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ABSTRACT 

Sequence Stratigraphic Interpretation Methods for Low-Accommodation, Alluvial 

Depositional Sequences: Applications to Reservoir Characterization of 

Cut Bank Field, Montana. (December 2006) 

Rahila Ramazanova, B.S., Azerbaijan Oil Academy; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Walter B. Ayers, Jr.  
Dr. Philip D. Rabinowitz 

 

In South Central Cut Bank Sand Unit (SCCBSU) of Cut Bank field, primary 

production and waterflood projects have resulted in recovery of only 29 % of the 

original oil in place from heterogeneous, fluvial sandstone deposits. Using high-

resolution sequence stratigraphy and geostatistical analysis, I developed a geologic 

model that may improve the ultimate recovery of oil from this field. 

In this study, I assessed sequence stratigraphic concepts for continental settings 

and extended the techniques to analyze low-accommodation alluvial systems of the Cut 

Bank and Sunburst members of the lower Kootenai formation (Cretaceous) in Cut Bank 

field. Identification and delineation of five sequences and their bounding surfaces led to 

a better understanding of the reservoir distribution and variability. 

Recognition of stacking patterns allowed for the prediction of reservoir rock 

quality.  Within each systems tract, the best quality reservoir rocks are strongly 

concentrated in the lowstand systems tract. Erosional events associated with falling base-

level resulted in stacked, communicated (multistory) reservoirs. The lowermost Cut 
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Bank sandstone has the highest reservoir quality and is a braided stream parasequence. 

Average net-to-gross ratio value (0.6) is greater than in other reservoir intervals. Little 

additional stratigraphically untapped oil is expected in the lowermost Cut Bank 

sandstone. Over most of the SCCBSU, the Sunburst and the upper Cut Bank strata are 

valley-fill complexes with interfluves that may laterally compartmentalize reservoir 

sands. Basal Sunburst sand (Sunburst 1, average net-to-gross ratio ~0.3) has better 

reservoir quality than other Sunburst or upper Cut Bank sands, but its reservoir quality is 

significantly less than that of lower Cut Bank sand. 

Geostatistical analysis provided equiprobable representations of the 

heterogeneity of reservoirs. Simulated reservoir geometries resulted in an improved 

description of reservoir distribution and connectivity, as well as occurrences of flow 

barriers. 

The models resulting from this study can be used to improve reservoir 

management and well placement and to predict reservoir performance in Cut Bank field. 

The technical approaches and tools from this study can be used to improve descriptions 

of other oil and gas reservoirs in similar depositional systems. 
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CHAPTER I 

INTRODUCTION 

1.1 Statement of Problem 

A stripper oil well is an oil well that produces less than 10 barrels (10 bbl) of oil per day 

(Remson, 2005). In the United States, 400,000 stripper wells produce 300 million bbl of 

oil annually and account for 15% of the U.S. domestic oil production (DOE, 2005). 

Opportunities for oil reserves growth occur in depleting reservoir stripper well fields 

owing to heterogeneities that prevent mobile hydrocarbons from migrating to well bores. 

At the South Central Cut Bank Sand Unit (SCCBSU) of Cut Bank Field, Montana (Fig. 

1), primary production and waterflood projects have resulted in production of only 29 % 

(43 million bbls of the original 150 million bbls) of oil in place in complex, 

heterogeneous sandstone reservoirs. Part of this research was funded by Quicksilver 

Resources, Inc., who seeks to develop a list of infill and recompletion candidate wells 

and production enhancement strategies in SCCBSU. Oil production at SCCBSU is from 

fluvial channel-fill sandstone of the Cut Bank and Sunburst members of the Kootenai 

Formation (Fig. 2). The Cut Bank and Sunburst members are composed of sedimentary 

alluvial sequences with multiple scales of heterogeneity that give rise to complex 

sedimentary facies distributions that often appear to be chaotic and unpredictable. To 

optimize oil production from Cut Bank and Sunburst reservoirs requires a detailed  

 
____________________ 
This dissertation follows the style and format of the Bulletin of American Association of 
Petroleum Geologists (AAPG). 
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Figure 1. Cut Bank field is located in Glacier, Pondera, and Toole Counties, northwest Montana 
(from, DeAngelo and Hardage (2001). 

 

reservoir model that allows prediction of (a) reservoir shape and size, (b) lateral 

continuity and degree of interconnectedness of sandstones and interbedded mudrocks, 

and (c) the internal heterogeneity of reservoir sand bodies using geophysical, geological 

and engineering data.  However, it is difficult to model such reservoirs accurately, 
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Figure 2. Cut Bank Field – Stratigraphic section (modified from Dolson and Piombino, 1994). 

 
 
because individual channel units are thin and discontinuous, which causes well-to-well 

correlations to be problematic and the geometry of individual channels nearly impossible 

to estimate. Also, seismic resolution was insufficient to define individual channels. 
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An approach to evaluating complex stratigraphic units is to use high-resolution 

stratigraphy to provide a stratigraphic framework that may reduce the risk of 

miscorrelations between different genetic units. These detailed stratigraphic models can 

be used to predict reservoir extent and architecture (Gardner and Cross, 1994). However, 

sequence stratigraphic principles and techniques were developed for marine strata. The 

application of sequence stratigraphy to nonmarine strata is the topic of intense debate 

and controversy, and many fundamental concepts are still being developed (Schumm, 

1993; Shanley and McCabe, 1994; Blum, 1994; Aitken and Flint, 1995; Currie, 1997; 

Zaitlin et al., 2002). Recognition of sequences in alluvial settings is difficult because of 

the scarcity of marker horizons, the lack of biostratigraphic aids, the discontinuous 

nature of alluvial strata, and the lack of regionally extensive outcrops. Efforts to extend 

the sequence stratigraphic concepts inland to continental sediments have succeeded only 

where the fluvial strata were located relatively near coastal marine environments (Wood, 

1996; Zaitlin et al., 2002). This research strives to apply sequence stratigraphic analysis 

to the Cut Bank and Sunburst members of the Kootenai formation. These strata are 

braided-to-meandering fluvial sediments that were deposited as incised valley fill in an 

accommodation-limited alluvial setting (Shelton, 1967; Weimer and Tillman, 1982; 

Berkhouse, 1985; Horkowitz, 1987; and Hopkins, 1993). This setting is characterized by 

a paucity of marine deposits, low sedimentation rates and closely spaced unconformities. 

Therefore, the challenge in this study was to establish a stratigraphic framework upon 

which interpretation and extrapolation of reservoir facies could be based. The approach 

that I present here, is to build on an existing conceptual stratigraphic framework, based 
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on base-level variation, that can determine sequence boundary and systems tract 

geometries. Prediction of facies distributions within each sequence is possible, because 

specific depositional patterns are expected to occur in predictable positions within the 

sequence. Well log sequence stratigraphy helps to clarify the geometry, continuity and 

distribution of the reservoir sands both vertically and laterally. 

In many cases, conceptual models at the scale of the reservoir unit are essential, 

but their accuracy commonly is insufficient to predict the distribution of internal 

heterogeneities within reservoir units (Haldorsen and Damsleth, 1990). Furthermore, 

fluid-flow modeling requires a gridded representation of the facies distribution, which 

must be further transformed to represent petrophysical properties. Stochastic approaches 

are now more frequently applied to simulate the distribution of small-scale sedimentary 

bodies and internal reservoir heterogeneity (MacDonald et al., 1998). Geostatistical 

approaches also rapidly provide equiprobable realizations of the heterogeneity 

distribution. Multiple realizations can be used to evaluate the impact of different possible 

facies distributions on fluid-flow simulation, which can help to optimize a field 

development plan. 

The issues discussed above motivated me to apply an integrated approach, 

combining both deterministic and geostatistical approaches to build a realistic model of 

the reservoir. This study combines both deterministic and geostatistical approaches. 

Sedimentological and sequence stratigraphic analyses were performed first and 

contributed to defining the reservoir layers. Within this framework, geostatistical 

simulations provided different realizations of the small-scale geological heterogeneities. 
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1.2 Research Objectives 

 The overall objective of this study was to improve ultimate recovery of oil from Cut 

Bank sandstone by characterizing reservoir heterogeneity. Specific objectives for this 

research were to: 

A. develop and assess a technique to apply sequence stratigraphic analysis in low-

accommodation alluvial settings and perform a high-resolution sequence 

stratigraphic analysis of the Cut Bank and Sunburst sands; 

B. identify sedimentary structures and hierarchies to recognize potential reservoir 

compartments within the low-accommodation stratigraphic sequence framework 

using core and well log data and publications;  

C. predict the spatial distribution of petrophysical properties and reservoir connectivity 

by modeling reservoir facies using conceptual stratigraphic concepts and 

geostatistical simulations; and 

D. integrate results of the geologic assessment with previous results of production 

analysis to evaluate geological controls on reservoir performance and potential for 

improved oil recovery. 

 

1.3 Methodology 

This study involved building a detailed earth model to accurately define the geologic 

framework. The stratigraphy of the reservoir was defined using high-resolution sequence 

stratigraphic analysis and facies modeling. 

A. High-resolution sequence stratigraphy.  
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I performed a high-resolution sequence stratigraphic analysis of the lower Cut Bank, 

upper Cut Bank, and Sunburst members of the Kootenai formation based on analysis of 

high-frequency fluctuations of base-level. As part of this study, I correlated well logs 

from 144 wells to assess relationships between base-level variations and channel 

amalgamation. In low-accommodation settings, the style of depositional fill is marked by 

abrupt stratigraphic and spatial change, in comparison to high-accommodation settings. 

Individual sequences can be differentiated by their texture and composition (different fill 

patterns). Sequence boundaries are immediately overlain by laterally amalgamated 

fluvial sheet deposits that have high percentages of interconnected, coarser-grained, 

channel-fill sandstone. I investigated amalgamated units, erosional truncation by the 

overlying strata, and presence of soil horizons to identify the multiple, closely spaced 

unconformities. My approach of establishing a reliable high-resolution, reservoir 

stratigraphy is based on the following specific steps: 

1. identification of chronostratigraphic surfaces; 

2. determination of the correlatable thin shale units and their relative stratigraphic 

positions; and 

3. identification of the bounding hiatal surfaces that separate genetic units and 

record significant interruptions in basin depositional history, such as shut-off of 

sediment supply or switch of sediment source, owing to avulsion on floodplain, a 

rapid climate change, or base-level shift. 

The method I used to realize high-resolution stratigraphic correlations consists of (1) 

establishing sedimentary facies, facies associations, and facies successions from cores 
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and well logs, (2) inferring depositional processes from the facies, (3) interpreting 

sedimentary environments from the combinations of inferred processes, (4) identifying 

individual genetic sequences and their well-log signatures, and (5) reconstructing the 

genetic sequence stacking pattern. Reservoir stratigraphic analysis can be used to 

constrain simulations of facies or petrophysical architecture within each stratigraphic 

unit.  

B. Internal sedimentary structures and hierarchies 

Continental clastic reservoirs are commonly highly heterogeneous, with marked 

barriers or baffles to fluid flow. These barriers and baffles can be simple or highly 

complex in terms of three-dimensional geometries. Therefore, it is important to analyze 

internal sedimentary structures and hierarchies, which elucidate presence of barriers and 

baffles, to assess potential reservoir compartments. Depositional processes result in 

predictable facies and spatial patterns of reservoir properties (thickness, porosity, and 

permeability) in clastic sedimentary rocks. Moreover, each facies exerts a characteristic 

influence on fluid flow through the rock. Knowledge of these characteristics can help 

geologists and reservoir engineers determine the most appropriate ways of representing 

permeability in numerical simulations in order to predict reservoir performance. To 

clarify facies characteristics, I used the following approach. 

1. I analyzed 200 ft of core from 6 wells, well logs, and publications to assess the 

depositional processes, grain size and types, sedimentary structures, hierarchies 

with the objective of recognizing evidence of potential compartments and 

interchannel strata as well as intrachannel permeability barriers.  
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2. I integrated seismic and well log data to determine which seismic attributes can 

be used to map reservoir properties. At Cut Bank field, seismic attributes were 

compared with well log porosities to establish a correlation and to model the 

porosity distribution throughout the field. The nature and strength of the 

relationship were investigated by plotting the porosity at each well against the 

seismic attributes at that well. Issues to be addressed when employing the 

seismic-guided log property mapping technique include the scarcity of available 

porosity values from well logs (in the Cut Bank dataset, neutron-density average 

porosity is most reliable) and the low resolution of seismic data makes it tenuous 

to use for mapping reservoir parameters. 

C. Spatial distribution of petrophysical properties 

To predict the spatial distribution of petrophysical properties, and to address the 

issues of reservoir connectivity, I built a geological model populated with reservoir 

parameters and used geostatistical studies to provide equiprobable representations of the 

geological heterogeneity of the main reservoir units.  

D. Integrating trends in fluid flow with reservoir architecture  

Integrating production behavior and fluid flow trends with reservoir architecture are 

critical steps to identifying heterogeneities within the reservoir and developing three-

dimensional flow-unit models that can be used to predict untapped compartments. 

Coincidences among the spatial positions of reservoir quality, structural setting, and 

production trends are key to recognizing heterogeneities and controls on production. For 

Cut Bank field, this comparison was accomplished by relating production performance 
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maps with geologic and reservoir-quality maps. Areas of high reservoir quality predicted 

by the geologic analysis should coincide with fairways of high transmissivity of fluids 

and high production rates. Breaks in production trends that coincide with facies changes 

or structural discontinuities confirm the integrity of the model. To detect reservoir 

heterogeneities and test the validity of the geologic model, I integrated maps of the 

geologic parameters at the genetic-unit level with the production performance analysis 

results from previous studies by Texas A&M University (McVay et al., 2004). 
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CHAPTER II 

GEOLOGICAL OVERVIEW OF CUT BANK FIELD, MONTANA 

2.1 Location of Study Area 

Oil and gas production in Cut Bank field is from shallow Cretaceous sands on the west 

flank of the Sweetgrass arch, approximately 25 mi west of the crest of Kevin-Sunburst 

dome (Fig. 3) (Blixt, 1941). The gentle dip (1º SW) of strata on the west flank of the 

Kevin-Sunburst dome is illustrated by the structure of the top of the Ellis Formation 

(base of the Cut Bank sandstone) in the field area (Fig. 4). Dip is 80 to 100 ft per mile to 

the west-southwest. There is no evidence of faults in the field. Because the Cut Bank 

sand erosionally overlies the Ellis formation, the map shows minor irregularities of Ellis 

topography as well as local folds (Fig. 5).  
Cut Bank Field is a long, narrow oil-leg on the downdip (west) side of a larger 

stratigraphic trap. The oil producing leg is 30 miles long and ranges in width from less 

than 2 miles near the northern end to about 6 miles near the southern end. Probably less 

than 80 percent of this area can be considered oil productive, because many dry holes 

and abandoned wells are interspersed with producing wells. The gas-oil contact of the 

Cut Bank sandstone is at approximately 1,040 ft. The Cut Bank water contact is tilted, 

cutting across structural contours from 600 ft on the west to 1,300 ft on the northeast 

(Fig. 4) (Gully, 1984). Origin of tilted water contact is not understood and is not 

investigated in this study because it is not part of research, owing to lack of data. 
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Figure 3. Location of Cut Bank field relative to major structures (Modified from Balster et al., 1976) 
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Figure 4. Generalized structure top of Ellis Group, Cut Bank field. Shaded area corresponds to oil 
leg. Outlines are Cut Bank Units and 3-D seismic survey area. A-A’ shows the location of 
diagrammatic well cross section (modified from Gully, 1984). 
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Figure 5. Structure map of the base of the Cut Bank sandstone (top of Ellis Group) in SCCBSU area 
(Datum is mean sea level).  
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2.2 Field Overview 

2.2.1 Reservoir Properties 

The three productive members of the Lower Cretaceous Kootenai Formation are the: (1) 

Cut Bank member at the base (averaging about 47 feet thick); (2) Sunburst member in 

the middle (about 50 feet thick); and (3) Moulton member at the top (about 100 feet 

thick) (Fig. 2). The Cut Bank member is the most important producing unit. The average 

depth to Cut Bank sandstone is 2,950 ft. The sand varies in thickness and pinches out 

against the Ellis Group on the east, forming a stratigraphic trap (Fig. 6). Thickness 

ranges from the pinchout on the east to more than 80 ft. The Cut Bank sandstone is 

divided into two members, the upper and lower Cut Bank. The boundary between the 

upper and lower sands varies from gradational to abrupt. The lower sand is the main oil 

producing horizon. The upper Cut Bank sand produces only locally. The lower sand is 

laterally more extensive and averages approximately 17 ft thick. The average porosity of 

the pay section is 14%, and the permeability ranges from 10 md to 1,500 md, with the 

average being approximately 50 md (Matthies, 1962). 

Water saturation is 38 %, original formation volume factor was 1.009, reservoir 

temperature is 82°F and initial reservoir pressure was 750 psi (Gully, 1984). 

Gas has been developed and produced from the primary gas cap up structure. The 

oil pool is bordered by edgewater downdip to the west, but this water is not encroaching. 

The gas cap does not contribute significantly to the recovery. Oil production from the 

Cut Bank sand is attributed to solution gas drive (Matthies, 1962).
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Figure 6. Diagrammatic cross section A-A’, Cut Bank field. See Figure 3 for location (Modified from Gully, 1984) 
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Oil is produced from the Sunburst and Moulton members locally in the north part 

of the field. The Sunburst member is a better reservoir than the upper Cut Bank, but it is 

not nearly as good as the lower Cut Bank. Sunburst porosity values average 12 %, but 

range from near 0% to 18%. Net thickness, based on a 10% porosity cut-off, is 

commonly 4 to 8 feet. Permeability is usually low due to the silty and shaly nature of the 

sand. Although the Sunburst sand produces oil in economic amounts in SCCBSU, but it 

is not included in the present waterflood.  

 

2.2.2 Field History 

Oil was discovered in Cut Bank field in 1931, and by 1963, about 77 million bbl of oil 

had been recovered from the 54,250-acre field. Initial production declines were steep, 

but new wells more than offset the decrease of field production rates until 1942 (Cupps 

and Fry, 1967). Thereafter, the field-wide production declined at an annual rate of about 

14% until 1950, when an active re-work program somewhat arrested the decline (Fig. 7). 

In 1961, the average daily production of the entire field was about 4,500 bbl of oil from 

1,038 wells (Matthies, 1962). The oil is produced as a result of solution gas drive with 

little or no help from the edgewater to the west of the field or the gas cap to the east of 

the field. 

In the early 1970’s, waterflooding was initiated in South Central Cut Bank Unit 

area. This unit has 43 MMBO cumulative oil production. The waterflood development 

history and production history of this period is shown in Figures 8 and 9 respectively.  
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Figure 7. Oil production history of the Cut Bank Field from year 1932 to 1962 (Cupps and Fry, 
1967). 

 

In 1998, a 3-D seismic survey was acquired over an 8-mi2 section of Cut Bank 

field, with the objective of improving the ongoing waterflood performance (Fig. 5). The 

3-D seismic data revealed that reservoir compartmentalization is controlled by lateral 

and vertical facies changes, not by faults. Attribute analysis identified sinuous features 

associated with siliciclastic depositional environments, which were missed by offset 

drilling programs. Five new proof-of-concept wells were drilled in strategic locations to 

exploit previously untapped reservoir compartments. Four of five wells encountered 

reservoir-quality sands. However, these sands were already swept of oil as a result of 

secondary recovery efforts, leaving significant hydrocarbons trapped within only the 

upper portions of the reservoir (DeAngelo and Hardage, 2001).  
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Presently, there are 277 wells in South Central Unit area; 54 are producers, 29 

are injectors and 194 are idle. 
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Figure 8. SCCBSU water flood expansion history (from Quicksilver Resources, 2002). 
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Figure 9. SCCBSU production and injection history from year 1969 to 1998 (data from Quicksilver 
Resources, 2002).  

 

2.3 Lithologic and Stratigraphic Framework 

Correlation of the Cut Bank, Sunburst, and Moulton intervals (Fig. 10) is difficult and 

imprecise. The Cut Bank sandstone unconformably overlies the siderite-cemented, black 

Ellis shale (Dolson and Piombino, 1994).  

In the western part of the area, Callagher (1957) described a basal Cut Bank 

chert-quartz conglomerate averaging ten feet thick. This basal conglomeratic zone thins 

eastward, and throughout most of the area, it is only of a few inches thick. 
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Figure 10. Cut Bank field – Type Log, Well SCCBSU #51-6. GR –gamma ray, NØ-neutron porosity, 
DØ-density porosity. 

 
 

Blixt (1941) arbitrarily subdivided the Cut Bank sandstone into upper and lower 

units on the basis of chert content, which is highest in the lower unit. The boundary 
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between upper and lower sands may be gradational or abrupt. Principal detrital 

constituents of the Cut Bank sandstone include quartz, silicified carbonate clasts, and 

argillaceous chert clasts (Horkowitz, 1987). Texture ranges from conglomerate to fine-

grained sand.  

From outcrop studies, Horkowitz (1987) identified two sandstone subfacies 

within the lower Cut Bank sand. These are massive, lenticular sandstones and epsilon 

cross-bedded sandstones. Also, there are clay-filled abandoned channel plugs within 

these two sandstone facies. Porosity and permeability vary appreciably, both laterally 

and vertically. Cupps and Fry (1967) indicated that the highest porosity and permeability 

occur in medium-grained, conglomerate-free, cherty sand. Because of wide variation in 

porosity, oil saturation is very irregular.  

Interpretation of the upper Cut Bank sandstone is based mainly on log analysis. It 

is composed of a fairly clean, uniform, fine- to medium-grained sand (Hill, 1989). 

Unlike the lower sand, a basal conglomerate is rare, and when present, it is quite thin. 

The upper Cut Bank sand is thinner and not as widespread as the lower sand. It is 

thickest at the north end of SCCBSU, where a two or more channel-fill deposits are 

amalgamated. 

The Cut Bank-Sunburst contact is gradational and difficult to identify, but the 

Sunburst is considered to be a separate reservoir (Hill, 1989). The sands commonly 

exhibit a salt and pepper appearance due to the presence of dark-colored chert grains. 

Sunburst sands tend to be more shaly and silty than the Cut Bank sands. The Sunburst 

member contains as many as three sand lenses, depending on location. These lenses 
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average 10 to 15 feet in total thickness. The lowest Sunburst sand, in rare instances, is in 

contact with the upper Cut Bank sand making it difficult to distinguish between those 

two units.  

Treckman (1996) identified a 2- to 4-ft thick bentonite layer named the “Tin 

Roof” at the base of the Moulton (top of Sunburst). This layer is absent over part of the 

SCCBSU, where a major incised valley is present (Figs. 11, 12, and 13). The incised 

valley is 1 to 1.5 miles wide and is at least 150 feet deep. The valley fill creates 

stratigraphic trapping potential in the Sunburst and possibly in the upper Cut Bank 

sands.  

According to DeAngelo and Hardage (2001) the Tin Roof bentonite appears to 

dampen the seismic reflectors below it, resulting in reduced seismic clarity of the lower 

Cut Bank sand. Based on the 3-D seismic data, DeAngelo and Hardage (2001) used 

seismic attribute analysis to identify several sinuous features that may be shale-filled 

channels. They concluded that Cut Bank sandstone reservoir compartmentalization is 

controlled by lateral and vertical facies changes, not by faults.  

 Moulton sandstones are discontinuous, lenticular fluvial units comprised of fine- 

grained, cross-laminated sand. Gross thickness varies from 0 to 100 ft (Gully, 1984). 
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Figure 11. South Central Cut Bank Sand Unit (SCCBSU) well base map. Green shaded area 
corresponds to Lower Cretaceous Gorge where the “Tinroof” is absent (from Quicksilver 
Resources, 2002).
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Figure 12. Stratigraphic cross section A-A’ (See Figure 11 for location). Vertical Exaggeration=10.6667.
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Figure 13. West to east seismic section (See Figure 11 for location). Tinroof is cut by incised valley-Lower Cretaceous Gorge.
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2.4 Provenance 

Within the study area, the Kootenai Formation reflects sedimentologic and petrologic 

responses to changing tectonic conditions. The Aptian Kootenai Formation in the Cut 

Bank area was deposited during a period of nonmarine sedimentation in the Sevier 

foreland basin of the northwestern United States (Berkhouse, 1985). 

Hopkins (1993) summarized the regional paleogeography in Montana as follows. 

Sediment was supplied from the intermittently strongly positive Cordilleran Mountains 

and a broad, low-lying area to the northeast, which flanked the Canadian Shield. Local 

sedimentation patterns are the result of the dynamic relation between tectonism in 

positive and negative areas and the relative position of sea level with respect to the 

continent. Repeated advances and withdrawals of the sea against a background of 

general emergence marked the passage from dominantly marine sedimentation in the 

Jurassic to estuarine and continental sedimentation in the early Cretaceous. Cut Bank 

sandstones are generally medium- to coarse-grained litharenites in which composition of 

the lithic components are a wide range of chert and silicified sedimentary rock 

fragments. Their source lay to the west in Paleozoic carbonates. 

Suttner (1969) suggested that clastic sedimentary rocks of Late Jurassic-Early 

Cretaceous age within the foreland basin in Montana and Alberta are dominantly 

composed of quartz and siliceous sedimentary rock fragments (chert and quartzite), 

reflecting derivation from Paleozoic sedimentary rocks involved in thrusting to the west. 

Virtually all of the sediment deposited in the foreland basin during the late Jurassic-early 

Cretaceous time was ultimately derived from the westward-adjacent orogenic belt, 
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implying primarily eastward sediment dispersal. Sediment supply from the craton to the 

east was negligible during this period, at least within the western regions of the foreland 

basin.  

During the Aptian, the first major pulse of coarse, orogen-derived detritus into 

the eastward-adjacent foreland basin resulted in alluvial plain deposition of the Kootenai 

basal conglomerate and Cut Bank sandstone members of southwestern and northwestern 

Montana, respectively. 

 

2.5 Depositional Environment 

The onset of Kootenai sedimentation was marked by regional emergence and 

establishment of a north-trending drainage system that coincided with the influx of 

coarse clastic sediments from the rising Cordilleran Mountains to the west (Shelton, 

1967; Weimer and Tillman, 1982; and Berkhouse, 1985). The sediment deposited by this 

system filled a paleo-valley cut into the Jurassic shale of the Ellis Group. The marine 

basin into which this fluvial system flowed was located in northern Alberta, Canada. 

The depositional systems of the Kootenai Formation have long been debated. 

Walker (1974) indicated that coarse, chert-rich sandstones deposited by a north-flowing 

braided river system form the basal, Cut Bank sandstone. Hopkins (1993) supported this 

interpretation by describing Cut Bank sandstones that exhibit large-scale, unidirectional, 

tangential cross-stratification. He pointed out that the structures are typical of transverse 

bar bedforms generated in sandy, braided rivers. 
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Based on the character and assemblages of the sandstone subfacies, the 

distribution of shale, lateral and vertical subfacies associations observed at outcrops, and 

comparison of the Cut Bank sandstone with examples of modern meandering and 

braided rivers and ancient fluvial sandstones, Horkowitz (1987) considered the Cut Bank 

sandstone a two-part system reflecting deposition in a meandering-to-braided fluvial 

system. The meandering lower Cut Bank section filled the deeper parts of the shallow 

valley, and it was overlain by the braided, upper Cut Bank subfacies. 

Cut Bank sandstones are generally medium- to coarse-grained litharenites in 

which the lithic component comprises a wide range of chert and silicified sedimentary 

rock fragments. Their source lay to the west in Paleozoic carbonates (Peterson, 1986). 

To the west of the Cut Bank field, Cut Bank sand and its equivalents thicken and are 

more conglomeratic. 

Dolson and Piombino (1994) indicate that the Cut Bank strata illustrate an 

important variation on valley fill development in proximal positions to foreland uplifts, 

as a complete alluvial plain and fan assemblage lacking valley walls is preserved to the 

west of Cut Bank field (Fig. 14).  

Ardies et al. (2002) and Zaitlin et al. (2002) did extensive research on the ancient 

valley systems of the lower Cretaceous “Basal Quartz” (BQ) member, the northern 

extension of Cut Bank sandstone in southern Alberta. The three-dimensional geometry 

of the valley networks in 100 km by 120 km of the densely drilled “BAT” (Bantry-

Alderson-Taber) unit, which forms part of the “Basal Quartz” of Lower Cretaceous age 

in Southern Alberta was re-constructed in their studies. The authors showed that the 
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valley systems were fed from the west, south, and east by a network of tributaries. 

Eustatic sea level changes may have played a role in initiating river incision, but regional 

tectonic movements had an important influence on the history of accommodation 

change.  

 

 

Figure 14. Cut Bank field – depositional setting (after Dolson and Piombino, 1994). 
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Periods of erosion appear to have been relatively brief, because the valleys are 

narrow, although confinement within cohesive, mudstone-rich paleosols of the 

underlying incised-valley deposits may have slowed valley widening. A relatively wet 

paleoclimate may also have contributed to the formation of narrow valleys by favoring 

the existence of single-channel rivers. The general morphology of the Alberta foreland 

basin, together with the distribution of unfilled relief associated with preceding valley 

system and/or less resistant, slightly older deposits, determined the location of trunk 

valleys. The trunk valley is significantly narrower and more deeply incised where it 

crosses the most pronounced uplifted block. Enhanced erosion at tributary junctions and 

valley bends produced localized areas (2-3 km in diameter) where the valley fill is up to 

five times thicker and considerably coarser grained than the adjacent valley deposits. 

The high-resolution subdivision of the BQ clarifies changing BQ paleodrainage 

through time. The BQ is considered to be an accommodation-limited deposit due to 

general absence of marine deposits. BQ area was closer to the marine basin than was Cut 

Bank field, which favored the deposition and preservation of fluvial-estuarine deposits in 

a higher accommodation setting at BQ. It is easier to identify key bounding surfaces 

under higher accommodation conditions. Thus, a major challenge in the Cut Bank area is 

to identify bounding surfaces in an area of even lower accommodation than that of the 

BQ deposits. 

The depositional environment of the Sunburst sand is similar to that of the Cut 

Bank sand (Hill, 1989). It is a fluvial sandstone that interfingers with lacustrine shales 

and limestones farther north near the Canadian border. The sandstones are primarily 
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channel-fill sands but are finer grained than those of the Cut Bank. They are very fine- to 

medium-grained and poorly sorted with an overall fining upward trend within the 

individual sand units. 

 

2.6 Framework Composition and Texture 

2.6.1 Composition 

Lower Cut Bank sand is dark gray to black and is generally composed of approximately 

equal amounts of dark gray or black chert, and clear and translucent quartz grains, 

although in places, black chert predominates. Quartzite grains are also present. 

 Accessory minerals that have been identified by Blixt (1941) are pyrite, 

dolomite, biotite, zircon, tourmaline, garnet, and muscovite. Of these, pyrite, dolomite, 

and biotite are the most abundant.  

Within individual layers, the grains are fairly well sorted, but grain-size gradation 

is well defined within sequence of layers, ranging from coarse at the base to fine sand at 

the top (Conybeare, 1976). Locally, the coarse-grained layers are conglomeratic, the 

maximum pebble size being 15 mm. 

Texture of the lower Cut Bank varies from a pebble conglomerate or 

conglomeratic sandstone having pebbles up to 1/2 inch in diameter to fine-grained cherty 

quartzose sandstone. Interbedded with the black chert and quartz sand may be irregular 

lenses of chert-free sand or lenses of pure, cherty sand or cherty conglomerate. 

Generally, a persistent chert conglomerate a foot or less in thickness with a matrix of 
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fine, light gray sandstone mineralized with pyrite occurs at the base of the lower Cut 

Bank, erosionally overlying the Ellis shale. 

Horkowitz (1987) described the Cut Bank sandstone framework composition as a 

three-component system composed of quartz, silicified carbonate clasts, and argillaceous 

chert clasts (Fig. 15). The quartz component is dominated by monocrystalline grains; 

polycrystalline quartz constitutes less than 1% of the quartz fraction. Quartz grains are 

dominantly equant in shape and slightly angular to subrounded. Abundance of quartz 

grains is negatively associated with grain size (Fig. 16a).  

 

 

Figure 15. Cut Bank Field -Ternary plot of framework composition of Cut Bank sandstone. 
Sandstone framework composition is composed of quartz, silicified carbonate clasts, and 
argillaceous chert clasts (from Horkowitz, 1987). 
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Two main chert types are present, silicified carbonate clasts and argillaceous 

chert clasts (Horkowitz, 1987). Grains classified as silicified carbonate fragments exhibit 

fabric-selective intragranular porosity present in the form of isolated rhombic dolo-

molds, or molds of other dissolved intragranular material. The silicified carbonate clasts 

account for up to 70% of the sandstone and peak in abundance at a grain size of 

approximately 0.42 mm (Fig. 16b).  

 
 

Horkowitz, 1987

Chert-B= silicified
carbonate clast

Chert-A= siliceous 
mudstone clast

Horkowitz, 1987

Chert-B= silicified
carbonate clast

Chert-A= siliceous 
mudstone clast

Horkowitz, 1987

Chert-B= silicified
carbonate clast

Chert-A= siliceous 
mudstone clast

Horkowitz, 1987

Chert-B= silicified
carbonate clast

Chert-A= siliceous 
mudstone clast

 

Figure 16. Cut Bank Field - Relationship between grain size and composition of Cut Bank 
sandstone: a) quartz content; b) silicified carbonate clast content (Chert-B); c) siliceous mudstone 
clast content (Chert-A) (from Horkowitz, 1987). 
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Grains classified as argillaceous clasts compose the third principal grain 

component in the Cut Bank sandstone. Argillaceous chert grains are typically equant to 

elongate in form. This grain type is predominately microporous with microporosity 

occurring uniformly throughout the fragments or in microlamellae within a fragment 

rather than as moldic pores as in the silicified carbonate clasts (Fig. 16c). This 

microporosity greatly reduces the effective porosity. 

 

2.6.2 Sedimentary Structures 

Medium-scale cross bedding is a dominant primary sedimentary structure, which occurs 

above massive bedding and below small-scale cross-bedding in the Cut Bank sandstone 

(Shelton, 1967). Other sedimentary structures, secondary structures include burrows, 

claystone chips (probably fragments of dried mud), and deformation probably caused by 

slumping of the unconsolidated sediment in a hydroplastic state. A shale bed locally 

present within the upper part of the Cut Bank (Conybeare, 1976).  

Shelton (1967) noted that, within the sequence described above, average grain 

size decreases upward. The lower, well-developed sequence is characterized by medium- 

to coarse-grained sand, whereas the upper part of the sandstone is fine-grained. 

Maximum pebble size in the massive-bedded conglomerate is approximately 15 mm. 

The medium-scale, cross-bedded sandstone is well sorted; the other beds generally are 

moderately sorted. Bentonitic clay and silt are not uncommon as cementing materials 

and as such are significant modifiers of sorting, porosity, and permeability. 
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Horkowitz (1987) identified five sandstone lithofacies in the Cut Bank sandstone 

based on differences in external and internal geometry, physical structures present, 

patterns of grain size variation, and lateral and vertical facies associations. These are 

massive, lenticular sandstone; epsilon cross-bedded sandstone; horizontally-bedded 

sandstone; trough cross-bedded sandstone; and tabular cross-bedded sandstone. The 

mean grain size does not differ significantly between the five subfacies, each having a 

mean of 0.33 – 0.36 mm. The horizontally-bedded and epsilon cross-bedded sandstones 

have the greatest range in grain size. The massive, lenticular sandstone facies has the 

narrowest grain size range and the trough and tabular cross-bedded subfacies have a 

similar grain size range. 

 

2.7 Hydrocarbon System 

Weimer and Tillman (1982) concluded that oil and gas that were generated in the marine 

Ellis shale (Fig. 2) migrated into the Cut Bank sandstone, where they were trapped at the 

edge of the alluvial valley. 

Dolson and Piombino (1994) described the Cut Bank Field as the largest valley 

fill trap in the Rocky Mountains. He suggested that the Lower Cretaceous Cut Bank 

sandstone produces from oil generated by the Mississippian/Devonian Bakken Shale 

(Fig. 2). Thermally mature Bakken oils in the Overhrust Belt footwall migrated 

vertically through the fractured Mississippian carbonates to regional seals in the Jurassic 

Ellis Group and then laterally updip at least 50 miles to Mississippian pools on the 

Sweetgrass Arch (Fig. 17).  
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The pre-Cretaceous unconformity, which underlies the Lower Cretaceous Cut 

Bank sandstone bevels across this Mississippian migration route downdip in Canada, 

diverting oils southward to the Cut Bank field accumulation. The pre-Cretaceous 

unconformity, which initially acted as a bypass zone for coarse gravels shed from 

western highlands, was folded and tilted toward the thrustbelt hingeline, causing 

deposition of the Cut Bank through Moulton sandstones. These alluvial plain and fan 

sandstones west of the field have sheet-like geometries and appear to have poor lateral 

seals. Cut Bank accumulation occurs where valley incisement of north-south trending 

paleodrainage system juxtaposes these sheet sandstones updip against Jurassic Rierdon 

and Sawtooth shales, forming regional valley wall trap.  
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Figure 17. Migration routes of Bakken oil through Mississippian strata and lowermost Jurassic 
Sawtooth strata (arrows). Structure, top of Sun River Dolomite (in feet) (uppermost Medison 
Group) (Dolson and Piombno, 1994).
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CHAPTER III 

EVALUATION AND LIMITATION OF DATA 

3.1 Database 

The reservoir database includes a 3D seismic data set of an 8-mi2 region and 275 wells, 

all located in the SCCBSU, NCCBSU, NWCBSU and TRIBAL units, Cut Bank field 

(Fig. 4). The geophysical log suite varies among wells; log suites available in the 

database are combinations of gamma ray, density porosity, neutron porosity and other 

curves, such as old gamma ray neutron, resistivity, and spontaneous potential (Fig. 18). 

In addition, core analysis results are available for 11 wells (Fig. 19). Production history 

data are available for 194 wells, not including injection wells and wells only with water 

production data. The current well spacing is 92 acres. Gross-sandstone thickness and 

net-reservoir thickness maps for this study were provided by Quicksilver Resources; the 

remainders of the maps were produced during this research. 
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Figure 18. Plot of types of logs in the well logs database.  
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Figure 19. SCCBSU well base map with log data. Red are wells with core data. Well 54-8 has VSP 
data.  

 

3.2 Assessing Data Quality  

Modeling a complex oil field, with more than 60 years of production is a tremendous 

task that requires a multi-disciplinary organization and the effective management of a 

large amount of data (i.e., cores, logs, 3D seismic, production data, and previous 
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interpretations and geological models). Gathering and assessing quality of the necessary 

data are major and important steps in all reservoir characterization studies. Poor quality 

seismic and/or well log data can only result in poor reservoir characterization, and the 

data used in modeling should always be weighted according to its reliability. Well log 

information is generally considered “hard” or accurate data in geological modeling, 

because the measurements are made in the formation with a variety of tools that are 

directly related to the reservoir properties and, in most cases, have been calibrated using 

core analysis. However, problems can exist with the well log data. The logs were 

acquired over a number of years. Changes in logging tool response or processing 

parameters (like matrix density, clean sand, and shale baselines, etc.) can cause a bias in 

the petrophysical parameters which can seriously degrade the calibration between core, 

well and seismic data. In most cases the petrophysical properties were averaged to 

provide a single value of porosity (or other parameters) for the reservoir zone. This 

averaging, often performed with interpretive cutoff values applied, can greatly impact 

well log-to-seismic calibrations. Seismic data are considered “softer” or less reliable 

than well log information, because the measurements are made remotely and are only 

indirectly related to the reservoir properties (i.e., amplitude is proportional to reflectivity, 

which is proportional to the changes in acoustic impedance, which is proportional to 

density, etc.). The seismic data are limited in frequency (<100 Hz) and vertical 

resolution (10 ms or 100 ft). Deterministic models, generated at the scale of the seismic 

data, neglect small-scale geologic heterogeneity that may have a major impact on 

reservoir performance. Even high-quality seismic data may have localized problems 
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(noise, multiple contamination, acquisition footprints, poor stacking or migration 

velocities, etc.). In most cases the seismic attributes used in reservoir characterization are 

extracted from the 3D seismic volume along interpreted horizons. If the interpretation is 

not correct, the attributes are meaningless.  

A review of Cut Bank data showed that a new model required revised 

interpretation of the stratigraphy. In many wells, lower Cut Bank, upper Cut Bank, and 

Sunburst contacts were inaccurately picked in previous studies, due to channel 

amalgamation. Although three Sunburst sands were mentioned in literature and reports, 

they were not identified on wells. Tinroof, Moulton and Lower Cretaceous Gorge picks 

were identified only on a few wells by earlier workers. For this study, it was necessary to 

normalize GR logs, evaluate maps and cross sections provided by Quicksilver 

Resources, estimate reservoir properties from well logs and seismic-to-well correlation, 

and evaluate the seismic interpretation of others.  

I began correlating lower Cut Bank, upper Cut Bank, Sunburst, Tinroof, Moulton 

and Lower Cretaceous Gorge contacts/boundaries in well logs obtained from Quicksilver 

Resources and internet resources (Montana Oil and Gas Commission). In addition, I 

interpreted 2 shale beds above the study interval that were present almost on all the well 

logs. These shale beds were helpful in construction of stratigraphic well log cross 

sections and accurate interpretation of reservoir layering and sequence stratigraphic 

surfaces. Normalized gamma ray logs were used to ensure the consistency of the facies 

identification for all the wells. This normalization is highly recommended when such a 

classification is based on a non-homogenous set of wireline logs. Wireline log data are 
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subject to numerous potential errors due to the acquisition environment, assumptions 

made during acquisition, changes in logging tool response, and processing parameters). 

 

3.3 Evaluation of Previous Geological Maps 

QRI/BEG reports indicate that seismic average absolute amplitude was incorporated 

with well log data to construct the Quicksilver Resources/Bureau of Economic Geology 

(QRI/BEG) sand thickness map. By superposing the QRI/BEG net sand thickness map 

on the seismic average absolute amplitude map, I found that regions interpreted as 

higher average absolute amplitude correspond to higher estimated net sand thickness, 

except that of Well 49-14. At this well, the seismic amplitude is anomalously high and 

does not match expected thickness values (Fig. 20). Also, there is no correlation between 

the measured net sand thickness from the well logs (based on 60% GR and 10% porosity 

cutoffs) and the average absolute amplitude values (Fig. 21). Therefore, I concluded that 

there are limits on the accuracy of the QRI/BEG interpretation.   
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Figure 20. QRI/BEG net sand thickness (Quicksilver Resources, 2002) contours >15 ft superposed on the average absolute seismic amplitude 
map. Generally, higher average absolute amplitude corresponds to greater net sand thickness. 
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Figure 21. There is no correlation between net sand thicknesses from well logs (based on 60% GR and 10% porosity cutoff) and average 
absolute seismic amplitude.



 

 

46

3.4 Porosity Calculation  

One aim of this chapter was to assess the usefulness of seismic data for predicting 

hydrocarbon production. Seismic-based porosity predictions are one way to incorporate 

the seismic data into a relevant reservoir model. Some data analysis is required, 

however, before seismic-determined porosities can be calculated. In particular, seismic 

attributes and well log porosities must be compared to demonstrate any relationships and 

to model the porosity distribution throughout the field. Normally, both seismic attributes 

and log properties are averaged for a stratigraphic interval. The objective is to have a 

pair of attributes and log properties values for each well that intersects the layer so that 

relationships between these data sets can be determined. Therefore, it is important to 

construct a representative model of reservoir porosity from well logs. 

Core data were used to calibrate and refine the interpretation from well logs. The 

available core porosity data were cross-plotted with log-derived porosity on a well-by-

well basis. Most of the wells in the Cut Bank field have a density porosity curve. Core 

data are available from 6 wells located in the northern part of seismic survey. Core data 

from a few other wells were not used for calibration because of the absence of density 

logs in these wells. Table 1 summarizes the results of correlating core and density 

porosity data for the wells that have both types of data. To reduce the degree of scatter, a 

running average was applied to the core porosities (smoothed with 3-point running 

average). Core porosity curves were depth shifted to match log depths using the gamma-

ray curves. 
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Table 1. Summary of core porosity and density porosity calibration through cross-plotting. 

 
Well # 

Correl
ation 
Coef 
- R  

Core 
data 
interval, 
ft 

Relationship between core 
porosity and density porosity 

Significance 
Levels of "F" 
(p-value) 

Number 
of obs. 

37-7 0.9581 2825-
2855 

Core_por=0.061+0.509*Dens_por 3.16694E-14 34 

22-6 0.7960 2784-
2805 

Core_por=0.041+0.658*Dens_ por 7.4136E-05 22 

19B-3X 0.7782 2782-
2808 

Core_por=0.042+0.797*Dens_por 0.000120204 27 

36-5 0.7485 2932-
2957 

Core_por=0.024+0.828*Dens_por 4.61557E-08 26 

33-5 0.6877 2830-
2855 

Core_por=0.091+0.412*Dens_por 0.00181415 26 

39-1X 0.3467 2923-
2942 

Core_por=0.068+0.426*Dens_por 0.006309857 20 

 

 
While there is no direct relationship between correlation coefficient (R) and its 

significance level, the calculated p-values (or significance levels of "F" value) indicate 

that all curves fit their related data sets with a good significance level (not significantly 

different from zero) (Table 1). Well 37-7 has highest R value (Fig. 22) and very low 

significance levels of "F" value (very close to 0), indicating very low chances of the 

observed pattern of points having no linear relationship. When I applied the relationship 

between core porosity and density porosity from that well to other wells, it gave net pay 

average porosities of approximately 11 pu (porosity units). This value is 3 pu lower than 

field net pay average porosity value reported by Quicksilver Resources. In previous 

studies, net pay was defined based on a 10% porosity cutoff. Appropriateness of a 10% 

porosity cutoff was evaluated by cross plotting the available porosity and permeability 

data from 13 Cut Bank sand core reports from the Cut Bank field. There is a change in 

the relationship of the data below and above the 10% porosity line (Fig. 23). Porosity 
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values less than 10% correspond to very low permeability. From core reports the low 

values of porosity and permeability usually are in fine-grained sand. 

 

 

Figure 22. Well 37-7 - Core-well log porosity calibration for lower Cut Bank Sand. 
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Figure 23. Core porosity-permeability crossplot. There is no relationship between permeability and porosity less than 10% porosity line (low 
porosity and permeability usually are in fine-grained sand). It appears there is a relationship above this line. The trend lines are hand drawn. 
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In an ideal case, there should be a one-to-one relationship between core porosity 

and density porosity. Data for wells 36-5 and 37-7 plot near the one-to-one line, 

indicating good correlation (Fig. 24). However, in Wells 33-5 and 39-1X, core porosity 

is consistently higher than density porosity. Based on core report summaries, cores from 

these two wells include abundant heavy minerals. This may also be the reason for poor 

agreement for wells 19B-3X, 36-1, and 22-6, where the log porosity underestimates the 

core-derived value. The conclusion is that the presence of heavy minerals causes the 

density log to be an unreliable porosity predictor.  

Because the density log does not appear to give reliable porosity estimates, I 

examined porosity in wells that also had a neutron log. Relationship between neutron 

and core porosity from only one well that has both data available is very poor. Also, 

neutron vs density porosity plot gave very low R2 value. The combination of density and 

neutron logs gives porosity estimates that are less sensitive to lithologic variations than 

the density porosity alone. There are 21 wells in the SCCBSU area that include both 

density and neutron porosity logs. The neutron-density average porosity (PHIA) value is 

close to the field-wide average (14%) reported in literature and reports (Fig. 25). 

Therefore, I decided to use PHIA values for the log porosity-to-seismic porosity 

calibration. 

 



 

 

51

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Density Porosity, %

C
or

e 
Po

ro
si

ty
, %

Well 37-7
Well 33-5
Well 19B-3X
Well 22-6
Well 36-5
Well 39-1X

1:1 line

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Density Porosity, %

C
or

e 
Po

ro
si

ty
, %

Well 37-7
Well 33-5
Well 19B-3X
Well 22-6
Well 36-5
Well 39-1X

1:1 line

 

Figure 24. Core vs. density porosity comparison for all cored wells in the Cut Bank Sand.
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Figure 25. Neutron-density average porosity values for net pay in the lower Cut Bank Sand. Net pay is based on a 10% porosity cutoff 
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3.5 Integration of Seismic and Well Log Data 

Using the VSP calibration data, DeAngelo and Hardage (2001) interpreted the base of 

Cut Bank or top of Ellis group at the zero crossing (cross-over from positive to negative 

amplitude) at 520 ms in the 3D seismic volume and named it lower stratal surface (Fig. 

26). The zero crossing from negative to positive amplitude above this was interpreted as 

the top of reservoir and was named upper stratal surface. The mid-stratal surface is a line 

between upper and lower stratal surfaces and devides upper and lower reservoir 

intervals. Tinroof corresponds to strong positive amplitude just above the upper stratal 

surface.  

At this point, it is important to discuss the resolution of the seismic data at the 

reservoir interval, i.e. at the interval between Tinroof and Ellis group. Average seismic 

velocity in the reservoir interval below Tinroof is 11,300 ft/sec based on VSP data. As 

shown in Figure 26, the resolution (amplitude length) in this interval is no more than 10 

ms, which corresponds to 113 ft (11,300 ft/sec x 0.001 sec) thickness. The average gross 

thickness of lower Cut Bank is about 35 ft.  As stated earlier in this chapter, the fact that 

reservoir thickness is far less than seismic resolution, indicates that small-scale geologic 

heterogeneity that may have a major impact on reservoir performance may be neglected.  

The critical step in seismic-guided log-property mapping is having accurate time-

to-depth relationships. I estimated velocities from density logs using the Gardner 

equation (ρ=cVα, where α=0.21 and c=0.35) (Gardner et al., 1974). The Gardner  
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Figure 26. Seismic inline 145 displaying upper, middle , and lower bounding stratal surfaces the resolution of seismic data in the interval 
between Tinroof shale and Ellis group at the VSP well. Red curve is GR log. 
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equation parameters (α and c) were estimated by combining data from 4 wells that have 

density logs and either sonic log or a borehole seismic report available.  

Seismic velocity estimates determined from VSP (vertical seismic profile) data 

are available for one well (Well 54-8) in the study area, and this allows a check of depth-

time relationships determined from log data alone. The two approaches compared 

favorably in the southwest area, but in the northeast part of the seismic survey area, the 

VSP data produced a significantly different depth-time relationship. Specifically, the 

difference between the estimated two-way travel time at the relevant Cut Bank formation 

was approximately 25 msec. Thus, to tie seismic and well data, I used VSP (Well 54-8) 

data for the south and southwest parts of the seismic survey area. Sonic data derived from 

the density (Well 37-7) were used for the northeast area. 

 Seismic and well log data in the Cut Bank field were integrated to determine 

which, if any, seismic attributes can be used to map reservoir properties. The variations 

observed in seismic attributes, such as amplitude, should be a function of variations in 

reservoir parameters such as porosity. Seismic attributes were compared with well log 

porosities to model the porosity distribution throughout the field. 

I checked whole series of attributes to assess relations between seismic attributes 

and reservoir properties. To avoid spurious (by chance) correlation (Kalkomey, 1997), I 

focused on amplitude attributes, because, in many cases, the amplitude of a reflection 

corresponds directly to the porosity (meaning that there is physical relationship between 

rock physical properties, such as porosity and seismic amplitude). The assumption is that 

amplitude (both negative and positive) is proportional to reflectivity. By plotting the 
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average Cut Bank sandstone porosity at each well against the seismic amplitude at that 

well, the nature and strength of the relation was investigated. I used average neutron-

density porosity (PHIA) values for 21 wells. 

The three amplitude attributes extracted from the lower Cut Bank sandstone 

interval of the 3D seismic volume were maximum amplitude, mean amplitude, and root-

mean-squared (rms) amplitude. The correlation between porosity and both mean 

amplitude and rms amplitude are poor. On the other hand, the maximum amplitude varies 

inversely with porosity of the Cut Bank reservoir (Fig. 27). The regression had a value of 

0.51 when fitting the maximum amplitude to the average porosity of net pay (PHIA > 

10%). Two points, wells 49-10 and 39-4 (Figs. 27 and 28), were excluded in obtaining 

this relationship.  

The maximum amplitude at the Well 49-10, located at the center of the seismic 

survey area, is anomalously high compared to the average log porosity (PHIA). 

Moreover, this well is near Well 49-14, where the seismic amplitude is anomalously high 

and does not match expected thickness values. This high value may result from an 

inconsistent interpretation of the base of the lower Cut Bank (Ellis top) in this area. This 

horizon is at the zero crossing above positive amplitudes (peaks) throughout all of the 

seismic survey (Fig. 29), with the exception of the problem area of Well 49-10 (Fig. 30). 

Another cause may be the location of this well adjacent to the western edge of the Lower 

Cretaceous Gorge. Well 39-4 is also located near the western edge of the Lower 

Cretaceous Gorge. In this well the maximum amplitude value again under-predicts the 

porosity. Here, also, another explanation may be an inconsistency in the interpretation 
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and stratigraphic ties of the lower Cut Bank interval in well log and seismic data (Fig. 

31). 
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Figure 27. Relation between the log neutron-density average porosity and 3-D seismic amplitude at 
the well ties. Each point represent a well with a given single character name. The empty squares are 
the excluded wells. Significance F =0.000706847 or 0.0707%. 
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Figure 28. Maximum amplitude of lower Cut Bank horizon. Red is highest amplitude and blue is lowest. Red polygons around wells 49-10 and 
39-4 are areas of mismatch



 

 

59

Bottom of Cut Bank interval

Top of Cut Bank interval

W E

Bottom of Cut Bank interval

Top of Cut Bank interval

Bottom of Cut Bank interval

Top of Cut Bank interval

Middle of Cut Bank 
interval

0.5

0.3

0.4

230 240 250 260 270sec

Bottom of Cut Bank interval

Top of Cut Bank interval

W E

Bottom of Cut Bank interval

Top of Cut Bank interval

Bottom of Cut Bank interval

Top of Cut Bank interval

Middle of Cut Bank 
interval

0.5

0.3

0.4

230 240 250 260 270sec

 
Figure 29. Seismic inline 286 displaying upper, middle , and lower bounding stratal surfaces. Notice the bottom of lower Cut Bank interval, or 
top of Ellis, is at the zero crossing above the positive amplitudes (Location on Figure 28).
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Figure 30. Seismic inline 163 displaying upper, middle , and lower bounding stratal surfaces. Maximum amplitude at Well 49-10 is 
anomalously high compared to the average log porosity value. One reason for that may be inconsistent interpretation of the bottom of the 
lower Cut Bank strata in this area. This surface is at the zero crossing above the positive amplitudes all over the seismic survey (see Figure 29 ) 
except in the problem area (Location on Figure 28).
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Figure 31. Seismic inline 235 displaying upper, middle, and lower bounding stratal surfaces. In Well 39-4 the maximum amplitude value 
under-predicts the porosity. One of the reason may be inconsistency of interpretation of lower Cut Bank interval in well log and seismic 
intepretation. Middle of Cut Bank interval in seismic does not correspond to the top of lower Cut Bank interval (Location on Figure 28).
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On the basis of the relation between PHIA and maximum amplitude, it is clear 

that seismic amplitudes provided additional information about the variation of the lower 

Cut Bank reservoir thickness, and average porosity in the interwell space. However, at 

some wells relations did not follow the main regression trend, demonstrating the 

uncertainty associated with indirect methods of thickness determination and reservoir 

mapping. Closer examination of the interpreted horizons in the vicinity of these wells 

indicated that the seismic data were misspicked due to a crossing channel system. At this 

point, the ideal solution would have been to correct the seismic interpretation and repeat 

the analysis. Unfortunately, the seismic response in the area of the crossing channels was 

complicated due to interference between events, and the event that could not be 

interpreted with confidence.  

Thus, characterization of Cut Bank reservoir and recognizing potential 

compartmentalization in SCCBSU area using seismic data continues to be challenging 

due to inconsistent seismic imaging of the target formation. Therefore, I decided to 

model this complex reservoir by combination of stratigraphic models and probabilistic 

simulations using well log and core data. Application of high-resolution sequence 

stratigraphy at the reservoir scale provides the correlation scheme of the reservoir and 

enables one to predict the reservoir geometry and extension within a deterministic 

framework. Furthermore, these conceptual models are able to predict the reservoir 

extension and architecture up to a certain level: estimation of the channel amalgamation, 

and then gross reservoir quality can be predicted with such an approach. 
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However, in many cases, at reservoir scale, accuracy of such models often 

remains insufficient to predict realistically the distribution of internal heterogeneities 

within reservoir units. Furthermore, fluid- flow modeling requires a representation in 

terms of petrophysical properties. Stochastic approaches simulate the distribution of 

either small-scale sedimentary bodies or the internal reservoir heterogeneity and provide 

equiprobable realizations of the heterogeneity distribution. 
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CHAPTER IV 

FACIES ANALYSIS 

4.1 Lithofacies Interpretation 

A thorough understanding of the sedimentology is required to realize high-resolution 

stratigraphic correlations (Wescott, 1993; Robinson and McCabe, 1997) and when 

building a reservoir model to guide decisions concerning the proper modeling technique 

(object or pixel-based) (Henriquez et al., 1990; Hirst et al., 1993). Therefore, I evaluated 

depositional systems of reservoir rock in Cut Bank field using well logs, cores and 

outcrop description. Fluvial depositional systems are composed of four basic building 

blocks - channels, splays, levees and floodplain sedimentary facies. Original porosity 

and permeability vary greatly among these facies. Moreover, the reductions of porosity 

and permeability during burial and diagenesis are strongly facies controlled. 

Well-log analysis is used to define electrofacies associated with sedimentary 

facies deduced from core analysis, and to infer electrofacies associations and 

depositional environments directly from well logs. For this purpose, well logs must be 

calibrated with cores. 

Although core data were extremely limited in Cut Bank field, they were critical 

to analysis of depositional systems and determination of reservoir properties. A key 

approach of this study was to develop facies models that integrated the core and wireline 

log data. In addition, it was necessary to review the conceptual and analog depositional 

models to provide the optimum interpretation of sedimentary facies and sand body 

distribution. Thus, the sedimentological interpretation in this study is based on core 
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descriptions from 6 wells, my description of four cores (wells 38-11, 36-5, 33-5 and 39-

1X) at Quicksilver Resources core repository in Casper, Wyoming, and two core 

descriptions (wells 37-7 and 22-6) obtained from QRI , log data and the available 

literature.  

I used gamma ray log (GR) character to produce a log-pattern (electrofacies) 

facies map of the more continuous Lower Cut Bank Sandstone member. Cut Bank 

Sandstone log patterns are blocky in the mid-channel deposits and upward fining or 

serrated at the channel margins. In the interchannel, floodplains areas, the sand thickness 

decreases markedly, and the log patterns are serrated or sometimes upward-fining. 

Overlaying the GR logs on a gross sand thickness map allows assessment of the 

reservoir architecture - geometry, size, vertical contacts, bedding characteristics, and 

thickness (Fig. 32). Also, this technique can be used to map porosity logs to evaluate 

vertical porosity distributions. 

 

4.2 Lithofacies Descriptions from Cores 

In the summer of 2004, I described 128 ft of core from 4 wells stored at a Quicksilver 

Resources core repository in Casper, Wyoming. Two of these cores had missing 

intervals. In addition, the company provided core photos from well 37-7, one of the most 

recently drilled wells in SCCBSU, and routine core analysis reports from 6 wells that 

includes above wells. Thus, core description in this study included the available cores for 

description and reports provided by Quicksilver Resources. The cores and core reports 

are primarily from the lower Cut Bank and secondarily from the upper Cut Bank 
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interval. In the cores I recognized and interpreted seven types of sedimentary lithofacies. 

The main characteristics of these lithofacies are summarized in Table 2.  

 

 

Figure 32. Log-pattern (electrofacies) facies overlain on Quicksilver Resources gross thickness map 
of lower Cut Bank sand (Quicksilver Resources, 2002). Red curve is GR log increasing from 0 to 150 
API from left to right, light blue is cased GR, dark blue is old GR logs. Log patterns are blocky in 
the mid-channel deposits and upward fining or serrated at the channel margins. Thickness 
decreases markedly, and the log patterns are serrated or sometimes upward-fining in interchannels. 
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Table 2. Main Cut Bank Sandstone lithofacies characteristics from core data from 6 wells, my description of four cores (wells 38-11, 36-5, 33-5 
and 39-1X) , and two core descriptions (wells 37-7 and 22-6) obtained from QRI. 

Lithofacies Description Occurrence Depositional Process and 
Interpretation 

1. Coarse-grained pebbly 
sandstone 

Coarse-grained sandstone with 
conglomeratic fragments 
(conglomerate fragments are 0.1-1.0 
cm in size), dark chert and light 
colored quartz fragments; light and 
dark colored pebbly inclusions; 
massive or faint planar bedding 

Observed at the base of fining-
upward channel sequences 
overlying basal erosional contact 
of Ellis shale 

High energy tractive currents, 
bed-load charge of alluvial 
channels 

2. Mud-supported 
conglomerates and breccias 

Poorly sorted, mud-supported 
polygenic conglomerates and 
breccias with dominance of angular 
dark chert. Dark gray colored shaly 
matrix derived from the floodplain 
shales 

1 to 4 in thick beds  Unchannelized debris-flow 
deposits, distal alluvial fan 
setting  

3. Clean, course- to 
medium-grained sandstone  

Course- to medium-grained, upward 
fining, clean sandstone; crossbedded; 
moderately well sorted 

Overlie lithofacies 1, forming 
upward fining sequences 

High energy, unidirectional, 
tractive currents 

4. Clean, medium- to fine-
grained sandstone 

Medium- to fine-grained sandstone 
with hematite grains, trough cross-
bedded or massive 

Overlie facies 3, forming and 
sometimes ending the fining 
upward sequence 

Low energy tractive currents 

5. Fine-grained sandstone 
or siltstone 
 
  

Fine-grained, massive or current 
ripple-laminated sandstones. 
Occasional fine bioturbation 

Overlie facies 4, ending the fining 
upward sequences 

Low energy tractive currents, 
overbank alluvial deposits, 
levees and crevasse splays 

6. Silty mudstones 
 
 

Olive-gray to reddish mudstones with 
floating quartz grains 

Units alternating with the channel 
fills 

Floodplain or mud-flat deposits 

7. Shale olive-gray and 
reddish 

Olive-gray to reddish mudstones, 
finely laminated 

Up to 20 ft thick beds Ephemeral lake deposits  



 

 

68

The log signature of each lithofacies was also calibrated on the core description (Figs. 33 

and 34). Not all seven facies were present in cores from one well. 

 

 

  

Figure 33. Calibration of the well log signature of lithofacies to the core, Well 37-7. Six of the seven 
lihofacies identified in cores were found in cores and calibrated to log data in this well. For 
lithofacies 7 see Figure 34. Numbers in white boxes on each core photograph correspond to 
lithofacies number in Table 2. 
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Figure 34. Calibration of the well logGR signature of lithofacies 7 to the core, Well 33-5. 

 

Lithofacies 1: Coarse-Grained Pebbly Sandstones 

This facies occurs at the base of upward fining channel sequences overlying the basal 

erosional contact with the Ellis Group shale. This facies was deposited as high energy, 

tractive currents, the bed-load charge of fluvial channels. In the cherty unit at the bottom 

of Cut Bank sandstone, chert clasts sometimes constitute more than 60% of all pebbles. 

The clasts are eroded from the proximal Rocky Mountain area to the southwest, and their 

sub-angular morphology suggests a short transport distance.  

Lithofacies 2: Mud-Supported Conglomerates and Breccias 
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The muddy matrix of these breccias suggests deposition by debris flow. This facies is 

most common at the base of the series where it is interbedded with medium- to fine-

grained tractive currents sands. This facies inferred to result from unchannelized gravity 

flows in an alluvial-fan setting.  

Lithofacies 3: Clean Medium- to Coarse-Grained Sandstones with Trough 

Cross-Bedding 

Lithofacies 3 was deposited by high-energy unidirectional tractive currents, as suggested 

by the abundance of trough cross-bedding. Individual channels commonly are isolated in 

floodplain shales and are remarkably thin (4-7 ft). Several stacked channel sands may be 

amalgamated in units up to 25 ft thick. Correlation of individual channel sequences is 

difficult between wells, which commonly are 2,000 ft apart.  

Lithofacies 4: Clean, Fine- to Medium-Grained Sandstones  

These trough cross-bedded or massive, medium- to fine-grained sandstone with hematite 

grains overlie facies 3, forming and sometimes ending the upward fining sequence. This 

facies is interpreted as a deposits of low-energy tractive currents. 

Lithofacies 5: Massive, Fine-Grained Sandstone or Siltstone  

These fine-grained, massive or current ripple-laminated sandstones overlie facies 4, 

ending the fining upward sequences. This facies corresponds to overbank alluvial 

deposits associated with low-energy tractive currents ending the channel infill or, 

occasionally, to sheet-flood or crevasse-splay deposits in a floodplain setting. 

Lithofacies 6: Silty Mudstones 
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These olive-gray to reddish mudstones with floating quartz grains alternate with the 

channel fills suggesting the facies was deposited in a flood-plain or a mud-flat setting. 

Lithofacies 7: Laminated Mudstones.  

These are finely laminated olive-gray to reddish mudstones from upper Cut Bank 

interval. At this interval most wells intersect one or more channel and/or crevasse-splay 

sandstones, such that unbroken mudstone intervals are typically few feet thick. In 

isolated locations, however, much thicker mudstone successions are encountered; in 

some instances, up to 30 ft thick (Fig. 34). These anomalously thick mudstones represent 

areas that were never occupied by a fluvial channel. I infer these mudstones result from 

the subaqueous sedimentation of the mud that were deposited in shallow, ephemeral 

lakes. Similar Cut Bank mudstones were described by Hopkins (1993) at an outcrop in 

Great Falls area. 

 

4.3 Depositional Model  

The main characteristics of the lower Cut Bank sandstone from available core data are 

summarized as follows. 

• Sandstones and conglomerates were dominantly deposited by high-energy 

unidirectional flows. 

• Channel-fill deposits are very common; they commonly interfinger with gravity-

flow deposits.  

• Lateral continuity of individual channel-fill sands is poor; 

• Organic matter is rarely preserved. 
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These criteria are typical of alluvial-fan depositional systems (Nilsen, 1982; Blair 

and McPherson, 1994) formed in semiarid conditions. The predominance of channels vs. 

debris-flow deposits may indicate that the lower Cut Bank Sandstone was located in the 

distal part of an alluvial-fan system. The axis of the alluvial fan was WSW–ENE 

oriented with the terrigenous sediments being introduced from the west-southwest. The 

channel-fill deposits are characterized by sandy and sometimes gravelly at the base of 

bedload-dominated deposits and could be attributed to braided channels. Regionally, the 

pattern of channels extends for more than 80 km into Canada, in the Lower Cretaceous 

Basal Quartz of Southern Alberta where the basal sandbodies were created by coarse-

grained meandering rivers in a setting with slow net aggradation and extensive 

cannibalization of overbank deposits ((Zaitlin et al., 2002 and Lukie et al. 2002). 

Characterization of the upper Cut Bank and Sunburst interval is difficult because 

of the lack of core data. Well-log information was used to characterize the main 

sedimentary facies of upper Cut Bank and Sunburst zones. Based on log data, the basal 

sands of lower Cut Bank are gradationally overlain by a mudstone-dominated deposit 

that contains isolated, fluvial-channel and crevasse-splay sandstones of upper Cut Bank 

interval. Channel sandstones and crevasse splays typically constitute around 50% of the 

interval.  

In the Cut Bank area, the Sunburst zone is about 45 ft thick, with sandstone beds 

ranging from almost zero to the entire thickness of the zone. Based on description by 

Hayes (1990), the Sunburst zone comprises interbedded, varicoloured mudstones, 

siltstones and sandstones of continental origin. The Sunburst sandstones are fine to 
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medium grained, composed primarily of quartz with minor amounts of chert grains and 

rock fragments, and are cemented by silica and clay. 

The Sunburst zone of the Cut Bank area represents relatively low-energy fluvial 

and floodplain deposits lying more or less conformably on the higher-energy, braided 

stream Cut Bank sandstones. The Sunburst sandstone is comparable in stratigraphic 

position and genesis to Lower Mannville continental sandstone bodies throughout 

southern Alberta and northern Montana (Hayes, 1986).  

I infer that an analog to Cut Bank field is the distal part of a Middle Triassic 

alluvial fan system at Chaunoy field in the Paris basin, France. Figure 35 is 

reconstruction of the depositional environments in Chaunoy field by Lemouzy et al. 

(1995). The Chaunoy Sandstones (a Carnian–Norian lithostratigraphic formation) at 

Chaunoy field composed of small ribbon channel deposits, interbedded with flood-plain 

environments.  

 

 

Figure 35. Analog field-reconstruction of the depositional environments in Chaunoy field (from 
Lemouzy et al., 1995).  
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4.4 Channel Geometry  

Valley size and geometry are important for the reservoir description because they 

strongly influence channel-fill sandstone reservoir architecture and connectivity. The 

values of these parameters are difficult to estimate. 

Fluvial channel-fill sand bodies are commonly discontinuous. Therefore, linear 

interpolation of reservoir characteristics between wells provides unrealistic models of 

reservoir extent and fluid distribution. Meandering and braided rivers produce reservoir 

sand bodies of different dimensions and heterogeneity. Commonly used methods for 

estimating the geometry of channels are (1) well-to-well correlation, (2) empirical 

equations relating maximum channel depth, channel width, and channel-belt width, and 

(3) amplitude analysis of 3D seismic horizon slices. Correlation of specific channel-fill 

sandstone bodies using wireline-logs is the most common method for estimating 

channel-fill widths and orientations. The spatial resolution of this technique can be no 

better than the average well spacing; therefore, if well spacing is 1,000 ft, sandstone 

bodies less than 1,000 ft wide cannot be resolved. In SCCBSU area average distance 

between two logged wells is no less than 1,000 ft.  

Geological equations for the prediction of channel fill width are not robust. 

Meandering and braided channel systems coexisted during deposition of the Cut Bank, 

as can be seen on well log cross sections from the north and central part of SCCBSU 

area (Figs.12 and 36). Meandering channels were common in the northern area of the 

field (lack of channel stacking) (Fig. 36), whereas braided channels were more common  
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Figure 36. West to east well log stratigraphic cross section B-B’ from the north of SCCBSU area (See figure 11 for location). Vertical 
Exaggeration=10.6667. 

 



 

 

76

in the central and southern portion of the field (vertical and lateral stacking of channels) 

(Fig. 12). The lack of multiple fining-upward cycles within the roughly 70 ft-thick 

lenticular sandstones of upper Cut Bank and Sunburst member indicates that the 

sandstone bodies are not stacked braided river channel deposits but instead are point bars 

or remnants of point bars in a meandering river system.  

Individual channel meandering streams typically have a thickness-to-width ratio 

of 1:25 to 1:100, based on different references and empirical equations (Lorenz et al. 

1985; Fielding and Crane, 1987; Davies et al., 1992). Relatively thin channel-fill sands 

are due to the extensive lateral migration that most high sinuosity streams undergo. If no 

lateral migration occurs because of stable banks, then multi-cycle relatively narrow sand 

bodies can form, similar to those formed by anastomosing river systems (Nanson, 1980). 

Because of their overall high sinuosity, meandering streams sediments contain crossbed 

foresets with a wide range of paleocurrent orientations (Miall 1996). 

Braided streams have thickness to width ratios of 1:100 to 1:500 (Fielding and 

Crane, 1987; Davies et al., 1992). This is because of the great width and largely 

unconfined nature of braided streams relative to their depth, despite the multi–cycle 

nature of their deposits. Because the individual channels in a braided stream have 

relatively low sinuosity (Miall 1996), plots of palaeocurrent directions from foreset beds 

will show a lower degree of variation than for sand bodies deposited by meandering or 

anastomosing streams. 

Cut Bank channel sandstones are usually multi story with complex stacking 

patterns. Insufficient outcrop and core data made it difficult to distinguish single story 
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sandstone body dimensions. To acquire accurate thickness and width information of 

single stories I attempted to define the frequency distribution of sand thicknesses that 

was measured on wireline logs using a 100 API gamma ray cutoff by building 

histograms (Fig. 37). Thickness of lower Cut Bank sand varied from 1.5 to 40 ft and 

mean thickness was 19 ft. Thickness range 5-20 ft has the highest frequency.  

The GR log pattern in 5-20 ft thickness interval is mostly blocky (Fig. 38a). The 

sandbodies above 20 ft thick are multistory, with complex stacking pattern. However, in 

some cases 1, 2 or even 3 thin shale interlayers are observed, showing vertical stacking 

of several channels descretely (Fig. 38b).  

Thus, I used 5 to 20 ft for single channel thickness to reconstruct width of 

individual channels. There are several published empirical equations that predict the 

width of channel belts if channel depth or sandstone body thickness is known. I used 

empirical equation by Bridge and Mackey (1993) that relate channel thickness to 

channel width in braided fluvial systems:  

w =58.88d 1.82; 

where w is channel width and d is channel depth. The individual channel width of lower 

Cut Bank interval varied from 1,100 ft to 13,000 ft. Average distance between logged 

wells in SCCBSU is approximately 2,500 ft.  
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Figure 37. Frequency distribution of lower Cut Bank sandbody thickness to define the single story 
channel thickness. 
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Figure 38. Log patterns of lower Cut Bank sandstone bodies: a) the GR log pattern in 5-20 ft 
thickness interval is mostly blocky; b) the sandbodies above 20 ft thick are multistory, with complex 
stacking pattern. In some cases thin shale interlayers are observed, clearly showing vertical stacking 
of several channels. 
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Amplitude analysis of 3-D seismic horizon slices (Weber, 1993; Hardage et al., 

1994, 1996; Burnett, 1996) is the only method capable of directly yielding the width of 

channel belts and imaging the channel pattern (sinuosity, channel splitting) of subsurface 

sandstone bodies. This is also the only method that can be used to predict the spatial 

distribution of channel-belt thickness and lithofacies. These are major advances; 

however, the integrity of 3-D analyses depends on the resolution of the seismic data 

relative to the thickness of the sandstone bodies imaged. In general, sandstone-body 

thickness must be greater than approximately 30 ft.  

Thus, in SCCBSU area, none of the techniques gives reliable channel geometry 

because: (1) well spacing is greater than sand body dimensions, (2) empirical equations 

relating maximum channel depth and channel width, have a lot of scatter; and (3) 

resolution of the seismic data is low relative to the thickness of the sandstone bodies. 
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CHAPTER V 

SEQUENCE STRATIGRAPHY 

5.1 Sequence Stratigraphy Model 

Deterministic models based on sequence stratigraphic analysis can identify 

sequence boundary and systems tract geometries, thus delineating the large-scale 

heterogeneity. Prediction of facies distributions within each sequence becomes possible 

because specific depositional patterns are expected to have occurred in varying positions 

within the sequence. This predictable character within the sequences produces the 

framework needed for application of geostatistical modeling. Miscorrelation across the 

bounding surfaces (sequence boundary and flooding surface) in both model development 

and simulation is avoided using this approach. 

 Sequence stratigraphy concepts derive historically from seismic stratigraphy 

(Vail et al., 1977). High-resolution sequence stratigraphy is based on identification of the 

smallest stratigraphic units [parasequences (Van Wagoner et al., 1990) or genetic 

stratigraphic sequences (Busch, 1971)] in sedimentological studies. These smallest 

stratigraphic units reflect relative sea-level variations in marine environments or base-

level variations in continental deposits. While they are clearly recognizable in nearshore 

marine strata, they are much more difficult to recognize and correlate in continental 

settings. The major underlying believe in non-marine sequence stratigraphy is that 

allogenic processes, particularly cyclic base-level fluctuation, exert an important control 

on fluvial architecture (Shanley and McCabe, 1991). However, is it possible to realize 

high-resolution correlations within alluvial systems?  
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In this study, I analyzed the possibility of high-resolution sequence stratigraphic 

correlations in low-accommodation alluvial systems in the Cut Bank and Sunburst 

members of Kootenai Formation in South Central Cut Bank Unit of Cut Bank field and 

attempt to build stratigraphic framework of the study interval based on base-level 

variation. Base-level is a theoretical surface below which sediments accumulate and 

above which erosion takes place (Wheeler and Murray, 1957, and Schumm, 1993). The 

response to a change in base-level determines stratigraphic architecture at the scale of 

stratigraphic cycles (Galloway and Williams, 1991). Base-level variation cycles are 

controlled by variations in accommodation space (A) and sediment supply (S). A base-

level fall is the result of a decrease in accommodation space and/or an increase in 

sediment supply (decreased A/S ratio). Base-level fall leads to the development of a 

regional erosion surface with incised valleys (Van Wagoner et al., 1990). Subsequent 

base-level rise (increased A/S ratio) allows deposition that initially is confined within the 

valleys, followed by nonconfined deposition on alluvial plains. Confinement of river 

channels within the valleys and deposition under relatively low rates of base-level rise 

typically preserve amalgamated fluvial channel facies within the valleys (Fig. 39) 

(Shanley and McCabe, 1991). These sandstone-rich fluvial deposits commonly are the 

best reservoir units within fluvial formations. Nonconfined deposition on alluvial plains 

usually occurs during periods of relatively high rates of base-level rise, producing 

isolated channel-belt sandstones encased in overbank mudstones. 

Sequence stratigraphic methods to accurately predict facies distributions is based 

on following specific steps: 
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Figure 39. Conceptual framework for bounding surface development driven by cyclic base-level 
fluctuation. (1) Base-level fall leads to the development of a regional erosion surface with incised 
valleys, sequence boundary 1 (SB1). (2) Low rates of base-level rise/aggradation and confinement of 
rivers within the valley produce a sand-rich valley fill that can be capped by a significant base-level 
rise or flooding surface 1 (FS1). (3) Higher rates of base-level rise/aggradation and a wide, 
nonconfined alluvial plain leads to the preservation of isolated channels within mudstone-rich 
overbank deposits. (4) Renewed base-level fall causes the development of the next regional erosion 
surface (SB2), and so on (from MacDonald et al (1998) after Shanley and McCabe (1991). 

 

1. identify chronostratigraphic surfaces; 

2. determine the correlatable thin shale units, and their relative stratigraphic 

positions; and 

3. identify the bounding hiatal surfaces that separate genetic units. 

The important challenge in this study is to identify and map (1) the base-level fall 

surfaces (sequence boundaries) and (2) the base-level rise surfaces (flooding surfaces). 

My approach is to use well log correlations that show a relationship between 

base-level variations and channel amalgamation. In low-accommodation settings, style 

of depositional fill changes stratigraphically and spatially. Individual sequences can be 

differentiated by their texture and composition (different fill patterns). For the Cut Bank 
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field within the study interval (Cut Bank and Sunburst members), sedimentary 

environment variations are observed in most of the wells: vertical transitions from 

amalgamated channels to floodplain and to channel systems. I identified base-level fall 

and base-level rise based on following observations from well log cross sections: 

Base-level fall (Fig. 40), corresponds to: 

- periods of low facies preservation; 

- many amalgamated facies characteristic of lag deposits; and 

- erosion periods with no preservation of lag or paleosol. 

Base-level rise (Fig. 40), corresponds to:  

- high facies preservation; 

- well-developed channel facies; 

- channel-floodplain, ranging from 5 to 20 ft thick; and 

- grain size become finer. 

There is an upward decrease in channel amalgamation from the basal sandbody 

into the overlying mudstone-dominated deposits suggesting there is a progressive 

increase in accommodation during deposition of the successions. I interpret the 

succession as an unconformity-bounded sequence, in which the basal amalgamated 

sandbody is equivalent to the "lowstand" (low accommodation) systems tract of the 

fluvial sequence models of Shanley and McCabe (1991), while the upper mudstone-

dominated deposits represent the "highstand" (high accommodation) systems tract (Fig. 

41). 
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Figure 40. Core description, well log profile and sequence interpretation of Well 38-11.
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Figure 41. Stratigraphic cross section along line 13 (location on Fig. 42) showing the two-part subdivision of sequences. A sheet-like sandbody 
comprises the base of the succession, whereas the upper part consists of overbank mud. 
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Bases of most channel sandstones are assumed to reflect base-level fall and 

incision events. The erosion surface, “sequence boundary”, generated by base-level fall 

within fluvial formations typically is composed of two types of geomorphological 

elements: incised areas formed by downcutting rivers and streams; and relatively flat 

areas where stream downcutting is insignificant. The incised areas are the valley 

systems, and relatively flat areas are interfluves. Sequence boundaries are immediately 

overlain by laterally amalgamated fluvial sheets and deposits that have high percentages 

of interconnected, coarser-grained, channel-fill sandstone. The sandstone-rich valley fill 

deposits of “lowstand” systems tract are bounded by a sequence boundary at the base 

and a flooding surface at the top, and are termed “valley fills” (VF). Numerous erosion 

surfaces are present in this sandbody, separating truncated and amalgamated, fining-

upward channel deposits. The sediments fine upward overall through the composite 

sandbody, from coarse and medium sandstone in lower channels, to fine sandstone in 

higher ones. The sediments within each channel deposit also fine upward. These 

sandstone-rich valley fill deposits are gradationally overlain by a mudstone-dominated 

deposits of “highstand” systems tract. However, channel-fill sandstones and crevasse 

splays are also present, but typically constitute less than 50% of the interval. The 

channel-fill sandstones average approximately 10 ft; amalgamation is rare. These shale-

rich inter-reservoir barriers are bounded by a flooding surface at the base and a sequence 

boundary at the top, and are termed “highstands” (HS).  
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 “Flooding surface” denotes any significant time-related surface developed in 

response to rising base-level, irrespective of whether the base-level rise has led to a 

genuine transgression. Flooding surfaces are relatively flat. 

 

5.2 Sequence Stratigraphic Surfaces 

I interpreted five sequence boundaries and four flooding surfaces within the 120-ft thick 

interval from Tinroof shale to Ellis top. Correlations were made well-by-well along 18 

west-to-east correlation lines that cover all the wells with log data (Fig. 42). Depending 

on their geographic location relative to Lower Cretaceous Gorge, the upper one, two, 

three or even four cycles may be missing. The results are summarized on a single cross 

section along east to west correlation line 13 (Fig. 43).  

Sequence Boundaries. I infer sequence boundaries at the base of thick, 

correlatable channel sandstones interpreted as valley fills (surface SB1-SB5, Fig. 44). 

All tvalley fills are recognized in most of the wells. Identifying the exact location of the 

interfluve parts of the sequence boundaries is more difficult. In presence of core, the 

interfluves could be identified at mature paleosol horizons. However, no paleosol were 

identified in any of the available cores. Therefore, because of the scarcity of core, the 

interfluves generally were picked at a stratigraphic level approximately equivalent to the 

top of the valley fill in adjacent wells. At this point, it is worth mentioning that core data 

are available mostly from valley fill of Sequence 1, except well 33-5 (Fig. 45).  

Flooding Surfaces. Identifying significant base-level rise surfaces in the study 

interval is difficult; for practical purposes the surfaces were picked at stratigraphic levels 
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equivalent to the top of the confined valley fill (surface FS1-FS4, Fig. 43). This surface 

is important, because it separates the mudstone-rich facies from the sandstone-rich facies 

(Fig. 44). Correlation of the top of the valley fill is very important for the reservoir 

subdivision, and in contrast to the sequence boundaries that can have very complex 

geometries, flooding surfaces were assumed to be relatively flat and should be present in 

adjacent wells at equivalent stratigraphic levels, except where removed by subsequent 

erosion. 

 

 

 

Figure 42. Locations of the cross sections lines (there are 18 lines, line numbers increase from north 
to south) overlain on thickness map from Tinroof to Ellis.  
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Figure 43. Synthetic reconstruction of the reservoir geometry in SCCBSU with short term base-level cycle interpretation. FS1-FS5 are 
flooding surfaces. Red square at the top of the well shows there are core data for that well. Green correlation line is Tinroof shale that 
correspond to FS5 or maximum flooding surface (MFS). Correlation is illustrated by GR (on the left) and porosity logs (on the right red 
density porosity, green neutron porosity).
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Figure 44. Sequence stratigraphic correlation/interpretation along Line 13. Five sequence boundaries and four flooding surfaces were 
identified between Tinroof and Ellis Group. Color filled part of each sequence corresponds to “VF” (valley fill), and white is “HS” (highstand). 
Valley fills are amalgamated, continuous channel fills, therefore have best reservoir quality and connectivity. Highstands consist of channel 
fills isolated within flood plain shales.
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Figure 45. Cross section showing interpretation of sequence stratigraphic surfaces and cored interval (thick black vertical lines). There is no 
horizontal scale because the section was constructed using equal distance between wells, just to show all cored wells on the same cross section. 
Map on the right shows the location of cross section. Available core data is mostly from valley fill of Sequence 1 (VF1), except well 33-5. 



 

 

92

5.3 Sequence Stratigraphic Interpretation 

Sequence 1: Lower Cut Bank 

SB1, which corresponds to the Ellis top, is present in most of the SCCBSU wells, and it 

is directly overlain by amalgamated channel sandstones of lower Cut Bank (Figs. 43 and 

44). This amalgamated belt of braided stream channels forms a heterogeneous but 

laterally continuous sand sheet that formed when a low accommodation favored channel 

stacking. The coarse sediment of the laterally continuous basal sand sheet are the most 

proximal deposits of the alluvial fan system. This belt of stacked channels is relatively 

thick (35 ft) in the south part of SCCBSU and is thinner (20 ft) with less channel 

amalgamation at the north (Fig. 46).  

Flooding surface FS1 was present in most of the SCCBSU wells and directly 

overlies the amalgamated channels. In some wells it was eroded by the overlying SB2. 

FS1 is overlain by the shale-rich inter-reservoir barriers of HS1 (highstand). As stated 

above, highstands are bounded by a flooding surface at the base and a sequence 

boundary at the top. Within the highstand, channels are isolated in floodplain shaly 

sediments. Overbank deposits, such as crevasse splays or sheet flood sands, were 

preserved in the floodplain. Channels in the highstand sequence record the flood-plain 

aggradation and a lack of stacking of the channels as accommodation increased.  

The isopach distribution of the lowstand or valley fill of each sequence is 

assumed to approximate the geometry of the valley floor. The valley fill of Sequence 1 is 

relatively uniform in thickness at south (Fig.46; average 32 ft), largely because of the 

absence of significant large-scale relief on the valley floor. 
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However, when examined in more detail, there are a number of abrupt changes in 

the nature of the valley at the central and north part of SCCBSU. Accompanying these 

changes, the average, total thickness of valley fill tends to be less in central (27 ft) and 

north part (25 ft) than to the south and the thinnest basal sandstone (20 ft) occurs in 

northern end of SCCBSU. 

 
 

 

 

Figure 46. Isopach map of valley fill of Sequence 1 (VF1, gross thickness from FS1 to SB1). Points 
indicate location of wells used to draw the map. Contour interval is 2.5 ft. 
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Net-to-gross ratio distribution of valley fill of Sequence 1 reflects the northeast 

trending channel directions (Fig. 47). Average is about 0.6, and higher values occur in 

the central part of SCCBSU due to vertical stacking of several channel-fill sands. As 

stated in the previous chapter, in north part stacking is not as common, and because of 

the fining upward nature of channel sands, the net-to-gross ratio is lower. 

 

 

 
Figure 47. Net-to-gross ratio map of the valley fill of Sequence 1 (FV1, gross thickness from FS1 to 
SB1) (lower Cut Bank). Contour interval is 0.1. 
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Sequence 2: Upper Cut Bank 

SB2 corresponds to base of upper Cut Bank sand and is overlain by channel sandstones 

with less amalgamation in comparison to channels of Sequence 1, owing to greater 

accommodation. These channels, with mostly upward fining log pattern, have a  

meandering geometry and correspond to a more distal alluvial depositional setting. In 

places, SB2 is incised into the channels of Sequence 1, favoring a vertical connection 

between the reservoirs sands of the 2 sequences. 

Flooding surface FS2 occurs in most of the SCCBSU wells and overlies the 

channel-fill sandstones. It was eroded and removed by overlying SB3 in many wells. It 

is overlain by the shale-rich HS2. 

Average thickness of the valley fill of Sequence 2 is 15 ft (Fig.48). At some of 

the southern wells it is cut by Lower Cretaceous Gorge. Therefore, in gorge area general 

northeast channel trend is not observed. 

Net-to-gross ratio distribution of valley fill of Sequence 2 also reflects the 

northeast trending channel directions (Fig. 49). The high net-to-gross ratio values are in 

north part of the SCCBSU and it is almost zero toward the south, proving the statement 

from previous studies that upper Cut Bank produces only in north part of SCCBSU. 
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Figure 48. Isopach map of valley fill of Sequence 2 (VF2, gross thickness from FS2 to SB2). Points 
indicate location of wells used to draw the map. Contour interval is 2.5 ft. 
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Figure 49. Net-to-gross ratio map of valley fill of Sequence 2 (VF2, gross thickness from FS2 to SB2) 
(upper Cut Bank). Contour interval is 0.1. 
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Sequence 3: Sunburst 1 

SB3 corresponds to base of Sunburst 1 sands and is overlain by amalgamated channel-

fill sandstones. Compared to underlying Sequence 2 sands, more amalgamation is 

present in Sequence 3, showing lower accommodation; however, amalgamation is not as 

pronounced as in Sequence 1. Sequence 3 channels are meander deposits and this 

sequence corresponds to a more distal alluvial depositional setting than does Sequence 1. 

At places, SB3 incises into the channels of Sequence 2, favoring vertical connection 

between the reservoirs sands of Sequences 2 and 3, and in some wells even Sequence 1. 

Flooding surface FS3 is present above Sequence 3 in most of the SCCBSU wells. 

It is overlain by the shale rich HS3 and has been eroded by overlying SB4 in a few wells.  

Average thickness of the valley fill of Sequence 3 is about 18 ft (Fig. 50). It is cut 

by Lower Cretaceous Gorge in central and north central part of the SCCBSU. There are 

some abrupt changes in thickness.  

Net-to-gross thickness ratio distribution of valley fill of Sequence 3 averages 

about 0.3 (Fig. 51). This lower value is because of the fining upward nature of the 

channel sands, and because the amalgamation or vertical stacking is not as high 

compared to Sequence 1. However, compared to Sequence 2 it has higher average net-

to-gross ratio values. 

Sequence 4: Sunburst 2 

SB4 corresponds to base of Sunburst 2 sands and is overlain by less amalgamation of 

channel sandstones than is present in Sequence 3, showing higher accommodation. 
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These channels have more of meandering nature and correspond to more distal alluvial 

fan depositional setting. SB4 incise into the channels of Sequence 3 in a few wells. 

  

 

 

Figure 50. Isopach map of valley fill of Sequence 3 (VF3, gross thickness from FS3 to SB3). Points 
indicate location of wells used to draw the map. Contour interval is 2.5 ft. 
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Figure 51. Net-to-gross ratio map of valley fill of Sequence 3 (VF3, gross thickness from FS3 to SB3) 
(Sunburst 1). Contour interval is 0.1. 

 

 

Flooding surface FS4 is present in most of the SCCBSU wells and overlies the  

Sequence 4 channels. This flooding surface is overlain by the shale-rich HS4.  
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Average thickness of the valley fill of Sequence 4 is 18 ft (Fig. 52). It is absent in 

Lower Cretaceous Gorge area. There are some abrupt changes in thickness.  

Average net-to-gross ratio value of Sequence 4 is very low, about 0.15. This indicates 

that Sunburst 2 sands have lower reservoir quality compared to Sunburst 1 sands. 

 
 
 

 
Figure 52. Isopach map of valley fill of Sequence 4 (VF4, gross thickness from FS4 to SB4). Yellow 
dot s indicate location of wells used to draw the map. Contour interval is 2.5 ft. 
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Sequence 5: Sunburst 3 

SB5 corresponds to base of Sunburst 3 sands and is overlain by isolated channel 

sandstones. Sunburst 3 sands usually are upward fining with thickness less than 7 ft and 

have more of meandering nature and correspond to more distal part of alluvial 

depositional setting. 

Sands of the Sequence 5 are overlain by the Tinroof shale, which corresponds to 

a maximum flooding surface.  

The valley fill of Sequence 5 is average 10 ft in thickness. (Fig. 53). It is absent 

in Lower Cretaceous Gorge area.  

Average net-to-gross value in Sequence 5 is nearly 0, indicating very low 

reservoir quality of the Sunburst 3 interval. Thus, from 3 Sunburst sand intervals the 

lowest (Sunburst 1) sand has the highest reservoir quality. 

 



 

 

103

 

Figure 53. Isopach map of valley fill of Sequence 5 (VF5, gross thickness from Tinroof to SB5). 
Points indicate location of wells used to draw the map. Contour interval is 2.5 ft. 

 

 

5.4 Stacking Pattern  

Base-level variations of alluvial systems strongly influence the facies distribution and 

the channel geometry. Base-level variations are dependent on the 

accommodation/sediment supply ratio. This ratio controls the space available for the 

sediment in the alluvial plain, and therefore, it influences the channel types, their 
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stacking, and their amalgamation patterns (Posamentier et al., 1988; Van Wagoner et al., 

1988, 1990; Shanley and McCabe, 1991). At Cut Bank field, between the Tinroof and 

top of the Ellis Group, five genetic sequences induced by base-level variations were 

identified. Each sequence is approximately 20 ft thick and can be correlated across the 

field (Figs. 43 and 44). A typical sequence, deposited during a complete base-level 

cycle, from base to top includes the following components.  

 An amalgamated channel belt favored by minimum accommodation and forming 

a very heterogeneous but laterally continuous sand sheet. No evidence of deep 

incision is recorded at the base of the cycle. Reservoirs are laterally extensive 

vertically and laterally amalgamated channel-fill sand deposits with a complex 

internal architecture. 

• Above the amalgamated channel-fill sand deposits, channel-fill sands isolated in 

floodplain shaly sediments record floodplain aggradation and less stacking of the 

channels as accommodation increased. Channel avulsion was more common, and 

overbank deposits, such as sheet floods or crevasse splay deposits, were 

preserved in the floodplain. Reservoirs have poor vertical and lateral 

interconnections.  

Of particular interest is the expression of the different cycles in a vertical profile to 

interpret the long-term evolution of the base-level variations (Figs. 43 and 44). The basal 

contact of the Cut Bank member (Sequence 1) clearly records an important base-level 

drop within the basin, with sediment bypass and a sudden increase of the sediment 

supply. The coarse sediments of the laterally continuous basal sand sheet form the most 
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proximal deposits of an alluvial fan system. A longterm base-level rise then occurred, 

emphasizing the transgressive character of the subsequent 4 cycles. Their relative 

thicknesses and extent are very comparable. Channel-fill sands are also fine-grained and 

mineralogically mature. This evolution indicates an overall increase of the 

accommodation space. 

 Tinroof shale records a maximum flooding above the Cut Bank and Sunburst 

sandstones.  

 

5.5 Description of the Conceptual Low Accommodation Alluvial System Sequence 

Stratigraphic Model 

Assessment of Cut Bank field showed that it is possible to identify systems tracts in low-

accommodation alluvial systems on the basis of sequential position, facies associations 

and systematic changes in architectural style and sediment body geometries. Multiple 

cycles (sequences) may be found over a short vertical range of stratigraphy, separated by 

unconformities (sequence boundaries). Average sequence thickness in Shanley and 

McCabe’s (1991) non-marine conceptual sequence stratigraphic model is no less than 

100 m (300 ft). I extended this concept to much lower alluvial accommodation setting 

where average sequence thickness is no more than 40 ft (Fig. 54). 
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Figure 54. Stratigraphy developed in low accommodation alluvial setting. Deposits of lowstand or 
valley fill are dominated by both vertically and laterally amalgamated units. Base-level fall leads to 
closely spaced unconformities which corresponds to base of these amalgamated units , sequence 
boundaries (SB1, SB2, SB3). Low rates of base-level rise produce a sand-rich valley fill that is 
capped by a significant base-level rise or flooding surface 1 (FS1). Higher rates of base-level rise 
leads to the preservation of isolated channels within mudstone-rich overbank deposits. Renewed 
base-level fall causes the development of the next erosion surface (SB2, SB3), and so on. 

 

 

Base-level fall (decreasing accommodation to sediment supply ratios) promotes 

the preservation of lowstand systems tract deposits, as these are preferentially deposited 

in stratigraphically low positions such as the base of incised valleys. Low A/S results in 

the erosive migrating base of channel systems returning close to their earlier 

stratigraphic level, producing a succession that contains numerous erosion surfaces and 

preferential preservation of the lowermost part of fluvial successions as amalgamated 

channel deposits. Channel lags and cross-bedded basal channel fills are the dominant 

form of sediment preserved. The geometry of the preserved sediments is that of a fluvial 

sheet sand.  
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Base-level rise (increasing accommodation to sediment supply ratios) results in a 

greater vertical distance between successive lateral migration paths of channel bases. 

This in turn allows for the greater preservation of higher stratigraphic elements in the 

fluvial system such as channel fills and in particular, levee and floodplain deposits. 

Within the highstand sequence set, amalgamation is at a minimum and channel-fill 

deposits tend to stack discretely with the maximum amount of fine-grained sediments 

between them. Increasing preservation of intervening floodplain facies make the 

channel-fill sand bodies less interconnected and more ribbon-like in geometry.  

Highstand systems tracts were more exposed and subject to removal by 

subsequent cycles of erosion. Incision associated with sequence boundaries commonly 

removed part of “highstand” and sometimes even “lowstand” of the underlying 

sequences. 

 

5.6 Reservoir Geometry and Compartmentalization 

High-resolution stratigraphic correlation permits accurate representation of reservoir 

compartmentalization in a spatial and temporal framework. In alluvial systems the 

boundaries of the main reservoir layers coincide with stratigraphic boundaries of genetic 

sequences. Channel-fill sandstones, and in some cases crevasse complexes, are the 

reservoir units; overbank and floodplain mudstones are seals and fluidflow barriers. The 

size and geometry of reservoirs are mainly defined by the degree of amalgamation and 

connectivity of fluvial channel sandstones. 
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Channel-fill sandstones in Cut Bank field range transitionally from amalgamated, 

multilateral, multi-storied, areally continuous sheet sandstones to isolated sandstone 

bodies embedded in floodplain mudstones (Fig. 43). Transitional changes in channelbelt 

sandstone morphology, geometry, facies components and successions, and diversity of 

facies tracts are stratigraphically sensitive, and these are related to changes in the 

accommodation to sediment supply ratio (A/S) conditions through time. 

Channel sandstones deposited in low A/S conditions are amalgamated and 

areally continuous. The finer sand and muddy sediments composing the upper parts of 

channel bars and most floodplain sediment are not preserved. The resulting reservoir 

sandstone is homogeneous, porosity is good and reduced clay content enhances 

permeability. Higher A/S conditions result in a lower degree of amalgamation and 

increased preservation of floodplain sediment. Channel sandstones tend to be single 

storied, isolated bodies embedded in flood plain deposits. The geomorphic elements 

composing the individual channels are more fully preserved and more mud is preserved. 

Porosity and permeability profiles decrease strongly upward in individual sand bodies. 

Where several channel sandstones are interconnected, major changes in rock properties 

and internal permeability barriers may exist between channel sandstone elements. The 

increased proportion of fine sand and mud reduces permeability and connectivity.  

Thus, stacking-pattern analysis provided clues for correlation of the main 

reservoir units and of the main vertical permeability barriers across the field. The 

resolution of the correlation, however, is insufficient to ensure the correlation of 

individual channels, or to quantitatively estimate the distribution of the heterogeneity 
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within the sand sheets. To address the issues of reservoir connectivity, I built a 

geological model populated with reservoir parameters and used geostatistical studies to 

provide equiprobable representations of the geological heterogeneity of the main 

reservoir units.  
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CHAPTER VI 

GEOSTATISTICAL MODELING 

6.1 Reservoir Geostatistical Model 

The sequence stratigraphy provides a framework within which geostatistical modeling 

can aid in simulating the internal small-scale facies distributions, as well as the porosity 

distributions. Stratigraphically-based geostatistical simulation has several advantages 

over nonstratigraphic approaches. First, the sequence boundaries are marked by 

unconformities. Therefore, facies that exist on one side of the unconformity do not 

correlate with facies across the unconformity. Second, facies distributions can be 

predicted based on position within a sequence, thus allowing quantitative use of the 

sequence stratigraphic conceptual model.  

Geostatistical techniques designed to provide missing data can be classified in 

two ways: by the allowable variation of the property at a given point; and by the way 

data are organized. There are two classes of property variation, continuous and discrete. 

Continuous models are suited to properties such as permeability, porosity, residual 

saturation and seismic velocity that can take any value. Discrete models are suited to 

geologic properties, like lithology, that can be represented by one of a few possibilities.  

Data organization has developed along two paths, depending on how the models 

are built. One is grid based, in which all properties are represented as numbers in a 

grid, which is then used for fluid-flow simulation. The second is object based, in which 

reservoir features such as shales or sands are generated in space, and a grid is then 

superimposed on them.  
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In this study I decided on grid-based approach, considering the fact that 

meandering and braided rivers produce reservoir sand bodies of different dimensions and 

heterogeneity. In Cut Bank field, techniques for estimating the geometry of channels 

suffers from major drawbacks: (1) well spacing is greater than sand body dimensions; 

(2) empirical equations relating maximum channel depth and channel width have a lot of 

scatter; and (3) resolution of the seismic data is low relative to the thickness of the 

sandstone bodies. 

Populating the geological model with reservoir parameters using geostatistics 

requires 2 main steps. First, stochastic simulation of lithotypes is computed from the 

well data. This provides a representation of the reservoir geology in a high-resolution 

grid; the consistency of the simulation can be directly estimated from a geological 

viewpoint. This step is crucial because it ensures a reasonable representation of the 

reservoir architecture and facies distribution. Second, the lithotype simulation is then 

transformed into a petrophysical grid by assigning a petrophysical distribution law to 

each of the simulated lithofacies. Landmark Geographix software was used to construct 

the 3D earth-model with dimensions of cells governed to adequately control the detail of 

the structural surfaces (x and y increments of 180 ft). 

Earthdecision GOCAD software was used to construct the 3D cell model. The 

cell size was controlled by the desire to use a similar grid increment as the GeoGraphix 

grids but to still allow rapid visual movement of the model on the workstation. 

Dimensions of the model are presented in Table 3. The vertical thickness of the model  
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Table 3. Dimensions of the geostatistical GOCAD model. 

Axis Number Cells Size  

X 100 180 ft 

Y 142 180 ft 

Z 36 ~ 3 ft 

Total 582,200 ~97,200 ft2 

 

 
was constrained by the top and base structure surfaces, which define the interval 

between combined Tinroof and Lower Cretaceous surface at the top and the Ellis 

Group at the bottom. A 9-layer model was generated, in which the layers from bottom to 

top were: VF1, HS1, VF2, HS2, VF3, HS3, VF4, HS4 and VF5 (Fig. 55) (VF-valley fill, 

HS-highstand; numbers correspond to sequence number; see previous chapter for 

explanation of these layers). The 3D cell model is referred to as a stratigraphic grid, 

(Sgrid), and is displayed in Figure 56.  

Data requirements for the geostatistical population of the model were: 

• neutron-density average porosity log (PHIA); 

• computed lihofacies (sand: GR<60 API, shaly sand: 60<GR<90 and shale: 

GR>90); 

• variogram data for the reservoir parameters; and 

• sequence stratigraphic surfaces (GeoGraphix grids). 
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Figure 55. North-south and west-east cross section showing sequence stratigraphic correlation in the 
interval between Ellis top at the bottom and combined Tinroof and Lower Cretaceous surface at the 
top. VF-valley fill, HS-highstand. 
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Figure 56. 3D Sgrid model bounded by combined Tinroof and Lower Cretaceous Gorge base surface 
at the top and Ellis at the bottom.  

 

 

Each cell within the Sgrid can be assigned properties; the following 2 reservoir 

properties were modeled: facies (reservoir sand quality) and porosity. Simulation was 

first performed with a geological variable to make geological quality control easier. 

Ideally, the most relevant variable should have been the lithofacies defined in the core 

sedimentological analysis, but in practice, not every well has been cored. The database 
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must then be compiled from well-log data, and because log signatures are not unique, 

this requires a grouping the lithofacies into a few lithotypes. A lithotype must be relevant 

from both a sedimentological and a petrophysical viewpoint. Determining the lithotype 

allows qualitative control of the simulation. Each lithotype was characterized by a 

specific porosity distribution. At Cut Bank field, the seven previously described 

lithofacies were regrouped as 3 lithotypes discernible by log signatures; channel-fill 

sands correspond to lithotypes 1 and 2. Sands with GR values less than 60 API, sandy 

shales with GR values between 60 and 90 API and passing upward to flood plain shales 

with GR values greater than 90 API (lithotype 0). 

Many geostatistical methods are available when modeling. The method chosen 

may be influenced by the data format and the geological environment. In this case, 

stochastic simulations were performed using a method based on truncated Gaussian 

random functions (Matheron et al., 1987). The method allows simulation in a three-

dimensional space of facies sequences and easy conditioning of the simulation to the 

reservoir data.  

Lithofacies were modeled within each major stratigraphic unit. The model was 

populated by assigning cells with one of 3 numbers (the lithotypes divisions described 

above). Figure 57 shows north-south and west-east cross section of the facies realization, 

and Figure 58 is a 3-D view of the facies in valley fill of Sequence 1 (VF1) (Lower Cut 

Bank).  
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Figure 57. North-south and west-east cross sections of the facies realization (vertical exaggeration= 
20). 
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Figure 58. 3-D view of the facies realization in valley fill of Sequence 1 (VF1), lower Cut Bank 
(vertical exaggeration= 50). 
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Once satisfactory geological simulations of lithotypes were obtained, they were 

translated into layers of relevant petrophysical variables (i.e., porosity). Thus, 

petrophysical values were assigned to each lithotype, given the available measurements 

performed in the wells.  

After completing each facies realization, neutron-density average porosity values 

calculated from well logs were distributed by facies type. Since the porosity can be 

treated as a continuous variable, Sequential Gaussian Simulation (SGS) was used. Five 

reservoir images of the porosity were generated. Figure 59 represents one of the porosity 

models. Figure 60 shows a 3D view of the porosity model of valley fill of Sequence 1 

(VF1). The high dispersion of petrophysical values for a lithofacies is a consequence of 

the small-scale geological structures existing inside that lithofacies; for example, shale 

streaks or cross-bedding. Multiple stochastic realizations were constructed by repeating 

the entire workflow resulting in different lithofacies and petrophysical properties. 
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Figure 59. North-south and west-east cross section of the porosity realization (vertical 
exaggeration=20). 
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Figure 60. 3-D view of the porosity realization in valley fill of Sequence 1 (VF1), lower Cut Bank 
(vertical exaggeration=50). 
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6.2 Vertical Proportion Curve 

Geostatistical structural analysis of truncated Gaussian random functions 

comprises the computation of lithofacies proportion curves and variograms (Matheron et 

al., 1987; Ravenne et al., 1989).  

Vertical proportion curves have proven to be efficient tools to quantify sequential 

organization and variations of facies. They correspond to the percentage of lithotypes 

computed in the well at different levels parallel to a given horizontal reference 

(SB1/Ellis top). This reference horizon is represented on a graph with the percentage of 

facies along the horizontal and the distance from the reference horizon along the vertical 

(Fig. 61). The vertical proportion curve allows for a rapid visualization of the vertical 

organization of lithotypes and can be interpreted from a sedimentological viewpoint. 

These curves were particularly useful in the case of Cut Bank field. On a curve 

computed with 169 wells, the cyclic pattern of the fluvial deposits clearly appears with 

peaks of fluvial sandstones alternating with spikes of flood-plain mudstones. Five fining-

upward sequences with a sand-rich layer vertically grading to a shale-rich layer are 

present (Fig. 61). Each sequence can be correlated with the five base-level cycles 

delimited in the sequence stratigraphic analysis. The sand-rich layers correspond to the 

amalgamated fluvial channels, and the shale-rich layers are flooding surfaces. The 

proportion curves thus confirm the interpretation of layering and, furthermore, allow 

quantification of the facies distributions within the cycles. Also, the curves can be 

interpreted qualitatively to roughly estimate the reservoir heterogeneity. The 

heterogeneity of the fluvial sand sheets, for example, is confirmed by looking at the  
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Figure 61. Vertical proportion curve of lithotypes computed with 169 wells for the whole series. The 
five cycles are clearly shown in the curve, with sandstone peaks grading to mudstone peaks. 
Reservoir units correspond to the series between two mudstone spikes, corresponding to the 
maximum flooding surface of the base-level cycles. 

 

 

relative percentage of lithotypes at different stratigraphic levels in the vertical proportion 

curves (Fig. 61). The main reservoir units are composed of no more than 50% clean 

sandstones (lithotype 1) and 30% sandy shales (lithotype 2); 20% non-reservoir 
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mudstones (lithotype 0) are also present in the amalgamated channel-fill sandstones. 

Also, we can predict that vertical connection between the different sand sheets is highly 

probable at field scale, with the presence of porous lithotypes at every stratigraphic level. 

Local vertical permeability barriers are nevertheless expected with regard to the shale-

rich layers, made up of approximately 70% non-reservoir mudstones plus 10–20% non-

reservoir sandy shales.  

 

6.3 Variogram Computation  

Variograms are used in geostatistical reservoir modeling as a measure 

of spatial variability. It is essential that variograms be representative of the true 

heterogeneity present in study area. In this study they have been computed directly with 

the lithotype database. Variograms describe the increasing difference (or decreasing 

correlation) between sample values as separation between them increases. Beyond the 

range of correlation of the variogram, the data are said to be uncorrelated. It is 

recommended to transform the data to Normal space before performing variogram 

calculations (Deutsch and Journel, 1997). This has some important advantages: (1) the 

difference between extreme values is dampened; and (2) the theoretical sill is known ( if 

the data have been transformed, for categorical variables (facies) sill = p(1-p) where p is 

the global proportion of the category of interest).  

Experimental variograms were first computed from the well data, then fitted with 

the truncated Gaussian function model (Matheron et al., 1987), which ensures 
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consistency between variograms and cross-variograms of lithotypes. Vertical and 

horizontal variograms were directly computed from well data (Fig 62). 

  

 

Figure 62. Lithofacies vertical and areal variogram model for study interval (UVW coordinate and 
indicator transformation applied). UVW transformation was used for SGrid. UVW are local 
coordinates of SGrid and these coordinates are different than XYZ coordinates. Short-scale 
variance represents a nugget effect; intermediate-scale variance represents geometric anisotropy; 
and large-scale variance represents zonal anisotropy. 
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The dots in Figure 62 show the experimental variogram, which means results from 

computation of the semi variance. The distance at which data point becomes totally 

uncorrelated is the Range of the variogram (vertical lines). The variance at that point is 

called the Sill of the variogram (red horizontal line), which is the statistical semi 

variance of the data set. The variance where the distance is almost zero is called Nugget. 

The areal variogram graph shows how reservoir continuity varies in the different 

directions. Noise in areal variograms is due to scarcity of data in the horizontal direction.  

The Nugget effect is a discontinuity in the variogram at the origin corresponding to short 

scale variability. On the experimental variogram, it can be due to measurement errors or 

geological structures with correlation ranges shorter than the sampling resolution. It 

must be chosen so as to be equal in all directions. It is picked from the directional 

experimental variogram exhibiting the smallest nugget. Structure one of the example in 

Figure 62 with value of 0.012 corresponds to the nugget effect - short-scale variance. 

Most depositional processes impart spatial correlation to petrophysical properties. The 

magnitude of spatial correlation decreases with separation distance until a distance at 

which no spatial correlation exists, the range of correlation. The vertical range of 

correlation is much less than the horizontal range due to the larger lateral distance of 

deposition. Geometric anisotropy corresponds to a phenomenon with different 

correlation ranges in different directions. Each direction encounters the total variability 

of the structure (Gringarten and Deutsch, 2001). There may exist more than one such 

variance structure. Structure two in Figure 62, with intermediate-scale variance from 

0.086 to 0.146, represents geometric anisotropy with longest correlation range in the 
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horizontal direction. Highest range is observed in the direction of main axis of the 

horizontal variogram model, respecting the general southwest-northeast channel 

orientation. Range in the southeast-northwest direction was 1.4 times smaller than in the 

perpendicular direction.  

Large-scale variance - zonal anisotropy is characterized by directional 

variograms reaching a plateau at a variance lower than the theoretical sill; i.e., the whole 

variability of the phenomenon is not visible in those directions. Structure three in Figure 

62 corresponds to zonal anisotropy; only the vertical direction contributes to the total 

variability of the phenomenon at that scale. 

Vertical variograms indicate a trend in the petrophysical property distribution—

for example, fining or coarsening upward. Repetitive or cyclic variations in the facies in 

vertical variogram may be linked to geological periodicity. 

Thus, geological model populated with reservoir parameters using geostatistical 

studies provide equiprobable representations of the geological heterogeneity of the main 

reservoir units. Validation of geological model and confidence in locating the remaining 

oil in a mature reservoir requires integration of geological and geophysical data with 

engineering data to accurately identify reservoir architecture, depleted reservoirs, and 

remaining potential. Therefore, in next chapter I integrate fluid flow trends with 

reservoir architecture by relating production performance maps with geologic and 

reservoir-quality maps. 
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CHAPTER VII 

INTEGRATING PRODUCTION TRENDS WITH THE RESERVOIR MODEL 

The geological modeling in this work was completed by 1) detailed correlation of 

stratigraphic units and assessment of facies character; 2) assessment of seismic data for 

reservoir characterization studies; 3) modeling the stratigraphic framework; and 4) 

applying geostatistical simulation to produce realizations for each stratigraphic unit.  

Characterization of Cut Bank reservoir and recognizing potential 

compartmentalization in SCCBSU area using seismic data remained challenging due to 

inconsistent seismic imaging of the target formation. Therefore, I modeled this complex 

reservoir by combination of stratigraphic models and probabilistic simulations using 

well log and core data. The sequence stratigraphic conceptual model provided a 

framework for prediction of facies distributions, and the geostatistical approach filled in 

estimates of the facies variability within these sequences. 

Integrating fluid flow trends with reservoir architecture is critical to identifying 

heterogeneities within the reservoir and developing three-dimensional flow-unit models 

that can be used to predict untapped compartments (Hamilton et al., 1998). This task is 

accomplished by relating production performance maps with geologic and reservoir-

quality maps. Coincidences among the spatial positions of reservoir quality, structural 

setting, and production trends are key to recognizing heterogeneities and controls on 

production. Areas of high production, for example, overlap fairways of high-quality 

reservoir facies as predicted by the geological analysis, whereas disruption in production 

trends may indicate facies changes or structural discontinuities. For Cut Bank field, this 
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comparison was accomplished by relating production performance maps with geologic 

and reservoir-quality maps. Even though average thickness of the study interval is 120 ft, 

lower Cut Bank (lowest 40 ft interval) is the major reservoir and the most complete data 

are available from this interval. Therefore, focus in this chapter is on lower Cut Bank 

sands. Production performance maps in Cut Bank field shows that reservoir quality 

controls production, because fluid flow trends (oil production) coincide with reservoir 

quality (net thickness, reservoir facies and porosity) maps. Continuous zones of high 

reservoir quality predicted by the net sand maps coincide with areas of high 

transmissivity of fluids and high production rates. Also, breaks in production trends that 

correspond to facies changes, identify heterogeneity and confirm the integrity of the 

model (McVay et al., 2004). In Figure 63, the QRI/BEG net thickness map is overlain by 

a cumulative production bubble map. Cumulative production map highlights important 

trends in fluid flow. Areas of best production (sweet spots) as well as areas showing 

impedance to fluid flow are readily identifiable from these maps. Wells 33-1 and 18A-1 

record high cumulative oil production where BEG/QRI net reservoir thickness is very 

low which is inconsistent with other. There are no logs available for these wells, 

precluding any direct determination of sand thickness. These 2 wells coincide with sand 

zone on lithofacies map realization of the amalgamated sand valley fill part of Sequence 

1 (VF1), which corresponds to lower Cut Bank (Fig. 64). There is no production around 

wells 49-14, 49-4 and 49-8 where QRI/BEG net thickness map shows high net thickness. 

Lower Cut Bank interval is shaly zone in Well 49-14. This is one of the inconsistent 
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areas of QRI/BEG net thicknesses map with well log data. In the lithofacies realization 

map (Fig. 64), Well 49-14 is in shale zone, whereas the other two wells are in sand zone. 
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Figure 63. Lower Cut Bank net sand thickness map (QRI/BEG) (from Quicksilver Resources, 2002) 
overlain by cumulative production bubble map (McVay et al., 2004). There is a clear correlation 
between cumulative production and reservoir net thickness, i.e. high production trend correspond to 
high net-reservoir thickness in most areas excluding the highlighted wells 
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Figure 64. Lithofacies map realization at valley fill of Sequence 1 (VF1) overlain by cumulative 
production bubble map.  

 

 

However, all three wells are in low porosity zone (<10%) on porosity realization map 

(Fig. 65).  
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Figure 65. Porosity map realization of valley fill of Sequence 1 (VF1) overlain by cumulative 
production bubble map. White areas correspond to porosity values less than 8%. 
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Correspondence between geostatistical simulation results (facies and porosity 

realization) and patterns of production were assessed quantitatively by cross plotting 

facies realization times porosity realization (facies*porosity) of VF1 at each well against 

cumulative production of Lower Cut Bank interval (Fig. 66). There is a general 

increasing trend of cumulative production with the increase of facies*porosity product. 

However, there is large scatter. The general trend between QRI/BEG (2002) net 

thicknesses and lower Cut Bank cumulative production is expressed weaker and the 

scatter is larger (Fig.67). 
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Figure 66. Lower Cut Bank cumulative production vs VF1 facies realization times porosity 
realization (facies*porosity). There is a general increasing trend of cumulative production with the 
increase of facies*porosity, with a large scatter. 
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Figure 67. Lower Cut Bank cumulative production vs QRI/BEG net thickness [(net thickness data 
were estimated from QRI/BEG net thickness map (Quicksilver Resources, 2002)]. The general trend 
between QRI/BEG net thicknesses and lower Cut Bank cumulative production is expressed weaker 
and the scatter is larger than lower Cut Bank cumulative production vs facies*porosity (Fig. 66). 

 

 
Figures 68 and 69 are arrow plots (McVay et al., 2004) overlain on the 

lithofacies and porosity maps realizations of valley fill of Sequence 1 (VF1). Arrow plot 

represents magnitudes and directions of fraction of flow in a producer attributable to 

flow at an injector (λ). λ is a vector quantity and its magnitude is represented by the 

arrow length. The arrow points from the injection well towards the producer for which 

the λ is calculated. There is a generally good correspondence between the calculated λ  
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Figure 68. Lithofacies map realization at valley fill of Sequence 1 (VF1) overlain by arrow plots. λ 
(fraction of flow in a producer attributable to flow at an injector) is large in sand zones and small in 
shale zone. 
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Figure 69. Porosity map realization at valley fill of Sequence 1 (VF1) overlain by arrow plots. White 
area corresponds to porosity values less than 8%. 

 

 
and the lithofacies and porosity realizations as indicated on the maps; λ is large in sand 

zones and small in shale zones. The variability of the arrow lengths with direction 

suggests the connectivity is strongly anisotropic, favoring the orientations of the channel 
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axes. The presence of distant injector-producer pairs with strong connectivity appears to 

reflect the channel orientation of the reservoir. 

It appears there is generally good correlation between net-to-gross ratio and 

lithofacies realization at valley fill of Sequence 1 (VF1) (Fig. 70). In the central part of 

SCCBSU the highest net-to-gross areas correspond to northeastward-trending sand-rich 

lithofacies that reflect alluvial channels orientation. The possibility is great that there is 

connection among the wells along this trend. Zero net-to-gross contours fall in shale 

zones. It is difficult to obtain exact coincidence because computer generated contours 

usually are smoothed and sometimes cut through grids of various values. However, this 

comparison still is useful because it gives the general trend. 

Thus, comparison with production data is a way to validate the geological 

modeling. The case of Cut Bank was particularly demonstrative. The good fit of the total 

production and arrow plots with the geological model validated the geological 

interpretation and demonstrated that trends in fluid flow were definitive in the lower Cut 

Bank reservoir, because oil production closely follows the reservoir quality (net 

thickness, reservoir facies and porosity), with the most productive wells coinciding with 

the high reservoir quality. 
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Figure 70. Lithofacies map realization at valley fill of Sequence 1 (VF1) overlain by net-to-gross 
ratio contours of VF1 constructed using well logs.  
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CHAPTER VIII 

DISCUSSION  

Effective field development requires detailed reservoir models. Lithologic maps of 

genetic stratigraphic units, accurately depicting the facies architecture, can be useful 

guides in delineating remaining oil and identifying areas of strategic infill wells, 

recompletions, redrilled wells, and candidates for future water injection and secondary 

oil recovery. High-resolution stratigraphic correlation permits accurate representation of 

reservoir compartmentalization in a spatial and temporal framework. In alluvial systems 

the boundaries of the main reservoir compartments coincide with stratigraphic 

boundaries of genetic sequences. 

Channel-fill sandstones in the Cut Bank field range transitionally from vertically 

amalgamated (multi-storied), areally continuous sandstones to isolated sandstone bodies 

embedded in floodplain mudstones. Channel sandstones exhibit regular, recurring motifs 

that are associated with changes in A/S conditions. Lowest accommodation conditions 

resulted in amalgamated channel-fill sandstones, up to 18 ft thick, with intraclast-rich 

bases; they are capped by up to 2 ft thick floodplain mudstones. At higher A/S 

conditions, slightly amalgamated channel sandstones have lateral accretion surfaces and 

are capped by a thicker unit of floodplain mudstones. Channel sandstones in the highest 

A/S conditions are single-storied, possess conspicuous lateral accretion surfaces with 

thick mud drapes, and have a thick cover of overbank and floodplain deposits. Detailed 

well log correlations and oil production data support that the amalgamated, multistory 

sandstones are more laterally continuous. 
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Petrophysical properties are closely associated with subtle variations in facies, 

and both are stratigraphically sensitive. Petrophysical properties of identical 

sedimentological facies change regularly as a function of stratigraphic position because 

of variations in the rates of accumulation and degree of preservation of the sediments. In 

the case of fluvial strata deposited during an increase in A/S, porosity and permeability 

are highest in trough cross-stratified sandstones, immediately above channel scour bases, 

and both properties decrease upward to the next scour base. Successive channel-fill 

sandstones within the same stratigraphic sequence and channel-fill sandstones from one 

sequence to the next have progressively lower porosity and permeability values related 

to an overall increase in the A/S. An inverse trend is observed during a decrease in A/S. 

Geostatistical modeling of lithotypes is a flexible way to account for the small-

scale heterogeneities. By using a geostatistical approach in a sequence stratigraphic 

framework, cross correlation across major unconformities is avoided, and the subtle 

variability of spatial distribution of facies in the different sequences is preserved. A 

sedimentological analysis combined with a sequence stratigraphic study and a 

geostatistical analysis provides a qualitative estimation of the reservoir geometry and of 

its internal architecture. Also, it helps to better define the relevant lithotypes, their 

sequential organization, the lithostratigraphic units within which the simulation has to be 

performed. 

Three lithologic facies (sand, shale, and sandy shale) were distributed throughout 

the GOCAD model. Although the suite of depositional facies (1-7) were not distributed 
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throughout the GOCAD model, the facies description/discretization effort was 

nonetheless critical for appreciation of reservoir facies.  

Proportion curves allowed recognition of cyclic facies arrangements with the 

end-result being a higher resolution, higher confidence correlation framework. 

Properties from the wells were geostatistically distributed using variograms 

describing the spatial relationship of the reservoir properties. The benefits of a variogram 

analysis are to provide a useful tool for summarizing spatial data, to provide a measure 

of spatial dependence between samples and to use it to estimate data values at 

unsampled locations.  

The final stage of the reservoir characterization is a 3D reservoir model 

populated with rock properties based on a prior petrophysical, geological and 

geophysical study of the field. Construction of the 3D reservoir model consisted of two 

main parts: (1) stratigraphic framework; and (2) reservoir property modeling. 

Stochastic models of reservoir porosity and lithofacies were iteratively generated. 

Fine-scale reservoir model were constructed for SCCBSU so that all geologically 

significant units could be captured.
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CHAPTER IX 

CONCLUSIONS AND RECOMMENDATIONS  

This research was conducted to improve ultimate recovery of oil from Cut Bank field, 

Montana. The research was completed by building an integrated reservoir model that 

was based on high-resolution sequence stratigraphy and combine both deterministic and 

geostatistical approaches. The reservoir model was validated by integrating production 

trends with the reservoir model. The following are conclusions and recommendations 

from this study. 

• Characterization of Cut Bank reservoir and recognition of potential 

compartments  in SCCBSU area using seismic data was problematic due to 

inconsistent past interpretations of seismic data, including (1) seismic horizons 

that were incorrectly picked due to a crossing channel system, and (2) reservoir 

sandstones that are much thinner (~30 ft) than seismic resolution (110 ft).  

• Complex, thin reservoir, such as Cut Bank sandstones can be modeled using 

combination of high-resolution stratigraphic models and probabilistic simulation. 

• Identification and delineation of sequences and their bounding surfaces within a 

very low accommodation alluvial setting was possible; well log correlations 

show a relationship between base-level variations and channel amalgamation. 

• Systems tracts were identified on the basis of sequential position, facies 

association and systematic changes in architectural style and sediment body 

geometry. Five cycles that constituted the reservoir framework layers were 

identified. 
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• Analysis of stacking patterns – predominantly fining and thinning upward – 

allowed the prediction of reservoir rock quality.  Within every cycle the best 

quality reservoir rocks were strongly concentrated in the lowstand systems tract. 

• The low-accommodation, alluvial paleophysiography triggered the development 

of high-frequency sequences in which the erosional contacts between sandstones 

allowed communication among different reservoirs.  

• The lowermost lower Cut Bank sand is a series of braided stream parasequences 

are areally extensive and have highest reservoir quality of all reservoirs in Cut 

Bank field. 

• The basal lower Cut Bank sand has the highest average net-to-gross ratio (0.6) of 

all reservoir sands in Cut Bank field. We can expect little additional 

stratigraphically untapped sand from this interval. 

• Over most of SCCBSU field, the Sunburst Member and the upper Cut Bank 

Sandstone are a valley fill complex with interfluves that may laterally 

compartmentalize valley-fill sands. 

• Upper Cut Bank net-to-gross ratio values are greater than zero only in the north 

part of SCCBSU. The average net-to-gross ratio value of the basal Sunburst sand 

(Sunburst 1) is 0.3, and this sand occurs l throughout the SCCBSU. The basal 

Sunburst sand has better reservoir quality than other Sunburst sands or the upper 

Cut Bank sand, but its reservoir quality is not nearly as good as that of the lower 

Cut Bank sand. 
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• There may be the potential for undrilled compartments in upper Cut Bank and 

Sunburst sands in some areas of the field, owing to poor connectivity.  

• Geostatistics provided equiprobable representations of the geological 

heterogeneity within the main reservoir units. The simulated reservoir geometries 

provided improved descriptions of reservoir distribution, connectivity and flow 

barrier distribution. Uncertainty in the reservoir architecture was accounted for 

by generating multiple realizations. 

• Thus, high-resolution sequence stratigraphy and geostatistical simulation resulted 

in improved reservoir description that provided a better basis to predict reservoir 

performance. 

• Although there may be opportunities for recompletions in Cut Bank field, a 

major challenge in such older fields is the integration of the geology-driven 

options with engineering and economic realities. 

• I recommend incorporating engineering analyses such as fluid flow simulation, 

history matching, pressure communication and decline-curve analysis results into 

the reservoir model. The interpretations of the geological analysis and fluid flow 

simulation results should be consistent with calculated engineering parameters. 

Compartment dimensions may be verified by history matching and decline-curve 

analysis, compartment boundaries can be estimated by flow simulation, and 

pressure communication across the reservoir may be assessed using pressure 

tests. Results of these analyses will provide a basis for refining the working 

geologic model and selecting locations for infill, recompletion, and redrill wells, 
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as well as candidates for future water injection to recover additional volumes of 

remaining oil and extend the productive life of Cut Bank field. 

• The technical approaches and tools from this study can be used to improve 

reservoir description of other oil and gas fields with similar depositional systems.
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