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ABSTRACT 

 

Reliability Modeling and Evaluation in Aging Power 

Systems. (August 2009) 

Hag-Kwen Kim, B.A, Kangneung National University 

Chair of Advisory Committee: Dr. Chanan Singh 

 

Renewal process has been often employed as a mathematical model of the 

failure and repair cycle of components in power system reliability assessment. This 

implies that after repair, the component is assumed to be restored to be in as good as new 

condition in terms of reliability perspective. However, some of the components may 

enter an aging stage as the system grows older. This thesis describes how aging 

characteristics of a system may impact the calculation of commonly used quantitative 

reliability indices such as Loss of Load Expectation (LOLE), Loss of Load Duration 

(LOLD), and Expected Energy Not Supplied (EENS).  

To build the history of working and failure states of a system, Stochastic Point 

Process modeling based on Sequential Monte Carlo simulation is introduced. Power Law 

Process is modeled as the failure rate function of aging components. Power system 

reliability analysis can be made at the generation capacity level where transmission 

constraints may be included. The simulation technique is applied to the Single Area 

IEEE Reliability Test System (RTS) and the results are evaluated and compared. 
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The results show that reliability indices become increased as the age of the 

system grows. 
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1. INTRODUCTION 

 

In power systems, effective reliability analysis and assessment are essential 

factors in operation, and planning [1]-[2] in the long term. Such analysis enables to 

supply continuous electric power for time-varying loads by predicting future system 

behaviors and making maintenance plans [3]-[5] at an appropriate time. A number of 

power system equipments, such as generators, transmission/distribution lines, or 

transformers have been increasingly getting older. According to U.S. National Academy 

of Engineering [6]-[8], North American electricity infrastructure has more than 200,000 

miles of transmission lines and 950,000 MW of generating capacity with about 3,500 

utilities. So it is called first world grid because of its size and complexity. However, it 

also received a grade of D because of aging or poor maintenance policies by American 

society of Civil Engineers (ASCE). In many electric utilities, maintenance planning and 

investment do not adequately cover growing load demand and aging of existing 

components. Low reliability due to aging not only declines a competitive advantage, or 

valuation in the energy utilities market, but also needs greater operation and maintenance 

costs. In the light of current situation, it is more important than ever to evaluate the aging 

of equipment quantitatively and incorporate this into the estimation of future reliability 

of the system. An acceptable level of reliability needs be achieved at the minimum 

possible cost. There exists trade off between reliability and costs. So, system 

performance optimization can be more effectively implemented by cost-reliability  

____________ 
This thesis follows the style of IEEE Transactions on Reliability.  
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analysis based on multi-objectives optimization technique [9]-[10]. 

 In general, equipment has three patterns over time, shown by Figure 1. The graph 

is called bathtub curve because of its looks. In the first stage, which is called infant 

mortality or burn in, failure rate is decreasing over time. So up times tend to become 

greater, i.e., reliability growth. In the second stage which is called useful life, failure rate 

is constant. There is no trend, indicating a renewal process. In the final stage, which is 

called wear out, failure rate is increasing. So time between failures becomes smaller, 

showing aging trend.  

 

 

Figure 1: Failure Rate Curve of General Equipment over Time 

 

There are three types of trends: zero, positive and negative trend [11]-[13]. If 

inter-arrival times have no patterns, i.e., neither improvement nor deterioration, the 

process has zero trends. However, if failure rate is increasing over time, the process has 

Time (Age) 

Failure 
rate Burn in Useful life Wear out 
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positive trend and indicates aging. When it is a decreasing function over time, the 

process has negative trend, showing reliability growth. In general, electromechanical 

equipment of power systems has positive trend as the age of components increases. 

Although reference [11] analyzed the trend in generating units, the mechanism of 

incorporating aging in power system reliability evaluation has not received considerable 

attention [14]. This thesis examines the issues related to incorporating aging effects in 

reliability evaluation of repairable power systems in details and introduces some 

methods using Monte Carlo Simulation. Reliability analysis is carried out in Hierarchal 

level 1 and Hierarchal level 2 [15]-[16]. The single area RTS [17]-[18] is used to 

illustrate application of proposed techniques.  
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2. PROBLEM FORMULATION 

 

 For purposes of reliability modeling, the repairable component of a system can 

be modeled as a Stochastic Point Process [19]. Figure 2 shows a sample path of 

Stochastic Point Process, }0≥t),t(N{ where N(t) is the number of events occurred 

during time t. Index x is inter-arrival time, and t is arrival time, i.e., time event occurred, 

illustrated by equations (1), (2), (3), and (4). 

 

 

 

 

 

 

 

 

 

Figure 2: A Sample Path of Stochastic Point Process 
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The expected value of N (t) can be represented by: 

)4()]t(N[E)t(   
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The derivative of )t(Λ  is called the rate function or intensity function )t(λ  of the 

process and in reliability analysis represents the failure or repair rate depending upon 

whether up times or repair times are being modeled. In a Homogeneous Poisson Process 

(HPP) [20], )t(λ  is constant and equal toλ . The HPP is basically a renewal process with 

exponentially distributed inter-failure times. Reference [21] describes comprehensive 

models when the up times in a renewal process are non-exponentially distributed. A 

Non-Homogeneous Poisson Process (NHPP) [20] is, however, more general and can 

handle trends, aging or reliability growth, with proper specification of intensity rate 

function )t(λ . 

 The preliminary step of modeling and simulation is to detect the presence of 

aging in components. This is carried out by trend analysis [11]. The aim of trend analysis 

is to predict future’s trend, or pattern of measurement, based on statistical, historical data. 

There are a number of quantitative trend test techniques [11], [22]. In this thesis, Mann’s 

nonparametric test [11] is described. Statistic variable M is based on standard normal 

distribution with mean 0 and variance 1, shown in Figure 3 and described by equations 

(5)-(8). 

 

)5(
)V(T

5.0±)E(T-T
=M

n

nn  

)6(
4

)1-n(n
=)T(E n  
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Figure 3: Probability Density Function of Random Variable M 
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Where nT : the number of a case that ith value is less than kth value for order i< k in the 

sequence of data. 

If )T(E>T nn , the sign of  value 5 is negative. If )T(E<T nn , it is positive and 

if )T(E=T nn , the value disappears. Using statistical hypothesis test, it is possible to 

detect and analyze the presence of trend by a given significance level α  [23]-[25]. 

 

 

0 W -W Random variable, M 

α = critical region 

Probability density function
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Let 

            0H  (Null Hypothesis): No significant trend 

            1H  (Alternate Hypothesis): Significant trend 

 

Significance level α  represents the error of rejecting 0H  when 0H  is assumed to 

be true. So if M is in critical region, 0H  is rejected and there exists significant trend. 

Basically M is function about nT . So if M is positive, the data shows reliability growth. 

If it is negative, the data shows aging trend.  On the other hand, if M is outside critical 

region, 0H  is accepted, i.e., this is renewal process. α  is usually set to 5 %, 1%, or 0.1%.  

Repair actions about aging are taken in repairable systems. When a component 

fails and is repaired, the condition of the component can fall into the following three 

categories [22].  

1. The component may be as good as new after repair. This is called perfect repair 

and is what is commonly assumed in power system reliability modeling and 

analysis. This can be modeled by a renewal process whose inter-failure times are 

independently and identically distributed. Further when these inter-failure times 

are exponentially distributed, the process becomes a HPP and the intensity 

function is constant. 

2. The component may be only as good as it was immediately before failure. This is 

called minimal repair and can be represented by a NHPP. 

3. The component may be in between 1 and 2. This is called general or imperfect  
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repair and can also be modeled by a NHPP. 

A general model for dealing with aging in repairable systems can be formulated by 

using the concept of virtual age [26]-[29]. Virtual age, also called effective age means 

the component’s present condition, is not actual age. So it is supposed to represent the 

age in terms of the reliability perspectives as compared with the calendar age, i.e., actual 

age. In Type I Kijima Model, for example, the virtual age at thn  repair is given by (9). 

 

)9(,...3,2,1=nfor,1≤q≤0,qt=)x+...+x+x(q=qx+V=V nn21n1-nn  

where q is the repair adjustment factor, x is the inter-failure time, and t is the arrival 

time. For a renewal process q is zero, that is, after every repair the virtual age is set to 

zero indicating the component is as good as new after repair or it does not age from one 

inter-failure interval to the next. It is important to note that in this case, the component 

may age from the beginning of the inter-failure time to the end but repair is assumed to 

restore the component to as good as new state so that there is no aging over the long run. 

For a NHPP, q can be assumed to be one, i.e., the virtual age is equal to the real age 

experienced by the component, meaning after the repair the component is only as good 

as before the failure, i.e., the component is aging. When the minimal repair is modeled 

as in NHPP, the failure rate continues to change after repair as if the component is 

continuing to operate incessantly. Other repair strategies can be represented by different 

values of q to model different repair actions. 

As is shown later, modeling technology can handle imperfect repair with q other 

than 1 or 0. If q can be estimated, by expert opinion or available data or a combination, 
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then general repair can be handled. In case, such an estimate can not be obtained, the 

results obtained by 0 and 1 can be interpreted as lower and upper bounds. 

    It should be noted that since in the aging components, the failure rate is 

continuously varying (generally increasing) with time, this introduces a correlation of 

the failure rate with the load which is also changing. Such correlation is not causal but 

only coincidental as the load changes and the failure rate steadily increases with time. 

However, at least conceptually, the use of an average probability of aging components is 

likely to cause error because of this correlation. It appears that in such cases the use of 

Sequential Monte Carlo simulation [30]-[34] will be the most reasonable choice. 
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3. RELIABILITY MODELING USING SEQUENTIAL MONTE CARLO 

SIMULATION 

 

 There are two main approaches to analyze system reliability: Analytical method 

and Monte Carlo simulation [11], [35]. As an analytical method, state enumeration or 

min cuts method is often used. In state space approach, from all possible states of 

components of a system, the system state space is constructed and then reliability indices 

are calculated by examining these states. However, for large systems, much time and 

effort are required to carry out the process and sometimes this becomes impractical. For 

complex systems consisting of independent components, min cut method is quite 

effective. Monte Carlo simulation randomly mimics the system history (working and 

failure) using probability distribution function. The idea is that a state having a higher 

probability of occurrence is more likely to be simulated over time. This is flexible for 

complicated operations such as load uncertainty or weather effects, being based on 

probabilistic laws. Expected reliability indices can be calculated regardless of the 

number of buses in the power system, compared with analytical method. There are two 

methods for Monte Carlo: random sampling and sequential method. In the random 

sampling method, the state of each component is sampled and system state is non-

chronologically determined. In sequential Monte Carlo, however, system state is 

sequentially determined, based on distribution function of each component state 

residence time. So, this method requires more calculation time than random sampling. 

However, sequential method is appropriate for both independent and dependent events. 
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Therefore, on this thesis Sequential Monte Carlo simulation is used to build reliability 

models and carry out assessment. 

A general algorithm, for any type of distribution of component state residence 

times, can be described in the following steps: 

It is assumed that the thk  transition has just taken place at time kt  and the time to next 

transition of component i is ix . Then the vector of times to component transitions is 

given by { ix } and the simulation proceeds in the following steps. 

Step 1. The time to next system transition is given by the minimum value of the 

component transition times, shown by (10). 

 

)10(}xmin{=x i  

If this x  corresponds to px , which is the thp  component, and then next transition occurs 

by the change of state of this component. 

Step 2. The simulation time is now updated by (11). 

 

)11(x+t=t k1+k

 

where x is given by (10). 

Step 3. The residual times to component transitions are calculated by (12). 

 

)12(x-x=x i
r

i          

Where r
ix  is residual time to transition of component i. 
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Step 4. The residual time for component p causing system transition becomes zero and 

time to its next transition px  is determined by using a random number. 

Step 5. The time ix  is set as shown in (13). 

 

)13(p=i,x=

p≠i,x=x

p

r
ii

 

Step 6. In the interval kt  to 1+kt , the status of component stays fixed and the following 

steps are performed for measurements of reliability indices. 

(a) The load for each bus is updated to the current hour. 

(b) If no bus has loss of load, the simulation proceeds to the next hour, otherwise state 

evaluation module is called. 

(c) If after remedial action all loads are satisfied, then simulation proceeds to next 

hour. Otherwise, this is counted as loss of load hour for those buses and the 

system.  

(d) Steps (a) – (c) are performed until 1+kt  

Step 7. The statistics are updated as described by step 6 and the process moves to step 2. 

The simulation process is continued until convergence criterion is satisfied. 
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4. SAMPLING TIME TO NEXT TRANSITION 

 

4.1. Transition Time for Non-aging Model 

 

 Probability distribution of renewal process [19], [21], is independently, 

identically repeated during every cycle. Figure 4 shows the failure rate curves for 

different distributions. Each vertical dotted line indicates the moment of repair. So its 

duration is one cycle. As the term ‘renewal’ implies, failure rate after repair gets 

renewed, whether it increases or not during its working period. So renewal process has a 

zero trend over sequential cycles. If the inter-failure time in renewal process is 

exponentially distributed, it is a HPP. On the other hand, for an aging component, it has 

a positive trend over sequential cycles. Up time tends to become smaller as the age of a 

component grows.  

The time to next transition is sampled by using inverse transform method [36], 

described by (14), (15). Time x is interval-time, Z is a uniform random variable with an 

interval on (0, 1], and function F is a probability distribution function.  

 

)15()Z(F=x

)14()x(F=)Z≤xPr(=Z
1-

  

Renewal process has several kinds of probability distribution functions. Here we 

briefly introduce commonly used four probability distribution functions. 
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Figure 4: Failure Rate Comparison for Different Probability Distributions 

 

(1) Exponential 

In a stochastic point process, if N (t) is given by a Poisson distribution, the interval-

time is exponentially distributed. Intensity rate of a component is constant. Equation (16) 

shows probability distribution of time x.  Then time x is given by simple function (17). 

The mean value of time x is a reciprocal of intensity ρ , shown by (18). 

Time 

Exponential 

Weibull 
1>β  

Normal 

Log-normal 

Failure rate 
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)Zln(-
=x

)16(e-1=)x(F xρ-

 

 

(2) Weibull  

Weibull distribution is characterized by probability distribution function shown by 

(19). Similar to the previous case, interval-time x is taken by (20) using (15). The 

expected value is given by (21). When β  is equal to one, it is exactly the same as 

exponential.  

)21(

λ

)
β

1
(Γ

β

1

=

λ

)
β

1
+1(Γ

=)x(E

)20()
ρ

)Zln(-
(=x
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β

1

β

1

β

1

)ρx(- ββ

1

  

where )( is a gamma function, described by (22). 

)22(dtet=)z(Γ t-
∞

0

1-z∫  

(3) Normal   

Normal distribution is given by (23). 

)23()]
2σ

m-x
(erf+1[

2

1
=)x(F  

where m is mean value of x,   is standard deviation of x, and erf indicates error 
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function, described by (24). Similarly, time x is given by (25), using inverse transform 

method. 

∫
z

0

t- )24(dte
π

2
=)z(erf

2

 

)25()1-Z2(erf2σ+m=x 1-  

(4) Log-Normal 

In general, Log-normal distribution, given by (26), is used more for repair time 

modeling than the failure time. Time x and its mean value are given in (27), (28). 

 

)28(e=)x(E

)27(e=x

)26()]
2σ

m-)xln(
(erf+1[

2

1
=)x(F

2

σ
+m

)1-Z2(erf2σ+m

2

1-

 

 

4.2. Transition Time for Aging Model 

 

It should be evident that the aging is associated with time to failure and the time 

to repair distribution may have nothing to do with aging. So the time to repair can be 

modeled as a non-aging renewal process.   

NHPP is introduced as a model for the aging failures. Specially, Power Law 

Process (PLP) [12], [20], [37]-[39] is used for this model and is described by (29)-(32). 

As shape parameter β  varies, three types of trend are generated. If β  is one, it is a zero 
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trend. If β  is greater than one, the process has an aging trend. If β  is less than one, it has 

a negative trend, i.e., reliability growth. PLP is actually based on Weibull distribution 

because of failure rate function given by (29). However, as we can see from the 

comparison of Figure 4 and Figure 5, they are different immediately after first repair. 

Expected value of N(t) during time t is given by (30) and probability of k events during 

time tΔ  is given by (31). Equation (32) is expanded by substituting (30) in (31). 

 

)32(
!k

e)tΔ(λ
=)k=)tΔ(NPr(

)31(
!k

e)}tΔ(Λ{
=)k=)tΔ(NPr(

)30(tλ=du)u(λ=)]t(N[E=)t(Λ

)29(tλβ=)t(λ

β)tΔ(λ-kβk

)tΔ(Λ-k

β
t

0

1-β

∫
  

 

Just as in Figure 4, vertical dotted lines in Figure 5 represent the repair actions. 

Failure rate is, however, not renewing, instead is the same as immediately before failure, 

which is called as good as old. This is minimal repair, while the repair action of Weibull 

renewal distribution from Figure 4 is perfect - after repair, it is as good as new. In 

practice, however, a component of a system may be having a general repair, which is 

between perfect repair and minimal repair. 
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Figure 5: Failure Rate Variation with Time of PLP Model 

 

There are several techniques [40]-[42] that can be used to sample the NHPP and 

here three are proposed below and studied in this thesis. 

 

(a) Interval by Interval Method (IIM)  

 

This method is based on interval time probability distribution function. Supposing 

that a failure just occurred at kt , the probability distribution for the interval time τ  is 

given by (33), using (30)-(32). 

 

Time 
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1>β  

Failure rate 

One cycle 
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)33(}])qt(-)x+qt{(λ-exp[-1=

]τd)τ+qt(λ-exp[-1=)x(F

β
k

β
k

x

0
kt ∫1+k  

 

where parameter q is repair adjustment factor discussed in Section 2. If q is zero, it is 

exponential distribution function. In this thesis, it is assumed that q is one, i.e., minimal 

repair. 

Then, Equation (34) is given using (14). 

 

)34(}])qt(-)xqt{(-exp[-1)x(FZ kkt 1k




 

Since 1-Z has the same probability distribution as Z, (34) can be rewritten as (35). 

 

)35(}])qt(-)xqt{(-exp[)x(FZ kkt 1k
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Which gives following (36)-(38): 
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By substituting q equal to one in (37)-(38), (39)-(40) is developed. 
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Using (39) and (40), the failure times can be sampled by drawing random numbers Z. 

And the repair action is taken as minimal repair. 

 

(b) Time Scale Transformation (TST) 

 

This method is based on the result that arrival times ...t,t,t 321   are the points in 

a NHPP with the cumulative rate function )t(Λ  if and only if arrival times 

...'t,'t,'t 321 are the points in a HPP with intensity rate one [42], where 
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From (41), (42)-(45) are given.          
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It may be inefficient to apply this method to complicated intensity functions, 

since it requires numerical calculation of inverse function, as shown by (41). However, 

in the case of PLP, the calculation is easily expanded, described by (42). Time 'x k  is 

inter-arrival time by HPP with rate one, and time kx  is inter-arrival time by NHPP. 'x k  

is calculated by (17), and then inter-arrival time for aging model, kx  is obtained by (44), 

(45). This calculation is a little bit complicated than method (a), since it can be taken 

only after calculation of a HPP 

 

(c) Thinning Algorithm (TA) 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Flowchart for Thinning Algorithm 
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Figure 6 illustrates the total procedure for this approach. Parameter q is repair 

factor, which is set to one on this simulation. From occurred arrival time with 

))t(λ(max=λ
]T,0[∈t

H , thinning out, or removing  process is made with probability Hλ/)t(λ-1 . 

As )t(λ  increases, Hλ/)t(λ1 becomes smaller and then, thinning out process occurs 

less. On the other hand, as )t(λ  is getting decreased, the thinning out process occurs 

more often and interval times are increasing. Contrary to method (a) and (b), this method 

does not need numerical inverse integral calculation of intensity function. Besides, Log-

linear rate function, or Exponential Polynomial rate function method [43]-[44] is 

employed for specific intensity rate function. 
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5. SIMULATION METHODOLOGY 

 

5.1. System Reliability Indices 

 

There are a number of indices in power system reliability evaluation. In this 

thesis, LOLE, LOLP, LOLD, LOLF, and EENS [45]-[48] are calculated and compared. 

The expected value of loss of load hours during simulation time is LOLE [h]. Then, 

LOLP [%] is calculated as LOLE divided by 8736 hours, since one year from RTS 

system data is 52 weeks. LOLD [h] is given by LOLE divided by number of the load 

loss event. Finally, LOLF [#/h] is taken from a ratio of LOLP to LOLD. 

The indices are calculated and compared in hierarchical level 1 and hierarchical 

level 2. Loss of load is evaluated by difference between generating capacity and load in 

hierarchical level 1, while it is calculated by linear programming optimization based on 

DC power flow in hierarchical 2. To handle degree of aging, parameter β  in a PLP 

model and aging adjustment factor q in repair actions are controlled. By variations of 

these variables, reliability indices are changed and compared over time. 

 

5.2. Criterion for Convergence 

 

Monte Carlo simulation is based on probabilistic laws, not deterministic law. So, 

a criterion for convergence of estimated values needs to be used. As a convergence 
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criterion, coefficient of variation [49] is applied. For different indices, the corresponding 

convergence rates may be different. Let, 

iI  Reliability index from simulation result for year i 

YN  Number of years of simulated data available 

ISD  Standard deviation of the estimate iI  

Then, estimate of the expected value of the index iI  is given by (46), averaging the 

index and standard deviation of the estimate is shown by (47). 

∑
YN

1=i
i

Y

I
N

1
=I  (46) 

Y

2
I N

SD
=SD  (47) 

where 

( )∑
Y

i

N

1=i

2

Y
2 I-I

N

1
=SD  (48) 

I

SD
=COV I  (49) 

Note ISD , the standard deviation of the estimate, Î , varies as yN/1  and will 

approach zero as yN  goes to infinity.  Convergence rate become faster as mean value of 

estimate Î  is getting bigger, from (49). The Coefficient of Variation (COV) is used as 

the convergence criterion of the Sequential Monte Carlo Simulation. So the simulation is 

iterated until COV is lower than preset tolerance level. Usually, the value is set to 5 % or 

2.5 %. If tolerance level is higher, accuracy of the estimate is lower. Its value is set to 

5 % in the thesis. The number of samples
YN  is independent of system size. So Monte 
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Carlo is efficient for simulation of large and complex systems.  

 

5.3. DC Power Flow and Linear Programming 

 

Major part of power system consists of three divisions [15]-[16]: generation, 

transmission and distribution, shown by Figure 7. In general, electric utilities have some 

of three divisions for the purpose of system planning, operation, or analysis. Reliability 

indices can be evaluated in each hierarchical level and provide planners or operators 

with alternate planning or operating techniques [1]. In this thesis, reliability modeling 

and analysis is based on generation capacity and transmission system [48], [50]-[51] 

which are hierarchical level 1 and 2. Composite power system reliability assessment 

deals with transmission constraints as well as generation capacity. In this level 2, 

reliability is the ability to supply generated energy to meet pool load points without 

violating transmission constraints. So if transmission line flow exceeds its limits, load 

loss event occurs even though generation capacity meets load. As transmission system is 

incorporated in generation capacity reliability, AC or DC power flow needs to be used 

for determining the system status [51]-[53].  

To save computation time and effort to solve the power balance equation, this 

paper has selected DC power flow approach. This has been a commonly used analytical 

technique despite approximate solution. 
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Figure 7: Three Zones of Power Systems 

 

DC power flow equation is derived by ignoring reactive power-voltage equation 

in the Fast decoupled method. The following assumptions are made: 

 

1. Each bus voltage magnitude is one per unit. 

2. No line losses. Only imaginary part of Y matrix is considered. 

So that power flow in bus i is given by (50).  

 

)50(ibusfor,θB-=P ∑
j

ijiji   

Matrix form is given by (51). 

 

)51(θB-=P  

where iP is real power flow at bus i, matrix B is an imaginary part of Y matrix, ijθ  is the 

GENERATION 
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TRANSMISSION 
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DISTRIBUTION 
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Hierarchical Level 3 
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difference between angles from bus i to j.  

For generation capacity reliability evaluation, load curtailment is calculated just 

by difference between total capacity and total load. Such studies are done for generation 

planning. However, in case of composite system reliability studies, it is required to 

check if flows of all the lines are within the limits. This case is more meaningful, when 

effect of transmission needs to be studied. In DC power flow, total generation dispatched 

should be the same as the total load because of no line losses. To handle generation and 

load for each bus, there can be many combinations. So, to solve this problem, 

minimization model based on linear programming is introduced. This approach is to 

minimize the total load curtailment, meeting the power balance of DC power flow and 

related constraints. Equations (52)-(56) describe this formulation.  

 

)56(P≤|P|

)55(P≤C≤0

)54(P≤P

)53(C+P-P=θB

toSubject

)52(CMin=tcurtailmenLoad

max
lineline

D

max
GG

DG

N

i
i∑

 

where N is the number of buses 

C is the vector of load curtailments 

GP  is the vector of generation 

max
GP  is the vector of upper limits of generation 

DP  is the vector of load 
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lineP is the vector of line real power flows 

max
lineP  is the vector of upper limits of flows 

In above equations, D
max

line
max

G Pand,P,P,B are knowns, and C,and,P,θ G  are 

unknowns and, lineP is the function of θ  calculated by (51). So above equations are based 

on standard linear programming model. MATLAB software provides functions related 

linear programming optimization. Function linprog is applied to solve the problem. 

 

5.4. Control of Parameter of Aging Model for Different Degrees of Aging   

 

 For performing the fair comparison of both non-aging and aging situations, the 

given component is assumed to have the same reliability level at the beginning. So, 

aging will start after the first cycle of the process. Then Mean Time to First Failure 

(MTTFF) of PLP should be the same as eλ/1 . And Mean up time during only the first 

cycle of PLP is the same as that of Weilbull distribution, shown by Figure 4 and Figure 5. 

Using these facts, following equations are derived. The reliability or survivor function, 

i.e., the probability of not failing by time t can be obtained from (32) by setting k to zero, 

shown by (57). 

 

)57(e=)t(R
βtλ-  

The MTTFF can be obtained by integrating the reliability function from zero to infinity 

[11] and given by (58). 
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0 eβ
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Where )•(Γ  is a gamma function. λ is a function about β , which gives (59). Equation 

(61) is developed by using the property of a gamma function (60). 

           

 

)59()]
β

1
+1(Γ[λ=λ ββ

e  

)60()z(Γz=)1+z(Γ  

)61()
β
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(Γ)

β
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(λ=λ βββ

e  

Where λ=λe  when β  is one. Parameter λ  should be updated for different β  in aging 

model to satisfy this property. 

 



 30

6. CASE STUDIES 

 

6. 1. Effect of Parameter β  in a PLP Model on Consecutive Up Times  

 

 The Single Area of the 24 bus IEEE RTS [17]-[18] is shown by Figure 8. This 

system has been used for reference network to test and compare methodology for system 

reliability evaluation. It consists of two subsystems by voltage level: the north subsystem 

is at 230kV, and south subsystem at 138kV. It has 10 generator buses, 33 transmission 

lines, 5 transformers, and 17 load buses. There are 32 generating units so that total 

capacity is 3405 MW. Load varies with every hour with Peak load 2850 MW.  

MATLAB is used for system modeling and simulation.  

Before considering the issue of aging, let us examine the non-aging model. 

Generating unit 27 is located at bus 13 from RTS generating bus data [17]-[18]. Based 

on generating unit reliability data, Table 1 describes generator capacities, failure, and 

repair rates. If Mean Time to Failure (MTTF) or Mean Time to Repair (MTTR) of 

different distributions used in renewal process is the same, it should be the same even 

after each failure or repair, because of renewal property. To take the identical mean up 

time to failure, mean value of Exponential, Weibull, Normal, and Log-normal 

distributions is set to the same value, for example 950=λ/1 e , where eλ  indicates 

failure rate of unit 27 from Table 1 when the inter failure time is exponential. 
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Figure 8: The Single Area RTS 



 32

Table 1: Reliability Data of Generating Units 

Generators 
Capacity 

[MW] 
Failure Rate 

[#/h] 
Repair Rate 

[#/h] 

1-5 12 1/2940 1/60 

6-9 20 1/450 1/50 

10-15 50 1/1980 1/20 

16-19 76 1/1960 1/40 

20-22 100 1/1200 1/50 

23-26 155 1/960 1/40 

27-29 197 1/950 1/50 

30 350 1/1150 1/100 

31-32 400 1/1100 1/150 
 

To get the same mean time to failure, parameter values for four distributions are 

set by (62)-(67). In Exponential, mean value is simply set to reciprocal of intensity rate. 

In Weibull, β  is input data. λ  should be changed for different input β  to get the same 

MTTF.  In the case of Normal or Log-normal, standard deviation of the variable is input 

data. It is assumed that standard deviation is one. If we use high standard deviation, 

simulation will need a more time to satisfy convergence criterion. 
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Weibull              
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Normal                )65(
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Log-normal          
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Table 2, Table 3, Table 4, and Table 5 describe the mean values of up to 10 

consecutive up times of unit 27 for different probability distributions. Until simulation 

gets 10 up times of the generator 27, it is continued. Then, to get desirable 10 mean up 

times of the component, convergence criterion described in Section 5 is employed with 

COV which is set to 5%. This value is used for all reliability indices in this thesis. As 

you see from the Tables, mean up time of each distribution is still maintained as the age 

of component 27 grows. Also, mean up times for different distributions have 

approximately the same value, since mean up times for 4 different distributions are set to 

be equal. Small differences between them are caused by randomness. 

 

Table 2: Unit 27 Mean Up Times Using Exponential  

1st 2nd 3rd 4th 5th 

951.211 950.266 951.311 949.561 950.918 

6th 7th 8th 9th 10th 

951.751 948.991 952.534 950.505 950.232 
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Table 3: Unit 27 Mean Up Times Using Weibull ( 2=β ) 

1st 2nd 3rd 4th 5th 
952.241 950.322 953.030 950.212 951.876 

6th 7th 8th 9th 10th 

950.312 952.287 951.112 950.199 951.819 
 

Table 4: Unit 27 Mean Up Times Using Normal 

1st 2nd 3rd 4th 5th 

949.900 950.800 951.300 949.800 950.900 

6th 7th 8th 9th 10th 

950.700 949.900 951.200 950.600 951.100 
 

Table 5: Unit 27 Mean Up Times Using Log-normal 

1st 2nd 3rd 4th 5th 

953.387 950.221 950.435 951.436 953.466 

6th 7th 8th 9th 10th 

949.452 953.322 950.599 951.646 952.426 
 

Next, let us examine impact of beta in a PLP model, one of aging models, on 

mean up times. In a PLP, parameter β  determines the shape of rate function. To show 

how β  affects mean up times, the following case is considered first. The results are 

described in Table 6. Interval by Interval method, one of non-homogeneous poison 

process simulation techniques is used for this simulation. Up to 10 consecutive mean up 

times of generator 27 are estimated from simulation. For 10 mean up times, when β  is 

equal to one, interval times are exponentially distributed. As expected, all the values are 

almost identical and equal to reciprocal of failure rate of generator 27. On the other 
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hand, if β  is greater than one, mean up times are getting decreased as age of a 

component grows, showing positive aging trend.  Mean time to failure of the component 

is decreased by 24.42 % in 10 mean up times. However, MTTFF of unit 27 is still very 

close to mean up times of exponential distribution even a case of  β  greater than one. 

This is based on assumption that aging may start after one cycle, discussed in Section 5. 

 

Table 6: Unit 27 Mean Up Times with Variations of β  

β  10 Mean up times 

1.0 

1st 2nd 3rd 4th 5th 

948.11 951.89 953.08 950.76 952.05 

6th 7th 8th 9th 10th 

952.05 950.12 949.13 950.64 951.92 

 
1.1 

 

1st 2nd 3rd 4th 5th 

952.09 873.71 817.64 771.07 755.13 

6th 7th 8th 9th 10th 

749.03 741.86 732.75 727.03 719.55 

 

6. 2. Generation Capacity Reliability Evaluation 
 

As we discussed in Section 5, power system consists of three hierarchical levels: 

Generation, Transmission, and Distribution. In this thesis, HL 1 and HL 2 are used for 

evaluation of power system reliability. Figure 9 shows the flowchart of Generation 

system (HL 1) reliability assessment. System failure, i.e., loss of load is detected and 

calculated by the difference between generation capacity and load. 
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Figure 9: Flowchart of Generation System Reliability Assessment 
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Table 7 shows reliability indices for different renewal distributions. Simulation 

time is set to one year. The indices are almost the same, since MTTF or MTTR is set to 

equivalent value using (62)-(67). 

 

Table 7: Indices Comparison for Three Different Renewal Distributions 

Non-Aging 
Models 

LOLE 
[h] 

LOLP 
[%] 

LOLD 
[h] 

LOLF 
[#/h] 

EENS 
[MWh] 

Exponential 9.171 0.105 2.384 4-1040.4   1123.716 

Weibull 9.147 0.104 2.199 4-1076.4   1099.765 

Normal 9.211 0.105 2.405 4-1038.4   1125.522 

Log-Normal 9.253 0.105 2.332 4-1054.4   1130.991 
 

Where LOLP is expressed as percent, LOLE and LOLD are in hours, LOLF is per hour, 

and EENS is in MWh. The three different NHPP methods are also implemented as an 

alternative for non-aging model by setting β equal to one. As shown in Table 8, the 

results have similar values, compared with Table 7. The differences attributed to 

randomness of estimation. 

 

Table 8: Indices Comparison for Three NHPP Simulation Methods 

Aging Model (β =1.0) 

Method 
LOLE 

[h] 
LOLP 
[%] 

LOLD 
[h] 

LOLF 
[#/h] 

EENS 
[MWh] 

IIM 9.45 0.108 2.377 4-1055.4   1095.567 

TST 9.20 0.105 2.540 4-1014.4   1132.547 

TA 9.10 0.104 2.346 4-1044.4   1098.291 
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Next, it is assumed that generators 23-26 and 30 from table 1 have positive aging 

trend. The remaining components are exponentially distributed. Unit 23 is located at bus 

15, unit 24 at bus 16, and unit 25, 26, and 30 at bus 23. Three simulation methods are 

implemented for generating interval times: Interval-by-Interval Method (IIM), Time 

Scale Transformation (TST) and Thinning Algorithm (TA) and the results are shown in 

Table 9 forβ =1.3. It is assumed that aging adjustment factor q is one, i.e., minimal 

repair. The results by the three methods have similar values. As parameter β  is 

increased greater than one, reliability indices tend to grow. From table 9, required 

simulation duration of three sampling methods of a NHPP is also compared. IIM is 

based on probability distribution of interval times. The kth interval time is directly taken 

from k-1th interval time in (39)-(40). So this method shows the best performance in 

terms of time requirements, shown by Table 9. TST is based on inverse integrated rate 

function. The kth interval time of a NHPP is taken from k-1th interval time of a NHPP 

and kth interval time of a HPP with rate one in (44)-(45). On the other hand, TA does 

not use integrated rate function, instead, being based on thinning out process and 

calculation of )t(λ . Each interval time of a NHPP is taken only after thinning out arrival 

times of a HPP with the highest rate.  For aging PLP model, failure rate steadily 

increases. So in this case, the thinning out process occurs less as time passes. In other 

words, in the increasing failure rate condition from Figure 6, more ‘Yes’ answers occur 

over time.  So this method requires more time than the previous ones. In conclusion, it 

appears the most efficient simulation method is IIM, considering computer time and 

storage requirements. 
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Table 9: Reliability Indices with Aging Components 

Some components are in Wear-Out stage (β =1.3) 

Indices 
LOLE 

[h] 
LOLF 
[#/h] 

EENS 
[MWh] 

Simulation time
 [m] 

IIM 41.149 3-1005.1   5890.765 20 

TST 43.084 3-1004.1   5842.243 26 

TA 43.211 3-1003.1   5942.011 39 

 

From results of Table 7-9, it can be seen that if some of components begin to 

have positive aging trend, load loss event will occur more frequently than before. The 

degree depends on the value of β , i.e., the degree of aging. These results indicate that it 

is important that the effect of aging, if present, be included in reliability evaluation 

otherwise the computed reliability may be optimistic. It is evident that the indices are 

sensitive to the value of β. The value of β to be used in a planning study will depend on 

the age of the component at the beginning of the study year and needs to be estimated 

from the field data. Table 10 and Table11 show the variation of reliability indices, LOLE 

and EENS, as  β  varies from 1.0 to 1.8. As you see from the Tables, indices are 

increased, β  becomes to grow. 

 

Table 10: LOLE Variations for Different Parameter β  

LOLE [h] 

β  1.0 1.2 1.4 1.6 1.8 

IIM 9.451 24.343 63.670 141.184 238.914 

TST 9.204 22.055 63.511 137.205 243.122 

TA 9.107 24.282 62.599 139.977 238.833 
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Table 11: EENS Variations for Different Parameter β  

EENS [MWh] 

β  1.0 1.2 1.4 1.6 1.8 

IIM 1095.567 3431.206 9531.999 22659.550 46315.685 

TST 1132.547 3288.471 9632.433 23168.273 45603.909 

TA 1098.291 3298.719 9598.238 22317.299 45466.661 
  

Now, to examine the degree of aging for different components on system 

reliability, following two cases shown in Table 12 are proposed. It is assumed that the 

remaining generators are exponentially distributed. In general, for system planning, long 

operation time is required. So simulation process is measured for five years. 

 

Table 12: Description for Case 1 and 2 

Case Applications 

1 16-19, 30 are aging 

2 23-26, 30 are aging 
 

Figure 10 and Figure 11 show the LOLE variations with different β  during five 

years in the two cases, respectively. This index is calculated only during each one year 

interval and is not accumulated. In the case of 1=β , LOLE is almost the same over time 

for both cases and the value is also equal to the results from the Table 10. This is 

because that failure rate of PLP is constant in case of 1=β .  
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Figure 10: LOLE Change for Different β  in Case 1 
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Figure 11: LOLE Change for Different β  in Case 2 
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In case 1, the total capacity of aging generators is equal to 815 MW, constituting 

26.6% from the total generator capacity of 3055 MW. In case 2, the aging capacity is 

605 MW, constituting 19.9% of the total capacity. So, aging capacity of case 1 is bigger 

than that of case 2 and failure rates of case 1 are higher than those of case 2. From these 

facts, it should be evident that LOLE of case 1 increases faster, as β  increases, or as the 

age of the system grows.   

Now, let us think about effect of variation of repair adjustment factor q in HL 1. 

A study is carried out to observe the variation of the repair adjustment factor q. This 

factor was varied from 0 to 1 and all the three methods were tested. The results obtained 

by all the three methods were very close, so only the results by the best choice, IIM 

method are shown in Figure 12. As we can see from the figure, the effect of q is not 

linear. It first increases fast and then more gradually. 

Of course the effect of q also is dependent on the value ofβ . For example for 

β equal to 1, the value of q will not have any effects on reliability since the component is 

not aging and so the failure rate at the beginning and end of an interval is equal. As the 

value of β  increases, the effect of the choice of q will have more significant effect.  And 

for the case that q is equal to one, index LOLE is all the same regardless of β , since 

failure rate after each cycle is the same, showing renewal process. The difference in 

reliability indices for different values of q can be quite significant.  
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Figure 12: LOLE for Different q with Different β  in HL 1 

 

6. 3. Composite System Reliability Evaluation 

 

Figure 13 shows the total flowchart of composite system reliability assessment. 

By linear programming, optimized value of load curtailment is calculated during 

simulation time of one year. One year consists of 364 days which are 52 weeks. 

Expected load curtailments value during one year is EENS [MWh/year] according to 

convergence criterion. Number of the event is counted every time load curtailment 

occurs.  
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Figure 13: Flowchart of Composite System Reliability Assessment 
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To go through aging effects on composite system reliability evaluation in detail, 

following cases are proposed in table 13. For case 3, transmission constraints are not 

considered. Reliability assessment is performed only by generation capacity. On the 

other hand, case 4 includes transmission system constraints. In this case, linear 

optimization technique based on DC flow is used, illustrated in Section 5. For the two 

cases, reliability indices are compared with variation of degree of aging. As non-aging 

model, HPP is applied. For aging model, Interval by Interval method is used for 

simulation by taking a PLP model. To handle aging effects, parameter β  in a PLP 

function is properly controlled, ranging from 1.0 to 1.8. 

 

Table 13: Description of Case 3 and 4 

Case Description 

3 HL 1 (generation system) 

4 HL 2 (composite system) 

 

Table 14 describes location of generating units and their capacities for each bus.  

It is assumed that aging buses are 13, 18, and 21, consisting of 1391 MW, 40.85 % of 

total capacity 3405 MW for both case 3 and 4. Hourly load data with peak load 2850 

MW are modeled from data form RTS and, bus load data is given in Table 15.  
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Table 14: Generator Bus Data 

Bus Units [MW] Capacity [MW] 

1 G6/G7/G16/G17 192 

2 G8/G9/G18/G19 192 

7 G20/G21/G22 300 

13 G27/G28/G29 591 

15 G1/G2/G3/G4/G5/G23 215 

16 G24 155 

18 G31 400 

21 G32 400 

22 G10/G/11/G12/G13/G14/G15 300 

23 G25/G26/G30 660 
 

Table 15: Bus Load Percent of System Load 

Bus 
Load 

percent 
Bus 

Load 
percent 

Bus 
Load 

percent 

1 3.8 7 4.4 15 11.1 

2 3.4 8 6.0 16 3.5 

3 6.3 9 6.1 18 11.7 

4 2.6 10 6.8 19 6.4 

5 2.5 13 9.3 20 4.5 

6 4.8 14 6.8   
 

In case 3, reliability indices for non-aging model are shown by Table 16 in HL 1 

level. For non-aging model, all generators are modeled by exponential distribution. The 

indices are almost the same as that of the case that β  is one in aging model, shown by 

Table 17. So a PLP model is an alternate for a HPP, since exponential distribution itself 

is a special case of Weibull distribution by setting the valueβ =1. As β  is increased, 

aging level becomes high. As a result, all related indices rise.  
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Table 16: Reliability Indices for Non-aging Model in HL 1 

Non-Aging 
Model 

LOLE 
[h] 

EENS 
[MWh/y] 

LOLD 
[h] 

LOLF 
[#/h] 

9.42 1095.76 2.37 4-1055.4   

 

Table 17: Reliability Indices for Aging Model in HL 1 

Aging 
Model 

β  LOLE 
[h] 

EENS 
[MWh/y] 

LOLD 
[h] 

LOLF 
[#/h] 

1.0 9.35 1113.95 2.22 4-1081.4   

1.2 54.08 8018.73 5.40 4-1045.11   

1.4 185.05 33829.67 6.13 4-1054..34   

1.6 455.07 95821.07 6.78 4-1076.76   

1.8 723.81 174535.44 7.31 4-1028.113   

 

In case 4, additional line flow limits data for linear programming are required in 

HL 2, which include impedance and rating data of transmission. Table 18 and Table 19 

show the results of composite system reliability evaluation. The indices of case 3 have 

greater values than those of case 1 regardless of aging effects of the components. This is 

because that system state that is not load curtailment in HL 1 may be determined as load 

curtailment event in HL 2. Similarly, as parameter β  is getting increased, reliability 

indices tend to grow. To visualize of aging effects on system reliability, index LOLP is 

compared with different β in HL 1 and HL 2, shown by Figure 14 and Figure 15. System 
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failure probability becomes higher as transmission system is included. Bigger value of β  

makes a system failure probability high. 

 

Table 18: Reliability Indices for Non-aging Model in HL 2 

Non-Aging 
Model 

LOLE 
[h] 

EENS 
[MWh/y] 

LOLD 
[h] 

LOLF 
[#/h] 

31.19 3978.09 3.47 3-1002.1   

 

Table 19: Reliability Indices for Aging Model in HL 2 

Aging 
Model 

β  LOLE 
[h] 

EENS 
[MWh/y] 

LOLD 
[h] 

LOLF 
[#/h] 

1.0 31.25 4101.52 3.84 3-1093.0   

1.2 140.54 24686.03 6.93 3-1032.2   

1.4 529.38 96500.03 8.08 3-1049.7   

1.6 796.65 219923.57 9.44 3-1066.9   

1.8 995.94 285900.64 9.79 3-1064.11   

 

In closing, similarly, let us go through effect of repair adjustment factor q in HL 

2. All the three methods of a NHPP simulation are tested. The results are the same, so 

only the results by the IIM method are shown in Figure 16.  
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Figure 14: LOLP Comparison between HL 1 and HL 2 

 

Like case of HL 1, the effect of q is also dependent on the value of β . For 

example for β  equal to 1, the value of q will not have any effect, showing exponential 

distribution. As the value of β  increases, the effect of the choice of q will have greater 

effect.  For a case that q is equal to one, LOLE is all the same regardless of β , since 

failure rate after each repair is the same, renewal process. It shows that the difference in 

reliability level for different values of q and β  may be quite significant.  
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Figure 15: EENS Comparison between HL 1 and HL 2 
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 Figure 16: LOLE for Different q with Different β  in HL 2 
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7. CONCLUSIONS 

 

Most components of power systems around the world have been increasingly 

getting older. Aging of components is an important fact in power system reliability 

assessment. It results from a number of different reasons: deterioration, erosion, or 

damage of equipment. Regardless of reasons, most equipment may develop aging trend 

over time. As a result, aging may become the cause of load curtailments because of 

higher system failure probability. So it is necessary to examine aging characteristics in 

system reliability or in economic evaluation. Power systems with high reliability at low 

costs offer many benefits in competitive environment. This thesis illustrates effect of 

aging on composite power system reliability evaluation. 

For non-aging model, Exponential, Weibull, Normal, Log-normal distributions 

are used to sample time to transition. These distributions are independently repeated 

every cycle. As special case, exponential renewal process is called a HPP. It is observed 

that mean up times and LOLE have almost the same values for different distributions 

because of this renewal property. For aging model, PLP, one of NHPP models, is 

introduced. This model is able to accommodate data with zero, positive, or negative 

aging trend by handling parameterβ . Three methods, IIM, TST, and TA are applied for 

generating inter-arrival time sequence, based on Power Law intensity function. IIM 

shows best method in terms of simulation time requirements for aging model of the 

proposed three methods. 
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To observe how aging influences composite power system reliability, indices 

such as LOLE, LOLD, EENS etc., are calculated and compared in both cases of HL 1 

and HL 2. As transmission system is considered in reliability studies, linear 

programming technique based on DC power flow is introduced for simulation.  

Sequential Monte Carlo based on Stochastic Process is applied to Single Area 

IEEE RTS which is used to test and analyze reliability assessment. To find out expected 

value of estimates, coefficient of variation is used for testing convergence. It is observed 

that load curtailment event takes place more often in HL 2 due to transmission 

constraints. To handle aging characteristics, parameter β  of PLP model is properly 

controlled. Three trends- zero, negative, and positive trends can be generated by setting 

proper value of β .As β is greater than one, or the aging of the system grows, probability 

and frequency of system failure become higher. Also aging adjustment factor q is 

handled for control of failure rate after repair actions. When q is zero, it does not show 

any trends indicating perfect repair. When it is one, it denotes minimal repair. General 

repair action is represented by setting q between zero and one. It is observed that aging 

grows faster, as q increases. System simulation is made during one year and five years 

for long term system planning in reliability analysis.  
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