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Learning Analytics to Support  
Experiential Learning

NIKKI JAMES   Northeastern University

Introduction 

Experiential learning, or learning 
from doing, stems from Dewey’s prop-
osition that “there is an intimate and 
necessary relation between the process-
es of  actual experience and education” 
(Dewey, 1938, p. 19 – 20). The concept 
was further developed by Kolb (1984) 
and studied in educational practice and 
research (Allison & Wurdinger, 2005; 
Beard & Wilson, 2006; 
Breunig, 2008; Ewert 
& Sibthorp, 2009). Ex-
periential learning has 
also been used for ca-
reer exploration (Men-
del, 2018), transfer of  
theory and technical skills to a work envi-
ronment (James et al., 2020), and the de-
velopment of  21st-century skills (Coun-
cil, 2018; Dieu et al., 2018; Fischer, 2018; 
James et al., 2018; Servant-Miklos, 2018). 

Traditional experiential learning 
interventions like co-op experiences 
and internships, where students work 
full-time in a work environment, lead 
to meaningful learning outcomes (Am-
brose & Poklop, 2015). However, they 
are less accessible to non-traditional 
students, like working adult learners, 
international students and some under-
represented minority students (URM’s), 

particularly rural and first-generation 
university students (Tiessen et al., 2018). 
The lack of  experiential learning access 
overall is attributed to experiential learn-
ing programs being complex, labor-in-
tensive, and difficult to design and de-
liver (Henderson, 2018). However, the 
lack of  access is magnified for learners 
whose life commitments outside of  
their education are not amenable to un-

dertaking a full-time 
internship in tradition-
al working hours, cov-
ering additional costs 
of  travel, relocating to 
access an internship 
in their field of  study, 

or leveraging their personal connections 
to secure an internship opportunity.  

 The emergence of  learning ana-
lytics and machine learning paired with 
their use in innovative instructional tech-
nology holds promise when developing 
alternative experiential learning models 
like virtual internships and capstone 
projects, that are more accessible. More-
over, their use could help address the la-
bor intensity of  facilitating experiential 
learning opportunities overall (James et 
al., 2018). For example, the effective use 
of  real-time learning analytics could aug-
ment management and facilitation tasks 

“. . . it is possible that 
 learners’ interactions with 

the technology could be  
indicative of  a learner’s 

mindset, approach to learn-
ing, and learning history.”
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in technology enabled learning envi-
ronments (Hernandez-Lara et al., 2019; 
Alblawi & Alhamed, 2017). Specifically, 
displaying a real-time learning analytics 
dashboard that identifies potential issues 
students or industry partners are having 
could decrease the time facilitators need 
to invest to find out what is going on, 
and allow them to instead re-invest that 
time supporting additional students. This 
augmentation could responsibly address 
the equity gap in accessibility to experi-
ential learning by reducing the complex-
ity and labor intensity for teachers and 
faculty, if  underpinned by learning theo-
ry (Gašević et al., 2017; Reimann, 2016). 

Research Objective

This research project aims to ex-
amine how the aggregation of  learn-
ing analytics and learning theory could 
augment the facilitation of  experien-
tial learning to increase accessibility 
without compromising the quality of  
the learning experience for individu-
al students. This objective is achieved 
by addressing these two research 
questions in the following sequence: 

- Which data captured by an expe-
riential learning technology can be 
used to provide actionable insights 
for facilitators? 

- How can data captured by an 
experiential learning technology be 
used by facilitators to support their 
practice in experiential learning? 

Learning Context

This research project uses de-identi-
fied and retrospective data from a tech-
nology-enabled experiential learning 
program designed specifically to open 
access to experiential learning for inter-

national students in Australia. Practera, 
the learning technology used to en-
able the Experiential Business Project 
program (EBP), is explicitly designed 
to support the design and facilitation 
of  learning programs underpinned by 
Kolb’s experiential learning cycle (Kolb, 
1984). While completing the EBP, stu-
dents use the technology to complete 
a business project with a team, receive 
feedback on the project from an indus-
try partner, and receive support from 
the program coordinators who monitor 
a real-time learning analytics dashboard 
to identify when support is required. 

 Throughout the EBP, learners com-
plete two learning theory-based surveys. 
The surveys are embedded in the pro-
gram to help develop their metacogni-
tive ability and reflexivity. These surveys 
identify each student’s self-perception 
on their tendency towards a fixed mind-
set, a growth mindset (Dweck, 2017), 
a deep approach to learning, and a 
surface approach to learning (Mar-
ton & Saljo, 1976). Additionally, stu-
dents complete a demographic sur-
vey that enables the identification of  
their learning history (Kwak, 2016).

Research Design 

The research design stems from a re-
alist, anti-positivist idiographic perspec-
tive (Cohen et al., 2007) that perceives 
agency (Bandura, 2001) as the driver of  
an individual’s choice between determin-
ism and voluntarism (Burrell & Morgan, 
2005) at each point of  actuality (Sachs, 
2005). This perspective suggests that 
humans are irrational and unpredictable, 
implying that students’ interactions with 
technology enabling the EBP would lack 
a pattern or logic. However, neurological 
research finds that although humans are 
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unique and irrational, our learned behav-
ior can be predicted (Wood & Rünger, 
2016). Therefore, it is possible that learn-
ers’ interactions with the technology 
could be indicative of  a learner’s mind-
set, approach to learning, and learning 
history. Unearthing these patterns could 
provide experiential learning facilitators 
with insights that enable them to pro-
vide personalized support to learners. 

Data Collection 

The data collected for use in this 
study include the course design for the 
EBP program, de-identified, and ret-

rospective data for over six hundred 
students participating in the EBP pro-
gram. The student data includes all the 
interactions and time spent on learning  
content, project submissions, skill de-
velopment reflections, and feedback. 

Data Analysis 

The data analysis process is  
completed in three steps: 

 
- The classification of  each element 
of  the course design into content 
categories (Table 1)

Table 1. Categorization of  program tasks
Category Number of Tasks
Operational Tasks 30

Orientation 25
Other 5

Project Tasks 39
Skill_ Plan 10
Assessment_ Plan 2
Skills_Research 4
Skill_Aggregate Findings 5
Project_Draft 5
Assessment_Draft 2
Skill_Presentation 4
Project_Report 5
Assessment_ProjectReport 2

Skill Development Tasks 45
Skill_Collaboration 6
Self-Assessment 7
Skill_Teamwork 20
Self_Peer_Assessment 2
Skill_Reflection 5
Skill_Networking 5
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- The scoring of  the three surveys 
used to identify students’ mindsets, 
approaches to learning, and learning 
history. 

- A multiple regression analysis 
using R package glmulti to identify 
to what extent a learner’s behavior 
engaging with the EBP could be 
predictive of  their mindset, ap-
proaches to learning, and learning 
history. 

Ethical Considerations 

The use of  a learner’s data in educa-
tional decision making is discussed and 
critiqued in literature. Considerations 
include how data is capture, used, and 
stored (Slade & Prinsloo, 2013). Each of  
these considerations is looked at through 
both the lens of  privacy (Rubel & Jones, 
2016) and efficacy (Sclater, 2016). Tak-
ing these concerns into consideration, 
the following parameters were used: 

 
- The data was de-identified by the 
technology provider before being 
passed to the researcher. 

- The technology provider obtained 
consent from participants. 

- Program coordinators were 
unaware of  the consent status of  
participants. 

- A data privacy impact assessment 
was conducted to ensure every ef-
fort was taken to prevent unautho-
rized access to the dataset. 

Results 

The multiple regression analysis 
results indicate that a learner’s behav-
ior engaging with the EBP could have 
some predictive power in identifying a 
learner’s learning history, approach to 
learning, and mindset. Two crucial fac-
tors when evaluating the fit of  a multi-
ple regression model is the symmetry 
of  the model, indicated by the residu-
als (Table 2), and the percentage of  the 
variance in the dependent variable that 
can be explained by the independent 
variables, indicated by adjusted r.squared 
(Table 3). In this analysis, the fit is de-
termined by the percentage of  the stu-
dents’ variance in the learning theory 
surveys that can be explained by the 
student’s behavior engaging with partic-
ular sub-categories of  tasks in the EBP. 

The Symmetry of the Models 

The residuals (Table 2) show that 
the learning history, surface approaches 
to learning, fixed mindset, and growth 
mindset models appear to be symmetri-
cal, indicated by a median being close to 
zero and a consistent symmetry through-
out the model. The deep approaches to 
learning model is asymmetrical. Howev-

Table 2. Regression model residuals 

Regression Min 1Q Median 3Q Max
Learning History -12.2785 -2.8880 0.5876 1.2311 14.2311
Deep Approach -33.797 -2.039 1.5 1.5 20.101

Surface Approach -22.6993 -2.6993 0.8362 0.8362 22.3007
Fixed Mindset -7.9919 -0.9919 0.2937 0.2937 9.0081

Growth Mindset -15.5038 -0.7297 0.2802 1.3140 6.4962
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er, the median and 3Q value are 1.5, indi-
cating that over 25% of  the students’ ac-
tual scores were exactly 1.5 points higher 
than their predictive score. This model 
is also unbalanced at the extremities, 
which could indicate an outlier score 
that impacts the symmetry of  the model. 

Predictive Power of the  
Models 

Table 3 presents the adjusted 
r.squared for the five regression models 
developed. Adjusted r.squared indicates 
how well the model fits the data, iden-
tifying the percentage of  variance in a 
learner’s score of  the learning theory 
survey that can be explained by the time 
a learner spent on each of  the sub-cate-
gories of  learning tasks in the EBP. The 
learning history model indicates a pre-
dictive power of  49%. The result needs 
to be considered, understanding that the 
data set is skewed towards one side of  
the learning history continuum. A more 
balanced dataset may impact the result. 
The surface approaches to learning and 
deep approaches to learning models 
have a 40% and 51% predictive power, 
respectively. The surface approaches to 
learning model has the lowest predictive 
power and lowest overall significance 
value for each sub-category of  tasks 
that have a relationship with a learner 
score on the survey used to identify ap-
proaches to learning. Finally, the fixed 
mindset and growth mindset models 
both have a 49.6% predictive power.

Discussion 

The regression analysis results in-
dicate that capturing the time spent 
on different types of  learning tasks 
can be used to provide facilitators in-
sights on a learner engaging with the 
EBP program. Importantly, the anal-
ysis provides insight into additional 
data that could further develop these 
regression models and, subsequently, 
the accuracy of  the insights provid-
ed to experiential learning facilitators. 

 The analysis found that time spent 
on learning content consumption, sub-
mission of  project tasks, reflective tasks, 
peer feedback, and administrative tasks 
can provide insights about a learner as 
they engage in the EBP program. Inter-
estingly, no one type of  task had a di-
rect correlation to a particular learning 
theory category. The context of  the 
task in relation to the project is relevant 
when it comes to identifying the learn-
ing history, mindset, and approaches to 
the learning of  learners in the EBP. For 
example, research on mindset by Dweck 
(2017), indicates a fundamental differ-
ence in a human’s behavior based on 
whether they believe their intelligence, 
skills, and performance can be devel-
oped or not. This analysis found that 
learners who indicated a self-perception 
of  a fixed mindset on the survey spent 
more time on tasks that others could see. 
For example, project task submissions or 
learning tasks helped them present their 

Category Learning 
History 

Deep  
Approach 

Surface 
Approach 

Fixed 
Mindset 

Growth 
Mindset 

Adjusted r.squared 0.495 0.513 0.401 0.496 0.496 

Table 3. Adjusted r.squared for the five regression models
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work to others, whereas learners who 
indicated a self-perception of  a growth 
mindset on the survey spent more time 
on learning tasks that indirectly impact-
ed the project, like the 21st century skill 
self-assessments and development plans. 

Implications for Practice 

The results of  the analysis indicate 
that data captured by instructional tech-
nology could provide actionable insights 
for experiential learning facilitators and 
instructional designers. Before discuss-
ing the implications of  this analysis on 
the design and facilitation of  experiential 
learning in higher education, it is essen-
tial to note the analysis’ limitations. The 
analysis provides a proof  of  concept for 
how the effective integration of  technol-
ogy into experiential learning programs 
could augment the facilitator and pro-
vide insights that would help improve 
the instructional design. The regression 
models developed in the research proj-
ect are specific to the EBP program 
and require further testing on larger 
data sets before being used in practice. 

However, as a proof  of  concept, 
the results of  this analysis suggest that 
it is possible to use data from instruc-
tional technology to gain insight about 
learners. The analysis could be built into 
an instructional technology analytics 
dashboard and visualized for learning 
facilitators alongside insights from the 
learning theories themselves. Facilitators 
can use these insights to tailor their sup-
port and feedback to specific students. 
This implementation of  real-time learn-
ing analytics into technology supported 
experiential learning programs could in-
crease the volume of  students an experi-
enced facilitator can support. Moreover, 
it could provide the “training wheels” 

for faculty interested in implementing 
experiential learning opportunities into 
their courses but do not have experi-
ence facilitating experiential learning. n 
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