
  

 

INTERACTIONS AND IMPLICATIONS OF A COLLECTOR WELL 

WITH A RIVER IN AN UNCONFINED AQUIFER 

WITH REGIONAL BACKGROUND FLOW 

 

 

A Thesis 

by 

WILLIAM DENIS DUGAT IV 

 

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

August 2009 

 

 

Major Subject: Geology 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4276276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

 

INTERACTIONS AND IMPLICATIONS OF A COLLECTOR WELL 

WITH A RIVER IN AN UNCONFINED AQUIFER 

WITH REGIONAL BACKGROUND FLOW 

 

A Thesis 

by 

WILLIAM DENIS DUGAT IV  

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  Hongbin Zhan 

Committee Members, Yuefeng Sun 

 Ralph Wurbs 

Head of Department, Andreas Kronenberg 

 

August 2009 

 

Major Subject: Geology 



 iii 

ABSTRACT 

 

Interactions and Implications of a Collector Well with a River in an Unconfined Aquifer 

with Regional Background Flow. (August 2009) 

William Denis Dugat IV, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Hongbin Zhan 

 

 Ranney radial collector wells consist of an array of horizontal lateral wells 

arranged radially around and connected to the base of a vertical well.  They offer 

numerous advantages over traditional vertical wells with application in both the 

petroleum industry and hydrologic sciences.  This study improved the understanding of 

the interaction of collector wells and the aquifers/reservoirs they tap by numerically 

modeling flux exchanges between a collector well and a river in an unconfined aquifer 

with regional background flow.  Modeling demonstrated that flux along each horizontal 

lateral increased with distance from the vertical well stem following a third order 

polynomial function. Ultimately these models demonstrated that in the collector 

well/aquifer/river system, the pumping rate of the collector well was the dominant factor 

in controlling flux between the river and aquifer under various conditions.  This study 

can be used to project the maximum allowable pumping rate without causing an initially 

gaining river to become a losing river. 
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1. INTRODUCTION 

 

 In November 1943, a group of oilmen gathered in Franklin, Pennsylvania around 

a new type of oil well designed by Leo Ranney that promised to dramatically increase 

the amount of oil recovered from declining petroleum reservoirs with diminishing 

reserves [Oil Miner, 1943].  Traditional oil wells vertically penetrate the reservoir with a 

narrow diameter borehole and induce flow through a comparetivly small screened 

interval.  In Ranney’s new method a central, reinforced caisson is sunk vertically into the 

reservoir and several lateral pipes are driven horizontally into the reservoir from the 

central borehole’s base, radiating out like the spokes of a wheel.  Ranney first 

successfully engaged this drilling method in groundwater collection and successfully 

provided water to London in 1934 when that city was facing a severe water shortage.  

Over the next two years he installed radial collector wells across Europe for public water 

supplies and, in 1936, he moved operations to the United States, installing 20 collector 

wells to provide water for industrial plants [Oil Miner, 1943].  After World War II 

Ranney’s drilling methods found use in the petroleum industry; similar horizontal 

drilling practices are common in hydrocarbon recovery to this day.  Ranney radial 

collector wells offer increased well efficiency over traditional vertical wells and remain 

in use both in the petroleum industry and hydrologic sciences. 

 

 

 

____________ 

This thesis follows the style of Water Resources Research. 
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2. BACKGROUND 

 

 A Ranney radial collector well is an array of horizontal lateral wells arranged 

around and connected to the base of a vertical well in which aquifer/reservoir fluids are 

collected and pumped to the surface [Hantush and Papadopulos, 1962].  Horizontal 

wells substantially increase the amount of contact area between the well and the 

aquifer/reservoir over traditional vertical wells and permit long perforated intervals in 

aquifers/reservoirs of small thickness [Zhan and Zlotnik, 2002].  Parmentier and 

Klemovich [1996] showed that one horizontal well has the same contact area to a 

groundwater reservoir as 10 vertical wells.  Increased contact area and a large vertical 

component of flow due to the horizontal nature of the drill pipes provide collector wells 

improved control and recovery of reservoir fluids. This allows drilling and production in 

locations and rock types that traditional vertical wells could never reach [Zhan and 

Zlotnik, 2002].  The petroleum industry employs horizontal drilling technologies to tap 

unconventional hydrocarbon reservoirs, especially those of low permeability such as 

shale and tight sand plays.  Horizontal, directional drilling techniques also allow 

penetration of several different prospects from one surface drilling platform, as exhibited 

in deep water drilling operations [Joshi, 1988; Seines et al., 1994; Maurer, 1995; 

Penmatcha et al., 1997].  The unique geometry of collector wells permits their use in 

areas where drilling operations directly above the reservoir prove physically impossible, 

such as near paved or highly populated areas [Zhan and Zlotnik, 2002].  Non-vertical 

wells are also used with success in groundwater collection and contaminant remediation 
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[e.g., Langseth, 1990; Morgan, 1992; Tarshish, 1992; Cleveland, 1994; Environmental 

Protection Agency (EPA), 1994; Murdoch, 1994; Falta, 1995; Parmentier and 

Klemovich, 1996; Sawyer and Lieuallen-Dulam, 1998; Steward, 1999; Zhan, 1999; Zhan 

and Cao, 2000].  These wells are often placed near or under rivers, where they collect 

water from both the surface and aquifer that is naturally filtered through low 

permeability riverbank sediments.  Seines et al. [1994] demonstrated that one horizontal 

well has the same impact area as roughly four vertical wells.  Steward [1999] explained 

how a horizontal well placed perpendicular to regional background flow and 

downstream of a contaminant source requires the smallest pumping rate to capture a 

contaminant plume. 

 Many studies have advanced the understanding of flow dynamics around 

horizontal wells.  Hantush and Papadopulos [1962] provided the first comprehensive 

work in horizontal well drawdown and capture zone delineation.  Assuming uniform flux 

along the length of a lateral, they presented an analytical solution projecting drawdown 

distribution around a collector well.  Hantush [1964] later recommended the uniform 

flux assumption be altered to uniform head along the length of laterals, and later work by 

Debrine [1970] showed that the two assumptions are relatively interchangeable with 

only a small deviation.  Haitjema [1985] used a steady-state model to demonstrate that 

uniform head along a lateral is a more realistic boundary condition and found flux along 

the length of laterals varied as a third order polynomial function.  Subsequent studies 

used the constant flux assumption to derive analytical solutions for groundwater flow to 
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a horizontal well under various conditions [Schafer, 1996; Zhan, 1999; Steward, 1999; 

Zhan and Cao, 2000; Stewart and Jin, 2001]. 

 Radial collector wells are complex fluid collection systems that induce intricate 

flow dynamics as a result of their pumping because the interactions between different 

laterals.  The designing of more efficient collector wells requires a better understanding 

of horizontal well hydraulics as well as the interactions between the horizontal laterals of 

the well.  The need for improved collector well design leads to the following objectives. 
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3.  OBJECTIVES 

 

 Although many studies have contributed drawdown and capture zone 

descriptions for specific scenarios involving horizontal and collector wells, more work is 

needed to generalize the interactions of collector wells, regional background flow, and 

various river conditions.  The broad objective of this study is to better understand the 

interactions of a radial collector well with the surrounding groundwater reservoir 

through the numerical modeling of the flux exchanged between a collector well and river 

in an unconfined aquifer with regional background flow.  To accomplish this, the 

following tasks must be completed: 

 Creating a working model of a collector well 

  Varying and comparing model parameters to induce different aquifer/reservoir 

and pumping conditions for sensitivity analysis 

 -pumping rate  

 -regional background flow  

 -river bed depth 

 -river stage 

 Adding aquifer heterogeneities resembling natural features  
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4.  METHODS AND MODEL PARAMETERS 

 

 This study will use Modflow-2000 Version 1.18.01 as the numerical engine to 

drive water modeling.  Modflow, a three-dimensional, finite-difference groundwater 

model, was first published by the United States Geological Survey in 1984.  It has a 

modular structure that allows easy modification to adapt the code for a particular 

application [Harbaugh, 2000].  Visual Modflow version 4.3.0.154 Pro from 

Schlumberger’s Water Service division will be used as the graphical user interface to 

facilitate visual observation of the modeling results.  Zone Budget, a program within 

Modflow used to calculate the sub-regional flux from one predetermined zone to 

another, will enable detailed observations of the interactions between the collector well, 

aquifer, and river.   

 In order to study the interactions of the collector well, aquifer, and river rather 

than the impact of various well configurations, this study adopted a single, consistent 

design for the Ranney radial collector well used in all modeling scenarios (Figure 1).  

The collector well used in this study had four, evenly spaced laterals 25 m in length and 

0.15 m in diameter and screened for their entire length.  Because Modflow does not 

inherently allow horizontal wells, grid cells of 0.15 m by 0.15 m were created to 

represent those laterals. Based the Hagen-Poiseuille Relationship:  

32

2D
 ,   (1)  

where к is the intrinsic permeability (m
2
) and D is the diameter of the lateral (m), the 

permeability of the lateral was determined to be7.03×10
-4

 m
2
.  
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Figure 1:  Standard Ranney radial collector well used for modeling (not to scale). 
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The corresponding hydraulic conductivity of a 0.15 m lateral, 6.81×10
7
 m/day, 

was then calculated using: 






g
K w ,   (2)  

where K is the hydraulic conductivity (m/day), ρw is the density of water (kg/m
3
), g is the 

acceleration of gravity (m/s
2
), and µ is the dynamic viscosity of water (kg/ms).  

Modflow will not accept the true porosity value of a lateral, 1, so 0.999 was assigned to 

the cells representing the laterals as an appropriate approximation.  The laterals were 

placed horizontally at a depth of 10 m, near the base of the vertical collector “stem.”  

The vertical stem was screened for a total of 0.45 m, centered on the plane of the 

horizontal laterals.  Screening above and below the lateral adjoining interval prevented 

the possible drying of cells when water in the horizontal laterals flowed too quickly out 

of the cells to the central stem and Modflow was unable to resupply water from the 

aquifer at such a high rate. 

To examine the dynamics around the collector well shown in Figure 1, a 

Modflow environment 1,000 m by 1,000 m by 20 m was created (Figure 2).  The well 

was placed in the center of the model, sufficiently far from the lateral model boundaries 

to minimize any influence on the well.  Initially, the model was homogenous and 

vertically anisotropic with Kx=Ky=0.2 Kz, where Kx and Ky are the horizontal hydraulic 

conductivities along the x and y axes, respectively, and Kz is the vertical hydraulic 

conductivity. Although the hydraulic conductivity of the aquifer varies in different test 

scenarios, the baseline Kx and Ky values are 8.64 m/day. The porosity of the aquifer was 
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set to be 15% for all the scenarios.  A constant head boundary representing a river was 

created parallel to the western model boundary and extending from the northern model 

boundary to the southern model boundary.  It was placed 35 m laterally from the stem of 

the collector well.  The distance from the upper model surface to the base of the river 

was varied, representing varied river bed depths.  Similarly, the stage of the river was 

varied by altering the distance from the top of the constant head boundary representing 

the river to the base of the model.  The river was 10 m wide.  Conceptually, the river was 

modeled after one of the large meandering streams of the Texas Gulf Coast.  A constant 

head boundary of 20 m was established on the western model boundary.  Another 

constant head boundary of varied head value was created on the eastern model boundary 

to induce various regional background flows. 

 Using the Zone Budget Program included in Visual Modflow, a series of zones 

established around the pumping well and the river calculated the fluxes between the 

river, aquifer, and well under various conditions.  Models ran under steady-state 

conditions to assess the long-term behavior of a collector well.  The magnitude of 

regional background flow was varied by changing both the hydraulic conductivity of the 
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Figure 2:  Model setup of the Modflow environment (not to scale). 
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aquifer and the difference hydraulic head between the western and eastern constant head 

boundaries.  Pumping rate varied from no pumping to an upper limit defined by the rate 

at which the horizontal laterals dried up, causing the model to fail.  This upper limit 

pumping rate varied with the specific scenarios of river stage, river bed depth, and 

regional background flow.  Pumping rates used were representative of irrigation wells or 

water supply wells used by small communities.  Three river bed depths were examined: 

1 m, 5m, and 10 m from the upper model surface.  Various river stages were studied at 

each of the scenarios of river bed depth.  Head differences between the western and 

eastern boundaries, aquifer hydraulic conductivity, river bed depth, river stage, and 

pumping rate were varied simultaneously to test the impact of each parameter on the 

system.  After establishing baseline river/well/aquifer interactions for homogenous 

aquifers, the addition of layers of different hydraulic conductivity resembling clay 

lenses, abandoned river channels, and other natural features conceptually improved the 

model toward a more realistic physical scenario.  The geometry of the heterogeneous 

aquifer was based on the standard geometry of a meandering stream in a sandy fluvial 

system presented by Walker and Cant [1984]. 
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5.  RESULTS AND DISCUSSION 

 

5.1 Dynamics Surrounding a Collector Well 

 Qualitative, visual examination of equal head lines and flow lines near a collector 

well illuminates several interesting points.  The close spacing of the equal head lines 

around and conforming to the horizontal laterals suggests a constant head along the 

entire length of the lateral (Figure 3).  This is expected since the hydraulic conductivity 

of the lateral is more than six orders of magnitude greater than that of the aquifer. Flow 

lines to the well demonstrate the uneven flux along the length of the laterals with a 

greater density of flow lines concentrating at the terminal ends of the laterals (Figure 4).  

This confirms the findings presented in Haitjima [1985].  Further inspection of the flow 

lines suggests the absence of stagnation zones directly around the horizontal lateral wells 

when there is no regional background flow.  The pumping rate chosen in Figures 3-4 

(500 m
3
/day) is representative of irrigation wells or groundwater supply wells for small 

communities. 
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Figure 3:  Equal head lines surrounding a collector well, 500 m
3
/day pumping rate 

(planar view “A”, cross section view “B”). 
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Figure 4: Flow path lines to a collector well, 500 m
3
/day pumping rate (planar view “A”, 

cross section view “B”). 

A 

B 
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When a collector well pumping at a rate of 500 m
3
/day is subjected to a regional 

background flow with a Darcian velocity of 0.0432 m/day, a stagnation zone develops 

approximately 110 m downstream of the collector well (Figure 5).  The chosen regional 

flow is representative of those observed in natural alluvial aquifers. This stagnation zone 

is 16 m farther from the collector well than the stagnation point of a traditional vertical 

well pumping at the same location as the central stem with the same rate, as determined 

by the equation, 

Bq

Q
r

0

0
2

 ,   (3)  

where r0 is the distance to the stagnation point (m), Q is the pumping rate of the vertical 

well (m
3
/day), q0 is the regional background flow Darcian velocity (m/day), and B is the 

aquifer thickness (m). 

5.2 Flux along Horizontal Laterals 

After establishing a working radial collector well model, a series of tests 

examined the constant head/constant flux assumptions made by Hantush and 
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Figure 5:  Stagnation zone of collector well pumping at a rate of 500 m
3
/day with 

regional background flow of 0.0432 m/day.

Stagnation Zone 
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Papadopuls [1962] and later revised by Hantush [1964] and Haitjema [1985].  The 

observed flux along the horizontal laterals confirms the result of Haitjema [1985] which 

stated that flux along the laterals’ length increases with distance from the vertical 

collector stem as a third order polynomial function.  This observation is understandable 

because with increasing distance away from the central stem, the distance between the 

horizontal laterals increases; and competition of those laterals for collecting water from 

the surrounding aquifer decreases. Figure 6 illustrates the flux along the horizontal 

laterals with a pumping rate of 500 m
3
/day and no regional background flow.  In the 

absence of regional background flow, flux to each lateral is virtually identical.  It is 

interesting to note from Figure 6 that flux distribution along a lateral changes the most 

near the two ends and changes much less along the intermediate section of the lateral. 

Accordingly, a relatively long lateral will maintain uniform flux distribution in the 

central portion of the lateral.  
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Figure 6:  Flux along horizontal laterals, 500 m

3
/day pumping rate, no regional 

background flow. 
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 Increasing the pumping rate resulted in the expected increase of overall flux 

along the horizontal laterals, but had little impact on flux distribution along the length of 

the lateral wells, which still conformed to a similar third order function (Figure 7).  In 

Figure 7, the flux distribution had only slight increases, even when the pumping rate 

doubled and quadrupled.  Higher pumping rates compounded the impacts of lateral well 

competition and caused a greater difference in flux distribution along the laterals in the 

models with greater pumping rates.  Notably, the greatest impact of pumping rate along 

the horizontal laterals occurred at the terminal  ends of the laterals, farthest from the 

vertical stem. 
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Figure 7:  Flux along horizontal laterals with various pumping rates and no regional 

background flow. 
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 After baseline confirmation of variable flux along the horizontal laterals, regional 

background flow was introduced flowing from west to east.  As expected, the upstream, 

western lateral collected more water than the downstream, eastern lateral.  The northern 

and southern laterals both had the same amount of flux, which was greater than the 

downstream lateral, and smaller than the upstream lateral (Figures 8 and 9).  As regional 

background flow doubled, the difference between the upstream and downstream lateral 

fluxes also increases, but to a much smaller degree. 
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Figure 8: Flux along horizontal laterals, 500 m
3
/day pumping rate, 0.0173 m/day 

regional background flow. 
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Figure 9: Flux along horizontal laterals, 500 m
3
/day pumping rate, 0.0432 m/day 

regional background flow. 
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5.3 Net Flux to a River 

To this end a series of tests were run to examine the interaction of a collector 

well and river in an unconfined aquifer with regional background flow.  Figure 10 shows 

the gaining and losing components of flux to/from a river at 16 m stage in a 10 m deep 

river bed, where the river stage is measured from the bottom of the aquifer and the river 

depth is measured from the top of the model.   A gaining portion of the river is 

characterized by flow from the aquifer to the river caused a higher hydraulic head in the 

adjacent aquifer than that in the river. Conversely, a losing portion of the river has flow 

from the river to the aquifer due to a higher river stage than the hydraulic head in the 

adjacent aquifer. Under certain circumstances, the gaining and losing portions of a river 

can coexist depending on the model parameters, as seen in Figure 10. 

In Figure 10, the aquifer has a regional background flow of 0.043 m/day from 

west to east.  Without pumping, the river begins as a gaining stream, but as the pumping 

rate of the collector well increases, the amount of water gained by the river decreases 

until, at a pumping rate of about 950 m
3
/day, the river loses more water than it gains and 

becomes a losing stream.  Flux observations of the river illustrated in Figure 10 are 

difficult to quantify beyond superficial observation or constrain to a projectable 

correlation.  However, a meaningful, linear trend emerges when considering the net flux, 

the difference between the gaining and losing fluxes, with the pumping rate (Figure 11).  

By extrapolating from this linear trend, predictions can be made about the optimal 

pumping rate for a given river/well system in which the maximum amount of water is 

withdrawn from the aquifer while still maintaining a minimum flow to the river. 
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Figure 10:  Gaining and losing components of flux to a river at 16 m river stage in a 10 

m deep river bed. 
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Figure 11:  Net flux to a river at 16 m river stage in a 10 m deep river bed. 
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 Although pumping rate is the primary mechanism controlling flux to the river 

observed in Figure 11, regional background flow also plays an important role.  Zhan and 

Sun [2007] showed that for a vertical well, pumping rate, Q, and regional background 

flow, q0, are inherently interrelated and can be presented as a single term, dimensionless 

pumping rate (QD): 

002 qBx

Q
QD


 ,   (4) 

where B is the maximum saturated thickness of the aquifer before pumping (20 m) and 

x0 is a reference distance defined as the distance between the vertical well and the river. 

This study hypothesizes that similar analysis can be made for the collector well system 

because pumping and regional background flow are two competitive mechanisms for 

groundwater and a collector well may be approximated as a large diameter vertical well 

under the steady-state conditions. If applying Eq. (4) to the collector well system here, x0 

is defined to be the shortest horizontal distance between the collector well stem and the 

river (35 m).   

By combining the two competing terms of regional background flow and 

pumping rate, it becomes possible to co-vary two of the river flux controlling factors 

while still making meaningful observations.  Figure 12 shows net flux to a river with the 

same geometry as the river in Figure 11 (at 16 m stage and in a 10 m deep river bed) but 

incorporates both pumping rate and regional background flow into QD.  The trend 

remains linear and is very similar to that in Figure 11, verifying use of the dimensionless 

parameter. 
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Figure 12:  Net flux to a river at 16 m river stage in a 10 m deep river bed, varied by 

dimensionless pumping rate. 
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 The impact of different regional background flows and various collector well 

pumping rates on net river flux in the river at 16 m stage in a 10 m deep river bed was 

tested.  Figure 13 shows that the slope of the linear relationship between net flux to the 

river nearly doubled when the Darcian velocity of regional background flow doubled.  

This observation suggests that the net flux to the river is governed primarily by the 

collector pumping rate, and regional background flow plays only a minor role.  This 

finding is different from that of Zhan and Sun [2007] which suggested that regional 

background flow and pumping rate play an equal role and, thus, the dimensionless 

pumping rate rather than the actual pumping rate is the primary controlling factor.  This 

implies that the presence of the river, the primary difference between this study and that 

of Zhan and Sun [2007], significantly affected the flow dynamics.   

Under the regional background flow with a smaller Darcian velocity, the river 

has a higher initial net gain from the aquifer and loses less to the aquifer at all pumping 

rates (Figure 13).  In the case of regional background flow with a larger Darcian 

velocity, the impacts of increased pumping rate are more drastic and it requires a smaller 

collector well pumping rate to exact a larger loss from the river.  Regardless of the 

magnitude of the Darcian velocity of the regional background flow and collector well 

pumping rate, the initial gaining nature of the river observed in Figure 13 was 

determined by the relationship between the water table and river stage. 
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Figure 13:  Net flux to a river at 16 m river stage in a 10 m deep river bed at various 

pumping rates and regional background flows. 
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5.4 Net Flux to a River under Various Circumstances   

To confirm that pumping rate dominates regional background flow in altering net 

flux to the river, various river geometries, pumping rates, and regional background flows 

were examined (Figures 14-16).  In each case the relationship between river stage and 

water table position established the initial losing or gaining condition of the river, 

collector well pumping rate determined net flux to river, and regional background 

dampened or intensified the impact of collector well pumping rate.  In Figures 14-16 

these relationships can be observed in the linear sets of data, which are naturally grouped 

by regional background flow.  The slopes of lines in those figures are proportional to the 

magnitude of the Darcian velocity of regional background flow, while the net flux to the 

river is governed by the pumping rate.  A larger Darcian velocity of regional background 

flow induce a larger net loss by the river.  Additionally, pumping rate has a more drastic 

impact on flux to the river under stronger regional background flow. 
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Figure 14: Net flux to a river at 20 m river stage in a 1 m deep river bed.   
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Figure 15: Net flux to a river at varied river stages in a 5 m deep river bed.   
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Figure 16:  Net flux to a river at varied river stages in a 10 m deep river bed.   
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Figure 17 regroups the same data presented in Figures 14-16 to highlight the 

relationship between net flux to the river and river depth.  Figure 17 shows a series of 

rivers at the same river stage but various river bed depth.  Since the river stage (20 m) is 

higher than the hydraulic head in the aquifer, all the rivers examined in this figure are 

losing rivers.  Furthermore and as previously observed in Figures 14-16, the stronger the 

regional background flow, the greater the slope of net loss by the river as a function of 

QD. Finally, at the given pumping rate and regional flow, the deeper river losses more 

water to the aquifer due to its increased surface area exposure to the aquifer.   

Differences in regional head boundaries and hydraulic conductivity both 

influence the magnitude of regional background flow.  In the models examined in 

Figures 14-17 regional background flow is varied by altering the models’ constant head 

boundaries.  Figure 18 shows the impact of varying regional background flow by 

increasing aquifer hydraulic conductivity from 8.64 m/day to 86.4 m/day.  



 36 

 

Figure 17:  Net flux to a river at 20 m river stage with various river bed depths.
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 The associated regional background flow also increased by a factor of 10.  

Increasing aquifer hydraulic conductivity will also impact the well-river interactions. 

Conceptually, an increase in aquifer hydraulic conductivity increases the ease of flow 

between the well and river in the aquifer.  Under conditions of higher hydraulic 

conductivity, collector well pumping rate remains the dominant factor in controlling net 

flux to the river.  The general patterns observed in Figure 18 are consistent with those 

seen in Figures 14-17. The higher hydraulic conductivity results in a higher initial net 

flux to the river, but the impacts are minor and do not alter the losing/gaining nature of 

the stream.   

Further investigation of the impacts of aquifer hydraulic conductivity on the 

interactions of the collector well and river confirms that the increase in regional 

background flow associated with increased aquifer hydraulic conductivity alters the 

initial gaining or losing condition of the river.  
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Figure 18: Net flux to a river at varied stage in a 10 m deep river bed with a higher 

hydraulic conductivity (86.4 m/day).   
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 Figure 19 presents the impacts of varied aquifer hydraulic conductivity and 

associated regional background flow on a river under the same river conditions.  

Increased aquifer hydraulic conductivity magnified the already gaining nature of the 

river as well as the impacts of collector well pumping rate; however, collector well 

pumping rate remained the overriding factor in determining net flux to the river (Figure 

19). 

5.5 Net Flux to a River under Heterogeneous Aquifer Conditions  

 Under natural physical conditions, fluvial systems exist in environments marked 

with an abundance of heterogeneities such as over bank deposits, abandoned channels, 

flood plains, clay lenses, point bars, and oxbow lakes that alter both surface and 

subsurface flow.  Complete understanding of the interactions of a collector well with 

regional background flow and river in an unconfined aquifer requires integration of these 

and other likely heterogeneities.  Unfortunately, the Modflow environment can only 

practically represent simplified natural features and the Modflow numerical engines 
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Figure 19:  Impacts of varied regional background flow induced by varied aquifer 

hydraulic conductivity. 
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would require too much time to run models with realistic heterogeneities.  Although a 

numerical model could never hope to capture the complexity of an actual river system, 

the addition of limited heterogeneities to the model allows the appreciation of their 

potential impact.   

Based on the idealized stacking patterns of a sand rich, shallow graded, 

meandering stream presented by Walker and Cant [1984], four scenarios of increasing 

complexity were created (Figure 20) and explored at various pumping rates (Figure 21).  

The homogenous scenario provides confirmation of the viability of the model as well as 

a baseline against which to compare the impacts of heterogeneous additions.  In 

heterogeneous Scenario 1, a 0.5 m thick low permeability boundary layer between the 

river and the groundwater aquifer was added.  This layer had a permeability of 0.864 

m/day which is representative of the low permeability sediment layer common in many 

natural streams.  Heterogeneous Scenario 2 added high permeability zones near the 

eastern and western boundaries with hydraulic conductivity of 43.2 m/day, reminiscent 

of flood plain or meander fairway boundaries.  Heterogeneous Scenario 3 is the most 

complex and includes the features of the previous two scenarios as well as additional 

high permeability beds at the base of the river.  These high permeability beds had a 

hydraulic conductivity of 86.4 m/day and represent abandoned river channels filled with 

well sorted alluvial sediments or point bar deposits of well sorted sand.  All of the 

heterogeneous additions represent features common to natural alluvial environments and 

move the model from an ideal system to a more realistic situation. 
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Regional background flow was maintained at a consistent level for all four 

scenarios and the results of modeling under different pumping rates indicate that, as with 

the homogenous scenarios, collector well pumping rate governed net flux to the river.  It 

is also interesting to note that the relationship between collector well pumping rate and 

regional background flow remained largely unaffected by the addition of heterogeneities.  

The feature with the greatest impact was the 0.5 m thick low permeability bed that 

showed decreases in net flux to the river at all pumping rates tested.  This confirms that 

natural low permeability sediments at the boundaries of stream beds inhibit flux between 

the stream and adjacent aquifer.  In Scenarios 2 and 3 higher permeability beds increased 

the ease of water movement, which increased to amount of flux to the river to a small 

degree.  This suggests that in complex natural systems the geometry of heterogeneous 

features and their specific permeabilities might impact the maximum pumping rate of a 

collector well but only to a small degree.  Regardless of the additional heterogeneous 

features, all four scenarios confirm that the collector well pumping rate had the largest 

impact on net flux to the river and the heterogeneity has a minor impact in terms of net 

loss of the river. 
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Figure 20: Representative cross sections of several homogenous and heterogeneous 

aquifer scenarios.
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Figure 21:  Net flux to a river under varied heterogeneous aquifer conditions. 
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6.  CONCLUSIONS AND RECOMMENDATIONS 

 

 This study established a working model of a Ranney radial collector well, 

examined flow characteristics around the well, and investigated interactions of collector 

well pumping rate, regional background flow, and river in homogenous and 

heterogeneous circumstances.  Flux along the laterals of a collector well increased as a 

third order polynomial function with increasing distance from the vertical stem.  The 

greatest pumping rate along the length of the lateral is at the terminal end, farthest from 

the vertical stem.  This suggests that when installing a collector well, the longer the 

horizontal laterals, the greater the flux at the terminal end; however, at some length, flux 

will reach a point of diminishing returns and become asymptotic.  Furthermore, there are 

drilling challenges that present physical limitations and financial restrictions that make 

extremely long laterals unrealistic.  Future studies should address the optimum length of 

horizontal laterals in collector well design. 

Visual inspection of the dynamics of flow directly around the collector well 

shows that for a collector well with four evenly spaced laterals hydraulic head is evenly 

distributed along the length of the lateral.  No stagnation points exist with no regional 

background flow; however, when subject to regional background flow, a stagnation 

point develops only slightly further downstream than the stagnation point caused by a 

vertical well with the same pumping rate at the same location with the central stem. This 

is important when visualizing flux to the well because the horizontal laterals can be 

approached as a “disk” of flux rather than individual line sinks.  Their impressive flux 
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capacity makes collector wells very attractive in contaminant remediation, groundwater 

collection, and hydrocarbon recovery. 

 Net flux to a river consistently demonstrated a linear relationship when varied by 

dimensionless pumping rate.  This counters the findings of Zhan and Sun [2007] but 

validates the use of dimensionless pumping rate as a model variable that is useful in 

simultaneously comparing the impacts of two parameters.  Using dimensionless 

pumping observations, the present study concludes that, for a collector well placed 

relatively close to a river in an unconfined aquifer, collector well pumping rate 

dominates regional background flow in determining the amount of water gained or lost 

by that river.  Regional background flow moderates the impacts of the pumping rate of 

the collector well.  As regional background flow increases, the impact of collector well 

pumping rate becomes more drastic.  The direct linear relationship repeatedly observed 

between dimensionless pumping rate and net flux to river allows for precise river loss 

predictions.  By establishing the initial gaining or losing nature of the river, magnitude 

of the Darcian velocity of regional background flow, collector well pumping rate, and 

collector well placement in relation to the river, the point at which the river begins to 

demonstrate a net loss due to the influence of the collector well can be projected.  For 

example, in a relatively simple system of a river at 16 m stage in a 10 m deep river bed 

in an unconfined aquifer with a regional background flow of 0.0432 m/day, the collector 

well pumping rate should not exceed approximately 950 m
3
/day to avoid a net loss by 

the river.  If regional background flow decreases, larger pumping rates can be sustained 

without a net loss of water by the river.  In many small communities around the world 
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where collector wells similar to the one modeled in this study are installed, knowledge of 

this maximum pumping rate can allow well operators to optimize water production 

without causing surface water losses. 

Heterogeneities resembling natural features found in sandy alluvial systems were 

added to the model in an attempt to make the model more realistic.  A low permeability 

layer at the interface between the river and aquifer representing low permeability river 

sediments at the base of the river bed had the largest impact on flux between the river 

and aquifer.  The addition of this low permeability layer cased more water loss from the 

river.  Addition of further high permeability zones decreased the amount of water lost by 

the river, but their impact was minimal.  The overall effect of additional complexities 

was the alteration of the ease and geometry of flow, but this had minimal impact on 

well-river interactions.  Even with the addition of heterogeneities, the amount of water 

gained or lost by the river was determined by pumping rate primarily and regional 

background flow only modified the impacts of pumping rate to a small degree.  This can 

be observed in the identical rates of river net loss with increased pumping rate under 

different heterogeneous scenarios as regional background flow remained consistent.  The 

complexities of natural systems alter the initial gaining or losing character of the river, 

but are of little importance in determining net flux to a river when compared to the 

impacts of a collector well pumping rate. 

Collector wells offer numerous advantages over traditional vertical wells, require 

further investigation to fully understand their complex flow dynamics, and merit 

application in the hydrologic sciences and petroleum industry.  This study demonstrates 
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the impact of a radial collector well on the exchange of water between the river and 

aquifer and the overwhelming control of the collector well over fluid dynamics in the 

groundwater reservoir.   
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