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Individuals who enroll in research studies or who purchase 
direct-to-consumer genetic tests are often nonrepresentative of 
the general population1–3. For example, the UK Biobank study 

invited approximately 9 million individuals and achieved an overall 
participation rate of 5.45%4. Enrolled individuals demonstrate an 
obvious ‘healthy volunteer bias’, with lower rates of obesity, smoking 
and self-reported health conditions than the population sampling 
frame4. Achieving good representation of the sampled population 

in any study is a difficult challenge. Some examples exist, such as 
the iPSYCH study, which gathered a random population sample 
by extracting DNA from a nationwide routine collection of neo-
natal dried blood spots and linkage to national register data5. The 
benefits of good representation have been long debated6–9. Many 
researchers argue that nonrepresentative studies can bias preva-
lence estimates but do not lead to substantial bias in exposure–dis-
ease associations10,11. Deliberately nonrepresentative study designs 
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Genetic association results are often interpreted with the assumption that study participation does not affect downstream 
analyses. Understanding the genetic basis of participation bias is challenging since it requires the genotypes of unseen  
individuals. Here we demonstrate that it is possible to estimate comparative biases by performing a genome-wide association 
study contrasting one subgroup versus another. For example, we showed that sex exhibits artifactual autosomal heritability  
in the presence of sex-differential participation bias. By performing a genome-wide association study of sex in approximately 
3.3 million males and females, we identified over 158 autosomal loci spuriously associated with sex and highlighted complex 
traits underpinning differences in study participation between the sexes. For example, the body mass index–increasing allele 
at FTO was observed at higher frequency in males compared to females (odds ratio = 1.02, P = 4.4 × 10−36). Finally, we dem-
onstrated how these biases can potentially lead to incorrect inferences in downstream analyses and propose a conceptual  
framework for addressing such biases. Our findings highlight a new challenge that genetic studies may face as sample sizes 
continue to grow.
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can also be valuable, for example, by enriching for cases carrying 
more disease-causing alleles in a case-control study to maximize the 
power to detect genetic effects12.

There is recent evidence that genetic factors are associated with 
the degree of study engagement13–15. For example, within a study, 
individuals with high genetic risk for schizophrenia are less likely 
to complete health questionnaires, attend clinical assessments and 
continue to actively participate in follow-up than those with lower 
genetic risk13,16. It is unclear to what extent genetic factors influence 
initial study enrollment, or what the downstream consequences 
of such bias are, although previous simulations have attempted to 
quantify this bias17. We hypothesized that study participation bias 
can be identified by performing a genome-wide association study 
(GWAS) on a non-heritable trait. Given that there are no known 
biological mechanisms that can give rise to autosomal allele fre-
quency differences between sexes at conception, any allele fre-
quency difference between sexes highlights an impact of that locus 
on sex-differential survival or sex-differential study participation. 
Another way to describe this concept is, if any trait leads males and 
females to differentially participate in a study, then we would expect 
to observe artifactual associations between variants associated with 
that trait and sex (Box 1 and Extended Data Fig. 1). Therefore, an 
autosomal GWAS of sex provides a unique negative control analysis 
for genetic association testing and may provide new insights into 
the factors that underlie nonrepresentative study participation18.

In this study, we report the results from such a GWAS of sex, 
performed in approximately 3.3 million genotyped individuals. We 
identify more than 150 independent autosomal signals significantly 
associated with sex, highlighting several complex traits that contrib-
ute to sex-differential study participation. Furthermore, we demon-
strate the potential impact of such bias on association testing and 
discuss a conceptual framework to address this issue.

Results
We performed a GWAS of sex (females coded as 1, males coded as 
0) in 2,462,132 research participants from 23andMe using standard 
quality control procedures (Supplementary Note). We identified 
158 independent genome-wide significant (P < 5 × 10−8) autosomal 
signals, indicating genetic variants that showed significant allele 
frequency differences between sexes in this sample (Fig. 1 and 
Supplementary Table 1).

Technical artifacts do not explain autosomal associations with 
sex. Additional conservative quality control procedures were per-
formed to exclude any significant signals that might be caused by 
technical error (Supplementary Note). The most obvious reason for 
a false-positive association with sex is that the autosomal genotype 
array probe cross-hybridizes with a sex chromosome sequence. 
This issue has impacted similar previously published studies. For 
example, a GWAS in 8,842 South Korean males and females identi-
fied 9 genetic variants strongly associated with sex19. The authors 
attributed their findings to biological mechanisms determining 
sex-selection; however, all of those nine associated variants were 
located within autosomal regions with significant homology to a 
sex chromosome sequence.

To evaluate the impact of this issue in our data, we first identi-
fied directly genotyped variants that were both genome-wide sig-
nificantly associated with sex and in linkage disequilibrium (LD) 
(r2 > 0.1) with 1 of our imputed top signals (n = 78; Supplementary 
Table 2). We then tested for sex chromosome homology with the 
genomic sequence (±−50 base pairs (bp)) surrounding each geno-
typed variant and found that one quarter (18 out of 78) of our sig-
nals were potentially attributable to this technical issue. We further 
excluded additional loci due to low allele frequency (minor allele 
frequency < 5%), significant departure from Hardy–Weinberg 
equilibrium (P < 1 × 10−6) and/or low genotyping call rate (<98%). 
Despite these very stringent filters, 49 out of 78 directly genotyped 
genome-wide significant signals remained. These data suggest that 
the majority of signals we identified represented true allele fre-
quency differences between the sampled male and female partici-
pants in 23andMe, rather than genotyping errors.

Survival bias does not explain autosomal associations with sex. 
We next explored whether the observed signals for sex might arise 
due to sex-differential effects on mortality. To evaluate this, we 
repeated the GWAS of sex but restricted the sample to individuals 
aged 30 years or younger (n = 320,487), under the assumption that 
effects due to sex-differential mortality are less likely in younger 
than older age groups. While the substantially smaller sample size 
weakened the statistical significance of the signals, the magnitudes 
of effect across most signals were consistent (Extended Data Fig. 2), 
with no significant difference in effect size observed for any of the 
158 loci (Supplementary Table 3).

Participation bias results in autosomal associations with sex. 
We next explored the hypothesis that many signals for sex that  
act by influencing sex-differential study participation rates may 
show markedly different associations with sex by study recruit-
ment design (whereas effects due to sex-differential mortality 
would be consistent between studies). Therefore, we repeated the 
GWAS of sex in four additional studies (UK Biobank, FinnGen, 
BioBank Japan and iPSYCH; total n = 847,266) that varied by study 
recruitment design. As in 23andMe, UK Biobank required active 
participant engagement, albeit after a very different sampling and 
recruitment process. By contrast, FinnGen, BioBank Japan and 
iPSYCH required more passive participant involvement with no 
or little study engagement since samples were collected from rou-
tine biospecimens or during clinical visits. We observed signifi-
cant heritability of sex only in the studies that required more active 
participation (h2 on liability scale = 3.0% (P = 3 × 10−127) and 2.3% 
(P = 2 × 10−14) in 23andMe and UK Biobank, respectively), while no 
significant heritability was detected in the 3 more passive studies 
(Fig. 2 and Supplementary Table 4).

iPSYCH, in particular, showed the lowest heritability estimate, 
which is consistent with its study design that retrieved routinely 
collected neonatal dried blood spots from a random sample of 
individuals born between 1981 and 2005 who were alive and resi-
dent in Denmark on their first birthday, thus minimizing both  

Box 1 | Definitions for biases considered in this study

Participation bias: participation—also called ‘selection’ or ‘sam-
pling’—bias is observed when participation in a study is not ran-
dom38,39 with respect to the reference population. Participation 
bias can impact prevalence estimates and results in biased as-
sociation estimates. This latter phenomenon is caused because 
participation bias acts as a ‘collider’.

Collider bias: If two variables independently cause a third 
variable (the collider), then conditioning on the collider (that 
is, conditioning on study participation) can cause a spurious 
association between the two variables40. In Extended Data  
Fig. 1, we draw three path diagrams representing different types 
of participation bias.

Sex-differential participation bias: Sex-differential participation 
bias is a special case of participation bias where the determinants 
of study participation affect women and men to differing extents. 
While participation bias can be detected only if information 
on nonparticipating individuals is available, sex-differential 
participation bias can be detected by comparing genetic allele 
frequencies between males and females within a study.
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participation and survival bias. In aggregate, these findings suggest 
that many autosomal signals for sex represent underlying mecha-
nisms that influence sex-differential study participation rather than 

sex-differential pre-sampling mortality. We do not preclude the pos-
sibility that a small number of loci might influence sex-differential 
survival in utero, which should be explored in future studies.
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To demonstrate the statistical basis of our observed 
sex-differential participation bias, we simulated a phenotype that 
is uncorrelated with sex and has a heritability of 30% in 350,000 
individuals, half males and half females (Fig. 3a). Under different 
sampling scenarios, we found that sex was significantly heritable 
on autosomes if study participation is dependent on the pheno-
type in a sex-differential manner (Fig. 3b). In the presence of this 
bias, autosomal variants associated with the phenotype are also 
associated with sex in a dose–response manner. As a consequence, 
Mendelian randomization (MR) analysis would wrongly identify a 
causal relationship between phenotype and sex (Fig. 3c). An alter-
native explanation for our findings is that sex is a causal factor for 
the phenotype that influences study participation (Extended Data 
Fig. 1a) or that both sex and phenotype drive participation inde-
pendently (Extended Data Fig. 1b); however, we showed using both  
real data and simulations that these models are less likely 
(Supplementary Note).

Genetic analyses reveal determinants of sex-differential partici-
pation bias. We systematically tested complex traits for evidence of 
a shared genetic architecture with sex-differential participation bias 
in the UK Biobank and 23andMe. By analyzing summary data from 
4,155 publicly available GWAS20, we showed that sex-associated 
signals are enriched for pleiotropic associations (P < 2 × 10−16; 
chi-squared test comparing sex-associated SNPs versus all SNPs); 
half of the genome-wide significant imputed signals for sex were 
associated with at least 1 complex trait and one-fifth were associ-
ated with 5 or more traits (Supplementary Table 5). Genetically  
correlated traits spanned a diverse range of health outcomes, 
including blood pressure, type 2 diabetes, anthropometry, bone  

mineral density, autoimmune disease, personality traits and  
psychiatric diseases.

Genome-wide autosomal correlation analyses (rg) with 38 
health and behavioral traits highlighted 22 significant associa-
tions with sex in 23andMe and 5 in the UK Biobank (Fig. 4 and 
Supplementary Table 6). We noted that the genetic signals for sex 
overlapped only partially between 23andMe and the UK Biobank 
(rg = 0.50, P = 4 × 10−34), which was reflected in several trait-specific 
study discordant associations. For example, higher educational 
attainment (EA) was associated with female sex in the UK Biobank 
(rg = 0.25, P = 7 × 10−12), while the opposite direction of association 
was observed in 23andMe (rg = −0.31, P = 9 × 10−81). This finding 
demonstrates that the determinants of sex-differential participation 
bias may vary substantially between studies.

A notable autosomal signal for sex was at the obesity-associated 
FTO locus, where the body mass index (BMI)-increasing allele 
was observed in 23andMe at higher frequency in males com-
pared to females (rs10468280, odds ratio (OR) = 1.02 (1.02–1.03), 
P = 4.4 × 10−36; Supplementary Table 1). The same direction and 
magnitude of effect at the FTO locus was also observed in the UK 
Biobank (OR = 1.02 (1.01–1.03), P = 3.6 × 10−5); subsequent MR 
analyses supported a causal effect of BMI on sex in both 23andMe 
and UK Biobank (Supplementary Table 7). However, we note that 
there was considerable heterogeneity in the dose–response relation-
ship between genome-wide significant BMI variants and sex and it 
is unclear how genetically higher BMI leads to sex-differential study 
participation. Intriguingly, the genetic correlation between BMI 
and sex, which leverages the entirety of the genetic associations and 
not only genome-wide significant variants, was discordant between 
the UK Biobank (rg = −0.13, P = 2 × 10−4) and 23andMe (rg = 0.10, 
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P = 9 × 10−8); this difference between studies appeared attributable 
to negative confounding by EA (Supplementary Table 7). These 
results reinforce the need for caution when inferring causality from 
genetic correlations.

Traditional approaches to identify study participation bias com-
pare the distribution of a phenotype in the study with that of a 
representative population. Using this approach, we confirmed our 
genetic inference that the difference in educational level between 
UK Biobank participants and UK census data was larger in females 
than in males (Fig. 5a and Supplementary Table 8). Such greater 
differential participation by education among females can also be 
observed, without the need for census data, by comparing the dis-
tribution of polygenic scores (PS) for education between males and 
females. If we had a completely representative sample, we would 
not expect any differences in the distribution of the PS for EA 
between males and females (that is, all the differences in measured 
EA between the two sexes are expected to be due to environmen-
tal factors). Therefore, any difference in PS distribution needs to be 
explained by selection acting on EA that is either determined by sex 
or has occurred differentially between men and women.

To test this hypothesis, we used data from the Social Science 
Genetic Association Consortium21, which did not include the UK 
Biobank or 23andMe, and constructed a PS for EA. We first exam-
ined iPSYCH, where we did not expect participation bias; indeed, 
we saw no significant differences in the distribution of the PS for 
EA between males and females (P = 0.78). In the UK Biobank, 
the mean PS was higher in females than in males (P = 7 × 10−23; 
t-test), which was consistent with the census data comparison. We 
note that, opposite to the PS, the reported educational level in UK 
Biobank was significantly higher in males compared to females 
(P = 1 × 10−113; t-test) (Fig. 5b). Therefore, on its own, the distribu-

tion of the phenotype among study participants does not inform the 
direction and degree of sex-differential participation bias.

EA is one of few traits for which representative data are available 
via the UK census. For other traits, where such information is not 
collected, genetic analysis in the form of the PS provides a unique 
opportunity to identify new sex-differential determinants of study 
participation.

Sex-differential participant bias can influence downstream 
genetic analyses. Next, we illustrated the potential effects of 
sex-differential participation bias on downstream genetic analyses 
using simulated and empirical data (Extended Data Figs. 3 and 4, 
Supplementary Figs. 1–5, Supplementary Note and Supplementary 
Tables 9 and 10).

First, we performed simulation analyses to demonstrate that 
this bias can lead to spurious genetic correlations between two 
traits by exacerbating or attenuating the effects of overall partici-
pation bias (Extended Data Fig. 3). Furthermore, it can lead to an 
incorrect causal inference (in MR analyses) between two phe-
notypes in a sex-differential manner (Extended Data Fig. 4). For 
example, Censin and colleagues recently described sex differences 
in the causal effect of BMI on cardiometabolic outcomes in the UK 
Biobank22. They concluded that the magnitude of increase in risk 
for type 2 diabetes (T2D) due to obesity differs between males and 
females. We attempted to confirm their results in light of our obser-
vations and found that their findings were likely biased due to rea-
sons other than sex-differential participation bias (Supplementary 
Note). However, we demonstrated through simulation analyses 
that sex-differential participation bias could indeed lead to incor-
rect inferences in such MR analyses (Supplementary Table 10). 
With only modest BMI-related sex-differential participation bias, 
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we saw artificial sex differences in the association between a BMI 
genetic score and T2D and, in the most extreme sampling param-
eters, the direction of sex difference was swapped, with BMI 
genetic score-T2D effect estimates ranging from ORmale = 2.71 and 
ORfemale = 3.49 to ORmale = 3.86 and ORfemale = 2.61. These results 
highlight the challenges of performing and interpreting sex-specific 
analyses in studies where the exposure variable may be influenced 
by sex differences in participation bias.

Second, in a scenario where sex-differential participation  
exists, adjusting for sex as a covariate in a GWAS could bias effect 
estimates of any genetic analysis (Supplementary Fig. 3). To explore 
this possibility, we performed 565 GWAS of heritable traits in  

the UK Biobank and estimated the genetic correlation between  
each trait with and without inclusion of sex as a covariate.  
The results were highly consistent (Supplementary Fig. 4) between 
the two models, with sizable differences (indicated by lower  
genetic correlations) observed only for highly sex-differentiated 
traits (for example, testosterone levels). Importantly, sex-differential 
participation bias did not impact the genetic correlation between 
males and females for each phenotype (Supplementary Fig. 5).  
We caution that, although inclusion of sex as covariate did not 
seem to impact most traits in these analyses, this issue might lead  
to significant differences between models as sample sizes continue 
to grow.
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Discussion
Most large-scale biobank studies are not designed to achieve cohorts 
that are accurately representative of the general population23–28. Lack 
of representation is not problematic per se if this is considered when 
interpreting study findings6. In this study, we showed an example of 
how sex-differential study participation bias could lead to spurious 
associations and ultimately incorrect biological inferences. In prac-
tice, the impact of differential participation bias on genetic results 
is hard to tease apart for most traits. We used sex, which provides a 
robust negative control since it has no autosomal determinants, to 
identify determinants of study participation bias that differentially 
impact males and females.

We demonstrated that sex-differential participation bias results 
in sex showing spurious heritability on the autosomes and being 
genetically correlated with the complex traits that underlie such 
bias. This is of importance for studies such as iPSYCH that focus 
on psychiatric disorders and traits strongly associated with sex such 
as, for example, autism, attention-deficit/hyperactivity disorder and 
depression, but the implications generalize to many other risk fac-
tors and phenotypes. For example, alleles genome-wide significantly 
associated with higher BMI are underrepresented in females com-
pared to males in both the UK Biobank and 23andMe. This suggests 
that females with higher genetic susceptibility to obesity are less 
likely to participate in studies than their male equivalents (or that 
genetically lean males are more likely to), although the mechanism 
by which genetically determined BMI influences nonparticipation 
is unclear. These sex-differential biases may also have directionally 
opposite effects between studies—alleles associated with higher EA 
were underrepresented in 23andMe females but overrepresented in 
UK Biobank females. While these results reflect differences in par-
ticipation between men and women, we do not yet understand the 
mechanisms by which differences in BMI or education lead to dif-
ferential participation between the sexes. This may be due to clini-
cal, social or cultural factors that lead to changes in the perception 
or expectations of individuals when deciding to engage in research 
studies. Our results are consistent with the larger effect—and larger 
bias—observed for the association between sex and cardiovascular 
mortality when the UK Biobank is compared to a representative 
health survey29. We conclude that sex-differential participation can 
induce false sex-differential associations (or obscure true associa-
tions) and complicate the study of health disparities between males 
and females.

While study design and participant recruitment strategy are the 
most likely factors influencing participation bias, we showed that 
both new and existing methods can be applied to reduce the impact 
of such bias. Inverse probability of sampling-weighted regres-
sion has been applied to achieve unbiased estimates from analyses 
of case-control data30,31. Dudbridge et al.32 and Mahmoud et al.33 
proposed a correction for selection that occurs when performing 
case-only analyses. However, the same technique can correct for 
selection that is conditioned on any trait as long as GWAS can be 
performed on it. We propose two additional conceptual frame-
works and show how they can be implemented in genomic struc-
tural equation modeling34. First, we developed an application of 
Heckman correction for genetic data. Heckman correction35 is com-
monly used in econometrics to correct for the association between 
an exposure X and outcome Y when the outcome is observed only 
in study participants and thus is subject to participation bias. The 
intuition behind Heckman correction is that the predicted probabil-
ity of study participation (S) can be used to adjust the association 
between Y and X.

Second, we propose a new method that is based on the following 
intuition: the magnitude of participation bias introduced between 
X and Y under selection is proportional to their effects on the 
probability of study participation (S). By specifying a model where 
the bias and the effect that introduces the bias are forced through 

a single path, the correct genetic correlation between Y and X  
can be retrieved from the GWAS of Y and X in the selected  
samples and S. This method, unlike Heckman correction, does not 
require the predicted probability of study participation; instead, a 
GWAS of participating individuals versus the population is suf-
ficient. Details of both of these methods are provided in the 
Supplementary Note.

While we validated the two approaches via simulations 
(Supplementary Table 11), future work is needed to apply these 
methods to examples in real data. The biggest challenge to the 
implementation of both approaches to bias correction is that they 
require unbiased estimates of allele frequencies in the target popu-
lation. The generation of such information, for example, by estab-
lishing a ‘census of human genetic variation’, should be the primary 
focus of future activities in this area. Some extremely large genomic 
databases exist, such as the Genome Aggregation Database36. 
However, these are unlikely to be representative due to inclusion of 
data from studies with a wide range of designs and settings. Where 
legislation allows, designs such as the one used by iPSYCH could 
be implemented5. The iPSYCH study has already shown the value 
of generating accurate population-based estimates of rare copy 
number variants37. Future studies could valuably inform popula-
tion allele frequencies using neonatal dried blood spots in a manner 
that protects anonymity, while significantly strengthening the infer-
ences derived from other larger nonrepresentative studies. Such 
an approach would be necessary to implement the bias correction 
frameworks proposed above.

In summary, we demonstrated that genetic analyses can uniquely 
profile the complex traits and behaviors that contribute to participa-
tion bias in epidemiological studies. We hope that future studies will 
build on these findings to create resources and tools that more sys-
tematically identify and correct for broader forms of participation 
bias and their effects on genetic association results.
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Methods
Contributing GWAS cohorts. Genome-wide association was conducted in 5 
different cohorts (23andMe, UK Biobank, iPSYCH, FinnGen and BioBank Japan) 
for a total of 3,309,398 samples (1,747,070 female and 1,562,328 male). Detailed 
cohort description, recruitment and genotyping information can be found in the 
Supplementary Note. For all GWAS analyses, females were coded as 1 and males 
as 0.

Identification of independent loci and additional quality control of results 
from 23andMe. To evaluate whether our sex-associated genome-wide significant 
signals were attributable to technical artifacts, we embarked in additional quality 
controls. First, we used the FUMA v.1.3.5d pipeline41 to identify independent loci. 
In particular, we used pre-calculated LD structure based on the European 1000 
Genome panel to identify genome-wide significant SNPs independent from each 
other at r2 < 0.6. If LD blocks of independent significant SNPs were located close 
to each other (<250 kilobases (kb) based on the most right and left SNPs from 
each LD block), they were merged into one genomic locus. FUMA also identifies 
independent lead SNPs within a locus if they are independent of each other at 
r2 < 0.1. Each genomic locus can thus contain multiple independent significant 
SNPs and lead SNPs. This approach resulted in 158 loci, which are reported in 
Supplementary Table 1.

For each locus, we identified 1 directly genotyped SNP with P < 5 × 10−8. 
This resulted in 78 SNPs since not all loci had a genome-wide significant directly 
genotyped SNP. We extracted 50 bp upstream and downstream of each SNP 
using the h19 reference genome and the R function getSeq from the package 
BSgenome v.1.58.0. We chose 50 bp because this is the probe length on the 
Illumina Global Screening array. We used BLAT v.407 (https://genome.ucsc.edu/
cgi-bin/hgBlat?command=start) to search each extracted sequence versus the 
human genome. We considered only matches on chromosomes X and Y with 
95% or greater similarity. We also considered stricter quality control metrics: 
Hardy–Weinberg disequilibrium P > 1 × 10−6, minor allele frequency > 5% and call 
rate > 98%.

All downstream analyses looking at the aggregate effect of variants across 
the genome were done using all the variants that passed cohort-specific quality 
controls without considering the strict quality controls thresholds described above.

Pleiotropy analysis. To test the relevance of our sex-associated signals with other 
traits, we used the results from the analysis of Watanabe et al.20, which considered 
GWAS results from 4,155 publicly available GWAS. For each locus, we counted the 
number of associated traits and categorized them as 0, 1, 2, 3, 4 or 5+. These results 
can be obtained by combining results from Supplementary Table 4 of Watanabe 
et al.20 together with all the SNPs tested for pleiotropy, which are available at 
https://github.com/dsgelab/genobias. We then used a chi-squared test to compare 
the count distribution for the number SNPs that were genome-wide significantly 
associated with sex versus all SNPs considered by Watanabe et al20.

Extracting results from the GWAS catalog. We considered the most significant 
SNP for each of the 158 genome-wide significant loci and extracted all the SNPs 
in LD (r2 > 0.2 and distance < ±500 megabases). To extract these SNPs, we used 
the R implementation of LDproxy (https://ldlink.nci.nih.gov/?tab=ldproxy) and 
used an LD reference panel from 1000 Genomes (Europeans). To identify traits 
significantly associated with these proxy SNPs, we interrogated the GWAS catalog42 
using the R package gwascat v.2.22.0. The GWAS catalog was extracted on 2 
December 2019. We only considered reported associations with P < 5 × 10−8 and 
extracted the Experimental Factor Ontology terms.

Comparison of full GWAS sample versus individuals <30 years old in 23andMe. 
To identify loci significantly associated with sex in individuals younger than 30 
years old at recruitment, we used the same pipeline described above (Identification 
of independent loci and additional quality control of results from 23andMe). To 
assess the difference in effect sizes between the two analyses, we used the following 
test:
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where wall = 
√

Nall , where Nall is the full sample size, and w<30 = 
√

N<30 , where 
N<30 is the sample size for people younger than 30. The z-scores zall and z<30 were 
obtained from the corresponding GWAS results and cti is the intercept from the 
LD score genetic correlation between the two analyses. We obtained z-scores for 
the difference between the two analyses reweighted by the corresponding sample 
size to allow for differences in sample sizes between the two analyses. The test is 
analogous to the test for a sum of z statistics form-dependent GWAS as presented 
in Baselmans et al.43 and Jansen et al.44 and similar to the method used by Nolte 
et al.45.

To test whether sample overlap would affect our results, we derived the 
expected z-scores for the GWAS run without the samples with age <30. This was 
estimated as:

z>30 =
zall

√

w2
>30 + w2

<30 − z<30w<30

w>30

where z>30is the expected z-score in people older than 30 and w>30 = 
√

Nall − N<30 .
The differences tested between the >30 and <30 datasets showed no difference 

with the ones observed in the overall dataset.

Heritability estimation of sex. We used LD score regression46 to estimate the 
proportion of variance in liability to sex at birth that could be explained by the 
aggregated effect of the SNPs. The method is based on the idea that an estimated 
SNP effect includes the effects of all SNPs in LD with that SNP. On average, an 
SNP that tags many other SNPs will have a higher probability of tagging a causal 
variant than an SNP that tags few other SNPs. Accordingly, for polygenic traits, 
SNPs with a higher LD score have on average stronger effect sizes than SNPs with 
lower LD scores. When regressing the effect size obtained from the GWAS against 
the LD score for each SNP, the slope of the regression line gives an estimate of the 
proportion of variance accounted for by all analyzed SNPs. We included 1,217,312 
SNPs (those available in the HapMap 3 reference panel). We used stratified LD 
score regression, including LD and frequency annotation, similar to that used by 
Gazal et al.47 since this has been shown to reduce bias in heritability estimation48,49.

Since sex is a dichotomous trait whose frequency changes across studies, we 
transformed the observed heritability h20 into liability scale h2l  using the following 
formula50:

h2l =
h20(K (1 − K))2

P (1 − P) z2

where K is the prevalence of sex in the population (50%), P is the proportion of 
females in the study and z is the height of the normal curve corresponding to the 
prevalence of sex in the population.

For the estimation of heritability in the BioBank Japan, we used an LD score 
reference panel based on East Asian participants in 1000 Genomes.

Genetic correlations. We used cross-trait LD score regression to estimate the 
genetic covariation between traits using the GWAS summary statistics28. Genetic 
covariance was estimated using the slope from the regression of the product of 
z-scores from two GWAS studies on the LD score. The estimate obtained from 
this method represents the genetic correlation between the two traits based on all 
polygenic effects captured by SNPs. Standard LD scores were used as provided 
by Bulik-Sullivan et al.51 based on the 1000 Genomes reference set, restricted to 
European populations.

The decision of which summary statistics to include in the genetic correlation 
analysis was taken before analyzing the data by consensus across the authors of the 
paper.

MR analysis and genomic structural equation modeling regression for 
BMI and sex. We tested for possible causal effects of BMI on sex, induced by 
sex-differential participation bias, in both 23andMe and the UK Biobank through 
MR. As instruments for the exposure, we used the 97 index SNPs associated with 
BMI reported by Locke et al.52. We tested different methods (MR-Egger, weighted 
median, inverse variance-weighted, simple mode, weighted mode) as implemented 
in the R package TwoSampleMR v.0.4.25 (ref. 53).

We then further investigated whether the discordance in genetic correlations 
between BMI and sex in the UK Biobank (rg = −0.13, P = 2 × 10−4) and 23andMe 
(rg = 0.10, P = 9 × 10−8) was due to a confounding effect of EA. By using the 
respective GWAS summary statistics, we fitted the following multiple regression 
model in genomic structural equation modeling34 to estimate the genetic 
correlation between BMI and sex controlling for EA:

sex = β1BMI + β2EA + ε

BMI = β3EA + ε

Results for both analyses are reported in Supplementary Table 7.

Generation of genetic scores for EA. We used summary statistics for a GWAS 
of years of education21, which did not include the UK Biobank and 23andMe, 
to construct the PS. This score was generated using PRSice v.2.0 (ref. 54). Briefly, 
PRSice performs a pruning (distance = 250 kb and r2 = 0.1) and thresholding 
approach. We then selected the P value threshold that maximized the r2 between 
the score and EA in the UK Biobank (P = 0.195, nSNPs = 39,014). The PS was 
only constructed for a subset of the UK Biobank containing white British 
unrelated individuals (n = 361,501) as described in https://github.com/Nealelab/
UK_Biobank_GWAS.

We constructed the PS on the dataset including both males and females and 
then compared whether the average PS differed between males and females using 
a t-test. Next, we compared the average years of education in the same dataset. 
We recorded the educational level variable in the UK Biobank (6138) into years 
of education according to the approach used by the Social Science Genetic 
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Association Consortium: 1 = 20 years; 2 = 15 years; 3 = 13 years; 4 = 12 years; 
5 = 19 years; 6 = 17 years; −7 = 6 years; −3 = missing. We then tested for significant 
differences in education between males and females using a t-test.

Census data analysis. We obtained information about EA from the UK Census for 
the year 2011. Data were extracted from the Office for National Statistics (https://
www.nomisweb.co.uk/census/2011). We coded the qualification level collected in 
the census to match the corresponding levels in the UK Biobank.

Census. No qualifications ≥1; Level 1 qualifications ≥2; Level 2 qualifications ≥3; 
Apprenticeship ≥4; Level 3 qualifications ≥5; Level 4 qualifications and above: 6; 
Other qualifications ≥NA.

UK Biobank. 1: College or university degree ≥6; 2: A/AS levels or equivalent ≥5; 3: 
O levels/GCSEs or equivalent ≥2.5; 4: CSEs or equivalent ≥2.5; 5: NVQ or HND or 
HNC or equivalent ≥6; 6: Other professional qualifications, for example, nursing, 
teaching ≥6; −7: None of the above ≥1; −3: Prefer not to answer ≥NA.

Information from the 2011 census was grouped by three age bins (35–49, 
50–64, 65+), sex and Middle Layer Super Output Area (MSOA) regions from 
England and Wales. In total, 6,050 MSOA regions with at least one UK Biobank 
participant were included. To map each individual to an MSOA region, we used 
the home location coordinates (variables 22702 and 22704) with the moving date 
that was closest to 2011. We then used the R package sp v.1.4-5 (over function) 
to map the coordinates to the MSOA region coordinates obtained from https://
www.statistics.digitalresources.jisc.ac.uk/dataset/2011-census-geography-bounda
ries-middle-layer-super-output-areas-and-intermediate-zones. To estimate the 
average educational level separately in men and women in the UK Biobank and 
census, we used the svydesign function of the R package survey v.4.0. This function 
implements different types of sampling designs; in this analysis, we used a stratified 
sampling design with three strata: age, sex and MSOA region.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The GWAS results are available through the GWAS catalog accession nos. 
GCST90013473 (23andMe) and GCST90013474. Full summary statistics for 
23andMe are available upon request from https://research.23andme.com/
dataset-access/.

Code availability
Scripts are available at https://github.com/dsgelab/genobias.
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Extended Data Fig. 1 | Different participation bias scenarios that may lead to a correlation between sex and genetic variants. S, selection (that is 
participation in the study); X, trait; Gx, genotype causing X. The assumed causal paths are shown in blue, and the induced correlations are shown in 
red. Three scenarios exist in which sex can become heritable due to selection. a, Sex causes X which in turn causes selection. b, X and sex influence 
the selection independently. c, The effect of X on selection is different between the two sexes. This is the scenario discussed in the paper. We have run 
simulations (Supplementary Fig. 3) and scenarios a and b are less likely to be observed because the effect of the trait on selection would need to be 
extremely large.
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Extended Data Fig. 2 | Effect size for association between SNPs and sex in 23andMe. On the y-axis is the effect in the entire study population 
(n = 2,462,132), and on the x-axis is the effect only among those younger than 30 years (n = 320,366). Error bars represent the confidence intervals for the 
effect size estimates.
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Extended Data Fig. 3 | Effect of sex-differential participation bias on the genetic correlation between y0 and y1 when the phenotypes have h2 = 0.1 
or h2 = 0.3. Each line represents a different degree of participation bias, expressed as the odds ratio (OR) used for the sampling. The higher the OR, the 
higher the degree of participation bias. The x-axis represents different values for the parameter k that gives the sex-differential effect. The smaller k is, the 
higher is the degree of the sex-differential effect. Under no partecipation bias or sex-differential effect y0 and y1 have a genetic correlation equal to 0.
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Extended Data Fig. 4 | Effects of sex differential bias on the BMi→T2D relationship. The forest plot shows the effect of sampling men and women 
differentially based on BMI. The x-axis represents different values of bias introduced. For higher values, heavier males and leaner women are randomly 
picked. The number on top of the segment represents the P-value of the difference in effect between the two sexes using the Z-score method. The bias 
becomes large enough to be detected as ‘significant’ even at the lower values of bias applied. The straight lines represent the effect of BMI on T2D 
estimated without any sample selection.
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