and cannabis 
were coded as one when daily/weekly use or a use disorder for the substance 
was reported in the past three months. The potential temporal time lag 
compared to the methylation assessment was thus between 0-3 months.

Covariates
Information on age, sex, Tanner pubertal stage, and race/ethnicity was 
collected during interviews. Children completed a self-report measure of 
Tanner staging [23]. Adult observations were coded as Tanner stage 5.

DNA Methylation

Nearly all 28 million CpG sites in the methylome were assayed with an optimized 
protocol [8, 24] for methyl-CG binding domain sequencing (MBD-seq). 
Elsewhere we summarized key features of optimized MBD-seq using empirical 
data[25]. We quality controlled reads, samples, and methylation sites. Data was 
processed and analyzed using the RaMWAS Bioconductor package [26]. The 
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distribution of blood cell types for CD3 (T-lymphocytes), CD14 (monocytes), 
CD15 (granulocytes), and CD19 (B-lymphocytes) were estimated from the 
methylation data [27] using reference methylomes specifically generated for 
this purpose [28]. For more details on the methylation assay, see Supplement.

DNA methylation age

Following standard methods[8], we used elastic nets to predict chronological 
age (in years) from all blood methylation with parameter alpha set to zero (i.e. 
ridge regression)[29]. To estimate predictive power and to obtain unbiased 
estimates for each subject, k-fold cross-validation was used, with k=10. 
Importantly, all data points from the same subject were either included in 
the training or test dataset to ensure independence and thereby resulting in 
unbiased DNAm age estimates. Of the k subsets, k − 1 were used as a “training 
set” to fit the elastic net and obtain regression coefficients. The regression 
coefficients were then used to estimate chronological age for participants in 
the “test set”. By repeating this cycle of training and testing for each subset, 
age estimates are obtained for all participants. To evaluate model performance, 
we used the calculated: a) mean absolute error (MAE), b) Pearson correlation 
coefficient between predicted DNAm age and chronological age, c) variance 
explained by the model (R2 “traditional formula” function implemented in the 
caret package accounting for systematic over- and underestimations)[30]. To 
avoid analyzing all methylation sites, of which the majority will not be associated 
with outcome and only add “noise” to the model, we increased the number 
of sites included in the elastic net in steps (100, 1000, 2500, 5000, 10,000, 
25,000, 50,000, 75,000) until the explained variance of age did not improve 
anymore (Supplementary Figure S1). We previously performed tests where the 
number of sites/genes was included in the loop over the k-folds. However, as 
it produced very similar results but is much more computer intensive [31], this 
latter approach was not used. Of note, we also tested whether the previously 
built model in the Netherlands Study of Depression and Anxiety (NESDA) 
would generalize to the current dataset, even though the sample properties 
(e.g. adult age range of 18-64 years) were different, but this resulted in poorer 
prediction accuracy (results are provided in the Supplement).

Statistical Approach

All statistical analyses were performed using R version 3.5.3 (R Core Team, 
2019), the nlme package was used to specify the bivariate mixed models. 
Our data further consists of longitudinal information for both epigenetic aging 

and correlates. This allowed us to test whether a change in correlate at a 
particular wave was accompanied by a change in epigenetic aging at that 
wave. Such a covariance is a necessary, but not sufficient, condition for a 
causal link between correlates and epigenetic aging. Technically these tests 
are conducted by fitting a bivariate mixed model (see Chapter 14 in [32]) that 
decomposes the covariance between epigenetic aging and the correlate 
into a subject-level contribution and a wave-level contribution. Intuitively 
speaking, the subject-level contribution captures the correlation between 
the mean subject specific epigenetic aging across all waves and the mean 
correlate values across all waves. The wave-level contribution captures the 
correlation between epigenetic aging and correlate values at each wave after 
considering the subject specific epigenetic aging and correlate means across 
all waves. For modeling details, we refer to the Supplement.

To assess whether changes in a specific correlate were correlated with 
changes in epigenetic aging, we fitted eleven separate bivariate mixed 
models, one for each correlate. To assess significance and obtain P-values 
for the subject- and wave-level contributions, we ran 10,000 iterations of the 
model estimation procedure described above but with the order of responses 
(epigenetic aging and correlate) randomly permuted in each iteration, while 
respecting the subject-level dependent structure (i.e. multiple responses from 
the same subject were randomly sampled within random subjects with the 
same number of responses). To assess the robustness of effects, we also 
averaged the eleven observed (i.e., all subject- and wave level contributions) 
and permutation results (10,000 random iterations) from the above bivariate 
mixed models to calculate whether an overall change in correlates was 
correlated with an overall change in epigenetic aging (i.e., the overall test).

Continuous variables with values >3×SD away from the mean were 
winsorized. All models were corrected for linear and quadratic age terms, sex, 
Tanner pubertal stage, race/ethnicity, estimated cell counts, and lab technical 
covariates. As we were interested in contributing factors to accelerated aging, 
analyses were tested one-sided and considered significant at p<0.05. Model 
specifications and R code for analysis can be found on GitHub.
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RESULTS

Participant Characteristics

Demographics and assessed phenotypes of the current study sample can 
be found in Table 1. Briefly, participants had between 1 and 3 DNAm age 
measurements, resulting in N=1,029 measurements from N=539 participants 
(mean number of measurements per individual was 1.9). Out of the total 
number of measurements, collected from 18 different timepoints (waves), 
5.9% were conducted at childhood (<12 years), 52.1% at adolescence (12-18 
years) and 42.0% in adulthood (>18 years). Figure 1 shows the chronological 
age distributions of individuals with 1 (N=539, mean=17.54 years, SD=5.20 
years, range=9.47-31.66 years), 2 (N=296, mean=18.78 years, SD=5.71 years, 
range=9.07-33.31 years), or 3 measurements (N=97, mean=17.15 years, 
SD=6.92, range=9.01-34.55 years). The mean follow-up time for those with 
two measurements was 9.84 years (SD=4.00 years). For those with three 
measurements the mean follow-up time was 1.98 years (SD=1.69 years) 
between the first and second, 12.22 years (SD=4.77 years) between the 
second and the third, and 14.20 years (SD=4.45 years) between the first and 
the third measurement.

Figure 1. Chronological age distributions. The plot shows individuals with one (blue, 
N=539), two (green, N=296), or three (pink, N=97) temporally coinciding epigenetic aging 
and correlate measurements.

Table 1. Participant Characteristics, Number of individuals and Measurements.

Characteristic N 
Individuals

N 

Measurements
Mean ± SD 

(range)/N (%)
Demographics    

Chronological age (years) 539 1,029 18.14 ± 6.05 (9.02-34.55)

Sex (female) 539 1,029 521 (51%)

Physical development    

Weight (kg) 537 971 69.26 ± 24.23 (20.00-144.89)

Height (cm) 538 979 163.79 ± 12.86 (125.21-202.40)

Body Mass Index (kg/m2) 537 968 25.31 ± 6.95 (12.73-47.25)

Psychiatric problems & 
Trauma

   

Depression 539 1,029 0.85 ± 1.11 (0.00-5.00)

Anxiety 539 1,029 0.95 ± 1.69 (0.00-7.00)

Childhood trauma 539 1,029 1.03 ± 1.07 (0.00-4.00)

Impairments 539 1,029 1.00 ± 2.22 (0.00-10.00)

Social environment    

Poverty (yes) 518 959 279 (29%)

Substance use    

Smoking (yes) 539 1,029 361 (35%)

Cannabis (yes) 539 1,029 180 (17%)

Alcohol (yes) 539 1,029 188 (18%)

Statistic presented: mean across measurements ± SD (minimum-maximum); n (%).

Estimating DNA methylation age

DNAm age was estimated using elastic nets. Of note, all data points from the 
same subject were either included in the training or test dataset to ensure 
independence and thereby resulting in unbiased DNAm age estimates. 
Supplementary Figure S1 illustrates the explained variance of chronological 
age by the elastic net as a function of the number of methylation sites included 
as predictors. We used the methylation prediction model that was based on 
25,000 sites as the model fit did not further improve by adding more methylation 
sites. Moreover, the model showed that, as we found before using similar 
sequencing data[8], chronological age could be accurately predicted with a 
correlation of r=0.93, R2=0.85, mean absolute error of 1.85 years (Figure 2).
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Figure 2. DNA methylation age. Correlation between predicted DNA methylation age and 
chronological age (r=0.93, P<0.0001). Diagonal dashed line reflects the line of identity (x=y). 
Each gray line represents one individual.

Bivariate mixed model

To examine whether changes in correlates at a particular wave were 
accompanied by a change in epigenetic aging, bivariate mixed models 
were used [32]. Bivariate mixed models optimally accommodate the current 
data as it allows the use of all data points (i.e., 1, 2, or 3 assessments) in a 
single analysis in a statistically optimal way. Furthermore, it can decompose 
the covariance between epigenetic aging and the correlate into a subject-
level contribution and a wave-level contribution. Intuitively speaking, 
the subject-level contribution captures the correlation between the mean 
subject-specific epigenetic aging across all waves and the mean correlate 
values across all waves. The wave-level contribution captures the correlation 
between epigenetic aging and correlate values at each wave after taking into 
account the subject-specific epigenetic aging and correlate means across 
all waves. In other words, if the wave-level contribution is not significantly 
different from zero, a change in the correlate is not associated with a change 
in epigenetic aging.

Proportions of subject- and wave-level variance

Table 2 shows the proportion of subject-level (columns 1-2) and wave-
level variance (columns 3-4). The proportion of subject-level variance (also 
known as the intra-class correlation) of epigenetic aging and each correlate 
indicates the stability over time. Correlates of physical development show 
high levels of stability (i.e., subject-level variance >50%), presumably partly 
due to underlying genetic control [33], while psychiatric correlates show more 
change than stability over time (i.e., subject-level variance of ~23%). The latter 
also holds true for the lifestyle variables (i.e., subject-level variances ranging 
from 2% to 32%), presumably due to different ages of initiation of substance 
use with general absence in childhood and peaks in adolescence and young 
adulthood. With respect to epigenetic aging and cumulative childhood trauma, 
approximately half of the total variance can be attributed to differences 
between subjects, while the other half can be explained by changes between 
waves. In other words, epigenetic aging and exposure to childhood trauma 
are relatively stable but also show dynamic potential. Taken together, these 
results show that all study variables show both stability and change over time.

Decomposition of covariances into subject- and wave-level 
contributions

The observed covariances were decomposed into subject- and wave-level 
contributions, and estimates were standardized by the total variance to obtain 
contributions to the correlations. The subject- (columns 5-6) and wave-level 
contributions (columns 7-8) between epigenetic aging and correlates are 
presented in Table 2. When looking into specific correlates, we found significant 
subject-level contributions for weight (r=0.14, P<0.01), BMI (r=0.15, P<0.001), 
and cumulative childhood trauma exposure (r=0.06, P=0.04). Higher weight, 
BMI, and childhood trauma exposure were correlated to higher epigenetic 
aging. Cannabis use (r=0.04, P=0.07) and smoking tobacco (r=0.04, P=0.08) 
were trending towards significance at the subject-level.

Several significant wave-level contributions were observed. That is, 
wave-level contributions of epigenetic aging and height (r=0.02, P=0.01), 
anxiety symptoms (r=0.02, P=0.04), and cannabis use (r=0.03, P=0.02) were 
significant, and cumulative childhood trauma exposure (r=0.02, P=0.051) and 
alcohol use (r=0.02, P=0.06) were trending towards significance. Taller height, 
more anxiety symptoms, and cannabis use were thus correlated to higher 
epigenetic aging on the wave-level.
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The overall test showed a higher mean subject-level contribution of 
r=0.05 (P=0.07, range=0.02-0.15, SD=0.05) compared to the mean wave-
level contribution of r=0.01 (P=0.18, range=0.00-0.03, SD=0.01). When only 
considering correlates significant at either the subject- or wave-level, the overall 
test showed a mean subject-level contribution of r=0.07 (P=0.01) compared 
to the mean wave-level contribution r=0.02 (P=0.09).This indicates that, on 
average, there is only weak evidence for significant wave-level contributions.

Higher correlations at the subject-level remained non-significant (e.g. 
cannabis use, r=0.04, P=0.07), while lower correlations at the wave-level 
were significant (e.g. cannabis use, r=0.03, P=0.02). Thus, our study design 
has better power to detect wave-level contributions. The longitudinal within-
person design increased the reliability and precision of measuring changes 
over time and generally added statistical power to detect small effects

Table 2. Decomposition of covariance between epigenetic aging and correlate into 
subject- and wave-level contributions.

 Proportion
subject-level variance

Proportion
wave-level variance

Subject-level 
contribution

Wave-level
contribution

 Epigenetic
aging

Correlate Epigenetic 
aging

Correlate r P r P

Weight 0.46 0.78 0.54 0.22 0.14 <0.001 0.01 0.27

Height 0.46 0.50 0.54 0.50 0.03 0.25 0.02 0.01

BMI 0.45 0.80 0.55 0.20 0.15 <0.001 0.00 0.43

Depression 0.44 0.24 0.56 0.76 -0.01 0.70 0.00 0.63

Anxiety 0.44 0.23 0.56 0.77 0.04 0.12 0.02 0.04

Childhood 
trauma

0.44 0.50 0.56 0.50 0.06 0.04 0.02 0.05

Impairments 0.44 0.16 0.56 0.84 0.02 0.27 -0.01 0.86

Poverty 0.44 0.23 0.56 0.77 0.04 0.13 0.00 0.49

Smoking 0.44 0.32 0.56 0.68 0.04 0.08 0.01 0.13

Cannabis 0.44 0.09 0.56 0.91 0.04 0.07 0.03 0.02

Alcohol 0.44 0.02 0.56 0.98 0.02 0.27 0.02 0.06

Abbreviations: BMI, Body Mass Index. All models were corrected for linear and quadratic 
age terms, sex, Tanner pubertal stage, race/ethnicity, estimated cell counts, and lab technical 
covariates. Significant P-values <0.05 are indicated in bold.

DISCUSSION

In this study we used longitudinal data to examine whether there is a 
potential causal link between a wide range of correlates of epigenetic aging 
and epigenetic aging. We attempted to elucidate whether correlates make 
the epigenetic clock “tick faster” (i.e., accelerate), by decomposing the 
correlations between each correlate and epigenetic aging into a subject- 
and wave-level contribution. If the wave-level contribution is not significantly 
different from zero, changes in correlates do not parallel changes in epigenetic 
aging, and a causal relationship will be rather unlikely. In general, we found 
higher subject-level (mean r=0.05) compared to wave-level contributions 
(mean r=0.01), but also found that some epigenetic correlates trended towards 
significant contributions on both subject- and wave-levels (i.e., cumulative 
childhood trauma exposure, cannabis use). However, as many of the wave-
level changes in correlates were unaccompanied by a change in epigenetic 
aging, caution is warranted in interpreting cross-sectional correlations with 
epigenetic aging as causal. It is important to bear in mind that the commonly 
used term “accelerated” epigenetic aging in cross-sectional studies may often 
be incorrect.

Alternative explanations exist for the limited support of potential causal 
effects. The model used in the current study correlated temporally coinciding 
measurements of epigenetic aging and correlates. However, it might be 
possible that changes in epigenetic correlates during childhood or adolescence 
may only be followed by changes in epigenetic aging at later time points. For 
example, the initial impact of trauma may magnify over time due to subsequent 
increases in health-risk behaviors such as smoking, substance use, and high-
risk activities [34, 35] that then over time accelerate aging processes. If so, 
we may not have detected the wave-level correlation between epigenetic 
aging and corresponding correlate due to the time needed for acceleration 
to take place. Furthermore, the wave-level correlations are more affected 
by measurement error than the subject-level correlations, attenuating the 
correlations and resulting in more severe underestimates of the wave-level 
contributions.

The current study can be expanded and its results may be followed up in 
several ways. For example, although we included individuals with multiple 
assessments, only ~55% and ~18% of the current sample had 2 or 3 linked 
measurements, respectively. Ideally, to distinguish correlates from causes of 
epigenetic aging [36], individuals need to be tracked over longer periods of 
time with more frequent sampling of methylation and health measurements 
to estimate their covariance with more precision [16]. The sequencing-based 
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methylation data considered in the current study did not allow us to apply 
other established epigenetic clocks. More work is thus needed to determine 
the generalizability of findings using other epigenetic clocks. In addition, it 
will be useful to study the generalizability of findings to other age ranges 
(e.g., late adulthood) and populations (e.g., other ethnicities). The temporal 
complexities in the current study also highlight the need for further modelling 
work in larger datasets that allow more hypothesis-free data mining to examine 
alternative time lags (e.g., correlating epigenetic aging at a certain wave with 
correlates from preceding or later waves). Future studies including individuals 
with a clinical diagnosis, rather than symptom counts, are also needed to 
determine whether psychiatric disorders accelerate epigenetic aging in 
patient populations. Finally, a natural progression of this work is to investigate 
which factors might be driving the subject-level contributions to epigenetic 
aging correlations, for example, by examining time invariant variables (e.g., 
genetics).

In summary, cross-sectional studies have shown correlations between 
epigenetic aging and a wide variety of variables. Using a longitudinal design, 
we found weak evidence for potential causal links between psychiatric 
problems, lifestyle variables, and adversities and biological aging, as changes 
in epigenetic correlates at a particular wave were often unaccompanied by 
parallel changes in epigenetic aging. Such covariance is a necessary, but 
not sufficient, condition for causality. Thus, caution is needed against causal 
interpretations of cross-sectional correlates of epigenetic aging.
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SUPPLEMENTARY MATERIALS

Do psychiatric problems, lifestyle variables and adversities 
accelerate epigenetic aging? 

SUPPLEMENTARY METHODS

Quality control of MBD-seq data in GSMS

DNA extraction and QC
DNA extraction was extracted from dry blood spots using the QIAamp DNA 
Mini Kit (Qiagen) and the concentration of double stranded DNA was assessed 
with the Qubit 2.0 Fluorometer (Invitrogen). Depending on the size of (the part 
of) the blood spot available the amount of extracted DNA spanned a broad 
range from ~10 ng to nearly 1 ug that was used for downstream methylomic 
analysis. 

MBD-seq

We used components of the MethylMiner™ Kit (Invitrogen) to enrich for DNA 
fragments with methylated CpGs (mCpG) via affinity purification with the 
methyl-CG binding domain protein (MBD2). DNA was sonicated to 100-150 
bp using a Covaris S2 ultra-sonicator. For each capture reaction, 15 μL (10 μL 
per μg DNA) of prepared MBD-beads (10 μg/uL beads; 350 ng/uL MBD-biotin 
protein) was incubated with 1.5 μg of fragmented DNA (200 μL final volume in 
1x Bind-Wash Buffer) for 1 hours, at room temperature, on an orbital shaker 
at 650 rpm. Each capture reaction was washed three times with 1x Bind-
Wash Buffer. The bound methylated fragments were recovered in three pooled 
elutions of 500 mM NaCl buffer (25% High Salt Elution Buffer, 75% Low Salt 
Elution Buffer v/v), and purified by ethanol precipitation. This optimal protocol 
was empirically determined, where we found that increased wash stringency, 
and elution with a low salt concentration improves the sensitivity/specificity of 
the assay for loci with modest numbers of CpG sites, giving better methylome-
wide representation [1–3]. The MBD enriched fractions were used to generate 
indexed libraries with the TruSeq Nano DNA HT Library Prep Kit (Illumina). 
Libraries were size-selected using SPRI beads to obtain a mean insert size of 
150 bp. The 75-bp single-end libraries were then pooled and sequenced on 
the NextSeq 500 using High-Output v2 chemistry (Illumina).

Quality control of methylation data and CpG score calculation

Reads were aligned (build hg19/GRCh37) with Bowtie2[4] using a seed-
and-extend approach combined with local alignment while allowing for 
gaps. Specifically, we used a 20 bp seed with zero mismatches. Rather than 
considering the entire read, local alignment was used to improve sensitivity 
by finding the maximum similarity score between the reference sequence and 
a substring of the extension that may be “trimmed” at both ends. Gaps were 
allowed to account for small indels.

We performed thorough quality control of samples, reads, and CpGs [5] 
using the RaMWAS Bioconductor package [6], which is specifically designed for 
large-scale methylation studies. The complete set of methylation data included 
methylation profiles from 1,202 dry blood spots from 571 unique individuals. 
Of the generated methylation profiles, 10 were excluded due to failed libraries 
or sequencing (mainly poor library quality or low number of reads) and 41 
profiles were excluded because of poor or failed enrichment (peak skewness, 
unexpected peak size and/or high background levels). After calling SNPs from 
the methylation sequencing reads using GATK [7], we tested for agreement 
of genotypes between different blood samples from the same subject [8]. We 
found 6 samples for which the genotype information did not match with the 
GWAS genotype information. This indicated that a sample swap, or sample 
contamination may have occurred. As it was impossible to determine whether 
the problem was caused by the GWAS or MWAS data, we conservatively 
excluded all six samples from further analysis. We used the R function ‘pcout’ 
in the ‘mvoutliers’ package (with the upper boundary for outlier detection set 
to 15, the scaling constant set to 0.5, and the boundary for final outliers set 
to 0.2) to identify multidimensional outliers using principal components of the 
methylation data as input. Fourteen samples were multidimensional outliers 
and omitted. Next, we compared methylation age, as estimated from the 
profiles [9], with reported chronological age. One sample swap was corrected. 
That is, for an individual the methylation age estimate indicated that the 
oldest and the youngest time points had been exchanged. The middle time 
point remained correct. Lab records further supported the correction of this 
swap. Furthermore, the reported sex in the phenotype files were checked 
for agreement with the overall amount of methylation detected on the sex 
chromosomes. No further sample swaps, or errors in the phenotype file were 
detected. However, for two samples, from a single individual, we observed a 
possible karyotypic abnormality of the sex chromosomes. Both samples from 
this individual were excluded from further analysis. Cell type proportion were 
estimated using a MBD specific reference panel [10] after cell sorting to obtain 
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DNA from the four common cell-types in blood[10]: T-cells (CD3+), monocytes 
(CD14+), granulocytes (CD15+), and B-cells (CD19+). Houseman method [11] 
was used to generate priors (the estimated means and twice the estimated 
standard deviations) to obtain final estimates by empirical Bayes using the 
R rstanarm package. We used the estimated cell-type proportions and cell-
type means in the reference panel to predict methylation levels in whole blood. 
These predicted methylation levels were correlated. A total of 84 samples were 
excluded because of low correlations (r<0.32). This left 1,045 samples, of which 
11 samples did not have any phenotypic data, resulting in 1,034 samples. For 
this project we further limited the selection to individuals who had a maximum 
of 3 DNA methylation assessments, as we could not run random permutations 
while preserving the subject-level dependence due to lack of other participants 
with >3 observations. This left a total of 1,029 samples from 539 participants.

The mean number of reads for samples used in this study was 59.7 million 
(SD=7.4 million) of which, on average, 99% aligned. Aligned reads were checked 
for excessive duplicate reads (>3 reads starting at the same location were reset 
to 1) and reads located in loci where alignment is challenging, determined by 
an in-silico experiment described elsewhere[5], were excluded. This left an 
average of 49.4 million (SD=7.4 million) reads per sample (=82.7% of all reads).

To identify CpGs, we combined reference genome sequence (hg19/GRCh37) 
with common SNPs calculated on the European super population from 1000 
Genomes (Phase 3). To avoid including sites that are CpGs in only a very small 
proportion of subjects, we excluded CpGs created by SNPs with minor allele 
frequency <1%. This resulted in 27,916,990 CpGs. CpGs in loci prone to 
alignment errors, e.g. in repetitive regions, were eliminated prior to the analysis. 
To identify these CpGs, we used RaMWAS to perform the in-silico alignment 
experiment outlined elsewhere [5]. In this experiment, the vast majority of CpGs 
(89.3%) were located in regions that showed perfect alignment coverage and 
only 1.3% (365,223 CpGs) showed evidence of alignment problems defined 
as 15% or more reads from this locus not aligning properly. Finally, akin to 
filtering SNPs with low minor allele frequency, we excluded rarely methylated 
sites (average read coverage <0.3). This left 22,670,747 autosomal CpGs for 
MWAS, which corresponds to 81% of all common CpGs in the human genome.

Quantifying methylation

A natural way to quantify methylation for MBD-seq is to count the number of 
fragments covering a CpG site. However, with single-end libraries the fragment 
sizes are not observed. Counting the number of reads instead, seriously 
underestimates the amount of methylation as the sequenced fragment is 

usually longer than the read. RaMWAS therefore first uses a non-parametric 
approach to estimate the fragment size distribution from the sequencing data 
using isolated CpGs [12]. The fragment size distribution is used to calculate the 
probability that a sequenced fragment will cover the CpG under consideration. 
For example, this probability is 1.0 for fragments with reads starting within one 
read-length of the CpG, but is ≤1.0 for fragments with reads starting more than 
one read-length away. The CpG score is then calculated by taking the sum of 
probabilities for all fragments aligning within proximity of the CpG.

Cell type measurements

To estimate cell type proportions, we used reference methylomes [11, 13]. 
Whole blood samples of six subjects were used to isolated cells with 5 clusters 
of differentiation (CD3, CD19, CD20, CD14, and CD15) that capture the most 
common cell types in blood (T-cells, B-cells, monocytes, and granulocytes). 
Cell populations were isolated by positive selection using EasySep™ kits 
(Stemcell technologies) that apply magnetic nanoparticles coated with 
antibodies against a particular surface antigen (CD molecules). All reference 
methylomes were generated using MBD-seq. In a previous paper we showed 
that the estimated cell type proportions effectively controlled for cell type 
heterogeneity in methylome-wide association studies[10].

Assessed measures

Tanner Pubertal Status
Self-ratings of pubertal status were made using Tanner stage pictorial 
assessments of breast and pubic hair development [14]. Such ratings show 
moderate correlations with physical examination based on Tanner stages 
[15]. With parental agreement, each child was provided with sex-appropriate 
schematic drawings and asked to rate her current status on each dimension. 
There was no evidence of differential associations of breast development and 
pubic hair with other pubertal measures (e.g., timing, sex steroid levels). The 
mean of the two ratings (breast development and pubic hair) was used as an 
overall index of morphological development (ranging from I-V for pre-pubertal 
to full maturity).
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Cumulative childhood trauma exposure
Cumulative childhood trauma exposure was assessed by taking the sum of the 
following list of events in the following categories: 1) Violence (violent death 
of loved one/sibling or peer, war, terrorism, cause of death or severe harm, 
victim of physical violence, physical abuse by relative, captivity), 2) Sexual 
trauma (sexual abuse, rape, coercion), and 3) other injury or trauma (diagnosis 
of physical illness, serious accident).

Number of functional impairments
Psychosocial impairment secondary to psychiatric symptomatology was also 
rated according to a series of criteria specified in the CAPA glossary and the 
interview schedule [16]. Broadly, some decrement in actual function had to be 
described for a positive rating to be given [17] for a full description of definitions 
and concept of impairment implemented in the CAPA). A cumulative score of 
the total number of functional impairments was measured by summarizing 
dichotomous indicators across 17 areas of disrupted functioning in areas 
such as relationship with parents, teachers, peers, ability to complete chores 
at home, and disrupted schoolwork [18]. Impairments have previously been 
related to emotional and behavioral reported symptoms.

DNA methylation age estimation

To avoid analyzing all CpGs, of which the majority will not be associated with 
outcome and only add “noise” to the model, we increased the number of sites 
included in the elastic net in steps (100, 1000, 2500, 5000, 10,000, 25,000, 
50,000, 75,000) until the explained variance of age did not improve anymore 
(Supplementary Figure S1). We previously performed tests where the 
number of CpGs/genes was included in the loop over the k-folds. However, as 
it produced very similar results but is much more computer intensive[19], this 
latter approach was not used. Of note, we also tested whether the previously 
built model in the Netherlands Study of Depression and Anxiety (NESDA) 
would generalize to the current dataset, even though the sample properties 
(e.g. adult age range of 18-64 years) were different, but this resulted in poorer 
prediction accuracy (r=0.83, R2=-0.80, MAE=6.61 years vs. r=0.93, R2=0.85, 
MAE=1.85 years; Supplementary Figure S2).

�

� � � � � � �

EN alpha = 0
�

Correlations:
Pearson
Spearman

Figure S1. Stepwise selection of methylation sites to be included in DNA methylation 
age estimator. We increased the number of sites included in the elastic net in steps until the 
explained variance of chronological age did not improve anymore, resulting in 25,000 
methylation sites included in the final prediction model (r=0.93 between chronological age 
vs. predicted DNA methylation age, R2=0.85).

Figure S2. Generalization of the NESDA (18-64 years) DNAm age estimator to the 
GSMS (9-35 years) sample. Application of the NESDA model[9] to the current dataset led 
to underestimated predictions resulting in poorer prediction accuracy (r=0.83, R2=-0.80, 
MAE=6.61).
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Bivariate mixed model

We have longitudinal data for DNAm age and the correlates of interest. This 
translates to a 3-level mixed model as responses Y are nested in wave (i.e., we 
have DNAm age and correlate information for each wave), which in turn is 
nested in subject (multiple longitudinal measurements per individual). Let be 
the response for variable i=1..2 (i.e., DNAm age and correlates), at wave j (j=1..
for number of subjects) and subject k (k=1..number of subjects). Assume 
dummy variable D1jk is coded 1 if for DNAm age and 0 for the correlate variable 
and dummy variable D2jk = 1- D1jk which is coded 1 if for the correlate variable 
and 0 for DNAm age. The model can now be written as:

Chronological age (Age) needs to be regressed out so that we study the 
residuals of that represent the biogical age of subject k at wave j. In addition, 
the model includes a set of 
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such as Age2, sex or lab technical variables.
To decompose the correlation between epigenetic aging and health 

correlates in a subject and wave contribution, we first write the model as: 
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ABSTRACT

Major depressive disorder (MDD) is associated with an increased risk of 
brain atrophy, aging-related diseases, and mortality. We examined potential 
advanced brain aging in adult MDD patients, and whether this process is 
associated with clinical characteristics in a large multi-center international 
dataset. We performed a mega-analysis by pooling brain measures derived 
from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging 
was estimated by predicting chronological age (18-75 years) from 7 subcortical 
volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total 
intracranial volume measures separately in 952 male and 1,236 female controls 
from the ENIGMA MDD working group. The learned model coefficients were 
applied to 927 male controls and 986 depressed males, and 1,199 female 
controls and 1,689 depressed females to obtain independent unbiased brain-
based age predictions. The difference between predicted “brain age” and 
chronological age was calculated to indicate brain predicted age difference 
(brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 
(SE 0.22) years (Cohen’s d=0.14, 95% CI 0.08-0.20) compared to controls. 
However, this difference did not seem to be driven by specific clinical 
characteristics (recurrent status, remission status, antidepressant medication 
use, age of onset or symptom severity). This highly-powered collaborative 
effort showed subtle patterns of age-related structural brain abnormalities in 
MDD. Substantial within-group variance and overlap between groups were 
observed. Longitudinal studies of MDD and somatic health outcomes are 
needed to further assess the clinical value of these brain-PAD estimates.

INTRODUCTION

Major Depressive Disorder (MDD) is associated with an increased risk of 
cognitive decline [1], metabolic dysregulation [2], and cellular aging [3, 4] 
indicating that the burden of MDD goes beyond mental ill-health and functional 
impairment, and extends to poor somatic health [5], and age-related diseases 
[6]. Moreover, MDD increases the risk of mortality [7], and not only through 
death by suicide [8]. Simultaneously, depression and aging have been linked 
to poor quality of life and increased costs for society and healthcare [9]. This 
underscores the importance of identifying brain aging patterns in MDD patients 
to determine whether and how they deviate from healthy patterns of aging.

Current multivariate pattern methods can predict chronological age from 
biological data (see Jylhava, Pedersen, and Hagg for a review) [10] with high 
accuracy. Similarly, chronological age can be predicted from brain images, 
resulting in an estimate known as “brain age” [11]. Importantly, by calculating 
the difference between a person’s estimated brain age and their chronological 
age, one can translate a complex aging pattern across the brain into a 
single outcome: brain-predicted age difference (brain-PAD). A positive brain-
PAD represents having an ‘older’ brain than expected for a person of their 
chronological age, whereas a negative brain-PAD signals a ‘younger’ brain 
than expected at the given chronological age. Higher brain-PAD scores have 
been associated with greater cognitive impairment, increased morbidity, 
and exposure to cumulative negative fateful life events [11, 12]. For a review 
summarizing brain age studies from the past decade, see Franke & Gaser 
(2019) [13]). 

Prior studies from the Enhancing NeuroImaging Genetics through Meta-
analysis (ENIGMA)-MDD consortium with sample sizes over 9,000 participants 
have shown subtle reductions in subcortical structure volumes in major 
depression that were robustly detected across many samples worldwide. 
Specifically, smaller hippocampal volumes were found in individuals with 
earlier age of onset and recurrent episode status [14]. In addition, different 
patterns of cortical alterations were found in adolescents vs. adults with MDD, 
suggesting that MDD may affect brain morphology (or vice versa) in a way 
that depends on the developmental stage of the individual [15]. Thus, subtle 
structural brain abnormalities have been identified in MDD. However, whether 
a diagnosis of MDD is associated with the multivariate metric of brain aging in 
a large dataset, and which clinical characteristics further impact this metric, 
remains elusive.

Accumulating evidence from studies suggests that, at the group level, 
MDD patients follow advanced aging trajectories, as their functional (e.g. 
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walking speed, handgrip strength) [16] and biological state (e.g. telomeres, 
epigenetics, mitochondria) [17–20] reflects what is normally expected at an 
older age (i.e. biological age “outpaces” chronological age).[21] It is important 
to examine whether biological aging findings in depression can be confirmed 
in a large heterogeneous dataset consisting of many independent samples 
worldwide, based on commonly derived gray matter measures. Only a handful 
of studies have investigated brain-PAD in people with psychiatric disorders, 
showing older brain-PAD in schizophrenia, borderline personality disorder, 
and first-episode and at-risk mental state for psychosis, yet findings were less 
consistent in bipolar disorder (for an overview, see Cole et al., 2018) [22].

Only three studies to date specifically investigated machine-learning-
based brain aging in MDD - using relatively small samples of <211 patients, 
with inconsistent findings of a brain-PAD of +4.0 years vs. no significant 
differences [23–25]. The current study is the first to examine brain aging in 
over 6,900 individuals from the ENIGMA MDD consortium (19 cohorts, 8 
countries worldwide), covering almost the entire adult lifespan (18-75 years). 
Our additional aim was to build a new multi-site brain age model based on 
FreeSurfer regions of interest (ROIs) that generalizes well to independent data 
to promote brain age model deployability and shareability. We hypothesized 
higher brain-PAD in MDD patients compared to controls. We also conducted 
exploratory analyses to investigate whether higher brain-PAD in MDD patients 
was associated with demographics (age, sex) and clinical characteristics 
such as disease recurrence, antidepressant use, remission status, depression 
severity, and age of onset of depression.

METHODS

Samples

Nineteen cohorts from the ENIGMA-MDD working group with data from 
MDD patients and controls (18-75 years of age) participated in this study 
(Supplementary Table S1). MDD was ascertained using the clinician-rated 
HDRS-17 in one cohort and diagnostic interviews in all other cohorts. Details 
regarding demographics, clinical characteristics, and exclusion criteria for 
each cohort may be found in Supplementary Tables S1-4. Because the 
literature suggests differential brain developmental trajectories by sex [26], 
we estimated brain age models separately for males and females. Sites with 
less than ten healthy controls were excluded from the training dataset and 
subsequent analyses (for exclusions see supplementary material). In total, 

we included data from N=6,989 participants, including N=4,314 controls 
(N=1,879 males; N=2,435 females) and N=2,675 individuals with MDD (N=986 
males; N=1,689 females). All sites obtained approval from the appropriate local 
institutional review boards and ethics committees, and all study participants 
or their parents/guardians provided written informed consent.

Training and test samples

To maximize the variation of chronological age distribution and scanning sites 
in the training samples, and to maximize the statistical power and sample 
size of patients for subsequent statistical analyses, we created balanced 
data splits within scanning sites preserving the chronological age distribution,  
Figure 1A. The full motivation to our data partition approach can be found in the 
supplementary material. Structural brain measures from 952 males obtained 
from 16 scanners and 1,236 female controls obtained from 22 scanners were 
included in the training samples. The top panel in Figure 1B shows the age 
distribution in the training sample. A hold-out dataset comprising controls 
served as a test sample to validate the accuracy of the brain age prediction 
model; 927 male and 1,199 female controls from the same scanning sites 
were included. Likewise, 986 male and 1,689 female MDD patients from the 
corresponding scanning sites were included in the MDD test sample. The two 
bottom panels in Figure 1B show the age distributions across the test samples.

Image processing and analysis

Structural T1-weighted scans of each subject were acquired at each site. 
To promote data sharing and to maximize the efficiency of pooling existing 
datasets, we used standardized protocols to facilitate harmonized image 
analysis and feature extraction (N=153) across multiple sites (http://enigma.
ini.usc.edu/protocols/imaging-protocols/). Cortical parcellations were based 
on the Desikan/Killiany atlas [27]. Briefly, the fully-automated and validated 
segmentation software FreeSurfer was used to segment 14 subcortical gray 
matter regions (nucleus accumbens, amygdala, caudate, hippocampus, 
pallidum, putamen, and thalamus), 2 lateral ventricles, 68 cortical thickness, and 
68 surface area measures, and total intracranial volume (ICV). Segmentations 
were visually inspected and statistically examined for outliers. Further details 
on cohort type, image acquisition parameters, software descriptions, and 
quality control may be found in Supplementary Table S3. Individual-level 
structural brain measures and clinical and demographic measures from each 
cohort were pooled at a central site to perform the mega-analysis.
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Figure 1. Data partition approach. (A) Schematic illustration of features used and data 
partition into training and test samples, separately for males and females. A full list of features 
can be found in the supplement (B) Data from control groups (blue) were partitioned into 
balanced 50:50 splits within each scanning site following random sampling but preserving 
the overall chronological age distribution. Major depressive disorder (MDD) groups are 
shown in red. The top panel illustrates the male (left) and female (right) training samples. The 
middle and bottom panels show the male (controls: mean [SD] in years,  43.1 [15.3]; MDD: 
42.8 [13.1]) and female test samples (controls: 39.4 [15.7]; MDD: 43.2[14.0]). ICV, intracranial 
volume.

FreeSurfer brain age prediction model

To estimate the normative brain age models, we combined the FreeSurfer 
measures from the left and right hemispheres by calculating the mean 
((left+right)/2) of volumes for subcortical regions and lateral ventricles, 
and thickness and surface area for cortical regions, resulting in 77 features 
(Supplementary Table S5). Using a mega-analytic approach, we first estimated 
normative models of the association between the 77 average structural brain 
measures and age in the training sample of controls (separately for males and 
females) using Ridge Regression, from the Python-based sklearn package [28]. 
All brain measures were combined as predictors in a single multivariate model. To 
assess model performance, we performed 10-fold cross-validation. To quantify 
model performance, we calculated the mean absolute error (MAE) between 
predicted brain age and chronological age. The literature suggests nonuniform 
age-related changes for cortical thickness, surface area, and subcortical 
volumes [29], which is further supported by empirical evidence showing that 
brain morphology is under control of distinct genetic and developmental 
pathways [30–33]. We therefore included all three feature modalities in our brain 
age prediction framework. Of note, we also tested whether reducing feature 
space by including only single modalities (only cortical thickness vs. cortical 
surface area vs. subcortical volume features) would improve model fit, but 
this resulted in poorer performance accuracy than combining all 77 features. 
Moreover, we also: (1) estimated a model including left and right hemisphere 
features separately, (2) compared the Ridge Regression to other machine 
learning methods, (3) regressed features on ICV instead of including ICV as 
a separate feature, none of which resulted in significantly superior prediction 
accuracy (results are provided in Supplementary Table S6).

Model validation

Model performance was further validated in the test sample of controls. The 
parameters learned from the trained model in controls were applied to the test 
sample of controls and to the MDD test samples to obtain brain-based age 
estimates. To assess model performance in these test samples, we calculated: 
a) MAE; b) Pearson correlation coefficients between predicted brain age 
and chronological age; and c) the proportion of the variance explained by 
the model (R²). To evaluate generalizability to completely independent test 
samples (acquired on completely independent scanning sites), we applied the 
training model parameters to control subjects (males, N=610; females, N=720) 
from the ENIGMA Bipolar Disorder (BD) working group.
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Statistical analyses

All statistical analyses were conducted in the test samples only. Brain-PAD 
(predicted brain-based age - chronological age) was calculated for each 
individual and used as the outcome variable. While different prediction models 
were built for males and females, the generated brain-PAD estimates were 
pooled for statistical analyses.

Each dependent measure of the ith individual at jth scanning site were 
modelled as follows:

 
1. Brain-PADij = Intercept + β1(Dx) + β2(Sex) + β3(Age) + β4(Age2) + β5(Dx × Age) 

+ β6(Dx × Sex) + β7(Age × Sex) + β8(Dx × Age × Sex) + Uj + εij

2. Brain-PADij = Intercept + β1(Dx) + β2(Sex) + β3(Age) + β4(Age2) + β5(Dx × Age) 
+ β6(Dx × Sex) + Uj + εij

3. Brain-PADij = Intercept + β1(Dx) + β2(Sex) + β3(Age) + β4(Age2) + Uj + εij

 
Intercept, Dx (MDD diagnosis), sex, and all age effects were fixed. The 

term Uj and εij are normally distributed and represent the random intercept 
attributed to the scanning site and the residual error, respectively.

Following Le and colleagues [34], we post hoc corrected for the residual 
age effects on the brain-PAD outcome in the test samples by adding age as 
a covariate to our statistical models. However, we found remaining nonlinear 
age effects on our brain-PAD outcome [35], and included both linear and 
quadratic age covariates as it provided significantly better model fit to our data 
compared to models with a linear age covariate only (χ2(2)=9.73, p<0.002). For 
more details see supplementary material.

Within MDD patients, we also used linear mixed models to examine 
associations of brain-PAD with clinical characteristics, including recurrence 
status (first vs. recurrent episode), antidepressant use at time of scanning 
(yes/no), remission status (currently depressed vs. remitted), depression 
severity at study inclusion (the 17-item Hamilton Depression Rating Scale 
(HDRS-17) and the Beck Depression Inventory (BDI-II)), and age of onset of 
depression (categorized as: early, <26 years; middle adulthood, >25 & <56 
years; and late adulthood onset, >55 years). Analyses were tested two-sided 
and findings were False Discovery Rate (FDR) corrected and considered 
statistically significant at p<0.05.

Finally, to gain more insight into the importance of features for making 
brain age predictions we: a) calculated structure coefficients (i.e. Pearson 
correlations between predicted brain age and each feature) in the test samples 
only for illustrative purposes, b) explored single modality (either subcortical 

volumes or cortical thickness or cortical surface area features) trained models, 
and c) perturbed features (either subcortical volumes or cortical thickness or 
cortical surface area) by setting their values to zero in the test samples and 
examining the changes in performance.[36]

RESULTS

Brain age prediction performance

Supplementary Figure S1 and Supplementary Table S7 illustrate the 
systematic bias in brain age estimation and the correction we applied. Within 
the training set of controls, under cross-validation, the structural brain measures 
predicted chronological age with a MAE of 6.32 (SD 5.06) years in males and 
6.59 (5.14) years in females. When applying the model parameters to the test 
samples of controls, the MAE was 6.50 (4.91) and 6.84 (5.32) years for males 
and females, respectively. Similarly, within the MDD group, the MAE was 6.72 
(5.36) and 7.18 (5.40) years for males and females, respectively. Figure 2 
shows the correlation between chronological age (y-axis) and predicted brain 
age (x-axis) [37] in the cross-validation training sample (males r=0.85, p<0.001 
and females and r=0.854, p<0.001, both R2=0.72), out-of-sample controls 
(males r=0.85, p<0.001; R²=0.72 and females r=0.83, p<0.001; R²=0.69), 
and MDD test samples (males r=0.77, p<0.001; R2=0.57 and females r=0.78, 
p<0.001; R2=0.59), and the generalization to completely independent healthy 
control samples of the ENIGMA Bipolar Disorder working group (MAE=7.49 
[SD 5.89]; r=0.71, p<0.001; R2=0.45 for males and MAE=7.26 [5.63]; r=0.72, 
p<0.001; R2=0.48, for females).
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Figure 2. Brain age prediction based on 7 FreeSurfer subcortical volumes, lateral 
ventricles, 34 cortical thickness and 34 surface area measures, and total intracranial 
volume. The plots show the correlation between chronological age and predicted brain 
age in the 10-fold cross-validation of the ridge regression in the control train sample, the 
out-of-sample validation of the test samples (controls and MDD patients) from the ENIGMA 
MDD working group, and generalizability to completely independent test samples (controls 
only) from the ENIGMA BD working group (top to bottom). The colors indicate scanning 
sites and each circle represents an individual subject. Diagonal dashed line reflects the line 
of identity (x=y).

Added brain aging in MDD

Uncorrected mean brain-PAD scores were -0.20 (SD 8.44) years in the control 
and +0.68 years (SD 8.82) in the MDD group. Individuals with MDD showed 
+1.08 (SE 0.22) years higher brain-PAD than controls (p<0.0001, Cohen’s 
d=0.14, 95% CI 0.08-0.20) adjusted for age, age2, sex, and scanning site 
(Figure 3). Additionally, we found significant main effects for age (b=-0.28, 
p<0.0001) and age2 (b=-0.001 p<0.01). Our analyses revealed no significant 
three-way interaction between diagnosis-by-age-by-sex, nor significant two-
way interactions (diagnosis-by-age or diagnosis-by-sex). Of note, since there 
were no significant interactions with age or age2 and MDD status, and the 
residual age effects in the brain-PAD estimates did not influence our primary 
finding. Given that our model showed higher errors in individuals >60y, we 
performed a sensitivity analysis by including only participants within the 18-
60y age range. Here, we found a slightly increased effect of diagnostic group 
(MDD +1.16y [SE 0.24] higher brain-PAD than controls [p<0.0001, Cohen’s 
d=0.15, 95% CI 0.09-0.21]).

Figure 3. Case-control differences in brain aging. Brain-PAD (predicted brain age - 
chronological age) in patients with major depressive disorder (MDD) and controls. Group 
level analyses showed that MDD patients exhibited significantly higher brain-PAD than 
controls (b=1.08, p<0.0001), although large within-group variation and between-group 
overlap is observed as visualized in (A) the density plot and (B) the Engelmann-Hecker plot. 
The brain-PAD estimates are adjusted for chronological age, age2, sex and scanning site.

The relative importance of thickness features

All features, except the mean lateral ventricle volume, and entorhinal and 
temporal pole thickness showed a negative correlation with predicted 
brain age, and are visualized in Figure 4. Widespread negative correlations 
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with average cortical thickness and surface area were observed, although 
thickness features resulted in stronger negative correlations (mean Pearson 
r [SD]: -0.44 [0.21]) than surface area features (-0.17 [0.08]). On average, 
subcortical volumes were slightly less negatively correlated to predicted 
brain age as thickness features (-0.34 [0.34]). Single modality models and 
ICV performed worse than a combined model including all modalities. Test 
performance was most negatively affected by the perturbation of thickness 
features (Supplementary Tables 8-9).
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Figure 4. Structure coefficients of predicted brain age and FreeSurfer features across 
control and major depressive disorder (MDD) groups. Bivariate correlations are shown 
for illustrative purposes and to provide a sense of importance of features in the brain 
age prediction. The figure shows Pearson correlations between predicted brain age and 
cortical thickness features (top row), cortical surface areas (middle row), and subcortical 
volumes (bottom row). The negative correlation with ICV was excluded from this figure 
for display purposes. 

Brain aging and clinical characteristics

Compared to controls, significant brain-PAD differences in years were observed 
in patients with a remitted disease status (+2.19 years, p<0.0001, d=0.18), 
with a current depression (+1.5y, p<0.0001, d=0.18), in those that were using 
antidepressant medication at the time of scanning (+1.4y, p<0.0001, d=0.15), 
medication-free depressed patients (+0.7y, p=0.0225, d=0.07), patients with 
a late adult-onset of depression (+1.2y, p=0.01, d=0.12), patients with an age 
of onset of MDD in mid-adulthood (+0.9y, p=0.0005, d=0.11), patients with an 
early age of onset of depression (<26 years; +1.0y, p=0.0004, d=0.11), first-
episode patients (+1.2y, p=0.0002, d=0.13) and recurrent depressed patients 
(+1.0y, p=0.0002, d=0.11)(Table 1). Importantly, post hoc comparisons 
between the MDD subgroups did not show any significant differences (i.e., 
first vs. recurrent episode, antidepressant medication-free vs. antidepressant 
users, remitted vs. currently depressed patients, or early vs. adult vs. late 
age of onset of depression). Mean brain-PAD was above zero in all MDD 
subgroups, indicating that all MDD subgroups were estimated to be older 
than expected based on the brain age model compared to controls. Finally, 
there were no significant associations with depression severity or current 
depressive symptoms (self-reported BDI-II [b=0.04, p=0.06] or clinical-based 
HDRS-17 [b=-0.02, p=0.48] questionnaires) at the time of scanning within the 
MDD sample.

DISCUSSION

Using a new parsimonious multi-site brain age algorithm based on FreeSurfer 
ROIs from over 2,800 males and 4,100 females, we found subtle age-
associated gray matter differences in adults with major depressive disorder 
(MDD). At the group level, patients had, on average, a +1.08 years greater 
discrepancy between their predicted and actual age compared to controls. 
Significantly larger brain-PAD scores were observed in all patient subgroups 
compared to controls (with Cohen’s d effect sizes ranging from 0.07-0.18), 
indicating that the higher brain-PAD in patients was not driven by specific 
clinical characteristics (recurrent status, remission status, antidepressant 
medication use, age of onset or symptom severity). This study confirms 
previously observed advanced cellular aging in MDD at the brain level of 
analysis, however, it is important to mention the large within-group and small 
between-group variance, demonstrating that many patients did not show 
advanced brain aging. We were not able to investigate all potential clinical, 
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biological and other sources that could explain the large within-group variance 
of brain-PAD in MDD patients. Future studies, ideally with in-depth clinical 
phenotyping and longitudinal information on mental and somatic health 
outcomes (e.g., genomic variation, omics profiles, comorbidities, duration of 
illness, lifestyle, inflammation, oxidative stress, chronic diseases), are required 
to further evaluate the predictive value of the brain-PAD estimates, potentially 
by using our publicly available brain age model (https://www.photon-ai.com/
enigma_brainage).

Perhaps surprisingly, we found higher brain-PAD in antidepressant users 
(+1.4y) compared to controls and antidepressant-free patients (+0.7y) and 
controls, although the difference between patient groups was not significant. 
Antidepressants are suggested to exert a neuroprotective effect, for example 
by promoting brain-derived neurotrophic factor (BDNF) [38]. However, patients 
taking antidepressant medication at the time of scanning likely had a more 
severe or chronic course of the disorder [14, 15]. Therefore, the larger brain-
PAD in antidepressant users may be confounded by severity or course of the 
disorder. Unfortunately, the cross-sectional nature of the current study and 
the lack of detailed information on lifetime use, dosage and duration of use of 
antidepressants, do not allow us to draw any conclusions regarding the direct 
effects of antidepressants on brain aging. In addition, it remains to be elucidated 
how adaptable brain-PAD is in response to pharmacotherapy. Randomized 
controlled intervention studies are needed to develop an understanding of 
how reversible or modifiable brain aging is in response to pharmacological 
and non-pharmacological strategies (e.g., psychological, exercise and/or 
nutritional interventions), as seen in other biological age indicators [21, 39].

Our brain-PAD difference (+1.1y) is attenuated in contrast to earlier work 
showing +4.0 years of brain aging in a smaller sample of MDD patients in a 
study by Koutsouleris et al. (N=104) [23]. However, a recent study by Kaufmann 
and colleagues (2019) found a similar effect size to ours in 211 MDD patients 
(18-71 years), albeit non-significant [25]. Although the MAE of our models 
(6.6y in age range of 18-75y) is higher than in e.g. the study by Koutsouleris et 
al, 2014 (4.6y in age range of 18-65y), a simple calculation shows that, when 
scaled to covered age range, the studies show comparable MAE (0.11 vs. 
0.10, respectively) [40]. As the range of possible predictions (age range) carry a 
strong bearing on prediction accuracy, increasingly wider ranges of outcomes 
become more challenging to predict [11]. Several methodological differences 
may underlie the inconsistencies or differences in magnitude of brain age 
effects in MDD, including, but not limited to: (1) the use of high-dimensional 
features such as whole-brain gray matter maps in the Koutsouleris et al. study 
vs. a much lower number of input features (Freesurfer ROIs) in our study, 

although the Kaufmann et al. study included multimodal parcellations and 
found similar brain age effects in MDD as we observed; (2) the composition 
of training and test data, including number of scanners in both sets, with 5 
scanners included in the Koutsouleris et al. study vs. 22 in our study vs. 68 
scanners in Kaufmann et al.; (3) sample sizes of training and test data (N=800 
in training set and N=104 in MDD test set in Koutsouleris et al. vs. N>950 in 
training set and N>980 in MDD test set in our current study vs. N>16K training 
set and N=211 in MDD test set in Kaufmann et al.); and (4) heterogeneity 
of MDD and differences in patient characteristics between the studies. The 
inconsistencies between brain-PAD findings in MDD might be due to any 
(combination) of the sources of variation outlined above and precludes a direct 
comparison of these studies. Unfortunately, a methodological comparison is 
beyond the scope of our study and beyond our capability given data access 
limitations within ENIGMA MDD. Nevertheless, the current results are based 
on the largest MDD sample to date and likely provide more precise estimates 
regardless of the size of the effect [41, 42].

The current findings in MDD also show lower brain aging than previously 
observed in schizophrenia (SCZ) (brain-PAD ranges from +2.6 - +5.5y) [23, 40], 
even in the early stages of first episode SCZ. Inconsistent findings have been 
reported in bipolar disorder (BD), with “younger” brain age or no differences 
compared to controls [11]. While the same sources of variation described 
above in comparing our findings to previous brain aging findings in MDD 
also apply here, brain abnormalities might be subtler in MDD compared to 
BD or SCZ. This is in line with previous ENIGMA studies in SCZ, BD and 
MDD, showing the largest effect sizes of structural brain alterations in SCZ 
[43, 44] (highest Cohen’s d effect size -0.53), followed by BD [45, 46] (highest 
Cohen’s d -0.32) and MDD (highest Cohen’s d -0.14) [14, 15]. Conceivably 
more in line with MDD pathology [47], Liang and colleagues (2019) showed 
significantly higher brain-PAD in post-traumatic stress disorder (PTSD) using 
similar ridge regression and bias correction methods to the current paper [48]. 
This is consistent with similar effect sizes of structural alterations of individual 
brain regions observed across MDD and PTSD in large scale studies (highest 
Cohen’s d -0.17) [49].

Inflammation may be a common biological mechanism between MDD and 
brain aging [50]. Neuroimmune mechanisms (e.g. pro-inflammatory cytokines) 
influence biological processes (e.g. synaptic plasticity), and inflammatory 
biomarkers are commonly dysregulated in depression [51]. One study showed 
that brain-PAD was temporarily reduced by 1.1 years due to the probable 
acute anti-inflammatory effects of ibuprofen, albeit in healthy controls [52]. In 
MDD, both cerebrospinal fluid and peripheral blood interleukin (IL)-6 levels are 
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elevated [53]. Moreover, work by Kakeda and colleagues (2018) demonstrated 
a significant inverse relationship between IL-6 levels and surface-based 
cortical thickness and hippocampal subfields in medication-free, first-episode 
MDD patients [54]. This accords with the current study that increased brain-
PAD was also observed in first-episode patients compared to controls, 
perhaps suggesting that neuroimmune mechanisms may be chief candidates 
involved in the brain morphology alterations, even in the early stage of illness. 
Further, the age-related structural alterations in MDD may also be explained 
by shared underlying (epi)genetic mechanisms involved in brain development 
and plasticity (thereby influencing brain structure) and psychiatric illness. For 
instance, Aberg and colleagues (2018) showed that a significant portion of the 
genes represented in overlapping blood-brain methylome-wide association 
findings for MDD was important for brain development, such as induction of 
synaptic plasticity by BDNF [55].

In terms of individual FreeSurfer measures that contributed most to the 
brain age prediction, we particularly found widespread negative correlations 
between predicted brain age and average cortical thickness and subcortical 
volume, and comparably weaker correlations with surface area features  
(Figure 4). We visualized these associations separately for controls and 
MDD patients, but findings were similar and suggest comparable structure 
coefficients in both groups (Supplementary Figure S2). Notably, we did 
not include a spatial weight map of our brain age model, as the weights 
(although linear) are obtained from a multivariable model, and do not allow 
for a straightforward interpretation of the importance of the brain regions 
contributing to the aging pattern. Instead, exploratory analyses pointed out 
that our model relied most on the cortical thickness features in order to make 
good predictions. This is consistent with existing literature that supports 
the importance and sensitivity of cortical thickness towards aging, different 
from surface areas [56]. However, models including the largest feature set 
demonstrated the best performance (Supplementary Tables S8-10).

Limitations and future directions

While our results are generally consistent with existing literature on advanced 
or premature biological aging and major depression using other biological 
indicators, we also have to acknowledge some limitations. First, limited 
information was available on clinical characterization due to the lack of 
harmonization of data collection across participating cohorts. However, we 
provided all participating sites with their brain-PAD estimates, and encouraged 
them to characterize brain-PAD determinants in more detail (for example, 

using more in-depth phenotyping or examining associations with longitudinal 
outcomes). Second, we did not have access to raw individual-level data 
and future studies could include higher-dimensional gray matter features or 
additional modalities such as white matter volumes, hyperintensities and/
or microstructure, or functional imaging data to examine whether model fit 
can be improved. However, we must also appreciate a pragmatic approach 
for collating data from such a large number of scanning sites. Here, we 
developed a parsimonious model based on FreeSurfer features collected with 
standardized ENIGMA extraction scripts to promote model sharing. While 
pooling harmonized data from many sites increases (clinical) heterogeneity, 
it also makes predictive models less susceptible to overfitting and more 
generalizable to other populations,[57] even though this might have come at the 
cost of lower accuracy [58]. Finally, the large within-group variance regarding 
the brain-PAD outcome in both controls and MDD (Figure 3), compared to the 
small between-group variance, renders the use of this brain aging indicator 
for discriminating patients and controls at the individual level difficult. As 
many of the MDD patients do not show advanced brain aging compared to 
controls, the clinical significance of the observed higher brain-PAD in MDD 
patients may be limited. Aberrant brain aging is not specific to MDD [11, 13, 
22, 25], and it remains to be elucidated whether age-related brain atrophy is a 
consequence or cause of MDD. While currently brain age certainly would not 
constitute a viable biomarker for the diagnosis of depression based on our 
findings, it could potentially be used to identify those MDD patients at greater 
risk of poorer brain- or general health outcomes, given previous associations 
of older-appearing brains relating to cognitive decline, dementia, and death 
[59–62]. Future longitudinal studies examining the association between 
brain-PAD and mental, neurological or general health outcomes specifically 
in individuals with MDD are required to determine whether brain-PAD could 
provide a clinically useful biomarker.

Conclusions

In conclusion, compared to controls, both male and female MDD patients 
show advanced brain aging of around 1 year. This significant but subtle sign of 
advanced aging is consistent with other studies of biological aging indicators 
in MDD at cellular and molecular levels of analysis (i.e., telomere length 
and epigenetic age). The deviation of brain metrics from normative aging 
trajectories in MDD may contribute to increased risk for mortality and aging-
related diseases commonly seen in MDD. However, the substantial within-
group variance and overlap between groups signify that more (longitudinal) 
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work including in-depth clinical characterization and more precise biological 
age predictor systems are needed to elucidate whether brain age indicators 
can be clinically useful in MDD. Nevertheless, our work contributes to the 
maturation of brain age models in terms of generalizability, deployability, and 
shareability, in pursuance of a canonical brain age algorithm. Other research 
groups with other available information on longitudinal mental and somatic 
health outcomes, other aging indicators, and incidence and/or prevalence 
of chronic diseases may use our model to promote the continued growth of 
knowledge in pursuit of useful clinical applications.
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SUPPLEMENTARY MATERIALS

Brain aging in Major Depressive Disorder

Image exclusion criteria

A neuroimaging expert at each scanning site inspected each image 
segmentation by overlaying the segmentation label of each structure on the 
T1-weighted brain scan. Additionally, study-wide statistics were collected 
(means and standard deviations) as well as histogram plots to identify non-
normally distributed data and major outliers. Samples were excluded if its 
FreeSurfer feature was >2.698 standard deviations away from the global mean. 
If a sample was marked as a statistical outlier, the individual site was asked 
to re-inspect the subject’s segmentation in order to verify that it was properly 
segmented. If a sample was a statistical outlier, yet properly segmented, it 
was kept in the dataset. Otherwise, the sample was removed.

Quality checking and sample exclusion criteria

The initial dataset included 35 scanning sites with an age range of 7-89 years 
old based on N=8,369 samples. However, due to scarcity of samples around 
the upper age boundary and to develop an adult model in the context of aging, 
we excluded those below 18 years and above 75 years old. Subsequently, the 
chronological age variable was floored, as some sites included one or two 
decimals in their age variable, while others did not. We checked individual 
FreeSurfer features for missings and excluded participant samples with 
>10% missing data, suggestive of poor reliability. The above criteria led to 
an exclusion of N=713 participants, resulting in the total sample of N=7,656. 
The total sample of (N=7,656) was partitioned into datasets of controls and 
major depressive disorder (MDD) patients, separately for males and females, 
including N=2,158 male controls and N=1,139 male MDD patients, and 
N=2,532 female controls and N=1,827 female MDD patients.

Data partitioning

We divided healthy controls from each of the scanning sites into separate 
training (subset to train the model) and test samples (subset to test the trained 
model) using a balanced split-half approach. The 50:50 data partitioning was 
performed following random sampling within each of these scanning sites 
while preserving the chronological age distribution between training and 
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test data using the createDataPartition function from the “caret” package in 
R. Whereas multiple approaches to partitioning datasets intro training and 
test samples were possible, we would like to explain our motivation for the 
specific approach used. By dividing the control subjects from each scanning 
site into equal parts of training and test data, we optimally maximize: a) the 
chronological age distribution and variety of scanning sites in our training set 
to increase generalizability, and b) the statistical power and sample size of 
MDD patients for subsequent statistical analyses in the test sets to answer 
our main research question. To clarify, not all scanning sites cover the wide 
age range (18-75 years of age) and chronological age and scanning site were 
therefore correlated.

Following an alternative data partition approach, we could train our model 
on control subjects from scanning sites (e.g. A, B, C) to test on a held-out set 
of other scanning sites (e.g. X, Y, Z). However, with that approach, we would 
need to exclude the corresponding MDD patients from those sites (A, B, C) 
from subsequent statistical analyses performed on the test data (i.e. controls 
vs. MDD patients). This is because the model would be trained on controls 
from the same scanning sites as those patients (both A, B, C), whereas the 
remaining patients and controls would be from completely independent 
scanning sites (X, Y, Z). If MDD patients from those scanning sites would be 
included, it would introduce a bias of learned patterns from the scanning 
sites for a part of the MDD patients (A, B, C) but not for the other part of 
MDD patients or any of the healthy controls (X, Y, Z). As a wider variety of 
scanners also improves the subsequent generalization to independent unseen 
data, we have opted for the data partition approach reported in the main 
manuscript. This is further supported by the generalization of our multisite 
models to the ENIGMA Bipolar Disorder working group dataset collected from 
23 independent scanning sites.

Scanning sites with less than 20 control samples were excluded from the 
data partitioning, ensuring that training and test datasets both included at 
least 10 samples. Corresponding MDD patients from those scanning sites 
were also excluded. Thus, 16 scanning sites remained in the male sample 
(N=279 participants were excluded), compared to 22 scanning sites in the 
female sample (N=97 participants were excluded). The final training sample 
consisted of N=952 male controls and N=1,236 female controls. The final test 
samples consisted of N=927 male controls and N=986 depressed males and 
N=1,199 female controls and N=1,689 female depressed patients.

Brain age prediction framework

The correlation between brain-PAD and chronological age

We observed a significant correlation between brain-PAD and chronological 
age (Supplementary Figure S1A and S1B; Supplementary Table S7), which 
is a known phenomenon in any brain age prediction framework. Since age is 
the variable being predicted, the model is fitted to minimize the error around 
predicted age and not the error around observed age. This commonly leads to 
young people being systematically predicted to be older and old people to be 
systematically predicted younger. Currently, three excellent papers describe 
this “regression dilution” phenomenon in brain age prediction models and 
propose solutions to statistically deal with this bias [1–3]. We would like to 
emphasize that the aim and scope of our paper were to test whether MDD 
patients show higher brain-PAD than controls. To this aim we have applied a 
statistical method in which we account for this bias (further described below) 
to answer this research question, thus our conclusions are not affected by the 
systematic effect of the regression dilution.

Correcting the linear and nonlinear age dependence of brain-PAD

Regression dilution, described above, creates a dependence between 
chronological age and predicted age. To control for this effect, we have included 
chronological age as a covariate in subsequent analyses (Supplementary 
Figure S1C and S1D) as proposed in [1]. This removes all linear age 
dependence of our outcome variable. However, one can assume that not all 
aging effects are perfectly linear. More specifically, the morphology of the brain 
follows nonlinear trajectories in the young and adolescent [4], but we may 
potentially also expect an acceleration in older ages, specifically with respect 
to (mental) illness [2, 5]. As Smith and colleagues (2019) suggest the bias in 
brain age estimation and the nonlinear dependence can be adjusted for. To 
statistically correct for the nonlinear age effects on the brain-PAD metric, we 
included quadratic age terms in our models to test group differences in our test 
samples (Supplementary Figure S1E and S1F). Important to note, we formally 
tested the goodness of fit of models including age only, age and age2, and 
age, age2 and age3 as covariates, and found that the model including age and 
quadratic age terms statistically showed the best model fit.
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Supplementary Figure S1. Brain-PAD was significantly negatively correlated to chronological age (overall 
r=-0.48, p<0.0001) in both controls (A) and MDD patients (B). After linear correction brain-PAD was not 
significantly correlated to chronological age (r=-2.59E-15, p=1) in neither controls (C) nor MDD patients 
(D). Although difficult to visually detect, additional nonlinear correction for age2 resulted in a better model 
fit in both controls (E) and MDD patients (F) compared to correction for linear age effects only (χ(2)=9.73, 
p<0.002). 
  

Supplementary Figure S1. Brain-PAD was significantly negatively correlated to 
chronological age (overall r=-0.48, p<0.0001) in both controls (A) and MDD patients 
(B). After linear correction brain-PAD was not significantly correlated to chronological age 
(r=-2.59E-15, p=1) in neither controls (C) nor MDD patients (D). Although difficult to visually 
detect, additional nonlinear correction for age2 resulted in a better model fit in both controls 
(E) and MDD patients (F) compared to correction for linear age effects only (χ(2)=9.73, 
p<0.002).

Statistical analyses of case-control comparison of brain-PAD

By including age and nonlinear age effects as covariates in all statistical 
models, we statistically adjusted for the systematic age bias but also for any 
other potentially confounding effects of age in our analyses. Moreover, we 
demonstrate that there were no significant interactions with age or age2 and 
MDD status. Thus, the residual age effects in the brain-PAD metric did not 
influence our main finding with regard to case-control differences.

Alternative machines/kernels

To explore the effect of different machines and kernels, we repeated the 10-
fold cross-validation training using Support Vector Regression (SVR) and 
Random Forest Regression (RFR) in comparison to the Ridge Regression. To 
model non-linear multivariate patterns, we also explored radial basis function 
(RBF) kernels, as compared to linear kernel methods. Important to mention 
here is that all machine learning algorithms showed similar performances 
(Supplementary Table S6). Given the aim to make our model publicly 
available, we opted for the Ridge Regression emphasizing its deployability 
and shareability. In contrast to the RBF kernels, Ridge Regression allows 
for sharing model weights at the feature level for making predictions in new 
independent test samples, without sharing any actual data points or support 
vectors from the training data. This ensures that no individual level data is 
shared.

Alternative feature selection: single modality trained models

We explored if certain selections of features would optimally explain the age 
variance in the data. Therefore, we built three separate models with the aim 
to reduce feature space by including only single modalities (only cortical 
thickness vs. cortical surface area vs. subcortical volume features). The 
cortical thickness and intracranial volume (ICV) and subcortical volume and 
ICV showed reasonable performance accuracy (MAE=7.53-8.95), but a model 
only trained on surface area features and ICV performed the worst (MAE=10.9 
years in both males and females). Combining all 77 features and maximizing 
the feature set resulted in the most superior performance accuracy (MAE=6.3-
6.6), Supplementary Table S8. Please note that we used the following formula 
implemented in the caret package in R to calculate R2:

 
R2 = 1-\frac{∑ (y_i - \hat{y}_i)2}{∑ (y_i - \bar{y}_i)2}
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This formula also allows negative expressions of R2, indicating that despite 
the high correlation between chronological age and predicted brain age, the 
data are not well-explained by the model.

Feature importance: structure coefficients

All features, except the mean lateral ventricle volume, and entorhinal and 
temporal pole thickness showed a negative correlation with predicted brain 
age, and are visualized in Figure 4 in the main manuscript. Widespread 
negative correlations with average cortical thickness and surface area 
were observed, although thickness features resulted in stronger negative 
correlations (mean Pearson r [SD]: -0.44 [0.21]) than surface area features 
(-0.17 [0.08]). On average, subcortical volumes were slightly less negatively 
correlated to predicted brain age as thickness features (-0.34 [0.34]). We also 
visualized these associations separately for controls and MDD patients, but 
findings were similar and suggest comparable structure coefficients in both 
groups (Supplementary Figure S2).

 
Supplementary Figure S2. Structure coefficients of predicted brain age and FreeSurfer features 
Supplementary Figure S2. Structure coefficients of predicted brain age and FreeSurfer 
features between control and major depressive disorder (MDD) groups. Bivariate 
correlations are shown for illustrative purposes and to show the similarity of patterns between 
controls and MDD patients. The figure shows Pearson correlations between predicted 
brain age and cortical thickness features (top row), cortical surface areas (middle row), and 
subcortical volumes (bottom row). The negative correlation with intracranial volume (ICV) 
was excluded from this figure for display purposes.

Feature importance of modalities

To get a sense of how important a feature is for prediction, we systematically set 
certain features to zero in all test samples. Overall, cortical thickness features 
seem to be important for obtaining good predictions, as the MAE increases to 
>98 years when perturbed (Supplementary Table S9). The MAEs were equally 
affected in control and MDD patients, suggesting that the features important 
for making accurate brain age predictions were similar across groups.

Qualitative comparison

To qualitatively compare the MDD patients with the highest decile of brain-
PAD to the bottom 90%, we have provided structure coefficients between 
predicted brain age and all features. In short, the parahippocampal surface 
area showed the largest differential structure coefficient, with a diminished 
reduction in the top 10% compared to the bottom 90%. The parahippocampal 
region is an essential input region to the hippocampus, a structure that is 
commonly implicated in MDD. The reported increased parahippocampal 
surface area in MDD by Qui and colleagues (2014) is in line with the current 
observation, however, this surface area difference could not be replicated by 
Peng et al. (2015).[6, 7] Taken together, we observed that particularly thickness 
features were more negatively associated with predicted brain age in the top 
10% highest brain-PAD patients compared to the bottom 90%, while this was 
vice versa for surface area features (Supplementary Table S10).

Generalizability to independent test samples from the ENIGMA 
MDD working group

The brain age prediction model generalized well to unseen samples. The 
overall correlations between predicted brain age and chronological age in 
the out-of-sample test controls from the ENIGMA MDD working group were 
r=0.85, P<0.001; R2=0.72 for males and r=0.83,p<0.001; R2=0.69 for females. 
Similarly, the performances in the MDD test samples were r=0.77, p<0.001; 
R2=0.57 for males, and r=0.78, p<0.001; R2=0.59) for females. Of note here 
is that prediction errors were similar, but not equal between sites and age 
groups (Supplementary Figures S3-6). More specifically, the mean absolute 
error (MAE) was highest in the oldest age group (68-75 years old, mean 10.25 
[6.59]), although this group was relatively small (N=166 out of N=4,801). Brain 
predicted age difference (brain-PAD) was significantly negatively associated 
with chronological age (overall r=-0.48, p<0.0001).
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Supplementary Figure S3. Mean absolute error (MAE) and brain predicted age difference (brain-
PAD) across scanning site and age group for the male control test samples. Top row figures illustrate 
scanning sites on the x-axis. Prediction errors were examined across 16 different scanning sites and six 
different age groups of ten-year bins. 
  
  
  
  
 

 
Supplementary Figure S4. Mean absolute error (MAE) and brain predicted age difference (brain-
PAD) across scanning site and age group for the male major depression disorder (MDD) test 
samples. Top row figures illustrate scanning sites on the x-axis. Prediction errors were examined across 
16 different scanning sites and six different age groups of ten-year bins. 
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Supplementary Figure S3. Mean absolute error (MAE) and brain predicted age 
difference (brain-PAD) across scanning site and age group for the male control test 
samples. Top row figures illustrate scanning sites on the x-axis. Prediction errors were 
examined across 16 different scanning sites and six different age groups of ten-year bins.

Supplementary Figure S4. Mean absolute error (MAE) and brain predicted age 
difference (brain-PAD) across scanning site and age group for the male major 
depression disorder (MDD) test samples. Top row figures illustrate scanning sites on the 
x-axis. Prediction errors were examined across 16 different scanning sites and six different 
age groups of ten-year bins.

Supplementary Figure S5. Mean absolute error (MAE) and brain predicted age 
difference (brain-PAD) across scanning site and age group for the female control 
test samples. Top row figures illustrate scanning sites on the x-axis. Prediction errors were 
examined across 22 different scanning sites and six different age groups of ten-year bins.
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Supplementary Figure S5. Mean absolute error (MAE) and brain predicted age difference (brain-
PAD) across scanning site and age group for the female control test samples. Top row figures 
illustrate scanning sites on the x-axis. Prediction errors were examined across 22 different scanning sites 
and six different age groups of ten-year bins. 
  
  
  
  
 

 
Supplementary Figure S6. Mean absolute error (MAE) and brain predicted age difference (brain-
PAD) across scanning site and age group for the female major depression disorder (MDD) test 
samples. Top row figures illustrate scanning sites on the x-axis. Prediction errors were examined across 
22 different scanning sites and six different age groups of ten-year bins. 
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Supplementary Figure S6. Mean absolute error (MAE) and brain predicted age 
difference (brain-PAD) across scanning site and age group for the female major 
depression disorder (MDD) test samples. Top row figures illustrate scanning sites on the 
x-axis. Prediction errors were examined across 22 different scanning sites and six different 
age groups of ten-year bins.

Generalizability to completely independent healthy controls from 
the ENIGMA BD working group

The brain age prediction models generalized well to healthy controls from 
completely independent samples (i.e. independent scanning sites) from the 
ENIGMA Bipolar Disorder (BD) working group (Supplementary Figures 7-8). 
The MAE was 7.49 (5.89) years in males and 7.26 (SD 5.63) in females, slightly 
higher than the MAE in the test samples of the ENIGMA MDD working group. 
The overall correlations between predicted brain age and chronological age 
in the out-of-sample controls were r=0.71, p<0.001; R2=0.45 for males and 
r=0.72, p<0.001; R2=0.48 for females.

Supplementary Figure S7. Mean absolute error (MAE) and brain predicted age 
difference (brain-PAD) across scanning site and age group for the male control test 
sample from the ENIGMA Bipolar Disorder (BD) working group. Top row figures illustrate 
scanning sites on the x-axis. Prediction errors were examined across 23 different scanning 
sites and six different age groups of ten-year bins.

 1  

  
Supplementary Figure S5. Mean absolute error (MAE) and brain predicted age difference (brain-
PAD) across scanning site and age group for the female control test samples. Top row figures 
illustrate scanning sites on the x-axis. Prediction errors were examined across 22 different scanning sites 
and six different age groups of ten-year bins. 
  
  
  
  
 

 
Supplementary Figure S6. Mean absolute error (MAE) and brain predicted age difference (brain-
PAD) across scanning site and age group for the female major depression disorder (MDD) test 
samples. Top row figures illustrate scanning sites on the x-axis. Prediction errors were examined across 
22 different scanning sites and six different age groups of ten-year bins. 
  
  
  
  
  
  
 
 
 
 

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
-40

-20

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

10

20

30

40

18-27 28-37 38-47 48-57 58-67 68-75
-40

-20

0

20

40

18-27 28-37 38-47 48-57 58-67 68-75

M
AE

Brain-PAD

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
-40

-20

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

10

20

30

40

18-27 28-37 38-47 48-57 58-67 68-75
-40

-20

0

20

40

18-27 28-37 38-47 48-57 58-67 68-75

M
AE

Brain-PAD

 1 3 

 
 
Generalizability to completely independent healthy controls from the ENIGMA BD working group 
The brain age prediction models generalized well to healthy controls from completely independent 
samples (i.e. independent scanning sites) from the ENIGMA Bipolar Disorder (BD) working group 
(Supplementary Figures 7-8). The MAE was 7.49 (5.89) years in males and 7.26 (SD 5.63) in females, 
slightly higher than the MAE in the test samples of the ENIGMA MDD working group. The overall 
correlations between predicted brain age and chronological age in the out-of-sample controls were r=0.71, 
p<0.001; R2=0.45 for males and r=0.72, p<0.001; R2=0.48 for females. 
 
 
 

 
Supplementary Figure S7. Mean absolute error (MAE) and brain predicted age difference (brain-
PAD) across scanning site and age group for the male control test sample from the ENIGMA Bipolar 
Disorder (BD) working group. Top row figures illustrate scanning sites on the x-axis. Prediction errors 
were examined across 23 different scanning sites and six different age groups of ten-year bins. 
 
 
 
 

  
Supplementary Figure S8. Mean absolute error (MAE) and brain predicted age difference (brain-
PAD) across scanning site and age group for the female control test sample from the ENIGMA 
Bipolar Disorder (BD) working group. Top row figures illustrate scanning sites on the x-axis. Prediction 
errors were examined across 23 different scanning sites and six different age groups of ten-year bins. 

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
-40

-20

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0

10

20

30

40

18-27 28-37 38-47 48-57 58-67 68-75
-40

-20

0

20

40

18-27 28-37 38-47 48-57 58-67 68-75

M
AE

Brain-PAD

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
-40

-20

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0

10

20

30

40

18-27 28-37 38-47 48-57 58-67 68-75
-40

-20

0

20

40

18-27 28-37 38-47 48-57 58-67 68-75

M
AE

Brain-PAD



Chapter 5 Brain Aging in Major Depressive Disorder

181180

Supplementary Figure S8. Mean absolute error (MAE) and brain predicted age 
difference (brain-PAD) across scanning site and age group for the female control test 
sample from the ENIGMA Bipolar Disorder (BD) working group. Top row figures illustrate 
scanning sites on the x-axis. Prediction errors were examined across 23 different scanning 
sites and six different age groups of ten-year bins.

ENIGMA MDD Brain Age Model publicly available

FreeSurfer is an automated and widely used software tool (http://surfer.nmr.
mgh.harvard.edu/). Thus, our brain age algorithm can be easily applied to 
independent data, promoting validation and replication across different 
samples worldwide needed to mature modeling efforts, contributing to the 
development of canonical brain age models. To this aim, we will make our 
FreeSurfer-based brain age model publicly available at https://www.photon-
ai.com/ upon publication. Detailed instructions and guidelines for its use will 
be made available on the webpage. It is, however, important to note that 
prediction errors were higher in older age groups (>60 years old) and brain-PAD 
was significantly negatively associated with chronological age (r=-0.53 males, 
r=-0.48 females, both p’s<0.0001), with the latter being a known feature of the 
brain-PAD metric.[1] Thus, caution is warranted when applying our model to 
data from older participants (>60 years). We recommend to: a) only use our 
models to samples with an upper age limit of 60 years, and b) always include 
residual chronological age effects as covariates in the analyses.
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BRAIN AGING IN MAJOR DEPRESSIVE DISORDER - 
SUPPLEMENTARY TABLES

Supplementary Table S1. ENIGMA - Major Depressive Disorder Working Group 
Demographics. Age (in years), and MDD patients-control breakdown per participating 
cohort, separately for males and females, and training and test samples.

Cohort

Control training samples

Males Females

N Age (years) N Age (years)

1 Barcelona NA NA NA 12 45.67 ± 8.85

2 BiDirect 109 51.41 ± 8.17 110 53.32 ± 8.00

3 CLiNG 66 25.86 ± 6.20 96 24.66 ± 4.94

4 Dublin 39 34.09 ± 9.53 38 33.83 ± 10.42

5 Edinburgh (Bipolar Family Study) NA NA NA 22 22.55 ± 2.34

6 FOR2107 - Marburg 64 32.53 ± 11.02 100 33.20 ± 12.73

7 FOR2107 - Münster 20 27.65 ± 10.03 37 24.78 ± 6.19

8 Houston 18 39.28 ± 11.98 37 37.38 ± 13.28

9 BRDECC London 15 50.67 ± 8.49 17 50.88 ± 10.69

10 McMaster University Mood Disorders NA NA NA 15 32.07 ± 11.35

11 Melbourne 19 21.16 ± 2.65 20 20.95 ± 2.48

12 MPIP 47 47.42 ± 12.34 65 48.07 ± 13.41

13 Münster Neuroimaging Cohort 154 36.28 ± 11.92 205 35.07 ± 12.08

14 QTIM NA NA NA 100 21.68 ± 2.33

15 Sao Paolo (Wellcome) NA NA NA 20 32.40 ± 8.15

16 SHIP/TREND 254 50.05 ± 13.96 199 49.65 ± 13.78

17 SHIP 115 54.54 ± 11.47 95 53.92 ± 11.42

18 Stanford 12 36.67 ± 9.41 19 36.26 ± 10.50

19 Sydney 20 46.65 ± 22.36 29 43.28 ± 23.27

Total 952 1236

(continued on next page)
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Supplementary Table S5. A full list of the 77 gray matter FreeSurfer features included in our brain 
age model.

Modality Feature Anatomical ROI 39 M_supramarginal_thickavg
1 ICV 40 M_frontalpole_thickavg

Su
bc

or
ti

ca
l v

ol
um

e

2 Mvent 41 M_temporalpole_thickavg
3 Mthal 42 M_transversetemporal_thickavg
4 Mcaud 43 M_insula_thickavg
5 Mput

M
ea

n 
co

rt
ic

al
 s

ur
fa

ce
 a

re
a

44 M_bankssts_surfavg
6 Mpal 45 M_caudalanteriorcingulate_surfavg
7 Mhippo 46 M_caudalmiddlefrontal_surfavg
8 Mamyg 47 M_cuneus_surfavg
9 Maccumb 48 M_entorhinal_surfavg

M
ea

n 
co

rt
ic

al
 th

ic
kn

es
s

10 M_bankssts_thickavg 49 M_fusiform_surfavg
11 M_caudalanteriorcingulate_thickavg 50 M_inferiorparietal_surfavg
12 M_caudalmiddlefrontal_thickavg 51 M_inferiortemporal_surfavg
13 M_cuneus_thickavg 52 M_isthmuscingulate_surfavg
14 M_entorhinal_thickavg 53 M_lateraloccipital_surfavg
15 M_fusiform_thickavg 54 M_lateralorbitofrontal_surfavg
16 M_inferiorparietal_thickavg 55 M_lingual_surfavg
17 M_inferiortemporal_thickavg 56 M_medialorbitofrontal_surfavg
18 M_isthmuscingulate_thickavg 57 M_middletemporal_surfavg
19 M_lateraloccipital_thickavg 58 M_parahippocampal_surfavg
20 M_lateralorbitofrontal_thickavg 59 M_paracentral_surfavg
21 M_lingual_thickavg 60 M_parsopercularis_surfavg
22 M_medialorbitofrontal_thickavg 61 M_parsorbitalis_surfavg
23 M_middletemporal_thickavg 62 M_parstriangularis_surfavg
24 M_parahippocampal_thickavg 63 M_pericalcarine_surfavg
25 M_paracentral_thickavg 64 M_postcentral_surfavg
26 M_parsopercularis_thickavg 65 M_posteriorcingulate_surfavg
27 M_parsorbitalis_thickavg 66 M_precentral_surfavg
28 M_parstriangularis_thickavg 67 M_precuneus_surfavg
29 M_pericalcarine_thickavg 68 M_rostralanteriorcingulate_surfavg
30 M_postcentral_thickavg 69 M_rostralmiddlefrontal_surfavg
31 M_posteriorcingulate_thickavg 70 M_superiorfrontal_surfavg
32 M_precentral_thickavg 71 M_superiorparietal_surfavg
33 M_precuneus_thickavg 72 M_superiortemporal_surfavg
34 M_rostralanteriorcingulate_thickavg 73 M_supramarginal_surfavg
35 M_rostralmiddlefrontal_thickavg 74 M_frontalpole_surfavg
36 M_superiorfrontal_thickavg 75 M_temporalpole_surfavg
37 M_superiorparietal_thickavg 76 M_transversetemporal_surfavg
38 M_superiortemporal_thickavg 77 M_insula_surfavg

Left and right features were averaged across hemisphere. 

Supplementary Table S6. Mean absolute error (MAE) and brain predicted age 
difference (brain-PAD) per age group.

Age group

Brain-PAD MAE
Male test 
samples

(N=2,256)

Female test 
samples

(N=3,370)

Male test 
samples

(N=2,256)

Female test 
samples

(N=3,370)
18-27 years 5.56 (7.91) 4.65 (7.72) 7.40 (6.22) 7.11 (5.53)
28-37 years 3.10 (6.97) 3.65 (7.62) 6.11 (4.56) 6.77 (5.04)
38-47 years 1.34 (7.41) 1.75 (7.95) 5.90 (4.66) 6.49 (4.90)
48-57 years -2.37 (7.13) -3.18 (7.61) 6.15 (4.30) 6.61 (4.93)
58-67 years -5.06 (7.30) -6.14 (7.76) 7.07 (5.38) 7.93 (5.92)
68-75 years -9.51 (6.77) -9.55 (8.29) 10.00 (6.02) 10.47 (7.08)

Values were calculated in the overall test samples of controls and major depressive disorder 
(MDD) patients. 

Supplementary Table S7. Alternative machines and kernels in the brain age prediction 
framework.

Machine learning 
algorithm

R R2 MAE

Male 
training 
sample

Female 
training 
sample

Male 
training 
sample

Female 
training 
sample

Male 
training 
sample

Female 
training 
sample

Ridge regression 0.85 0.84 0.73 0.71 6.75 6.86
SVR linear 0.85 0.84 0.72 0.71 6.86 6.91
SVR RBF 0.85 0.87 0.73 0.75 6.50 6.09
RFR 0.79 0.80 0.67 0.64 6.81 7.22

Performance metrics in the training samples of males and females across four different 
machine learning algorithms/kernels are displayed here. R, Pearson’s correlation; R2, 
explained variance; MAE, mean absolute error. 

Supplementary Table S8. Alternative feature selection in the brain age prediction 
framework.

Ridge Regression

R R2 MAE
Male 

training 
sample

Female 
training 
sample

Male 
training 
sample

Female 
training 
sample

Male 
training 
sample

Female 
training 
sample

Subcortical volumes and ICV 0.75 0.72 0.56 0.51 8.01 8.95
Cortical thickness and ICV 0.78 0.75 0.61 0.56 7.53 8.24
Cortical surface areas and ICV 0.48 0.53 0.23 0.28 10.93 10.85

Performance metrics under 10-fold cross-validation in the training samples of males and 
females using features from three different modalities are displayed here. R, Pearson’s 
correlation; R2, explained variance; MAE, mean absolute error. 
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Supplementary Table S9. Feature importance of modalities.

Feature 
importance Sex

R R2 MAE

Control 
test 

sample

MDD 
test 

sample

Control 
test 

sample

MDD 
test 

sample

Control 
test 

sample

MDD 
test 

sample

Full model
M 0.85 0.77 0.72 0.57 6.50 6.72
F 0.83 0.78 0.69 0.59 6.84 7.18

Subcortical 
volumes

M 0.79 0.71 -6.71 -10.03 41.36 42.52
F 0.78 0.72 -3.41 -4.22 31.34 30.44

Cortical 
thickness

M 0.72 0.63 -40.61 -56.45 98.10 98.79
F 0.69 0.62 -40.21 -48.91 99.98 98.32

Cortical 
surface area

M 0.82 0.73 -3.01 -4.74 29.35 30.09
F 0.81 0.75 -1.65 -2.22 23.81 23.39

The full model includes all orginal testdata and 77 features. The rows indicate which features 
(subcortical volumes [8 features] or cortical thickness [34 features] or cortical surface area [34 
features]) were perturbed (values set to zero) in the test samples. Test performance is most 
negatively affected by the perturbation of cortical thickness features. R, Pearson correlation 
coefficient; R2, explained variance; MAE, mean absolute error; M, males; F, females. 

Supplementary Table S10. A qualitative comparison between structure coefficients.

FreeSurfer Feature Top 10% Bottom 90% Difference

M_parahippocampal_surfavg -0.18 -0.41 -0.23
M_superiorparietal_surfavg -0.12 -0.25 -0.14
M_fusiform_surfavg -0.25 -0.39 -0.14
M_cuneus_surfavg -0.03 -0.15 -0.12
M_precentral_thickavg -0.37 -0.49 -0.12
M_paracentral_thickavg -0.46 -0.58 -0.12
M_parstriangularis_surfavg -0.15 -0.26 -0.11
M_precuneus_surfavg -0.12 -0.23 -0.11
M_superiorfrontal_thickavg -0.58 -0.67 -0.09
M_lingual_surfavg -0.13 -0.22 -0.09
M_lateraloccipital_surfavg -0.13 -0.22 -0.09
Mamyg -0.19 -0.28 -0.09
M_frontalpole_surfavg -0.04 -0.12 -0.09
Mvent 0.50 0.41 -0.09
M_pericalcarine_surfavg -0.02 -0.10 -0.08
Maccumb -0.51 -0.59 -0.07
M_parsopercularis_thickavg -0.51 -0.58 -0.07
M_posteriorcingulate_surfavg -0.10 -0.17 -0.07
M_entorhinal_surfavg -0.04 -0.11 -0.07

M_bankssts_thickavg -0.32 -0.39 -0.06
M_precuneus_thickavg -0.60 -0.66 -0.06
M_cuneus_thickavg -0.33 -0.39 -0.06
M_superiortemporal_surfavg -0.13 -0.19 -0.06
M_lateralorbitofrontal_surfavg -0.20 -0.25 -0.05
M_parsorbitalis_surfavg -0.12 -0.18 -0.05
M_rostralmiddlefrontal_surfavg -0.17 -0.22 -0.05
M_inferiorparietal_surfavg -0.22 -0.27 -0.05
M_postcentral_surfavg -0.11 -0.16 -0.04
Mcaud -0.35 -0.39 -0.04
M_postcentral_thickavg -0.41 -0.45 -0.04
M_supramarginal_surfavg -0.18 -0.21 -0.04
M_transversetemporal_surfavg -0.14 -0.18 -0.04
M_rostralanteriorcingulate_thickavg -0.40 -0.43 -0.03
M_middletemporal_surfavg -0.22 -0.25 -0.03
M_supramarginal_thickavg -0.49 -0.52 -0.03
ICV -0.10 -0.13 -0.03
M_superiorfrontal_surfavg -0.20 -0.22 -0.03
Mthal -0.50 -0.53 -0.03
M_caudalmiddlefrontal_thickavg -0.49 -0.51 -0.03
M_superiorparietal_thickavg -0.46 -0.49 -0.02
M_caudalanteriorcingulate_surfavg -0.14 -0.16 -0.02
M_insula_surfavg 0.02 0.00 -0.02
M_isthmuscingulate_surfavg -0.04 -0.05 -0.02
M_isthmuscingulate_thickavg -0.64 -0.66 -0.01
M_bankssts_surfavg -0.26 -0.28 -0.01
M_superiortemporal_thickavg -0.49 -0.50 -0.01
M_temporalpole_surfavg -0.07 -0.08 -0.01
M_inferiorparietal_thickavg -0.54 -0.55 0.00
M_caudalmiddlefrontal_surfavg -0.22 -0.22 0.00
Mput -0.59 -0.59 0.00
M_parstriangularis_thickavg -0.46 -0.46 0.00
M_rostralanteriorcingulate_surfavg -0.21 -0.20 0.00
M_caudalanteriorcingulate_thickavg -0.39 -0.39 0.01
M_pericalcarine_thickavg -0.27 -0.27 0.01
M_medialorbitofrontal_surfavg -0.14 -0.13 0.01
M_parsopercularis_surfavg -0.28 -0.26 0.01
M_posteriorcingulate_thickavg -0.66 -0.65 0.01
Mpal -0.09 -0.08 0.01
M_rostralmiddlefrontal_thickavg -0.41 -0.39 0.02
M_frontalpole_thickavg -0.35 -0.33 0.02
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M_inferiortemporal_surfavg -0.25 -0.22 0.02
M_transversetemporal_thickavg -0.49 -0.46 0.03
M_lingual_thickavg -0.43 -0.39 0.03
Mhippo -0.42 -0.39 0.04
M_parsorbitalis_thickavg -0.40 -0.36 0.04
M_paracentral_surfavg -0.05 -0.01 0.04
M_insula_thickavg -0.55 -0.50 0.05
M_medialorbitofrontal_thickavg -0.34 -0.28 0.05
M_precentral_surfavg -0.13 -0.07 0.06
M_temporalpole_thickavg -0.01 0.05 0.06
M_lateraloccipital_thickavg -0.39 -0.29 0.10
M_parahippocampal_thickavg -0.21 -0.11 0.10
M_middletemporal_thickavg -0.43 -0.31 0.12
M_lateralorbitofrontal_thickavg -0.34 -0.22 0.12
M_fusiform_thickavg -0.40 -0.26 0.15
M_inferiortemporal_thickavg -0.30 -0.13 0.17
M_entorhinal_thickavg -0.02 0.18 0.20

The top 10% column indicates major depressive disorder patients with the highest decile of 
brain-PAD values. The difference is sorted from smallest to largest and reflects the difference 
compared to the bottom 90% of brain-PAD values
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ABSTRACT

Depression and anxiety are common and often comorbid mental health 
disorders that represent risk factors for aging-related conditions. Brain aging 
has shown to be more advanced in patients with Major Depressive Disorder 
(MDD). Here, we extend prior work by investigating multivariate brain aging 
in patients with MDD and/or anxiety disorders and examine which factors 
contribute to older appearing brains. Adults aged 18-57 years from the 
Netherlands Study of Depression and Anxiety underwent structural MRI. A 
pre-trained brain age prediction model based on >2,000 samples from the 
ENIGMA consortium was applied to obtain brain-predicted age differences 
(brain-PAD, predicted brain age minus chronological age) in 65 controls 
and 220 patients with current MDD and/or anxiety. Brain-PAD estimates 
were associated with clinical, somatic, lifestyle, and biological factors. After 
correcting for antidepressant use, brain-PAD was significantly higher in MDD 
(+2.78 years, Cohen’s d=0.25, 95% CI -0.10-0.60) and anxiety patients (+2.91 
years, Cohen’s d=0.27, 95% CI -0.08-0.61), compared to controls. There 
were no significant associations with lifestyle or biological stress systems. 
A multivariable model indicated unique contributions of higher severity of 
somatic depression symptoms (b=4.21 years per unit increase on average 
sum score) and antidepressant use (-2.53 years) to brain-PAD. Advanced 
brain aging in patients with MDD and anxiety was most strongly associated 
with somatic depressive symptomatology. We also present clinically relevant 
evidence for a potential neuroprotective antidepressant effect on the brain-
PAD metric that requires follow-up in future research.

INTRODUCTION

Depression and anxiety are common and often comorbid mental health 
disorders, and their effects can broadly impact a person’s life. There is a 
plethora of evidence showing poorer quality of life, functional disability, and 
increased mortality burden in these patients[1, 2]. Depression and anxiety 
disorders further represent a risk factor for aging-related conditions[3–5], as 
studies show consistent evidence for poorer somatic and chronic disease 
profiles in these patient groups[6], often with a premature onset. Importantly, 
the incidence and burden of these disorders are a strain on society, which has 
an important challenge to face in the coming years, as the number of people 
aged >65 is expected to reach 1.6 billion in 2050[7]. Advancing mental health 
and well-being across the lifespan and into old age should, therefore, be a 
major priority on the research agenda.

Multivariate pattern recognition techniques, and especially machine 
learning methods, have promoted a steep increase in the development of 
ways to measure and quantify aging[8]. Central to this field is that multivariate 
(biological) patterns are utilized and integrated into a single score: the biological 
age. Biological age can be derived from, for instance, omics-data (e.g. 
epigenetic clocks), but also clinical biomarkers obtained from, for example, 
blood chemistries[9]. In the current study, we focus on biological age based on 
a validated method of MRI-derived brain structure[10, 11] with brain-predicted 
age difference (brain-PAD, predicted brain age minus chronological age)[12] 
as the main outcome. This metric is relative to one’s chronological age, such 
that positive values indicate an older appearing brain, and negative values 
resemble a younger appearing brain than normally expected at that age.

A handful of studies have investigated brain-PAD in depression, with 
studies showing +4.0 years[13], as well as no significantly increased brain 
age[14, 15]. Recent findings from the Enhancing NeuroImaging Genetics 
through Meta-Analysis (ENIGMA) consortium using a more than ten-fold larger 
pooled sample of MDD patients than the largest previous study suggest a 1.1 
year higher brain-PAD in MDD patients as compared to controls[16]. However, 
this difference did not seem to be driven by specific clinical characteristics 
(recurrent status, remission status, antidepressant medication use, age of 
onset, or symptom severity). An important aspect that remains relatively 
unknown is thus which underlying mechanisms cause the brain age metric to 
advance in depression, and, despite the increase of brain age studies in the 
past decade, in general[11].
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Large pooled datasets from global consortia offer the statistical power 
needed to detect small effect sizes usually observed in MDD, but a limitation 
of consortium data is that its collection is commonly not harmonized across 
all sites and cohorts. Here, we underline the complementary value of a more 
homogeneous and clinically well-characterized sample from the Netherlands 
Study of Depression and Anxiety, to gain more insight into the observed brain-
PAD difference between MDD patients and controls. We extend prior work by 
exploring which specific symptom clusters (mood/cognition, immunometabolic, 
somatic) of MDD are associated with brain-PAD. To the best of our knowledge, 
there are currently no brain age studies in anxiety disorders, although higher 
brain-PAD has been observed in posttraumatic stress disorder[17]. Given 
the frequent co-occurrence and correlated symptoms[18] of depression and 
anxiety (i.e. family of internalizing disorders)[19], we also extend prior work 
by including patients with MDD and/or anxiety disorders in the current study. 

Evidence is starting to emerge that brain-PAD is associated with reduced 
mental and somatic health, such as with stroke history, diabetes diagnosis, 
smoking, alcohol consumption, and some cognitive measures[20], but also 
intrinsic measures such as genetic variants[21, 22]. This study seeks to 
further address the research gaps, by examining whether three commonly 
dysregulated biological stress systems in depression and anxiety disorders 
(inflammation, hypothalamic pituitary adrenal [HPA]-axis, autonomic nervous 
system [ANS]) were predictive of brain aging. Disruptions and dysregulations 
in these stress systems were hypothesized to result in advanced brain aging 
across diagnostic groups. We further associated various clinical, lifestyle, and 
somatic health indicators with the brain-PAD metric for our primary hypothesis 
to identify unique contributing factors to brain aging.

METHODS AND MATERIALS

Study Sample

A subsample of subjects of the Netherlands Study of Depression and Anxiety 
(NESDA) were included for the MRI substudy (total N=301). Twelve participants 
were excluded due to poor image quality, two because of claustrophobia, one 
control subject due to high depression rating (Montgomery Asberg Depression 
Rating Scale score >8), and one due to the large time difference between the 
psychiatric and biological and MRI measurements (total excluded, N=16). For 
the current study, we therefore included N=65 controls (65% female, aged 
21-55) and N=220 patients with a current depressive and/or anxiety disorder 

(69% female, aged 18-57). The current study was approved by the ethical 
review boards of the three participating centers (Amsterdam, Groningen, 
Leiden) and informed consent of all participants was obtained.

Image Processing and Analysis

Magnetic resonance imaging (MRI) data were obtained using three independent 
3T Philips MRI scanners (Philips Healthcare, Best, The Netherlands) located 
at different participating centers. Scanners were equipped with a SENSE 
8-channel (Leiden University Medical Center and University Medical Center 
Groningen) and a SENSE 6-channel (Academic Medical Center) receiver 
head coil (Philips Healthcare). Standardized image segmentation and feature 
extraction protocols, using the FreeSurfer processing software, developed 
by the ENIGMA consortium were used (http://enigma.ini.usc.edu/protocols/
imaging-protocols/) to extract 153 features from regions of interest, including 
the volumes of 14 subcortical gray matter regions (bilateral nucleus accumbens, 
amygdala, caudate, hippocampus, pallidum, putamen, and thalamus) and the 
2 lateral ventricles, cortical thickness and surface area from 68 cortical regions, 
and total intracranial volume (ICV). Segmentations were statistically examined 
for outliers and the FreeSurfer feature was excluded if it was >2.698 standard 
deviations away from the global mean. However, if a sample was a statistical 
outlier, but visual inspection showed that it was properly segmented, it was 
kept in the dataset.

FreeSurfer Brain Age Prediction Model

We used a publicly available brain age model (https://www.photon-ai.
com/enigma_brainage/) that was trained to predict age from 77 ((left+right 
hemisphere features)/2 and ICV) FreeSurfer features (for more detail, see[16]. 
Briefly, the Ridge Regression coefficients learned from 952 male and 1,236 
female control subjects (aged 18-75 years) from the ENIGMA MDD working 
group were applied to the features of the current samples (N=285). Of 
note, NESDA was not part of the development of this model. The model’s 
generalization performance was assessed by calculating several metrics: a) 
the correlation between predicted brain age and chronological age, b) the 
amount of chronological age variance explained by the model (R2), c) the mean 
absolute error (MAE) between predicted brain age and chronological age, and 
d) Root Mean Squared Error (RMSE).
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Diagnostic Ascertainment

Participants in the current study included control subjects (no lifetime history 
of psychiatric disorders) and patients with a current depression and/or current 
anxiety disorder (i.e. generalized anxiety disorder, panic disorder, social 
anxiety disorder) within a 6-month recency. The Composite International 
Diagnostic Interview (CIDI version 2.1) was used as a diagnostic instrument to 
ascertainment[23]. 

Clinical Assessment

We examined several clinical variables as predictors, including a) depressive 
symptoms as measured by the summary score of the Inventory for Depressive 
Symptoms (IDS) at time of scanning[24], but also b) three separate 
validated clusters of depressive symptoms (mood/cognition, somatic, and 
immunometabolic symptoms)[25], c) anxiety symptoms as measured by the 
summary score of the Beck Anxiety Inventory (BAI) at time of scanning[26], 
d) cumulative childhood trauma index[27] (before the age of 16) as measured 
by a childhood trauma interview, and e) recent negative life events in the past 
year as measured with the Brugha questionnaire[28]. Within the patients only, 
we also investigated associations with: a) duration of symptoms, b) age of 
onset of illness, and c) antidepressant medication use (selective serotonin 
reuptake inhibitors (ATC code N06AB) and other antidepressants (ATC codes 
N06AF, N06AG, N06AX). See Supplement for full details.

Somatic Health Assessment

Body Mass Index (BMI) was assessed during an interview by dividing a 
person’s weight (in kilogram [kg]) by the square of their height (in meter [m]). 
The number of self-reported current somatic diseases (heart disease, epilepsy, 
diabetes, osteoarthritis, cancer, stroke, intestinal disorders, ulcers, and lung-, 
liver-, and thyroid disease) for which participants received medical treatment 
was counted.

Lifestyle Assessment

Smoking status was expressed by calculating the number of cigarettes 
smoked per day. Alcohol consumption was expressed as the mean number of 
drinks consumed per week, measured by the AUDIT[29]. Physical activity was 

assessed using the International Physical Activity Questionnaire (IPAQ) and 
expressed in total metabolic equivalent (MET) minutes per week[30].

Biological Stress Assessment

We included predictors from three major biological stress systems: a) the 
immune-inflammatory system (C-reactive protein [CRP], Interleukin-6 (IL6), 
and tumor necrosis factor-α (TNF-ɑ), b) the hypothalamic pituitary adrenal 
(HPA)-axis (cortisol awakening response [CAR] and evening cortisol), and c) 
the autonomic nervous system (ANS: heart rate, respiratory sinus arrhythmia 
[RSA] and pre-ejection period [PEP]). Details can be found in Supplement.

Statistical Analysis

All statistical analyses were performed using R version 3.5.3 (R Core Team, 
2019). First, we used linear regressions to examine brain-PAD differences 
between the control and patient groups and tested brain-PAD associations 
with several clinical characteristics within the patients only (i.e. duration 
of symptoms, age of onset of illness, AD use). Second, we used separate 
linear regression models with brain-PAD as measured outcome and variables 
of interest as a predictor to explore and select significant contributors in all 
participants irrespective of diagnostic group. Finally, stepwise regression with 
forward selection was used to successively add significant contributors to an 
intercept-only model, starting with the variable that explained most variance and 
stopping if the model fit did not improve anymore. The best subset of variables 
leading to the best model fit (i.e. lowest Aikaike’s Information Criterion [AIC]) 
were selected to examine unique contributions to brain-PAD. Inflammatory 
predictors were loge-transformed due to highly skewed distributions and 
subsequently corrected for fasting status and anti-inflammatory medication 
use. ANS predictors were corrected for fasting status, heart medication use, 
and mean arterial blood pressure. HPA predictors were corrected for fasting 
status, awakening time, variable indicating whether it was a working day or 
not, and season. All biological stress markers >3*sd away from the mean were 
winsorized. Age, sex, education level (years), and two dummy variables for 
scan location were included as predictor variables in all models. Analyses 
were tested two-sided and findings were considered statistically significant 
at p<0.05. All b regression coefficients from all models may be interpreted as 
added brain aging in years in response to each unit increase of the predictor.
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RESULTS

Sample Characteristics

Demographics and assessed phenotypes of the current study sample can 
be found in Table 1. Briefly, the patient group consisted of patients with a 
current MDD diagnosis but no anxiety (28.2%), patients with a current anxiety 
disorder but no depression (30.5%), and patients with a current comorbid 
depression and anxiety disorder (41.4%). The patient group (mean 37.37 ± SD 
10.20 years) was younger than the control group (mean 40.81 ± SD 9.78 years) 
and had fewer years of education (mean 14.28 ± SD 2.86 years in controls vs. 
mean 12.39 ± SD 3.19 in patients). Control and patient groups were similar 
in terms of male/female ratios, but not distributed equally between scan 
locations (Amsterdam, Leiden, Groningen) (χ(2)=6.26, p=0.044).

Brain Age Prediction Performance

Using the ENIGMA brain age model (www.photon-ai.com/enigma_brainage) 
we obtained a correlation of r=0.73 in the control subjects and r=0.72 in the 
patient group between predicted and chronological age, but in both groups 
brain age predictions were overestimated (mean brain-PAD [SD]; 8.18 [7.27] 
years in controls and 10.86 [7.73] years in patients). To correct for the offset, 
we calculated the mean brain-PAD in the control group and subtracted these 
from all individual brain-PAD estimates. This correction resulted in an R2 of 
0.45 and MAE of 5.97 (SD 4.09) years in controls, and R2 of 0.36 and MAE 
of 6.73 (4.64) years in patients. Of note, this linear correction does not affect 
subsequent statistics. Figure 1A shows the unaffected correlation between 
predicted brain age (x-axis) and chronological age (y-axis) in control subjects 
(r=0.73, p<0.0001) and in patients (r=0.72, p<0.0001). There also was a well-
known and commonly described age-bias (i.e. correlation between brain-
PAD and age)[17, 31, 32] in controls (r=-0.32, p=0.01) and patients (r=-0.37, 
p<0.0001) in the current sample (Figure 1B), which was statistically dealt with 
by including age as a predictor variable in further analyses (Figure 1C)[31]. 
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mhhovemov  
Figure 1. Brain age prediction. (A) Correlation between predicted brain age and chronological age in 
controls (r=0.73, R2=0.45, p<0.0001) and patients (r=0.72, R2=0.36, p<0.0001). Of note, predicted brain age 
reflects estimates corrected for the offset (brain agecorrected = brain age - (brain-PAD - mean  brain-PADcontrols). 
(B) There was a residual effect of age on the brain-PAD outcome in controls (r=-0.32, p=0.01) and patients 
(r=-0.37, p<0.0001), (C) which was statistically corrected for by adding age as a covariate in all models. 
 
  
  

Figure 1. Brain age prediction. (A) Correlation between predicted brain age and 
chronological age in controls (r=0.73, R2=0.45, p<0.0001) and patients (r=0.72, R2=0.36, 
p<0.0001). Of note, predicted brain age reflects estimates corrected for the offset (brain 
agecorrected = brain age - (brain-PAD - mean brain-PADcontrols). (B) There was a residual effect of 
age on the brain-PAD outcome in controls (r=-0.32, p=0.01) and patients (r=-0.37, p<0.0001), 
(C) which was statistically corrected for by adding age as a covariate in all models.
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Advanced Brain Aging in Depression and Anxiety Disorders

Using diagnostic status as a dichotomous between-group predictor we found 
that patients exhibited +1.75 years higher brain-PAD than controls, but this 
difference did not reach statistical significance (Cohen’s d=0.24). Within the 
patient group only, we found no significant associations with the age of onset 
of illness or duration of symptoms of either MDD or anxiety. However, brain-
PAD was significantly lower in antidepressants (AD) using patients compared 
to AD-free patients (b=-2.58 years, p=0.01), but not control subjects (b=0.59 
years, p=0.65) (Figure 2A). Given the significant difference in brain-PAD 
between AD-free and AD-using patients, we included AD status as an 
additional covariate when comparing controls to the patient group, resulting in 
significantly higher brain-PAD in patients (+2.63 year [SE 1.10 year], Cohen’s 
d=0.34, 95% CI 0.06-0.62). We also added AD status as an additional covariate 
in a model to compare controls against specific MDD, anxiety, or comorbid 
patient groups (the proportion of subjects using AD in specific diagnostic 
groups was marginally different, χ(2)=5.91, p=0.052). This revealed significantly 
higher brain-PAD in MDD (+2.78 years, Cohen’s d=0.25, 95 % CI -0.10-0.60, 
p=0.04) and anxiety patients (+2.91 years, Cohen’s d=0.27, 95% CI -0.08-
0.61, p=0.03), and a similar effect in the comorbid MDD and anxiety group 
(+2.23 years, Cohen’s d=0.21, 95% CI 0.10-0.53) although only marginally 
significant (p=0.08) (Table 2). There were no post-hoc differences in brain-PAD 
corrected for AD use between specific patient groups (MDD vs. anxiety vs. 
comorbid patients; P’s>0.46, Cohen’s d’s <0.07).

Table 2. Advanced Brain Aging in Depression and Anxiety with Correction for 
Antidepressant Use.

Ref Predictor b SE t value P Cohen’s d SE 95% CI

Controls Any patient 2.63 1.10 2.39 0.02 0.34 0.14 0.06-0.62

MDD 2.78 1.32 2.11 0.04 0.25 0.18 -0.09-0.6

Anxiety 2.91 1.31 2.22 0.03 0.27 0.17 -0.08-0.61

 
Comorbid MDD 
and anxiety

2.23 1.28 1.74 0.08 0.21 0.16 -0.11-0.53

Age, sex, education level (years) and two dummy variables for scanlocation were included in 
all models. Antidepressant status was additionally included as covariate.

To gain more insight into the differences in brain-PAD between AD-free 
and AD-using patients, we post-hoc calculated a derived daily dose by 
dividing the AD mean daily dose by the daily dose recommended by the World 
Health Organization (also see[33]). Brain-PAD was not significantly negatively 
associated with a derived daily dose of antidepressants in n=74 patients (b=-
0.91 year, p=0.50) (Supplementary Figure S1). Of note, we excluded three 
subjects from this analysis as these AD-using patients were using Venlafaxine 
at doses higher than 150 mg/day, acting as a dual serotonin and norepinephrine 
reuptake inhibitor rather than acting as a Selective Serotonin Reuptake 
Inhibitor (SSRI) only[34]. Based on the above findings, both diagnostic and 
AD status were included in the multivariable model to test unique brain-PAD 
contributions.

Selection of Significant Associations with Clinical Variables in All 
Participants

Using a dimensional approach based on symptoms rather than diagnosis, 
we found that higher brain-PAD was associated with higher total depression 
(b=0.07 year per unit change on the Inventory of Depressive Symptoms, 
p=0.03) and anxiety severity scores (b=0.11 year per unit change on the Beck’s 
Anxiety Inventory, p=0.01) across all participants (Figure 2B-C). No significant 
associations were found for the mood/cognition (b=0.89 year per unit increase 
on the average sum score, p=0.27, Figure 2D) or immunometabolic symptom 
clusters of depression (b=0.45 year per unit increase on the average sum 
score, p=0.62, Figure 2E), but higher brain-PAD was strongly associated 
with more somatic symptoms of depression (b=4.03 year per unit increase 
on the average sum score, p<0.0001, Figure 2F). There were no significant 
associations between brain-PAD and childhood trauma exposure (b=0.23 year 
per unit change on the childhood trauma index, p=0.26) or recent negative life 
events (b=0.35 year per negative life event, p=0.39).



Chapter 6 Contributing Factors to Advanced Brain Aging in Depression and Anxiety Disorders

217216

                          
 
 
                                                           

191 

 
 

Figure 2. Brain-PAD differences and clinical characteristics. (A) AD-free patients showed significantly 
higher brain-PAD compared to AD-using patients (+2.58 year [SE 1.02 year], Cohen’s d=0.36, 95% CI 0.09-
0.64) and controls (+2.63 year [SE 1.10 year], Cohen’s d=0.31, 95% CI 0.01-0.60). (B) Advanced brain aging 
was associated with overall higher total depressive symptoms (b=0.07 years per unit increase on the Inventory 
of Depressive Symptoms, p=0.03), (C) total anxiety symptoms (b=0.11 years per unit increase on the Beck’s 
Anxiety Inventory, p=0.01), but not specifically with (D) the mood/cognition (b=0.89 years per unit increase 
on average sum score, p=0.27) or (E) immunometabolic (b=0.45 years per unit increase on the average sum 
score, p=0.62) symptom cluster. The association in (B) seemed to be driven mostly by (F) a specific cluster 
of somatic symptoms in MDD (b=4.03 years per unit increase on the average sum score, p<0.0001). Brain-
PAD estimates (in years) were residualized for age, sex, education level (years) and two dummy variables for 
scanlocation.  
 
  

Figure 2. Brain-PAD differences and clinical characteristics. (A) AD-free patients showed 
significantly higher brain-PAD compared to AD-using patients (+2.58 year [SE 1.02 year], 
Cohen’s d=0.36, 95% CI 0.09-0.64) and controls (+2.63 year [SE 1.10 year], Cohen’s 
d=0.31, 95% CI 0.01-0.60). (B) Advanced brain aging was associated with overall higher 
total depressive symptoms (b=0.07 years per unit increase on the Inventory of Depressive 
Symptoms, p=0.03), (C) total anxiety symptoms (b=0.11 years per unit increase on the 
Beck’s Anxiety Inventory, p=0.01), but not specifically with (D) the mood/cognition (b=0.89 
years per unit increase on average sum score, p=0.27) or (E) immunometabolic (b=0.45 
years per unit increase on the average sum score, p=0.62) symptom cluster. The association 
in (B) seemed to be driven mostly by (F) a specific cluster of somatic symptoms in MDD 
(b=4.03 years per unit increase on the average sum score, p<0.0001). Brain-PAD estimates 
(in years) were residualized for age, sex, education level (years) and two dummy variables 
for scanlocation. 

Selection of Significant Associations with Somatic Health in All 
Participants

Higher brain-PAD was associated with both higher BMI (b=0.23 year per kg/m2, 
p=0.02), as well as the number of somatic diseases under medical treatment 
(b=1.45 year per somatic disease, p=0.03). However, the latter association 
became non-significant if those with >2 chronic diseases (n=4) were truncated 
to two chronic diseases (b=1.29 year per somatic disease, p=0.08).

No Associations with Lifestyle or Biological Stress Variables

There were no significant associations with any of the lifestyle variables 
(smoking, alcohol, physical activity) or biological stress variables (inflammatory 
markers, ANS, HPA-axis). An overview of the separate linear regressions can 
be found in Table 3.

Multivariable Model

To characterize the unique contributions of the selected significant predictors 
on the brain-PAD outcome, we included diagnostic status (control vs. patient), 
MDD and anxiety symptom scores, BMI, AD use, and the number of somatic 
diseases under treatment as predictors in a stepwise regression model with 
forward selection. Thus, predictors were successively added to an intercept-
only model (Akaike’s Information Criterion [AIC] = 1115.81), only adding 
regression coefficients if they improved model fit (i.e. lower AIC). Using this 
method, we found that the best subset of variables to explain brain-PAD 
consisted of somatic depression symptoms and AD use (AIC=1098.79). In 
sum, unique contributions to brain-PAD were observed for the somatic 
depression symptom cluster (b=4.21 year per unit increase on average sum 
score, 95% CI 2.25 to 6.16, p<0.0001) and AD use (b=-2.53 year, 95% CI 
-4.36 to 0.70, p=0.007) . 
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Table 3. Overview of the Brain-PAD Associations with Predictors of Interest.

Assessment Predictor b SE t value P

Clinical Depressive symptom severity 0.07 0.03 2.16 0.03

Anxiety symptom severity 0.11 0.04 2.50 0.01

Mood/cognition symptoms 0.89 0.81 1.10 0.27

Somatic depression symptoms 4.03 1.04 3.87 <0.00001

Immunometabolic symptoms 0.45 0.92 0.49 0.62

Childhood trauma index 0.23 0.20 1.13 0.26

Negative life events 0.35 0.41 0.86 0.39

Within patients Antidepressant use -2.58 1.02 -2.54 0.01

Duration of depressive symptoms -0.20 1.97 -0.10 0.92

Duration of anxiety symptoms -0.88 1.55 -0.56 0.57

Age of onset of depression 0.04 0.06 0.61 0.55

Age of onset of anxiety 0.01 0.05 0.09 0.93

Somatic health BMI 0.23 0.10 2.31 0.02

Number of somatic diseases 1.29 0.72 1.79 0.08

Lifestyle Alcohol (mean drinks per week) -0.09 0.07 -1.33 0.19

Smoking (cigarettes per day) -0.07 0.05 -1.26 0.21

Physical exercise (MET-minutes) -0.06 0.13 -0.48 0.63

Inflammation CRP 0.57 0.76 0.75 0.46

TNF-α 0.10 1.65 0.06 0.95

IL6 0.60 0.98 0.61 0.54

ANS Resting HR 0.08 0.05 1.51 0.13

RSA -0.01 0.02 -0.46 0.65

PEP -0.04 0.03 -1.45 0.15

HPA-axis AUCi -0.04 0.10 -0.34 0.74

AUCg -0.04 0.09 -0.42 0.67

 Evening 0.18 0.23 0.76 0.45

Age, sex, education level (years) and two dummy variables for scanlocation were included 
in all models. BMI, Body Mass Index; MET-minutes, ;CRP, C-reactive protein; TNF-α, Tumor 
Necrosis Factor-α; IL6, Interleukin-6; ANS, autonomic nervous system; HR, heart rate; RSA, 
respiratory sinus arrhythmia; PEP, pre-ejection period; AUCi, cortisol awakening response: 
area under the curve with respect to the increase; AUCg, cortisol awakening response: area 
under the curve with respect to the ground; Evening, Evening Cortisol. 

DISCUSSION

The current study used a validated brain age prediction model to show that the 
previously observed findings of older appearing brains in MDD patients was 
associated with symptom severity and BMI. Moreover, antidepressant (AD) 
users exhibited similar average brain-PAD as control subjects, whereas those 
that were AD-free showed older appearing brains. Correcting for AD-use, we 
also showed that not only MDD patients, but also patients with anxiety disorder 
exhibited older appearing brains compared to controls. Surprisingly, there 
were no significant associations with lifestyle or biological stress systems. 
A multivariable model showed unique contributions of somatic depression 
symptom severity and AD-use on brain-PAD. 

To the best of our knowledge, we are the first to report advanced brain 
aging in anxiety disorders (i.e. generalized anxiety disorder, panic disorder, 
social anxiety disorder) with an estimated +2.91 years on average, compared 
to controls, when correcting for AD use. This is consistent with the literature 
describing comparable effect sizes with respect to structural brain alterations 
in social anxiety disorder (Cohen’s d=0.20)[35], and other anxiety-related 
disorders such as post-traumatic stress disorder (PTSD) (Cohen’s d=-0.17)[36], 
with PTSD patients also showing advanced brain-PAD without correction for 
AD[17]. This observation may potentially offer an explanation as to why clinical 
anxiety is associated with an increased risk of dementia, even independent 
from depression[37], although further evidence is needed. The lack of any 
significant post-hoc differences between specific diagnostic groups can likely 
be explained due to, amongst others, the high genetic correlation between the 
disorders[38], shared environmental risks, and overlapping personality traits 
of patients with depression and anxiety disorders[39].

The most clinically relevant finding was that AD-using patients showed 
a similar brain age to controls, but not to AD-free patients, irrespective of 
specific depressive or anxiety disorder. This finding was previously overlooked 
in consortium data, presumably due to a lack of more detailed information 
on lifetime use, dosage and duration of use of AD[16], highlighting the 
complementary values of well-characterized local samples and large-scale 
consortia. The AD finding was particularly interesting as the AD-using patients 
constituted a more severely depressed and anxious group as indicated by 
higher symptom severities compared to AD-free patients, potentially suggesting 
compensatory or normalizing mechanisms of AD, at least on the brain-PAD 
metric. This accords with earlier work reporting brain-PAD associations with 
therapeutic drugs, suggesting neuroprotective effects of Lithium treatment 
in bipolar disorder patients (vs. no Lithium)[40] and ibuprofen (vs. placebo) 
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in healthy participants in a exploratory randomized controlled trial[41]. Yet, it 
remains unclear if and to what extent the brain age protective mechanisms 
overlap with, for example, increased neural progenitor cells[42], brain-derived 
neurotrophic factor (BDNF)[43], or other serotonergic neuroplasticity processes 
implicated in AD use[44], or, alternatively, whether neuropharmacology affects 
the MRI signal[45]. Brain-PAD was not positively associated with the duration 
of symptoms (either MDD or anxiety), suggesting that the AD effect was not 
driven by the duration of the disease and did not seem to be progressive. 
Taken together, these findings may suggest an age-related neuroprotective 
effect of AD, but interpretative caution is warranted as the current study was 
cross-sectional in nature and the dose-response association with AD not 
statistically significant. We also did not find associations with physical activity, 
while a previous study found an association between brain-PAD and the daily 
number of flights of stairs climbed[46]. Future clinical interventions are needed 
to examine the short and long-term effects of antidepressants and physical 
activity on biological aging, an objective currently pursued by the MOod 
treatment with antidepressants or running (MOTAR) study[47]. 

There were no associations with the cumulative childhood trauma index 
or the number of recent negative life events, different from the impact that 
adverse childhood experience commonly has on other biological age indicators 
such as telomere length[48], or epigenetic aging[49], albeit with small effects. 
Future studies with larger samples may potentially be more sensitive in 
picking up associations between brain-PAD and childhood trauma. However, 
taken together, the current study found that advanced brain aging was more 
associated with current disease states, likely related to current symptom 
severity, rather than the result of cumulative exposure (i.e. no association with 
childhood trauma history, age of onset of illness, duration of symptoms) or 
traits.

Furthermore, Cole and colleagues (2020) found significant associations 
between brain-PAD and several biomedical (e.g. blood pressure, diabetes, 
stroke) and lifestyle variables (e.g. smoking status, alcohol intake frequency), 
but not BMI, in the UK Biobank[20], albeit with a different, multi-modal brain 
age prediction model but in a much larger sample size (>14,000 subjects). 
Although the current findings with somatic health broadly support previously 
associated diabetes[50] and stroke findings in UK Biobank, as well as the null-
finding with respect to physical activity, we did not identify associations with 
smoking or alcohol behavior[50]. More work is needed in terms of identifying 
unique or shared robust contributors to the brain-PAD metric, converging 
evidence across and between datasets, processing methods, and populations. 
Other previous studies, however, also identified associations with BMI[51] 

and here we show that an increase of 1 kg/m2 in BMI leads to +0.23 years 
of added brain aging, although not independent from depression or anxiety 
symptom severity. A previous study did show such an independent effect for 
obesity and first-episode schizophrenia[52], but here the obese group only 
constituted of 13% of the total current sample. Furthermore, each increase of 1 
of the average sum score (range 0.80-4.00) of somatic depression symptoms, 
resulted in +4.20 years of added brain aging, independent from AD use. The 
somatic symptom cluster studied here consisted of items tapping into sleep, 
psychomotor, and other bodily symptom problems (see Supplement for all 
individual items within each cluster). This emphasizes the need to prevent and 
improve both mental and somatic conditions to promote healthy brain aging 
in psychiatric populations.

Surprisingly, none of the biological stress systems considered in the 
current study were predictive of brain aging, despite the strong association 
between brain-PAD and somatic symptoms. This suggests that the biological 
dysregulations that commonly link depression to somatic health[5], were not 
directly contributing to advanced brain aging. On the other hand, it might 
indicate that the brain-PAD metric is more responsive to psychological 
stressors, rather than biological stressors. With respect to the inflammatory 
markers, it might be possible that blood levels of inflammatory markers do 
not accurately mirror central neuroimmune levels, although there is some 
evidence that C-Reactive Protein (CRP) measured peripherally also reflects 
central inflammation, at least in MDD[53]. Alternatively, a different potential 
biological mechanism that may explain the observed advanced brain aging 
in depression and anxiety disorders is metabolic dysregulation. Future 
studies could characterize the brain-PAD metric in more detail with respect to 
metabolic factors (e.g. blood pressure, triglycerides, cholesterol), as these are 
well-established risk factors for unfavorable somatic conditions[54–57] and 
frequently co-occur with depression[58].

Given the richness of the current dataset, we additionally computed 
post-hoc intercorrelations between the brain-PAD metric and other available 
biological age indicators in NESDA. Briefly, we found low, non-significant 
(P’s>0.13), correlations between brain-PAD, and three omics-based clocks 
(epigenetic, transcriptomic, metabolomic) and telomere length (with Pearson r 
in the range of -0.03 to 0.15, Supplementary Figure S2). Surprisingly, brain-
PAD was negatively associated with the proteomic clock (r=-0.24, p=0.02) 
after correcting for age (albeit in a greatly reduced overlapping sample of 
N=98). Only a handful of studies have compared multiple biological age 
indicators side-by-side[59–62], but the current findings support most work 
showing the very little overlap between biological clocks from different types 
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of data[9]. However, the small but significant negative correlation between 
brain and proteomic aging suggests a further study with more focus on the 
interplay between this peripheral and central proxy of aging is needed. Aging 
remains a multifaceted and complex process that may manifest differently 
across multiple biological levels and tissues.

Limitations

It is important to mention that our sample had low statistical power to detect 
(some of) the relatively small effect sizes in the current study. At present, the 
large within-group variance of brain-PAD lacks utilitarian validity in a clinical 
context. We, therefore, emphasize the need for both methodological (i.e. brain 
age models) as well as epidemiological replication (i.e. other and larger samples) 
to test the robustness of effects. Another limitation is reflected by the lack of 
insights into the causal pathways implicated in advanced brain aging, given 
the cross-sectional nature of the study. However, a major strength is that we 
used a pre-established reference curve for healthy brain aging that has further 
potential for benchmarking, as the ENIGMA MDD working group encourages 
local research samples like ours to examine more detailed phenotypes that 
were not available within the consortium. Also important to note is that the 
effects of multivariate brain aging patterns (Cohen’s d=0.34, between controls 
and all patients) was higher or comparable to other biological aging indicators 
(e.g. telomere length [Cohen’s d=0.12][63], epigenetic aging [d=0.14])[64], 
biological markers (e.g. BDNF [d=0.23][65], cortisol [d=0.15-0.25][66], CRP 
[d=0.15][67]), and, most importantly, neuroimaging markers (e.g. hippocampal 
volume [d=-0.14][68]), in other or (partly) overlapping samples. 

Conclusion

In summary, advanced brain aging in patients with MDD and anxiety seems to 
be most strongly associated with somatic health indicators such as somatic 
depressive symptomatology, BMI, and the number of chronic diseases under 
medical treatment. We also revealed that antidepressant medication use was 
associated with lower brain-PAD, potentially suggesting that its use may 
have a protective effect on the age-related structural gray matter alterations 
observed in patients with MDD and anxiety, an effect previously overlooked 
in consortium data. Our results, therefore, emphasize the importance and 
complementary value of smaller, yet more homogeneous, datasets with 
harmonized data collection and well-characterized clinical phenotyping, 
compared to the large-scale consortium data needed for statistical power. 

Randomized clinical trials are needed to confirm whether advanced brain 
aging can be halted or reversed, by intervening on the cross-sectional somatic 
health indicators identified here, in pursuit of the characterization of a complex 
multifaceted process such as brain aging.
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SUPPLEMENTARY METHODS

NESDA MRI substudy in- and exclusion criteria

The inclusion criteria for the MRI substudy were a DSM-IV diagnosis of major 
depressive disorder (MDD) and/or anxiety disorder (social anxiety disorder, 
panic disorder, generalized anxiety disorder) with a six month recency, but no 
other axis-I disorder. Control subjects were not allowed to have a history of 
any DSM-IV axis-I disorder. Exclusion criteria were a history of drug or alcohol 
abuse for both patients and controls, general MRI contraindications, and 
presence or history of a severe internal or neurological disorder. Additional 
exclusion criteria were the use of psychotropic medication with the exception 
of stable use of selective serotonin reuptake inhibitors (SSRIs) or infrequent 
benzodiazepine use for patients and use of any psychoactive medication for 
control subjects. 

Clinical assessments

The Beck Anxiety Inventory (BAI) was used to measure the severity of 
anxiety symptoms as common in panic and generalized anxiety disorders, 
ranging from 0 (minimal) to 63 (severe)[1]. Depressive symptomatology was 
assessed with the Inventory Depressive Symptomatology (IDS)[2]. This 30-
item questionnaire assesses the presence of all symptom domains of a 
major depressive episode in the past seven days on a 0-3 scale (not severe 
– severe), resulting in a total IDS score ranging from 0 (normal) to 84 (very 
severe). For both depression disorders and anxiety disorders, measures on 
duration (course) of psychopathology were assessed. The Life Chart Interview 
was used to determine the proportion of time in which symptoms relevant for 
the disorder were experienced in the past four years [3]. Childhood trauma 
before the age of 16 was assessed using the NEMESIS childhood trauma 
interview with personal history questions including a structured inventory of 
trauma exposure during childhood (emotional neglect, psychological abuse, 
physical abuse, sexual abuse, and important life-events in early life). In line 
with earlier work, a cumulative childhood trauma index (CTI) was created that 

reported the sum of the categories that were scored from 0 to 2 (0: never 
happened, 1: sometimes, 2: happened regularly), resulting in an index score 
ranging from 0-8 [4]. Frequent use of antidepressants (>50% of the time) was 
assessed through container inspection and categorized using World Health 
Organization Anatomical Therapeutic Chemical (ATC) classifications: selective 
serotonin reuptake inhibitors (ATC code N06AB), and other antidepressants 
(ATC codes N06AF, N06AG, N06AX). 

Depressive symptom clusters 

Previous studies based on the Netherlands Study of Depression and Anxiety 
(NESDA) and other populations have distinguished several different clusters of 
symptoms within the Inventory of Depressive Symptoms (IDS) [2, 5, 6]. Here, 
we largely follow the two factors identified by Wardenaar et al. 2010 [7], but 
add a separate factor for immuno-metabolic features, thus distinguishing three 
symptom clusters: 1) mood/cognition symptom cluster, 2) immunometabolic 
symptom cluster, and 3) somatic symptom cluster (Supplementary Table S1). 
Given that the three different clusters consist of different numbers of items, 
we divided the total score of each cluster by the number of items in that 
cluster (mood/cognition: 15 items vs. immuno-metabolic: 5 items vs. somatic: 
10 items) to obtain an average summary score. 

Biological stress assessments 

Inflammation
A previous study also described the assessment of inflammation markers [8]. 
Circulating plasma levels of C-Reactive Protein (CRP) (N=280), tumor necrosis 
level-α (TNF-α) (N=279), and Interleukin-6 (IL-6) (N=280) were assessed in 
duplicate. First, to measure plasma levels of CRP, an in-house enzyme-linked 
immunosorbent assay (ELISA) based on purified protein and polyclonal anti-
CRP antibodies was used (Dako, Glostrup, Denmark). Intra- and inter-assay 
coefficients of variation were 5% and 10%, respectively. Second, plasma 
TNF-α levels were assessed using a high-sensitivity solid phase ELISA 
(Quantikine HS Human TNF-α Immunoassay, R&D systems, Minneapolis, 
MN, USA). Intra- and inter-assay coefficients of variation were 10% and 15% 
respectively. Finally, to measure plasma IL-6 levels a high sensitivity ELISA 
was used (PeliKine Compact, ELISA, Sanquin, Amsterdam, The Netherlands). 
Intra- and inter-assay coefficients of variation were 8% and 12%, respectively.
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Supplementary Table S1. Categorization of Individual Items of the Inventory of 
Depressive Symptoms (IDS) into Three Symptom Clusters. 

Symptoms (IDS) Depression symptom profiles

Problems falling asleep Somatic

Sleep during the night Somatic

Waking-up too early Somatic

Sleeping too much Immuno-metabolic

Feeling sad Mood/cognition

Feeling irritable Mood/cognition

Feeling anxious or tense Mood/cognition

Response of mood to good or desired events Mood/cognition

Mood in relation to time of day Mood/cognition

Quality of mood Mood/cognition

Decreased appetite Somatic

Increased appetite Immuno-metabolic

Decreased weight Somatic

Increased weight Immuno-metabolic

Concentration/decision making Mood/cognition

View of self Mood/cognition

View of future Mood/cognition

Thoughts of death/suicide Mood/cognition

General interest Mood/cognition

Energy level Immuno-metabolic

Capacity for pleasure or enjoyment (excl. sex) Mood/cognition

Interest in sex Mood/cognition

Psychomotor retardation Somatic

Psychomotor agitation Somatic

Aches and pains Somatic

Other bodily symptoms Somatic

Panic/phobic symptoms Mood/cognition

Constipation/diarrhea Somatic

Interpersonal sensitivity Mood/cognition

Leaden-paralysis/physical energy Immuno-metabolic

Hypothalamic Pituitary Adrenal-axis
The assessment of hypothalamic pituitary adrenal (HPA)-axis measures have 
also been previously described [9]. To reliably assess the active, unbound 
form of cortisol participants were instructed to collect saliva samples at 
home (with minimal intrusiveness) on a regular (preferably working) day 
[10]. Salivettes were used to obtain saliva samples (Sarstedt, Nümbrecht, 
Germany) at six time points during a regular (work) day: at awakening (T1) 
and 30 (T2), 45 (T3), and 60 (T4) minutes later and at 10 PM (T5) and 11 PM 
(T6). The samples were stored in refrigerators and then returned by regular 
mail. After arrival, salivettes were centrifuged at 2000 × g for 10 min, aliquoted 
and stored at −80°C. Analyses of the cortisol were performed by competitive 
electrochemiluminescence immunoassay (Roche, Basel, Switzerland) [11]. 
The detection limit was 2.0 nmol/l and the intra- and inter-assay coefficients of 
variation were <10% [12]. Since the two evening values were highly correlated 
(r=0.75, p<.001), we averaged these two values. 

Autonomic Nervous System
Subjects wore a so-called VU University ambulatory monitoring system (VU-
ams) [13] during their interview. The VU-ams is a light-weight, unobtrusive 
device that records an electrocardiogram (ECG) and changes in thorax 
impedance (dZ) through 6 surface electrodes placed on the chest and the 
back [14]. The heart rate was obtained by extracting the inter-beat interval 
time series from the ECG signal. Respiratory sinus arrhythmia (RSA) and pre-
ejection period (PEP) were extracted from the combined dZ and ECG signals 
[13]. RSA is a measure of cardiac parasympathetic (vagal) control, with high 
RSA levels reflecting high cardiac vagal control. We subtracted the shortest 
inter-beat interval during heart rate acceleration in the inspirational phase from 
the longest interbeat interval during deceleration in the expirational phase for 
all breaths to obtain a measure of RSA [15]. PEP is a measure of cardiac 
sympathetic control, as it can reliably index b-adrenergic inotropic drive to 
the left ventricle. Long PEP reflects low cardiac sympathetic control. PEP 
was defined as the interval from the beginning of the left ventricular electrical 
activity (ECG Q-wave onset), to the beginning of left ventricular ejection (B 
point in the dZ/dt signal) [16]. Given the fact that postural changes unrelated 
to autonomic activity affect PEP and RSA, data from periods in which 
participants were non-stationary (~15 min) were excluded [17]. Movement was 
registered through vertical accelerometry. Automated scoring of RSA and PEP 
was checked by visual inspection, and valid data was averaged over 98.0 ± 24 
(mean ± SD) min to create single HR, PEP and RSA values.
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Derived daily dose of antidepressants

We had information available on daily dose of antidepressants (n=74), with 
82% of the antidepressant (AD) users using serotonin and norepinephrine 
reuptake inhibitors (SSRIs) and the remaining 18% using Venlafaxine on doses 
<150 mg/day. Of note, we excluded three subjects because they were using 
Venlafaxine at doses higher than 150 mg/day, acting as a dual serotonin and 
norepinephrine reuptake inhibitor rather than acting as a Selective Serotonin 
Reuptake Inhibitor (SSRI) only [18]. The derived daily dose was calculated 
by dividing the AD mean daily dose by the daily dose recommended by the 
World Health Organization [19] (also see [20]). However, brain-PAD was not 
significantly negatively associated with a derived daily dose of AD in (b=-0.91 
year per g of AD per day, p=0.50) (Supplementary Figure S1). 

Other biological clocks 

To examine whether multivariate brain aging patterns were synchronized with 
telomere length (TL), and multivariate aging patterns from four omics-levels 
(epigenomics, proteomics, transcriptomics, metabolomics) we computed 
a correlation matrix between brain-PAD and these other five biological 
clocks. For a more detailed description of the biological clocks, please see 
[21]. Briefly, ridge regression was used to predict the chronological age 
using data from different molecular levels. Chronological age effects were 
regressed out of all biological age predictions to indicate biological aging. 
Positive correlations indicated concordant biological aging processes, 
whereas negative intercorrelations indicated discordant aging patterns. 
There was low, non-significant, agreement between brain age and four other 
biological age indicators. However, we found a weak but significant inverse 
correlation between brain age and proteomic age, while controlling for age 
(Supplementary Figure S2). 

 

Supplementary Figure S1. Dose-response relationship between brain-PAD and anti- 
depressants. Within the patient group, lower brain-PAD was not significantly associated 
with higher derived daily doses of antidepressants (AD) (SSRIs and Venlafaxine <1.5 g/day) 
(b=-0.94 years per g/day, p=0.50). Brain-PAD estimates (in years) were residualized for age, 
sex, education level (years) and two dummy variables for scanlocation. 

Supplementary Figure S2. Correlation coefficients between brain-PAD and five other 
biological age indicators while controlling for age. Similar methods were deployed 
predicting age from epigenetic, transcriptomic, proteomic, and metabolomic data. Telomere 
length was also included as a biological age indicator. Brain-PAD was not significantly 
correlated with either of the other biological age indicators, except for the proteomic clock 
(r=-0.24, p=0.02).
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ABSTRACT 

Biological clocks have been developed at different molecular levels and were 
found to be more advanced in the presence of somatic illness and mental 
disorders. However, it is unclear whether different biological clocks reflect 
similar aging processes and determinants. In ~3000 subjects, we examined 
whether five biological clocks (telomere length, epigenetic, transcriptomic, 
proteomic and metabolomic clocks) were interrelated and associated to 
somatic and mental health determinants. Correlations between biological 
clocks residualized for age were small (all r<0.2), indicating little overlap. 
The most consistent associations of advanced biological aging were found 
for male sex, higher BMI, metabolic syndrome, smoking and depression. As 
compared to the individual biological aging indicators, a composite index of 
all five biological aging indicators showed most pronounced associations with 
health determinants. The large effect sizes of the composite index and the low 
correlation between biological aging indicators suggest that one’s biological 
aging is best reflected by combining measures from multiple cellular levels.

 

INTRODUCTION

Aging can be conceptualized in different ways. While chronological age is 
measured by date of birth, biological age reflects the relative aging of an 
individual’s physiological condition. Biological aging can be estimated by 
various cellular indices[1]. Commonly used indices are based on telomere 
length, DNA methylation patterns (epigenetic age), variation in transcription 
(transcriptomic age) as well as alterations in the metabolome (metabolomic 
age) and in the proteome (proteomic age) (see Han et al.[2], Xia et al.[3] and 
Jylhava et al.[4] for recent reviews). Biological aging is defined as the residuals 
of regressing predicted biological age on chronological age: a positive value 
indicates that the biological age is larger than the chronological age. Advanced 
biological aging (i.e., an increased biological clock) has been associated to 
poor somatic health, including the onset of aging-related somatic diseases 
such as cardiovascular disease, diabetes and cognitive decline[3]. Advanced 
biological aging has also been correlated to mental health: childhood 
trauma[5], psychological stress and psychiatric disorders[6, 7]. Specifically, 
telomere length has been most extensively researched and was found to be 
shorter in various somatic conditions[8], all-cause mortality[9, 10] and a range 
of psychiatric disorders[11]. Advanced epigenetic aging has also been linked 
to worse somatic health, mortality[12], depressive disorder[7, 13] and post-
traumatic stress disorder[14], although some studies have found associations 
with the opposite direction of effect[15, 16]. Advanced transcriptomic aging was 
found in those with higher blood pressure, cholesterol levels, fasting glucose, 
and body mass index (BMI)[17]. Advanced metabolomic aging increases risk 
on future cardiovascular disease, mortality, and functionality[18]. 

While all biological clocks aim to measure the biological aging process, 
there is limited evidence for cross-correlations among different clocks. 
Belsky and colleagues[19] recently showed low agreement between eleven 
quantifications of biological aging including telomere length, epigenetic aging 
and biomarker-composites. In contrast, Hasting and colleagues[20] showed 
relatively strong correlations (r>.50) between three physiological composite 
biological clocks (i.e. homeostatic dysregulation, Klemer and Doubal’s method 
and Levine’s method), but not with telomere length. Other studies showed that 
telomere length was not correlated with epigenetic aging[7, 21], although cell 
type composition adjustments revealed a modest association[22]. Further, both 
Hannum and Horvath epigenetic clocks[23, 24] showed modest correlations to 
a transcriptomic clock[17]but the molecular characteristics of ageing that lead 
to increased disease susceptibility remain inadequately understood. Here we 
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perform a whole-blood gene expression meta-analysis in 14,983 individuals of 
European ancestry (including replication. 

Most previous studies, however, have separately considered the relation 
between a single biological clock and different somatic and mental health 
conditions. To date, extensive integrated analyses across multiple cellular and 
molecular aging markers in one study are lacking and it remains unknown 
to what extent different biological clocks are similarly associated to different 
health determinants. In addition, most studies did not examine health in its 
full range and, consequently, whether both somatic and mental health are 
associated with biological aging remains elusive. As it is unlikely that a single 
biological clock can fully capture the complexity of the aging process[25], a 
composite index, that integrates the different biological clocks and thereby 
aging at several molecular levels, may reveal the strongest health impact. 
Therefore, there is an additional need to integrate different biological clocks 
and test whether such a “composite clock” outperforms single biological 
blocks in its association with health determinants. 

To develop a better understanding of the mechanisms underlying 
biological aging, this study aimed to examine 1) the intercorrelations between 
biological clocks based on different molecular levels ranging from DNA to 
metabolites, namely telomere length, epigenetic, transcriptomic, proteomic 
and metabolomic clocks; 2) the relationships between different biological 
clocks with both somatic and mental health determinants; and 3) whether 
a composite biological clock outperforms single biological clocks in its 
association with health. For the five biological clocks and the composite 
clock, associations were computed with a wide panel of lifestyle (e.g. 
alcohol use, physical activity, smoking), somatic health (functional indicators, 
BMI, metabolic syndrome, chronic diseases) and mental health (childhood 
trauma, depression status) determinants. All biological clock outcomes were 
residualized for chronological age. 

METHODS 

Study design and participants 

Data used were from the Netherlands Study of Depression and Anxiety (NESDA), 
an ongoing longitudinal cohort study examining course and consequences 
of depressive and anxiety disorders. The NESDA sample consists of 2,981 
persons between 18 and 65 years including persons with a current or remitted 
diagnosis of a depressive and/or anxiety disorder (74%) and healthy controls 

(26%). Individuals were recruited from mental health care settings, general 
practitioners, and the general population in the period from September 2004 
to February 2007. Persons with insufficient command of the Dutch language 
or a primary clinical diagnosis of other severe mental disorders, such as severe 
substance use disorder or a psychotic disorder were excluded. Participants 
were assessed during a 4-hour clinical visit, consisting of the collection of 
all somatic and mental health determinants in the current study, as well as a 
fasting blood draw. All omics data was obtained from the same blood sample, 
drawn at the same time point as the health determinant examination during 
the face-to-face visit. The study was approved by the Ethical Review Boards 
of participating centers, and all participants signed informed consent. More 
than 94% of the NESDA participants were from North European origin. The 
population and methods of the NESDA study have been described in more 
detail elsewhere[26]and (2.

Data to derive different biological clocks was available for different 
subsamples and all based on the same fasting blood draw from participants 
in the morning between 8:30 and 9:30 after which samples were stored in a 
-80°C freezer or – for RNA - transferred into PAXgene tubes (Qiagen, Valencia, 
California, USA) and stored at −20°C. To create biological clocks, we used 
telomere length (N=2936), DNA methylation (N=1130, MBD-seq, 28M CpGs), 
gene expression (N=1990, Affymetrix U219 micro arrays, >20K genes), proteins 
(N=1837, Myriad RBM DiscoveryMAP 250+, 171 proteins) and metabolites 
(N=2910, Nightingale platform, 231 metabolites), see Table 1 and details in the 
following sections.

Biological clock assessments 

Telomere length. Leukocyte telomere length was determined at the laboratory 
of Telomere Diagnostics, Inc. (Menlo Park, CA, USA), using quantitative 
polymerase chain reaction (qPCR), adapted from the published original 
method by Cawthon et al.[27]. Telomere sequence copy number in each 
patient’s sample (T) was compared to a single-copy gene copy number (S), 
relative to a reference sample. The resulting T/S ratio is proportional to mean 
leukocyte telomere length. The detailed method is described elsewhere[28]
diabetes, obesity and cancer. This suggests mechanisms of accelerated 
biological aging among the depressed, which can be indicated by a shorter 
length of telomeres. We examine whether MDD is associated with accelerated 
biological aging, and whether depression characteristics such as severity, 
duration, and psychoactive medication do further impact on biological aging. 
Data are from the Netherlands Study of Depression and Anxiety, including 
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1095 current MDD patients, 802 remitted MDD patients and 510 control 
subjects. Telomere length (TL. The reliability of the assay was adequate: eight 
included quality control DNA samples on each PCR run illustrated a small 
intra-assay coefficient of variation (CV=5.1%), and inter-assay CV was also 
sufficiently low (CV=4.6%).

DNA methylation (Epigenetic clock). To assay the methylation levels of the 
approximately 28 million common CpG sites in the human genome, we used 
an optimized protocol for MBD-seq[7, 29]we assay methylation in MDD cases 
and controls from both blood (N = 1132. With this method, genomic DNA is 
first fragmented and the methylated fragments are then bound to the MBD2 
protein that has high affinity for methylated DNA. The non-methylated fraction 
is washed away and only the methylation-enriched fraction is sequenced. This 
optimized protocol assesses about 94% of the CpGs in the methylome. The 
sequenced reads were aligned to the reference genome (build hg19/GRCh37) 
with Bowtie2 [30] using local and gapped alignment. Aligned reads were 
further processed using the RaMWAS Bioconductor package33) to perform 
quality control and calculate methylation scores for each CpG.

Gene expression (Transcriptomic clock). RNA processing and assaying 
-done at Rutgers University Cell and DNA repository- have been described 
previously [31–33]. Samples were hybridized to Affymetrix U219 arrays 
(Affymetrix, Santa Clara, CA). Array hybridization, washing, staining, and 
scanning were carried out in an Affymetrix GeneTitan System per the 
manufacturer’s protocol. Gene expression data were required to pass standard 
Affymetrix QC metrics (Affymetrix expression console) before further analysis. 
We excluded from further analysis probes that did not map uniquely to the 
hg19 (Genome Reference Consortium Human Build 37) reference genome 
sequence, as well as probes targeting a messenger RNA (mRNA) molecule 
resulting from transcription of a DNA sequence containing a single nucleotide 
polymorphism (based on the dbSNP137 common database). After this filtering 
step, data for analysis remained for 423,201 probes, which was summarized 
into 44,241 probe sets targeting 18,238 genes. Normalized probe set 
expression values were obtained using Robust Multiarray Average (RMA) 
normalization as implemented in the Affymetrix Power Tools software (APT, 
version 1.12.0, Affymetrix). Data for samples that displayed a low average 
Pearson correlation with the probe set expression values of other samples, 
and samples with incorrect sex-chromosome expression were removed.

Proteins (Proteomic clock). As described previously[34], a panel of 243 
analytes (Myriad RBM DiscoveryMAP 250+) involved in various hormonal, 
immunological, and metabolic pathways was assessed in serum using 
multiplexed immunoassays in a Clinical Laboratory Improvement Amendments 

(CLIA)-certified laboratory (Myriad RBM; Austin, TX, USA;). After excluding 
analytes with more than 30% missing data (mostly due to values outside the 
ranges of detection), 171 of the 243 analytes remained for analysis (with values 
below and above detection limits imputed with the detection limit values). 

Metabolites (Metabolomic clock). Metabolite measurements have been 
described in detail previously[18, 35]which adversely impact cardiometabolic 
health. Here, a comprehensive set of metabolic markers, predominantly lipids, 
was compared between depressed and nondepressed persons. METHODS 
Nine Dutch cohorts were included, comprising 10,145 control subjects and 
5283 persons with depression, established with diagnostic interviews or 
questionnaires. A proton nuclear magnetic resonance metabolomics platform 
provided 230 metabolite measures: 51 lipids, fatty acids, and low-molecular-
weight metabolites; 98 lipid composition and particle concentration measures 
of lipoprotein subclasses; and 81 lipid and fatty acids ratios. For each metabolite 
measure, logistic regression analyses adjusted for gender, age, smoking, 
fasting status, and lipid-modifying medication were performed within cohort, 
followed by random-effects meta-analyses. RESULTS Of the 51 lipids, fatty 
acids, and low-molecular-weight metabolites, 21 were significantly related to 
depression (false discovery rate q < .05. In short, a total of 232 metabolites 
or metabolite ratios were reliably quantified from Ethylenediaminetetraacetic 
acid plasma samples using targeted high-throughput proton Nuclear Magnetic 
Resonance (1H-NMR) metabolomics (Nightingale Health Ltd, Helsinki, Finland)
[36]. Metabolites measures provided by the platform include 1) lipids, fatty 
acids and low-molecular-weight metabolites (N=51); 2) lipid composition and 
particle concentration measures of lipoprotein subclasses (N=98); 3) metabolite 
ratios (N=81). This metabolomics platform has been extensively used in 
large-scaled epidemiological studies in the field of diabetes, cardiovascular 
disease, mortality and alcohol intake[18, 37–40]yet alcohol is associated 
with both favourable and adverse effects on cardiometabolic risk markers. 
We aimed to characterize the associations of usual alcohol consumption with 
a comprehensive systemic metabolite profile in young adults. METHODS 
Cross-sectional associations of alcohol intake with 86 metabolic measures 
were assessed for 9778 individuals from three population-based cohorts from 
Finland (age 24-45 years, 52% women. The data contained missing values 
due to detection limits. Samples with more than 25 missings were removed 
(N=71), metabolites with more than 250 missings were removed (N=1). Other 
missing values were replaced with the median value per metabolite. In total 
231 metabolites in 2910 samples remained for analysis. 
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Building biological clocks for multiple omics domains

Telomere length was multiplied by -1 to be able to compare directions of 
effects consistent with that of other biological clocks. For each of the other 
four omics domains (epigenetic, transcriptomic, metabolomic and proteomic 
data) the same approach was used to compute biological clocks. First, the 
omics data were residualized with respect to technical covariates (batch, lab). 
Second, data per omics marker were normalized using a quantile-normal 
transformation. Finally, biological age was computed using cross-validation 
by splitting the sample in 10 equal parts. For each of the ten groups, 9 parts 
were used as training set and the 10th as test set. In the training set the 
biological age estimator was computed using ridge regression (R library 
glmnet), with chronological age as the outcome, and the omics data as 
predictors. Only for methylation and gene expression a selection of predictors 
(CpGs for methylation based models and genes for gene expression based 
models) was made for each cross validation step: we increased the number 
of sites included in the elastic net in steps (steps for CpGs: 0, 100, 1000, 
10 000, 80 000, 100 000, steps for gene expression 100, 500, 1000, 1200, 
1400). CpGs/genes were selected in the order of their ranks derived from the 
association with age in the training sample. We selected the number of CpGs/
genes where the cumulative association signal reached a stable plateau. 
This approach is based on the rationale that adding more markers should 
theoretically never decrease predictive power. We previously performed tests 
where the number of CpGs/genes was included in the loop over the k-folds. 
However, as it produced very similar results but is much more computer 
intensive[41]overlapped with genes found in GWAS of MDD disease status, 
autoimmune disease and inflammation, and co-localized with eQTLS and 
(genic enhancers of, this latter approach was not used. This approach resulted 
in 80,000 CpGs (mapping to 2,976 genes) for the epigenetic clock, and 1,200 
probes (mapping to 767 genes) for the transcriptomic clock. For the proteomic 
and metabolomic data, all markers were used to predict age, since leaving 
markers out decreased the prediction accuracy. The predictor was then used 
in the test set to create an unbiased omics-based biological age. For each 
omics domain, biological aging was defined as the residuals of regressing 
biological age on chronological age[7, 17]but the molecular characteristics 
of ageing that lead to increased disease susceptibility remain inadequately 
understood. Here we perform a whole-blood gene expression meta-analysis 
in 14,983 individuals of European ancestry (including replication. Thus, in 
the terminology we use here, the biological aging indicators represent the 
biological age acceleration: a positive value means that the biological age is 

larger than the chronological age. A composite index of biological aging was 
made by scaling each of the five biological indicators and taking the sum, in 
the 653 samples that had data for all five omics levels.

Health determinants

Lifestyle. Alcohol consumption was assessed as units per week by using the 
AUDIT[42]alcoholic (N = 65. Smoking status was assessed by pack years 
(smoking duration * cigarettes per day/20). Physical activity[43] was assessed 
using the International Physical Activity Questionnaire (IPAQ)[44]but diverse 
physical activity measures in use prevent international comparisons. The 
International Physical Activity Questionnaire (IPAQ and expressed as overall 
energy expenditure in Metabolic Equivalent Total (MET) minutes per week 
(MET level * minutes of activity * events per week).

Somatic health. Body mass index (BMI) was calculated as measured weight 
divided by height-squared. Functional status is one of the most potent health 
status indicators in predicting adverse outcomes in aging populations[45]but 
it is less well recognized that mortality declines at older ages have also played 
a substantial role in prolonging expectation of life. A person reaching age 65 in 
1900 could expect to live an additional 11.9 years. Life expectancy at age 65 
rose to 14.4 years by 1960 and then increased by about three years in the next 
three decades, reaching 17.5 years in 1992 (56, 70, including depression[46]in 
turn, physical disability results in increased depressive symptoms. Moreover, 
depression affects also the earlier stages of the disablement process (including 
functional limitation in mobility. Assessment of functional status includes 
measures of physical impairments and disability, reflecting how individuals’ 
limitations interact with the demands of the environment. Two measures of 
physical impairments were available: Lung capacity was determined by 
measuring the peak expiratory flow (PEF in liter/minute) using a mini Wright 
peak flow meter. Hand grip strength was measured with a Jamar hand held 
dynamometer in kilograms of force and was assessed for the dominant 
hand. Furthermore, physical disability was measured with the World Health 
Organization Disability Assessment Schedule II (WHODAS-II)s the sum of 
scale 2 (mobility) and scale 3 (self-care). The number of self-reported current 
somatic diseases for which participants received medical treatment was 
counted. We used somatic disease categories as categorized previously[43, 
47]: cardiometabolic, respiratory, musculoskeletal, digestive, neurological and 
endocrine diseases, and cancer. Metabolic syndrome components included 
waist circumference, systolic blood pressure, HDL cholesterol, triglycerides 
and glucose levels, which measurement methods are described elsewhere[48].



Chapter 7 An Integrative Study of Five Biological Clocks in Somatic and Mental Health

247246

Mental health. Presence of current (6-month recency) major depressive 
disorder was assessed by the DSM-IV Composite International Diagnostic 
Interview (CIDI) version 2.1. Depressive severity levels in the week prior 
to assessment were measured with the 28-item Inventory of Depressive 
Symptomatology (IDS) self-report[49]. Childhood trauma was assessed with 
the Childhood Trauma Interview (CTI)[50]. In this interview, participants were 
asked whether they were emotionally neglected, psychologically abused, 
physically abused or sexually abused before the age of 16. The CTI reports 
the sum of the categories that were scored from 0 to 2 (0: never happened; 1: 
sometimes; 2: happened regularly), which was categorized into five categories. 

Statistical analyses

For each of the five biological aging indicators we computed associations with 
demographic (sex, education), lifestyle (physical activity, smoking, alcohol 
use), somatic health (BMI, hand grip strength, lung function, physical disability, 
chronic diseases) and mental health (current depression, depression severity, 
childhood trauma) determinants using linear models with health determinants 
as predictors and biological aging as outcome (for each health determinant 
separately). All models included a covariate for sex, except for when sex was 
the outcome. For telomere length, chronological age was used as covariate 
in the models, for the other biological aging indicators age was not used 
as covariate since they are independent of chronological age by design. 
Standardized betas from these models are reported (by scaling predictor and 
outcome). Correction for multiple testing was done using permutation based 
FDR[51]genetic variants have been found associated. However, it is still mostly 
unclear through which downstream mechanism these variants cause these 
phenotypes. Knowledge of these intermediate steps is crucial to understand 
pathogenesis, while also providing leads for potential pharmacological 
intervention. Here we relied upon natural human genetic variation to identify 
effects of these variants on trans-gene expression (expression quantitative 
trait locus mapping, eQTL. Subject labels were permuted 1000 times and 
associations were computed using the permuted data (all biological aging 
indicators vs all health determinants). For each of the observed P-values (p) 
the FDR was computed as the average number of permuted P-values smaller 
than p, divided by the amount of real P-values smaller than p, resulting in a 
P-value threshold of 2e-2 for a FDR of 5% for all tests. In the 653 overlapping 
samples with data in each biological clock domain, we scaled (mean 0, 
standard deviation 1) and summed up the five biological aging indicators in 
order to create a composite index of biological aging.

Longitudinal analysis of mortality and chronic disease onset

As NESDA is a longitudinal study, with several follow-up measurement waves, 
we conducted post-hoc analyses on the relationship between the biological 
aging indicators and subsequent outcomes after six years of follow-up 
duration. The average chronological age of our cohort (mean=41 years, sd=13, 
range=18-65 years) is rather young, so high rates of mortality and morbidity were 
not expected. Mortality data was gathered at each measurement wave. Also, 
at each wave self-reported somatic diseases for which participants received 
medical treatment were assessed. Based on this, we created somatic disease 
categories as categorized previously[43, 47]: cardiometabolic, respiratory, 
musculoskeletal, digestive, neurological and endocrine diseases, and cancer. 
For these categories we computed chronic disease onset defined as the 
disease not being present at baseline (time of biological aging assessment) 
and present at the latest wave (six years after baseline). For each biological 
clock we computed longitudinal analyses, using a linear model with mortality 
or chronic disease onset as outcome, and the biological clock residualized for 
chronological age as predictor, while correcting for sex.

RESULTS

Sample characteristics

To create indicators for biological aging we used whole blood derived 
measurements from the Netherlands Study of Depression and Anxiety 
(NESDA) baseline assessment: telomere length (N=2936), epigenetics (DNA 
methylation, N=1130, MBD-seq, 28M CpGs), gene expression (N= 1990, 
Affymetrix U219 micro arrays, >20K genes), proteomics (N=1837, Myriad RBM 
DiscoveryMAP 250+, 171 proteins) and metabolites (N=2910, Nightingale 
Health platform, 231 metabolites), with 653 overlapping samples (see Table 
1 for sample characteristics). Each subsample included around 66% female, 
with mean age of around 42 years.
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Figure 1. Study Design. The upper part of the figure shows the five biological layers. From 
each of the four omics layers (epigenetic, transcriptomic, proteomic and metabolomic data), 
biological age was estimated, and biological age was regressed on age to obtain measures 
of biological aging. Only telomere length was not age-regressed. The five biological aging 
indicators were associated with multiple demographic, lifestyle, somatic health and mental 
health determinants. 

Computing biological clocks

The methods for creating the biological clocks are described in detail in the 
methods section. In brief, for each of the four omics measures (epigenetic, 
transcriptomic, metabolomic and proteomic) we estimated biological age 
using ridge regression and cross validation (see Figure 1 for study design). 
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As telomere length values usually decline with increasing chronological age, 
this indicator was multiplied by -1 to be able to compare directions of effects 
consistent with the other biological clocks. Correlations between chronological 
age and predicted biological age were 0.30 for telomere length, 0.95 for 
epigenetic age, 0.72 for transcriptomic age, 0.85 for proteomic age, and 0.70 for 
metabolomic age (Figure 1). For each omics-based biological clock, biological 
aging is defined as the residuals of regressing predicted biological age on 
chronological age: a positive value means that the biological age is larger than 
the chronological age. The individual clocks residualized for chronological 
age are also referred to as biological aging indicators. Correlations between 
biological aging indicators, corrected for sex, are presented in Figure 2. 
Correlations were significant for 3 out of 10 pairs; proteomic vs metabolomic 
aging (r=0.19, P=2e-16), transcriptomic vs epigenetic aging (r=0.15, P=3e-06) 
and transcriptomic vs proteomic aging (r=0.08, P=2e-06). 

 
Figure 2. Correlations between the biological aging indicators. The heatmap represents 
Spearman rank correlations between the five biological aging indicators, all corrected for 
sex. Out of ten pairs, three are significant: transcriptomic vs epigenetic aging, metabolomic 
vs proteomic aging and proteomic vs transcriptomic aging. All biological aging indicators 
were age-regressed, only telomere length was not. 

Associations between individual biological aging indicators and 
health determinants

For each of the five biological aging indicators we computed associations with 
several demographic (sex, education), lifestyle (physical activity, smoking, 
alcohol use), somatic health (BMI, hand grip strength, lung function, physical 
disability, chronic diseases) and mental health (current depression, depression 
severity, childhood trauma) determinants. Except for proteomic aging, sex 
was associated with all biological aging indicators: women were biologically 
younger than men (P=3e-4 for telomere length, P=5e-4 for epigenetic aging, 
P=4e-11 for transcriptomic aging, P=1e-5 for metabolomic aging). Education 
was not associated with any biological aging indicator. We controlled for sex 
by using it as a covariate in all following models (except for in the model 
where sex was the outcome). Table 2 and Figure 3 give an overview of all 
associations. Correction for multiple testing was done using permutation-
based FDR (Methods), resulting in a P-value threshold of 2e-2 for an FDR of 
5% for all tests.

Among the lifestyle determinants, alcohol use was associated with advanced 
proteomic aging (P=3e-3) and smoking (packs per year) was associated with 
shorter telomere length (P=3e-3), and advanced transcriptomic (P=2e-2), 
proteomic (P=1e-5) and metabolomic aging (P=5e-3). Physical activity was 
not associated with any biological aging indicator.

From the somatic health determinants, high BMI was strongly associated 
with advanced biological aging of all indicators (P=2e-2 for telomere length, 
P=4e-3 for epigenetic aging, P=6e-10 for transcriptomic aging, P=1e-7 for 
proteomic aging, and P=2e-35 for metabolomic aging). Physical disability 
was associated with advanced epigenetic aging (P=1e-4). Within the domain 
of chronic diseases, the presence of digestive diseases and endocrine 
diseases were associated with advanced proteomic aging (P=2e-2 and P=1e-
2, respectively). Subjects with cardiometabolic disease showed advanced 
metabolomic aging (P=4e-3) and subjects with digestive disease exhibited 
advanced transcriptomic aging (P=1e-2). Those with metabolic syndrome 
showed advanced biological aging across four indicators (P=6e-4 for telomere 
length, P=1e-8 for transcriptomic aging, P=5e-9 for proteomic aging, P=5e-29 
for metabolomic aging). 

The presence of current depression and depression severity were 
associated advanced epigenetic (P=2e-3 and P=9e-5) and proteomic aging 
(P=8e-3 and P=6e-3 respectively). Current depression was also associated 
with advanced transcriptomic aging (P=2e-2) and those with childhood 
trauma showed advanced epigenetic aging (P=8e-5). To verify if the results 
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Telomere 
 Length

N=2936 Epigenetic 
clock

N=1130 Transcriptomic 
Clock

N= 1990 Proteomic  
Clock

N=1837 Metabolom-
ic  Clock

N=2910 Composite 
Index (sum)

N=653 Composite 
 Index (PC1)

N=653

 Beta* P Beta P Beta P Beta P Beta P Beta P Beta P

Demographic Sex (male/female) -0.06 2.89E-04 -0.10 4.65E-04 -0.15 3.64E-11 -0.03 1.46E-01 -0.08 1.25E-05 -0.18 2.33E-06 -0.11 3.59E-03

  Education (# years) -0.03 1.12E-01 -0.02 5.21E-01 -0.01 6.37E-01 -0.05 3.43E-02 -0.03 8.22E-02 -0.04 3.11E-01 -0.05 2.27E-01

Lifestyle
Alcohol use (units 
per week) 0.03 1.05E-01 -0.05 1.40E-01 0.00 9.21E-01 0.07 2.89E-03 0.04 4.57E-02 0.07 6.05E-02 0.09 1.50E-02

 
Smoking (pack 
years) 0.06 3.11E-03 0.02 6.22E-01 0.05 1.55E-02 0.10 1.33E-05 0.05 5.09E-03 0.10 1.15E-02 0.12 2.85E-03

  Physical activity 0.02 2.75E-01 -0.06 3.88E-02 -0.04 6.42E-02 0.03 1.51E-01 0.01 5.18E-01 -0.04 3.62E-01 0.01 7.38E-01

Somatic Health BMI 0.04 1.80E-02 0.09 3.94E-03 0.14 6.02E-10 0.12 9.82E-08 0.23 2.07E-35 0.24 2.32E-10 0.22 2.18E-09

  Physical disability 0.03 9.11E-02 0.11 1.41E-04 0.04 8.61E-02 0.04 7.42E-02 -0.01 4.24E-01 0.10 7.38E-03 0.03 4.01E-01

  Lung capacity 0.02 4.19E-01 0.03 4.65E-01 0.04 2.13E-01 -0.04 1.51E-01 0.03 2.37E-01 0.03 5.34E-01 -0.02 6.57E-01

  Hand grip strength -0.02 3.33E-01 -0.06 1.71E-01 0.03 3.52E-01 0.01 7.30E-01 0.03 2.24E-01 -0.03 6.14E-01 0.03 6.20E-01

 
Cardiometabolic 
disease (no/yes) 0.02 3.37E-01 0.04 1.56E-01 0.03 1.44E-01 0.03 1.35E-01 0.05 3.94E-03 0.10 1.37E-02 0.08 3.19E-02

 
Respiratory disease 
(no/yes) -0.02 2.12E-01 -0.01 6.34E-01 0.02 2.85E-01 0.03 1.27E-01 0.01 4.67E-01 -0.03 4.70E-01 0.01 7.17E-01

 
Musculoskeletal 
disease (no/yes) 0.00 8.11E-01 -0.01 7.37E-01 0.04 1.04E-01 0.02 4.36E-01 0.02 2.23E-01 0.09 2.27E-02 0.11 4.96E-03

 
Digestive disease 
(no/yes) 0.03 5.77E-02 -0.02 5.71E-01 0.06 9.76E-03 0.06 1.21E-02 0.02 2.81E-01 0.05 2.01E-01 0.04 2.86E-01

 
Neurological 
disease (no/yes) -0.02 2.58E-01 0.02 5.60E-01 0.01 5.44E-01 0.02 2.84E-01 0.02 1.93E-01 -0.04 2.64E-01 -0.02 5.09E-01

 
Endocrine disease 
(no/yes) -0.01 4.45E-01 0.01 8.13E-01 -0.01 5.75E-01 0.06 1.03E-02 0.03 1.23E-01 0.06 1.18E-01 0.09 1.64E-02

  Cancer (no/yes) 0.00 9.66E-01 0.02 5.65E-01 0.02 4.88E-01 0.03 1.81E-01 0.02 2.01E-01 0.08 3.22E-02 0.07 5.00E-02

 
Metabolic syndrome 
(# components) 0.06 6.35E-04 0.04 1.46E-01 0.13 9.98E-09 0.13 5.34E-09 0.21 4.53E-29 0.28 9.10E-13 0.26 6.41E-12

  # Chronic diseases 0.00 7.99E-01 0.03 3.63E-01 0.05 3.20E-02 0.09 1.24E-04 0.03 1.39E-01 0.06 1.26E-01 0.07 8.43E-02

Mental Health
Current MDD (no/
yes) 0.03 1.59E-01 0.09 1.99E-03 0.07 1.68E-02 0.08 7.62E-03 -0.03 1.61E-01 0.11 6.05E-03 -0.12 2.29E-01

  Depression severity 0.04 2.40E-02 0.12 8.67E-05 0.03 2.76E-01 0.07 5.99E-03 -0.02 3.74E-01 0.13 7.61E-04 0.05 1.87E-01

  Childhood Trauma 0.01 4.54E-01 0.12 7.99E-05 0.03 2.06E-01 0.04 8.96E-02 0.04 2.46E-02 0.09 1.96E-02 0.07 7.19E-02

Table 2. Associations between five biological aging indicators and multiple health 
determinants.

For each biological aging indicator linear models were fit with the health determinant as 
predictor, while controlling for sex. Beta’s and P-values from these models are presented 
here. In the 653 samples with all five data layers available, a composite index was constructed 
which was significantly associated with more variables than any of the five individual biological 
aging indicators. All biological aging indicators were age-regressed, only telomere length 
was not. Telomere length models were corrected for age instead. * Beta for telomere length 
was multiplied by -1 to compare with other biological aging indicators. All measures are 
coded such that higher values indicate advanced biological aging. Bold indicates FDR<5%.
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were confounded by medication use, we computed associations between 
antidepressant medication (SSRIs, TCAs, or other antidepressants), metabolic 
syndrome related medication (‘metabolic medication’: anti-diabetic, fibrates, 
or anti-hypertensives) and biological aging (Table S1). After FDR correction, 
we found that metabolomic aging was associated with the use of metabolic 
medication (P=2.35e-3), and antidepressant use with proteomic (P=7.16e-5) 
and transcriptomic aging (P=8.1e-3). The design of the current observational 
study cannot conclusively prove whether this is a direct medication effect or 
confounding by indication.

Associations between the biological aging composite index and all 
health determinants

The composite index was computed as the sum of the five scaled biological 
aging indicators in the 653 samples with data of all five biological levels. 
Correlations between the five biological aging indicators and the composite 
index were between 0.43 and 0.51. We found more and stronger associations 
for the composite index than for any of the individual biological aging indicators: 
including sex (P=2e-6), BMI (P=2e-10), smoking (P=2e-2), metabolic syndrome 
(P=9e-13), current MDD (P=6e-3), depression severity (P=7e-4) and childhood 
trauma (P=2e-2). As an alternative approach, Principal Component Analysis 
(PCA) was used to compute an alternative composite index. We used the 
first principle component (PC) of this analysis, which was a weighted sum 
of the biological aging indicators (for telomere length the weight (w)=0.042, 
epigenetic aging w=0.094, transcriptomic aging w=0.220, proteomic aging 
w=0.707, metabolomic aging w=0.664), reflecting the highest correlations 
between the biological aging indicators, which is between metabolomic and 
proteomic aging. Compared to the composite index that was based on the 
sum and thus gives equal weight to all five biological aging indicators, the 
PC-based index had less significant associations with sex, smoking, BMI, and 
metabolic syndrome. The PC-based index was not significantly associated 
with physical disability, or mental health outcomes, as opposed to the summed 
index. The five PC’s each explain more than 15% of variance (the first 2 PC’s 
more than 25% each), indicating the multidimensionality and non-redundancy 
of the five biological clocks.

To allow for direct effect size comparisons between the composite 
(summed) index and the individual clocks, we compared the findings for the 
composite index to those of each individual biological aging indicator with 
the same subsample. In this analysis, P-values and effect sizes were often 
more pronounced for the composite index (Figure 4, Table S2). For example, Fi
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sex, BMI, metabolic syndrome and current MDD, were significantly associated 
with the composite index, but the betas for the composite index were larger 
than the betas from any individual indicator. For the other five variables 
significantly associated with the composite index (smoking, physical disability, 
cardiometabolic disease, depression severity and childhood trauma) the betas 
for the composite index were larger than 4 out of 5 betas from the individual 
clocks.

DISCUSSION

In this study, we examined five biological clocks based on telomere length 
and four omics levels from a large, clinically well-characterized cohort. We 
demonstrated significant intercorrelations between three pairs of biological 
aging indicators, illustrating the complex and multifactorial processes of 
biological aging. Furthermore, we observed both overlapping and unique 
associations between the individual clocks and different lifestyle, somatic and 
mental health determinants. Separate linear regressions showed that male sex, 
high BMI, smoking, and metabolic syndrome were consistently associated 
with more advanced levels of biological aging across at least four of the 
biological clocks. Strikingly, depression was associated to more advanced 
levels of epigenetic, transcriptomic and proteomic aging, signifying that both 
somatic and mental health is associated with the biological clocks. Finally, by 
integrating a composite index of all biological aging indicators we were able 
to obtain larger effect sizes with e.g. physical disability and childhood trauma 
exposure, underscoring the broad impact of determinants on cumulative 
multi-system biological aging.

The range of correlations among the biological aging indicators considered 
in this study indicates that the correlates of chronological age in different 
molecular layers were not strongly correlated, suggesting that biological 
aging may be differently manifested at certain cellular levels. Consistent 
with prior studies we showed weak correlations between different biological 
clocks[52] and we confirm the absent relationship between telomere length 
and epigenetic aging[21, 53, 54], but also show lack of associations with 
transcriptomic, proteomic or metabolomic aging. However, we do confirm an 
earlier finding showing a significant but modest correlation between epigenetic 
and transcriptomic aging[55]. The correlation between metabolomic and 
proteomic aging may partly be explained by the fact that both data were 
obtained from platforms that were aimed at probing central inflammation lipid 
processes, rather than the full proteome or metabolome. Nevertheless, we 

                          
 

Figure 4. Barplots of betas from associations between biological aging and health 
determinants. For each of the associations between biological aging and health 
determinants, the standardized beta and standard deviation derived from linear models 
were plotted. Only samples that had data for all five biological clocks (N=653) were used.
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can infer that only some biological clocks show overlap, while most of them 
seem to be tracking distinctive parts of the aging process, even if they are 
associated with the same somatic or health determinants.

Our study showed that several of the determinants considered exhibited 
consistent associations with different biological aging indicators. First, male 
sex was associated with shorter telomere length and advanced epigenetic, 
transcriptomic and metabolomic aging, in line with a large body of literature that 
shows advanced biological aging and earlier mortality in males compared to 
females[56]. Second, high BMI was consistently related to all biological clocks, 
showing that the more overweight or obese, the higher the biological age[57], 
also after controlling for sex. Earlier studies showed similar associations 
between high BMI and shorter telomere length[57], and older epigenetic[58] 
and transcriptomic aging signatures[17]. Third, our analyses showed similarly 
consistent associations between the prevalence of metabolic syndrome and 
advanced levels of aging. Further, all but epigenetic aging was advanced with 
respect to cigarette smoking.

Major depressive disorder (MDD) status was consistently related to 
advanced aging in three (epigenetic, transcriptomic, proteomic) out of the 
five biological clocks. In contrast, a recent study (N>1000) in young adults 
(20-39 years) did not show associations between mental health (as measured 
by the CIDI) and biological aging (indicated by telomere length, homeostatic 
dysregulation, Klemer and Doubal’s method and Levine’s method)[20], but 
it seems possible that this sample was too young to fully develop aging-
related manifestations of mental health problems, or lacked age variation. 
It is likely that our data (obtained from participants 18-64 years) may have 
been more sensitive in picking up associations with mental health due to 
increased variation in both chronological age (i.e. inclusion of older persons), 
as well as symptom severity. To further examine whether the results were 
consistent across participants with and without depressive psychopathology, 
we repeated all models in post-hoc analyses and added an interaction term 
between current depression status and health determinants. There was an 
overall consistent pattern of non-significant interaction terms for most health 
determinants and biological aging, although only higher BMI was significantly 
associated to advanced epigenetic aging in the psychopathology group. 
However, taken together, the results suggest that findings are not different 
in persons with and without mental disorders. We observed some significant 
associations between biological aging and medication use. The design of 
the current observational study cannot conclusively prove whether this is 
a direct medication effect or confounding by indication: the patient group 
using antidepressant medication is also the group that is more chronically 

and severely depressed. This is similar for the metabolic syndrome related 
medication. Future studies using randomized clinical trial designs are needed 
to investigate the mechanism of action of direct pharmacological effects of 
medication on biological aging.

Furthermore, we computed a composite index by summing up the five 
biological aging indicators studied here. In other words, this integrative metric 
contains cumulative independent signal from the individual markers and 
dependent shared signal - with possible reduced noise due to the summation 
- between them. Given that this composite index demonstrates larger effect 
sizes for BMI, sex, smoking, depression severity, and metabolic syndrome 
than the individual aging indicators, it is suggested that being biologically 
old at multiple cellular levels has a cumulative multi-systemic effect. When 
integrated, the composite index reveals stronger (i.e. greater cumulative 
betas for the composite index than individual clocks) converging associations 
with sex, BMI, metabolic syndrome and current MDD. This provides further 
support for the hypothesis that not one biological clock sufficiently captures 
the biological aging process and that not all clocks are under the control of 
one unitary aging process. There is abundant room for further progress in 
determining whether biological aging can be modified by intervening on these 
determinants.

Nonetheless, the question remains which biological mechanism could 
plausibly link the current quantification of biological aging and its lifestyle, 
somatic, and mental health determinants. Part of this answer requires 
discussion on the features used to build the different clocks: the proteomic and 
metabolomic clocks mostly measure inflammatory or metabolic factors, two 
highly integrated processes in aging and aging-related diseases[59]. Previous 
studies suggest immune-mediated mechanisms (specifically inflammatory 
signaling) connecting metabolic syndrome[60], mental health disorders[61], 
and aging[62]. Moreover, MDD is a condition in which inflammation, obesity, 
and premature or advanced aging co-occur and converge. It might therefore 
be speculated that immunity and “inflammaging”[63] may tie together the 
currently observed associations.

This study did not include existing biological clocks. While the application 
of established algorithms would increase generalizability of our findings, there 
are several reasons why it was not optimal to implement previously published 
algorithms in the NESDA data. First and foremost, generated omics data are 
platform-dependent and the existing epigenetic[64] and gene expression[55] 
clocks rely on arrays with different coverage of probes as was used in NESDA, 
that also target different parts of genes. Second, a subsample of NESDA was 
part of the previously published metabolomic clock[65], thus application of this 
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model to the current dataset would result in overfitting. The current proteomic 
platform has not been used before to train a biological clock. Moreover, there is 
currently no validated gold standard for calculating transcriptomic, proteomic, 
or metabolomic clocks. Importantly, in spite of these limitations, we have 
followed an alternative but consistent methodological approach for training 
our omics-based biological clocks, leveraging the advantage to compare, 
combine, and integrate these clocks within the same population. However, 
we emphasize the need for epidemiological replication of these determinants 
in other datasets (e.g. those including different ethnicities) and we recognize 
that data harmonization and pooling are important strategies on the scientific 
research agenda that may overcome this limitation in the future.

Since no previously published algorithms were used, we trained our own 
clocks using ridge regression with cross-validation. This approach relies on 
the assumption that the determined cross-sectional correlation between 
the omics patterns and chronological age arise mainly as a consequence of 
biological aging, and is independent from potential secular trends[66–68]. As 
common to cross-sectional studies, it is, however, impossible to completely 
rule out potential cohort effects or uncontrolled individual differences and 
results should be interpreted in light of this limitation. Future longitudinal 
studies are needed to identify patterns of biological changes that go beyond 
their ability to predict age at the time of sampling. While the current study only 
used chronological age as criterion endpoint, it is important to mention that 
other epigenetic clocks exist that are trained to predict other potential criteria 
such as phenotypic markers of age (DNAm PhenoAge)[69] or a composite 
biomarker that was derived from DNAm surrogates and smoking in pack-years 
(GrimAge)[70]. Such clocks were developed to lead to improved predictions of 
risk of mortality.

More research is needed to elucidate whether: 1) physiological 
disturbances, such as loss of inflammatory control associated with somatic and 
psychopathology, accelerate biological aging over time, 2) advanced biological 
aging precedes and constitutes a vulnerability factor that causes somatic and 
psychopathology, or 3) somatic and psychopathology and biological aging 
processes are not causally linked, but share underlying etiological roots (e.g. 
shared genetic risks or environmental factors)[2]. Yet, it could conceivably 
be hypothesized that dysregulation of immunoinflammatory control may be 
related to metabolic outcomes, aging, and depression[71], providing scope as 
to why some of these determinants converge across different platforms and 
multiple biological levels. 

Here, we used a large cohort that was well-characterized in terms of 
demographics, lifestyle, and both somatic and mental health assessments, 

to study and integrate five biological clocks across multiple levels of analysis. 
This is particularly important as we show that the determinants of biological 
aging encompass several different domains. Moreover, our sample was 
adequately powered to detect statistically significant associations, limiting 
the possibility for chance findings and increasing probability for identifying 
robust biological age determinants. On the other hand, an obvious limitation 
is the cross-sectional nature of this study that prevents us from drawing any 
conclusions on whether the determinants accelerate the aging trajectory over 
time, the other way around, or whether “third” variables effect this association. 

Another aspect that limits the interpretability of our findings in the context 
of increased risk of developing aging-related diseases and mortality was the 
relatively young age of the current sample. To illustrate, we were unable to 
predict future incidence of chronic disease or mortality from baseline biological 
aging, likely due to the low numbers of mortality and disease onset (Table S3, 
e.g. the number of deceased cases ranged from 64 (TL) to 27 (proteomic 
clock). Previous studies that have associated biological aging with mortality 
risk commonly include aging cohorts (Danish longitudinal twin study with 
mean age of 86.1 years; Framingham Offspring Study with mean age 61.0 
years; Swedish population cohort SATSA with mean age 63.6 years; German 
population cohort ESTHER with mean age 62.5 years; Lothian Birth Cohorts 
with mean age >69.5 years; Normative Aging Study with mean age 71.7 
years)[21, 52, 72–75]. Before definitively interpreting a “clock” as a measure 
of biological aging, further independent studies are needed to establish that 
the clock changes with advancing age and forecasts disease, disability and 
mortality.

Conclusions 

In conclusion, this study examined the overlap between five biological 
clocks and their shared and unique associations with somatic and mental 
health. Our findings indicate that they largely track distinct, but also partially 
overlapping aspects of this aging process. Further, we demonstrated that 
male sex, smoking, higher BMI and metabolic syndrome were consistently 
related to advanced aging at multiple biological levels. Remarkably, our study 
also converges evidence of depression and childhood trauma associations 
across multiple platforms, cellular levels, and sample sizes, highlighting the 
important link between mental health and biological aging. Taken together, 
our findings contribute to the understanding and identification of biological 
age determinants, important to the development of end points for clinical and 
epidemiological research. 
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Table S2. Associations between biological aging (individual indicators and composite 
index) and health determinants in 653 overlapping samples.

   
Telomere  

Length 
N=653 Epigenetic 

Aging
N=653 Transcriptomic 

 Aging
N=653 Proteomic 

Aging 
N=653 Metabolomic 

 Aging
N=653 Composite 

 Index
N=653

   Beta* P Beta P Beta P Beta P Beta P Beta P

Demographic

Sex  
(male/female) -0.09 1.77E-02 -0.11 6.69E-03 -0.13 6.55E-04 -0.02 5.21E-01 -0.10 1.39E-02 -0.18 2.33E-06
Education  
(# years) -0.05 2.20E-01 0.02 5.62E-01 0.01 8.73E-01 -0.04 3.19E-01 -0.04 3.13E-01 -0.04 3.11E-01

Lifestyle

Alcohol use 
(units per week) 0.01 7.06E-01 -0.03 3.88E-01 0.06 1.05E-01 0.08 4.21E-02 0.06 1.46E-01 0.07 6.05E-02
Smoking  
(pack years) 0.03 4.67E-01 -0.01 8.83E-01 0.06 1.08E-01 0.12 2.09E-03 0.05 2.42E-01 0.10 1.15E-02
Physical activity -0.03 5.03E-01 -0.09 3.11E-02 -0.02 6.57E-01 0.03 4.77E-01 0.01 7.51E-01 -0.04 3.62E-01

Somatic 
Health

BMI 0.06 1.03E-01 0.09 1.92E-02 0.13 6.52E-04 0.12 1.08E-03 0.19 1.49E-06 0.24 2.32E-10
Physical 
disability 0.03 3.69E-01 0.12 1.65E-03 0.10 1.42E-02 0.00 9.40E-01 0.01 8.82E-01 0.10 7.38E-03
Lung capacity 0.04 4.52E-01 0.05 3.70E-01 0.05 3.66E-01 -0.03 5.10E-01 -0.03 5.91E-01 0.03 5.34E-01
Hand grip 
strength -0.10 6.93E-02 -0.05 4.17E-01 0.02 7.37E-01 0.01 8.38E-01 0.04 4.99E-01 -0.03 6.14E-01
Cardiometabolic 
disease (no/yes) 0.04 2.80E-01 0.05 2.59E-01 0.04 2.69E-01 0.01 7.42E-01 0.10 9.07E-03 0.10 1.37E-02
Respiratory 
disease (no/yes) -0.05 1.93E-01 -0.04 2.80E-01 -0.01 8.12E-01 0.01 7.42E-01 0.02 5.65E-01 -0.03 4.70E-01
Musculoskeletal 
disease (no/yes) -0.02 5.58E-01 0.02 7.02E-01 0.08 5.27E-02 0.05 2.05E-01 0.10 8.27E-03 0.09 2.27E-02
Digestive 
disease (no/yes) 0.01 7.59E-01 0.01 7.05E-01 0.05 1.94E-01 0.08 3.32E-02 -0.04 3.35E-01 0.05 2.01E-01
Neurological 
disease (no/yes) -0.08 2.28E-02 0.00 9.29E-01 0.02 5.80E-01 -0.03 3.60E-01 -0.01 8.51E-01 -0.04 2.64E-01
Endocrine 
disease (no/yes) 0.01 7.23E-01 -0.03 4.79E-01 0.02 6.42E-01 0.09 2.02E-02 0.06 1.45E-01 0.06 1.18E-01
Cancer (no/yes) -0.02 6.53E-01 0.09 2.69E-02 0.03 3.80E-01 0.05 2.03E-01 0.05 1.87E-01 0.08 3.22E-02
Metabolic 
syndrome  
(# components) 0.11 5.08E-03 0.06 1.23E-01 0.16 7.74E-05 0.14 4.47E-04 0.23 3.07E-09 0.28 9.10E-13
# Chronic 
diseases -0.06 1.30E-01 0.06 1.26E-01 0.07 8.66E-02 0.05 2.14E-01 0.03 3.89E-01 0.06 1.26E-01

Mental Health

Current MDD 
(no/yes) 0.04 2.43E-01 0.10 1.26E-02 0.09 2.14E-02 0.05 2.34E-01 -0.02 6.53E-01 0.11 6.05E-03
Depression 
severity 0.06 1.16E-01 0.14 8.43E-04 0.11 9.96E-03 0.03 4.43E-01 0.00 9.58E-01 0.13 7.61E-04
Childhood 
Trauma -0.06 1.17E-01 0.16 6.12E-05 0.05 1.94E-01 0.05 2.32E-01 0.03 4.15E-01 0.09 1.96E-02

For each biological aging indicator linear models were fit with the health determinant as 
predictor, while controlling for sex. The analysis was limited to the 653 samples with all five 
data layers available. 

Beta’s and P-values from these models are presented here. * Beta for telomere length was 
multiplied by -1 to compare with other biological aging indicators. All measures are coded 
such that higher values indicate advanced biological aging. Bold indicates FDR<5%.
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Table S3. Longitudinal analysis of biological aging and mortality and chronic disease 
onset.

 
Telomere 
 Length

N=2936   Epigenetic 
Aging

N=1130   Transcriptomic  
Aging

N= 
1990

  Proteomic 
 Aging

N=1837   Metabolomic 
Aging

N=2910  

  Beta* P
# 

cases Beta P # cases Beta P
# 

cases Beta P
# 

cases Beta P
# 

cases

Mortality (no/yes) 0.124 2.92E-01 64 0.116 5.36E-01 29 0.005 9.72E-01 42 0.337 6.88E-02 27 -0.031 8.04E-01 63
Metabolic 
syndrome onset 
(no/yes) -0.101 4.24E-01 55 0.085 6.91E-01 22 -0.049 7.65E-01 37 0.108 4.61E-01 44 0.237 7.90E-02 55
Cardiometabolic 
disease onset  
(no/yes) 0.020 7.96E-01 164 -0.127 2.98E-01 71 0.078 4.06E-01 118 0.200 2.70E-02 119 0.217 6.38E-03 165
Respiratory 
disease onset 
(no/yes) 0.045 6.64E-01 82 -0.200 2.42E-01 35 0.186 1.83E-01 51 0.217 8.55E-02 59 -0.122 2.67E-01 83
Musculoskeletal 
disease onset  
(no/yes) -0.009 9.19E-01 128 0.014 9.17E-01 58 -0.007 9.43E-01 98 0.086 4.02E-01 92 -0.058 5.17E-01 130
Digestive disease 
onset (no/yes) 0.026 8.02E-01 82 0.267 1.31E-01 33 -0.134 2.88E-01 63 -0.033 7.93E-01 61 -0.126 2.61E-01 80
Endocrine 
disease onset 
(no/yes) 0.054 7.13E-01 41 0.094 7.00E-01 17 -0.195 2.96E-01 28 0.041 8.19E-01 29 -0.367 1.99E-02 40
Cancer onset  
(no/yes) -0.086 4.84E-01 59 -0.274 2.47E-01 18 -0.013 9.31E-01 42 -0.059 6.83E-01 45 -0.040 7.57E-01 61

For all P: FDR>5%                              
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SUMMARY OF MAIN FINDINGS

The aim of the present research was to study multisystem quantifications 
of the biological age in major depressive disorder (MDD), in pursuance 
of a better understanding of the complex links between mental health and 
biological aging. To this aim, a literature review and four studies using 
empirical data were carried out to examine whether patients with MDD exhibit 
older appearing brains and bodies, as measured through age-related patterns 
derived from peripheral and brain biology. This section summarizes the main 
findings of the studies described in the different chapters. In this thesis, the 
terms “biological clock” or “biological age predictor” are used to refer to 
the method that generates “biological age” predictions that correlate highly 
with chronological age. The terms “biological aging” and “biological aging 
indicator“ are used interchangeably and indicate metrics that are independent 
from chronological age effects (i.e., either by representing the difference 
between predicted biological age and chronological age, or as the residuals 
from a linear regression model of predicted biological age on chronological 
age). 

Chapter 2 described that aging does not occur at one biological level or 
in a single cell-type, but is multi-systemic and can manifest across multiple 
organs and tissues across several biological levels. To accelerate progress 
in the field of biological aging research, six current challenges, as well as 
recommendations to overcome them were outlined. First, caution is warranted 
against interpreting cross-sectional correlations as causation and it is 
recommended to collect longitudinal data, consider experimentation, and 
choose prediction over explanation. Second, single biological age indicators 
tend to be uncorrelated, and may be better integrated. It is therefore 
recommended to create composite indices and panels of biological age 
indicators relevant to mental health. Third, biological aging may be tissue- 
and cell-type specific, and it is therefore recommended to purify cell types 
using established molecular markers. Fourth, within-group variances may 
be larger than between-group variances, and it is recommended to visualize 
data, carefully assess known influences, move beyond group-based analyses, 
and use within-person modeling approaches. Fifth, large sample sizes are 
needed to detect small effect sizes, and it is recommended to collaborate 
and harmonize data collection and analysis protocols to facilitate data 
pooling worldwide. Lastly, cellular measures of biological aging are often 
obtained from non-uniform laboratory assays and storage conditions, and it 
is recommended for future studies to harmonize measurements and storage 
conditions. For now, it is suggested that the current field would benefit from 

adherence to a minimum standard of reporting to facilitate harmonization of 
datasets across laboratories and cohort studies. Future studies capitalizing 
on these opportunities will hopefully enhance our understanding of the 
psychobiological factors that influence the aging process. 

In Chapter 3, it was examined whether depression was associated with 
advanced biological aging as measured by DNA methylation patterns obtained 
from blood. Patients with depression were, on average, +0.64 years older 
compared to controls, and this effect was more pronounced (+1.06 years) 
in a subgroup of patients that experienced both depression and childhood 
trauma. Exploratory analyses showed that advanced epigenetic aging was 
further significantly associated to higher depression severity, male sex, 
higher BMI, and low physical activity in all subjects, and to higher cumulative 
childhood trauma but not depression severity in MDD patients only. There 
were no significant associations between epigenetic aging and smoking/
alcohol use or the duration/age of onset of illness, nor with antidepressant use 
(i.e., tricyclic antidepressants, selective serotonin reuptake inhibitors, other 
antidepressants). To test the robustness of findings, depression was also 
associated with biological aging as measured by DNA methylation patterns 
obtained from post-mortem brain tissue, and it was found that patients with 
depression showed an average difference of +1.11 years compared to controls. 
Enrichment testing showed that both the degree of overlap between the CpG 
sites associated with age and epigenetic aging, and the CpG sites included in 
the blood and brain epigenetic aging indicators were highly significant. Finally, 
to examine biological pathways underlying epigenetic aging in both tissues, 
gene ontology (GO) analyses were performed on the 1,094 overlapping CpG 
sites associated with epigenetic aging, resulting in 330 genes that were 
present in at least one GO category. The top significantly enriched GO terms 
included neuronal processes such as neurogenesis, neuron differentiation, 
and regulation of neuron death, indicating that several depression-relevant 
pathways were enriched in the cross-tissue epigenetic aging indicators. 

The main goal of Chapter 4 was to determine whether previously reported 
cross-sectional correlates of epigenetic aging also accelerate the metric over 
time. Using longitudinal data, it was found that 45% of the total variance in 
epigenetic aging can be attributed to differences between subjects, while 
the remaining 55% can be attributed to changes over time. These findings 
suggest that epigenetic aging is both relatively stable but also shows dynamic 
potential. However, when decomposing the covariance between a wide 
variety of correlates and epigenetic aging, higher subject- compared to wave-
level contributions were found. Thus, although several weak but significant 
wave-level contributions were observed, a change in the epigenetic correlate 
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at a particular wave was often unaccompanied by a parallel change in 
epigenetic aging. The main findings of this chapter therefore caution against 
the causal interpretation of correlates of epigenetic aging, and emphasize that 
the commonly used term “accelerated” epigenetic aging in cross-sectional 
studies may often be incorrect. 

The purpose of the study in Chapter 5 was to investigate whether 
depression is associated with advanced biological aging, as measured by 
structural MRI of the brain. To that aim, multi-site brain age prediction models 
were developed in 2,188 healthy controls (separately in males and females) 
from 19 different cohorts worldwide. The models were further validated in 
23 truly independent cohorts and scanners. The learned model coefficients 
were applied to 2,126 independent controls and 2,675 patients with MDD to 
calculate brain aging differences between the diagnostic groups. On average, 
depressed patients showed +1.08 years of added brain aging compared to 
control, but post hoc comparisons between depression subgroups did not 
show any significant differences (i.e., first vs. recurrent episode status, early 
vs. adult vs. late onset of depression, antidepressant medication-free vs. 
antidepressant users, remitted vs. currently depressed patients). 

Chapter 6 extends the work described in Chapter 5 by exploring which 
symptom clusters (mood/cognition, immunometabolic, somatic) of MDD are 
associated with brain aging, and whether patients with anxiety disorders also 
show older appearing brains. After correcting for antidepressant use, both 
patients with MDD (+2.78 years) as well as anxiety disorders (+2.91 years) 
showed significantly higher brain aging than controls. This study further 
indicated unique contributions of higher severity of somatic depression 
symptoms to advanced brain aging, and a potential protective effect of 
antidepressant medication (-2.53 years) in patients with depression and/
or anxiety disorders. There were no significant associations with lifestyle 
(i.e., alcohol, smoking, physical exercise) or biological stress systems (i.e., 
inflammatory markers, autonomic nervous system, hypothalamic–pituitary–
adrenal axis). 

Finally, the study described in Chapter 7 combined one “traditional” 
biological age indicator (i.e. telomere length) with four modern omics-
based biological clocks (i.e., epigenetics, transcriptomics, proteomics, 
metabolomics), to examine whether the different biological clocks measure 
the same or different aspects of biological aging. The five biological clocks 
were integrated and residualized for age, and correlations between them were 
calculated. This showed that intercorrelations were small (all r’s<0.2), indicating 
little overlap. To examine whether the different biological aging indicators were 
associated with similar determinants, all were associated with a wide variety 

of somatic and mental health variables. Consistent associations between 
advanced biological aging across multiple biological levels were found for 
male sex, higher BMI, metabolic syndrome, smoking, and depression. As 
compared to the individual biological aging indicators, a composite index of 
all five biological aging indicators was computed and showed the strongest 
associations with health determinants. Taken together, the larger effect sizes of 
the composite index and the low correlations between the different biological 
aging indicators suggest that biological aging is best reflected by combining 
measures from multiple biological levels. 

GENERAL DISCUSSION OF MAIN FINDINGS

The main findings of the current thesis can be contextualized against theoretical 
and practical research dimensions and themes. This chapter also reflects on the 
extent to which the current findings may address clinical implications, provide 
perspective on methodological challenges, and outline recommendations for 
future research. Finally, this chapter ties together the various theoretical and 
empirical strands in order to end with an overall conclusion. 

The Biological Age Paradigm 

The overview in Table 1 displays the different biological age prediction models 
included in the studies of the current thesis, and their performance accuracy. 
In terms of the ability to predict age, the most accurate model was based 
on epigenetics, followed by proteomics, brain structure, transcriptomics, and 
finally metabolomics. However, important to note, the different platforms and 
their coverage, samples and sample sizes, their properties, and number and 
type of features make it difficult to draw any conclusions as to why some 
models predict better than others. For example, the studies in Chapter 
3 and 4 had near complete coverage of the epigenetics level, whereas 
the metabolomic platform used in Chapter 7 covered only a selection of 
probes at that biological level. Table 1 should therefore not be interpreted 
as a prioritization of which biological level shows most relevant age-related 
changes, but, rather, conveys that all biological levels carry important age-
related information that can be leveraged to generate unbiased biological 
age estimates. Importantly, the biological age estimates vary across subjects 
with the same chronological age, highlighting its appropriateness to study the 
basis for inter-individual differences in the rate of biological aging. 
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Machine learning methods reliably capture age-related patterns from 
epigenetics, transcriptomics, proteomics, metabolomics, and structural 
brain features, and are able to predict an individual’s chronological age 
with moderate to high accuracy. 

 

Older Biological Age Predictions in Depression 

Previous studies have convincingly shown robust associations between 
depression and stress-related psychopathology and cellular measures of 
aging (e.g., telomere length, mitochondrial DNA)[1–3]. The current thesis adds 
to the existing literature by showing that depression is also associated with 
an older appearing biological state as indicated by biological aging based on 
epigenetics, transcriptomics, proteomics, and brain structure. An overview of 
the convergent patterns of advanced or premature biological aging across the 
multiple biological systems in patients with depression are shown in Table 2. 
Depressed patients were consistently predicted to be older by the algorithms 
presented in Table 1, but it is important to emphasize that the biological aging 
effects are small, often less than one year on average. This suggests that while 
the age-related biological changes in depression are robust across multiple 
platforms and methods, they also reflect rather subtle differences. 

The current thesis shows that depression is associated with subtle but 
robust age-related biological changes, as measured by epigenetics, 
transcriptomics, proteomics, and brain structure. 
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Table 2. Biological aging in depression. 

Biological aging 
indicator

Added years of aging Cohen’s d N Controls/MDD Covariates Contributing factors Data Chapter

Telomere length +0.02 0.06 644/1,137 Age, sex, lab Smoking, BMI, metabolic syndrome NESDA 7

Epigenetic +0.64** 0.18 319/811

Age, sex, education level, BMI, 
smoking, alcohol use, physical 
activity, number of chronic 
diseases

Depression severity, childhood 
trauma, BMI, physical disability NESDA 3

Transcriptomic +0.87* 0.12 367/948 Age, sex, lab Smoking, BMI, digestive disease NESDA 7

Proteomic +0.93* 0.14 426/712 Age, sex, lab
Alcohol use, smoking, BMI, 
digestive disease, metabolic 
syndrome, chronic diseases, 
depression severity

NESDA 7

Metabolomic -0.44 -0.06 633/1,135 Age, sex, lab Smoking, BMI, cardiometabolic 
disease, metabolic syndrome NESDA 7

Composite +0.25** 0.25 158/495 Age, sex, lab

Smoking, BMI, physical disability, 
cardiometabolic disease, metabolic 
syndrome, current depression, 
depression severity, childhood 
trauma

NESDA 7

Brain structure +1.75 0.24 65/220 Age, sex, scanner, education 
level

Depression severity, anxiety 
severity, somatic depressive 
symptoms, BMI, antidepressant 
medication use

NESDA 6

Brain structure +1.08*** 0.14 2,126/2,675 Age, age2, sex, scanner None ENIGMA 5
Post-mortem brain 
tissue epigenetics +1.11* 0.25 64/74 Age, sex, brain collection N/A Four brain 

banks 3

Notes: The composite indicator is a scaled sum of the telomere length, epigenetic, 
transcriptomic, proteomic, and metabolomic aging indicators. NESDA brain aging cases 
included both depression as well as anxiety disorders. Post-mortem brain samples were 
obtained from the Victorian Brain Bank, the Stanley Medical Research Institute, the 
Netherlands Brain Bank and the Harvard Brain Tissue Resource Center. Post-mortem brain 
tissue includes methylation data obtained from neurons and glial tissue. Post-mortem P-value 
was derived by a hypothesis driven one-sided likelihood ratio test. * indicates significance 
at the P<0.05 level. **indicates significance at the P<0.01 level. *** indicates significance at 
the P<0.0001 level. 

Current Findings Against Findings From Other Studies

Of note, telomere length was only trending towards significance (i.e., shorter 
in the presence of current depression) in the current thesis, compared to 
previously reported significance in NESDA using largely overlapping samples, 
but with a slightly different selection of covariates (i.e., lab covariates) [4]. Other 
biological clocks with stronger correlations with chronological age, tended to 
show stronger associations with depression. However, the field of biological 
age prediction is still relatively novel, and although it is rapidly expanding, 
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studies investigating these types of biological clocks and associating them 
specifically to depression are still relatively scarce. While current findings are in 
line with some prior studies [5, 6], other, often smaller studies, did not reliably 
detect a significant association between depression or depressive symptoms 
and epigenetic aging of blood [7] or brain tissue [8], or even brain aging 
[9, 10], although effect sizes were compatible [11]. While there are studies 
showing proteomic [12, 13] and transcriptomic signatures [14, 15] associated 
with depression, to the best of our knowledge, no studies have specifically 
investigated machine learning biological age quantifications of these omics 
levels in depressed persons yet. However, metabolomic aging (predicted 
from 1,311 metabolomic features there vs. 231 in the current thesis) has been 
associated with depressive symptoms as measured by the Patient Health 
Questionnaire in a UK cohort [16], highlighting the need for methodological 
replication using the same platform and prediction model. Important to remark 
is that despite the clinically well-characterized samples from NESDA (Chapter 
3, 6, 7) and the largest pooled sample of depressed patients (Chapter 5), 
effects remain subtle, and it might therefore not be surprising that smaller 
studies might not be sufficiently powered to detect these small biological 
aging effects. 

The considered age range also seems to play a role in these findings, as prior 
studies did not find associations with depressive psychopathology and brain 
aging in youth samples (8-21 years old)[17], or in midlife depression, but did find 
significant associations in older depressed patients [18]. Inconsistent findings 
might also be due to the type of features and/or biological age prediction model 
used, heterogeneity of depression, inadequate statistical power to detect such 
effects, or otherwise. Moreover, the diversity of depression ascertainment, 
ranging from self-report depression rating scales or clinician-based psychiatric 
diagnoses of depression, might have also contributed to the different findings. 
All studies in the current thesis, except the one described in Chapter 3 
included patients with a clinical diagnosis of depression. Coincidentally, the 
study in Chapter 3 also did not find associations with longitudinal epigenetic 
aging and depressive symptoms, although weak but significant evidence was 
found for anxiety symptoms, likely due to increased symptom variation. The 
inconsistencies between biological aging findings in depressed persons might 
be due to any (combination) of the sources of variation in the aforementioned 
studies and hampers direct comparisons between existing studies. Yet, the 
current thesis found significant associations between depression severity 
and epigenetics, proteomics, brain, and the composite index. Thus, these 
findings indicate that each additional depressive symptom is associated with 
even more advanced biological aging for four out of seven biological clocks 

(excluding the post-mortem brain epigenetic clock), bolstering confidence in 
the observed advanced biological aging in depression. Nevertheless, more 
research is needed to verify the current results, and data harmonization and 
pooling are important strategies on the scientific research agenda to formally 
test the size, robustness, and generalization of these findings. 

The heterogeneity of studies investigating machine learning quantifications 
of the biological age in depression using different platforms, prediction 
models, ascertainment of depression, sample sizes, and age ranges 
hamper direct comparisons between studies. 

Small but Robust Effects 

Small effect sizes are more the rule than the exception in the field of biological 
psychiatry [19–22], and the same holds true for biological aging indicators 
in depression. However, this does not mean that these findings should be 
dismissed or that they are less valid. For instance, with respect to the age-
related structural brain changes in depressed individuals, not only the brain-
based studies considered in this thesis, but also previous studies including 
well-powered neuroimaging research [23–26], show that variability in structural 
brain alterations only accounts for a small percentage of the total depression 
phenotype [27]. These findings may have important implications for our 
theoretical understanding of psychiatric disorders such as depression, as 
small effect sizes make it unlikely that psychiatric disorders can be explained 
by a generic disease process [28]. It is more likely that many different biological 
and psychosocial mechanisms, all with small individual effect sizes, contribute 
to the total depression phenotype. This may also suggest that the findings of 
older appearing biology in depressed persons observed in this thesis may not 
be clinically useful in isolation at this point. However, rather than interpreting 
this as a negative statement, it may also be an encouraging and hopeful 
message for most people who suffer from depression, because the biological 
aging effects tend to be small for most patients.

Given the small effect sizes, it is currently unlikely that the individualized 
biological aging scores can be used as a biomarker in clinical practice. 
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Convergent Evidence of Contributing Factors

When taking a closer look at the contributing factors to advanced biological 
aging, regardless of depression diagnosis, several consistent associations 
can be observed. Table 3 presents an overview of psychological, somatic, 
and lifestyle variables. Important to note from this table is the following:
(1) Biological aging is sensitive to psychological stress, but not specific to 

depression and is also related to anxiety symptoms;
(2) Higher BMI is a consistent contributing factor to advanced biological aging, 

generally for both control and patient groups. 
(3) Smoking is consistently associated with advanced biological aging on four 

out of six biological levels, only showing non-significant findings for the 
epigenetic and brain aging indicators. 

Depressive and anxiety symptoms, high BMI, and smoking are consistent 
risk factors for more advanced biological aging, also in the non-clinical 
group. 

Table 3. Convergent evidence of contributing factors across controls and depressed 
patients. 

Biological 
aging indicator

Childhood 
trauma

Depression 
severity

Anxiety 
severity

BMI Smoking Alcohol Physical 
activity

Telomere length n.s. n.s. N/A + + n.s. n.s.

Epigenetic + + + +/- n.s. n.s. n.s.

Transcriptomic n.s. n.s. N/A + + n.s. n.s.

Proteomic n.s. + N/A + + + n.s.

Metabolomic n.s. n.s. N/A + + n.s. n.s.

Composite + + N/A + + n.s. n.s.

Brain structure n.s. + + + n.s. n.s. n.s.

Notes: the composite indicator is a scaled sum of the telomere length, epigenetic, 
transcriptomic, proteomic, and metabolomic aging indicators. Brain epigenetics was 
excluded from this table due to the lack of phenotypic information. n.s. = not significant. 
+ indicates positive association. - indicates negative association. +/- indicates that BMI 
was associated to advanced biological aging in the depression but not control group. N/A 
indicates the association was not tested. 

Aging is Complex, Multifactorial and Not Under Unitary Control

The many diverse biological changes that occur as we age, the hallmarks 
of aging, as described by Lopez-Otin et al. (2013)[29], signify that aging is 
a complex process. It may therefore be considered rather unlikely that there 
would be a single underlying factor driving the multifactorial biological aging 
manifestations [30]. In Chapter 7 it is shown that a composite index that 
summed up five biological aging indicators demonstrated larger effect sizes 
for BMI, sex, smoking, depression (severity), and metabolomic syndrome 
than the individual aging indicators. The same chapter also describes 
that the different biological aging markers are weakly correlated, and thus 
complementary, a finding further supported by other existing integrative 
studies on biological aging [31–37]. Together, these findings provide further 
support for the hypothesis that no single biological clock sufficiently captures 
the biological aging process and that it is unlikely that the clocks are under 
control of one unitary aging process. 

Not one biological clock can fully capture the complex and multifactorial 
aging process, and being biologically old at multiple biological levels has 
a cumulative multi-systemic effect.

Advanced Aging vs. Accelerated Aging 

All studies but the one described in Chapter 4 were cross-sectional and can 
therefore not distinguish advanced or premature from accelerated biological 
aging. However, longitudinal studies are needed to shed light on the potential 
causal link between depression and biological aging. To date, existing 
longitudinal studies have mainly focused on mapping aging trajectories 
over time rather than studying causality [32, 38]. The study in Chapter 4 
examined whether cross-sectionally identified correlates such as psychiatric 
problems, lifestyle variables, and adversities potentially play a causative role 
in epigenetic aging. Such examination is needed to obtain insight into whether 
epigenetic aging drives the identified correlates, or whether epigenetic aging 
is a consequence of these correlates [39]. However, a change in these 
correlates at a particular wave was often unaccompanied by a change 
in epigenetic aging, while such covariance is at least a necessary, but not 
sufficient, condition for causality. Thus, caution is warranted in interpreting 
cross-sectional correlations as causal factors. 
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More work is needed to establish whether: 
(1)  Depression accelerates biological aging
(2)  Premature biological aging is a vulnerability factor that may cause 

depression
(3)  Depression and biological aging processes share underlying etiological 

roots, such as genetic risks, but are not necessarily causally linked 
such that dynamic changes in depression coincide with responsive 
changes in biological aging throughout the course of life.

Forecasting Disease, Disability, and Mortality

Related to the previous paragraph, before conclusively interpreting a biological 
aging indicator as a measure of “true” biological aging, more independent 
work is needed to establish that the metric changes with advancing age 
and forecasts disease, disability, and mortality. The currently built machine 
learning algorithms rely on the assumption that the cross-sectional age-related 
biological patterns and chronological age primarily arise as a consequence of 
biological aging, and not because of other secular trends [40–42]. However, 
due to the cross-sectional nature of most of the studies considered in this 
thesis, it might be possible that there was uncontrolled residual confounding, 
either due to cohort effects or other individual differences. The study in 
Chapter 3 specifically tested the degree of biological overlap between 
the CpG sites associated with epigenetic aging from blood and brain, and 
the CpG sites associated with chronological age, and found that this was 
highly significant. In other words, biological aging overlapped with the same 
epigenetic processes that underlie the chronological aging process. The other 
biological aging indicators considered in Chapter 7 were assessed at baseline 
and did not predict future aging-related outcomes six years later, although this 
was likely due to the relatively young age of the sample (mean age ~41 years) 
and the low numbers disease onset and mortality (<64 deceased cases). 
However, NESDA is an ongoing study for which data with a 13-year follow-
up duration is currently being collected. These studies with longer follow-up 
durations are expected to cast more light on this matter, and the validity of the 
models in terms of forecasting future health and disease therefore remains to 
be established. 

The predictive power of the biological aging indicators studied in this 
thesis in relation to future health outcomes remains to be established. 

What Are the Biological Mechanisms Underlying Biological Aging?

The big question remains which biological mechanisms could plausibly 
link quantifications of biological aging and depression. However, potential 
underlying biological mechanisms are dependent on the platform and features 
used to develop the biological clocks, and existing literature largely depends 
on differently developed algorithms. All but the brain-based biological clock 
in the current thesis have not been validated in other external samples,  
and it should be noted that this section should therefore be interpreted in  
light of this limitation. Nevertheless, for the epigenetic aging indicator in 
Chapter 3 the biological pathways are discussed and for the other indicators 
some epidemiological replications and comparisons are discussed here. 

With respect to the epigenetic aging indicator, the almost full methylome 
coverage of the platform used in this thesis (i.e., interrogation of 94% of all 
28 million common CpG sites in blood) allowed for thorough exploration 
of the biological pathways that seemingly underlie epigenetic aging. This 
is particularly unique, as other epigenetic clocks frequently rely on arrays 
with 2-4% of methylome coverage, potentially missing important biological 
information from other parts of the methylome. The study in Chapter 3 
performed biological pathway analyses and found significantly enriched gene 
ontology terms including neurogenesis, neuron differentiation, and regulation 
of neuron death. Epigenetic mechanisms are essential during brain maturation 
and development, adult neurogenesis, and late-stage brain maturation [43], 
and these processes seem disturbed in patients with depression [44]. It is 
interesting to speculate whether these findings might also explain the age-
related structural brain differences in Chapter 5, but this seems unlikely as 
an independent study by Cole et al. (2017) (N=620, mean age ~69.3 years), 
as well as the study in Chapter 6 (N=98, mean age ~38.4 years), showed 
that brain aging and epigenetic aging were uncorrelated [45]. Regarding 
dynamic potential, previous studies suggest that epigenetic aging is under 
strong genetic control [46, 47], when corrected for blood cell-type proportions 
(i.e., intrinsic epigenetic age acceleration measured by the Horvath epigenetic 
clock)[48], potentially offering an explanation as to why external stress factors 
only have a weak effect on blood epigenetic aging [49]. The findings from 
the study described in Chapter 4 are in line with this suggestion, given both 
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the stability of epigenetic aging over time (i.e., 45% of the total epigenetic 
variance was attributed to the subject-level), as well as that a wide range of 
psychiatric problems, lifestyle variables, and adversities also had no or weak 
effects on epigenetic aging rates. However, studies using the same epigenetic 
and brain aging algorithms are clearly needed to draw definitive conclusions.

With respect to the other omics-based biological aging indicators in  
Chapter 7, part of the answer requires discussion on the features used to 
build the different clocks. The narrow selection of proteomic and metabolomic 
probes considered in this study only comprise a small fraction of the full 
proteomic and metabolomic landscape, and explanations should therefore 
be held against this limitation. The proteomic and metabolomic probes that 
contribute to the age prediction mostly target inflammatory or metabolic 
factors. Inflammation and metabolic dysregulations are highly integrated in 
aging and aging-related diseases [50], and it may be possible that immune-
mediated mechanisms tie together metabolic syndrome [51], depression [52], 
and aging [53]. Part of this hypothesis is further supported by studies showing 
shared genetic pathways between depression and metabolic syndrome [54] 
and cardiometabolic diseases [55]. Overall, studies investigating the complete 
proteomic and metabolomic landscape are needed, but in general depression 
is a medical disorder in which inflammation, metabolic traits, and premature 
aging co-occur and converge. The brain aging indicator in Chapter 6, however, 
was not associated with inflammatory markers (i.e., C-Reactive Protein, Tumor 
Necrosis Factor-ɑ, Interleukin-6). Similarly, no significant associations were 
found between brain aging and autonomic nervous system dysregulations 
(i.e., resting heart rate, respiratory sinus arrhythmia, pre-injection period) or the 
hypothalamic-pituitary-adrenal axis (i.e., cortisol awakening response, evening 
cortisol). One previous study showed a small correlation (r=0.29) between 
brain aging and Tumor Necrosis Factor-ɑ in older adults (>64 years) using a 
different brain age prediction model [6], but more work is needed to identify 
robust potential genetic, biological, and other early-factors that contribute to 
brain aging. As a follow-up study to the one described in Chapter 5, such an 
endeavor is currently being undertaken within the ENIGMA MDD consortium. 
This study examines which genetic (i.e., polygenic risk scores of depression, 
C-Reactive Protein, BMI, and epigenetic clocks) and environmental risk factors 
(i.e., BMI, smoking, childhood trauma) may potentially underlie brain aging. 

Important to emphasize is that the omics-platforms used by individual 
studies often include different probes and features, hampering side-by-side 
methodological comparisons and the development of robust biological age 
prediction models. To fully dissect which biological mechanisms underlie 
biological aging, the field is in dire need of robust models, but to date, no gold 

standard exists for transcriptomic, proteomic, metabolomic, or brain-based 
models. The epigenetic data in the current thesis is inherently different from 
the epigenetic data used to build previously established and validated clocks, 
unfortunately not allowing direct comparison. Next to developing robust 
models, experimental approaches using cellular or animal models may also help 
aid omics-based biological aging interpretations. To illustrate, if depression-
like stressors can be modeled accurately in animals or in vitro, experimental 
studies allow for direct manipulation, potentially providing causal evidence. A 
previous study has shown that e.g. epigenetic clocks can also be meaningful in 
vitro [56], demonstrating promise for such experimentation. In conclusion, the 
biological mechanisms underlying biological aging remain elusive, and several 
steps need to be undertaken to gain more important biological insights. First, 
robust models are needed. Second, more preclinical and in-vitro work needs 
to be performed to shed light on the biological processes [57]. It is therefore 
of utmost importance for scientists to enter in dialogues and collaborate with 
other disciplines outside of their own field, as it seems unlikely that there are 
only a few biological mechanisms of aging, and far more probable that aging 
is poly-mechanistic involving many biological pathways.

 

A two-step approach is needed to answer the big question of which most 
important biological mechanisms underlie biological aging. First, uniform 
use of platforms and robust biological age models are needed. Second, 
dialogues between clinicians, psychologists, epidemiologists, behavioral 
scientists, and experimental biologists are needed to generate innovative 
methods in order to reveal poly-mechanistic pathways.

CLINICAL IMPLICATIONS

General Indicators of Somatic and Mental Health

Within the field of psychiatry, studying aging has been instrumental in 
understanding the somatic consequences and comorbidities of depression. 
Yet, the biological aging indicators considered in the current thesis cannot 
distinguish depressed patients from healthy control subjects, and are thus not 
useful for group inference. The current literature suggests that the biological 
aging indicators studied here are non-specific, but abnormal in unfavorable or 
unhealthy conditions. Then, in what way may biological age indicators play a 
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role in psychiatric research? This question will be discussed in more detail in 
the sections below. 

To overcome the limitation of comparing the mean biological aging levels 
of cases (i.e., depressed patients) with the means of biological aging levels of 
controls, transdiagnostic dimensional approaches are needed that associate 
the individual predictions with continuous measures of psychopathology. 
Studying individualized biological aging scores is important to faithfully 
capture individual differences, rather than examining “the average patient” in 
case-control designs [58], and may provide better understanding of the age-
related abnormalities in mental disorders. Yet, the biological age predictions 
in the current thesis are not meaningful on an individual-level, and whether 
improved accuracy of individualized predictions will lead to improved clinical 
value, remains an open question. Longitudinal studies with more timepoints 
will be instrumental in trying to answer this question, because it will provide 
insight in the test-retest reliability and validity of the metrics. It is expected and 
hoped, but not determined that more precise methods will allow for individual-
level stratification, ultimately leading towards precision medicine. Meanwhile, 
a “dose-response” relationship was generally found, such that those with 
more severe depression showed more advanced biological aging. Clinicians 
may therefore potentially consider paying extra attention or adhere to a closer 
monitoring of the somatic problems in severely depressed persons. 

Biological aging indicators are not disease-specific nor suitable as 
diagnostic tools, but rather, transdiagnostic, general indicators impacted 
by somatic and mental health. 

Biological Aging and Treatment 

The findings from the current thesis have little direct implications for clinical 
practice, however, the brain-based biological aging study in Chapter 6 showed 
that patients with depression and/or anxiety disorders using antidepressant 
medication showed similar brain aging to controls, but not to antidepressant-
free patients. Interestingly, the antidepressants-using group constituted a 
more severely depressed and anxious group as measured by higher symptom 
severity scores. However, interpretative caution is warranted as the study 
was cross-sectional and a dose-response association with antidepressant 
medication not statistically significant. Nonetheless, this promising finding will 
be followed-up using data from the MOod Therapy using Antidepressant or 

Running (MOTAR, www.motar.nl) study, a randomized clinical trial comparing 
antidepressant medication and running therapy in the treatment of depression 
and anxiety disorders [59]. Previous studies investigating brain-based 
biological aging measures have suggested potential protective effects of 
mindfulness meditation [60], music performance [61], and physical activity 
[62], and while these should also be further addressed in future research, 
evidence from clinical trials is currently lacking. To date, only one randomized, 
placebo-controlled, exploratory study showed that acute oral administration 
of ibuprofen temporarily reduced brain aging by one year [63]. With respect 
to the limited evidence from clinical trials and epigenetic aging, protective or 
rejuvenating associations have been found in vivo for vitamin D [64] and dietary 
factors (i.e., folic acid and vitamin B12) but only in females with the MTHFR 
677CC genotype [65]. One study reported epigenetic aging reversal through 
thymus regeneration in males [66], suggesting dynamic potential, but obviously 
more studies are needed to confirm these findings. Previous examples also 
demonstrate that participation in family-centered prevention training [67], and 
supportive family environments [68], mitigated accelerated epigenetic aging 
effects in spite of parental depressive symptoms or exposure to higher levels 
of racial discrimination in African American Youth, respectively. Epigenetic 
mechanisms of psychotherapy may potentially provide opportunities to modify 
aging patterns in anxiety, affective, and stress-related disorders [69]. 

Overall, some evidence seems to be emerging that epigenetic aging and 
brain aging can be targeted with clinical interventions. While still in its infancy, 
randomized clinical trials may identify individuals with abnormal age-related 
biological patterns who carry quantifiable risks for poorer functioning, disease 
course, and treatment response. To determine to which extent biological 
age indicators can be of potential clinical value, more research is needed 
associating biological aging with clinical characteristics cross-sectionally 
and particularly longitudinally. Importantly, more work is needed to examine 
whether biological aging can predict treatment response or be halted/reversed 
by clinical interventions.

1.  More longitudinal work is needed to evaluate whether biological aging 
can predict treatment outcomes or response.

2.  Randomized controlled intervention studies are needed to develop an 
understanding of how reversible or modifiable biological aging is in 
response to pharmacological and nonpharmacological treatments. 
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Potential Clinical Value 

Assuming that the longitudinal and randomized controlled intervention studies 
may point out that baseline or pre-treatment biological aging predicts future 
health or treatment outcomes, several examples for practical application can 
potentially be outlined: 

(1)  Disease monitoring 
(2)  Assessment of current age-related biological health and prognosis
(3)  Risk and population stratification 

With respect to (1), longitudinal studies could track whether biological 
aging during the start of the study is advanced in patients with depression, 
and whether this metric progresses, normalizes, or maybe even reverses at 
later collected timepoints. In (2), baseline assessment of biological aging may 
predict treatment response, as has previously been described for telomere 
length and antidepressant [70, 71] or lithium [72, 73] treatment. Another 
important aspect is outlined in (3), in which it might be possible to screen and 
identify individuals with high biological aging, and stratify enrolment of these 
individuals for clinical trials increasing the likelihood for functional decline over 
a shorter period of time as has previously also been suggested by Cole and 
colleagues (2018)[30]. 

At the heart of the above avenues lies that biological aging indicators 
indeed show predictive and prognostic value, which is currently not robustly 
established. However, a recent longitudinal study showed that the brain-age 
paradigm was sensitive to multiple sclerosis-related atrophy, that baseline levels 
of brain aging predicted clinical progression and higher disability, and that the 
rate of increasing change of the aging metric paralleled worsening disability 
[74]. Together these findings emphasize that biological aging indicators may 
provide exciting new research avenues and clinical applications. 

For now, biological aging research seems to hold great promise for both 
clinical and non-clinical populations, but it remains to be seen whether changes 
in age-related biological patterns also parallel improvements in functioning 
and quality of life, and reduction of depressive symptoms. It will be interesting 
to see whether normalizing or reversing biological aging will also result in 
lower subjective age, or one’s own perception of how old one feels [75]. 

Biological aging indicators hold promise for future disease monitoring, 
assessing current somatic and mental health and prognosis, and risk 
stratification. 

METHODOLOGICAL CHALLENGES 

A common theme that ties the discussion section together is that the 
heterogeneity of studies examining biological aging in depressed persons limit 
the direct comparisons and obscure generalization of findings. In this section, 
several challenges are outlined that need to be overcome in the future: 

(1)   The current dataset does not contain the same features that were used 
to train existing biological age prediction models (or other biological age 
prediction models simply do not exist yet)

(2)   The existing biological age prediction models do not generalize to the 
current dataset

(3)   The contributing factors to biological aging are different in each study

The challenge in (1) describes a problem that is often encountered, 
namely, that data collection is heterogeneous, involving different methods 
and platforms that do not probe the same features. For example, the study 
in Chapter 3 was the first to develop an epigenetic clock using optimized 
Methyl-CpG binding domain sequencing (MBD-seq) data. However, Chapter 
4 is also an example of the challenge outlined in (2) as the epigenetic age 
indicator developed in Chapter 3 did not generalize to this study, likely due 
to largely non-overlapping age ranges of the samples (18-64 years vs. 9-35 
years) used to train the different models (i.e., the age of the training dataset 
was not representative of the dataset it was applied to). Not all studies should 
have to study the same algorithms, but if the challenge in (3) presents itself 
it is difficult to discern whether this is due to the different features used to 
build a prediction model (e.g., targeting different parts of the methylome), 
properties of the group used to train the model (e.g., age differences), or other 
uncontrolled sources of variation. One of the main challenges and current 
limitations can thus be found in the lack of generalization of models to unseen 
data and independent cohorts. Harmonization of data collection, handling, 
and analysis are needed to aid the development of robust, reliable, and valid 
models that may serve as a gold standard.
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Harmonization of data collection, preprocessing, and analyses should be 
high priorities on the research agenda. 

Local vs. Global Datasets 

As mentioned before, large datasets are needed to detect small effects in 
depression. In addition, larger sample sizes may facilitate findings that reflect 
more “true” effects. For example, Miller and colleagues (2016) illustrate using 
UK Biobank data that imaging effect sizes show noticeable instability up to as 
many as ~2000 subjects, before stabilizing around the “true value” at ~5000 
subjects [76]. However, while consortium work such as that described in 
Chapter 5 might have greater statistical power, it also has its limitations due 
to less in-depth phenotyping. Individual cohorts such as those described in 
Chapter 6 have more detailed information on clinical characteristics, lifestyle 
variables, and biological markers, emphasizing the complementary value of 
local and global datasets. Together, local and global datasets may be used to 
answer different research questions. 

Large multisite studies often generate robust findings and hypotheses, 
whereas local datasets with in-depth clinical phenotyping may answer 
more specific research questions. 

Multivariate Biological Aging As A Single Summarized Outcome

All biological aging indicators but telomere length are by definition a measure 
of residual error, because they depend on the difference between predicted 
biological age and actual chronological age. It should be mentioned that this 
also slightly complicates the interpretation of this metric, because it remains 
unknown how much of the residual variance is attributed to biological aging, 
and how much of it is due to noise or measurement error. A previous study 
showed that a near-perfect epigenetic age predictor can be developed 
with a sufficiently large training sample size, but that by increasing the 
prediction accuracy the association between epigenetic aging and mortality 
subsequently attenuates and eventually becomes non-significant [77]. The 

trade-off between improving performance accuracy of age prediction models 
and its utility as a biomarker of aging therefore seems to be an important 
topic that should be disentangled by further research. As the machine learning 
methods to quantify the biological age are rapidly evolving, it is also important 
to mention that other paradigms also exist that predict age-related phenotypes 
other than chronological age itself [78, 79]. These seem very promising and 
often show stronger associations with future negative health outcomes and 
mortality. Models may also incorporate and integrate multiple feature sources 
(e.g., both voxel wise data and cortical thickness) or multimodal information, 
often showing that performance can be gained by combining (multimodal) 
information in, for instance, brain age prediction [80, 81]. It should also be 
mentioned that some criticisms towards biological age paradigms have 
also been expressed, for example with respect to brain aging. By modelling 
age-related brain patterns in healthy controls, and testing whether disease 
populations deviate from this normative pattern, one assumes that disease-
related brain patterns and aging-related brain patterns overlap [80]. Thus, 
alternative growth chart approaches may also be used and provide an answer 
to a fundamentally different question [82], namely, how much does my brain 
deviate from what is normally expected at this age? vs. the currently used 
paradigm, how old am I based on my brain? Such normative models thus allow 
persons to deviate from normative biological patterns, instead of only being 
estimated to be “younger” or “older”. Finally, other methods also exist where 
multiple biological age predictions are made using multiple different “modes” 
that track different parts of the brain aging process and are presumed to be 
under differential genetic control [83]. Such techniques reduce complexity, but 
still take different modes of brain aging into account, limiting the dilution of 
relevant aging-related information [84]. 

The methods and ways of quantifying human biological aging are rapidly 
evolving, emphasizing this novel and promising avenue of research. 

FUTURE RECOMMENDATIONS

Towards Generalizable Biological Age Prediction Models 

The field of biological aging is rapidly expanding, and studies investigating 
omics- or brain-based predictions of age are dramatically increasing [30, 85, 
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86]. One of the most extensively used and validated biological age prediction 
models is the epigenetic clock developed by Dr. Steve Horvath [48]. An online 
calculator exists that researchers may use to calculate epigenetic age based on 
data measured using the Illumina Infinium platform (https://dnamage.genetics.
ucla.edu/). A web-based metabolomic age calculator based on the Nightingale 
platform also exists (https://metaboage.researchlumc.nl/), and, similarly, the 
developed algorithm in Chapter 5 is also available to the research community 
as a web-based tool (www.photon-ai.com/enigma_brainage) to which 
researchers may upload their FreeSurfer ROI data to obtain individual brain 
age predictions using output from standardized ENIGMA imaging protocols 
(http://enigma.ini.usc.edu/protocols/imaging-protocols/). Open science and 
code sharing practices are becoming much more standard, and examples 
of other developed brain age models can be found on https://github.com/
james-cole/brainageR and https://github.com/BIDS-Apps/baracus. Model 
sharing allows for external validation testing, and will accelerate research 
with the goal of improving global biological and mental health, as we can 
then collaboratively study protective and harmful effects, screen those at risk 
for poorer mental and somatic health, and examine intervention effects and 
treatment response. 

To facilitate the development of robust biological age prediction models 
it would therefore be helpful to have one integrated, clear, and convenient 
repository for all existing models, categorized per biological level. The 
minimum standard of information should contain the age range and 
distribution used to train the algorithm, the feature-type and platforms or 
processing method used, and participant characteristics (e.g., % females). If 
independent researchers apply a model to their data, they could report back 
the properties and performance metrics for their samples. By also filtering 
on specific characteristics, one would be able to find models that potentially 
fit the properties of their own dataset more easily, and opportunities for data 
harmonization, pooling, and collaborations will become more apparent. Other 
benefits include that smaller (clinical) studies that do not allow for training 
their own models due to the limited sample size, can calculate unbiased 
individualized biological aging scores and associate these with often in-
depth phenotypic information collected. In addition, scientists from low- and 
middle-income countries with less resources (e.g., computational power, data 
infrastructure, digital facilities) might also benefit from more model sharing 
opportunities. In closing, to combat and comprehensively study biological 
aging and mental illness, collaboration across countries, cultures, and 
disciplines is needed to create robust biological age prediction models.

A clear and convenient repository with a vast collection of existing 
biological clocks would promote the generalizability, deployability, and 
shareability of models, to mature the development of robust biological 
age algorithms. 

Towards Enhanced Clinical Value

The current thesis suggests that if a biological aging-informed management 
of depression is to be outlined, important aspects to be included would be 
smoking cessation, lowering of BMI, and somatic depressive symptoms. 
Thus, clinical efforts would likely include a broader, lifestyle-focused strategy 
that may reduce both depressive symptoms and biological aging. The MOTAR 
study mentioned in section 3.4. will be helpful in this regard, because it can 
investigate the effects of both antidepressant medication use (i.e., potential 
neuroprotective effect on brain aging), against the metabolic improvements 
(i.e., lower BMI) that are expected to occur during running therapy only. 
Moreover, such randomized clinical trials may potentially unveil which 
treatments have a higher likelihood of clinical success for patients with high 
or low biological aging. Finally, these worthwhile efforts will be more able to 
challenge the causal links between exercise and/or antidepressant therapy 
and biological aging. 

Clinical efforts are needed that integrate the management of both mental 
as well as somatic health symptoms to reduce the personal disease 
burden of depression. 

Towards Early Intervention And Prevention 

One important aspect of studying biological aging is to evaluate whether the 
process may contribute to somatic and mental health disparities later on in 
life. Ideally, one wishes to detect those at increased health risk early on, and 
target accelerated aging processes through intervention, before the onset of 
medical (both somatic and mental) or chronic diseases [87]. A recent Swedish 
population-based cohort study of nearly 1.5 million young individuals showed 
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that youth depression (5-19 years) was associated with increased relative and 
absolute risks of a wide range of medical conditions and premature mortality 
compared to the general population [88]. 

Adolescence is the developmental period of peak onset of depression and 
anxiety disorders. More than 55% of the burden of these diseases is observed 
in individuals aged 15-24 years [89], significantly contributing to global 
disability, with pessimistic projections into 2030 [90]. Youth depression has 
serious disruptive and limiting consequences for a young person’s potential 
and quality of life [91, 92]. At worst, it may lead to suicide, and, sadly, this is 
one of the most common causes of death in young individuals 15-29 years 
worldwide [93]. Importantly, adolescence is an important window for physical, 
intellectual, and social development. A mental disorder in this critical period 
may have damaging consequences and if untreated, may lead to chronic 
disability, suggesting that full recovery may become the exception rather than 
the rule [94, 95]. Also, presence of one disorder often increases the risk of 
developing another, and individuals often accumulate several mental disorders 
over the course of life [96]. These disturbing statistics and long-term negative 
effects emphasize the importance of prevention and early-intervention of 
depression.

Future studies should test the clinical value of studying biological age 
estimations in youth samples, by calculating individualized scores that, contrary 
to aging in adults, signify precocious or delayed development. Abnormal age-
related biological patterns in youth depression and anxiety disorders can then 
also be associated to functioning, disease severity, and treatment response. 
Investigating whether developmental or maturational biological changes can 
be normalized, may hold great promise for reducing future comorbidities, so 
that they become less disabling [97]. 

The importance of prevention and early-intervention of depression is 
emphasized to reduce future somatic comorbidities. 

CONCLUSIONS 

The aim of this thesis was to investigate multisystem quantifications of 
the biological age in depression in order to better understand the complex 
interplay between mental health and biological aging. The most important 
finding to emerge from this thesis is that there is convergent support across 
multiple biological systems that depression is associated with an older 
appearing biological state of the brain and body, as measured by epigenetics, 
transcriptomics, proteomics, and brain-based biological clocks. This potentially 
offers an explanation as to why depressed persons have an increased risk 
of developing age-related diseases earlier in life than non-depressed peers. 
Several factors contribute to the observed biological aging, but specifically 
BMI was consistently associated with advanced aging across six biological 
levels and studies. Whilst this thesis did not establish accelerated biological 
aging in depression, it did partially substantiate that, at least at the epigenetic 
level, most considered correlates were unlikely to have causal accelerating 
effects on biological aging, because many of the wave-level changes in 
correlates were unaccompanied by a change in epigenetic aging. Although it 
remains to be elucidated if the different biological aging indicators considered 
in this thesis may represent potential targets for intervention, it strongly 
emphasizes, yet again, that depression has health consequences that go 
beyond psychological disturbances. A promising lead that requires follow-
up investigation is the finding that antidepressant medication use may have 
protective effects on brain aging. Future longitudinal studies including multiple 
assessments are needed to further characterize the complex interplay between 
psychological, biological, and social factors and aging.
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volksgezondheid, zoals een betere hygiëne en bestrijding van infectieziekten, 
wereldwijd bijgedragen aan een langere levensduur. Mede hierdoor is de 
levensverwachting van de mens in de afgelopen 100 jaar met meer dan 35 
jaar gestegen. Hierbij moet wel worden aangetekend dat deze stijging van 
de levensverwachting niet over alle bevolkingsgroepen gelijk verdeeld is. Er 
bestaan nog steeds omvangrijke sociaaleconomische gezondheidsverschillen, 
zelfs in een welvarend land als Nederland.  Desalniettemin is er in onze huidige 
samenleving een sterke toename van het aantal mensen dat een hoge leeftijd 
bereikt. Hoewel sommige leeftijd gerelateerde veranderingen, zoals het grijs 
worden van haar, als relatief goedaardig kunnen worden beschouwd, zijn 
andere kenmerken objectief gezien nadeliger. Ouder worden is bijvoorbeeld 
ook een sterke risicofactor voor chronische ziekten zoals hart- en vaatziekten, 
diabetes mellitus type 2, kanker en de kans op overlijden. Naast de stijging van 
de levensverwachting van de mens, zien we dus eveneens een toename van 
chronische ziekten en het aantal jaren dat men moet leven met de nadelige 
gevolgen daarvan. Dit wordt gedeeltelijk verklaard door het feit dat veel ziekten 
eerder ontdekt worden en nu beter behandeld kunnen worden, met als resultaat 
een afname in mortaliteit. Chronische ziekten hebben echter nog steeds 
een negatieve invloed op de kwaliteit van leven. Over de vraag waarom we 
verouderen en welke biologische mechanismen hieraan ten grondslag liggen, 
is nog veel onbekend. Als we de verouderingsbiologie en de impact ervan op 
ziekten beter begrijpen, kunnen we mogelijk een manier vinden om succesvoller 
ouder te worden. Succesvol oud worden betekent dat mensen op hogere 
leeftijd meer gezonde en gelukkige jaren kennen. Binnen de psychiatrie heeft 
het bestuderen van veroudering een belangrijke rol gespeeld bij het begrijpen 
van de somatische gevolgen en medische comorbiditeiten van een depressie.

SAMENHANG TUSSEN DEPRESSIE EN 
VEROUDERING

Somatische symptomen van depressie

Interessant is dat chronische ziekten die regelmatig optreden op oudere leeftijd 
ook vaak voorkomen bij depressie. Eerder onderzoek heeft aangetoond dat 
de impact van depressie veel verder reikt dan alleen de aanwezigheid van 
psychische symptomen. De Inventory of Depressive Symptoms (IDS) is een 
betrouwbaar instrument om symptomen van depressie te meten en geeft 
een indicatie van de ernst van de ziekte. Het instrument omvat voor de helft 
items die betrekking hebben op stemming/cognitie en voor de andere helft 

NEDERLANDSE SAMENVATTING  
(SUMMARY IN DUTCH)

DEPRESSIE

Depressie is een veelvoorkomende psychische aandoening die wereldwijd 
meer dan 264 miljoen mensen van alle leeftijden raakt. De aandoening 
komt vaker voor bij vrouwen dan bij mannen, is een van de hoofdoorzaken 
van gezondheidsverlies en gaat gepaard met een hoge ziektelast. Dit 
zal nog toenemen; de vooruitzichten tot 2030 zijn zorgelijk. In het ergste 
geval kan depressie leiden tot zelfmoord, momenteel helaas een van de 
meest voorkomende doodsoorzaken bij jongeren van 15 tot 29 jaar oud. 
Depressie wordt gekenmerkt door somberheid, verlies van interesse of 
onvermogen om ergens van te genieten voor een periode van tenminste 
twee aaneengesloten weken, gedurende het grootste deel van de dag en 
bijna elke dag. In totaal zijn er negen symptomen, dit zijn naast een sombere 
stemming en interesseverlies, problemen met gewicht, eetlust, slaap, 
concentratie, psychomotorische traagheid, vermoeidheid en gedachten aan 
de dood. Het Handboek voor psychiatrische stoornissen (DSM-5) stelt dat 
een individu, om te voldoen aan de voorwaarden van een klinische depressie, 
vijf (of meer) van de negen symptomen moet hebben, waaronder ten minste 
een van de twee kernsymptomen van somberheid en/of onvermogen om 
ergens van te genieten. Uit verschillende onderzoeken is duidelijk gebleken 
dat een depressie vaak gepaard gaat met angstsymptomen. Tot wel 75% 
van de mensen met een depressie heeft ook een angststoornis (sociale 
fobie, paniekstoornis, agorafobie, gegeneraliseerde angststoornis). Er is 
niet alleen een overlap in symptomen, er zijn ook andere overeenkomsten 
tussen depressie- en angststoornissen in termen van genetica, neurobiologie, 
gedeelde risicofactoren en fysiologische ontregelingen. Dit toont aan dat 
beide psychische stoornissen nauw met elkaar verbonden zijn en verklaart 
waarom depressie en angststoornissen vaak samen bestudeerd worden. 

VEROUDERING VAN DE MENS

Het verouderingsproces is al lange tijd onderwerp van wetenschappelijk 
onderzoek wellicht omdat veroudering een bijna universele eigenschap is van 
de meeste soorten op aarde, met uitzondering van enkele bacteriën, planten 
of hele simpele dieren. Bij mensen hebben vooral verbeteringen van de 
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en vergrijzende populaties beide wereldwijd toenemen. Dit onderstreept  
de noodzaak om beide uitdagingen tegelijkertijd in dezelfde onderzoeken 
te bestuderen. 

Cellulaire veroudering bij depressie

Om de invloed van leeftijd gerelateerde somatische aandoeningen bij 
depressie te onderzoeken, hebben eerdere studies zich voornamelijk gericht 
op het meten van cellulaire veroudering. Bij de start van het onderzoek 
voor dit proefschrift (april 2016) was de meeste literatuur over biologische 
veroudering bij depressie gericht op telomeerlengte, een marker die in 
toenemende mate korter wordt naarmate de leeftijd toeneemt. Er zijn robuuste 
associaties gevonden tussen een kortere telomeerlengte en depressie, maar 
ook bij angststoornissen wordt dit gezien. Sindsdien hebben verschillende 
technologische ontwikkelingen geleid tot “moderne” machine learning 
benaderingen van biologische veroudering die in de volgende paragrafen 
zullen worden besproken. De meest populaire algoritmes voor biologische 
veroudering zijn gebaseerd op epigenetica en worden “epigenetische klokken” 
genoemd. Er bestaan verschillende epigenetische klokken die de leeftijd heel 
nauwkeurig kunnen voorspellen. 

KWANTIFICERING VAN DE BIOLOGISCHE LEEFTIJD 

Concepten van chronologische veroudering en biologische 
veroudering 

Zoals eerdergenoemd, is veroudering een van de sterkste “risicofactoren” voor 
chronische ziekten, verlies van functionele capaciteit en dus ook de kans op 
sterfte. Over de hele levensduur kunnen we twee verschillende concepten van 
veroudering onderscheiden, namelijk chronologische veroudering enerzijds en 
biologische veroudering anderzijds, hoewel er geen overeenstemming bestaat 
over wat biologische veroudering precies inhoudt. Terwijl onze chronologische 
leeftijd in feite alleen een antwoord is op de vraag hoeveel kaarsjes we op 
onze verjaardagstaart mogen zetten, kan onze biologische leeftijd op veel 
verschillende manieren worden gekwantificeerd en is deze daarmee meer 
ongrijpbaar. De chronologische leeftijd is onveranderlijk en is louter gebaseerd 
op het verstrijken van de tijd, terwijl de biologische leeftijd de functionele en 
biologische toestand van ons lichaam weerspiegelt, en voor of achter kan 
lopen op de chronologische leeftijd. Het concept van de biologische leeftijd is 

somatische symptomen zoals slaapproblemen, veranderingen in gewicht en/
of eetlust, fysieke energie, psychomotorische agitatie/retardatie en pijn. Dit 
suggereert dat depressie per definitie niet alleen als een “probleem van de 
geest” wordt beschouwd, maar ook als een “probleem van het lichaam”.

Leeftijd gerelateerde comorbiditeiten 

Een groeiend aantal studies laat zien dat depressie het risico op hart- en 
vaatziekten verhoogt, maar andersom lijken cardiovasculaire problemen ook 
het risico op depressie te vergroten. Depressie wordt niet alleen met hart- 
en vaatziekten geassocieerd; ook andere klachten of symptomen van een 
slechtere somatische gezondheid komen vaker voor bij mensen met een 
depressie. Er is consistent bewijs dat bij depressie meer chronische ziekten 
voorkomen, zoals diabetes mellitus type 2, obesitas, herseninfarct, hypertensie 
en stofwisselingsstoornissen. Bovendien blijkt uit longitudinaal onderzoek dat 
depressie ook het risico vergroot op ouderdom gerelateerde aandoeningen 
zoals dementie, de ziekte van Alzheimer en in sommige gevallen zelfs kanker. 
Al met al is er overtuigend bewijs dat depressie een grote nadelige invloed 
heeft op de lichamelijke gezondheid.

Een andere verklaring voor de relatie tussen depressie en gezondheid 
kan zijn dat een ongezonde leefstijl en slechte zelfzorg leidt tot een   slechtere 
somatische gezondheid bij mensen met een depressie. Onderzoek naar 
dit thema wordt beperkt door het feit dat gedragsmatige, psychiatrische 
en somatische aandoeningen vaak samen voorkomen en dus verstorende 
effecten kunnen hebben. Zo lijken psychiatrische patiënten langer, vaker en 
meer te roken en komt bij hen meer problematisch alcohol- en middelengebruik 
voor in vergelijking met controlegroepen. Bovendien zijn overgewicht, 
slechte voeding en lichamelijke inactiviteit veel voorkomende kenmerken van 
mensen met een depressie. Andere onderzoeken tonen echter aan dat een 
slechte leefstijl het verband tussen depressie en nadelige gevolgen voor de 
gezondheid niet volledig kan verklaren, statistische modellen die corrigeren 
voor deze verschillen in leefstijl laten nog steeds significante effecten zien van 
depressie op bijv. hart- en vaatziekten. 

De literatuur laat dus zien dat depressie wordt geassocieerd met 
oversterfte en verloren levensjaren door directe en/of indirecte effecten van de 
ziekte. Het verhoogde risico op het ontwikkelen van ouderdom gerelateerde 
aandoeningen is een belangrijk effect van depressie die de ziektelast verder 
verhoogt door een verminderde kwaliteit van leven en een verhoogd gebruik 
van de gezondheidszorg. Er zijn dus twee mondiale uitdagingen waarmee 
we momenteel worden geconfronteerd, aangezien psychiatrische ziekten 
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basis van hun chronologische leeftijd. Ter illustratie: als een persoon van 
40 jaar oud (chronologische leeftijd) 42 jaar oud voorspeld wordt door het 
algoritme (voorspelde biologische leeftijd), overtreft de biologische leeftijd 
van die persoon (en dus ouder lijkende biologische toestand) zijn of haar 
chronologische leeftijd met +2 jaar. Dit leeftijdsverschil wordt “biologische 
veroudering” of  “het biologische verouderingseffect” genoemd.

Toepassing van voorspellingsmodellen voor biologische leeftijd bij 
depressie

Het doel van het bouwen van een voorspellingsmodel voor de biologische 
leeftijd is om het vervolgens toe te passen op een patiëntenpopulatie met 
depressie en/of angststoornissen om de hypothese te testen of hun biologische 
leeftijd de chronologische leeftijd overtreft. Het verschil tussen iemands 
chronologische en biologische leeftijd kan dan ook gerelateerd worden aan 
andere ziektekenmerken. Het begrijpen van het verband tussen biologische 
veroudering en depressie zal helpen bij het identificeren en voorspellen van de 
kans of iemand kwetsbaar is voor leeftijd gerelateerde gezondheidsproblemen. 
Het is belangrijk om te vermelden dat voorspellingsmodellen voor de biologische 
leeftijd niet alleen relevant zijn voor het onderzoeken van depressie. Met 
andere woorden, voorspellingsmodellen voor de biologische leeftijd kunnen 
worden toegepast op de algemene bevolking of andere klinische populaties 
om individuele afwijkingen van “normale” veroudering te onderzoeken. Dit 
proefschrift onderzoekt met name de biologische verouderingspatronen die 
worden waargenomen bij personen met depressie.

STUDIEPOPULATIES IN DIT PROEFSCHRIFT 

In het onderzoek voor dit proefschrift zijn voornamelijk empirische gegevens 
gebruikt uit drie hoofdbronnen: 1) The Netherlands Study of Depression and 
Anxiety (NESDA), 2) The Great Smoky Mountains Study (GSMS), en 3) De 
depressie werkgroep van het Enhancing Neuroimaging Genetics through 
Meta-analysis (ENIGMA) consortium. 

Het NESDA-cohort is een longitudinaal onderzoek dat het ontstaan, 
beloop en de gevolgen van depressie en angststoornissen onderzoekt. Naast 
klinische en medische vragenlijsten worden er biologische en genetische 
factoren onderzocht. Tussen 2004 en 2007 werden 2.981 deelnemers (78% 
voldeed aan de criteria voor depressie en/of angststoornissen) geïncludeerd 
die werden geworven uit de algemene bevolking, de eerstelijnszorg en de 

dus bedoeld om de mate van veroudering tussen twee mensen van dezelfde 
chronologische leeftijd te verklaren, of, om het botweg te zeggen, om te duiden 
waarom twee mensen die op dezelfde datum zijn geboren, op uiteenlopende 
momenten in de tijd kunnen overlijden (door ‘natuurlijke’ oorzaken).

Omdat het niet mogelijk is om een   volledig beeld te krijgen van de 
biologische toestand van een individu, kunnen biologische leeftijdsindicatoren 
een benadering geven. Biologische leeftijdsindicatoren kunnen worden 
afgeleid uit functionele, neuro-anatomische, cellulaire of moleculaire metingen 
die gecorreleerd zijn met leeftijd of “kenmerken van veroudering”. Biologische 
leeftijdsindicatoren weerspiegelen vaak functieverlies, verhoogd risico op 
medische aandoeningen en ziekten, en de nabijheid van de dood. Belangrijk 
is dat een biologische leeftijdsindicator een betere voorspelling hiervoor zou 
moeten geven dan de chronologische leeftijd. Dit proefschrift is voornamelijk 
gericht op epigenetische en op de hersenen gebaseerde proxy’s (“voorspellers”) 
van biologische veroudering.

Moderne instrumenten om biologische veroudering te kwantificeren

Normale veroudering gaat gepaard met hersenatrofie, afname van de 
corticale dikte en vergroting van de ventrikels. Evenzo treden stochastische, 
omgevings- en individueel-specifieke methylatie veranderingen in het DNA 
op tijdens gezond ouder worden. Door gebruik te maken van de natuurlijke, 
aan veroudering gerelateerde biologische veranderingen die voor individuen 
redelijk consistent zijn, kunnen we statistische hulpmiddelen gebruiken om deze 
specifieke patronen vast te leggen en voorspellende algoritmen te ontwikkelen 
die in staat zijn om de chronologische leeftijd van een persoon op basis van 
deze patronen nauwkeurig te voorspellen. Centraal in deze aanpak staat het 
gebruik van een grote steekproef van deelnemers waarvan de chronologische 
leeftijd bekend is, zodat een “supervised machine learning”-methode kan 
worden gebruikt. Over het algemeen verwijst supervised machine learning 
naar een methode waarbij het ontwikkelde algoritme gecorreleerde patronen 
leert te herkennen in de data van individuen waarvan de chronologische 
leeftijd bekend is (“training data”), voordat de juiste chronologische leeftijd 
wordt voorspeld voor nieuw gepresenteerde data (“test data”). Dit proefschrift 
richt zich voornamelijk op epigenetische (d.w.z. methylatie niveaus van 
CpG-sites) en hersenstructuur gegevens (d.w.z. grijze stof, corticale dikte, 
oppervlak en subcorticale volumes) om schattingen van de biologische 
leeftijd te verkrijgen. Belangrijk is dat door de voorspelde biologische leeftijd 
van een individu te vergelijken met zijn of haar chronologische leeftijd, kan 
worden onderzocht of deze biologisch jonger of ouder is dan verwacht op 
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epigenetische leeftijd bepaald aan de hand van het DNA uit het bloed en 
hersenweefsel. In Hoofdstuk 4 wordt een longitudinaal onderzoek beschreven 
naar de epigenetische leeftijd vanaf de kindertijd en adolescentie tot aan de 
jongvolwassenheid. Hierin wordt onderzocht of veranderingen in verschillende 
gezondheidsrisico’s leiden tot veranderingen in epigenetische veroudering, 
een verband dat zou moet worden waargenomen als het gezondheidsrisico 
een causaal effect heeft op de epigenetische veroudering. 

Het derde doel van dit proefschrift is om te onderzoeken of vroegtijdige 
biologische veroudering ook kan worden waargenomen in de hersenen, 
gemeten met MRI-scans. De volgende twee hoofdstukken gaan daarom 
over de biologische leeftijd gebaseerd op hersenstructuur (hersenleeftijd). 
Hoofdstuk 5 beschrijft de ontwikkeling van een machine learning model voor 
het berekenen van de biologische hersenleeftijd en onderzoekt of mensen met 
een depressie meer hersenveroudering laten zien. In Hoofdstuk 6 wordt op 
die bevindingen voortgebouwd. Hierin wordt beschreven hoe het ontwikkelde 
model toegepast wordt op controles en patiënten met depressie en/of 
angststoornissen en associëren we de hersenleeftijd met meer gedetailleerde 
klinische, psychologische en biologische factoren. Het vierde en laatste doel van 
dit proefschrift is om meerdere biologische leeftijden te onderzoeken en deze 
te combineren en te integreren in één studie. In Hoofdstuk 7 worden daarom 
de onderlinge correlaties onderzocht tussen vijf biologische klokken op basis 
van telomeren en vier omics-niveaus en hun unieke en gedeelde associaties 
met een breed scala aan lichamelijke en mentale gezondheidsrisico’s.

SAMENVATTING VAN DE BELANGRIJKSTE 
BEVINDINGEN

Het doel van dit onderzoek was om verschillende kwantificaties van de 
biologische leeftijd bij depressieve stoornissen te bestuderen, om een beter 
begrip te verkrijgen van de complexe relatie tussen mentale gezondheid en 
biologische veroudering. Daartoe werden een literatuuronderzoek en vier 
empirische studies uitgevoerd om te onderzoeken of patiënten met depressie, 
gemeten aan de hand van leeftijd gerelateerde patronen afgeleid van perifere 
en hersenbiologie, een hogere biologische leeftijd hebben. Deze paragrafen 
vatten de belangrijkste bevindingen samen. In dit proefschrift worden de 
termen “biologische klok” of “biologische leeftijd voorspeller” gebruikt 
om te verwijzen naar de methode die voorspellingen over de “biologische 
leeftijd” genereert die sterk correleren met de chronologische leeftijd. De 
termen “biologische veroudering” en “‘biologische verouderingsindicator” 

gespecialiseerde geestelijke gezondheidszorg. Een subgroep van 1.130 
deelnemers (18-64 jaar) onderging een volledige profilering van het methyloom. 
Een (gedeeltelijk overlappende) deelgroep van 301 deelnemers (18-55 jaar 
oud) nam deel aan het neuroimaging-onderzoek. 

Het tweede cohort, GSMS, is een unieke longitudinale populatie-
gebaseerde cohortstudie van 1.420 kinderen waarvan de werving plaatsvond 
in 11 overwegend landelijke gebieden van North Carolina, de Verenigde 
Staten van Amerika. In 1993 waren de deelnemers bij de intake tussen de 
9 en 13 jaar oud. Van hen werd gedetailleerde informatie over verschillende 
gezondheidsfactoren en bloedmonsters verzameld tijdens jaarlijkse metingen 
tot 2015. De deelnemers zijn nu begin 30 en in dit proefschrift zijn gegevens van 
539 deelnemers gebruikt (9-35 jaar oud) met een totaal van 1.029 metingen. 

De derde bron van gegevens, het ENIGMA-consortium, is een   wereldwijde 
neurowetenschappelijke alliantie van ruim 1.400 wetenschappers uit 43 
landen die zich richten op het onderzoeken van fundamentele vragen in de 
neurowetenschappen en genetica. Dit consortium bestaat uit verschillende 
werkgroepen, waarbij de ENIGMA depressie werkgroep de belangrijkste 
databron is die voor dit proefschrift is gebruikt. Gegevens van meer dan 19 
cohorten, waaronder meer dan 6.900 deelnemers (18-75 jaar oud) waarvan 
38,3% depressieve patiënten, werden opgenomen in een gepoolde mega-
analyse.

DOELEN VAN DIT PROEFSCHRIFT 

In dit proefschrift onderzoeken we verschillende berekeningen van de 
biologische leeftijd in personen met een depressie om meer te weten te komen 
over de complexe wisselwerking tussen mentale gezondheid en biologische 
veroudering. Het eerste doel is om richting te geven aan onderzoekers 
die interesse hebben in het bestuderen van stress, psychopathologie en 
biologische veroudering. Hoofdstuk 2 geeft daarom een   literatuuroverzicht 
van de relaties tussen biologische veroudering en mentale gezondheid, 
evenals een beschrijving van dit snelgroeiende onderzoeksgebied met de 
bijbehorende beperkingen en uitdagingen. Ook geeft Hoofdstuk 2 aan aantal 
aanbevelingen voor dit onderzoeksgebied. 

Het tweede doel van dit proefschrift is het uitvoeren van experimenteel 
onderzoek om biologische veroudering te meten. In Hoofdstuk 3 en 
Hoofdstuk 4 wordt biologische veroudering gemeten door middel van DNA 
methylatie patronen, ofwel epigenetica. In Hoofdstuk 3 wordt in een cross-
sectionele studie onderzocht of depressie geassocieerd is met een oudere 
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hebben meegemaakt. Verkennende analyses toonden aan dat meer 
epigenetische veroudering verder geassocieerd is met een hogere ernst van 
de depressie, het mannelijk geslacht, een hogere BMI en lage lichamelijke 
activiteit bij alle proefpersonen en een hoger cumulatief trauma uit de kindertijd, 
maar niet met de ernst van de depressie alleen in de patiëntengroep. Er 
waren geen significante associaties tussen epigenetische veroudering en 
roken/alcoholgebruik of de duur van of leeftijd waarop de depressie begon, 
noch met het gebruik van antidepressiva (d.w.z. tricyclische antidepressiva, 
selectieve serotonineheropnameremmers, andere antidepressiva). Om de 
robuustheid van de bevindingen te testen, werd depressie ook geassocieerd 
met biologische veroudering, zoals gemeten door DNA-methylatiepatronen 
verkregen uit postmortaal hersenweefsel, en er werd vastgesteld dat patiënten 
met depressie een gemiddeld verschil van +1,11 jaar vertoonden in vergelijking 
met controles. Ten slotte werden de biologische processen onderzocht die ten 
grondslag liggen aan epigenetische veroudering in beide weefsels. Hiervoor 
werden Gene Ontology (GO)-analyses uitgevoerd op de 1.094 overlappende 
CpG-sites die geassocieerd zijn met epigenetische veroudering, resulterend 
in 330 genen die aanwezig waren in ten minste één GO-categorie. De top 
“enriched” GO-termen omvatten neuronale processen zoals neurogenese, 
neuron differentiatie en regulering van de dood van neuronen, wat aangeeft 
dat verschillende depressie relevante biologische processen waren verrijkt. 

Het belangrijkste doel van Hoofdstuk 4 was om te bepalen of eerder 
gerapporteerde cross-sectionele epigenetische veroudering in de loop van 
de tijd ook versnelt (d.w.z. daadwerkelijk versnelde veroudering). Aan de 
hand van longitudinale data werd gevonden dat 45% van de totale variantie 
in epigenetische veroudering kan worden toegeschreven aan verschillen 
tussen proefpersonen, terwijl de resterende 55% kan worden toegeschreven 
aan veranderingen in de tijd. Deze bevindingen suggereren dat epigenetische 
veroudering zowel stabiel als veranderlijk is. Bij het ontleden van de covariantie 
tussen een grote verscheidenheid aan gezondheidsrisico’s en epigenetische 
veroudering werden echter hogere bijdragen gevonden op het niveau van de 
deelnemer in plaats van op het niveau van tijd. In andere woorden, hoewel er 
verschillende zwakke maar significante bijdragen op het tijdsniveau werden 
waargenomen, ging een verandering in een gezondheidsrisico bij een bepaald 
meetmoment (bijvoorbeeld een toename in BMI) vaak niet gepaard met 
een parallelle verandering in epigenetische veroudering. De belangrijkste 
bevindingen van dit hoofdstuk waarschuwen daarom voor de causale 
interpretatie van correlaten van epigenetische veroudering en benadrukken 
dat de veelgebruikte term “versnelde” epigenetische veroudering in cross-
sectionele studies wellicht onjuist is.

worden door elkaar gebruikt en geven het verschil weer tussen de voorspelde 
biologische leeftijd en de chronologische leeftijd of zijn gelijk aan de residuen 
van een lineair regressiemodel van de voorspelde biologische leeftijd op 
chronologische leeftijd.

Hoofdstuk 2, het literatuuroverzicht, beschrijft dat veroudering niet 
plaatsvindt op één biologisch niveau of in een enkel celtype, maar multi-
systemisch is en zich kan manifesteren in meerdere organen en weefsels 
op verschillende biologische niveaus. Om de vooruitgang op het gebied 
van onderzoek naar biologische veroudering te versnellen, zijn zes huidige 
uitdagingen en aanbevelingen geschetst. Ten eerste is voorzichtigheid 
geboden bij het interpreteren van cross-sectionele correlaties als causaal. Het 
wordt aanbevolen om longitudinale gegevens te verzamelen, experimenten te 
overwegen en de term voorspelling te verkiezen boven de term verklaring. 
Ten tweede zijn individuele biologische leeftijdsindicatoren meestal niet 
gecorreleerd en kunnen deze mogelijk beter geïntegreerd worden. Het wordt 
daarom aanbevolen om indices van biologische leeftijdsindicatoren samen te 
stellen die relevant zijn voor de mentale gezondheid. Ten derde kan biologische 
veroudering weefsel- en celtype-specifiek zijn, en daarom wordt aanbevolen 
om celtypen te zuiveren met behulp van gevestigde moleculaire markers. Ten 
vierde kunnen de varianties binnen de groep groter zijn dan de varianties tussen 
de groepen. Het wordt aanbevolen om gegevens te visualiseren, bekende 
invloeden zorgvuldig te beoordelen, verder te gaan dan groepsanalyses en 
gebruik te maken van modellen met meerdere meetmomenten binnen een 
proefpersoon. Ten vijfde zijn grote steekproeven nodig om kleine effectgroottes 
te detecteren. Het wordt aanbevolen om daarbij samen te werken en de 
dataverzameling en protocollen voor analyses te harmoniseren. Dit kan data 
pooling wereldwijd vergemakkelijken. Ten slotte worden cellulaire metingen van 
biologische veroudering vaak verkregen uit niet-uniforme laboratoriumtesten 
en opslagomstandigheden. Het wordt aanbevolen voor toekomstige studies 
om metingen en opslagomstandigheden te harmoniseren. Een voorlopige 
conclusie is dat het huidige veld baat zou kunnen hebben bij naleving van 
een minimumnorm voor rapportage om de harmonisatie van datasets tussen 
laboratoria en cohort studies te vergemakkelijken. Toekomstige studies die 
deze kansen benutten zullen hopelijk ons   begrip van de psychobiologische 
factoren die het verouderingsproces beïnvloeden vergroten.

In Hoofdstuk 3 is onderzocht of depressie geassocieerd is met meer 
biologische veroudering gemeten aan de hand van DNA-methylatiepatronen 
verkregen uit bloed. Patiënten met depressie waren gemiddeld +0,64 jaar 
ouder in vergelijking met controles. Dit effect was meer uitgesproken (+1,06 
jaar) in een subgroep van patiënten die zowel depressie als jeugdtrauma’s 
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metabool syndroom, roken en depressie en meer biologische veroudering 
over meerdere biologische niveaus. In vergelijking met de individuele 
biologische verouderingsindicatoren werd een samengestelde index van alle 
vijf biologische verouderingsindicatoren berekend die de sterkste associaties 
vertoonde met gezondheidsdeterminanten. Alles bij elkaar genomen 
suggereren de sterkere effecten (tot uiting komend in grotere effectgroottes) 
van de samengestelde index en de lage correlaties tussen de verschillende 
biologische verouderingsindicatoren dat biologische veroudering het beste 
wordt weerspiegeld door informatie van meerdere biologische niveaus te 
combineren.

CONCLUSIES 

Het doel van dit proefschrift is om verschillende kwantificaties van de 
biologische leeftijd bij depressie te onderzoeken om de complexe wisselwerking 
tussen mentale gezondheid en biologische veroudering beter te begrijpen. De 
belangrijkste bevinding uit dit proefschrift is dat er convergerend bewijs is van 
meerdere biologische systemen dat depressie geassocieerd is met een ouder 
lijkende biologische staat van de hersenen en het lichaam, zoals gemeten 
door epigenetica, transcriptomics, proteomics en op hersenscans gebaseerde 
biologische klokken. Dit verklaart mogelijk waarom depressieve personen 
eerder in hun leven een verhoogd risico hebben om ouderdomsziekten te 
ontwikkelen dan niet-depressieve leeftijdsgenoten. Verschillende factoren 
dragen bij aan de waargenomen biologische veroudering, maar BMI was het 
meest consistent geassocieerd met meer veroudering over zes biologische 
niveaus en studies. Dit proefschrift heeft geen versnelde biologische 
veroudering bij depressie aangetoond en heeft zelfs gedeeltelijk bevestigd dat, 
althans op epigenetisch niveau, de meeste bestudeerde factoren waarschijnlijk 
geen causale versnellende effecten hebben op biologische veroudering. 
Hoewel nog moet worden opgehelderd of de verschillende biologische 
verouderingsindicatoren die in dit proefschrift worden besproken ook potentiële 
interventiedoelen zijn, benadrukt het nogmaals sterk dat depressie gevolgen 
heeft voor de gezondheid die verder gaan dan psychologische verstoringen. 
Een veelbelovende aanwijzing die vervolgonderzoek vereist, is de bevinding 
dat het gebruik van antidepressiva misschien wel beschermende effecten kan 
hebben op hersenveroudering. Toekomstige robuust opgezette longitudinale 
studies met meerdere beoordelingen zijn nodig om de complexe wisselwerking 
tussen psychologische, biologische en sociale factoren en veroudering verder 
te karakteriseren.

De studie in Hoofdstuk 5 is erop gericht om te onderzoeken of depressie 
geassocieerd is met meer biologische veroudering, gemeten met een 
structurele MRI van de hersenen. Daartoe werden voorspellingsmodellen 
voor de hersenleeftijd ontwikkeld in 2.188 gezonde controles (afzonderlijk 
voor mannen en vrouwen) uit 19 verschillende cohorten wereldwijd. De 
modellen werden verder gevalideerd in 23 onafhankelijke cohorten en 
scanners. De gevonden model coëfficiënten werden toegepast op 2.126 
onafhankelijke controles en 2.675 patiënten met depressie om de verschillen 
in hersenveroudering tussen de diagnostische groepen te berekenen. 
Gemiddeld vertoonden depressieve patiënten +1,08 jaar hersenveroudering 
in vergelijking met de controlegroep, maar post-hoc-vergelijkingen tussen 
depressie subgroepen lieten geen significante verschillen zien (d.w.z. status 
van eerste vs. recidiverende episode, vroege vs. volwassen vs. late aanvang 
van depressie, antidepressiva medicatievrij vs. antidepressiva-gebruikers, 
patiënten in remissie vs. momenteel depressieve patiënten).

Hoofdstuk 6 bouwt voort op het werk beschreven in Hoofdstuk 5 door te 
onderzoeken welke symptoomclusters (stemming/cognitie, immunometabolisch, 
somatisch) van depressie geassocieerd zijn met hersenveroudering en of de 
hersenen van patiënten met angststoornissen er ouder uit lijken te zien. Na 
correctie voor antidepressivagebruik vertoonden zowel patiënten met depressie 
(+2,78 jaar) als angststoornissen (+2,91 jaar) significant meer hersenveroudering 
dan controles. Deze studie wees verder op unieke bijdragen van de ernst van 
somatische symptomen van depressie aan hersenveroudering en een mogelijk 
beschermend effect van antidepressiva (-2,53 jaar) bij patiënten met depressie 
en/of angststoornissen. Er waren geen significante associaties met leefstijl 
(d.w.z. alcohol, roken, lichaamsbeweging) of biologische stresssystemen 
(d.w.z. ontstekingsmarkers, autonoom zenuwstelsel, hypothalamus-hypofyse-
bijnier-as).

Ten slotte combineert de studie beschreven in Hoofdstuk 7 één “traditionele” 
biologische leeftijdsindicator (d.w.z. telomeerlengte) met vier moderne op 
omics gebaseerde biologische klokken (d.w.z. epigenetica, transcriptomics, 
proteomics, metabolomics) om te onderzoeken of de verschillende biologische 
klokken dezelfde of verschillende aspecten van biologische veroudering 
duiden. De vijf biologische klokken werden geïntegreerd en geresidualiseerd 
voor leeftijd en correlaties daartussen werden berekend. Hieruit bleek dat de 
onderlinge correlaties klein waren, wat duidt op een geringe overlap. Om te 
onderzoeken of de verschillende biologische verouderingsindicatoren gelinkt 
waren met vergelijkbare determinanten werden ze geassocieerd met een 
breed scala aan lichamelijke en mentale gezondheidsvariabelen. Consistente 
associaties werden gevonden tussen het mannelijk geslacht, hogere BMI, 
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