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EIGENVALUE CONTINUITY AND GERŠGORIN’S THEOREM∗

CHI-KWONG LI† AND FUZHEN ZHANG‡

Abstract. Two types of eigenvalue continuity are commonly used in the literature. However, their meanings and the

conditions under which continuities are used are not always stated clearly. This can lead to some confusion and needs to be

addressed. In this note, the Geršgorin disk theorem is revisited and the issue concerning the proofs of the theorem by continuity

is clarified.
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1. Introduction. In his seminal paper in 1931 [9], Geršgorin presented an important result about the

localization of the eigenvalues of matrices. He showed that (1) all eigenvalues of a square matrix lie in

the union of the later so-called Geršgorin disks and (2) if some, say m, of the disks are disjoint from the

remaining disks, then the union of these m disks contains exactly m eigenvalues (counted with algebraic

multiplicities). The result was named after Geršgorin as the Geršgorin disk theorem due to its importance

and applications for estimating and localizing eigenvalues.

Let A = (aij) be an n × n complex matrix and let ri =
∑

j 6=i |aij |, i = 1, . . . , n. The set Di = {z ∈
C : |z − aii| ≤ ri} is referred to as a Geršgorin disk of A. Let A0 be the diagonal matrix that has the

same main diagonal as A. Geršgorin proved the second part of his theorem by considering the matrix

A(t) = A0 + t(A−A0), t ∈ [0, 1], and letting t increase continuously from 0 to 1. Intuitively, the concentric

Geršgorin disks of A(t) centered at aii (i = 1, . . . , n) get larger and larger as t increases from 0 to 1. He

stated that “Since the eigenvalues of the matrix depend continuously on its elements, it follows that m

eigenvalues must always lie in the disks ...”. Geršgorin used as a fact without justification that eigenvalues

are continuous functions of the entries of matrices.

Such a statement is often seen in the literature when it comes to the proof of the second part of the

Geršgorin disk theorem. For instance, here are a few widely-cited and comprehensive references. In the

first edition of Horn and Johnson’s book Matrix Analysis [12], page 345, it asserts that “the eigenvalues are

continuous functions of the entries of A (see Appendix D)...”, in Rahman and Schmeisser’s Analytic Theory

of Polynomials [22], page 55, it states that “The eigenvalues of A(t) are continuous functions of t ...”, in

Varga’s Geršgorin and His Circles [27], page 8, it is written that “the eigenvalues λi(t) of A(t) also vary

continuously with t ...”, and in Wilkinson’s The Algebraic Eigenvalue Problem [28], page 72, it says that

“the eigenvalues all traverse continuous paths”.

What does it really mean to say that eigenvalues are continuous functions? Geršgorin’s proof by conti-

nuity may lead one to imagine continuous curves of the eigenvalues evolving on the complex plane, or one

may trace the curves continuously. But that is not as easy as it sounds. First, ordering eigenvalues with a
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parameter can be tricky and difficult; second, the eigenvalue curves may merge (or split) and the algebraic

multiplicities of eigenvalues can change as the parameter varies.

Example 1. Let A(t) =
(

0
t
t
0

)
, t ∈ [−1, 1]. Each t produces a set of two eigenvalues. How does one order

the eigenvalues as functions of t? It is natural to order the eigenvalues of A(t) as λ1(t) = t, λ2(t) = −t.
Notice that A(t) is real symmetric. For real symmetric (or complex Hermitian) matrices, we usually want

the eigenvalues to be in a non-increasing (or non-decreasing) order. So we would order the eigenvalues as

µ1(t) = |t| ≥ µ2(t) = −|t|. (Unlike λ1(t) and λ2(t), µ1(t) and µ2(t) are not differentiable. Of course, there

are infinitely many ways to parameterize the eigenvalues as non-continuous functions.)

The eigenvalues in Example 1 are parameterized as continuous functions of t. Is this always possible?

The answer is yes for t on a real interval (but why? see Theorem 3) and no for t on a complex domain

containing the origin (see Example 2).

Geršgorin’s original proof by continuity is more like “hand-waving” than a rigorous proof and it has led

to some confusion or ambiguity [8]. A rigorous proof of the theorem using eigenvalues as continuous functions

requires creating or referencing some heavy machinery that was absent from all the classical sources. This

issue deserves attention and clarification for both teaching and research.

Additionally, matrices depending on a parameter play important roles in scientific areas. In some studies

such as stability problems and adiabatic quantum computing, one may consider a real parameter t joining

matrix A and matrix B by (1− t)A+ tB and analyze the change of the eigenvalues as t varies.

In Section 2, we briefly recap the eigenvalue continuity in the topological sense. In Section 3, we

summarize a celebrated result of Kato on the continuity of eigenvalues as functions. In Section 4, we discuss

the existing proofs of the Geršgorin disk theorem and present a proof with topological continuity and a proof

with functional continuity. We end the paper by including a short and neat proof of the second part of the

Geršgorin disk theorem by using the argument principle.

2. Topological continuity of eigenvalues. Are eigenvalues of a matrix continuous functions of the

matrix? Since eigenvalue problems of matrices are essentially root problems of (characteristic) polynomials,

one immediately realizes that the question is a bit subtle and needs careful formulation. It is known that the

roots of a polynomial vary continuously as a function of the coefficients. In [10], the authors gave a nice proof

for the result concerning the continuity of zeros of complex polynomials. In fact, the map sending a monic

polynomial f(z) = zn + a1z
n−1 + · · ·+ an to the multi-set of its zeros π(f) = {λ1, . . . , λn} is continuous in

the following sense. For monic polynomials f(z) = zn + a1z
n−1 + · · ·+ an and f̃(z) = zn + ã1z

n−1 + · · ·+ ãn
with multi-sets of zeros π(f) = {λ1, . . . , λn} and π(f̃) = {λ̃1, . . . , λ̃n}, one can use the metrics

‖f − f̃‖ = max{|aj − ãj | : 1 ≤ j ≤ n}

and

d(π(f), π(f̃)) = min
J

{
max

1≤j≤n
|λj − λ̃j` | : J = (j1, . . . , jn) is a permutation of (1, . . . , n)

}
.

Then π is (pointwise) continuous; that is, for fixed f and for any given ε > 0, there exists δ > 0 (depending

on f) such that ‖f − f̃‖ < δ implies d(π(f), π(f̃)) < ε. Moreover, if ξ is a zero of f(z) with algebraic

multiplicity m, then f̃ has exactly m zeros in the disk centered at ξ with radius ε.

If we identity f with the associated n-tuple (a1, . . . , an) ∈ Cn, then π is a homeomorphism between Cn

(with the usual topology) and the quotient space Cn
∼ (with the induced quotient topology), the unordered

n-tuples (see [3, p. 153]).
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Applying this result to matrices, one gets the eigenvalue continuity as the eigenvalues of an n×n matrix

A are the zeros of the characteristic polynomial

pA(z) = det(zI −A) = zn + a1z
n−1 + · · ·+ an,

where aj is (−1)j times the sum of the j × j principal minors of A.

To be more specific, with Mn for the space of n×n complex matrices, we consider the eigenvalue function

σ : Mn → Cn
∼ that maps a matrix A ∈Mn to its spectrum σ(A) ∈ Cn

∼. For the continuity of σ, we can use

any (fixed) norm ‖ · ‖ on Mn.

The function σ is continuous, i.e., for fixed A ∈Mn and for any given ε > 0, there is δ > 0 (depending on

A) such that d(σ(A), σ(Ã)) < ε whenever ‖A− Ã‖ < δ. Such an eigenvalue continuity may be referred to as

eigenvalue topological continuity or eigenvalue matching continuity. Thus, eigenvalues are always continuous

in the topological sense.

A nice proof regarding eigenvalue topological continuity for the discrete case (i.e., matrix sequences) is

available in [1, pp. 138–140]. The same continuity of eigenvalues is also studied in [13, p. 121]) by using

Schur triangularization and compactness of the unitary group. Closely related to eigenvalue continuity are

eigenvalue perturbation (variation) results with norm bounds involving the entries of matrices (see [18, 21]

and [13, p. 563, Appendix D]).

There is another possible way of thinking of the eigenvalue continuity problem. Let A(t) be a family of

n × n matrices depending continuously on a parameter t over a domain in the complex plane or on a real

interval. Then do there exist n continuous complex functions of t that represent eigenvalues of A(t)? We

discuss the question in the next section.

3. Parametrization of eigenvalues as continuous functions. In some applications, one needs to

consider a continuous function A : D →Mn, where A(t) ∈Mn and D is a certain subset of C (say, a domain);

and one wants to parametrize the eigenvalues of A(t) as n continuous functions λ1(t), . . . , λn(t) with t ∈ D.

We refer to such continuity as eigenvalue functional continuity provided there exist n continuous functions

of t that represent eigenvalues of A(t).

Eigenvalue functional continuity is widely used in the proof of the second part of the Geršgorin disk

theorem; similar ideas are needed in the perturbation theory of Hermitian matrices, stable matrices, etc.

However, such a parametrization is not always possible over a complex domain ([3, p. 154], [15, p. 64; p.

108]).

Example 2. Let A(t) =
(

0
t

1
0

)
, t ∈ D = {z ∈ C : |z| < 1}. It is impossible to have two continuous

functions λ1(t), λ2(t) on D representing the eigenvalues of A(t). This is because each eigenvalue λ of A(t)

satisfies λ2 = t; thus, the desired continuous functions λ1(t) and λ2(t) have to satisfy (λ1(t))2 = (λ2(t))2 = t

for all t on the open unit disk, which is impossible (as is known, there is no continuous function f on a disk

D containing the origin such that (f(z))2 = z for all z ∈ D).

However, as t → 0, A(t) approaches A(0) =
(

0
0

1
0

)
(entrywise), which has repeated eigenvalue 0. Any

small disk that contains the origin will contain two eigenvalues of A(t) when t is close enough to 0. (This is

what topological continuity means.)
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The difference between topological continuity and functional continuity is that the eigenvalues (as a

whole) are always topologically continuous but need not be continuous as individual functions. The two

continuities for A(t) are equivalent when the parameter t belongs to a real interval (see [3, 15]).

In [15, p. 109, Theorem 5.2], the following remarkable result is shown.

Theorem 3. (Kato, 1966) Suppose that D ⊂ C is a connected domain and that A : D → Mn is a

continuous function. If (1) D is a real interval, or (2) A(t) has only real eigenvalues, then there exist n

eigenvalues (counted with algebraic multiplicities) of A(t) that can be parameterized as continuous functions

λ1(t), . . . , λn(t) from D to C. In the second case, one can set λ1(t) ≥ · · · ≥ λn(t).

The study of eigenvalue functional continuity can be traced back at least as early as 1954 [23]. Rellich

[24, p. 39] showed that individual eigenvalues are continuous functions when the matrices are Hermitian

(in such case all eigenvalues are necessarily real). In his well-received book, Kato [15, p. 109] showed that

topological continuity implies functional continuity when the parameter is restricted to a real interval or if

all the eigenvalues of the matrices are real, i.e., Theorem 3.

It is tempting to extend Kato’s result on a real interval for the parameter to a domain (with interior

points) on the complex plane. However, this is impossible. Let z0 6= 0 and let Dz0 be an open disk centered at

z0 that does not contain the origin. Considering A(z) =
(

0
z−z0

1
0

)
, z ∈ Dz0 , we see that there does not exist a

continuous eigenvalue function of A(z) on Dz0 . Suppose, otherwise, there is a continuous eigenvalue function

λ(z) on Dz0 , then (λ(z))2 = z − z0 for all z ∈ Dz0 . This leads to a continuous function f(z) = λ(z + z0)

defined on the open unit disk D = {z ∈ C : |z| < 1} such that (f(z))2 = z for all z ∈ D, a contradiction.

So, in a sense, the result of Kato is the best possible with respect to eigenvalue functional continuity.

4. Proofs of the Geršgorin disk theorem. Geršgorin’s disk theorem is a useful result for estimating

and localizing the eigenvalues of a matrix. Usually and traditionally, the second part of the theorem is proved

by considering the matrix A(t) = A0 + t(A−A0) (where A0 is the diagonal matrix that has the same main

diagonal as A) and by using eigenvalue continuity (see [6], [11, p. 23], [12, p. 345], [14, p. 74], [17, p.

372], [20, p. 499], [22, p. 55], [26, p. 169], [27, p. 8], [28, p. 72]), and [29, p. 70]). However, in these

references, it is not always clear which types of eigenvalue continuity conditions were used. If it is topological

continuity, then one needs to add some details in the proofs to justify why the total number of eigenvalues in

an isolated region remains the same when t increases from 0 to 1 (note that the algebraic multiplicity of an

eigenvalue may change); if it is functional continuity (which is the case in most texts), then it would be nice

to state Kato’s result (or other references) as evidence of the existence of continuous functions that represent

the eigenvalues. In the following, we state the Geršgorin disk theorem and give two different proofs. One

(Proposition 5) uses eigenvalue functional continuity (Kato’s theorem) and exploits the fact that a continuous

function takes a connected set into a connected set; the other (Proposition 6) uses eigenvalue topological

continuity and exploits the fact that a continuous function on a compact set is uniformly continuous. In the

latter, we completely avoid the continuity of each eigenvalue as a function.

Theorem 4. (Geršgorin [9], 1931) Let A = (aij) ∈Mn and define the disks

Di =
{
z ∈ C : |z − aii| ≤

∑
j 6=i

|aij |
}
, i = 1, . . . , n.
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Then: (1) All eigenvalues of A are contained in the union ∪ni=1Di. (2) If ∪ni=1Di is the union of k disjoint

connected regions R1, . . . , Rk, and Rr is the union of mr of the disks D1, . . . , Dn, then Rr contains exactly

mr eigenvalues of A, r = 1, . . . , k.

Part (1) says that every eigenvalue of A is contained in a Geršgorin disk. Its proof is easy, standard, and

omitted here. Part (2) is immediate from Propositions 5 and 6. We call a union of some Geršgorin disks a

Geršgorin region (which in general need not be connected). In particular, the singletons of diagonal entries

are degenerate Geršgorin regions. By a curve we mean the image (range) of a continuous map from a real

closed interval to the complex plane γ : [a, b] 7→ C.

Proposition 5. Let A = (aij) ∈ Mn and let A(t) = A0 + t(A − A0), where t ∈ [0, 1] and A0 =

diag (a11, . . . , ann). Then each continuous eigenvalue curve of A(t) lies entirely in a connected Geršgorin

region of A.

Proof. By Kato’s result (Theorem 3), there exists a selection of n eigenvalues λ1(t), . . . , λn(t) of A(t)

that are continuous functions in t on the real interval [0, 1]. Moreover, part (1) of the Geršgorin disk theorem

ensures that λ1(t), . . . , λn(t) are contained in ∪ki=1Ri for every t ∈ [0, 1], and each set λj([0, 1]) is connected.

Let r ∈ {1, . . . , k}. Since Rr comprises mr disks (not necessarily different) whose centers are mr elements

of the diagonal matrix A0, mr of the continuous eigenvalue curves λ1(t), . . . , λn(t) are in Rr at t = 0. If

λj(0) ∈ Rr, then the connected set

λj([0, 1]) = λj([0, 1]) ∩ ∪ki=1Ri = (λj([0, 1]) ∩Rr) ∪ (λj([0, 1]) ∩ ∪ki6=rRi)

is the union of two disjoint closed sets, the first of which is nonempty. Therefore, the second set is empty,

and hence, λj([0, 1]) ⊂ Rr.

The following proposition considers the eigenvalues as a whole in a Geršgorin region rather than focusing

on an individual eigenvalue as a function. That is, we use eigenvalue topological continuity and avoid entirely

(the difficult issue of) eigenvalue functional continuity (which is not needed) to prove the assertion.

Proposition 6. Let A = (aij) ∈ Mn and let A(t) = A0 + t(A − A0), where t ∈ [0, 1] and A0 =

diag (a11, . . . , ann). Then a connected Geršgorin region of A contains the same number of eigenvalues of

A(t) for all t ∈ [0, 1].

Proof. Every entry of A(t) is a continuous function of t ∈ [0, 1] and each Geršgorin disk of A(t) (0 ≤ t ≤ 1)

is contained in a Geršgorin disk of A = A(1) with the same corresponding center. Let Rr, r = 1, . . . , k,

be the connected Geršgorin regions of A. (The number of connected Geršgorin regions for A(t) may vary

depending on t.) Suppose that Rr contains mr diagonal entries of A, i.e., mr eigenvalues of A0 = A(0)

(counted with algebraic multiplicities). We claim that Rr contains mr eigenvalues of A(t) for all t ∈ [0, 1]

(that is, the sum of the algebraic multiplicities of the eigenvalues of A(t) remains constant on each connected

Geršgorin region of A as t varies from 0 to 1).

Since the eigenvalues are topologically continuous over the compact set [0, 1], the continuity is uniform.

To be precise, the map ϕ : [0, 1] 7→ Cn
∼ defined by ϕ(t) = σ(A(t)) is uniformly continuous.

Let ε > 0 be such that |x − y| > 2ε for all x, y lying in any two disjoint Geršgorin regions of A. There

is δ > 0 (depending only on ε) such that for any t1 and t2 satisfying 0 ≤ t1 < t2 ≤ 1 and t2 − t1 < δ,

the eigenvalues of A(t1) and A(t2) can be labeled as λ1, . . . , λn and µ1, . . . , µn such that |λj − µj | < ε for

j = 1, . . . , n.
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We divide the interval [0, 1] into N subintervals: 0 = t0 < t1 < · · · < tN = 1 such that ti − ti−1 < δ

for i = 1, . . . , N . We show that on each of the intervals A(t) has mr eigenvalues in Rr for t ∈ [ti, ti+1],

i = 0, 1, . . . , N − 1.

By assumption, A(t0) = A0 = A(0) has exactly mr eigenvalues in Rr. For any t ∈ [t0, t1], since t−t0 < δ,

A(t) has exactly mr eigenvalues each of which is located in some disk centered at an eigenvalue of A(t0) with

radius ε. By our choice of ε, all the mr eigenvalues of A(t) are contained in Rr (i.e., not in other regions)

for all t ∈ [t0, t1].

Because t2 − t1 < δ, for any t ∈ [t1, t2], A(t) has exactly mr eigenvalues that are close (with respect to

ε) to the mr eigenvalues of A(t1) in Rr. Again, by our choice of ε, all these mr eigenvalues of A(t) are also

contained in Rr for all t ∈ [t1, t2].

Repeating the arguments for [t2, t3], . . . , [tN−1, tN ], we see that A(t) has exactly mr eigenvalues in Rr

for each t ∈ [0, 1]. Thus, A(tN ) = A(1) = A has exactly mr eigenvalues in the region Rr.

5. A proof of Geršgorin theorem using the argument principle. The Geršgorin disk theorem

is a statement about counting eigenvalues according to their algebraic multiplicities; it is essentially about

counting zeros of a polynomial that depends on a parameter. Thus, Rouché’s theorem would be a much more

natural and effective tool since it focuses squarely on what the theorem says about numbers of eigenvalues.

This approach does not require the parameter t to be real and it does not need the concept of any eigenvalue

continuity, functional or topological.

There is a short and neat proof of the second part of the Geršgorin disk theorem that uses the argument

principle. This approach was adopted in the second edition of Horn and Johnson’s book Matrix Analysis

[13, p. 389] (see also [25, p. 103]), while the proof by continuity used in the first edition [12, p. 345] was

abandoned.

Let Γ be a simple contour in the complex plane that surrounds the Geršgorin region to be considered.

Let pt(z) be the characteristic polynomial of A(t) for each given t ∈ [0, 1]. By the argument principle [7, p.

123], the number of zeros (counted with algebraic multiplicities) of pt(z) inside Γ is

m(t) =
1

2πi

∮
Γ

p′t(z)

pt(z)
dz.

On the other hand, f(t, z) :=
p′
t(z)

pt(z) is a continuous function from [0, 1]×Γ to C. By Leibniz’s rule [7, p. 68],

m(t) is a continuous function on [0, 1]. As m(t) is an integer, it has to be a constant. Thus, m(0) = m(1),

which is the number of eigenvalues of A in the Geršgorin region.

Similar ideas using Rouché’s theorem or winding numbers have been employed in the study of localization

for nonlinear eigenvalue problems [4, 5, 11]. Eigenvalues as functions deserve study and it is an interesting

(and classical) problem. There is a well-developed theory on the smoothness of roots of polynomials (see [2],

[15, Chap. II, §4], [16], and [19]).
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