
ESSAYS IN FINANCIAL ECONOMETRICS

A Dissertation

by

DAE HEE JEONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2009

Major Subject: Economics



ESSAYS IN FINANCIAL ECONOMETRICS

A Dissertation

by

DAE HEE JEONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Joon Y. Park
Committee Members, Kerry E. Back

Yoosoon Chang
Hwagyun Kim

Head of Department, Larry Oliver

August 2009

Major Subject: Economics



iii

ABSTRACT

Essays in Financial Econometrics. (August 2009)

Dae Hee Jeong, B.A., Seoul National University;

M.A., Seoul National University

Chair of Advisory Committee: Dr. Joon Y. Park

I consider continuous time asset pricing models with stochastic differential utility

incorporating decision makers’ concern with ambiguity on true probability measure.

In order to identify and estimate key parameters in the models, I use a novel econo-

metric methodology developed recently by Park (2008) for the statistical inference on

continuous time conditional mean models. The methodology only imposes the con-

dition that the pricing error is a continuous martingale to achieve identification, and

obtain consistent and asymptotically normal estimates of the unknown parameters.

Under a representative agent setting, I empirically evaluate alternative preference

specifications including a multiple-prior recursive utility. My empirical findings are

summarized as follows: Relative risk aversion is estimated around 1.5-5.5 with ambi-

guity aversion and 6-14 without ambiguity aversion. Related, the estimated ambiguity

aversion is both economically and statistically significant and including the ambiguity

aversion clearly lowers relative risk aversion. The elasticity of intertemporal substi-

tution (EIS) is higher than 1, around 1.3-22 with ambiguity aversion, and quite high

without ambiguity aversion. The identification of EIS appears to be fairly weak, as

observed by many previous authors, though other aspects of my empirical results

seem quite robust.

Next, I develop an approach to test for martingale in a continuous time frame-

work. The approach yields various test statistics that are consistent against a wide

class of nonmartingale semimartingales. A novel aspect of my approach is to use a
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time change defined by the inverse of the quadratic variation of a semimartingale,

which is to be tested for the martingale hypothesis. With the time change, a con-

tinuous semimartingale reduces to Brownian motion if and only if it is a continuous

martingale. This follows immediately from the celebrated theorem by Dambis, Du-

bins and Schwarz. For the test of martingale, I may therefore see if the given process

becomes Brownian motion after the time change. I use several existing tests for

multivariate normality to test whether the time changed process is indeed Brownian

motion. I provide asymptotic theories for my test statistics, on the assumption that

the sampling interval decreases, as well as the time horizon expands. The stationarity

of the underlying process is not assumed, so that my results are applicable also to

nonstationary processes. A Monte-Carlo study shows that our tests perform very well

for a wide range of realistic alternatives and have superior power than other discrete

time tests.
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CHAPTER I

INTRODUCTION

Recently, continuous time models have drawn much attention in economics and fi-

nance due to their mathematical elegance and tractability. Meanwhile, it also has

long been customary to use Euler approximation and standard discrete time methods

to evaluate the continuous time models. However, it is well known that the continuous

time models are well approximated only with small time interval for which the errors

in the disceretized model are predominantly large compared to the conditional mean.

Moreover, the volatility in the error is nonlinear and nonstationary process in general,

which is not very attractive to analyze in the standard discrete time framework.

My approach is based on a time change defined as the inverse of the quadratic

variation of the underlying continuous time process, which I assume to be a general

semimartingale whose martingale component is a.s. continuous. Under my setting,

the underlying stochastic process becomes a martingale if and only if it becomes

Brownian motion after the time change by the celebrated theorem by Dambis (1965),

Dubins and Schwarz (1965). Using the time change, I develop a new method to test

and estimate continuous time models. My approach based on time change enables us

to observe a new set of samples with homogeneous volatility, and moreover, it delivers

a nice and simple restrictions on the distribution of the samples.

In Chapter II, I estimate a continuous time asset pricing model with stochastic

differential utility incorporating decision makers’ concern with ambiguity on true

probability measure. Our new time change estimation method provides us a way to

gauge the empirical performances of the asset pricing models, and moreover, it helps

us to identify one of the most interesting concept in modern asset pricing theory, the

ambiguity. In Chapter III , I consider a test for martingale hypothesis in continuous

This dissertation follows the style of Econometrica.
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time based on the time change framework. I suggest four classes of test statistics

based on the time change and show that our tests perform very well for a wide range

of realistic specifications, and have superior power than other discrete time tests.
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CHAPTER II

DOES AMBIGUITY MATTER?

ESTIMATING ASSET PRICING MODELS WITH

A MULTIPLE-PRIORS RECURSIVE UTILITY

A. Introduction

In this paper, we empirically investigate continuous time asset pricing models with

recursive preferences incorporating decision makers’ concern with ambiguity on true

probability measure. Our measure of ambiguity aversion following Chen and Epstein

(2002) is explicitly derived by exploiting some properties of continuous time diffu-

sion processes and measuring instantaneous conditional volatilities of asset returns

plays an important role in quantifying uncertainty premium rewarded by financial

markets. Alas, the theoretical model adopted here sets the pricing kernel via the

intertemporal marginal rate of substitution of a representative agent, and identify-

ing this kernel involves using macroeconomic variables such as consumption growth,

which are available only at lower frequencies. Consequently, we need to handle both

financial data sampled at a high frequency and macroeconomic data available only

at lower frequencies in order to estimate asset pricing models written in continuous

time. This motivates us to develop a new set of econometric tools for the statistical

inference on continuous time conditional mean models when available data series are

of mixed frequencies. With this method in hand,we quantify the extent to which

financial markets price ambiguity, risk, and intertemporal substitutability.

Since the seminal papers by Hansen and Singleton (1982) and Mehra and Prescott

(1985), a large body of work has sought after more relevant forms of the preferences

of economic agents to explain asset market behaviors. The main reason for this di-
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rection of the study is because time-separable expected utility functions equipped

with a constant relative risk aversion (CRRA) impose a potentially restrictive rela-

tionship between the risk aversion and intertemporal substitution. Specifically, under

power utility models, the elasticity of intertemporal substitution (EIS) is given by

the reciprocal of the coefficient of relative risk aversion, which may result in various

complications, such as equity premium, volatility and interest rate puzzles. Epstein

and Zin (1989, 1991) investigated an important generalization of the standard power

utility model by considering a class of recursive utility functions.1 They provide a

theoretical framework in which the agent can have distinct attitudes toward intertem-

poral substitution and risk. This flexibility may offer a possible solution for various

asset price anomalies because a high (low) risk aversion does not necessarily imply a

low (high) elasticity of intertemporal substitution.2

Even though the recursive utility models allow the distinction between risk aver-

sion and willingness to substitute intertemporally, the preference toward Knightian

uncertainty or ambiguity is difficult to model within the original recursive utility

framework due to the assumption of single prior held by investors. However, the

Ellsberg paradox suggests that decision makers prefer an unambiguous situation,

other things being equal. In response to this, Gilboa and Schmeidler (1989) built

a multiple-priors model to incorporate ambiguity aversion in an atemporal setting.3

1The basic structure of recursive utility is due to Koopmans (1960) and Lucas
and Stokey (1984), which decompose a utility function into current consumption and
future utility in a non-linear fashion. In this context, Epstein and Zin (1989) can be
regarded as a stochastic extension of the recursive utility framework.

2In addition, this preference has a preference ordering for temporal resolution of
uncertainty. Recently, Bansal and Yaron (2004) and Hansen, Heaton, and Li (2008)
exploit this aspect to explain equity premium puzzle together with a time-varying,
conditional mean component. Kim, Lee, Park, and Yeo (2008) develop a stochastic
volatility model with two asymptotic regimes and transition regimes and show that
this type of preference can explain aversion to uncertainties in regimes.

3Simply put, they assume that economic agents have a class of probability distribu-
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Epstein and Wang (1994) develop a dynamic version of Gilboa and Schmeidler in a

discrete-time framework and Epstein and Schneider (2003) provide axiomatic foun-

dations for recursive multiple-priors utility. Chen and Epstein (2002) focused on

the formulation of utility in continuous time that allows a distinction between risk

aversion and ambiguity aversion, as well as the distinction from the EIS. In order

to achieve the additional dimension of flexibility, they extended the continuous time

version of the recursive utility (stochastic differential utility) investigated by Duffie

and Epstein (1992a, 1992b), such that the model includes a set of priors rather than

a single prior. According to Chen and Epstein (2002), the economic agents will have

multiple prior beliefs on the state of the nature, and they form a set of expectations

based on their beliefs. Due to the fact that fundamental shock processes are generated

by Brownian motion, the degree of ambiguity is described by an additional term dis-

torting the conditional mean component of the implied asset return processes and the

decision maker chooses a probability measure using the maxmin principle following

Gilboa and Schmeidler (1989).4

Despite the appealing features of the multiple-priors recursive utility model, there

has been little econometric work on estimating the model compared to other utility

specifications. To the best of our knowledge, this is the first paper that empirically

tackles this issue under the framework of consumption-based models. The multiple-

priors recursive utility model has a multi-factor beta representation of asset returns;

(i) covariance between returns and consumption growth, (ii) covariance between re-

tions, say P on some events in a measurable space (Ω,F). Then the agents will make
decisions following a max-min rule. For instance, if the agent decides consumption c
to maximize utility u(c), she solves max

c
min
Q∈P

EQ[u(c)]

4There exists a related line of work on robust decision making. Hansen and Sargent
(2001) and their co-authors emphasize ‘model uncertainty’ and the concern on the
misspecification, which is similar in spirit to ambiguity aversion à la Gilboa and
Schmeidler.
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turns and aggregate wealth return, and (iii) covariance between returns and ambi-

guity.5 However, this structure makes identification of the model difficult because

aggregate wealth and volatility of returns are unobservable latent variables and more

notably, there is a lack of econometric methodology for estimating continuous time

models. Below, we briefly explain how we overcome these issues.

With regard to the unobservability of aggregate wealth, several approaches have

been suggested. The baseline approach would be to use a market return as a proxy for

the returns on aggregate wealth (e.g., Epstein and Zin (1991), Bakshi and Naka (1997)

and Normandin and St-Amour (1998)). However, the aggregate wealth portfolio

should be a broader measure than the financial market portfolio, because the former

includes human capital, natural resources, and housing wealth etc. as well as the

financial wealth. Therefore, the market return only covers a subset of the aggregate

wealth returns. Another approach is to use a specific structure for the unobservable

wealth by incorporating the dynamics of consumption growth and utility continuation

value (e.g., Chen et al. (2008)) Given the imposed structure, the aggregate wealth

is implicitly given by consumption and utility continuation value. Therefore, this

approach enables them to replace the unobservable wealth return with the specific

structure imposed on the consumption and the future utilities. Chen et al. (2008)

exploit the Euler equation to estimate future continuation utility in a non-parametric

way.

Although this method is attractive, it is difficult to use in our continuous-time

framework handling mixed frequencies of data. Instead, we consider a different ap-

proach to overcome the difficulties from the unobservable aggregate wealth. The

5Note that this representation, especially in closed form is available only in con-
tinuous time due to Girsanov transformation which allows different subjective proba-
bility measures to be expressed via tilting the drift component in an equilibrium asset
pricing equation.
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aggregate wealth return is a return on the claim which gives a stream of future con-

sumption. In this sense, the consumption of each period is financed by the aggregate

wealth return, and therefore, we can think of the aggregate wealth as the sum of

financial wealth and human capital, which are the two largest sources of the income

in an economy. That is, the unobservability of aggregate wealth falls mostly on the

human wealth. Following Campbell (1993), we assume that the proportion of the

financial wealth to the human wealth is stationary, and moreover, the labor income

is homogeneous of degree one with respect to the human wealth. In this case, the

unobservable wealth can be substituted by a linear combination of market return and

labor income growth. This simple structure makes the asset pricing formula tractable

so that we can directly compare the results of alternative models.

For an empirical analysis of our model, we use the martingale regression method

recently developed by Park (2008) for inference on continuous time conditional mean

models. It identifies the true parameter value simply by imposing the martingale

condition for pricing error, utilizing the fact that the conditional expectation of pric-

ing error is zero for the true parameter value, whereas it is generally non-zero for

other values of parameter in the pricing equation. The spirit of the methodology is

therefore somewhat similar to the GMM estimation for the nonlinear Euler equation

models (e.g. Hansen and Singleton (1982)). The martingale condition for pricing

error can easily be handled, since any continuous martingale can be converted into

Brownian motion due to the celebrated theorem by Dambis, Dubins and Schwarz.

The theorem states that any continuous martingale becomes Brownian motion if it is

read after time change defined by the generalized inverse of its quadratic variation.

The actual martingale estimator is defined as a minimum distance estimator based

on the discrepancy between the empirical distribution of normalized pricing errors

after time change and the standard normal distribution.
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There are several attractive features of our approach using the martingale estima-

tion. First, the martingale estimation does not require any parametric specification

of volatilities in pricing errors. However, it allows for, and is robust with respect

to, the presence of a wide variety of both deterministic and stochastic volatilities in

pricing errors. This is an important advantage, since many empirical researches on

the financial data find strong evidences that stock returns possess time-varying and

potentially stochastic volatilities, while the exact natures of these volatilities are dif-

ficult to specify more precisely. Second, the martingale estimation does not use the

orthogonality condition to identify the true parameters. Instead, it only imposes the

martingale condition for pricing errors, and subsequently uses the time change theo-

rem by Dambis, Dubins and Schwarz to make the condition implementable in defining

the martingale estimator. Unlike the GMM estimator, we do not need instruments to

compute the martingale estimator. Yet, the martingale estimator naturally accom-

modates endogeneity, and it is free of any kind of endogeneity problem.

Last but not least, this method allows applied econometricians to directly tackle

asset pricing models formulated in continuous time. Many asset pricing models are de-

veloped in continuous time partly because of its mathematical elegance and tractabil-

ity. However, it is also true that continuous time models give better descriptions for

many financial markets, which clear at very high frequencies. Choosing an empiri-

cal model to fit at a most relevant frequency will certainly reduce the possibility of

data missaggregation bias and decision bias. As metioned earlier, however, macro

variables are only observed at lower frequencies. Therefore, we have to deal with

mixed frequencies of data in models involving both macro and financial variables.

The martingale method provides an effective solution to this problem. The observa-

tions on financial variables at high frequencies are used to identify the model and also

to nonparametrically correct for volatilities in pricing errors and after identification
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and volatility correction, the model is estimated by observations sampled at random

intervals of lower frequencies.

Using daily data on asset returns and monthly and quarterly macroeconomic data

from 1960 to 2006, we estimate several specifications of recursive utility framework.

According to our results, the estimates of ambiguity aversion is both economically and

statistically significant. This is a highly robust feature of the data and the estimates

are almost invariant to specifications. In addition, relative risk aversion is estimated

around 1.5-5.5 with ambiguity aversion and 6-14 without ambiguity aversion. That is,

the ambiguity aversion lowers the estimates of the relative risk aversion in all cases we

have considered. Suppose investors receive information from stock prices which may

include some noisy signals. If those signals are hard to interpret and hence difficult

to extract fundamentals, they would prefer an asset market with less ambiguous

information flows and request premiums for bearing such uncertainty different from

risk, in a Knightian sense. Given that, our empirical results suggest that risk aversion

parameter can have an upward bias sans an adjustment for ambiguity aversion to

account for high average market returns.

Another important preference parameter is the elasticity of intertemporal sub-

stitution (EIS). Recently, estimating the EIS has drawn much attention and existing

studies report a wide range of values including even negative numbers. According to

our estimations, the EIS is higher than 1; specifically 1.3-22 with ambiguity aversion,

and quite high without ambiguity aversion. We find that values of the objective func-

tion of our minimum distance estimator measured by the Cramer-von Mises statistic

is very flat around the values of the reciprocal of the EIS between 0 and 3, meaning

that the EIS may be observed in a wide range between a number close to 0 and a

very large positive number. Based on extensive robustness checks, we argue that the

weak identification issue of the EIS parameter results from the combination of smooth
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variations of consumption growth and parametric restrictions imposed in preferences.

One notable finding is that EIS estimations become tighter when the ambiguity aver-

sion is incorporated and this result is robust to alternative specifications.

The remainder of the paper begins with describing our theoretical model in Sec-

tion 2. For comparison, we also consider other baseline models, which can be consid-

ered as special cases of our model. Section 3 accounts for the theoretical underpin-

nings of our econometric methodologies Section 4 describes our empirical procedure

and resulting measurements necessary for our empirical evaluation. Section 5 shows

and discusses our main results. Then we conclude in Section 6.

B. A Recursive Utility Model with Ambiguity Aversion

Consider a probability space (Ω,F , P ) which describes the uncertain nature of the

economy. Define a standard one dimensional Brownian motion (Wt) on (Ω,F , P ),

and the Brownian filtration (Ft)0≤t≤T , where Ft is the σ-field generated by (Ws)s≤t.

The time horizon [0, T ], where T is finite. Suppose that the representative decision

maker does not know the true probability measure and has to choose a subjective

probability measure from the set of all priors P, which are uniformly absolutely

continuous with respect to the true P in P.6. Duffie and Epstein (1992a) show that

for a fixed consumption process C and a probability measure Q ∈ P, there exists a

utility process V Q
t uniquely solving

V Q
t = E

Q

[
∫ T

t

f(Cs, V
Q
s )ds

∣

∣

∣

∣

Ft

]

, 0 ≤ t ≤ T, (2.1)

where E
Q(·|Ft) is the conditional expectation operator and f(C, V ) is called a nor-

malized aggregator function linking current consumption and the future value. From

6P is uniformly absolutely continuous with respect to P if for every ε > 0 there
exists δ > 0 such that E ∈ F and P (E) < δ imply Q(E) < ε, for all Q ∈ P .
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the martingale representation theorem, we can express (2.1) in a differential form of

dV Q
t = −f(Ct, V

Q
t )dt+ σv

t dW
Q
t , (2.2)

where V Q
T = 0, (WQ

t ) is the standard Brownian motion under Q-measure, and σv
t is

endogenously determined.

From now on, we use the functional form

f(C, V ) =
C1−β − φ(αV )

1−β
α

(1 − β)(αV )
1−β

α

(2.3)

for some φ ≥ 0, β 6= 1, α ≤ 1. This can be regarded as the continuous-time version

of Kreps and Porteus (1978) utility function in which α and β measure the degree

of relative risk aversion (RRA) and the elasticity of intertemporal substitution (EIS)

respectively. Specifically, the RRA is measured by (1 − α), and the EIS is 1/β.

In addition, following Epstein and Zin (1989), relative sizes of these two measures

are related to the investor’s attitude toward the speed of resolving uncertainty: If

the RRA (1 − α) is larger (smaller) than the reciprocal of the EIS (β), the investor

prefers an early (a late) resolution of uncertainty. The additional feature of this model

compared to the conventional recursive utility model is that the consumer chooses a

probability measure from available priors, which justifies the name, ‘multiple-priors

utility’. Under this extra layer of uncertainty which leads to the Ellsberg paradox,

Gilboa and Schmeidler (1989) suggested the following minimax type of value function

Vt = min
Q∈P

V Q
t , 0 ≤ t ≤ T. (2.4)

The multiple-priors recursive utility is given by the lower envelope of the utility

process (V Q
t ) which is determined by the conditional expectation of future consump-

tion and utility values. Chen and Epstein (2002) showed that there exists a unique
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solution to (2.4) satisfying the dynamic consistency under certain conditions.7 As

clearly seen from (2.2), the Girsanov transformation lies at the heart of constructing

a set of priors P on (Ω,FT ). Specifically, they define a density generator (λt) for

which the process (zλ
t ) is a P -martingale, where

dzλ
t = −zλ

t λtdWt, zλ
0 = 1,

or equivalently,

zλ
t ≡ exp

(

−1

2

∫ t

0

λ2
sds−

∫ t

0

λsdWs

)

, 0 ≤ t ≤ T.

Then, (zλ
t ) is set as the Radon-Nikodym derivative dQ/dP on (Ft) and P is defined

as the set of Q-measures produced by the density generator. We assume that the

Novikov condition holds to suffice the existence of such (λt). Since all the prior

beliefs are absolutely continuous with P , we can expect from the Girsanov’s theorem

that any subjective utility (V Q
t ) given an equivalent measure Q ∈ P will modify the

drift function of the utility continuation process by (λtσ
v
t ). This is because (Wt)

is the Brownian motion under P measure, but not under Q. That is, by shifting

(λt), we can generate a continuum of subjective utility functions differing in terms

of probability distribution within the class of absolutely continuous multiple-priors.

Chen and Epstein (2002) showed that the differential form of (2.4) is

dVt = −
{

f(Ct, Vt) + max
λt∈L

λtσ
v
t

}

dt+ σv
t dWt, (2.5)

where L is to be defined in short.

To further analyze the additional term in (2.5), assume that (λt) is bounded by

7Dynamic consistency in this paper is defined in the following sense. If two con-
sumption plans c and c′ are the same up to a stopping time τ , and the value Vτ of c
is weakly preferred to that of c′ at τ almost surely, then V0(c) ≥ V0(c

′) almost surely
with a strict inequality in the case that P (Vτ(c) > Vτ (c

′)) > 0 holds.
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some constant κ > 0. This makes the domain of (λt) defined as

L = {(λt) : sup{|λt| : 0 ≤ t ≤ T} ≤ κ}.

That is, the subjective beliefs have some boundary defined by a constant κ. We can

interpret the multiple priors as the subjective beliefs for which the worst case scenario

of the economic agents is confined by the case defined by κ. Hereafter, we examine

the multiple-priors model with a boundary restriction for (λt) with κ > 0.8

Under the standard environment of the economy, first order conditions for opti-

mal consumption choice can be expressed in terms of the supergradient of utility at

the optimal consumption C.9 Especially, C is optimal if

Λt = exp

{∫ t

0

fv(Cs, Vs)ds

}

fc(Ct, Vt)z
λ∗

t , for all t, (2.6)

where (Λt) is the state-price process (or intertemporal marginal rate of substitution

process, IMRS) and (λ∗t ) is the maximizer of the ambiguity compensation (λtσ
v
t ) for

any given (λt) such that |λt| ≤ κ for all 0 ≤ t ≤ T . Then the IMRS in our case is

given as

Λt = exp

{

∫ t

0

(

−φ +
φ

1 − β

(φ− 1 − β)(C
(1−β)
s − (αVs)

(1−β)/α

(αVs)(1−β)/α

)

ds

}

φC−β
t (αVt)

β/αzκ
t .

8Chen and Epstein (2002) call this specification “κ-ignorance” case. This is closely
related to the condition guaranteeing the dynamic consistency, called rectangularity.
For a nice interpretation on the rectangularity condition and dynamic consistency,
see Epstein and Schneider (2003).

9A supergradient for V at C is a process (Λt) with E

{

∫ T

0
Λt · (C ′

t − Ct)dt
}

≥
V (C ′) − V (C) for all admissible C ′. For more details, see Duffie and Skiadas (1994)
and Chen and Epstein (2002).
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Using Ito’s lemma and no arbitrage principle, we can show that, for an asset i,

dpi
t

pi
t

− rf
t dt = E

(

dpi
t

pi
t

dΛt

Λt

∣

∣

∣

∣

Ft

)

+ σi
tdWt (2.7)

=

{

βα

1 − β
ρi

cσ
c
tσ

i
t +

(

1 − α

1 − β

)

ρi
gσ

g
t σ

i
t + κσi

t

}

dt+ σi
tdWt,

where (σg
t ) is the volatility of aggregate wealth (Gt) for which the return is given by

drg
t = µg

tdt+ σg
t dWt, dGt = Gt(dr

g
t ) − Ctdt,

(σc
t ) is the volatility of consumption growth, ρi

c and ρi
g are the correlation coefficients

of consumption growth and aggregate wealth return with the return of an asset i,

respectively.

Equation (2.7) is a three-factor CAPM of the cross-sectional asset pricing model;

the risk premium of any tradable asset i with return (dpi
t/p

i
t) is determined by the

covariance between returns and consumption growth, covariance between returns and

aggregate wealth, and covariance between returns and density generator. Notice that

the standard CRRA utility specification, such as power utility, only has the first

factor, while the single-prior recursive utility models (e.g. Epstein and Zin (1989,

1991) and Duffie and Epstein (1992a, 1992b)) have the first two factors.

In order to include unobservable wealth, we assume the wealth process (Gt) has

two components - financial wealth (Mt) and human wealth (Ht),

Gt = Mt +Ht. (2.8)

From Ito’s lemma we have

σg
t =

√

π2
t (σm

t )2 + (1 − πt)2
(

σh
t

)2
+ 2ρhσm

t σ
h
t , (2.9)

where πt = Mt/Gt is the proportion of financial wealth to the total wealth at time t,
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(σg
t ) and (σh

t ) are the respective diffusion coefficient of (dMt/Mt) and (dHt/Ht), and

ρh is the correlation coefficient between market return and labor income growth. In

particular, we specify the human capital process by

dHt = Ht(dr
h
t ) − Ytdt, drh

t = µh
t dt+ σh

t dWt, (2.10)

where Yt is real labor income at time t. Note that the labor income Yt is financed from

the return on the human capital Ht at time t. From (2.9) and (2.10), the covariance

between the aggregate wealth and individual return for an asset i is written as

ρi
gσ

g
t σ

i
t = (πtσ

m
t + (1 − πt)ρ

i
hσ

h
t )σi

t

For simplicity, we assume that πt = π for all t. This is true, for instance, under

the steady state of the economy, in which the proportion of aggregate wealth to the

financial wealth is constant over time. Moreover, we assume that the labor income

is homogeneous of degree one with respect to human capital, especially, Yt = ψHt

for all t with some constant ψ. Given that we are interested in the market return’s

behavior, we set i = m, and therefore the fundamental asset pricing equation of the

multiple-priors recursive utility model is expressed as

dpt

pt
− rf

t dt =
βα

1 − β
ρcσ

c
tσ

m
t dt+

(

1 − α

1 − β

)

(σm
t )2πdt (2.11)

+

(

1 − α

1 − β

)

ρyσ
m
t σ

y
t (1 − π)dt+ κσm

t dt+ σm
t dWt,

where (pt) is the price of the market index, (σy
t ) is the instantaneous conditional

volatility of labor income growth, and ρc, ρy are the correlation coefficients of con-

sumption growth and labor income growth with the market return, respectively. From

now on, we turn our attention to estimating the key preference parameters (α, β, κ)

in (2.11).
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Note that (2.11) nests many popular asset pricing models as special cases. Thus

by imposing a priori restrictions to (2.11), we can estimate different models to compare

the common set of parameters. First three models estimated are the power (CRRA)

utility case (Model I), recursive utility with financial wealth only (Model II), and a

multiple-priors recursive utility with financial wealth only (Model III). Specifically,

we can express Model I, II, III as

dpt

pt
− rf

t dt = βρcσ
c
tσ

m
t dt+ σm

t dWt, (Model I)

dpt

pt

− rf
t dt =

βα

1 − β
ρcσ

c
tσ

m
t dt+

(

1 − α

1 − β

)

(σm
t )2dt+ σm

t dWt, (Model II)

dpt

pt
− rf

t dt =
βα

1 − β
ρcσ

c
tσ

m
t dt+

(

1 − α

1 − β

)

(σm
t )2dt+ κσm

t dt+ σm
t dWt.

(Model III)

As emphasized by many authors such as Campbell (1993), Bansal and Yaron

(2004), and Lettau and Ludvigson (2001), financial wealth is insufficient to proxy

the aggregate wealth of the representative investor. To address this issue, we include

another source of risk premium resulting from labor income risk and this is the setup

of (2.11). This is not a completely innocuous assumption because the fraction of

human wealth to total wealth is assumed to be constant. However, it turns out that

this restriction has a smaller order of effect affecting the empirical results according

to our robustness checks.

One important observation from our empirical setting is that time-varying volatil-

ities of macroeconomic variables and asset returns play key roles in both the condi-

tional mean (drift) part and the error (diffusion) terms. Given the ample evidence

that those volatilities are highly persistent, this makes identification of the models

statistically challenging because of heteroskedasticity, endogeneity, and measurement

problems. In addition, the equilibrium relationship (2.11) that continuously holds
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need to be properly treated for correct empirical evaluations with discretely sampled

data points. In the below, we tackle those issues.

C. Econometric Methodology

1. Martingale Estimation of Asset Pricing Models in Continuous Time

Here we explain how to specify and estimate our model (2.11). Tentatively, we assume

that the volatility processes (σm
t ), (σc

t ) and (σy
t ) are observed. In the next subsection,

we will explain in detail how we may extract these processes. Moreover, we will

set the correlation coefficients ρc and ρy of consumption and labor income growths

with market returns, as well as the fraction π of financial wealth, to be known and

constants.10 These parameters will be calibrated using the values obtained or often

assumed in the empirical literature. In what follows, we assume that (σm
t ), (σc

t ) and

(σy
t ) are non-constant and time-varying, and that ρc and ρy are non-zero. These

assumptions are necessary for the identification of our model.

Now we let θ = (α, β, κ) be the vector parameters in our model with the true

value θ0 = (α0, β0, κ0), and define (Λt(θ)) to be the state-price deflator (or IMRS)

that is given by

Λt(θ) =
βα

1 − β
ρcσ

c
tσ

m
t +

(

1 − α

1 − β

)

{πσm
t + (1 − π)ρyσ

y
t + κ} σm

t . (2.12)

Subsequently, we define the pricing error process (Zt(θ)) from our model as

dZt(θ) =
dpt

pt

− rf
t dt− Λt(θ)dt,

10This does not imply that the correlation between the aggregate wealth and market
returns are constant. As shown above, it still varies over time.
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and write

Zt(θ) = At(θ) + Ut, (2.13)

where dAt = −{Λt(θ) − Λt(θ0)}dt and dUt = σm
t dWt.

It is clear that the pricing error process (Zt(θ)) is a semimartingale with the

bounded variation component (At(θ)) and the martingale component (Ut). Note in

particular that (Ut) is a continuous martingale with respect to the filtration (Ft), to

which the Brownian motion (Wt) is adapted. Furthermore, the bounded variation

component (At(θ)) vanishes if and only if θ = θ0 under the trivial identification

conditions introduced above.11 Therefore, we may conclude that the pricing error

process (Zt(θ)) becomes a continuous martingale if and only if θ = θ0.
12

Recently, Park (2008) developed a general methodology to estimate and test the

continuous-time conditional mean model that is identified by this type of martingale

condition for the error process. Below we explain how we can implement his method-

ology to estimate the unknown parameter θ in our model. The methodology relies

on the celebrated theorem by Dambis, Dubins and Schwarz, which will be referred to

the DDS theorem throughout the paper. To introduce the DDS theorem, we denote

by ([U ]t) the quadratic variation of (Ut), which is given by

[U ]t = plim
|tk|t→0

∑

k

(Utk − Utk−1
)2,

where |tk| is the mesh of partition (tk) of the interval [0, t]. We assume that [U ]t → ∞

11As can be clearly seen, we may identify up to four unknown parameters in our
model. Therefore, for instance, we may regard π as unknown and estimate it as an ad-
ditional unknown parameter. However, the estimate for π is unstable and unreliable.

12We temporarily assume that there is no jump in the pricing error process to focus
on the main idea of the methodology. Indeed, it can be applied to the processes with
jumps with some simple modifications, which we will explain later in this subsection.
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a.s. as t→ ∞. Moreover, we introduce the time change (Tt), which is defined as

Tt = inf{s ≥ 0|[U ]s > t}. (2.14)

The DDS theorem says that if (Ut) is a continuous martingale, then there exists a

standard Brownian motion B such that Ut = B[U ]t, or equivalently,

UTt = Bt.

The Brownian motion B is called the DDS Brownian motion of U . See, e.g., Revuz

and Yor (2005) for the proof and more discussions about the DDS theorem. In most

applications, ([U ]t) is strictly increasing, in which case T is just the time inverse of

([U ]t). Roughly, the DDS theorem implies that if we read a continuous martingale us-

ing a clock that is running at a speed inversely proportional to its quadratic variation,

it reduces to a Brownian motion.

If we apply the time change to the original pricing error process (Zt(θ)), then we

may deduce from (2.13) that

ZTt(θ) = ATt(θ) + UTt = ATt(θ) +Bt.

Therefore, we may now claim that (ZTt(θ)) becomes the standard Brownian motion

if and only if θ = θ0, due to the DDS theorem. Obviously, the bounded variation

component (ATt(θ)), even after time change, vanishes when and only when θ = θ0.

The martingale method by Park (2008) uses this fact and defines the value of θ,

which makes the time-changed pricing error process best approximate the standard

Brownian motion, to be the martingale estimator of the unknown parameter θ0. It is

important to note that we may obtain the time change (Tt) without any knowledge

on the true parameter value θ0, since the bounded variation component contributes

nothing to the quadratic variation of a semimartingale. Therefore, for instance, the
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quadratic variation ([U ]t) of the martingale component, which is required to get the

time change (Tt), is identical to the quadratic variation of (Pt), say, dPt = dpt/pt −

rf
t dt, i.e., d[U ]t = d[P ]t = d[p]t/p

2
t .

To implement the methodology, we set ∆ > 0 to be fixed,13 and consider the

normalized increments of the pricing error process that are given by

zi(θ) =
1√
∆

{

ZTi∆
(θ) − ZT(i−1)∆

(θ)
}

for i = 1, . . . , N . The discrete samples (zi(θ)) of size N obtained for each θ ∈ Θ

are then used to estimate the unknown parameter θ0. Recall that the samples are

obtained from the pricing error processes as their increments over the random intervals

[T(i−1)∆, Ti∆] for i = 1, . . . N . It is quite clear that (zi(θ)) are i.i.d. normals for θ = θ0,

regardless of the choice of ∆. For all other values of θ ∈ Θ, this is not true at least

for some value of ∆.

We let zd
i (θ) = (zi(θ), . . . , zi−d+1(θ)) be the d-dimensional random vector con-

sisting of d-adjacent samples starting from i = 1, . . . , N − d + 1, so that (zd
i (θ)) is

the d-dimensional standard multivariate random vector, i.e., the multivariate normal

random vector with mean zero and identity covariance matrix, under θ = θ0. More-

over, we denote by ΦN(·, θ) the empirical distribution of (zd
i (θ)) for each θ ∈ Θ, and

define the criterion function QN by

QN(θ) =

∫ ∞

−∞
{ΦN(x, θ) − Φ(x)}2 dΦ(x),

where Φ is the distribution function of the d-dimensional multivariate standard normal

random vector. The martingale estimator θ̂N of θ0 is then defined as the minimizer

13The choice of ∆ is more of an empirical matter, which we will discuss in detail
later in our empirical section.
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of the criterion function QN , i.e.,

θ̂N = argmin
θ∈Θ

QN (θ).

The martingale estimator is therefore a minimum-distance estimator with the Cramer-

von Mises (CvM) distance between the empirical distribution of the sample under

the unknown parameter values and the distribution under the true parameter values.

Park (2008) shows that this type of minimum distance estimator is consistent, and

asymptotically normal, under mild regularity conditions. The asymptotic variance of

the estimator can be obtained by the usual subsampling method.

To introduce the main idea of the methodology more effectively, we assume thus

far that the pricing error process (Zt(θ)) is observed continuously in time for all

θ ∈ Θ. This, of course, is not true in our analysis, as is the case for virtually all

other potential applications. The methodology can be easily implemented and all

the theoretical results continue to hold for discretely sampled observations, as long

as the sampling intervals are sufficiently small relative to the time horizon of the

samples. This was shown in Park (2008). For our empirical analysis, we use daily

observations over approximately fifty years. The necessary modifications required to

deal with discretely observed samples are largely trivial and obvious. To obtain the

time change, for instance, we use the realized variance of (Pt), dPt = dpt/pt − rf
t dt,

given by

[P ]δt =
∑

iδ≤t

(Piδ − P(i−1)δ)
2,

instead of its quadratic variation ([P ]t), if (Pt) is observed at intervals of length δ > 0

over time horizon [0, T ] with T = nδ, where n is the size of discrete samples.

Finally, we may readily allow for the existence of jump components in our model

(2.11). Indeed, we may easily deal with the presence of discrete jumps in our method-
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ology, simply by discarding the observations of (Pt), dPt = dpt/pt − rf
t dt, over the

random time interval [T(i−1)∆, Ti∆] that is believed to have jumps. All other proce-

dures in our methodology are valid for the remaining observations. In our empirical

studies, we use the Hausman-type test of Barndorff-Nielsen and Shephard (2006) for

the detection of jumps for each of the random intervals [T(i−1)∆, Ti∆], i = 1, . . . , N .

Although it is well-known that the jumps are frequently observed for many intra-day

samples, it appears that jumps are rare for the samples of daily or lower frequency

observations. We detected some evidence of jumps in our daily observations, but their

number is relatively small.

2. Measuring Volatilities of Macroeconomic Variables

Now we explain how to extract the volatility processes (σc
t ) and (σy

t ). It is much

more challenging than to extract the volatility process (σm
t ), since the observations

on their underlying processes are available at relative low frequencies like many other

macroeconomic variables. As we explained in the previous subsection, (σm
t ) can be

readily measured and estimated by the realized variance of market returns at high

frequencies.14 However, the identification and estimation of volatility for the processes

that are not observed at high frequencies are not straightforward. In the paper, we

directly tackle this issue in the following way. First we let the underlying process

(Xt) follow an Ito-diffusion

dXt

Xt

= µtdt+ σtdBt,

where (Bt) is the standard Brownian motion, and consider the problem of estimating

(σt), σt = σc
t or σy

t , under some realistic assumptions, using discrete samples (Xtj ) of

14See, e.g., Barndorff-Nielsen and Shephard (2002) for more discussions on the
estimation of volatility processes using high-frequency data.
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(Xt). It is assumed in our setup here that the sampling intervals tj−tj−1, j = 1, . . . , m,

are not sufficiently small.

Over the interval [tj−1, tj], we have

∫ tj

tj−1

dXt

Xt

=

∫ tj

tj−1

µtdt+

∫ tj

tj−1

σtdBt. (2.15)

For many macroeconomic variables, the values of the level Xt are relatively much

larger than its increment Xtj −Xtj−1
in any of the intervals [tj−1, tj ] of frequency such

as monthly and quarterly. Therefore, it seems reasonable to approximate
∫ tj

tj−1
dXt/Xt

by (Xtj − Xtj−1
)/Xtj−1

, i.e., the growth rate of (Xt) over the interval [tj−1, tj ], for

j = 1, . . . , m.15 Moreover, if we assume the drift term (µt) is continuous, then there

exists sj ∈ [tj−1, tj ] such that µsj
(tj − tj−1) =

∫ tj
tj−1

µtdt for all j = 1, . . . , m, by the

mean value theorem. If, furthermore, (µt) varies smoothly over time, then we may

approximate (µsj
) by (µtj ). This appears to be realistic in our case, so we assume that

(µt) is an exogenous function of time for which these approximations are valid. Given

the assumption, the drift term (µt) can be consistently estimated by the standard

nonparametric method applied to (2.15). We adopted the local linear estimation,

using the least squares cross-validation method to obtain the optimal bandwidth

parameter. The reader is referred to Li and Racine (2007, p.83) for more details.

We exploit two different approaches to extract the volatility process (σ2
t ). First,

we consider

(

∫ tj

tj−1

dXt

Xt
−
∫ tj

tj−1

µtdt

)2

=

∫ tj

tj−1

σ2
t dt+







(

∫ tj

tj−1

σtdBt

)2

−
∫ tj

tj−1

σ2
t dt







, (2.16)

the left-hand side of which we may approximate well using discrete observations (Xtj )

15Note that the approximation error is given by
∫ tj

tj−1
(Xt − Xtj−1

)/(XtXtj−1
)dXt

and (Xt − Xtj−1
)/(XtXtj−1

) ≈ 0 for many macroeconomic variables including those
we consider here.
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of (Xt) as explained above. Note that

E







(

∫ tj

tj−1

σtdBt

)2

−
∫ tj

tj−1

σ2
t dt

∣

∣

∣

∣

∣

∣

Ftj−1







= 0

for j = 1, . . . , m.

As with the drift term (µt), we may regard the diffusion term (σt) as an exogenous

function of time varying smoothly over intervals [tj−1, tj] for all j = 1, . . . , m. In this

case, we may approximate in (2.16)

∫ tj

tj−1

σ2
t dt = σ2

sj
(tj − tj−1) ≈ σ2

tj
(tj − tj−1),

where sj ∈ [tj−1, tj ], j = 1, . . . , m, and the volatility process (σt) can be estimated

by the standard nonparametric method such as the local linear estimation. We use

this approach to extract the volatility processes (σc
t ) and (σy

t ), again with the optimal

choice of bandwidth based on the least squares cross-validation. A potential caveat

of this nonparametric method would be that this method may produce overly smooth

volatility factors. We discuss more on this point in detail in our empirical section.

Second, we suppose that the volatility process is stochastic with an additional

source of randomness. For this approach, we let the volatility process (σt) be random,

but remain to be constant over each of the intervals [tj−1, tj], j = 1, . . . , m. More

specifically, we set
∫ tj

tj−1

σtdBt = σj(Btj −Btj−1
) (2.17)

and (σ2
j ) to be driven by the logistic transformation of a latent autoregressive factor

(wj), i.e.,

σ2
j = a +

b

1 + exp{−c(wj − d)}
with wj = ρwj−1 + εj, where (εj) is assumed to be an i.i.d. sequence of standard

normals. Note that (2.17) is the standard Gaussian volatility model in discrete time.
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We let (εj) be correlated with the Brownian motion (Bt) to allow for the leverage

effect. The model parameters a > 0, b > 0, c > 0 and d determine the actual volatility

function. In particular, a and a+ b represent the two asymptotic values of volatility,

and c and d respectively the speed and location of transition.

The volatility model introduced above was developed and investigated recently

by Kim, Lee and Park (2008). The model can be regarded as an extension of the usual

discrete-time stochastic volatility model, which relies on the autoregressive modeling

for the logarithmic transformation of volatility. The former is indeed much more flex-

ible than the latter, and has implications that are much more realistic. The latent

factor (wj) and unknown parameters a, b, c and d can be estimated by the density-

based Kalman filter, or by the Bayesian method using Gibbs sampling method. The

reader is referred to Kim, Lee and Park (2008) for more details about the computa-

tion procedure and comparison with other existing discrete-time stochastic volatility

models.

3. Calculating Covariances in Mixed Frequencies

Now that we have the extracted volatilities of the macroeconomic variables in their

observation frequency, the calculation of the time changed covariances between the

market and the macroeconomic variables are straightforward if we have the volatilities

in the same frequency. However, the consumption volatility is estimated in monthly

frequency and the labor income volatility in quarterly. Moreover, the market volatility

σm
t is not estimated yet in any frequency. In this section, we describe a nonparametric

interpolation method for the lower frequency macroeconomic volatilities into daily

frequency, as well as, a simple way to calculate the market volatility in daily level.

In order to interpolate the daily level of volatilities from lower frequency data,

we assume that the volatilities are characterized by a nonparametric function of time.
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Furthermore, we assume that the extracted volatilities are realizations of the time-

varying volatility functions at the mid-point of the observation interval. For instance,

if the observation interval is monthly, we assume that the extracted volatilities are

realizations of the volatility function at the fifteenth day of each month16. Based on

the assumptions, the daily level of volatilities can be calculated by plugging in the time

levels which correspond to the daily frequency. For instance, the corresponding daily

time level for monthly interval is obtained by finding the grid infilling the monthly

time interval at daily frequency. When applying the nonparametric method, we also

use the local linear kernel with the smoothing parameter obtained from the least

squares cross validation.

For the market volatility, we use the same idea. The difference from the macroe-

conomic volatilities is that the market volatility is observed in random time interval

[T(i−1)∆, Ti∆]. In this case, we apply the nonparametric interpolation by assuming

that the estimated market volatility
√

([P ]δTi∆
− [P ]δT(i−1)∆

)/(Ti∆ − T(i−1)∆) is a real-

ization at the time t = (T(i−1)∆ +Ti∆)/2. Finally, if the daily volatilities are obtained,

we use the Riemann sum to calculate the time changed covariances.

D. Empirical Procedure and Measurement

1. Data

We use S&P500 index to calculate the market returns. The index is daily close price

adjusted for the dividends and splits, and the returns are obtained by calculating the

arithmetic returns of the daily close price. Once we have the daily series of the market

returns, we calculate the daily excess returns of the market over the risk free rate of

16This mid-point assumption is not necessary and alternative point in the observa-
tion interval can be used, however it is almost impossible to identify the exact point
where the mean value is reached from the lower frequency data.



27

return. For the risk free rate of return, three months treasury bill rates are used. The

three months rates are adjusted to the daily level by dividing by 360. Since the daily

series on the three months treasury bill rates can be considered as a risk free return

from today to tomorrow, the daily excess return on the market portfolio is calculated

by subtracting yesterday’s treasury bill rate from today’s return on the market.

We exclude the returns over weekends from our data set because the returns from

Friday to Monday seem to have different distribution than the returns on the other

day of the week. Especially, the returns on Mondays are significantly negative. This,

so called the “Monday effect” or “weekends effect”, has been widely investigated in

the literature; see, for instance, French (1980), Lakonishok and Levi (1982) and Wang

et. al. (1997) among others. Settlement effect and clearing delays, or expiration of

stock options can be considered one of the possible explanations for the Monday effect,

however it seems hard to include the daily seasonal effect in the asset pricing models

that we considered in section 2. One might use the dummy variable for Mondays and

proceed the analysis (e.g. Fortune (1999)), but in this paper we simply discard the

Monday returns.

For the volatilities of macroeconomic variables, such as consumption and labor

income, we use monthly real per capita consumption of nondurables plus services and

quarterly real per capita labor income. The labor income is defined as wages and

salaries plus transfer payments plus other labor income minus personal contributions

for social insurance minus taxes, which is used in Lettau and Ludvigson (2001).

The S&P 500 index is obtained from Yahoo finance web site, and the consumption

data is obtained from the Bureau of Economic Analysis. The three month treasury

bill rate is from the Federal Reserve Bank of St. Louis, and the labor income from

Martin Lettau’s web site. The data set covers from January 1, 1960 to December

29, 2006. The summary statistics for the market, risk-free, consumption, and labor
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income are presented in Table I.

Table I. Summary Statistics

Market Risk Free Consumption Labor Income

Mean* 0.12839 0.05551 0.02168 0.02309
Std. Dev.* 0.13973 0.00146 0.01243 0.01713

Skewness 0.25178 1.12173 -0.04598 0.43410
Kurtosis 7.96404 4.93917 3.94341 6.65616

Auto. Coef. 0.04900 0.99910 -0.23070 -0.06390

Note: Summary statistics for market, risk-free, consumption, and labor income. Market is
the daily S&P 500 index returns, risk-free is the daily three month treasury bill rate divided
by 360, consumption is the monthly growth rate of real per capita non-durable plus service
consumption, and labor is the quarterly growth rate of labor income defined in Lettau and
Ludvigson (2001). *For the purpose of presentation, we report the annualized mean and
standard deviation of the series.

2. Implementation of Time Change

Our martingale estimation framework enables us to observe the market returns in

the volatility time, not in the usual calendar time, by incorporating the time change.

In order to calculate the time change (Ti∆) with i = 1, . . . , N , one needs to preset

a constant volatility length ∆ which determines the degree on how often the data

should be observed in terms of the volatility time. Since the total quadratic variation

is finite for most of asset returns observed in finite time horizon, it is easy to deduce

that higher volatility length would imply lower number of samples and vice versa.

Common sense will choose the smallest ∆ to obtain the largest number of samples.

This is because usual estimators are more efficient as the number of samples gets

larger. Adopting this idea, we find the volatility length ∆ which is the smallest among

all the admissible values of ∆. Note that the admissible range of ∆ is determined by

a number of factors that are difficult to evaluate in practice. In general, extremely

small values of ∆ can harm the effectiveness of the time change. For instance, if ∆
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is too small, then from the definition of the time change, [T(i−1)∆, Ti∆] often becomes

the same as the observation interval of the data, and therefore the time changed data

will have similar property as the original data.
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Fig. 1. Signature Plot of CvM Distance for S&P 500 Index Excess Returns

Note: The x-axis represents the number of days k included to calculate the volatility length
∆k, i.e., ∆k = [P ]δT k/K, where [P ]δt is the realized variance of (Pt), dPt = dpt/pt − rf

t dt,
computed using daily observations over the time horizon [0, T ], and K is the total number
of days. The y-axis represents the CvM distance for the standardized excess returns after
the time change.

In order to find the admissible range of ∆, we use the Cramer-von Mises (or

CvM) distance for the time changed market returns
{

∫ Ti∆

T(i−1)∆

(

dpt/pt − rf
t dt
)}

/
√

∆.

Especially, we find the time changes based on different volatility length ∆k, with

k = 1, . . . , K, and calculate the CvM distance for each ∆k. Since the CvM distance

can be interpreted as the degree on how far the empirical distribution of time changed

market return departs from N(0, 1), it is useful to check whether time change based

on some ∆k is effective or not. In other words, if it is close to 0, then the time change

based on ∆ works effectively, while if it is far from 0, then the ∆ is supposedly too

small or too large to produce the effective time change. Figure 1 shows the CvM

distance for k = 5, 10, . . . , K with ∆k = [P ]Tk/K. Note that k is the number of
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days to be considered to calculate the average quadratic variation and K is the total

number of days in the dataset. We can see that the CvM distance drastically decreases

as k increases from 5 (or 5-day average quadratic variation) to 20 and then it stabilizes

around the level of 0.1 - 0.3. This implies that the time change will work effectively

if k is greater or equal to 20. From this point, we set the volatility length as ∆20 or

20-day average quadratic variation.

It is important to note that for the actual calculation of the time change (Ti∆)

for i = 1, . . . , N with the discrete observations, we use the minimum distance criteria

for the incremental quadratic variation process. Especially, our time change for the

discrete observation is defined as

Ti∆ = argmin
s≥T(i−1)∆

∣

∣

∣
[P ]δs − [P ]δT(i−1)∆

− ∆
∣

∣

∣
.

Our modified time change is different from the original time change in (2.14) in the

sense that it finds the time when the quadratic variation from the previous time change

T(i−1)∆ is closest to the volatility length ∆, while the original time change finds the

smallest time when the quadratic variation from initial time is greater than i∆. Note

that this modified time change is not stopping time because the time with minimum

distance criteria is unknown based on current information. Nevertheless, for practical

purposes, it is advantageous to use the modified time change with discrete observa-

tions because it ensures that the quadratic variation on the interval [T(i−1)∆, Ti∆] is

closest to ∆ in the given sampling frequency. We use the modified time change in

calculating the signature plot mentioned above, as well as in the following empirical

analysis.

Once we find the time change (Ti∆) for i = 1, . . . , N , we need to calculate the

time changed market return, time changed risk free return, time changed covariance

between market and consumption, time changed market variance, time changed co-
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variance between market and labor income, and time changed market volatility. Ba-

sically, all the terms in (2.11) will be calculated and plugged in before estimating the

preference parameters (α, β, κ). Firstly, the time changed market return (
∫

dpt/pt
17)

and risk free return (
∫

rf
t dt) is easily obtained by calculating the cumulative return

for the intervals [T(i−1)∆, Ti∆] based on the daily returns. Secondly, the time changed

variance of the market (
∫

(σm
t )2dt)is calculated from the realized volatility for the

interval, i.e., [P ]δTi∆
− [P ]δT(i−1)∆

. Thirdly, the macroeconomic volatilities (σc
t , σ

y
t ) are

calculated from two different approaches discussed in section 3.2. The basic idea is to

extract the macroeconomic volatilities in their observation frequency and interpolate

them in daily frequency by the standard nonparametric method. Meanwhile, we also

find the market volatility (σm
t ) in the daily frequency by the same method. Once the

daily measures are ready, the time changed covariances (
∫

σm
t σ

c
tdt and

∫

σm
t σ

y
t dt)are

calculated by the Rieman sum. Lastly, the time changed volatility of the market

(
∫

σm
t dt) is calculated in the same way.

3. Macroeconomic Volatilities

Following the econometric methodology developed in the previous section, we extract

the volatilities of macroeconomic variables by two different approaches; (i) time-

varying volatility, and (ii) nonlinear stochastic volatility.

Table II presents the estimation results of the consumption and labor income

based on a Gibbs sampling. We first obtain the demeaned rate of returns for each

process from the standard local linear method and exclude the outliers which is greater

than 3 in absolute value after normalization. The prior distributions for the Gibbs

sampling are based on Kim, Lee, and Park (2008) while the location and scale param-

17For simplicity, we put
∫

as the integral on the interval [T(i−1)∆, Ti∆]
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Table II. Gibbs Sampling Results for Consumption and Labor Income

Consumption Labor Income
Priors Pos.Mean Pos.Std.Dev. Priors Pos.Mean Pos.Std.Dev.

a G(1, 0.001) 0.001 (0.001) G(1, 0.001) 0.001 (0.001)
b G(1, 0.2) 0.332 (0.036) G(1, 1.2) 1.075 (0.182)
c G(1, 0.2) 0.089 (0.020) G(1, 2) 1.105 (0.527)
w0 N(40, 402) 2.617 (3.913) N(−4, 42) 2.225 (4.532)
ρ U [−1, 1] 0.727 (0.187)
γ U [−1, 1] 0.544 (0.219) U [−1, 1] 0.052 (0.250)

Note: The table presents the estimation results of nonlinear stochastic volatility model
based on a Gibbs sampling. We sample 30000 iterations and discards 15000 iterations. The
sample period for consumption is from October 1959 to December 2006 and for labor income
first quarter of 1959 to fourth quarter of 2006. U [θ1, θ2] denotes uniform distribution with a
support (θ1, θ2) and G(θ1, θ2) denotes gamma distribution with mean θ1θ2 and variance θ1θ

2
2,

and N(θ1, θ2) denotes normal distribution with mean θ1 and variance θ2. Pos. Mean and
Pos. Std. Dev. denote the posterior mean and posterior standard deviation, respectively.
All the parameters are estimated for the scaled data with 100 (or in percentage level).

eters for a, b, and c are chosen to be similar to the point estimates and their standard

deviations of the maximum likelihood estimation18. For the consumption volatility,

the lower and upper bound is estimated to be 0.001 and 0.333, which implies 0.1%

of lower bound and 2% of upper bound in annual level. The speed parameter (c) is

estimated to be 0.089, which implies that the transition from low to high volatility

is relatively slow. The leverage effect is estimated to be positive and significant. On

the other hand, the labor income volatility has relatively smaller level of lower bound

0.001 (or 0.06% in annual level), and similar level of upper bound 1.076 (or 2.03% in

annual level). The speed parameter is estimated to be 1.105, which is much greater

than the consumption volatility. This high speed implies that the shift between low

and high volatility is fast, or equivalently, the volatility process is closer to a process

switching two regimes. The leveage effect is small with 0.05, however it is not signifi-

18The results of the maximum likelihood estimation is not presented in this paper.
However, the results can be provided upon request.
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cant. The persistency parameter for the latent factor is estimated to be 0.727, which

implies that the latent process is highly stationary19.

Figure 2 (a) plots the extracted consumption volatilities from the two approaches

and the realized volatility. For the realized volatility, we use the squared monthly

consumption growth rate. The growth rate is demeaned by the similar local linear

method. We can see that both volatilities from the local linear and Gibbs sampling

are decreasing over the sampling period, which coincides with the overall pattern of

the realized volatility. Figure 2 (b) presents the Gibbs sampling result compared

with the local linear kernel result. In gerneral, the long-run trend of both volatility

processes are very similar, however the short-run fluctuations in the Gibbs sampling

does not exist in the local linear kernel result. This is well expected from the two dif-

ferent approaches because the stochastic volatility model generalizes the time-varying

volatility model by adding additional shock to the volatility process.

Figure 3 (a) plots the extracted and realized volatilities for the labor income.

Compared to the consumption volatility, the labor income volatility seems to move

between two different states depending upon the business cycle. This feature coincides

with the parameter estimates in Table II, which reports the smaller lower bound and

much higher speed parameter compared to the consumption volatility. If we compare

the extracted volatilities from the two different approaches (in Figure 3 (b)), we can

see that they almost share the long-run trend, while the short-run movement of the

Gibbs sampling result suggests a possibly an additional risk factor from the stochastic

volatility.

19For the consumption volatility, we restrict I(1) latent factor. If we estimate the
persistency parameter, then it is estimated to be 0.998, which is very close to 1.
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(a) Comparison between squared growth rate and estimated volatilities
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(b) Comparison between time-varying volatility and nonlinear stochastic volatility

Fig. 2. Consumption Volatilities

Note: In Figure (a), the volatilities of consumption growth rate from 1960 to 2006 are
presented against the squared growth rates. The growth rates are demeaned by the local
linear method. The bandwidths for the local linear kernel estimation for time-varying mean
and volatilities are selected separately, and are based on the least squares cross-validation
(see Li and Racine (2007, p. 83)). In Figure (b), the extracted volatility from the nonlinear
stochastic volatility model is presented with the result from the time-varying volatility
model. The volatility is estimated by a Gibbs sampling method and the extracted volatility
is obtained by plugging in the posterior sample means for the parameters and the latent
factor.



35

60 65 70 75 80 85 90 95 00 05
0

0.5

1

1.5

2

Year

10
−

3

 

 
Squared growth rate
Time−varying volatility
Nonlinear stochastic volatility

(a) Comparison between squared growth rate and estimated volatilities

60 65 70 75 80 85 90 95 00 05
0

0.1

0.2

0.3

Year

10
−

3

 

 
Time−varying volatility
Nonlinear stochastic volatility

(b) Comparison between time-varying volatility and nonlinear stochastic volatility

Fig. 3. Labor Income Volatilities

Note: In Figure (a), the volatilities of labor income growth rate from 1960 to 2006 are
presented against the squared growth rates. The growth rates are demeaned by the local
linear method. The bandwidths for the local linear kernel estimation for time-varying mean
and volatilities are selected separately, and are based on the least squares cross-validation
(see Li and Racine (2007, p. 83)). In Figure (b), the extracted volatility from the nonlinear
stochastic volatility model is presented with the result from the time-varying volatility
model. The volatility is estimated by a Gibbs sampling method and the extracted volatility
is obtained by plugging in the posterior sample means for the parameters and the latent
factor.



36

E. Ambiguity, Risk, and Intertemporal Substitution

Finally, we are led to report and discuss our empirical results on the importance of

ambiguity aversion, risk aversion, and intertemporal substitutability. We first analyze

the baseline case in which financial market is assumed to represent the aggregate

wealth. Then, we show our main results and investigate the model (2.11) in detail.

1. Baseline Case: Financial Wealth Only

Table III presents estimation results of three configurations for the recursive utility

models; power utility (Model I), stochastic differential utility (Model II), and the

stochastic differential utility with ambiguity aversion (Model III). In all three settings,

it is assumed that financial wealth proxies the total wealth, i.e., π = 1, is imposed.

As mentioned earlier, financial wealth is only a subset of the aggregate wealth and

therefore we may miss important interactions between human wealth and asset returns

in this case. However, to better understand the effect of human wealth, we believe

that it is necessary to compare the results from the specifications with and without

human wealth. In this light, we set this as our baseline case. Specifically, Model I is

used to verify if the equity premium puzzle arises in our setting and data set. The

results from Model II are directly comparable to Epstein and Zin (1991), Baskshi and

Naka (1997), and Normandin and St-Amour (1998) in that they also used financial

wealth as the proxy for the aggregate wealth. To the best of our knowledge, Model

III which is our main model has not been empirically studied.

In all three settings, we need to estimate volatilities of the consumption growth

(σc
t ), which we constructed using the method developed in a previous section. To

compute conditional covariances, we assume that the correlation ρc between con-

sumption growth and the market return is constant at 0.2. We obtained this value
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Table III. Estimation Results for Baseline Models

Model I Model II Model III

Panel A: Time-Varying Volatility
β 257.991 (3.589) 0.000 - 1.290 (0.856)
α - - -3.572 (0.063) 0.263 (0.719)
κ - - - - 0.360 (0.022)
RA 257.991 (3.589) 4.572 (0.063) 0.737 (0.719)
EIS 0.004 (0.000) ∞ - 0.775 (0.514)
CvM 0.035 0.034 0.031

Panel B: Nonlinear Stochastic Volatility
β 258.881 (3.508) 0.000 - 1.461 (0.812)
α - - -3.572 (0.063) 0.419 (0.692)
κ - - - - 0.361 (0.021)
RA 258.881 (3.508) 4.572 (0.063) 0.581 (0.692)
EIS 0.004 (0.000) ∞ - 0.684 (0.380)
CvM 0.035 0.034 0.031

Note: The table reports the estimation results for the asset pricing models in which the
aggregate wealth consists of only financial wealth. All results are for the sample 1/2/1960-
12/29/2006. The first column is Model I with standard additive CRRA utility, the second
column is Model II with recursive utility, and the third column is Model III with multiple-
priors recursive utility. The correlation between the market return and the consumption
growth (ρc) is set to be 0.2. The standard errors in parenthesis are obtained by the sub-
sampling method.
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by computing the sample correlation between the two variables and it is consistent

with the existing studies.

Result from Model I states that the famous ‘equity premium puzzle à la Mehra

and Prescott does prevail, showing roughly 258 as the estimate of the relative risk

aversion (RRA). Increasing the correlation coefficient to a counterfactual value of 1

still generates an estimate of RRA around 52, confirming that the main reason for the

puzzle is the smooth consumption growth. In this case, the elasticity of intertemporal

substitution (EIS) is given by the reciprocal of relative risk aversion, and it is esti-

mated to be close to 0. This, in fact, is consistent with the existing studies estimating

the EIS such as Hall (1988). In those studies, they use the consumption growth as

the regressed and asset returns especially, Treasury bills as a regressor to estimate

a linearized Euler equation with homoskedasticity.20 There are also numerous stud-

ies including Hansen and Singleton (1983), estimating a non-linear Euler equation.

Similar to the case of the linearized setup, some studies have reported the EIS close

to zero, while others reported significantly positive numbers often greater than one.

The empirical literature ascribed this mainly to weak instruments and this basically

reveals the difficulty of identifying the key preference parameter. It may also result

from the tight restriction imposed on the power utility function and the counterfac-

tual assumption or treatment on the nature of the volatilities of asset returns.21 With

20However, even in the linearized setup, results are mixed. For instance, Attanasio
and Weber (1989) estimated the EIS around 2. Vissing-Jorgensen (2002) reported
that the EIS is close to 3 for Treasury returns with bond holders’ consumption and
higher than 1 for stock holders. Moreover, if one estimates the linearized equation
consisting of consumption growth and asset returns, switching the regressor and the
regressed, a high EIS is obtained with asset returns as the regressed, while a low EIS
is estimated when consumption growth is the regressed.

21Although some studies such as Yogo (2004), adopt a more flexible preferences
relaxing this restriction, due to their linearization and homoscedasticity assumption,
they virtually estimate only one parameter.
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our newly developed econometric tools in hand, we believe that we can handle most

of these issues aforementioned. We now examine how alternative models affect the

estimation results.

With the stochastic differential utility (Model II), the estimates of the two pa-

rameters α and β in Model II are −3.6 and 0 respectively. This implies that the

estimated risk aversion (1−α) is dramatically decreasing to 4.6, while the estimated

EIS (1/β) is reaching a very high number. In comparison with the existing studies

in a similar setting, Epstein and Zin (1991) reported the RRA around one and the

EIS close to zero via GMM estimations, and Normandin and St-Amour (1998) stated

the RRA around 1.4 and the EIS around 1.2 using a maximum likelihood estima-

tion method. Our result suggests that the representative agent is more risk averse

and her consumption is highly substitutable across periods compared to the previ-

ous results. Although high values of EIS are not incompatible with explaining the

behaviors of stock returns or risk-free rates, high standard errors of β estimates hint

that it requires further investigation. In addition, β being close to zero implies that

asset returns have little link to consumption growth, which is puzzling. Thus, all of

the points lead us to suspecting a weak identification problem for the EIS parame-

ter. As briefly mentioned, a wide range of EIS estimates is not new in the related

literature of estimating the preference parameter in both linearized and non-linear

Euler equations. However, the literature does not offer much explanation on why it is

difficult. Instead, many recent studies have been concentrating on weak instruments

to overcome this issue. Although there is little doubt that this is an important task

in econometrics, in this paper we focus on understanding the nature of identifying the

EIS parameter given that our estimation does not make use of instrumental variables

and the estimated models are of highly interpretable forms in continuous time.

First of all, although Model II is an extension of Model I by adding the conditional
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return variance, the two models have very different implications for linking asset

returns to conditional covariances of consumption growth and returns. In case of

Model I, small volatility of consumption growth without an additional explanatory

variable implies a large coefficient (i.e. a small EIS) to match the average market

risk premium. Meanwhile, Model II has an additional explanatory variable and the

coefficients of both explanatory variables have non-linear parametric restrictions. For

expositional ease, we rewrite the Model II in below:

dpt

pt
− rf

t dt =
βα

1 − β
ρcσ

c
tσ

m
t dt+

(

1 − α

1 − β

)

(σm
t )2dt+ σm

t dWt.

Between two explanatory variables, it is well known that the conditional vari-

ance of market return ((σm
t )2) is more volatile than the conditional covariance between

consumption growth and the market return (ρcσ
c
tσ

m
t ). If both variables have similar

degrees of correlations with asset returns, it is possible that there exists some sta-

tistical tension for estimating two parameters, because of the relatively weak signal

from the consumption growth. Especially, since the EIS is closely related to shifting

consumptions across periods without uncertainty, identification of the EIS can be a

more challenging task. That is, the equity premium puzzle in the context of the power

utility becomes a weak identification problem when we break the tight restriction be-

tween risk aversion and intertemporal substitutability. In addition to this, note that

the estimated EIS is measured by the reciprocal of β. A small perturbation of β

coefficient can lead to a large swing of the EIS. For instance, β = 0.1 implies the EIS

of 10, while β = 2 means 0.5. Even if it appears to be a minor issue, this can amplify

the weak identification problem given the weak signal from the consumption growth.

Therefore, all these factors contribute to a weak identification problem of the EIS

parameter. To further analyze this issue, we draw the surfaces and contours of the
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CvM measures of the model II. The left panels of Figure 4 show that estimating the

risk aversion appears to be easily attained and relatively accurate, while it suggests

that the elasticity of intertemporal substitution is not going to be easy to estimate

due to its flat surface. The left panels in Figure 5 corroborate our conjecture. A

clear pattern from the contours is that β, the reciprocal of the EIS is small and close

to zero and has a very flat region ranging from 0 to 2. Thus, it is not surprising to

observe such distant values of the EIS estimates in the literature.
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Fig. 4. Surface Plots of CvM Measure for Model II and Model III

Note: The above figures plot the surfaces of the CvM distance on the parameter vector
of (β,−α/(1 − β)). Figure (a) presents the result based on the macroeconomic volatilities
from the time-varying volatility model, and Figure (b) presents the result from the nonlinear
latent stochastic volatility model. In case of Model III, the surfaces are plotted with κ =
0.360 (in (a)), and κ = 0.361 (in (b)).
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Fig. 5. Contour Plots of CvM Measure for Model II and Model III

Note: The above figures plot the contours of the CvM distance on the parameter vector of
(β,−α/(1−β)). Figure (a) presents the result based on the macroeconomic volatilities from
the time-varying volatility model, and Figure (b) presents the result from the nonlinear
latent stochastic volatility model. In case of Model III, the contours are plotted with
κ = 0.360 (in (a)), and κ = 0.361 (in (b)).
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Next we incorporate the ambiguity aversion into the stochastic differential utility

setup (Model III). The result clearly dictates that ambiguity aversion is significant

both economically and statistically. Specifically, the last column in the Table II shows

that the estimated RRA is around 0.58˜0.74, the EIS is estimated around 0.68˜0.78,

and the ambiguity aversion parameter (κ) is estimated around 0.36. κ measures how

much the representative household distorts her beliefs to prepare against a worst

case scenario given the ignorance of the true conditional probability distribution.

Recall that the conventional notion of the market price of risk measures the degree

to which an investor will adjust her probability to be risk neutral. Thus, κ quantifies

a constant adjustment of probability in order to be neutral against a Knightian sense

of uncertainty. Although it is true that a more sophisticated model of ambiguity

aversion such as time-varying ambiguity aversion or learning with ambiguity aversion

would further clarify the nature of this new source of premium, our empirical results

state that modeling uncertainty differentiated from the usual sense of risk is a first-

order business to understand the behaviors of asset returns. Given that, the lower

RRA estimates in Model III is understandable because ambiguity aversion captured

by the conditional volatility in our setup is likely to alleviate the burden of the

return variance in accounting for the average return behaviors. One caveat of the

RRA estimate is that its value is somewhat too low and its measurement is noisy.

We suspect that the Model III over-compensates the contributions from the market

factors compared to the consumption factor. We believe that this results from not

including human wealth to construct the aggregate wealth which is the right measure

as shown in the model section. Related but not expected, it appears that ambiguity

aversion helps identify the EIS as well. Admittedly, it is still statistically insignificant.

But our numerous robustness checks in various dimensions suggest that the inclusion

of ambiguity aversion provides the other two explanatory variables, the consumption
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growth and the rate of return from wealth, with fair chances of explaining asset

returns by correctly specifying the existence of ambiguity aversion.

2. Human Wealth

Now we state our main results from our continuous-time recursive utility model with

human wealth, (2.11).

dpt

pt
− rf

t dt =
βα

1 − β
ρcσ

c
tσ

m
t dt+

(

1 − α

1 − β

)

(σm
t )2 πdt

+

(

1 − α

1 − β

)

ρyσ
y
t σ

m
t (1 − π)dt+ κσm

t dt+ σm
t dWt.

This involves fixing two more parameters π and ρy, the fraction of financial wealth,

and the correlation between labor income growth and the market return. For the

former, we tried two values (1/3 and 2/3). Our robustness checks reveal that different

values of π give similar results to either of the closer chosen values.22 Regarding

the value of ρy, there is little consensus about it. Several empirical studies report

that this correlation is positive, while other studies based on structural models such

as Lustig and Van Nieuwerburgh (2008), and Chen et. al. (2008) report a strong

negative correlation such as −0.7. According to our computation it was 0.03. We

tried different values such as 0.03 and −0.03, and the results are reported in Table

IV.

The main question to be addressed is the effect of including labor income growth.

Regarding ambiguity aversion, the estimates of ambiguity aversion rarely vary across

settings and the estimates of κ is again, around 0.36. Note that this result mea-

sured together with the key sources of aggregate risk factors such as the consumption

22We also tried estimating this parameter directly and the estimated values are
around 0.2-0.3 in some cases. But due to the weak identification problem, its identi-
fication is affected by alternative model settings.
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Table IV. Implications of Human Wealth

Without Ambiguity With Ambiguity

Calibrated values

π 0.333 0.333 0.667 0.667 0.333 0.333 0.667 0.667
ρy 0.030 -0.030 0.030 -0.030 0.030 -0.030 0.030 -0.030

Panel A: Time-Varying Volatility
β 0.000 0.000 0.000 0.000 0.107 0.046 0.186 0.645

- - - - (0.451) (0.449) (0.680) (0.660)
α -12.628 -12.831 -5.842 -5.867 -4.205 -4.545 -1.509 -0.660

(0.189) (0.193) (0.095) (0.095) (2.006) (2.039) (1.149) (1.113)
κ - - - - 0.358 0.358 0.358 0.361

- - - - (0.024) (0.023) (0.022) (0.023)
RA 13.628 13.831 6.842 6.867 5.205 5.545 2.509 1.660

(0.189) (0.193) (0.095) (0.095) (2.006) (2.039) (1.149) (1.113)
EIS ∞ ∞ ∞ ∞ 9.331 21.792 5.382 1.550

- - - - (39.292) (213.227) (19.689) (1.586)
CvM 0.034 0.034 0.034 0.034 0.031 0.031 0.031 0.031

Panel B: Nonlinear Stochastic Volatility
β 0.000 0.000 0.000 0.000 0.271 0.076 0.748 0.699

- - - - (0.469) (0.492) (0.649) (0.653)
α -12.635 -12.825 -5.843 -5.866 -3.449 -4.359 -0.469 -0.560

(0.189) (0.193) (0.095) (0.095) (2.137) (2.248) (1.107) (1.111)
κ - - - - 0.359 0.361 0.360 0.361

- - - - (0.023) (0.020) (0.022) (0.022)
RA 13.635 13.825 6.843 6.866 4.449 5.359 1.469 1.560

(0.189) (0.193) (0.095) (0.095) (2.137) (2.248) (1.107) (1.111)
EIS ∞ ∞ ∞ ∞ 3.693 13.222 1.337 1.431

- - - - (6.392) (85.958) (1.159) (1.338)
CvM 0.034 0.034 0.034 0.034 0.031 0.031 0.031 0.031

Note: The table reports the estimation results for the asset pricing models in which the
aggregate wealth consists of financial wealth and human wealth. All results are for the
sample 1/2/1960-12/29/2006. In each panel, each column represents the point estimates
and their standard errors for the recursive utility model given the proportion of financial
wealth to the aggregate wealth (π) and the correlation between the return on human wealth
and financial wealth (ρy). The correlation between the market return and the consump-
tion growth (ρc) is set to be 0.2. The standard errors in parenthesis are obtained by the
subsampling method.
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growth, market returns, and labor income growth. Our empirical results strongly

suggest that investors will readily take uncertain bets in financial markets only if a

sufficient amount of premium is given, separate from the conventional risk premium.

Meanwhile, the major difference of the Table IV in comparison with Table III is that

the risk aversion coefficient increases. In case of Model II counterparts (i.e., models

without ambiguity), the RRA increases from 4.6 up to 14. With ambiguity aversion,

the RRA increases from 1.4 up to 5.5. With the addition of the labor income growth,

the total wealth becomes less volatile in comparison with the financial wealth. Thus,

in order to make up for the level of variability related to the aggregate wealth return

term, a higher risk aversion is needed.

Regarding the intertemporal substitutability, the EIS estimates increase like the

case of risk aversion when ambiguity aversion is imposed. With π = 1/3 and ρy =

0.03, we have 9.33 with the non-paramteric volatility model, and 3.69 with the non-

linear stochastic volatility model. With ρy = −0.03 instead, the estimated EIS is

21.79 with the parametric volatility and 13.22 with the non-linear volatility, but the

standard erros are very big. When the fraction of financial wealth π is set to 2/3, the

estimated EIS is around 1.3-5.4 depending on settings. Without ambiguity aversion,

β is again close to zero and therefore, identification is fairly weak. Interestingly,

when we impose a strong negative number for ρy as implied in the papers mentioned

above, we have somewhat lower EIS around 1.2 for most cases. However, in all of the

settings we have tried, the point estimates of the EIS is higher than one, meaning that

economic agents will change their consumptions rather elastically when real interest

rate changes. It should be also noted that all the results in Table IV show that

agents prefer early resolution of uncertainty whether or not there exists ambiguity

aversion. This makes economic agents unhappy about fluctuations in future utilities,

often called the long-run risk channel. For more details on the mechanisms, see Bansal
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and Yaron (2004), Hansen, Heaton and Li (2008), and Kim et. al. (2008) on stock

returns. For the term structure modeling along this line, see Piazzesi and Schneider

(2006), and Gallmeyer, Gonzales, and Kim (2008).

In a summary, the recursive utility models with both financial and human wealth

give most reasonable results when ambiguity aversion is included and the estimates of

ambiguity aversion do not depend on alternative setting. Although the estimates of

the risk aversion increase as human capital is added, those are still in an acceptable

range of values.23 The weak identification problem of the EIS is also a prevalent

feature across different model specifications.

Before we conclude, we discuss the relevance of our human capital setup linking

the volatility of returns from human capital and that of labor income growth. There

can be some additional components that may not be fully internalized via labor

income growth such as the learning-by-doing or interactions across workers. If this

happens to have a strong time-varying volatilities, our setup may be misspecified in

this direction. On the other hand, if it exists but has a constant conditional volatility,

then this has an interesting implication for our ambiguity aversion. Suppose that the

covariations between returns from human wealth and the financial market return are

decomposed into a covariation term related to labor income growth and the other

from the externality factor, say Z, or

ρhσ
h
t σ

m
t = ρyσ

y
t σ

m
t + ρzσ

zσm
t ,

where ρz and σz are the correlation with the market return and the constant condi-

23According to Mehra and Prescott, the acceptable range of the relative risk aver-
sion does not exceed 10.
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tional volatility of z respectively. Then, (Model III) is extended as
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where Υ =
(

1 − α
1−β

)

ρzσ
z + κ. That is, if this setup were a better approximation

of reality, our estimate of ambiguity aversion may include an additional term related

to the interaction between human capital and asset returns. Note, however, that the

size of Υ depends on the sign of ρz. As mentioned in the beginning of this section,

the returns on human capital is strongly negatively correlated with the market return

according to the recent empirical research, while the correlation between labor income

growth and market returns turns out to be a weakly positive number. If this is the

case, ρz < 0 must hold. That is, given 1 > α/(1 − β), this implies that estimated

ambiguity aversion may be downward biased. Of course a more elaborate quantitative

assessment is necessary, but based on all the results, we believe that our estimates on

ambiguity aversion are robust and conservative.

F. Conclusion

We began this paper with a question asking if there is an important role played by

decision makers’ fear on ambiguity on true probability measure. The answer to this

question is positive based on our empirical analysis.

In terms of economic theory, the inclusion of ambiguity aversion is meaningful

because it can overcome the Ellsberg paradox. Multiple-priors utility models were

developed to incorporate such ambiguity aversion, and have a neat expression for

asset prices available in continuous time. In addition, one can view that multiple-

priors models as an extension of the rational expectation in that investors may be of
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insufficient knowledge about the true probability density. When ambiguity aversion

is assumed, economic agents are basically endowed with a set of beliefs on the true

probability distribution and choose the one that is the least ambiguous. Of course,

whether or not the ambiguity aversion matters is an empirical and quantitative con-

cern. Our estimation results strongly suggest that there exists premium for bearing

market uncertainty separate from the conventional risk sources. Even with various

specifications, the preference parameter indicating the ambiguity aversion is both

economically and statistically significant. In addition, the estimates of the ambiguity

aversion parameter rarely vary across alternative settings.

Another interesting finding is that the models with ambiguity aversion have lower

relative risk aversion. Thus, the conjectures in Epstein and Wang (1994) or Chen and

Epstein (2002) are confirmed in our empirical result. Empirically speaking, our results

suggest that relative risk aversion can be estimated with an upward bias if ambiguity

aversion is properly adjusted. What is even more interesting is that incorporation

of ambiguity aversion does not dominate the role of risk aversion. Clearly, there

exist some independent dimensions of generating premiums for bearing such risk and

uncertainty. It is true that we only employed a simple case of ambiguity aversion.

Therefore, it would be interesting to study links of alternative forms of ambiguity

aversion to asset prices.

With regard to the elasticity of substitution, there exists a weak identification

problem due to its non-linear parametric restrictions and the weak signal from con-

sumption growth. That said, the models with ambiguity aversion still produce quite

reasonable estimates of the intertemporal substitution. Therefore, ambiguity aver-

sion not only matters in terms of explaining the behaviors of asset returns, but also

helping identify key preference parameters.

In addition to the empirical findings, another contribution of our paper is that we
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provide a novel econometric approach estimating and testing for continuous-time asset

pricing models including both financial and macroeconomic variables. In the empirical

analysis of such models, it has long been a tradition that we ignore the availability

of high-frequency observations on financial variables, mostly for the lack of ideas

about how to use them constructively. Virtually all empirical studies of such models

have been done only using lower-frequencies, at which all involved macroeconomic

variables are also available. Our paper makes it clear that this is an important loss

of information.

In our analysis, we use the available high-frequency observations directly to iden-

tify our model, and also nonparametrically correct for time-varying stochastic volatil-

ity in the price equation errors. It is widely known that many asset returns show

strong evidence for the presence of time-varying stochastic volatility. Unless properly

and carefully taken care of, the time-varying stochastic volatility may well have a

fatal effect on our estimation results. We believe that our method can be used in

many other interesting applications, to unravel the complicated interactions between

financial markets and macroeconomy.
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CHAPTER III

A TEST OF MARTINGALE IN CONTINUOUS TIME

A. Introduction

The concept of martingale plays a central role in modern economics and finance. The

martingale hypothesis implies that any future value of a time series is expected to

be its current value, conditional on the current information set. It has long been

believed, rather vaguely, that an asset’s price would follow a martingale if it has an

efficient market and any new information is instantly and fully reflected in the asset’s

price. Modern finance theory shows that this is indeed true under the risk-neutral

measure, if the market offers no arbitrage opportunity. In fact, it is now well known

that the price of any financial asset should follow a martingale, if deflated by the so-

called pricing kernel, to avoid any arbitrage opportunity. The martingale concept is

also a crucial instrument in econometric modeling. Any conditional mean specification

implies that the error in the resulting model is a martingale difference or a martingale

stochastic differential respectively in discrete or continuous times. Testing for model

specification in conditional mean is therefore closely related to testing the martingale

hypothesis for the error in the resulting model.

Various tests for the martingale hypothesis have already been developed by

many authors, which include the tests by Durlauf (1991), Hong (2000), Deo (2000),

Dominguez and Lobato (2003), Kuan and Lee (2004), Hong and Lee (2003), Hong

and Lee (2005), Park and Whang (2005), Escanciano and Velasco (2006) and Escan-

ciano and Mayoral (2007), among others. All of the existing tests, however, have

been developed in the discrete time framework, and examine whether or not the first

differences of the given time series are martingale differences. Our approach in the
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paper is entirely different, in the sense that our tests are developed in the continuous

time framework. Though we use the time series data observed in discrete time, we

assume that they are generated by the underlying stochastic process evolving contin-

uously in time. Many of the asset pricing models have been derived in continuous

time, using continuous time models such as diffusions. Moreover, we may expect

that the continuous time models are likely to become more important, since as the

financial market develops transactions will be made almost continuously in time and

accordingly no arbitrage condition should be imposed continuously in time.

Our approach is based on the time change defined as the inverse of the quadratic

variation of the underlying stochastic process, which we assume to be a general semi-

martingale whose martingale component is a.s. continuous. Under our setting, the

underlying stochastic process becomes a martingale if and only if it becomes Brow-

nian motion after the time change by the celebrated theorem by Dambis, Dubins

and Schwarz. To test the martingale hypothesis, we may therefore test whether or

not the time changed underlying stochastic process is Brownian motion. There can

be many different ways to test whether a given process is Brownian motion. In the

paper, we directly test whether their increments are iid normals, using modified ver-

sions of already existing tests on multivariate normality. The idea of a time change

was explored earlier by Peters and de Vilder (2006) to test whether a given sample

may be viewed as being generated from a semimartingale. After removing the drift

component using a smoothing method, they suggest to test whether the remaining

component is a martingale using a procedure similar to ours. In contrast, we test

whether a given process has any non-vanishing drift component. While they do not

provide any statistical theory, we fully develop the asymptotics of our methodology.

There are several obvious advantages of our approach relying on continuous time

models. First, the continuous time approach is more appropriate for observations col-
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lected at relatively high frequencies. Though the tests based on discrete time models

are physically implementable also for high frequency data, their limit behaviors are

not well defined as the sample interval decreases down to zero. Second, our approach

allows for martingales whose increments are not necessarily weakly stationary. This is

in contrast with virtually all the existing tests, which are based on stationary discrete

martingale difference models. Third, we just assume that the underlying stochastic

process is a continuous martingale under the null hypothesis, permitting a wide vari-

ety of stochastic volatilities. On the other hand, only a very limited class of stochastic

volatilities are allowed for the existing tests. In particular, all the existing tests be-

come invalid if, for instance, present are near-nonstationary stochastic volatilities that

Jacquier, Polson and Rossi (2004) and others found in many important financial data.

The theorem by Dambis, Dubins and Schwarz, which our approach heavily relies

on, does not apply if the underlying stochastic process has jumps. However, this

does not imply that we cannot use our methodology for the stochastic processes with

jumps. Our approach may easily accommodate the presence of jumps, as long as

they are of a relatively simple type such as the one generated by a compound Poisson

process. For such an underlying stochastic process, our approach provides a very

simple way of testing if its continuous component is a martingale. To implement our

tests for the stochastic processes with suspected jumps, we may just use the tests for

jumps, e.g., the one by Barndorff-Nielsen and Shephard (2006), and simply discard

the observations in the intervals which are tested positively against the presence of

jumps. It would, of course, also be possible to collect the jump components and test

whether they may be generated from a martingale separately.1

1We do not pursue this idea in the paper, since it appears to be extremely difficult
to identify and estimate the sizes and locations of the jumps, with a precision that
would make the subsequent martingale test meaningful.
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The finite sample performances of our tests are evaluated through an extensive

set of simulations. The finite sample performances of our tests are reasonably good

in general, especially relative to other existing tests developed in the discrete time

framework. The overall finite sample rejection probabilities of our tests are quite

close to the nominal asymptotic sizes, even in the presence of general nonstationary

stochastic volatilities. The finite sample powers of our test statistics, however, are

somewhat sensitive to the specific alternatives. They vary widely against different

classes of nonmartingales we consider in the paper. It is therefore recommended that

multiple tests are used and compared if there is no knowledge on the alternative

processes. For illustrative examples, we use our methodology to test whether there

is a risk premium in the excess return of some selected set of portfolios, and to test

whether the market prices of risks in two countries are identical. The presence of a

risk premium is quite evident in all portfolios we investigated, and the market prices

of risks appear to differ in every pair of countries we considered in the paper.

The rest of the paper is organized as follows. Section 2 introduces the main idea

of our approach involving a time change, followed by a discussion on how to implement

the time change in actual applications using discrete observations. It is also addressed

how we may effectively deal with the presence of jumps. The test statistics are

presented in Section 3. We consider three different types of the tests, i.e., goodness-

of-fit tests, smooth tests and invariant tests. Section 4 develops the asymptotic null

distributions of the test statistics introduced in Section 3. The asymptotic powers of

the test statistics are considered subsequently in Section 5. We show in particular

that the tests considered in the paper are generally consistent against nonmartingales.

An extensive set of simulation results are given in Section 6. Section 7 concludes the

paper. All the mathematical proofs are collected in Mathematical Appendix.
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B. Preliminaries

In this section, we introduce some preliminaries that will be used in the subsequent

development of our methodology and its asymptotic theory.

1. The Main Idea

We let X = (Xt) be a continuous semimartingale with respect to some filtration (Ft),

which has the representation

Xt = At +Mt, (3.1)

where A = (At) is a continuous process of finite variation and M = (Mt) is a con-

tinuous local martingale.2 Both (At) and (Mt) are assumed to be adapted to the

filtration (Ft). Strictly, local martingales are not necessarily martingales.3 We will,

however, not distinguish them and simply refer local martingales as just to mar-

tingales throughout the paper. Temporarily in this section, we assume that X is

observed continuously in time t ∈ R+, so that we can more effectively present the

main ideas of our approach more effectively. In later sections, our methodology and

its asymptotic theory will be derived from a discrete set of samples from X.

Using the usual notation, we denote by [X] the quadratic variation ofX. Through-

out the paper, we assume that [X]t → ∞ a.s. as t → ∞. It is well known that any

continuous process of finite variation has zero quadratic variation, and therefore, we

have [A] = 0 and

[X] = [M ].

2It will be explained later how we may allow for jumps in X.
3Therefore, there are local martingales that are nonmartingales. See, e.g., Karatzas

and Shreve (1991) for such examples.
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Moreover, we introduce a time change T = (Tt), which is defined as

Tt = inf {s ≥ 0 |[X]s > t} = inf {s ≥ 0 |[M ]s > t} . (3.2)

As is easily seen, T is a class of nonnegative and nondecreasing stopping times adapted

to the filtration (Ft). Note that the time change T is indeed the generalized time

inverse of the quadratic variation [X] of X, or equivalently, of [M ] of M .

Now we introduce a continuous process Y , which is defined by

Yt = XTt = ATt +MTt . (3.3)

The process Y may be considered as the process X running on a different clock, given

by the inverse of the quadratic variation of X. By the celebrated theorem of Dambis,

Dubins and Schwarz (DDS) [see Revuz and Yor (2005, pp181)],

Wt = MTt

is the standard Brownian motion, adapted to the filtration (FTt), and we have Mt =

W[M ]t. The Brownian motion W = (Wt) will be referred to as the DDS Brownian

motion of M . As a result, it follows immediately that

Lemma 2.1 X is a continuous martingale if and only if Y is the standard Brownian

motion.

The ‘only if’ part if obvious, since in this case AT term in (3.3) would vanish. To

show that ‘if’ part, note that AT is a process of finite variation, and that Y cannot

be the standard Brownian motion unless AT = 0 for all t ∈ R+.

In some special cases, we may obtain AT more explicitly. To see this, let X be

a homogeneous diffusion process that is given by dXt = µ(Xt)dt + σ(Xt)dBt, where

µ and σ signify respectively the drift and diffusion functions. Moreover, we assume
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that [X] is a.s. differentiable with derivative bounded below frow zero. In this case,

the time changed process Y becomes another homogeneous diffusion given by

dYt =
µ(Yt)

σ(Yt)2
dt+ dWt, (3.4)

where W is the DDS Brownian motion of the continuous martingale M , dMt =

σ(Xt)dBt. This implies that the time change for a non-martingale process transforms

the drift function inversely proportional to the square of the diffusion function. As

expected, Y becomes the standard Brownian motion when and only when the drift

term µ in X vanishes, i.e., when and only when X is a martingale.

Due to Lemma 2.1, we may now test whether Y is the standard Brownian motion,

instead of directly testing the martingale hypothesis for X. There can be many

different ways to test for a process being the standard Brownian motion. In the

paper, we test for the independence and Gaussianity of the increments. In other

words, we let

Zi =
1√
∆

(

Yi∆ − Y(i−1)∆

)

(3.5)

for i = 1, . . . , N and some fixed ∆ > 0, and test whether (Zi) are iid standard normal.

It follows immediately from Lemma 2.1 and the definition of Brownian motion that

(Zi) is a sequence of iid standard normals for all ∆ > 0 if and only ifX is a martingale.

This is the main idea of our approach.

Clearly, we may interpret the time change T as a volatility equalizing clock if

X is an asset price. It runs slow (fast) when the market for X is volatile (stable),

so that the time changed process Y has a constant volatility. It may be interesting

to compare the clock T with other time scales considered earlier, such as business

cycle time introduced by Burns and Mitchell (1946) and economic time scale by

Stock (1987). See also Allais (1966), Barro (1970) and Flood and Garber (1980) for
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economic models that incorporate some economic time scales.

2. Implementation Using Discrete Samples

For virtually all empirical applications in economics and finance, continuous time

observations are not available. Therefore, we assume in the paper that samples are

collected discretely in time. More specifically, we suppose that there are n-number of

observations on a continuous semimartingale X at intervals of length δ over the time

interval [0, T ], T = nδ, which are denoted by

Xδ, X2δ, . . . , Xnδ.

Note that we have

[X]T = [M ]T = N∆

and

TN∆ = T,

if we let N and ∆ be respectively the number and the interval of the testing samples

extracted from the time-changed process Y , as introduced in the previous subsection.

The asymptotic theory developed in the paper requires that δ → 0 and T → ∞.

Moreover, it is necessary to assume that [X]t → ∞ as t → ∞, so that N → ∞.

We let ∆ be fixed. To apply our theory and methodology, we must therefore have

relatively high frequency data over a reasonably large time span, i.e., small δ and

large T , and the quadratic variation of the underlying process should be unbounded

so that the number N of testing samples is not too small. In our applications reported

in the paper, we use daily observations which span the time intervals of twenty years

or more. We set ∆ to be approximately the same as the average monthly realized

variance. For Brownian motion, we have N∆ = T , and therefore, N → ∞ as long
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as T → ∞. On the other hand, our theory and methodology is not applicable for

exponential Brownian motion, for which the quadratic variation is bounded and we

cannot have N → ∞ even when T → ∞.

Let

[X]δt =
∑

iδ≤t

(

Xiδ −X(i−1)δ

)2

i.e., the sample analogue of the quadratic variation of X. Note that [X]δt is nothing

but the realized variance of X over the time interval [0, t]. Furthermore, we define

T δ
t = inf

{

s ≥
∣

∣[X]δs > t
}

and subsequently introduce the stochastic process Y δ by

Y δ
t = XT δ

t

similarly as in (3.3). It is well expected that [X]δt ≈ [X]t, T
δ
t ≈ Tt and Y δ

t ≈ Yt, as

δ ≈ 0.

We assume

Assumption 2.1 For all 0 ≤ s ≤ t ≤ T ,

aT (t− s) ≤ [M ]t − [M ]s ≤ bT (t− s),

where aT , bT > 0 are some constants depending only upon T .

Assumption 2.2 For all 0 ≤ s ≤ t ≤ T ,

sup
0≤t,s≤T

|At −As| ≤ cT |t− s|

for all large T .

Assumption 2.1 is not stringent and holds for a large class of continuous martingales.
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We may easily see that the condition is met for Brownian motion with aT = bT =

1. For Ito martingales given by dMt = σtdWt with some volatility process σ and

Brownian motion W , the condition holds with

aT =≤ inf
0≤t≤T

σ2
t < sup

0≤t≤T
σ2

t = bT .

As is well known, this condition is satisfied for many martingale diffusion processes.

See Park (2008) for more discussions on the condition in Assumption 2.1. Assumption

2.2 is also very weak and satisfied by many continuous semimartingales. For instance,

the condition obviously holds with cT = 1 for any diffusions having bounded drift

functions. It is satisfied for Ornstein-Uhlenbeck (1930) process as well, if we set

cT = Op((log T )1/2).

It is shown in Park (2008) that

Lemma 2.2 Under Assumption 2.1, we have

sup
0≤t≤T

∣

∣[M ]δt − [M ]t
∣

∣ = Op (bT (δT )1/2)

for bT introduced in Assumption 2.1.

Lemma 2.3 Under Assumptions 2.1 and 2.2, we have

sup
0≤t≤T

∣

∣[X]δt − [M ]δt
∣

∣ = Op

(

(b
1/2
T cT )(δ1/2T )

)

+Op

(

c2T (δT )
)

with bT and cT introduced in Assumptions 2.1 and 2.2.

As expected, the realized variance of M converges to the true quadratic variation of

M if δ decreases to zero fast enough, compared to the increasing rate of T . Moreover,

the realized variance of X approximates that of its martingale component M as long

as δ is sufficiently small. In this case, the realized volatility of M or X obtained
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from the discrete samples can be used as an estimate for the quadratic variation [M ].

It should be noted that we need to use observations at higher frequencies, as the

sampling horizon expands. This is to obtain the uniform consistency of [M ] or [X]

over an expanding time horizon [0, T ]. In general, it is required that δ decrease at a

faster rate, if the maximal rates, bT and cT , of increase in the quadratic variation of

M or the bounded variation component A.

Our tests, which will be introduced in the next section, are based on

Zδ
i =

1√
∆

(Y δ
i∆ − Y δ

(i−1)∆). (3.6)

Given the results in Lemmas 2.2 and 2.3, it is not difficult to expect that the actual

testing samples (Zδ
i ) are uniformly close to the infeasible testing samples (Zi) defined

earlier in (3.5). This will be presented formally in what follows.

3. Testing for Processes with Jumps

The DDS theorem, which allows us to convert any continuous martingale to Brownian

motion, no longer holds when there are discontinuous jumps in the process. However,

our approach is still valid in the presence of jumps. Sometimes, the jumps in the

data are pretty conspicuous and easy to detect. In this case, we may simply skip the

suspected location of each jump in defining time change (Ti∆) and extracting test

samples (Zi), and make sure that test samples are all originated from the continuous

part of the process. For instance, if τ is the location of a jump, we may define Ti∆,

i = 1, . . . , m, until it reaches τ , i.e., Tm∆ < τ , and then start defining T(m+1)∆ and on

again from T(m+1)∆ = τ . If the jumps in the data are of a more complicated nature

and hard to detect, we may define time change (Ti∆) ignoring discontinuities and

test for the presence of jumps in each of the time intervals [T(i−1)∆, Ti∆]. It is quite

obvious that our methodology is applicable, as long as we discard the corresponding



62

test samples Zi from the intervals where we find positive evidence of jumps, and use

only Zi from the intervals where the underlying process is continuous. Of course, this

procedure based on a pretest may result in some size distortions in finite samples.

However, the deleterious effect on test size would be minimal, if we only have a small

number of jumps in the process.

To detect jumps, we may use the Hausman (1978)-type jump test, proposed

by Barndorff-Nielsen and Shephard (2006) that relies on the comparison between

bi-power and quadratic variation of X. The bi-power variation of X is defined as

{X}t = plim
δ→0

∑

iδ≤t

|Xiδ −X(i−1)δ||X(i−1)δ −X(i−2)δ|

for each t ≥ 0. The concept of bi-power variation was introduced by Barndorff-Nielsen

and Shephard (2004), who showed that the bi-power variation of a semimartingale

with jumps is just a constant multiple of the quadratic variation of its continuous

martingale component, i.e.,

[M ]t = κ{X}t

with κ = π/2.

For the test of the presence of jumps in the time interval [T(i−1)∆, Ti∆], we use

the test statistic given by

√

δ

{{X}}δ
i/({X}δ

i )
2

(

κ{X}δ
i

[X]δi
− 1

)

,

where [X]δi =
∑

j(4Xjδ)
2, {X}δ

i =
∑

j |4Xjδ||4X(j−1)δ| and

{{X}}δ
i = (1/δ)

∑

j |4Xjδ||4X(j−1)δ||4X(j−2)δ||4X(j−3)δ|

with 4X(j−k)δ = X(j−k)δ − X(j−k−1)δ and the summation index j running over the

range for which the time indices of summands are in [T(i−1)δ, Ti∆]. The test statistic



63

has a limit normal distribution with mean zero and variance π2/4 + π − 5 ' 0.609.

It is interesting to note that our approach, if applied to martingales, can be used

to test for the presence of jumps. Suppose A ≡ 0. To test whether or not there are

jumps, we may test whether our test samples (Zi) are independent standard normals,

exactly as if we tested for the martingale hypothesis. Under the maintained assump-

tion of martingale, our test samples are or are not independent standard normals,

depending upon whether or not there are jumps. To fix the idea, we consider the

Poisson-based jump of Merton (1976). We let Nt be a Poisson process with intensity

λ, and Jt is a Gaussian random variable with mean µ and variance σ2, and look at

the process with the Poisson jump component defined by

Xt = Mt +
Nt
∑

i=1

Ji, (3.7)

where M is a continuous martingale. For simplicity, we assume that M , N , and J

are independent. The quadratic variation of X in (3.7) is given by

[X]t = [M ]t +
Nt
∑

i=1

J2
i ,

see, e.g., Lepingle (1976).

In the presence of jumps, the distribution of our test samples (Zi) would not

be normal. To see this, we assume that the time change (Tt) is observable. In this

case, we may indeed easily deduce that the probability density ψi of Zi, conditional

on τi = Ti∆ − T(i−1)∆, is given by

ψi(z) =
∞
∑

k=0

(λτi)
ke−λτi

k!

1√
2π
√

(∆ + kσ2)/∆
exp

[

−1

2

(z − kµ/
√

∆)2

(∆ + kσ2)/∆

]

.

It is well known that the distribution given by the density ψi(z) departs from the stan-

dard normal and exhibits excess kurtosis. See Äıt-Sahalia (2004) for more discussions
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on the fat-tail distribution originated from the jump component.

C. Test Statistics

In our approach, we examine the martingale hypothesis by testing for independent

standard normality of the test samples (Zi). In this section, we introduce various

methods to test for the independent standard normality of (Zi). We let

Zim = (Zi, Zi−1, . . . , Zi−m+1)
′

for some fixed m ≥ 1, and propose three types of test statistics for multivariate

standard normality of (Zim). Testing based on the m-dimensional vector can jointly

test the independence and the normality of the samples, and it provides power of

the tests in a wider range of alternatives than the tests based marginal distributions.

Note that tests based on the marginal distribution of (Zi) may not be consistent

against some Gaussian semimartingales.

1. Goodness-of-fit Tests

Define the m-dimensional empirical distribution function

FN(z) =
1

Nm

Nm
∑

i=1

1{Zim ≤ z}, (3.8)

where

1{Zim ≤ z} = 1{Zi ≤ z1}1{Zi−1 ≤ z2} · · ·1{ZN−m+1 ≤ zm},

Zim = (Z1, . . . , Zm) ∈ Rm, and Nm = N −m+1. Put F0(z) = Φ(z1) · · ·Φ(zm), where

Φ(·) is the c.d.f of N(0, 1). Then, the m-dimensional Cramer-von Mises statistic (or

CvM) is given by

W 2
m = Nm

∫

Rm

{FN (z) − F0(z)}2 dF0(z)
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and the corresponding Kolmogorov-Smirnov statistic (KS) is

Dm =
√

Nm sup
z∈Rm

|FN(z) − F0(z)|.

These are m-dimensional goodness-of-fit tests which are based on the empirical

distribution function in Equation (3.8). Both the independence and normality are

tested by the distributional distance between the empirical distribution function and

the population distribution, which is in our case, a standard multivariate normal

distribution. For all the alternatives in which the empirical distribution function

differs from the population distribution function, those statistics will be consistent,

and as a result, form omnibus tests.

There are several advantages of these statistics. First, they do not require any

numerical integration or approximation. Therefore, we can easily calculate the statis-

tics based on computationally equivalent forms of the statistics. For example, the

univariate CvM statistic can be calculated by

W 2
1 =

N
∑

i=1

(Vi −
2i− 1

N
)2 +

1

12N
,

where Vi are the ordered Φ(Zi). Also, the Kolmogorov-Smirnov statistic is given by

D1 = max(max
i

(Vi −
i− 1

N
),max

i
(
i

N
− Vi)).

Second, it is known by Stephens (1970) that the goodness-of-fit tests based on the

empirical distribution function is more powerful than Pearson’s chi-square test. Third,

unlike the usual goodness-of-fit tests for multivariate normality, our null hypothesis

is specifically given by a standard multivariate normality. Therefore, the asymptotic

distributions of our statistics are much simpler and easy to simulate. In Section 4, we

will discuss the asymptotic distribution of the multivariate goodness-of-fit statistics

more detail.
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2. Smooth Tests

Assume that under the alternative there exists a multivariate distribution function

F (·) given by

F (z) =
∑

0≤s1+s2+···+sm≤p

(−1)m

∏m
j=1 sj !

E

[

m
∏

i=1

Hsi
(zi)

]

m
∏

p=1

Hsp−1(zp)φ(zp),

where p is a positive integer, Hi(·) is the Hermite polynomial with order i, and φ(·)

is the density function of N(0, 1). This is a truncated Gram-Charlier series up to

order p running from order 0. Note that the terms up to order 2 vanish in the usual

Gram-Charlier series that expand the standard multivariate distribution function. In

this regard, we call the above series as an augmented Gram-Charlier series. Define a

q-dimensional vector given by

hm,p = (hp1, hp2, . . . , hpq(p))
′,

where hpj is the normalized sample analogue estimator for E[
∏m

k=1Hsk
(zk)] when

∑m
k=1 sk = p while s1 6= 0, and q(p) =

(

m+p−1
p

)

−
(

m+p−2
p

)

. For example, if m = 2 and

p = 2, then we have

h2,2 =

(

1√
2!Nm

Nm
∑

i=1

H2(Z
δ
i ),

1√
1!1!Nm

Nm
∑

i=1

H1(Z
δ
i )H1(Z

δ
i+1)

)′

.

The smooth test for the standard multivariate normality of (Zδ
im) is defined by

Im,P =

P
∑

p=1

Hm,p, (3.9)

where Hm,p = h′m,phm,p.

Note that each element of hm,p is asymptotically independent standard normal

under the null hypothesis because of the orthogonality of the Hermite polynomials,

and therefore, the limiting distribution of Hm,p is given by the chi-square distribution
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with degrees of freedom q(p). Moreover, the limiting distribution of Im,P is also the

chi-square distribution with degrees of freedom
∑P

p=1 q(p); see Theorem 4.3 for detail.

Intuitively, the smooth test compares the coefficients of the augmented Gram-Charlier

series with zero vector, which is the case under the null distribution. Unlike the usual

smooth tests based on the Hermite polynomials (Koziol (1986) and Bogdan (1999)),

the test only uses asymptotically independent coefficients in the expansion. Specifi-

cally, if the coefficients with s1 = 0 is included in hm,p, the asymptotic independence

will no longer hold. The choice of truncation order P can be given by a specific prior

based on the knowledge of the alternative hypothesis, or a data-driven selection rule

can be adopted. Specifically, if the alternative hypothesis for the cumulative pricing

error is known to be Brownian motion with drift, we can expect that P = 1 will

be optimal in detecting non-zero mean of F (·). However, if such a knowledge is not

available, we can use a specific type of information criteria. For example, a modifica-

tion of Schwarz Bayesian Information Criterion of Bogdan (1999) can be considered

as follows;

P = argmin
1≤p≤d(Nm)

{Im,p − p log(Nm) ≥ Im,j − j log(Nm), j = 1, . . . , d(Nm)},

where d(Nm) is the upper bound for P .

3. Invariant Tests

Define the Euclidean norm on Rm of the m-dimensional vector Zδ
im by

Ri = (Zδ
im)′(Zδ

im), i = 1, . . . , Nm. (3.10)

Our invariant test is the Cramer-von Mises statistic given by

Jm = Nm

∫ ∞

0

(GN(x) − Ψ(x))2 dΨ(x),
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where

GN(x) =
1

Nm

Nm
∑

i=1

1{Ri ≤ x},

and Ψ(·) is the cumulative distribution function of χ2(m).

The main idea of this test is to compare the distribution of the squared radii

of the random vector Zδ
im with the chi-square distribution with degrees of freedom

m. Unlike the test of Koziol (1982), the null hypothesis is completely specified as

standard multivariate normality, and therefore, estimation of mean and variance-

covariance matrix is not required. However, each observation Ri is serially correlated

because the random vector Zδ
im is correlated with Zδ

jm
for i < j ≤ i+m− 1. In this

case, the asymptotic distribution of the Cramer-von Mises statistic will be different

from the usual case because the empirical process will have different covariance kernel.

We will discuss on the asymptotic distribution of the invariant test in Section 4.

4. Variance Ratio Tests

Variance ratio test is defined by

Vq =
σ̄2

c (q)

q
− 1,

where

σ̄2
c (q) =

1

N − q + 1

N
∑

i=q

(

q
∑

j=1

Zi+j−q

)2

.

The variance ratio test compares the variance of q partial sum of (Zi) with q. If

(Zi) is i.i.d normal, then the variance of q partial sum of (Zi) should be equal to q.

This idea has been used to test the independence of stock returns; Cochrane (1988)

and Lo and MacKinlay (1988). Under the null hypothesis, (Zi) is i.i.d normal, hence

the statistic is much simpler than the conventional variance ratio tests which considers

non-zero mean and conditional heteroskedasticity. Moreover, unlike the conventional
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tests, this test can detect the non-zero mean as well as the non-unity variance of (Zi).

One can expect that the variance ratio test is powerful against stationary alternatives

because (Zi) under staionary alternatives are in general correlated. In our Monte

Carlo simulation study, we show that the test is in fact the most powerful among our

time change tests against stationary alternatives, such as Ornstein-Uhlenbeck (1930)

process and Feller (1951)’s square root process.

D. Asymptotic Null Distribution

Our asymptotic theory is based on the assumption that the observation time interval δ

is shrinking to 0 (or infill), while the observation time horizon T is diverging to infinity

(or longspan). These two assumptions are jointly important in dealing with the

asymptotic theory for test statistics based on the increment of time changed process.

First of all, the “infill” assumption guarantees that we collect higher frequency data to

gather more information on the volatility (or volatility time), which implies that the

sample time change will converge to the true time change in the infill. Hence, we do

not need to worry about the errors of time change, which might affect the distribution

of the test statistics, at least in the infill setting. Secondly, the “longspan” assumption

implies that [M ]T → ∞ with ∆ > 0 fixed. Since the number of samples for the time

changed process will depend on [M ]T , this longspan assumption enables us to rely on

the usual asymptotic theory that the sample size goes to infinity.

Assumption 4.1 We assume

N = op

(

1

αδ,T log(1/αδ,T )

)

with αδ,T = bT (δT )1/2), for small δ and large T .
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Lemma 4.1 Under Assumptions 2.1 and 4.1, we have

sup
1≤i≤N

∣

∣Zδ
i − Zi

∣

∣ = op(N
−1/2)

for large N .

Theorem 4.2 Let Assumptions 2.1 and 4.1 hold. Define Dδ
m, W 2,δ

m , Iδ
m,P , and Jδ

m

to be the Kolmogorov-Smirnov, Cramer-von Mises statistics for goodness-of-fit, the

smooth test, and the invariant test based on the test samples (Zδ
i ). Then we have

Dδ
m = Dm + op(1),W 2,δ

m = W 2
m + op(1), Iδ

m,P = Im,p + op(1), Jδ
m = Jm + op(1).

for large N .

Theorem 4.3 Let Assumptions 2.1 and 4.1 hold.

(a) Goodness-of-fit tests

Dm →d sup
t∈[0,1]m

|B(t)|,

W 2
m →d

∫

[0,1]m
B(t)2dt,

where B(t) : [0, 1]m 7→ R is a Gaussian process with covariance kernel

KB(s, t) = lim
N→∞

E [bN(s)bN (t)] ,

where bN(t) is the empirical process given by

bN (t) =
1√
Nm

Nm
∑

i=1

(1{Φ(Zim) ≤ t} − t1 · · · tm).

Here Φ(·) is the distribution function of N(0, Im).
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(b) Smooth tests

Im,P →d χ
2

(

P
∑

p=1

q(p)

)

,

where q(p) =
(

m+p−1
p

)

−
(

m+p−2
p

)

.

(c) Invariant tests

Jm →d

∫ 1

0

W (s)ds,

where W (s) : [0, 1] 7→ R is a Gaussian process with covariance kernel

KW (t, s) = lim
N→∞

E [wN(s)wN(t)] ,

and wN(t) is the corresponding empirical process given by

wN(t) =
1√
Nm

Nm
∑

i=1

(1 {Ψ(Ri) ≤ t} − t) .

Here Ψ(·) is the chi-square distribution function with degrees of freedom m.

(d) Variance ratio tests
√
NVq →d N

(

0,
4q

3
+

2

3q

)

.

The asymptotic distribution of D1 and W 2
1 is well-known by Kolmogorov (1933),

Smirnov (1939), Donsker (1952), Durbin and Knott (1972) and Stephens (1970).

However, the limiting distribution of Dm and W 2
m with m > 1 is not known in

general because (i) the observations for the m-dimensional vector Zim are correlated,

or m-dependent process, and (ii) the property of the Gaussian process with dimension

m > 1 is unknown in general. Similarly, the asymptotic distribution of Jm with m > 1

is unknown in general because of the same reason in (i). Even if the asymptotic

distributions for the goodness-of-fit tests and the invariant tests are hard to find

analytically, the critical values for the tests can be easily obtained from a simulation
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Table V. Critical Values for the Test Statistics in Bivariate Case

D2 W 2
2 J2

N 10% 5% 1% 10% 5% 1% 10% 5% 1%

10 1.1443 1.3013 1.6134 0.3641 0.4873 0.8423 0.5848 0.7745 1.1985
20 1.2386 1.4064 1.7393 0.3783 0.5052 0.8429 0.6069 0.8109 1.3021
30 1.2854 1.4516 1.7876 0.3809 0.5096 0.8447 0.6158 0.8181 1.3312
40 1.3168 1.4863 1.8342 0.3829 0.5148 0.8528 0.6191 0.8301 1.3451
50 1.3393 1.5102 1.8454 0.3821 0.5131 0.8457 0.6168 0.8354 1.3534

100 1.4029 1.5735 1.9184 0.3855 0.5191 0.8436 0.6217 0.8370 1.3599
200 1.4575 1.6294 1.9778 0.3872 0.5183 0.8475 0.6216 0.8402 1.3834

Note: Monte Carlo approximation to the bivariate Goodness-of-fit tests and invariant tests.
If tabulated value is λ, P{tN > λ} = α for the statistic tN and significance level α. D2

is calculated by finding the maximum distance of the distributions in the observed points,
and W 2

2 is calculated by the formula presented by Zimmerman (1993). Iterations for the
simulation was 100,000.

study. To find the critical values of Dm, W 2
m, and Jm, Monte-Carlo simulations based

on samples from i.i.d.N(0, 1) with sample size N = 10, 20, 30, 40, 50, 100, 200 are used.

Table V presents the percentiles of the statistic Dm, W 2
m, and Jm for the bivariate

case.

On the other hand, the smooth tests have the chi-square distribution with
∑P

p=1 q(p)

degrees of freedom. This is because the statistics are constructed in such a way that

all the component in Im,P are independent with each other. This is possible because

of the orthogonality of Hermite polynomials with respect to the standard normal

distribution.

E. Asymptotic Power

We assume
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Assumption 5.1 We assume

N = op

(

1

βδ,T log(1/βδ,T )
∧ a2

T

c2T δ
2β2

δ,T

)

,

where

βδ,T = bT (δT )1/2 + (b
1/2
T cT )(δ1/2T ) + c2T (δT )

for small δ and large T .

Lemma 5.1 Under Assumptions 2.1, 2.2 and 5.1, we have

sup
1≤i≤N

∣

∣Zδ
i − Zi

∣

∣ = op(N
−1/2)

for large N .

Assumption 5.2 There exists a distribution function F1 such that

FN = F1 +Op(N
−1/2)

and F1 6= Φ(z) on a subset of R
m with positive Lebesgue measure.

Theorem 5.2 Let Assumptions 2.1, 2.2 and 5.1 hold. Then the statistics Dδ
m, W 2,δ

m ,

Iδ
m,P and Jδ

m are all consistent and diverge at the rate of
√
N .

F. Monte Carlo Study

In this section, we examine the finite sample performance of our test statistics based

on a Monte-Carlo simulation. We investigate the size and power performances with

some data generating processes (DGPs), which are calibrated to various financial

data. Also, we compare our time change statistics with the martingale tests recently

developed by Hong and Lee (2005) and Escanciano and Mayoral (2007). For the pur-
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pose of comparison, we use the conventional observation frequencies, such as monthly,

quarterly, and yearly for the discrete time martingale tests. For the sake of reference,

we describe the discrete time tests first.

Hong and Lee (2005) consider generalized spectral tests under conditional het-

eroskedasticity with general form. Their test statistic is given as follows:

M̂1(p) =

[

T−1
∑

j=1

k2(j/p)(T − j)

∫

|σ̂(1,0)
j (0, v)|2dW (v) − Ĉ1(p)

]

/

√

D̂1(p),

where W : R → R
+ is a nondecreasing function that weighs sets symmetric about

zero equally, and

Ĉ1(p) =

T−1
∑

j=1

k2(j/p)
1

T − j

T−1
∑

t=j+1

X2
t

∫

|ψ̂t−j(v)|2dW (v),

D̂1(p) = 2
T−2
∑

j=1

T−2
∑

l=1

k2(j/p)k2(l/p)

∫ ∫
∣

∣

∣

∣

1

T − max(j, l)

×
T
∑

t=max(j,l)+1

X2
t ψ̂t−j(v)ψ̂t−l(v

′)

∣

∣

∣

∣

∣

∣

2

dW (v)dW (v′),

and ψ̂t(v) = eivXt − φ̂(v) and φ̂(v) = T−1
∑T

t=1 e
ivXt , and W (·) is the N(0, 1). Here

k : R → [−1, 1] is a symmetric kernel function, and we choose the Bartlett kernel as

suggested in their paper. The lag order p is selected from their data-driven lag order.

The data-driven rule involes the choice of a preliminary lag order p̄, and we set p̄ = 5

in our simulation experiments. We denote this test as HL.

Escanciano and Mayoral (2007)’s data-driven smooth tests are defined as follows:

TT,m =
m
∑

j=1

ε̂2
j,T ,
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where ε̂j,n are the sample principle components given by

ε̂j,T = λ
−1/2
j

∫

R

ψj(τ
2
T (x))RT (x)τ 2

T (dx)

= λ
−1/2
j

√
2

σ̂2T

T
∑

t=1

X2
t RT (Xt−1)sin((j − 1/2)πτ 2

T (Xt−1)).

Here λj = 1/((j − 1/2)π2), ψj(t) =
√

2sin((j − 1/2)πt)), for t ∈ [0, 1], j = 1, . . ., and

RT (x) =
1

σ̂
√
T

T
∑

t=1

Xt1{Xt−1 ≤ x}, for x ∈ R,

where σ̂2 = T−1
∑T

t=1X
2
t , and τ 2

T (x) = σ̂−2T−1
∑T

t=1X
2
t 1{Xt−1 ≤ x}. We use their

optimal data-driven test with m = m̃, where

m̃ = min{m : 1 ≤ m ≤ d;Lm ≥ Lh, h = 1, . . . , d},

with Lm = TT,m − π(m,T, q), d is an upper bound which can be arbitrary large, and

π(m,T, q) =











m log T, if max1≤j≤d|ε̂j,T | ≤
√
q log T

2m, if max1≤j≤d|ε̂j,T | >
√
q logT ,

where q is some fixed positive number. We follow the suggestion from the paper and

set q = 2.4. We denote the test as EM.

The number of Monte Carlo simulations is 5,000 for all the DGPs and we obtain

the empirical size and power based on the experiments. We set the observation

horizon T to be 50, and the sampling interval δ = 1/250. This is equivalent to the

daily observations over 50 year horizon. For our time change test statistics, we set

∆ to be average monthly, quarterly, and yearly quadratic variations. For the discrete

time tests, we use the conventional monthly, quarterly, and yearly observations with

fixed time interval. In this case, the number of normal samples (Zi) resulting from

time change will be comparable to the number of observations in the conventional
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Table VI. Data Generating Processes for Simulations

Hypothesis Label Data Generating Process

Null BM dXt = 0.16dBt

RSSVM dXt = σstdBt

st = 0, 1 with (σ1, σ0) = (0.236, 0.0784)
1 − p = P{st = 0|st− = 1} = 0.708dt
1 − q = P{st = 1|st− = 0} = 0.108dt

ASVM dXt = σtdBt

dlnσt = 1.103(−1.899 − lnσt)dt + 1.158dVt

corr(dBt, dVt) = −0.318dt

Alternative BD dXt = 0.0672dt + 0.16dBt

RSSV dXt = 0.08dt + σstdBt

st = 0, 1 with (σ1, σ0) = (0.236, 0.0784)
1 − p = P{st = 0|st− = 1} = 0.708dt
1 − q = P{st = 1|st− = 0} = 0.108dt

ASV dXt = 0.08dt + σtdBt

dlnσt = 1.103(−1.899 − lnσt)dt + 1.158dVt

corr(dBt, dVt) = −0.318dt
OU dXt = 0.25(0.07 − Xt)dt + 0.02dBt

SQ dXt = 0.25(0.07 − Xt)dt + 0.075
√

XtdBt

Note: The table presents data generating processes for which finite sample performances
of the test statistics are assessed. H0 represents the null of continuous martingale while
H1 indicates alternative hypothesis. Each model represents a stochastic process under the
hypothesis.

frequency. We call the time change intervals (in our time change statistics), or the

observation intervals (in the discrete time statistics) as the test intervals in the sense

that those intervals are used to test the martingale hypothesis.

Table VI presents the specifications for each model under the null and alter-

native hypothesis. For the null hypothesis, we consider Brownian motion (BM),

regime switching stochastic volatility martingale (RSSVM), and asymmetric stochas-

tic volatility martingale (ASVM). BM is chosen to match the standard deviation of

daily log returns on Dow Jones Industrial Average (or DJIA) from 1968 to 2008.

RSSVM is used in Shaller and Norden (1997) to estimate the volatility of stock re-
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turns, and ASVM is used in option pricing literatures to model the leverage effect; see

Harvey and Shephard (1996). The parameter values of RSSVM is obtained by their

estimation results, while those of ASVM is obtained from Yu (2005). For the alterna-

tive hypothesis, we have Brownian motion with drift (BD), regime switching stochas-

tic volatility (RSSV), asymmetric stochastic volatility (ASV), Ornstein-Uhlenbeck

(1930) process (OU), and Feller (1951)’s square root process (SQ). BD, RSSV, and

ASV are non-martingale counterparts of BM, RSSVM, and ASVM in the sense that

they have an added non-zero bounded variations to the martingale components. OU

and SQ are widely used in term structure models and the parameter values are used

in the Monte Carlo simulations of Ait-Sahalia (2002).

Table VII presents the size performances of our time change statistics and the

discrete time statistics. It can be seen that all tests except for EM test have satis-

factory size performances with the yearly test interval. With quarterly test interval,

the empirical sizes for our tests are overall satisfactory but the invariant tests are

slightly over rejecting the null hypothesis in ASVM. With monthly test interval, all

of our tests except for the variance ratio tests have the tendency of over-rejecting

the null. This tendency is well expected in our time change statistics because as the

time change interval gets smaller, the time change (T δ
i∆) becomes less accurate. More

precisely, with small test interval, time change error (|T δ
i∆ − Ti∆|) becomes larger, so

that the sampled increments of DDS Brownian motion XT δ
i∆

− XT δ
(i−1)∆

is no longer

close to the true increments XTi∆
−XT(i−1)∆

and the deviation is larger compared to

the magnitude of ∆. As a result, the time change errors result in the distortions of

size performances. On the other hand, EM test has the tendency that the size per-

formances get better as the test interval decreases. However, we can see that the size

performance for ASVM is still not very satisfactory even with monthly test interval.

This implies that EM test may suffer size distortion even if the number of observa-
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Table VII. Size Performances of Tests

BM RSSVM ASVM
dt M Q Y M Q Y M Q Y

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
D1 12.9 6.8 10.4 5.4 9.8 5.0 45.2 29.0 10.6 5.5 9.5 4.9 76.8 60.9 16.9 8.6 10.0 4.9
W 2

1 12.2 6.0 10.1 5.2 9.9 5.2 40.0 21.6 10.6 5.3 9.9 4.7 76.3 57.6 15.2 7.6 9.8 5.1
W 2

2 11.6 5.7 10.5 5.4 10.2 5.1 26.7 13.8 10.6 5.2 9.9 4.8 61.0 38.7 13.7 6.7 9.9 4.9

I1,2 8.5 4.3 10.0 5.2 9.6 4.8 7.0 3.0 8.5 4.1 9.0 4.6 32.0 24.2 9.0 4.6 8.4 4.2
I1,3 6.3 2.9 9.2 4.6 9.9 5.6 4.8 2.3 7.1 3.5 8.9 5.5 27.4 20.4 7.3 3.5 8.0 4.5
I1,4 15.6 7.7 8.1 4.6 9.4 6.1 74.2 58.9 7.3 3.8 8.6 5.6 92.9 86.7 14.0 7.6 7.4 4.4

J1 19.2 11.7 10.6 5.4 9.4 4.7 82.8 73.7 12.6 6.7 9.7 5.0 97.8 95.5 27.6 18.7 10.4 5.1
J2 18.1 10.1 10.5 5.6 9.3 4.5 80.2 68.4 11.8 6.3 9.8 4.9 97.2 94.6 25.3 15.9 10.0 4.7
J3 16.6 9.6 10.9 5.9 10.4 5.2 70.5 55.4 11.9 6.4 10.6 5.4 94.2 89.2 21.3 13.2 10.1 5.0

VN/15 8.7 4.9 9.2 3.4 8.7 4.2 9.0 5.1 9.2 3.7 8.4 4.6 13.1 8.4 8.5 4.6 7.8 3.4

VN/10 8.6 4.7 8.7 3.3 8.1 4.3 9.2 5.4 9.4 3.2 8.5 4.8 12.0 8.1 8.3 4.9 7.4 3.9

VN/5 8.1 5.8 8.1 2.0 7.4 5.2 8.3 5.9 7.9 2.1 7.5 5.3 11.4 8.2 8.5 5.8 6.8 4.7

HL 11.1 7.6 10.4 7.1 9.8 6.6 10.3 7.0 9.3 5.7 7.7 4.7 8.2 5.3 7.5 4.5 6.8 4.1
EM 11.4 6.8 14.1 9.0 61.1 59.6 12.6 8.1 38.4 36.5 81.9 81.3 24.0 20.7 53.8 52.6 88.6 88.5

Note: Empirical sizes of the data-generating processes; BM, RSSVM, and ASVM. W 2
m and Dm are the Cramer-von Mises and

Kolmogorov-Smirnov tests of goodness-of-fit, Im,P is the smooth tests, Jm is the invariant test, and Vq is the variance ratio test.
Here m denotes the dimension of the vector process zim constructed from the normal samples. ∆ is selected as the average
monthly, quarterly, and yearly quadratic variation for each process. HL is the generalized spectral test of Hong and Lee (2005)
with preliminary lag order 5, and EM is the data-driven smooth tests of Escanciano and Mayoral (2007). For HL and EM, we
use the increments of the process at monthly, quarterly, and yearly frequency. Number of iterations is 5,000 and δ = 1/240, T =
50. The numbers are proportion of rejection in percentage unit.
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tions are relatively large. Meanwhile, HL test has satisfactory size performances over

various test intervals.

Figure 6 presents the size performances of the tests for various test intervals. It

is clear that the size performances of our time change tests are not satisfactory if

we choose the test interval smaller than 1/4. This is because the test interval is too

small to make the time change work effectively. In order to check whether the time

change work poorly for small test intervals, we calculate the Cramer-von Mises (CvM)

distances of the normal samples Zi from N(0, 1) for different test intervals. For all

DGPs, it can be seen that CvM is stabilizing after 1/4 (or quarterly test interval),

implying that if the test interval is too small (less than 1/4), time change Ti∆ is

erroneous and cannot be used to test the hypothesis. However, if the test interval

is appropriately seletected, the time change works as expected. More specifically, we

can see that BM requires smaller test interval than RSSVM and ASVM in order to

reach the stabilized level of CvM. This is because BM has constant volatility while

RSSVM and ASVM have stochastic volatilities. In other words, the time change

error is bigger even with the same test interval if the volatility process of the DGP

is stochastic. Moreover, we can see that ASVM requires greater test interval than

RSSVM in order to achieve the stabilized level. This implies that as the volatility

of a DGP have more fluctuations, the time change error gets larger, requiring larger

test interval.

Overall, all the time change statistics have satisfactory size performances if the

test interval is greater than 1/2 (or average half year quadratic variation). In fact,

one can check that they have good size performances once the test interval is over

some required minimum test interval. This suggests that one may use the signature

of CvM for different test interval to find the minimum required level of test interval.

In Table VIII, we report the empirical power (size adjusted) of the tests at 5%
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(b) Regime Switching Stochastic Volatility Martingale
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(c) Asymmetric Stochastic Volatility Martingale

Fig. 6. Signature Plots and Size Performances

Note: The above figures present the signature plots and empirical sizes for test intervals
from 1/12 to 1. The black dots in the signature plots represents the mean level of 5,000
iterations. D1-solid, W 2

1 -dashed, I1,2-solid circle, I1,3-dashed circle, J1-solid square, J2-
dashed square, VN/15-solid diamond, VN/10-dashed diamond, HL-dotted x, and EM-dotted
cross.
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Table VIII. Power Performances of Tests

BD RSSV ASV OU SQ
dt M Q Y M Q Y M Q Y M Q Y M Q Y

D1 72.7 71.9 71.8 68.2 72.6 69.3 36.8 43.7 39.4 0.1 0.0 0.1 0.0 0.2 0.3
W 2

1 80.1 79.9 78.9 75.0 78.4 76.7 45.5 50.2 44.2 0.0 0.0 0.0 0.0 0.0 0.1
W 2

2 79.4 75.6 72.1 77.5 73.5 65.5 50.9 44.9 35.0 0.0 0.0 0.0 0.0 0.1 0.1

I1,2 77.5 75.3 75.9 79.5 77.7 78.7 31.5 65.7 65.6 1.1 1.4 1.1 1.1 2.6 2.3
I1,3 74.7 70.2 67.4 76.7 73.9 72.1 31.3 68.5 66.2 1.2 1.5 1.1 1.4 3.1 1.6
I1,4 65.8 65.2 59.7 51.0 69.2 67.5 20.7 59.2 63.6 1.8 1.8 1.7 0.0 1.8 2.3

J1 6.8 6.8 10.9 8.6 12.9 18.4 11.9 16.2 18.5 3.6 4.9 7.2 0.0 3.9 7.7
J2 7.9 6.9 12.3 9.7 13.2 19.6 12.9 17.7 20.9 4.1 4.9 8.2 0.0 3.9 8.5
J3 7.5 7.2 12.2 10.4 13.1 19.8 14.9 18.8 21.7 3.9 5.1 8.2 0.0 4.5 8.9

VN/15 38.3 38.5 39.2 54.3 54.6 53.1 43.8 47.9 48.5 20.8 21.1 21.1 17.5 16.7 17.3

VN/10 44.7 44.4 43.8 57.5 57.1 56.1 43.5 46.6 47.3 26.4 25.5 23.8 21.0 20.5 21.2

VN/5 54.8 54.7 54.4 59.0 58.3 57.9 38.5 41.4 41.2 32.9 32.9 32.4 27.3 27.0 26.0

HL 5.0 5.0 5.0 4.8 5.5 5.0 5.0 5.0 5.0 4.1 5.5 6.7 3.7 5.5 9.0
EM 72.9 64.8 38.2 71.6 32.7 30.8 18.1 18.3 16.1 0.9 2.3 1.0 0.0 0.0 0.0

Note: Empirical powers (adjusted empirical sizes) of the data-generating processes; BD, RSSV, ASV, OU, and SV. W 2
m and Dm

are the Cramer-von Mises and Kolmogorov-Smirnov tests of goodness-of-fit, Im,P is the smooth tests, Jm is the invariant test,
and Vq is the variance ratio test. Here m denotes the dimension of the vector process zim constructed from the normal samples.
∆ is selected as the average monthly, quarterly, and yearly quadratic variation for each process. HL is the generalized spectral
test of Hong and Lee (2005) with preliminary lag order 5, and EM is the data-driven smooth tests of Escanciano and Mayoral
(2007). For HL and EM, we use the increments of the process at monthly, quarterly, and yearly frequency. Number of iterations
is 5,000 and δ = 1/240, T = 50. The numbers are proportion of rejection in percentage unit.
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significance level. We observe that the time change tests have distinctive power for

BD, RSSV, and ASV, however they have no power against stationary alternatives,

such as OU and SQ, except for the variance ratio tests. The variance ratio tests

are powerful against all the alternatives, and in fact, they are the most powerful for

ASV, OU, and SQ. BD, RSSV, and ASV are nonstationary processes which contain

time trend (or deterministic drift). Hence, the test samples (Zi) have non-zero mean,

which is easily detected by the Goodness-of-fit, smooth tests, and invariant tests.

However, OU and SQ are stationary processes which generates (Zi) with zero mean

with variance close to 1. This produces considerable loss of power for those tests

because the distribution of (Zi) is very close to N(0, 1). On the other hand, the

variance ratio tests can detect the deviations of first two moments from N(0, 1) as

well as the deviation from independence in (Zi). As a result, the variance ratio tests

are the most powerful for OU and SQ. EM test is also powerful for BD, RSSV, and

ASV while it loses power for OU and SQ. Meanwhile HL test has no power against

all the DGPs that we consider in the simulations.

Figure 7 presents the power performances at different test intervals. We can see

that for most test intervals, (i) the Goodness-of-fit tests are the most powerful for

BD and RSSV, (ii) the time change smooth tests are the most powerful for ASV, and

(iii) the variance ratio tests are the most powerful for OU and SQ. Note that with

stochastic volatility models, the selection of test interval is more important because

wrong choice of test interval may lead to a considerable loss of power; see the result

for the time change smooth tests for ASV.

The conclusions from the simulation experiments are the following. The time

change test statistics have a satisfactory size performances for most test interval and

presents excellent power properties against the DGPs considered, being the most

powerful test in most cases. HL test has a good size performances, however it has
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(a) Brownian Motion with Drift
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(b) Regime Switching Stochastic Volatility (c) Asymmetric Stochastic Volatility
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(d) Ornstein-Uhlenbeck (1930) (e) Feller (1951)’s Square Root

Fig. 7. Power Performances

Note: The above figures present the empirical powers for test interval from 1/12 to 1.
D1-solid, W 2

1 -dashed, I1,2-solid circle, I1,3-dashed circle, J1-solid square, J2-dashed square,
VN/15-solid diamond, VN/10-dashed diamond, HL-dotted x, and EM-dotted cross.
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no power for all the DGPs considered. EM test has a reasonable size performance

with moderate sample sizes and have reasonable power for mean-shift alternatives.

Additionally, the time change variance ratio tests have excellent power properties

against stationary alternatives where most tests lose distinctive power. Our time

change tests have satisfactory size and power performances if the test interval is

greater than the level which the time change error is relatively large, and one can

choose such test interval based on the signature plot. HL test seems irrelavant to the

test interval, however, the performance of EM test is sensitive to the test interval (or

equivalently to the sample size).

G. Conclusion

In this paper, we have investigated a methodology to test the martingale hypothesis

in continuous time framework. The key feature of our methodology is that it utilize

the time change theorem (Dambis (1965), Dubins and Schwarz (1965)) to obtain the

samples for DDS Brownian motion, which results in a simple testing of i.i.d. normality.

In order to test the i.i.d. normality, we incorporate the classical multivariate normality

tests, such as goodness-of-fit tests, smooth tests, invariant tests, and variance ratio

tests. Necessary modifications–weak convergence theory on the dependent process–

have been introduced in order to apply the testing problem to time series applications.

A Monte Carlo simulation study shows that the time change test statistics have a

satisfactory size performances for most test interval and presents excellent power

properties against the DGPs considered, being the most powerful test in most cases.

In particular, the time change variance ratio tests have excellent power properties

against stationary alternatives where most tests lose distinctive power.
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CHAPTER IV

CONCLUSION

In Chapter II, I began with a title asking if there is an important role played by

decision makers’ concern with ambiguity on true probability measure. My answer to

this question is positive from both economic and econometric perspectives. In terms

of economic theory, the inclusion of ambiguity aversion can overcome the Ellsberg

paradox. In addition, one can view that a multiple-priors utility as an extension of

the rational expectation in that investors may be of insufficient knowledge about the

true probability density. When ambiguity aversion is assumed, economic agents are

basically endowed with a set of beliefs on the true probability distribution and choose

the one that is the least ambiguous. My estimation results strongly suggest that

this is indeed the case. Even with various specifications, the preference parameter

indicating the ambiguity aversion is both economically and statistically significant.

Another interesting finding is that the models with ambiguity aversion have lower

relative risk aversion. With regard to the elasticity of substitution, there exists a

weak identification problem due to its non-linear parametric restrictions and the weak

signal from consumption growth. That said, the models with ambiguity aversion

still produce quite reasonable estimates of the intertemporal substitution. Therefore,

ambiguity aversion not only matters in terms of explaining the behaviors of asset

returns, but also helping identify key preference parameters.

In Chapter III, I have investigated a methodology to test the martingale hypothe-

sis in continuous time framework. It utilize the time change theorem (Dambis (1965),

Dubins and Schwarz (1965)) to get the samples for DDS Brownian motion, which

results in a simple testing of i.i.d. normality. I incorporate the classical multivari-

ate normality tests, such as goodness-of-fit tests, smooth tests, invariant tests, and
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variance ratio tests to test the i.i.d. normality of the time changed samples. From

a Monte Carlo simulation study, I show that the time change test statistics have

a satisfactory size performances for most test interval and presents excellent power

properties against the DGPs considered, being the most powerful test in most cases.
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APPENDIX A

MATHEMATICAL APPENDIX

The proofs of Lemmas 2.2, 2.3, 4.1 and 5.1 are essentially the same as those in Park
(2008).

Lemma A Let X be a general diffusion process dXt = µ(Xt)dt + σ(Xt)dBt satisfying
the Assumption 1-3. Then the time changed process Ys = XTs will have the stochastic
differential equation in quadratic variation clock as

dYs =
µ(Ys)

σ(Ys)2
ds + dWs,

where Ws is the DDS Brownian motion.

Proof of Lemma A Let Ys = XTs , then we can write

Ys − Y0 = XTs − XT0 =

∫ Ts

T0

µ(Xt)dt +

∫ Ts

T0

σ(Xt)dBt.

Put ν(t) = [X]t. Now consider a transformation with respect to the quadratic variation
ν(t), such that ν(Ts) = s. It is absolutely continuous, and the time derivative ν ′(t) is
strictly positive from Assumption 2.1. Due to the integration by substitution with respect
to u = ν(t), the drift is given by

∫ Ts

T0

µ(Xt)dt =

∫ s

0
µ(Xν−1(u))

∂ν−1(u)

∂u
du. (A.1)

Observe that
∂ν−1(u)

∂u
=

1

∂ν(t)/∂t
|t=ν−1(u) =

1

σ(Xν−1(u))
2
. (A.2)

Recalling that ν−1(u) = τ(u), substitute (A.2) into (A.1) then we have

∫ Ts

T0

µ(Xt)dt =

∫ s

0

µ(Yu)

σ(Yu)2
du.

Moreover, due to Dambis (1965) and Dubins and Schwarz (1965), we have that

∫ Ts

T0

σ(Xt)dBt =

∫ s

0
dWu.
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Lemma B Let Assumptions 2.1 and 4.1 hold. Then for 1 ≤ m ≤ N we have

sup
z∈Rm

√

Nm|F δ
N (z) − FN (z)| = op(1),

where F δ
N (z) = 1/Nm

∑Nm
i=1 1{Zδ

im ≤ z} and z ∈ Rm.

Proof of Lemma B Let
eN = sup

1≤i≤N
|Zδ

im − Zim |.

Then we have

√

Nm|F δ
N (x) − FN (x)| ≤ 1√

Nm

Nm
∑

i=1

|1{Zδ
im ≤ x} − 1{Zim ≤ x}|

≤ 1√
Nm

Nm
∑

i=1

1{|Zim − x| ≤ eN}

=
1√
Nm

Nm
∑

i=1

(1{|Zim − x| ≤ eN} − P{|Zim − x| ≤ eN})

+
√

NmP{|Zim − x| ≤ eN},

where Nm = N −m + 1, x ∈ Rm, and 1{Zim ≤ x} = 1{Zi ≤ x1} · · · 1{Zi+m−1 ≤ xm}. First
we show that

sup
x

√
NP{|Zim − x| ≤ eN} = op(1). (A.3)

Define pN = P{|Zim − x| ≤ eN}. Note that for all x ∈ Rm

P{|Zim − x| ≤ eN} = F0(x + eN ) − F0(x − eN ) = Op(eN ) = op(N
−1/2),

where F0(·) is the c.d.f of N(0, Im). Then, the state result in Equation (A.3) is followed.
Next, we show that

sup
x

∣

∣

∣

∣

∣

1√
Nm

Nm
∑

i=1

(1{|Zim − x| ≤ eN} − pN )

∣

∣

∣

∣

∣

= op(1), (A.4)

Denote wN,i = 1{|Zim − x| ≤ eN} − pN , then for any small ε > 0 we have

P{
√

N |wN,i| > ε} = (1 − pN )1{ε <
√

NpN} + pN1{ε <
√

N(1 − pN )}
= Op(pN )

= op(1),

because
√

NpN = op(1) and
√

N(1 − pN ) → ∞. Therefore, wN,i = op(N
−1/2), and this

implies that 1/
√

N
∑n

i=1 wN,i = op(1) for all x. Then, the stated result in Equation (A.4)
will be followed.
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Proof of Theorem 4.2

From Lemma B, we can expect that for all x ∈ Rm,

√

Nm|F δ
N (x) − FN (x)| = op(1).

Now, the multivariate Kolmogorov-Smirnov statistic Dδ
m from discrete observations will

converge to Dm from continuous observations in the sense that

|Dδ
m − Dm| =

√

Nm

∣

∣

∣

∣

max
x∈Rm

|F δ
N (x) − F0(x)| − max

x∈Rm
|FN (x) − F0(x)|

∣

∣

∣

∣

≤
√

Nm

∣

∣

∣

∣

max
x∈Rm

|F δ
N (x) − FN (x)| + max

x∈Rm
|FN (x) − F0(x)| − max

x∈Rm
|FN (x) − F0(x)|

∣

∣

∣

∣

=
√

Nm max
x∈Rm

|F δ
N (x) − FN (x)|

= op(1).

Similarly, the Cramer-von Mises statistic W 2,δ
m will converge to W 2

m because

|W 2,δ
m − Wm| = Nm

∣

∣

∣

∣

∫

Rm

(

F δ
N (x) − F0(x)

)2
dF0(x) −

∫

Rm

(FN (x) − F0(x))2 dF0(x)

∣

∣

∣

∣

= Nm

∣

∣

∣

∣

∫

Rm

(

F δ
N (x) − FN (x)

)2
dF0(x)

+ 2

∫

Rm

(

F δ
N (x) − FN (x)

)

(FN (x) − F0(x)) dF0(x)

∣

∣

∣

∣

≤ Nm

∫

Rm

(

F δ
N (x) − FN (x)

)2
dF0(x)

+2Nm

∫

Rm

(

F δ
N (x) − FN (x)

)

(FN (x) − F0(x)) dF0(x)

≤ Nm

∫

Rm

(

F δ
N (x) − FN (x)

)2
dF0(x)

+2

√

Nm

∫

Rm

(

F δ
N (x) − FN (x)

)2
dF0(x)

√

Nm

∫

Rm

(FN (x) − F0(x))2 dF0(x)

= op(1).

For the convergence of the smooth tests, it is sufficient to show that

∣

∣

∣

∣

∣

∣

1√
Nm

Nm
∑

i=1

m
∏

j=1

Hsj(z
δ
i+j−1) −

1√
Nm

Nm
∑

i=1

m
∏

j=1

Hsj(zi+j−1)

∣

∣

∣

∣

∣

∣

= op(1). (A.5)

Consider the Taylor series expansion of Hr(z
δ
i ) with respect to zi given by

Hr(z
δ
i ) = Hr(zi) +

∞
∑

k=1

1

k!
H(k)

r (zi)(z
δ
i − zi)

k,
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where H
(k)
r (·) is the kth order derivative of Hr(·). Note that

m
∏

j=1

Hsj(z
δ
i+j−1) =

m
∏

i=1

Hsj(zi+j−1) +

∞
∑

k=1

m
∑

j=1

aj,k(z
δ
i+j−1 − zi+j−1)

k,

where aj,k < ∞ is the appropriate coefficient for the equality. This implies that

∣

∣

∣

∣

∣

∣

m
∏

j=1

Hsj(z
δ
i+j−1) −

m
∏

j=1

Hsj(zi+j−1)

∣

∣

∣

∣

∣

∣

= op(N
−1/2).

The stated result in Equation (A.5) is immediately followed by the above Equation.
In order to show the convergence of the invariant test, we will use the result of Lemma

B. Especially, we will show that

sup
i

|rδ
i − ri| = op(N

−1/2),

which implies the convergence of the invariant test. From the definition of ri given in
Equation (3.10), for any m < ∞, we have

∣

∣

∣
rδ
i − ri

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

m
∑

j=1

(

(zδ
i+j−1)

2 − z2
i+j−1

)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

m
∑

j=1

(

zδ
i+j−1 − zi+j−1

)(

zδ
i+j−1 + zi+j−1

)

∣

∣

∣

∣

∣

∣

≤ max
j=1,...,m

|zδ
i+j−1 − zi+j−1|

m
∑

j=1

(

zδ
i+j−1 + zi+j−1

)

= op(N
−1/2)Op(1)

= op(N
−1/2).

From Lemma B, we have

sup
x∈R+

√

Nm

(

Gδ
N (x) − GN (x)

)

= op(1).
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Therefore, we have

|Jδ
m − Jm| = Nm

∣

∣

∣

∣

∫ ∞

0

(

Gδ
N (x) − Ψ(x)

)2
dΨ(x) −

∫ ∞

0
(GN (x) − Ψ(x))2 dΨ(x)

∣

∣

∣

∣

= Nm

∣

∣

∣

∣

∫ ∞

0

(

Gδ
N (x) − GN (x)

)2
dΨ(x)

+ 2

∫ ∞

0

(

Gδ
N (x) − GN (x)

)

(GN (x) − Ψ(x)) dΨ(x)

∣

∣

∣

∣

≤ Nm

∫ ∞

0

(

Gδ
N (x) − GN (x)

)2
dΨ(x)

+2Nm

∫

Rm

(

Gδ
N (x) − GN (x)

)

(GN (x) − Ψ(x)) dΨ(x)

≤ Nm

∫ ∞

0

(

Gδ
N (x) − GN (x)

)2
dΨ(x)

+2

√

Nm

∫ ∞

0

(

Gδ
N (x) − GN (x)

)2
dΨ(x)

√

Nm

∫ ∞

0
(GN (x) − Ψ(x))2 dΨ(x)

= op(1).

Proof of Theorem 4.3 Due to Theorem 4.2, we assume that the test statistics based on
the discrete observations are close to the statistics based on continuous observations. We
first prove the weak convergence of two empirical processes given by bN (t) and wN (t) in (a)
and (c) respectively. Then, we prove the result in (b).

The weak convergence of bN (t) and wN (t) is proved by showing (i) convergence in
distribution for given t ∈ [0, 1], (ii) finite dimensional convergence, and (iii) stochastic
equicontinuity of the empirical processes (see Andrews (1993) for detail). We start by
considering the empirical process bN (t). Define ci(t) = 1{Zim ≤ t} − E[1{Zim ≤ t}]. Note
that ci(t) is m-dependent process in the sense that the correlation between ci(t) and ci+j(t)
is zero if j ≥ m while it is nonzero if 0 ≤ j < m. From the usual central limit theorem, we
have

1√
Nm

Nm
∑

i=1

ci(t) →d N(0, σ2
c ),

where σ2
c = limN→∞ V[ 1√

Nm

∑Nm
i=1 ci(t)]. The finite dimensional convergence is followed by

the multivariate central limit theorem and the covariance kernel will be given by

kB(s, t) = lim
N→

E[bN (s)bN (t)].

The stochastic equicontinuity of bN (t) can be shown by checking the three sufficient con-
ditions for the stochastic equicontinuity of m-dependent case presented by Andrews (1993,
p. 199). The first condition is obvious because zim is m-dependent. The second condition
is satisfied because

max
1≤d≤m

sup
t∈[0,1]m

|1{Φ(Zi) ≤ t1} · · · 1{Φ(Zi+m−1) ≤ tm}| ≤ 1,
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for all i = 1, . . . , Nm. Therefore, we have

lim
N→∞

1

N

N
∑

i=1

E[M̄2+δ] = 1 < ∞,

for some δ > 0. The third condition is also satisfied because for all t ∈ [0, 1]m,

sup
1≤i≤N,N≥1

{

E

[

sup
t1∈[0,1]m:|t1−t|<δ

|1{Zim ≤ t1} − 1{Zim ≤ t}|p
]}1/p

≤
∫ t1+δ1/m

t1−δ1/m

· · ·
∫ tm+δ1/m

tm−δ1/m

dU(t)

≤ Cδ

for all δ > 0 small and U(t) = t1 · · · tm, and from lhopital’s theorem. Therefore, we have

bN (t) ⇒ B(t). (A.6)

The case for wN (t) is exactly same as the case for bN (t) except that the empirical
process wN (t) has domain of [0, 1]. Since ri is also m-dependent process, we can apply
the central limit theorems to find the finite dimensional convergence. Showing stochastic
equicontinuity in this case is similar. Note that for all t ∈ [0, 1], we have

sup
1≤i≤N,N≥1

{

E

[

sup
t1∈[0,1]m:|t1−t|<δ

|1{ri ≤ t1} − 1{ri ≤ t}|p
]}1/p

≤
∫ t+δ

t−δ
du(t)

≤ Cδ

for all δ > 0 small and u(t) = t. Therefore, we have

wN (t) ⇒ W (t),

where the covariance kernel of W (t) is given by

kW (s, t) = lim
N→∞

E[wN (s)wN (t)]. (A.7)

From Equation (A.6) and (A.7), the asymptotic distributions of Dm, W 2
m, and Jm are

followed by the continuous mapping theorem.
The asymptotic distribution of Im,P largely relies on the property of Hermite poly-

nomial. Especially, the Hermite polynomials are orthogonal with respect to the standard
normal distribution

∫ ∞

−∞
Hi(x)Hj(x)φ(x)dx =

{

0 if i 6= j
i! if i = j

Each component Hm,p of Im,P defined by Equation (3.9) is a quadratic form of the vector
hm,p of a normalized sample analogue estimator for E[

∏m
j=1 Hsj(zi+j−1)] with

∑m
j=1 sj = p

while s1 6= 0. If we rearrange all the elements of the vector as an increasing order of s1,
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and label them as h. Then, there will be q(p) =
(

m+p−1
p

)

−
(

m+p−2
p

)

such elements and
each elements are asymptotically independent because of the independence of (zi) and the
orthogonality of the Hermite polynomials Hr(·). Therefore, the quadratic form of hm,p will
have the chi-square distribution with degrees of freedom q(p). Moreover, it is easy to verify
that all the elements in hm,p is also asymptotically independent with the elements in hm,q

with q 6= p. Therefore, we have

Im,p →d χ





P
∑

p=1

q(p)



 . (A.8)

Proof of Theorem 5.2 The stated result follows immediately from Lemma B.
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