
PARKING FUNCTIONS AND GENERALIZED CATALAN NUMBERS

A Dissertation

by

PAUL R. F. SCHUMACHER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2009

Major Subject: Mathematics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4276268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PARKING FUNCTIONS AND GENERALIZED CATALAN NUMBERS

A Dissertation

by

PAUL R. F. SCHUMACHER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Catherine Yan
Committee Members, Marcelo Aguiar

Nancy Amato
Sue Geller

Head of Department, Albert Boggess

August 2009

Major Subject: Mathematics

iii

ABSTRACT

Parking Functions and Generalized Catalan Numbers. (August 2009)

Paul R. F. Schumacher, B.A.;B.A.;B.A., University of Chicago

Chair of Advisory Committee: Dr. Catherine Yan

Since their introduction by Konheim and Weiss, parking functions have evolved

into objects of surprising combinatorial complexity for their simple definitions. First,

we introduce these structures, give a brief history of their development and give a

few basic theorems about their structure. Then we examine the internal structures of

parking functions, focusing on the distribution of descents and inversions in parking

functions. We develop a generalization to the Catalan numbers in order to count

subsets of the parking functions. Later, we introduce a generalization to parking

functions in the form of k-blocked parking functions, and examine their internal

structure. Finally, we expand on the extension to the Catalan numbers, exhibiting

examples to explore its internal structure. These results continue the exploration of

the deep structures of parking functions and their relationship to other combinatorial

objects.

iv

To my parents, who never stopped believing in me,

and to all of the great teachers who inspired me along the way.

v

ACKNOWLEDGMENTS

I am grateful to Texas A&M University for giving me the support necessary to

complete this project. Specifically, I would like to acknowledge Dr. Catherine Yan for

her guidance along the way, Dr. Sue Geller for proofreading help, and my committee

for their support and patience.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION TO PARKING FUNCTIONS 1

A. History of Parking Functions 1

B. Structure and Relationships of Parking Functions 2

II DESCENTS AND INVERSIONS IN PARKING FUNCTIONS . 7

A. Descents in Parking Functions 7

1. Counting Descents . 7

2. Descents and Unicyclic Graphs 11

B. Weighted Ballots . 15

1. The Ballot Problem 15

2. One-sided Generalization 16

3. Plane Trees of a Given Type 18

4. Weighted Schröder Ballot Arrangements 20

C. Inversions in Parking Functions 21

1. Parking Functions and Permutations 21

2. Counting Inversions 22

III K-BLOCKED PARKING FUNCTIONS 25

A. Introduction . 25

B. Blocked Parking Functions and Labeled Schröder Paths . . 28

C. p-Parking Functions . 29

D. p-Parking Functions With k Blocked 30

E. Linear Probes in PB(n,k) 31

IV LEFT WEIGHTED CATALAN STRUCTURES 40

A. Trees . 41

B. Lattice Sequences . 45

C. Partitions . 49

D. Permutations . 56

E. Other Equivalent Representations 61

F. Two-Sided Generalization 62

V SUMMARY . 64

vii

CHAPTER Page

REFERENCES . 65

VITA . 68

viii

LIST OF FIGURES

FIGURE Page

1 Parking function distribution for n = 6 8

2 T34 . 12

3 Ballot problem for n = 3 . 15

4 3-Catalan ballot problem . 16

5 Tree for 22 −−− 1 −− . 19

6 Weighted ballots (Catalan case (r)) B = {11, 22} 41

7 Weighted Calatan examples for (c) 42

8 Weighted Calatan examples for (d) 42

9 Weighted Calatan examples for (e) 43

10 Weighted Calatan examples for (f) 44

11 Weighted Calatan examples for (g) 44

12 Weighted Calatan examples for (h) 46

13 Weighted Calatan examples for (i) 46

14 Weighted Calatan examples for (j) 47

15 Weighted Calatan examples for (k) 47

16 Weighted Calatan examples for (l) 48

17 Weighted Calatan examples for (r*) 50

18 Weighted Calatan examples for (o) 50

19 Weighted Calatan examples for (n) 51

ix

FIGURE Page

20 Weighted Calatan examples for (p) 52

21 Weighted Calatan examples for (a) 53

22 Weighted Calatan examples for (pp) 54

23 Weighted Calatan examples for (rr) 55

24 Weighted Calatan examples for (uu) 55

25 Weighted Calatan examples for (cc) 56

26 Weighted Calatan examples for (dd) 57

27 Weighted Calatan examples for (gg) 59

28 Weighted Calatan examples for (ii) 59

29 Weighted Calatan examples for (jj) 60

30 Weighted Calatan examples for (aaa) 61

31 Weighted Calatan examples for (b) 61

32 Weighted Calatan examples for (s) 62

33 Weighted Calatan examples for (ww) 62

1

CHAPTER I

INTRODUCTION TO PARKING FUNCTIONS

A. History of Parking Functions

Parking functions were introduced in 1966 by Konheim and Weiss[13]. The original

concept was that of a linear parking lot with n available spaces, and n cars with a

stated parking preference. Each car would, in order, attempt to park in its preferred

spot. If the car found its preferred spot occupied, it would move to the next available

slot. A parking function is a sequence of parking preferences that would allow all n

cars to park using this method.

Definition A.1. Formally, a parking function of length n is a map from [n] to [n]

(written (a1 a2 . . . an)) such that for all i ≤ n, the number of aj : aj ≤ i is greater

than or equal to i.

(Alternatively, if bi are the ai sorted into a non-decreasing order, then bi ≤ i.)

We will refer to the set of parking functions of length n as PFn (see B.1 for the

size of PFn). Foata and Riordan found that the parking functions of size n are in

bijection with labeled trees with n+1 nodes and Stanley found a relationship between

parking functions and non-crossing partitions[23]. Further relationships have been

found to other structures, such as hyperplane arrangements[24], priority queues[5],

and Goncarov polynomials[15].

Knuth explored parking functions as a hashing problem with a linear collision

resolution[11]. Kreweras examined the number of linear probes in parking functions

(using slightly different terminology), the number of spaces each car has to bypass

This dissertation follows the style of Mathematics of Computation.

2

in order to park. Kreweras presented a polynomial family which gives the number

of linear probes required for the functions in PFn[14]. Beissinger and Peled linked

Kreweras’ polynomial family to inversions and external activity in labeled trees[1].

Knuth further explored linear probing as well[12].

The base concept of parking functions has also been extended to more generalized

objects. Stanley proposed “k-parking functions”, which consist of a map from [n] to

[kn] such that for all i ≤ n, the number of aj ≤ (i − 1)k + 1 is greater than or equal

to i, and this concept was further expanded and explored by Yan[28]. (Alternatively,

if bi are the ai arranged in a non-decreasing order, then bi ≤ (i−1)k +1.) Gilbey and

Kalikow added “types” with a preferred subset of spaces to create valet functions[5].

Biane generalized to parking functions of “Type B” where the function only required

ai ≤ n, and showed that this generalized the relationship between parking functions

and non-crossing partitions given earlier by Stanley[2]. Loehr, Haglund, and Haiman

have explored the connections between parking functions and q, t-Catalan structures,

as well as a variety of algebraic structures (see [6][7][19] for examples). Yan has done

further exploration of various aspects of parking functions and their relation to other

structures (Yan and Kostic[31], Kung and Yan[16, 17], and Yan[29, 30, 18]).

B. Structure and Relationships of Parking Functions

Remark. The definition of “degree” varies when applied to graphs and trees. For

reasons of clarity, we will define the degree of a node throughout to be the number of

children a node has in a rooted tree, and the valence of a node to be the number of

nodes connected to it, whether it is in a tree or a graph.

Theorem B.1. There are (n + 1)n−1 parking functions in PFn.

Proof. 1: Given a sequence of (a1 a2 . . . an) such that ai ∈ [n + 1], we define a′
1 = a1

3

and a′
i to be the first element of the sequence (ai, ai + 1(mod n + 1), ai + 2(

mod n+1), . . .) that isn’t in {a′
1, a

′
2, . . . , a

′
i−1}. Let Cn be the set of maps {f : [n+1] →

[n]}. There are (n+1)n such maps. Now we define an map φ : Cn → PFn such that if

f = (f1, f2, . . . , fn) ∈ Cn, then φ(f) = (f1−f0(mod n), f2−f0(mod n), . . . , fn−f0(

mod n)), where f0 is the sole element of [n+1] not in {a′
1, . . . , a

′
n}. For each member

of PFn, there will be n + 1 precursors in Cn, dependent solely on the value of f0,

which can range from 0 to n. Thus, each equivalence class has n + 1 members, and

so #PFn =
(n + 1)n

n + 1
= (n + 1)n−1. (Konheim and Weiss[13].)

Proof. 2: Given a parking function f = (a1a2 . . . an) ∈ PFn, define the Prüfer code

of f to be (a2 − a1 mod n + 1, . . . an − an−1 mod n + 1). Given the transitions of

the parking function, the first element can be uniquely determined which will make

it a valid parking function; We choose a starting point on a circle with n + 1 slots

and “Park” the function around it. Then we label the slots so that the empty slot

is marked 0 and the rest of the slots are numbered consecutively. This gives us a

unique first element of our parking function. Thus, each parking function is uniquely

determined by the Prüfer code it maps to. Since the Prüfer codes are the maps

from [n − 1] → [n + 1], we know that there are (n + 1)n−1 of them. (Foata and

Riordan[4].)

The Prüfer codes given by Foata and Riordan are important when exploring

many aspects of parking functions, since they reduce the parking function to the

distances between successive elements. They also lead to a deeper understanding

of the internal structure of the parking functions, and their relationship to other

combinatorial objects, such as trees.

Corollary B.2. PFn
∼= LTn+1, the set of labeled trees on n + 1 nodes.

4

Proof. Each parking function can be transformed into a corresponding Prüfer code,

as shown above. Each Prüfer code corresponds to exactly one labeled tree, as follows:

Given a tree labeled 0 to n, remove the node of valence one with the highest label,

and note which node it was removed from. Repeat this process until only two nodes

remain, forming a sequence of n−1 removals. The remaining two nodes will necessarily

be the 0 node and the last referenced node in the sequence other than 0. (If all of

the previous nodes were removed from 0, the non-zero node must necessarily be the

smallest non-zero node in the tree, i.e.,1.) This gives us the Prüfer code for the tree.

For any sequence of [n − 1] elements of [n + 1], we get exactly one tree. Since we

already have a bijection from the parking functions to the Prüfer codes, this gives us

a bijection to the labeled trees as well. (Foata and Riordan[4])

Remark. The algorithm for generating a Prüfer code for a tree naturally removes

nodes of valence one from the tree until only the node labeled 0 remains. Because of

this, by convention, we refer to the labeled trees as if they were rooted at the 0 node.

This allows us to refer to a node’s parent, which is either the 0 node, or the node on

a path between a given node and the 0 node.

There are many equivalent definitions for Dyck paths. We will use the following:

Definition B.3. Given n, a Dyck path of length 2n is a set of n up steps (0, 1) and

n over steps (1, 0), such that for any over step, the number of up steps preceding it is

more than the number of over steps preceding it. (Equivalently, the path never falls

below the diagonal x = y.)

The number of unlabeled rooted trees with n + 1 nodes and the number of Dyck

paths of length 2n are both well known examples of the Catalan numbers[25]. Since

we have related labeled trees to parking functions, and “rooted” them at the node

5

labeled zero, we naturally assume that there is equivalently, a labeled version of Dyck

paths that are also equivalent to parking functions. We define the labeled Dyck paths

of length 2n (LDn) to be these paths with the up steps labeled with the elements of

[n] such that any up step immediately preceded by another up step has a higher label

than the preceding up step.

Theorem B.4. PFn
∼= LDn.

Proof. Let bi be the number of i in the parking function f . We create a Dyck path

with bi up steps in column i. Then we label the ith column with the locations of i in

the parking function, in ascending order. Since ci = #{aj ≤ i} ≥ i, there are ci ≥ i

up steps before the ith over step.

Given a labeled Dyck path, let di be the number of up steps before the ith over

step. By the definition of the labeled Dyck paths, di ≥ i. If we use the inverse of the

process above, this means that di elements of the parking function will be less than

or equal to i for all i, and di ≥ i, meaning we have a valid parking function. Thus,

we have a map from PFn → LDn and exhibited an inverse. (N.A. Loehr[19])

Corollary B.5. LTn+1
∼= LDn

Proof. This is a combination of B.4 and B.2.

Let IPn be the set of non-decreasing parking functions, i.e.,those parking func-

tions (a1 a2 . . . an) where ai ≤ ai+1 for all 1 ≤ i ≤ n − 1. Let Dn be the set of Dyck

paths of length 2n, and Tn be the set of rooted trees on n nodes.

Corollary B.6. IPn
∼= Dn.

Proof. Given any Dyck path, if we apply the trivial labeling where the labels occur

in increasing order as we follow the path, we get a parking function where all of the

elements equal to i come after those elements less than i.

6

Corollary B.7. IPn
∼= Tn+1.

Remark. This can be seen directly from the previous corollary, but the map below

gives insight into the nature of the relationship that will be useful later.

Proof. We will create a map from the rooted trees to the non-decreasing parking

functions, as follows: Given a rooted tree, create its degree sequence[25], as follows:

let b0 be the degree of the root, b1 be the degree of the root’s leftmost child, etc, so

that bi is the degree of the ith node of the tree, in pre-order traversal. Then bi will

give the number of copies of i + 1 that are in the parking function. Since the parking

function is to be non-decreasing, there is only one distinguishable ordering of these

elements.

The inverse map is clear: Given a non-decreasing parking function, the number

of copies of i + 1 gives the degree of node i in pre-order traversal.

These relationships will be used later, along with our generalization of the Cata-

lan numbers to help us count the number of parking functions with specific restric-

tions.

7

CHAPTER II

DESCENTS AND INVERSIONS IN PARKING FUNCTIONS

A. Descents in Parking Functions

1. Counting Descents

Let PFn be the set of parking functions of length n.

Definition A.1. Given a parking function (a1 a2 . . . an), we look at ai and ai+1 as a

step in the parking function. We call this step a tie if ai = ai+1, a descent if ai > ai+1

and an ascent if ai < ai+1.

There are n − 1 steps in each parking function. For example, in the parking

function (1422), the step 14 is an ascent, the step 42 is a descent, and the step 22 is

a tie.

Let PF(n,i) ⊂ PFn be the set of parking functions of length n with i ties.

We can count the number of parking functions with i ties and j descents and

arrange the results as a table such that i decreases as we read down the table and j

decreases as we go from left-to-right. If we do this, we get a triangular set of numbers

(see figure 1) with several interesting properties. The right side of the triangle shows

the numbers of non-decreasing parking functions with i ties, from n ties at the top

to 0 ties at the bottom. The left side, by symmetry shows non-increasing parking

functions in the same way.

Corollary A.2. If IP(n,i) is the set of non-decreasing parking functions with i ties of

length n, and D(n,j) is the set of Dyck paths of length 2n with j peaks, then IP(n,i)
∼=

D(n,n−i).

Proof. Given any non-decreasing parking function with i ties, we note that there must

8

Fig. 1. Parking function distribution for n = 6

be exactly n − i different elements in the parking function. When we use the map

from I.B.4 to a Dyck path, we will get a Dyck path with exactly n − i peaks.

Corollary A.3. The number of parking functions of length n with no descents and i

ties is
1

i + 1

(
n

i

)(
n − 1

i

)
.

Proof. Sloane’s A001263[22], the triangle of Narayana numbers, gives us T (n, j) =

1

j

(
n

j − 1

)(
n − 1

j − 1

)
as the number of Dyck paths with exactly j peaks. From above,

we know that this is also the number of non-decreasing parking functions of length

n with n − j ties. Letting i = n − j, we get
1

n − i

(
n − 1

n − i − 1

)(
n

n − i − 1

)
=

1

i + 1

(
n − 1

i

)(
n

i

)
.

Theorem A.4. There are

(
n − 1

i

)
nn−1−i parking functions in PF(n,i).

Proof. Using the bijection in B.1, we note that each tie in a parking function be-

comes a 0 in the corresponding Prüfer code, and that any sequence of [b1b2 . . . bn−1]

in {0 . . . n}n−1 is a valid Prüfer code. Therefore, if we want a parking function with

i ties, we fix i zeroes in the code, and the other elements can be arbitrary non-zero

elements of [n]. This gives us a total of

(
n − 1

i

)
nn−1−i codes with exactly i zeroes,

which, in turn, gives us the required count of parking functions in PF(n,i).

Corollary A.5. There are

(
n − 1

i

)
nn−1−i labeled trees with n + 1 nodes rooted at 0

such that the node labeled 0 has degree i + 1.

9

Proof. In the Prüfer code for any labeled tree, a 0 in the code designates a node being

removed that was connected to the node labeled 0. When the tree is down to two

nodes, one of them is the zero node, and the other is removed from it. This last node

removal is understood and thus not listed in the Prüfer code. This means that there

were a total of i + 1 nodes attached to the zero node, where i is the number of zeroes

in the Prüfer code for the tree. The number of such codes is counted in the proof of

A.4.

Corollary A.6. If we fix a label a ∈ {1, . . . , n}, there are

(
n − 1

i

)
nn−1−i labeled

trees with n + 1 nodes rooted at 0 such that the node labeled a has valence i + 1.

Proof. We can create an automorphism on the set of labeled trees that switches the

labels 0 and a. Therefore, the number of trees with node 0 having degree i + 1 is the

same as the number of trees with label a having valence i + 1.

Corollary A.7. The generating function of parking functions with j non-tie steps in

PFn is

n−1∑
i=0

(
n − 1

j

)
njxj = (1 + nx)n−1

.

Proof. This is a summation of the result from Theorem A.4 with j = n − 1 − i.

Lemma A.8. The distribution of ascents and descents in PFn and PF(n,i) are sym-

metrical: That is, they have the same number of ascents as descents.

Proof. If we flip a parking function and look at (anan−1 . . . a1) we see that we still

have a parking function. In other words, this reordering is an automorphism of

PFn. However, under this automorphism, all ascents become descents, all descents

10

become ascents, and all ties remain ties. This symmetry tells us that the number of

descents in PFn must equal the number of ascents. Since the ties are unchanged, this

automorphism also preserves the subsets PF(n,i) of PFn, meaning that the number of

descents in PF(n,i) must equal the number of ascents.

Corollary A.9. There are
n − 1 − i

2

(
n − 1

k

)
nn−1−i descents in PF(n,i).

Proof. Since there are n − 1 steps for each parking function in PF(n,i), and i of each

of these are ties, this leaves n − 1 − i non-ties for each parking function in PF(n,i),

and by the symmetry noted above, half of these are descents.

Theorem A.10. If ai is the number of descents in parking functions with i ties, then

its generating function is
n−1∑
i=0

aiy
i =

(
n

2

)
(n + y)n−2.

Proof. From A.9, we know that there are
n − 1 − i

2

(
n − 1

i

)
nn−1−i descents in PF(n,i),

so we sum this number over i.

n−1∑
i=0

n − 1 − i

2

(
n − 1

i

)
nn−1−iyi

Setting j = n − 1 − i gives us

n−1∑
j=0

j

2

(
n − 1

j

)
njyn−1−j =

n−1∑
j=0

n

2

(
n − 1

j

)
jnj−1yn−1−j

Temporarily replacing nj−1 with xj−1 yields

[
n−1∑
j=0

n

2

(
n − 1

j

)
jxj−1yn−1−j

]
x=n

11

=
n

2

[
δ

δx

(
n−1∑
j=0

(
n − 1

j

)
xjyn−1−j

)]
x=n

=
n

2

[
δ

δx
(x + y)n−1

]
x=n

=
n(n − 1)

2
(n + y)n−2

=

(
n

2

)
(n + y)n−2

Corollary A.11. There are

(
n

2

)
(n + 1)n−2 descents in PFn.

Proof. Plugging in y = 1 in A.10 gives us the desired result.

Corollary A.12. The density of descents among steps is
n

2(n + 1)
, or an average of(

n

2

)
1

n + 1
descents per parking function in PFn.

Proof. There are (n−1)(n+1)n−1 steps in PFn.

(
n

2

)
(n+1)n−2 of these are descents.

Division of the latter by the former gives us a density of
n

2(n + 1)
. Multiplying by

n− 1 steps per parking function gives us the average number of descents per parking

function.

Remark. By symmetry, all of these results hold for ascents.

2. Descents and Unicyclic Graphs

Sloane’s A053507[22] shows us another sequence with the same formula as the number

of descents in PFn. Let T3n be the set of unicyclic connected graphs on n nodes with

12

Fig. 2. T34

cycle length of three. (A unicyclic graph is one with only one cycle. Thus, T3n is

the set of connected graphs with a single cycle of length three and no other cycles. See

figure 2 for an example.) We came across this structure while searching for a proof

of the number of descents in PFn, and for completeness wish to exhibit a bijection

between these structures. Since we have not yet disentangled the ascents and descents

in PFn, we do the next best thing and create a map from the union of the ascents

and descents to two copies of T3n.

Let Ân be the set of ascents in PFn and D̂n be the set of descents in PFn. We

choose to represent the elements of Ân and D̂n as pairs (f, s) where f is a parking

function in PFn and s is the step in which the ascent or descent in question occurs.

Using the map defined in corollary I.B.2, we can also represent this as ([b1b2 . . . bn−1], c)

where the bi give the Prüfer code for f . Define a new map, θn : Ân ∪ D̂n → [n]× [n−
1] × [n + 1]n−2 such that θn(f, s) = (bs, s, (b1, . . . , bs−1, bs+1, . . . bn−1)).

13

Lemma A.13. θn is a bijection

Proof. θn is one-to-one: Let (f, s) and (g, t) be distinct elements of Ân ∪ D̂n. Then

either f 	= g, in which case, one of the bi must be different between them (since φ is

a bijection on PFn) or s 	= t.

θn is onto: Given an arbitrary member of [n+1]n−1, we know that φ−1 will give us

a unique parking function. If we fix an s and restrict ourselves to elements of [n+1]n−1

that have a non-zero element in the sth position, we have restricted ourselves to the

subspace [n+1]n−2× [n], but we see that we can still apply φ−1 to this element to get

a parking function, and the restriction to a non-zero element in position s now gives

us an ascent or descent in that step. Thus, θ−1
n (bs, s, (b1, b2, . . . , bs−1, bs+1, . . . bn−1) =

(φ−1(b1, . . . , bn−1), s)|bs �=0.

We can create Prüfer codes for the unicyclic graphs just as we did for the labeled

trees: Given a unicyclic graph of cycle length three with labels from 0 to n, remove

the node with largest label and degree one, recording it as b1. Repeat this process,

removing the largest node of degree one successively to get b2 . . . bn−2, until we are

left with the three-cycle. Record the nodes in the cycle as a set (noting that one of

these members is also bn−2.

Definition A.14. For an ordered set N , let the rank of n ∈ N be one more than the

number of i ∈ N such that i < n.

We will define a map γn : Tn+1 × {0, 1} → [n − 1] × [n] × [n + 1]n−2. Given

(h, x) ∈ Tn+1 × {0, 1} let {a′, b′, cn−2}, (c1, . . . , cn−2) be our Prüfer code for h, such

that if x = 0, a′ < b′ otherwise a′ > b′. Then let b be the rank of b′ in [n+1]−{cn−2}
and a be the rank of a′ in [n + 1]−{cn−2, b

′} This gives us elements of [n] and [n− 1]

respectively. The remainder of the Prüfer code is an element of [n + 1]n−2.

14

Lemma A.15. γn is a bijection.

Proof. γn is 1-1: Given any two elements of Tn+1×{0, 1}, either the graph is different,

which results in a different Prüfer code, or the element {0, 1} is different, which results

in different values of a and b.

γn is onto: Given a and b, we can recover the elements a′, b′ and the element

of {0, 1} by comparing a′ and b′. The remainder of the Prüfer code for our tree is

unchanged by γn, and the Prüfer code gives a unique tree.

Corollary A.16. θn ◦ γ−1
n : Ân ∪ D̂n → Tn+1 × {0, 1} is a bijection.

Proof. Directly seen from the lemmas above.

Remark. Since Ân and D̂n are mirrors of each other, we know from the above that

Ân
∼= Tn+1

∼= D̂n, but a direct map is harder to find. Unfortunately, the element of

{0, 1} does not distinguish ascents vs. descents. There are many trees in Tn+1 where

choosing 0 results in one descent in a parking function, and choosing 1 results in a

descent in a different parking function, rather than an ascent.

15

111 −−− 11 − 1 −− 11 −−1− 1 − 11 −− 1 − 1 − 1−

Fig. 3. Ballot problem for n = 3

B. Weighted Ballots

1. The Ballot Problem

There are many representations of the Catalan numbers. In this section, we will

examine the ballot problem and we will extend it. This extension will be used when

we are counting inversions, as it gives us a method to map to parking functions from

permutations. The ballot problem examines the number of ways a series of 2n votes

can be be given such that a given candidate never trails and the voting ends in a

tie. This is represented by looking at arrangements of n copies each of 1 and −1

(which we will represent as just −), whose partial sums are always non-negative, and

whose total sum is zero. (See figure 3 for an example.) From this representation, it is

easy to find natural bijections to most other representations of the Catalan numbers.

For example, the Dyck paths are given by reading each 1 as an up step and each

− as an over step. The formula for the Catalan numbers is well established to be

Cn =
1

n + 1

(
2n

n

)
[25].

A common extension to the Catalan numbers is the p-Catlan numbers[10][9],

where p is any positive integer. Under this extension, the usual Catalan numbers

are considered the 2-Catalan numbers. For the ballot problem, instead of n positive

votes of 1 and n negative votes of −1, we have n positive votes of p− 1 and n(p− 1)

negative votes of -1. (We retain the partial sum and total sum requirements on the

sequences.) For example, for p = 3, n = 2, the three possible sequences are given

by figure 4. Note that this extension is one-sided: that is, it changes the weights on

one side (the increases) but not on the other (the decreases). The formula for the

16

22 −−−− 2 − 2 −−− 2 −−2 −−

Fig. 4. 3-Catalan ballot problem

p-Catalan numbers is Cn,p =
1

pn + 1

(
pn + 1

n

)
[10][9].

2. One-sided Generalization

Now consider the case where we allow the weights on the positive side to vary instead

of being equal. For example, fix a weight set B, as a multiset over N such that the

sum of all the elements in B is equal to n. Note that B can also be considered a

partition of n. Now we can ask how many arrangements exist with the elements of B

as our positive numbers and n copies of −1 that have non-negative partial sums and

a total sum of zero. Restricting the multi-set B to {1n} returns us to the Catalan

number case detailed above, and a weight set of {(p − 1)n} is the p-Catalan number

case.

Theorem B.1. Assume B = {1a1 , 2a2 , . . . , nan}, with
∑

ai = m,
∑

iai = n. The

number of valid ballot arrangements with weighted positive votes given by the multiset

B over N is given by

(
n + 1 + m

n + 1, a1, a2, . . . , an

)
1

n + 1 + m
.

Proof. Define W (B) to be the set of words created by taking n + 1 copies of −1 and

the elements of B, and arranging them in any order. There are

(
n + m + 1

n + 1, a1, a2, . . . , an

)
elements of W (B). Now, we set up an equivalence relation among these words, such

that any two words are equivalent if one is the cyclic shift of the other.

Given any v = (v1v2 . . . vn+m+1) ∈ W (B), will we find a member of its equivalence

class which has non-negative partial sums excepting the final element (which must

be a −1). Let z =min{i :
∑i

j=1 vj < 0 and
∑k

j=i+1 vj > 0 for all k > i}. The set

17

gives all points where the partial sum of the letters in the word is negative and all

partial sums of the following letters are non-negative, and vz, is the first such point.

Thus, the elements after vz form the maximal ”tail” which has non-negative partial

sums. If z = n + m + 1, let v′ = v. Otherwise, we move the tail to the front of the

sequence, forming v′ = (vz vz+1 . . . vm+n+1 v1 . . . vz−1). Now, partial sums of v′ will be

non-negative up to v′
m+n, and the last element of v′ will be a −1.

v′ is in the same equivalence class as v: Since v′ is simply a cyclic shift of v by

z, they are in the same equivalence class.

v′ is unique for each equivalence class: Assume, to the contrary, that we have two

elements v and w that belong to the same equivalence class and v′ 	= w′. Let x be the

cyclic shift of v′ to obtain w′, i.e.,w′ = (vx vx+1 . . . vm+n+1 v1 . . . vx−1). Now, by our

formation of v′, we know that

x−1∑
i=1

vi is non-negative and we know that

m+n+1∑
i=1

wi =

−1. But this means that

m+n+1−x∑
j=1

wj =

m+n+1∑
i = x + 1vi < 0, which violates the

restrictions on w′, giving us a contradiction.

If we remove the final −1 from v′ we see that we have a unique element of B.

Since there are n + m + 1 numbers in each sequence, there are n + m + 1 members

of each equivalence class, so we have that the number of valid arrangements of B is(
n + m + 1

n + 1, a1, a2, . . . , an

)
1

n + m + 1
.

The sequences v′ that we found and the equivalence relation on the v is a version

of Lukasiewicz words, as seen in Stanley[25, Example 6.6.7].

We refer to this generalization as the “left weighted Catalan numbers” since

we are only allowing the positive weights to vary, and fixing the negative weights

at negative one (The term “Left” comes from the parenthesis representation of the

Catalan numbers, where the left parenthesis were weighted; this was the original

representation under investigation for use in the Inversion problem given later.)

18

Central to this problem is the weight set B, which determines the structure we

are looking at, and also acts as a partition of [n]. Given a partition, B, we get the

formula above for the number of ballot sequences we have for that partition. If we

sum this over all partitions B of [n], we get the Large Schröder numbers. We can see

this by considering Schröder’s second problem stated as Plane trees with n leaves and

no vertex of degree one by Stanley [25, Example 6.2.8]. In the map given above, the

ballot structure maps to trees with no nodes of degree one. So this generalization sits

between the Schröder numbers above as their sum and the p-Catalan numbers below

as a generalization of them.

We will explore this extension further in chapter IV.

3. Plane Trees of a Given Type

Given a plane tree on b+1 nodes, we say that the type of the tree is (a0, a1, a2, . . . , ab)

if there are ai nodes with i children for all i (also known as the degree of the node).[25,

p. 30]

Theorem B.2. If B is the multiset {1a1 , 2a2, . . . (n)an}, and n =
∑

iai, then the valid

ballot arrangements with weighted positive votes given by B ∼= the plane trees of type

(n + 1, 0, a1, a2, . . . , an).

Proof. Order the nodes in the tree by traversing the tree in pre-order (pre-order is

parent, left-most child, . . . , right-most child), and assign each node (omitting the

final leaf) a weight equal to its degree minus one, giving us weights w1, . . . , wm+n,

where m =
∑

ai. Note that the weights record how many new branches of the tree

are created by that node as you traverse in pre-order. Thus leaves, which end a

branch of the tree, have a weight of −1, and a node with i children opens up i − 1

active branches of the tree. Omitting the final leaf, which finishes off the tree, the

19

partial sums must be non-negative, since you cannot close more branches than you

had opened. Thus, a tree with type (n + 1, 0, a1, a2, . . . , an) will correspond to a

sequence (w1, w2 . . . wm+n) with non-negative partial sums, total sum of zero, and ai

copies of i for all i. The inverse map is clear from the above.(See theorem 5.3.10 and

Lemma 4.7.12 in Stanley[25]

If we restrict our multiset B to {1n} for our trees, we get trees with type (n +

1, 0, n). This is the set of plane binary trees with 2n + 1 nodes, another well-known

representation of the Catalan numbers (See (d) in chapter IV). In fact, if we take a

multiset of n copies of p − 1 for B, we get the set of plane p-ary trees with pn + 1

nodes. Our generalized case, however, allows plane trees with varying degrees on the

nodes, so long as none of them is unary.

The figure below shows one tree for B = {11, 22}.

Fig. 5. Tree for 22 −−− 1 −−

20

4. Weighted Schröder Ballot Arrangements

Returning to our original ballot problem, let us consider a variation: Instead of only

1 and −1 we also allow 0, so long as the partial sums are non-negative and the total

sum is 0. (We refer to these as Schröder ballot sequences, since it is easy to map them

to Schröder paths by using the same map we used for Dyck paths and reading a 0 as

a diagonal step (1, 1).) Applying the generalization above, we get weighted Schröder

ballot sequences.

Theorem B.3. Given B and b, the number of valid weighted Schröder ballot arrange-

ments of length n + b + m with b zeroes and positive weights given by B (whose sum

is n and size is m) is

(
n + 1 + b + m

n + 1, b, a1, a2, . . . , am

)
1

n + b + m + 1
.

Proof. We take [n + b + m], and choose b elements to be our zeros. There are(
n + b + m

b

)
ways to do this. Then we take the remaining elements of [n + b + m],

of which there are n + m, and assign each either an element of B or one of the m

copies of −1, requiring that the partial sums be nonnegative. This corresponds to

our left weighted ballot problem above, so we know that the number of valid ways to

do this is
1

n + 1 + m

(
n + 1 + m

n + 1, a1, . . . , an

)
. Multiplying the two factors together (and

simplifying) gives the desired result.

21

C. Inversions in Parking Functions

Notation and Terminology

Definition C.1. Similar to the notation for descents, we look at ai and aj (where

i < j) as a transition in the parking function. We call the transition an inversion if

ai > aj, an upversion if ai < aj, and a long-tie if ai = aj.

There are

(
n

2

)
transitions in each parking function of length n. Note that all

descents are inversions, all ascents are upversions, and all ties are long-ties (but that

the converses do not hold).

Let PL(n,k) ⊂ PFn be the set of parking functions of length n with k long-ties.

Let Sn be the set of permutations of length n.

1. Parking Functions and Permutations

Let MBn be the valid Schröder weighted ballot arrangements of length n. Let Sn

be the set of permutations of [n]. Given c = (c1, . . . , cn) ∈ MBn, let M(c) =

(m1, m2, . . . , mn) be the multiset {1c1+1, . . . , ncn+1} written down as a sequence in

weakly increasing order. Note that, since c has length n and a total sum of zero,

M(c) will have exactly n elements. Furthermore, for any valid ballot c, M(c) will be

a nondecreasing parking function (or the sorted version of many parking functions).

Given π ∈ Sn and c ∈ MBn, let σ(π, c) = (mπ(1), . . .mπ(n)) where (m1, . . . , mn) =

M(c). In other words, σ permutes the elements of M(c) using the ordering given by

π. So σ permutes our sorted parking function and gives us a parking function.

Let ρ(π, c) = (π1, π2, . . .) : Sn × MBn →
∏

i

Sci+1 such that ρ gives the or-

derings of the elements of π for each group of elements in M(c) (in increasing or-

der). Example: If we use π = (12345) and c = (2,−1, 1,−1,−1), then ρ(π, c) =

(123), (1), (12), (1), (1), since there are three copies of 1 and two copies of 3 in our

22

M(c) = (11133) and the parts of π that correspond to them were in those orders. If

we use π = (21354) instead, ρ(π, c) would be (213), (1), (21), (1), (1) instead.

Given c ∈ MBn, let PFc be the set of parking functions which are permutations

of M(c) and Πc =
∏
ci≥0

Sci+1. Let τ(π, c) = (σ, ρ)(π, c).

Theorem C.2. For a fixed c in MBn, τ(π, c) : Sn → PFc × Πc is a bijection.

Proof. We will find τ−1: Given f , any parking function in PFc and (π1, π2, . . .) ∈ Πc,

we know that f is just a permutation of M(c). We will recover which permutation

generated it from the additional orderings given by the πi. First, give each element

of f a subscript, so that the subscripts form a total ordering of the elements in f ,

such that fi <! fj if and only if either [fi < fj] or [fi = fj and fi comes before fj].

Then among elements with the same value, but different subscripts, we permute the

elements with value i by the inverses of the πi. The result will be that we can now

read the subscripts in the order they appear (ignoring the value of the element they

appear on) to recover τ−1(f, (π1, π2, . . .)).

For a fixed n, given weight set B with sum m ≤ n, let PFB be the set of parking

functions of length n where the multiplicities of the elements minus one are given by

the weight set B, MBB be the subset of MBn whose non-negative values are given

by B, and ΠB be the union of all Πc such that c ∈ MBB.

Corollary C.3. For a given B, τ(π, c) : Sn × MBB → PFB × ΠB is a bijection.

Proof. This is the union over all c ∈ MBB of the right and left sides above.

2. Counting Inversions

Now we will use the above map to count the inversions in parking functions of a given

shape, since we know the inversion counts for the other sets in the map. We will do

23

this by giving generating functions in terms of q where the coefficient of qi is the

number of parking functions in the given set with i inversions.

Theorem C.4. τ preserves inversion counts from Sn to PFc × Πc.

Proof. Given a c and any π ∈ Sn, if π has an inversion from position i to j, then one

of two things will be true: Either M(c) has the same element k in position i and j, in

which case, the inversion will be carried into the permutation πk and the elements in

the permutation of those positions in the parking function will be the same or M(c)

has different elements ki and kj in positions i and j, in which case, by the nature of

the transformation applied by τ , i < j implies kπ(i) < kπ(j) while π(i) > π(j), which

means the inversion will be carried over into the parking function.

Definition C.5. For any integer t, we define tq to be the polynomial 1+q+· · ·+qt−1.

We then define the q-factorial, t!q to be tq(t − 1)q . . . 1q. Using the q-factorial, we

define the q-multinomial

(
s

t1, . . . , tu

)
q

=
s!q

t1!q . . . tu!q
.[26]

Corollary C.6. The generating function for inversions in parking functions in PFc

is equal to

(
n

c1 + 1, c2 + 1, . . . , cn + 1

)
q

.

Proof. From the previous theorems, we know that the inversions in a permutation of

[n] is the same as the number of inversions in the parking function it changes into plus

the number of inversions in the permutations of the blocks. The inversions in Sn are

known to have generating function n!q[26], which means that n!q equals the generating

function for inversions in PFc times
∏
ci≥0

(ci + 1)!q. Division and simplification gives

us the result.

Corollary C.7. For a fixed B, the generating function for inversions in parking func-

tions in PFB is equal to

(
n

c1 + 1, c2 + 1, . . . , cn + 1

)
q

(
n + 1

m + 1, â, a1, a2, . . . , am

)
1

n + 1
,

24

where the ai are the multiplicities of the weights in B, m is the sum of the weights in

B, z is the number of distinct elements in B, and â = n − z − m.

Proof. The previous corollary gave a generating function for the number of inver-

sions in parking functions that corresponded to a fixed Schröder weighted ballot

arrangement. We can sum over all such arrangements with a specific weight set B by

multiplying by the number of such arrangements, since the generating function does

not depend on the specific ballot arrangement chosen, but only on the structure of

the weight set B.

25

CHAPTER III

K-BLOCKED PARKING FUNCTIONS

A. Introduction

Now we will look at a variant of parking functions, blocked parking functions. First,

we hearken back to the original presentation of parking functions by Konheim and

Weiss. Imagine a parking lot with n numbered parking spots laid out in a linear

fashion, with n drivers wishing to park. Each driver has a preferred spot that they

will attempt to park in. If they should find their preferred spot already full, they will

move down the line to the first empty spot. If no spot is available at or after their

preferred spot, the driver fails to park. An ordered list of parking preferences which

allows each driver to park is a valid parking function. By analogy, blocked parking

functions are those where some of the spots are listed as already blocked.

Definition A.1. PB(n,k) = {(b, a) : b = {b1, b2, . . . , bk} ∈ [n]; a : [n − k] → [n]

represented by (a1 a2 . . . an−k) such that if c1, . . . , cn is a non-decreasing list of both

the ai and bi, then ci ≤ i}.

A blocked parking function of length n with k blocked is a a set of k blocked

spaces followed by an ordered list of n − k parking preferences for the n − k cars.

We will refer to the set of parking functions with n spaces with k already blocked as

PB(n,k). Clearly, PB(n,0) is PFn. We present and examine several facts about these

blocked parking functions below.

Theorem A.2. The number of parking functions of length n with k spaces already

blocked is

(
n + 1

k

)
(n + 1)(n−1−k).

Example: The set PB(2,1) is given by {1, [1](2), [2](1)}, where the numbers in

26

the brackets designate the blocked spaces, and the sequence in parenthesis designates

the list of parking preferences.

Proof. Recalling the original proof of the size of PFn, we look at a circular arrange-

ment of n + 1 locations numbered from 0 to n. We choose k of them to be blocked

and note that set. There are

(
n + 1

k

)
such sets that we can generate in this fashion.

Now we choose n − k parking preferences. These can be in any space, including the

previously blocked ones. There are (n+1)(n−k) such lists of parking preferences. If we

then “park” according to the list of preferences after blocking off the list of blocked

spots, around the circle, using our collision rule stated above, we will be left with

one empty space (call it space f). We rotate both the set of blocked spaces and the

parking preferences so that this empty space becomes 0 by subtracting f mod n + 1

from each value. The result will be a valid parking function, since the method of cre-

ating it guarantees that all the values will be between 1 and n (or f would either be a

preference for some parker or a blocked spot) and that none of the parkers falls off the

end of the lot (or f would have been filled when we placed according to preferences).

Now, this method will result in duplicate parking functions for different choices of

original blocks and preferences before rotating. However, if we treat as equivalent

all choices that result in the same parking function, we note that for each parking

function, there are n + 1 antecedents, representing the original location of space f

before we rotated the circle to place it at 0. This means that the total number of

blocked parking functions is

(
n + 1

k

)
(n + 1)(n−k)

n + 1
, giving the desired result.

The formula for this number is highly suggestive. Specifically, we see that

n∑
k=0

(n + 1 − k)#PB(n,k)

27

=
n∑

k=0

(n + 1 − k)

(
n + 1

k

)
(n + 1)(n−1−k)

=
n∑

k=0

(
n

k

)
(n + 1)(n−k)(1)k

= (n + 2)n

= #PFn+1

This leads us to create a relation between these sets.

Theorem A.3. Let I(n,k) be the set of (p, b) where p is a blocked parking function in

PB(n,k) and b is an element of [n + 1] that is not already blocked in p. I(n,k)
∼= PFn.

Proof. We will create a map α which will take a member of I(n,k) to a tree with a root

of degree k + 1. We will do this by creating a Prüfer code of from (p, b). First, we

rotate the values of p by b, (subtracting b mod n + 1 from each element), to get p̂.

Since b is not in p’s blocked set, the blocked set of p̂ remains non-zero. We treat any

zeroes in the parking preferences of p̂ as n+1. Now we take the set of blocks in p̂ and

we place zeros in those locations in a Prüfer code. i.e.,if p̂’s blocked set is {a1, . . . , ak},
then the Prüfer code (c1, . . . , cn) will have cai−b mod n+1 = 0 for all i. Then we place

the parking preferences from p̂ into the code, in order, skipping over space which have

already been set to zero. This gives us a Prüfer code with k zeros, which we know

translates into a tree with a root of degree k + 1. For the inverse map, take any tree

with n+2 nodes and the zero node having degree k, and create the Prüfer code for it.

Starting with a circular arrangement of n + 1 empty spaces, remove the zeroes from

the code and place blocks in those locations on the circle. Then use the remainder of

the code as parking preferences for n − k cars. This will result in all but one of the

spaces on the circle filled. Rotate the circle positively(rotating the blocked set and list

of parking preferences) so that this is location zero, recording the size of the rotation

28

as b. Since this follows our method of formation of blocked parking functions, there

will be exactly one rotation which yields a valid blocked parking function.

If we take the union for all k of the I(n,k), we get In, and applying α to In, we

get LTn+2
∼= PFn+1. This gives us a map that relates every blocked parking function

with length n and k spots blocked to a group of n + 1− k plane trees where the root

has degree k + 1.

B. Blocked Parking Functions and Labeled Schröder Paths

For this section, we will define a labeling on Schröder paths.

Definition B.1. We will define the “width” of a Schröder path to be the total number

of horizontal and diagonal steps, regardless of the “length” of the path which is the

number of steps.

Definition B.2. Given a Schröder path (using the superdiagonal version of these

paths), we label all of the vertical steps with a number from {1 . . . n − k}, where k is

the number of diagonal steps and n is the width of the path. We arrange these labels

such that consecutive vertical steps have increasing labels. We will refer to these as

labeled Dyck and Schröder paths.

In B.4, we showed a bijection from the parking functions of length n to labeled

Dyck paths of length 2n. Similarly, let γ be a map from labeled Schröder paths of

width n with k diagonal steps to blocked parking functions of length n with k blocks

such that each horizontal position i that is blocked in the parking function has a

diagonal step at its top (instead of a horizontal step in the path), and that the path

otherwise follows the rules for the map from labeled Dyck paths above.

Theorem B.3. γ is a bijection.

29

Proof. Let m be any Schröder path of width n with k diagonals. Because of the super-

diagonal requirement on Schröder paths, the number of vertical and diagonal steps

before horizontal position i is always greater than or equal to i. Since the vertical steps

at position i correspond to parking preferences of i and the (at most one) diagonal

step at position i corresponds to a block on i, this means that, if we translate the

path into a parking function, we have at least i preferences and blocks less than i (for

all i ≤ n). Thus, the Schröder path satisfies the parking requirement when translated

to a parking function. It is straightforward to see that each path defines a unique

sorted blocked parking function, and that each labeling of the path (according to our

rules above) gives a unique ordering for this set of parking preferences. Therefore,

our map is one-to-one. To see that it is onto, we note that every sorted set of parking

preferences and blocks yields a Schröder path, and each ordering of that set of parking

preferences gives a labeling.

Corollary B.4. The number of labeled Schröder paths (as defined above) with k

diagonals of width n is

(
n + 1

k

)
(n + 1)(n−1−k)

Proof. This is a combination of the theorem above and the count we have already

found for blocked parking functions of length n with k blocks.

C. p-Parking Functions

Consider a parking function of pairs, (ai, ci) where ai is the parking preference and

ci is a color, chosen from a set of p colors. If we use the same restriction on parking

preferences as before, but allow the colors to be arbitrarily chosen, we get a new set

of functions. For a given n, p, we see that we can take the previous set of parking

functions PFn and arbitrarily color each parking preference. Thus, if PF p
n is the set

of parking functions colored this way, #PF p
n = #PFnpn = (n + 1)n−1pn.

30

Theorem C.1. PF p
n
∼= LT p

n+1, the set of labeled trees with n+1 nodes and the edges

colored arbitrarily from a set of p colors.

Proof. Given a colored parking function a = ((a1, c1) (a2, c2) . . . (an, cn)) ∈ PF p
n , we

create the Prüfer code in the usual way for a and assemble the tree from the parking

function. However, as we add each node for the transition ai ai+1, we color it with ci,

with the first color cn going to the edge from the first node added to the 0 node, and

the last color c1 going to the edge for the final node added to the tree.

These parking functions and several properties about them were investigated

by Stanley previously[23] with a slightly different notation, which involved changing

the size restriction on the preferences to be less than or equal to pi. If we take our

pairs (ai, ci), we will note that the list of preferences whose ith element is given by

(ai(p−1)+ci+1) fits this restriction, giving us an easy map between our representation

here and the previous one in [23]. (A note: The term used by Stanley for these

structures was k-parking functions. However, this term has been used by Yan and

Stanley to refer to a slightly different version of parking functions, which require the

bi (the non-decreasing arrangement of the ai) to be ≤ (i − 1)k + 1, which requires

that one of the ai have a value of 1 instead of requiring that at least one of them be

≤ k. Thus, we have renamed the color version above to p-parking functions to avoid

confusion.)

D. p-Parking Functions With k Blocked

We can also consider the case of blocked parking functions when we add this color

component to them. We block of spaces as before, and we assign a color to each

block in the block set. (If we use the previous notation from[23], this corresponds to

blocking p spaces at a time, always ending the blocked section at a space divisible by

31

p, and denoting a “placement” in the block of one of the p spaces, corresponding to its

color here.) When we do this, we see that the previous map to a family of trees with

zero node of degree k +1 is unchanged and that our map from p-parking functions to

a colorization of these trees can be modified to just require an extra color preference..

This leaves us with a map that takes a k-blocked p-parking function β, along with

a rotation r that isn’t in the blocked set of β and an extra color c for that rotation,

and gives us a labeled tree on n + 2 nodes with the edges colored with p colors.

E. Linear Probes in PB(n,k)

Definition E.1. Given a parking function a = [b1, . . . , bk](a1 . . . an−k) ∈ PB(n,k), we

define the number of linear probes in the parking function to be α(a) =

(
n + 1

2

)
−

k∑
i=1

bi −
n−k∑
i=1

ai.

If we return to our original description of parking functions, this is the number of

occupied spaces that the parking cars try (and fail) to park in from their preference

until they reach their final destination.

Theorem E.2. If fn,k(q) =
∑

a∈PB(n,k)

qα(a), and by convention we set f0,0(q) = 1, then

f1,1(q) = f1,0(q) = 1, and fn+1,k(q) =

k∑
j=0

n−(k−j)∑
i=j

(
n − k

i − j

)
(i + 1)qfi,j(q)fn−i,k−j(q).

Proof. Let a = [b1 . . . bk](x1 . . . xn+1−k) ∈ PB(n+1,k). Let am be the largest value

that xn+1−k could be without violating the constraints of parking functions. We will

decompose a into two smaller parking functions by splitting based on whether each

element is smaller or larger than am. Let as = [b1 . . . bj](y1 . . . yi−j) where i = am − 1,

j = #{br : br < am}, and yt is the tth element of a that is less than am. Similarly,

let aL = [bj+1 − am . . . bk − am](z1 − am . . . zn−k−i − am) where zt is the tth element

32

of a that is greater than am. Now, as ∈ PBi,j and aL ∈ PBn − i, k − j, and α(a) =

α(as)+α(aL)+am−xn−k. Now, for each as, aL, and am, there are

(
n − k

i − j

)
choices for

which i−j of the x belong to as, which does not change α(a) and there are am = i+1

choices for xn−k. Thus, fn+1,k(q) =
∑

a∈PB(n+1,k)

qα(a) =
∑

as,aL,am

qα(as)+α(aL)(q0 + · · · +

qam)

(
n − k

i − j

)
=

k∑
j=0

n−(k−j)∑
i=j

(
n − k

i − j

)
(i + 1)qfi,j(q)fn−i,k−j(q).

Remark. Kreweras proved this result for standard parking functions[14] (he used an

equivalent structure called major sequences), and the proof above is a generalization

of his method for blocked parking functions, which yielded the following result:

Corollary E.3. If Pn(q) =
∑

a∈PFn

qα(a), and by convention we set P0(q) = 1, then

P1(q) = 1 and Pn+1(q) =

n∑
i=0

(
n

i

)
Pi(q)Pn−i(q)(i + 1)q.

Proof. This can be seen by fixing k = 0 in E.2.

Beissinger and Peled found a map from linear probes to external activity in trees

and thus to inversions in trees[1].

The formula in E.2 is more complex than is desirable. What follows is an exam-

ination of the formulas for PBn,n−j for a fixed j while varying n.

Theorem E.4. fn,n(q) = 1, and thus the generating function for it is
∑
n>0

fn,n(q)yn =

y

1 − y

Proof. If we require n blocks and a length of n, the only case is [1, . . . , n]. This gives

us the formula for fn,n. Thus, the sum gives us y + y2 · · · =
y

1 − y
.

Theorem E.5. fn,n−1(q) =
n∑

j=0

(n − j)qj.

33

Proof. We have a length of n and n − 1 blocked, giving us one unblocked space. If

we have j linear probes, the distance between the unblocked space and the single

parking preference must be j. There are n − j possible choices of a1 such that

1 ≤ a1 − j < a1 ≤ n.

Corollary E.6. The generating function
∑
n>0

fn,n−1(q)y
n =

y

(1 − y)2(1 − qy)
.

Proof. Letting k = n − j in the above theorem, we have

∑
k>0

∑
j>0

kyk+jqj

=
∑
j>0

qjyj
∑
k>0

kyk

=
∑
j>0

qjyj
∑
k>0

y
δ

δy
yk

=
∑
j>0

qjyj+1 δ

δy

∑
k>0

yk

=
∑
j>0

qjyj+1 δ

δy

1

1 − y

=
∑
j>0

qjyj+1 1

(1 − y)2

=
y

(1 − y)2

∑
j>0

qjyj

=
y

(1 − y)2(1 − qy)

.

We will now give a formula and generating function for fn,n−2(q), but this will

require some setup. Given a blocked parking function a = [b1, . . . bk](a1 . . . an−k) ∈
PB(n,k), we will say that a is reducible if b1 = 1 and a′ = [b2−1, . . . bk −1](a1 . . . an−k)

is a valid blocked parking function in PB(n−1,k−1). We will call a′ the reduction of a.

34

Theorem E.7. {a ∈ PB(n+1,n−1)a is reducible} ∼= PB(n,n−2).

Proof. Clearly, reducing is a one-to-one operation. In order to see that it is also

onto, we take any blocked parking function a′ = [b1, . . . bn−2](a1 a2) ∈ PB(n,n−2) and

we create a = [1, b1 + 1, . . . , bn−2 + 1](a1 a2). There are n − 1 blocks in a. We let

c1 . . . cn+1 be the blocks and preferences of a sorted into non-decreasing order. c1 = 1,

because we inserted a 1 at the beginning of the blocks. If a is not a valid blocked

parking function, fix k to be the smallest integer such that ck > k. Now, if the

offending element is a block, ck − 1 > k − 1, and a′ was not a valid blocked parking

function. If the offending element was a parking preference, ck > k − 1, and a′ was

not a valid blocked parking function. Therefore, there can be no such k, so a is a valid

blocked parking function. Thus, the operation above is onto as well as one-to-one,

giving us a bijection.

Corollary E.8.
∑

a∈PB(n+1,n−1)

a is reducible

qα(a) = q2fn,n−2.

Proof. First, note that α(a) = α(a′) + 2, since we have added one linear probe to

each of a1 and a2 by shifting the blocks up by one and adding a block in the new first

space. Then the bijection above gives us the required formula

Theorem E.9. #{a ∈ PB(n+1,n−1) : α(a) = 0} = n(n + 1).

Proof. If we have no linear probes and all but two spaces are blocked, we know that the

parking preferences must be the unblocked spaces. We choose a1 and a2 from the n+1

possible choices, and the blocked spaces are automatic. Noting that both orderings

for the choices give a distinct blocked parking function, we have 2

(
n + 1

2

)
= n(n+1)

possible blocked parking functions with 2 unblocked spaces and no linear probes.

We give the following corollary to highlight that the two sets of blocked parking

functions discussed so far are disjoint.

35

Corollary E.10. Blocked parking functions without linear probes are not reducible.

Proof. While it is possible to prove this directly, we note that the q-polynomial for the

reducible blocked parking functions has smallest term q2, leaving no constant term,

which means there are no reducible parking functions with fewer than two linear

probes.

We will now count the remaining blocked parking functions, that is, blocked

parking functions with at least one linear probe that are not reducible.

Theorem E.11. The number of non-reducible blocked parking functions in PB(n+1,n−1)

with i linear probes is (n − i)(2(n − i) − 1).

Proof. Let a = [b1, . . . , bn−1](a1 a2) be non-reducible. Let g1 and g2 be the unblocked

spaces (i.e.,the elements missing from the bi). Since a is non-reducible, we know that

either b1 	= 1 or a′ is not a valid blocked parking function. In the first case, we know

that one of our gaps (and therefore, one of our ai) must be equal to 1, and the other

gap must be i larger than the other ai. In the second case, let ci be the preferences

and blocks of a sorted in a non-decreasing order. We know that ci ≤ i. Let c′i−1 be the

sorted preferences and blocks of a′. Let j be the smallest integer such that c′j−1 > j−1

(i.e.,this is the element that makes a′ an invalid blocked parking function). However,

since a is valid, we know that cj is a parking preference, cj = c′j and cj ≤ j. This

means that cj = j. Furthermore, we know that cj−1 < cj , so cj is also the location of

a gap. This means that we again have one preference equal to one of the gaps, which

means the other preference must be i less than the corresponding gap in the blocks.

Thus, in both cases, we have to choose the gaps and the preferences, but we

know that one of the gaps equals a preference, and the other gap is equal to the

other preference plus i. Now, if the preferences are the same, this gives us n − i

36

choices for a1 = a2, and one of the gaps equals this number, and the other is i larger.

If the preferences are different, we can choose any of the n − i upper elements for

our first gap, and any element not between that gap and its corresponding parking

preference (which is i lower than it) for our second element. Since both orderings for

the ai produce distinct parking functions, we have 2(n − i)(n − i − 1) choices when

we require the ai to be distinct and n− i choices when we allow them to be identical.

Adding the two together gives us the total number of non-reducible blocked

parking functions with i linear probes as (n − i)(2(n − i) − 1).

Corollary E.12. fn+1,n−1(q) = n(n + 1) +

n∑
i=1

[(n − i)(2(n − i) − 1)qi] + q2fn,n−2(q)

Proof. This corollary is the sum of the formulas for the disjoint sets from E.8, E.9,

and E.11.

We will now give a series of lemmas we will use to find a generating function for

the function fn+1,n−1(q).

Lemma E.13.
∑
n>0

n(n + 1)yn+1 =
2y2

(1 − y)3
.

Proof. We manipulate
∑
n>0

n(n + 1)yn+1

=
∑
n>0

y2 δ2

δy2
yn+1

= y2 δ2

δy2

∑
n>0

yn+1

= y2 δ2

δy2

y2

1 − y

=
2y2

(1 − y)3

37

Lemma E.14.
∑
n>0

yn
n∑

i=1

iqn−i =
−qy

(1 − y)(1 − yq)(1 − q)
.

Proof. We manipulate
∑
n>0

yn
n∑

i=1

iqn−i

=
∑
n>0

ynqn

[
n∑

i=1

ipi

]
p= 1

q

=
∑
n>0

ynqn

[
p(1 − pn)

(1 − p)2

]
p= 1

q

=
∑
n>0

yn
qn(1 − 1

qn)

q(1 − 1
q
)2

=
∑
n>0

yn q(qn − 1)

(1 − q)2

=
∑
n>0

ynqn q

(1 − q)2
−
∑
n>0

yn q

(1 − q)2

=
q

(1 − q)2

(
1

1 − yq
− 1

1 − y

)

=
−qy

(1 − y)(1 − yq)(1 − q)

Lemma E.15.
∑
n>0

yn
n∑

i=1

i2qn−i =
1 + q

(1 − q)2(1 − yq)(1 − y)
.

Proof. We manipulate
∑
n>0

yn
n∑

i=1

i2qn−i

=
∑
n>0

ynqn

[
n∑

i=1

i2pi

]
p= 1

q

=
∑
n>0

ynqn

[
(1 − pn+1)

∑
i>0

i2pi

]
p= 1

q

=
∑
n>0

ynqn

[
(1 − pn+1)

p(p + 1)

(1 − p)3

]
p= 1

q

38

=
∑
n>0

yn
qn(1 − 1

qn+1)(
1
q

+ 1)

q(1 − 1
q
)3

=
∑
n>0

yn (qn+1 − 1)(1 + q)

(q − 1)3

=
1 + q

(q − 1)3

(
q
∑
n>0

ynqn +
∑
n>0

yn

)

=
1 + q

(q − 1)3

(
q(1 − y) − (1 − yq)

(1 − yq)(1 − y)

)

=
1 + q

(1 − q)2(1 − yq)(1− y)

Corollary E.16.
∑
n>0

fn+1,n−1(q)y
n =

1

1 − q2

(
2y2

(1 − y)3
+

2 + 2q + qy − q2y

(1 − q)2(1 − yq)(1 − y)

)
.

Proof. Let F(y, q) =
∑
n>0

fn+1,n−1(q)y
n. By E.12, this is

=
∑
n>0

yn

[
n(n + 1) +

(
n∑

i=1

i(2i − 1)qn−i

)
+ q2fn,n−2(q)

]

=
∑
n>0

yn

[
n(n + 1) + 2

(
n∑

i=1

i2qn−i

)
−
(

n∑
i=1

iqn−i

)
+ q2fn,n−2(q)

]

Using E.13, E.14, and E.15, we get

F(y, q) =
2y2

(1 − y)3
+

2(1 + q)

(1 − q)2(1 − yq)(1 − y)
+

qy

(1 − q)(1 − yq)(1 − y)
+ q2F(y, q)

Moving the last term to the left side and dividing the whole by 1 − q2 gives us the

result.

Remark. If we examine fn+1,n+1−i, we see that we will still have the reducible parking

functions giving us a term of qifn,n−i and the parking functions with no linear probes

giving us a term of
(n + 1)!

(n + 1 − i)!
. The remaining terms will come from the non-

reducible parking functions with at least one linear probe. A general formula for

39

these terms is an avenue for further exploration.

40

CHAPTER IV

LEFT WEIGHTED CATALAN STRUCTURES

In this chapter, we explore various structures enumerated by the Catalan and p-

Catalan numbers and apply the generalization to left weighted Catalan numbers as

developed in II.B, giving us an extension of these structures to include our weight set

B.

We will make frequent references to Stanley’s list of Catalan representations, from

Enumerative Combinatorics II[25][27]. These can be found in exercise 6.19, where

each of the representations discussed is given as a part of the exercise. Throughout,

we will simply refer to the part of the exercise, such as (r) for exercise 6.19.r, which

details the ballot problem.

In each of the cases below, we will give the basic Catalan or p-Catalan case, de-

scribe the generalized version, and outline a bijection to a previous case. The repre-

sentations are organized by structure type. Where we refer to a proof for the standard

Catalan case, we are referring to the one implied or given by Stanley, except as noted

otherwise. In our extension, we will use the following notation: B = {1a1 , 2a2, . . . , nan}
is our weight set, m =

n∑
i=1

ai is the cardinality of B and n =

n∑
i=1

iai. As previously

mentioned, B also functions as a partition on n.

For each Catalan version, we will list the base 2-Catalan case, then give a de-

scription of the left weighted Catalan case. For most items, we will just give a sketch

of the bijection, rather than a full proof. Finally, we will give five examples from each

Catalan representation with the weight set B = {11, 22} (the same five elements each

time). We start with a complete list of the weighted ballots for our B (figure 6); the

bolded elements are those we will be repeating for each subsequent Catalan example.

41

221 −−−−− 2 − 2 −−1 −− 2 −−21 −−− 2 −−1 − 2 −−
1 − 2 − 2 −−− 12 −−2 −−− 1 − 22 −−−− 12 −−− 2 −−
12 − 2 −−−− 122 −−−−− 2 −−12 −−− 2 −−2 −−1−
2 −−2 − 1 −− 2 − 1 −−2 −− 2 − 1 − 2 −−− 2 − 12 −−−−
2 − 2 −−− 1− 2 − 2 − 1 −−− 2 − 21 −−−− 21 −−− 2 −−
21 −−2 −−− 21 − 2 −−−− 212 −−−−− 22 −−−−1−
22 −−− 1 −− 22 −−1 −−− 22 − 1 −−−−

Fig. 6. Weighted ballots (Catalan case (r)) B = {11, 22}

A. Trees

(c) Catalan: The set of binary trees with n nodes.

Generalization (figure 7): We look at binary trees with n nodes, such that the tree is

partitioned into “straight line” groups of nodes, such that the number of nodes in the

groups is given by B (i.e.,there are ai groups of size i, for all i). To make a straight

line group of nodes, take a node, called the base, and note which child of its parent it

is. Then take that child of the base, and that child of the child, etc., until we have i

nodes in a straight line. (Define the root of the tree to be a left child). This reduces

to the Catalan case where each node is its own group, i.e.,we always use the trivial

partition of singletons.

We can create a bijection to (r) by starting with the root, counting the number

of nodes in its straight line group as the first positive number. Then we examine the

children of this group, in pre-order, and record a − for each missing child. Once a

new group is found, repeat the process on the new group. (As usual, omit the final

-1). This will give us a sequence of positive weights counting the nodes in groups,

and the list of −1 can never exceed the number of nodes, since each node only adds

42

one additional possibility for a -1 (until the final missing child, which we omit).

Fig. 7. Weighted Calatan examples for (c)

(d) Catalan: Plane trees with n internal nodes, all of degree 2. (Each node has

0 or 2 children).

p-Catalan: Plane trees with n internal nodes, all of degree p. (Each node has 0 or p

children.)

Generalization (figure 8): Trees of type (n + 1, 0, a1, a2, . . . an). (See theorem B.2 for

bijection.)

Fig. 8. Weighted Calatan examples for (d)

(e) Catalan: The set of plane trees with n + 1 nodes.

Generalization (figure 9): we look at plane trees with n + 1 nodes with a partition

on the edges of the tree such that the sizes of the blocks are given by B and in each

block, all but the topmost edge is the leftmost child of its root. This reduces to the

Catalan case where each edge is its own block, i.e.,we always use the trivial partition

of singletons.

43

In the Catalan case, we create a bijection to (r) by reading the tree in pre-

order, and treat each step downward as a 1 and each step back up as a −1. In the

generalized case, we do the same, but read the entire block of a partition as a single

positive number.

Fig. 9. Weighted Calatan examples for (e)

(f) Catalan: Planted trivalent trees with 2n + 2 nodes.

Generalization (figure 10): Planted trees with with internal node valences given by

v2 = 0 and for i > 2, vi is the number of i − 2 in B (and the root has valence 1).

In the Catalan case, the internal valences given are of size 3, corresponding to the n

copies of 1 in B.

As in the Catalan case, we find a bijection to (d) by cutting the root to get a

tree of type (n + 1, 0, v3, . . .).

(g) Catalan: Plane trees with n + 2 nodes such that the rightmost path of each

subtree of the root has even length.

Generalization (figure 11): Plane trees as in (e) (with an extra group of size 1 added,

to make n + 2 nodes) with the restrictions that the rightmost path of any subtree of

the root is required to be of even length, and the leftmost child of the root will be its

own block in the partition.

44

Fig. 10. Weighted Calatan examples for (f)

The bijection to (e) is the same as in the Catalan case: Examine the tree and

find the rightmost subtree of the root which has an odd rightmost path. Insert a

new node as the leftmost child of the root and move that subtree and every subtree

to its left to be a child of this new node. (For the partition, treat this new node

as a singleton.) Then the rightmost path of the subtree of this new edge will be of

even length. The rest of the features of (e) will be maintained. If there is no such

subtree, insert the new edge as the leftmost subtree of the root. To convert back to

(e), simply remove the leftmost edge of a tree, which will, by construction, be the

only node in its block in the partition of the nodes.

Fig. 11. Weighted Calatan examples for (g)

45

B. Lattice Sequences

In standard terminology, a lattice path is a path traced out on a grid between points

(x, y) such that x and y are positive integers and each step along the path is of unit

length. For example, one definition of the Dyck paths is that they are lattice paths

traced out by steps (0, 1) and (1, 0) from (0, 0) to (n, n) and never fall below the

diagonal x = y. In this section, we use the term sequence, as opposed to path, to

indicate that we want to distinguish the orderings of the sizes of the steps, and not

just the paths they trace out. In other words, we treat the sequence (0, 2), (0, 1) as

distinct from (0, 1), (0, 2), even though they trace out the same path. When drawing

these sequences, it is helpful to think of each step as an edge, and having nodes at

the end points of each step. Thus the steps given would result in two graphs of a

line segment from (0, 0) to (0, 3), but the former would have a node at (0, 2) and the

latter at (0, 1), both marking the end of the first step of their respective graphs.

(h) p-Catalan: Lattice paths from (0, 0) to (n, n) with steps (0, p − 1) or (1, 0),

never rising above the line y = x.

Generalization (figure 12): Lattice sequences from (0, 0) to (n, n) with steps (0, k) or

(1, 0), never rising above the line y = x, where the multiset of k is given by B.

As in the Catalan case, we form a bijection with (r) by reading each horizontal

step of size k as the positive integer k, and each vertical step as a −1. The restriction

on the diagonal corresponds to the non-negativity of the sequences for (r).

(i) Catalan: Paths from (0, 0) to (2n, 0) with steps (1,−1) and (1, 1), never

falling below the x-axis.

Generalization (figure 13): Sequences from (0, 0) to (2n, 0) with steps (1,−1) and

(k, k), never falling below the x-axes, where the multiset of the k is given by B.

As in the Catalan case, this is a rotation and rescaling of (h).

46

Fig. 12. Weighted Calatan examples for (h)

Fig. 13. Weighted Calatan examples for (i)

(j) Catalan: Paths from (0, 0) to (2(n+1), 0) with steps (1,−1) and (1, 1), never

falling below the x-axis, such that any maximal sequence of consecutive (1,−1) steps

ending on the x-axis had odd length.

Generalization (figure 14): Paths from (0, 0) to (2(n + 1), 0) with steps (1,−1) and

(k, k), never falling below the x-axis, such that any maximal sequence of consecutive

(1,−1) steps ending on the x-axis had odd length, where the multiset of the k is given

by B with an additional element of size 1, which will always be the first step.

As in the Catalan case, take any sequence from (i) and locate the rightmost

descent of even length onto the x-axis. Insert a (1,−1) step into this descent and a

(1, 1) step at the beginning of the sequence. If there is no such descent, just insert a

(1, 1)(1,−1) sequence at the beginning. This will raise the rightmost even descent to

an odd one, and all previous descents (even or not) will no longer touch the x-axis.

The inverse bijection is to remove the first (1, 1) from a given sequence and the final

47

(1,−1) from the leftmost descent that touches the x-axis.

Fig. 14. Weighted Calatan examples for (j)

(k) Catalan: Sequences from (0, 0) to (2(n + 1), 0) with steps (1,−1) and (1, 1),

never falling below the x-axis, with no peaks at height 2.

Generalization (figure 15): The same sequences but with steps (1,−1) and (k, k)

where the multiset of k are given by B plus an additional element of size 1.

The bijection for this follows that of the Catalan case[20]. Start with a sequence

from (i), and add a single up and down step to the front. For each maximal subse-

quence of our sequence containing no peaks at height one, raise the subsequence by

one by adding an up step at the front and a down step at the back. Now, we have

added i pairs of steps, 1 for each such maximal subsequence. However, each such

subsequence must be preceded by a peak of height one. Remove the peak of height

one immediately preceding each such subsequence to remove i pairs of steps, leaving

us with a sequence with n + 1 pairs of steps and no peaks at height 2.

Fig. 15. Weighted Calatan examples for (k)

(l) Catalan: Noncrossing pairs of sequences of n+1 steps (1, 0) and (0, 1), which

only intersect at start and end.

Generalization (figure 16): Pairs of sequences of steps of length n + 1, such that

48

the upper sequence has positive steps of (0, k) and negative steps of (1, 0), the lower

sequence has positive steps of (k, 0) and negative steps of (0, 1), the sequences only

join at beginning and end, the bottom sequence starts with an additional step of

(1, 0), and the multiset of the k (other than the initial step of the bottom sequence)

is given by B.

This is in bijection to (r). Read each path, alternating from the upper to the

lower (skipping the first step of the lower), and record positive steps as positive

integers of the size of the step, and negative steps as −1, ignoring the final element.

By alternating, in this context, we mean that when the total size of the steps read from

one path so far equals or exceeds the total number of steps read from the other path

so far, switch paths (ignoring the extra step that starts the lower path to maintain

separation). The partial sums of the sequence in (r) plus one will correspond to the

separation between the paths in grid steps. Until the final element, the separation

will always be at least one, corresponding to a non-negative partial sum.

Fig. 16. Weighted Calatan examples for (l)

49

C. Partitions

Several of these representations distill down to pairs of partitions where the second

partition has block sizes given by B and the first partition is some less refined partition.

These are intervals on the poset of partitions of [n], and the set of such intervals is

the set of intervals on the partition poset of [n] whose lower bounds have block sizes

given by B. Stanley[23] proved that the labels of the maximal chains of non-crossing

partitions with k blocks of n+1 are the parking functions of length n, so each interval

is actually a set of subsequences of parking functions where the subsequences have

the same starting and ending point in the poset, and the lower point of the intervals

is being determined by the block sizes in B.

(r*): We’ve already discussed (r) at length above, but we wish to note a slight

reinterpretation of it here. If we replace the +1 elements with left parenthesis, and

the −1 elements with right parenthesis, we get a set of valid parenthesizations, where

each closing parenthesis matches to exactly one open parenthesis that preceded it and

visa versa.

The +1/−1 representation of (r) corresponds to a non-nesting partition of 2n

into blocks of size two, which can be seen by connecting the first +1 with the first

−1, the second pair, the third pair, etc., up to the nth pair. However, the parenthesis

representation (referred to as (r*) henceforth) corresponds to non-crossing partitions,

since an open parenthesis matches to a close parenthesis such that the two enclose

all intermediate parenthesis. This correspondence of non-crossing and non-nesting is

well known; these two representations are simply an easy way to demonstrate their

equivalence for the rest of the representations.

Generalization (figure 17): Instead of only having open and close parenthesis, use

weighted left parenthesis that match up to multiple right parenthesis. This gives

50

non-crossing partitions of [2n] such that B gives the block sizes. We represent a

weighted right parenthesis by the weight, such as 31)))) being an example of an

opening parenthesis set of weights 3 and 1.

221))))) 2)2))1)) 2))21))) 2))1)2)) 1)2)2)))

Fig. 17. Weighted Calatan examples for (r*)

(o) Catalan: In Stanley, this is described as non-intersecting arcs joining n pairs

of points in the plane. Our preferred version of this representation is to think of it as

partitions of 2n into blocks of size 2.

Generalization (figure 18): Non-crossing partitions of n + m where the elements of B

correspond to one less than the sizes of the blocks in the partition. In terms of the

original representation, this would entail nonintersecting arcs joining 2n points on a

line where there are groups of arcs with the same left point (but no arcs with the

same right point) and the group sizes would be given by B.

This bijects with (r*) as noted above.

{1, 7, 8}{2, 5, 6}{3, 4} {1, 2, 8}{3, 4, 5}{6, 7} {1, 2, 3}{4, 7, 8}{5, 6}
{1, 2, 3}{4, 5}{6, 7, 8} {1, 2}{3, 4, 8}{5, 6, 7}

Fig. 18. Weighted Calatan examples for (o)

(n) Catalan: n nonintersecting chords joining 2n points on a circle.

Generalization (figure 19): Nonintersecting opening multi-chords of sizes given by

B joining 2n points on the circumference of a circle. We define a multi-chord to

be a group of linked connections between points on the circumference on the circle

(as opposed to just a single connection between two points, as in a chord). An

opening multi-chord is one which only has multiple connections at one of its nodes,

and that node comes before its connected nodes when traversing the circle clockwise.

51

Obviously, this notion requires a fixed starting point on the circle; we’ll arbitrarily

choose the node closest to the angle 0 from the center of the circle.

An alternate version of this is to use non-intersecting “chord segments”, where

each segment is ai chords in a sequence, and the chords join points evenly spaced

around the circle. Here the positions of the matching opening and closing parenthesis

gives the points connected by the chords, and the weight of the opening chord gives

the number of chords connected. See [8] for the p-Catalan case of this.

This has a trivial bijection to (r*), using our notion of opening and closing

parenthesis. Each opening multi-chord is a left parenthesis of a given weight, and

each node it is connected to are its closing parenthesis. The non-crossing of the

chords corresponds to the proper matching of the parenthesis in nested fashion. A

similarly trivial bijection can be seen by arranging the points from (o) around a circle

with an arbitrary starting point, such as angle 0.

Fig. 19. Weighted Calatan examples for (n)

(p) Catalan: Ways of drawing n + 1 points on a line with arcs connecting them

such that the arcs do not pass below the line, the arcs are noncrossing, all the arcs

at a given node exit in the same direction (left or right), and the graph thus formed

is a tree.

Generalization (figure 20): As above, except that we add groupings to the arcs, such

that the sizes of the groups are given by B, and the arcs of a group are not separated

52

by an arc from a different group.

Bijection to (r). Starting with the first node, count the number of left-to-right

arcs coming out of it in each group, and write those numbers down from topmost

group to bottommost. For every node after the first, start with a -1, then repeat

the process of counting the groups. Don’t count any zeros for nodes which only have

right-to-left arcs. This gives a sequence of positive integers from B and negative ones.

Nonnegativity corresponds to the fact that we cannot have more nodes (after the

first) than we have already counted left-to-right arcs.

Fig. 20. Weighted Calatan examples for (p)

(a) Catalan: Partitions of an (n + 2)-gon into triangles.

Generalization (figure 21): Partitions of an (n + 2)-gon into polygons whose sizes are

given by ai + 2 where ai ∈ B.

Following the standard bijection for the Catalan numbers to (d), we fix an edge

as the base of the polygon, and fix a root of a tree in this edge. (In fig. 21 we have

fixed the top edge as the base.) For a given partition of the (n + 2)-gon, we place

a node in each side of the partition containing the base, then connect each node to

the root with a tree edge. This makes the root have degree equal to the number of

sides in the polygon containing the base in our partition minus one. Then we treat

each of the children as the root of their own subtree and continue recursively. The

53

degree of each node will correspond to an element of B plus one, since after taking the

base edge out of any polygon, it has that many remaining sides to form the children

of its subtree’s root node. Shapiro and Sulanke[21] showed this relationship over all

partitions; this is the case specific to a chosen partition. (See fig.21 where we show

the corresponding tree superimposed over the polygon partition below each polygon

partition.)

Fig. 21. Weighted Calatan examples for (a)

(pp) Catalan: Noncrossing partitions of [n].

Generalization (figure 22): A pair of partitions of [n], A and B, such that A is non-

crossing, the blocks of B are of sizes given by B, B is a subpartition of A, and inside

any block of A, the elements of any block of B are continuous, i.e.,there do not appear

in any block of A subsequences abc where a and c are members of the same block of

B and b is not. In the Catalan case, our B is the trivial partition of singletons.

Bijection to (r*): A block in the partition of A tells us how the opening paren-

thesis are grouped for the close parentheses corresponding to the elements of the

partition. For example, take the partition 12459 − 3 − 678 for A with B being

124 − 3 − 5 − 6 − 78 − 9. The first block in the A partition tells us that the first,

54

second, fourth, fifth, and ninth closing parenthesis have their opening parenthesis

grouped together, and the B partition tells us that the first three have the same

opening parenthesis, like so: 3(())∗)) ∗ ∗∗) (Where the stars represent locations of

closing parentheses whose opening parenthesis have not yet been placed.) The 3

block in A gives us that the third parenthesis matches up to an open parenthesis

of weight one, so the first ∗ can be replaced with (). The 678 block in the A par-

tition and the corresponding subpartition in B tells us that we have the following

construction near the end of the string: (2)))Thus, the full parenthesization is given

by: 3(())()))(2))))

{1}{2, 3}{4, 5} ⊂ {1, 2, 3, 4, 5} {1, 5}{2, 3}{4} ⊂ {1, 5}{2, 3}{4}
{12}{3}{4, 5} ⊂ {12}{3, 4, 5} {1, 2}{3}{4, 5} ⊂ {1, 2}{3}{4, 5}
{1}{2, 5}{3, 4} ⊂ {1}{2, 5}{3, 4}

Fig. 22. Weighted Calatan examples for (pp)

(qq) Catalan: A partition A of [n] such that if the numbers are arranged in order

around a circle, then the convex hulls of the blocks of a given partition are pairwise

disjoint.

Generalization: Pairs of partitions A and B of [n] such that, if the numbers are

arranged in order around a circle then the convex hulls of the blocks of a given

partition are pairwise disjoint, B is a subpartition of A, and within any block of A,

the subblocks of B consist of consecutive elements.

These are the same partitions as (pp). The circle arrangement is another way

to specify that the partitions are noncrossing.

(rr) Catalan: Noncrossing Murasaki diagrams with n vertical bars.

Generalization (figure 23): Noncrossing Murasaki diagrams with n vertical bars such

that an additional grouping of the bars is accomplished by noncrossing underlines

55

which group the bars into discrete groups whose sizes are given by B and the underlines

are subsets of the overlines. In the Catalan case, each bar is just its own underline

group.

This is another way to represent (pp).

Fig. 23. Weighted Calatan examples for (rr)

(uu) Catalan: Nonnesting partitions of [n].

Generalization (figure 24): A pair of partitions A and B of [n] such that A is nonnest-

ing, the block sizes of B are given by B, B is a subpartition of A, and inside any block

of A, the elements of any block of B are continuous, i.e.,there do not appear in any

block of A subsequences abc where a and c are members of the same block of B and

b is not.

This is in bijection to (pp), using the natural bijection between non-crossing and

non-nesting partitions.

{1, 4}{2, 5}{3} ⊂ {1, 4}{2, 5}{3} {1, 2}{3, 4}{5} ⊂ {1, 2}{3, 4}{5}
{1, 2}{3, 5}{4} ⊂ {1, 2, 3, 5}{4} {1, 2}{3}{4, 5} ⊂ {1, 2, 3, 4, 5}
{1}{2, 3}{4, 5} ⊂ {1, 2, 3}{4, 5}

Fig. 24. Weighted Calatan examples for (uu)

56

D. Permutations

(cc) Catalan: Permutations of the multiset {12, 22, . . . , n2} such that the first

occurrences of each number appear in increasing order, and there is no subsequence

of the form abab.

Generalization (figure 25): Permutations of the multisets 1b1+1, 2b2+1, . . . , kbk+1 where

the bi are any arrangement of the elements of B, the first occurrences of each number

appear in increasing order, and there is no subsquence of the form abab.

This representation is in bijection to (r*), with the first occurrence of each

number being an open parenthesis, and the later occurrences being the closing paren-

thesis. The weight of the open parenthesis is given by the bi in the multiset, and the

subsequence restriction corresponds to the noncrossing condition on the parenthesis

groups.

(1, 2, 3, 3, 2, 2, 1, 1) (1, 1, 2, 2, 2, 3, 3, 1) (1, 1, 1, 2, 3, 3, 2, 2)

(1, 1, 1, 2, 2, 3, 3, 3) (1, 1, 2, 2, 3, 3, 3, 2)

Fig. 25. Weighted Calatan examples for (cc)

(dd) Catalan: Permutations [2n] such that the odd numbers appear in increasing

order, the even numbers appear in increasing order, and odd a appear before a + 1.

Generalization (figure 26): Permutations of the multisets {1, 2b1, 3, 4b2, . . . , (2m −
1), (2m)bm} where the bi are any arrangement of the elements of B, with the restric-

tions above.

We biject this to (r) by reading each odd number a as a positive integer (whose

size is the bi from the weight of a + 1 in the multiset), and each a + 1 as a −1. The

restrictions on order of appearance correspond to the partial sum restrictions of (r).

(ee) Catalan: 321-avoiding permutations of [n].

57

(1, 3, 5, 2, 2, 4, 4, 6) (1, 2, 3, 2, 4, 5, 4, 6) (1, 2, 2, 3, 5, 4, 4, 6)

(1, 2, 2, 3, 4, 5, 6, 6) (1, 2, 3, 4, 5, 4, 6, 6)

Fig. 26. Weighted Calatan examples for (dd)

Generalization: 321 avoiding permutations of [n], such that the elements of the per-

mutation are partitioned into contiguous blocks whose sizes are given by B.

Bijection: These are the same permutations as (jj) (see figure on page 60); the

restrictions on the blocks and the 321 avoidance matches the restrictions on them in

(jj) without referencing the queues.

(gg) Catalan: Permutations w of [2n] with n cycles of length two such that the

product (1, 2, . . . , 2n)w has n cycles.

Generalization (figure 27): Permutations w of [m + n] with cycle lengths given by B

such that the product (1, 2, . . . , 2n)w has m cycles.

Bijection with (r*): Take a valid parenthesis arrangement, and label each paren-

thesis from 1 to k in order of appearance. Then for each open parenthesis, write down

the parentheses in that group in decreasing order of appearance as a cycle. For ex-

ample, if a parentheses group has its open parenthesis at position 4, and its closing

parentheses at positions 5, 8, and 12, then its corresponding cycle will be (12, 8, 5, 4).

This gives a permutation of cycles with appropriate size according to B.

Now, if a parenthesis cj of one group precedes the first parenthesis of a different

group, d1, then the cycle in the product containing ck will have the sequence ck, dω

where dω is the final parenthesis of the group that d1 starts.

Furthermore, if we have the last parenthesis cω of a group followed by some

parenthesis di of a different group, then the cycle in the containing cω will have the

sequence cω, di−1, where di−1 will be dω if di is the first parenthesis of its group (aka,

d1).

58

Finally, any parenthesis cj followed by cj+1 from its own group will form a sin-

gleton in the product (as we will have cj, cj+1 in the first part of the product).

Using these facts, we can label groups of parentheses by level, so that the groups

which are completely contiguous are on level 0, groups that only contain groups of

level 0 are on level 1, groups that only contain groups of level less than i are on level

i.

Then we see that a level 0 group with opening parenthesis of weight f will

become f singletons in the final product (every element but the last will become a

singleton), and the final element of the level 1 group will be linked into the preceding

and following groups.

For a level 1 group of weight g, we see that the elements preceding the level

0 groups will be linked in a cycle with the final element of the level 0 groups, and

the final element will be linked into the preceding and following groups, and the

other elements will become single cycles. If such a group contains m level 0 groups

of weights c1 . . . cm, then the entirety will contain
m∑
1

ci singletons from the level 0

groups, g − m singletons from the level 1 group and m groups that are either links

into the level 0 groups or singletons (depending on how many of the level 0 groups

follow a different level 0 group instead of an element of our level 1 group). The final

element of this group will link into the preceding and following groups, but the rest

of the elements give us a number of cycles in the final product exactly equal to the

weights of the opening parenthesis contained within.

We can continue by induction on groups of higher level, seeing that each time,

we will get a number of cycles in the final product equal to the sums of the weights of

the opening parenthesis of the contained groups, with one element linking to outside

the group.

When we reach the highest level, that final link out completes a cycle, giving us

59

the required m + 1 cycles in the product.

Details of the inverse map are omitted other than to note that the requirement for

the number of cycles in the product enforces the non-crossing nature of the partition

and the ordering of the pre-product cycles, and the size of the pre-product cycles

gives us groups of the appropriate weight.

(1, 8, 7)(2, 6, 5)(3, 4) (1, 8, 2)(3, 5, 4)(6, 7) (1, 3, 2)(4, 8, 7)(5, 6)

(1, 3, 2)(4, 5)(6, 8, 7) (1, 2)(3, 8, 4)(5, 7, 6)

Fig. 27. Weighted Calatan examples for (gg)

(ii) Catalan: Permutations of [n] that can be stack sorted.

Generalization (figure 28): Permutations of [n] with the elements of the permutation

partitioned into contiguous blocks whose sizes are given by B, such that the partition

is stack sortable if the elements in a block must be moved onto the stack together.

(They can be removed individually.)

Bijection to (r) by recording the sizes of the blocks moved onto the stack as

positive numbers and removals from the stack as −1.

(5, 4, 3, 2, 1) (5, 1, 3, 2, 4) (2, 1, 5, 4, 3) (2, 1, 3, 5, 4) (1, 5, 2, 4, 3)

Fig. 28. Weighted Calatan examples for (ii)

(jj) Catalan: Permutations of [n] that can be sorted on two parallel queues. (See

Stanley[25])

Generalization (figure 29): Permutations of n such that elements of the permutation

are partitioned into blocks whose size are given by B, that can be sorted on two parallel

queues if the elements in a block must be moved onto a queue together without any

intervening removals from the queues being allowed.

60

Bijection to (r): Whenever a group of elements is moved onto the queues, record

a positive integer of the size of the group. Whenever an element is removed from a

queue, record a −1.

(2, 3, 4, 5, 1) (1, 5, 2, 3, 4) (1, 2, 4, 5, 3) (1, 2, 3, 4, 5) (1, 2, 5, 3, 4)

Fig. 29. Weighted Calatan examples for (jj)

(kk) Catalan: Permutations of [2n] consisting of cycles of length 2 such that the

cycles form a noncrossing partition.

Generalization: Permutations of [m+n] whose cycle lengths are given by B, such that

the cycles form a non-crossing partition of [m + n] and each cycle is in decreasing

order.

At the same time, these are both the cycles that will satisfy (gg) and the parti-

tions that will satisfy (o) (with a specific ordering given for listing each block). (See

figure 27.)

(aaa) Catalan: Linear extensions of the poset [2] × [n]

Generalization (figure 30): Create a poset by taking the elements of the multiset

{1, 2b1, 3, 4b2, . . . } where the bi are any arrangement of the elements of B (as in (dd))

with the partial ordering <! such that if a and b are both odd or both even then

a < b → a <! b. If a = ci and b = cj then i < j → a <! b. And if a is odd and

b = a + 1 then a <! b. The elements counted by our formula are the linear extensions

of these posets.

Bijection: The posets correspond to the multisets of (dd) and the linear exten-

sions of the posets are the restricted permutations of (dd). One can also link directly

into (r) by reading the odd numbers as positive integers (whose weight is given by

their corresponding even number) and the even numbers as −1’s.

61

1, 3, 5, 21, 22, 41, 42, 6 1, 21, 3, 22, 41, 5, 42, 6 1, 21, 22, 3, 5, 41, 42, 6

1, 21, 22, 3, 4, 5, 61, 62 1, 2, 3, 41, 5, 42, 61, 62

Fig. 30. Weighted Calatan examples for (aaa)

E. Other Equivalent Representations

(b) Catalan: Binary parenthesizations of a string of n + 1 letters.

Generalization (figure 31): Parenthesizations of n + 1 letters into blocks given by B;

i.e.,each pair of parenthesis encloses bi (where bi ∈ B) items where each item is either

a letter or another parenthesization.

Bijection to (d): Given such a parenthesization, we look at the outermost group

of items, and the size of this group gives us the degree of the root. Then we look

at the rightmost item in this grouping, and we look at each item as a group, with

a letter designating a leaf, and a sub-parenthesization representing a subtree. For

example, the parenthesization ((xx)xx) has an outermost group of size 3, giving a

root of degree three. Its first child is a subtree whose root is of degree two with two

leaves, and its second and third child are leaves. Contrast this with (x(xxx)) whose

outermost group designates a root of degree two whose first child is a leaf and whose

second child is a node with three children, all leaves.

(((xx)xx)xx) (x(xx(xx))x) (xx((xx)xx)) (xx(x(xxx))) (x(x(xxx)x))

Fig. 31. Weighted Calatan examples for (b)

(s) Catalan: Sequences 1 ≤ a1 ≤ · · · ≤ an with ai < i.

Generalization (figure 32): Sequences < ai > of n numbers such that they are weakly

increasing, grouped into contiguous groups of identical numbers of sizes given by B,

and each ai ≤ i.

62

Bijection with (h): These are the heights plus one of (h)’s x = i − 1, and the

groupings give the size of the horizontal steps.

11 11 1 11 22 3 11 22 2 11 2 33 1 22 33

Fig. 32. Weighted Calatan examples for (s)

(ww) Catalan: Standard Young Tableux of shape (n, n).

Generalization (figure 33): The elements of n + m laid out in a diagram whose first

row is of width m, whose column heights are given by the weights in B, whose rows

and columns are in increasing order, and elements not in the first row are ordered

among columns such that each is greater than the elements appearing in the columns

to its left. Note that this differs from a Young Tableux in that there may be gaps

between elements in the later rows, and we have a stronger restriction on ordering.

Bijection to (r): The first row gives the location of the positive numbers (of size

equal one less than the column’s height) and the other elements give the location of the

−1’s. The increasing column restriction is equivalent to the nonnegativity restriction

on (r) and the fill requirement for the lower rows ensures a unique representation for

each sequence.

123 136 145 146 135
468 258 268 257 247
57 47 37 3 8 68

Fig. 33. Weighted Calatan examples for (ww)

F. Two-Sided Generalization

In the representations of our generalized Catalan numbers given above, we allowed

one side to vary the weights of its elements, while requiring the other side to remain

63

fixed. However, one can consider a two-sided ballot problem, where both positive

and negative numbers can be of any weight, so long as the sum total is equal to

zero, and the valid arrangements of a weight set require nonnegative partial sums.

We represent this with a new weight set C as a multiset over Z with 0 /∈ C and

the sums of the positive and negative weights are the same . This generalization

has been investigated by Curtis Coker[3], who shows that the generating function
n∑

k=1

1

n

(
n

k

)(
n

k − 1

)
x2k(1 + x)2n−2k gives us the number of structures with the coef-

ficients for xi giving the total ballot arrangements whose partitions have i blocks.

Plugging in x = 1 in the above formula gives us
n∑

k=1

4n−kN(n, n − k) where N(n, i)

are the Narayana numbers. This is the number of all two-sided structures whose total

length is n (See Sloane’s A059231[22]).

64

CHAPTER V

SUMMARY

We have discovered a formula for the descents in parking functions and a generating

function for them based on the number of ties. We have also discovered a generating

function for the number of inversions in parking functions with a given weight set.

In the process, we have found an extension to the Catalan numbers which allows

for different weights to be combined into one structure. Finally, we have explored

extensions to parking functions, gave a recursion for the linear probes in blocked

parking functions, and gave generating functions for the first few cases.

65

REFERENCES

1. J. S. Beissinger and U. N. Peled, A note on major sequences and external activity

in trees, The Electronic Journal of Combinatorics 3 (1996).

2. P. Biane, Parking functions of types a and b, The Electronic Journal of Combi-

natorics 9 (2002).

3. C. Coker, Enumerating a class of lattice paths, Discrete Math 271 (2003), 13–28.

4. A.D. Foata and J. Riordan, Mappings of acyclic and parking functions, Aequa-

tiones Mathematicae 10 (1974), 10–22.

5. J. D. Gilbey and L. H. Kalikow, Parking functions, valet functions, and priority

queues, Discrete Mathematics 197-198 (1999), 351–373.

6. J. Haglund and N.A. Loehr, A conjectured combinatorial formula for the Hilbert

series for diagonal harmonics, Discrete Mathematics 298 (2005), 189–204.

7. M. Haiman, Conjectures on the quotient ring by diagonal invariants, Journal of

Algebraic Combinatorics 3 (1994), 17–76.

8. S. Heubach, N. Li, and T. Mansour, A garden of k-Catalan structures,

http://www.calstatela.edu/faculty/sheubac/papers/k-Catalan%20structures.pdf

(Accessed on May 1 2009).

9. P. Hilton and J. Pedersen, Catalan numbers, their generalization, and their uses,

Math. Intelligencer 13 (1991), 64–75.

10. D. A. Klarner, Correspondences between plane trees and binary sequences, Journal

of Combinatoric Theory 9 (1970), 401–411.

66

11. D. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, Mas-

sachussets, 1997.

12. , Linear probing and graphs, Algorithmica 22 (1998), 561–568.

13. A. G. Konheim and B. Weiss, An occupancy discipline and applications, SIAM

Journal on Applied Mathematics 14 (1966), 1266–1274.

14. G. Kreweras, Une famille de polynomes ayant plusiers propri et es enumeratives,

Periodica Mathematica Hungaria 11 (1980), 309–320.

15. J. Kung, X. Sun, and C. H. Yan, Goncarov-type polynomials and applications in

combinatorics, Preprint (2005).

16. J. Kung and C. H. Yan, Exact formula for moments of sums of classical parking

functions, Advances in Applied Mathematics 31 (2003), 215–241.

17. , Expected sums of moments general parking functions, Annals of Combi-

natorics 7 (2003), 481–493.

18. , Goncarov polynomials and parking functions, Journal of Combinatorial

Theory 102 (2003), no. 1, 16–37.

19. N.A. Loehr, Combinatorics of q,t-parking functions, Advances in Applied Math

34 (2005), 408–425.

20. P. Peart and W. Woan, Dyck paths with no peaks at height k, Journal of Integer

Sequences 4 (2001).

21. L. Shapiro and R. Sulanke, Bijections for the Schröder numbers, Mathematics

Magazine 73 (2000), 369–376.

67

22. N.J.A. Sloane, Online encyclopedia of integer sequences,

http://www.research.att.com/˜njas/sequences/.

23. R. P. Stanley, Parking functions and noncrossing partitions, The Electronic Jour-

nal of Combinatorics 4 (1997).

24. , Hyperplane arrangements, parking functions, and tree inversions, Math-

ematical Essays in Honor of Gian-Carlo Rota 161 (1998), 359–375.

25. , Enumerative Combinatorics, vol. 2, Cambridge University Press, New

York, New York, 2005.

26. , Enumerative Combinatorics, vol. 1, Cambridge University Press, New

York, New York, 2005.

27. , Exercises on Catalan and related numbers,

http://math.mit.edu/˜rstan/ec/catalan.pdf (accessed on May 1 2009), 2009.

28. C. H. Yan, Generalized tree inversions and k-parking functions, Journal of Com-

binatorial Theory 79 (1997), 268–280.

29. , On the enumeration of generalized parking functions, Congressus Nu-

merantium (2000), no. 147, 201–209.

30. , Generalized parking functions, tree inversions and multicolored graphs,

Advances in Applied Mathematics 27 (2001), 641–670.

31. C. H. Yan and D. Kostic, Multiparking functions, graph search, and tutte polyno-

mials, Advances in Applied Mathematics 40 (2008), 73–97.

68

VITA

Paul R. F. Schumacher was born in 1977. He attended the University of Chicago,

and graduated in 1999 with bachelor’s degrees in mathematics, computer science,

and statistics. He can be reached via Texas A&M Department of Mathematics,

Texas A&M University,College Station, TX 77843-3368. His email address is schu-

mach@math.tamu.edu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

