
PERFORMANCE ANALYSIS OF FULLY JOINT DIVERSITY COMBINING,

ADAPTIVE MODULATION,

AND POWER CONTROL SCHEMES

A Thesis

by

ZIED BOUIDA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2009

Major Subject: Electrical Engineering



PERFORMANCE ANALYSIS OF FULLY JOINT DIVERSITY COMBINING,

ADAPTIVE MODULATION,

AND POWER CONTROL SCHEMES

A Thesis

by

ZIED BOUIDA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Khalid A. Qaraqe
Jean-Francois Chamberland

Committee Members, Mohamed-Slim Alouini
Mahmoud M. El-Halwagi
Srinivas Shakkottai

Head of Department, Costas Georghiades

August 2009

Major Subject: Electrical Engineering



iii

ABSTRACT

Performance Analysis of Fully Joint Diversity Combining, Adaptive Modulation,

and Power Control Schemes. (August 2009)

Zied Bouida, B.S., École Supérieure des Communications de Tunis

Co–Chairs of Advisory Committee: Dr. Khalid A. Qaraqe
Dr. Jean-Francois Chamberland

Adaptive modulation and diversity combining represent very important adap-

tive solutions for future generations of wireless communication systems. Indeed, to

improve the performance and the efficiency of these systems, these two techniques

recently have been used jointly in new schemes named joint adaptive modulation

and diversity combining (JAMDC) schemes. Considering the problem of finding low-

complexity, bandwidth-efficient, and processing-power efficient transmission schemes

for a downlink scenario and capitalizing on some of these recently proposed JAMDC

schemes, we propose and analyze three fully joint adaptive modulation, diversity

combining, and power control (FJAMDC) schemes. More specifically, the modula-

tion constellation size, the number of combined diversity paths, and the needed power

level are determined jointly to achieve the highest spectral efficiency with the lowest

possible combining complexity, given the fading channel conditions and the required

bit error rate (BER) performance. The performance of these three FJAMDC schemes

is analyzed in terms of their spectral efficiency, processing power consumption, and

error-rate performance. Selected numerical examples show that these schemes con-

siderably increase the spectral efficiency of the existing JAMDC schemes with a slight
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increase in the average number of combined paths for the low signal to noise ratio

range while maintaining compliance with the BER performance and a low radiated

power resulting in a substantial decrease in interference to co-existing systems/users.
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CHAPTER I

INTRODUCTION

More and more importance is accorded to adaptive modulation [1], [2], adaptive di-

versity combining techniques [3, 4, 5, 6], and power control [7], [8]. Many reasons are

behind the use of these key adaptive solutions. Indeed, future wireless communication

systems which will provide multimedia services to the power/size limited mobile ter-

minals are characterized by limited bandwidth and power resources. These systems

should be able to support high spectral efficiency with good link reliability. This need

for higher bandwidth efficiency motivates further optimization of the use of wireless

resources. Due to user mobility and highly time-variant propagation environments,

resource management in wireless communications becomes a difficult task. In order

to facilitate the management of these resources, adaptive techniques seem to be one

of the best solutions.

Based on multiple thresholds, adaptive modulation can achieve high spectral ef-

ficiency over wireless channels. The key idea of adaptive modulation is to adapt the

modulation parameters, such as constellation size, to fading channel conditions while

respecting the bit error rate (BER) requirements. Adaptive diversity combining, on

the other hand, improves the reliability of wireless fading channels by adapting the

combiner structure to fading channel conditions. Adaptive power control schemes, un-

like schemes using a constant-power variable-rate setup, adapt the transmitted power

to fading channels conditions while fulfilling the BER constraint. These schemes re-

duce the radiated power, and thus the potential interference to other systems/users

which implies a significant network capacity improvements.

This thesis follows the style of IEEE Transactions on Wireless Communications
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Diversity combining is a classical concept which has been used for the past half

century to combat the effects of fading on wireless systems. Over the last decade,

low-complexity diversity combining schemes operating in a diversity rich environment

received a great deal of attention. Among these schemes, generalized selection com-

bining (GSC), also known as hybrid selection/maximum ratio combining (H-S/MRC),

was the first to be proposed (e.g. [9, 10, 11, 12]). Minimum selection GSC (MS-GSC)

is an adaptive diversity combining technique that was proposed in [3] as a power-

saving implementation of GSC and further studied and analyzed in [4, 5, 6]. With

MS-GSC the receiver ranks the SNR of all available paths and then combines the

minimum number of branches in order to make the combined SNR exceed a certain

predetermined threshold. On average, MS-GSC combines less branches and hence

uses less processing power [3, 6], making it ideal for a downlink scenario where the

mobile unit is power and size limited.

These adaptive solutions have been originally studied separately. Recently, joint

adaptive solutions have been proposed and studied. For instance, while joint adaptive

modulation and diversity combining (JAMDC) schemes were introduced in [13, 14],

joint adaptive combining and power control were studied for constant-rate transmis-

sion in [15, 16]. In addition, in [17] and for the purpose of interference reduction,

Gjendemsjø et al. extended the schemes discussed in [13, 14, 15, 16] by looking at

joint adaptive modulation, diversity combining, and post-combining power control.

Capitalizing on this recent work and on the work done in [14], and in order to have

better spectral efficiency, better BER performance, and less radiated power, we offer

in this thesis a generalization of the existing schemes by proposing three fully joint

adaptive modulation, diversity combining, and power control (FJAMDC) schemes,

namely (i) a processing power efficient (PES-FJAMDC) scheme, (ii) a bandwidth

efficient (BES-FJAMDC) scheme, and (iii) a bandwidth efficient with finger deac-
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tivation (BES-FD-FJAMDC) scheme. We analyze these newly proposed schemes

in term of average spectral efficiency (ASE) (in bits/s/Hz), average BER, diversity

combining complexity, and transmit power gain and compare their performance to

that of the PES-JAMDC and the BES-JAMDC schemes proposed in [17] and to that

of the bandwidth-efficient and power-greedy scheme proposed in [14]. Selected nu-

merical examples, obtained by Monte-Carlo simulations and confirmed by analytical

results, show that the proposed FJAMDC schemes (i) have better ASE with a slight

increase in the average number of combined paths, (ii) improve the BER performance,

and (iii) maintain a low average radiated power yielding to a substantial decrease in

interference to co-existing systems/users.

The remainder of this thesis is organized as follows. In chapter II, we first

present the system and channel models, then we give the details behind the adaptive

transmission system and the underlying power control mechanism. In chapter III, we

start by presenting the details behind the mode of operation of each of the proposed

FJAMDC schemes, then we derive the statistics of their output SNR before power

control. While we analyze in chapter IV the performance of the proposed schemes, we

offer in chapter V some selected numerical examples illustrating this performance and

comparing it to that of existing schemes. Finally, chapter VI concludes the thesis.
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CHAPTER II

SYSTEM AND CHANNEL MODELS

In this second chapter, we make some assumptions concerning the system and channel

models. More specifically, we give the details behind the adaptive transmission sys-

tem, the diversity system, and the underlying power control mechanism used during

our study of the proposed FJAMDC schemes.

A. System Model

We consider a generic diversity system with L available diversity paths. This includes,

for example, RAKE receivers which are used in wideband CDMA systems to com-

bine the available resolvable multipaths. For hardware complexity considerations, we

assume that up to Lc branches can be combined at the receiver side (i.e., the number

of fingers of the RAKE receiver is limited to Lc). We also assume that the pro-

posed FJAMDC schemes have a reliable feedback path between the receiver and the

transmitter and are implemented in a discrete-time fashion. More specifically, and

as shown in Fig. 1, short guard periods are periodically inserted into the transmit-

ted signal. During these guard periods, the receiver performs a series of operation,

including (i) path estimation, (ii) combined SNR comparison with respect to the

predetermined SNR threshold, and (iii) when needed request to the transmitter high

power amplifier (HPA) to increase or decrease its gain by a specific amount. Once the

suitable paths for combining and the suitable modulation mode are selected and once

the appropriate transmitted power is reached, the combiner (at the receiver end) and

the HPA (at the transmitter) are configured accordingly, and this transmitter and

receiver settings are used throughout the subsequent data burst.
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Time

Guard Periods

... ...

Signal
Power

0

s

Data Data Data Data ... ............

Fig. 1. Block fading channel model.

B. Channel Model

We denote by γl (l = 1, 2, . . . , L), the received SNR of the lth diversity path under

nominal transmitted power from the BS1 and, as illustrated in Fig. 1, we adopt a

block flat fading channel model. More specifically, assuming slowly-varying fading

conditions, the different diversity paths experience roughly the same fading condi-

tions (or equivalently the same SNR) during the data burst and its preceding guard

period. In addition, the fading conditions are assumed to (i) be independent across

the diversity paths and between different guard period and data burst pairs, and (ii)

follow anyone of the popular fading models such as Rayleigh, Rice, or Nakagami-m.

For our study, we assume that the multipath envelop of each path follows the

Rayleigh fading model. We also assume that the fading signal envelops on all diversity

branches are mutually independent and identically distributed (i.i.d.). The PDF fγ(x)

1The BS nominal transmitted power is assumed to correspond to an initial level
of output power that is adjusted/set to minimize the average outer cell interference
in a particular deployment.
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and CDF Fγ(x) of the faded SNR γi, i = 1, . . . , L for a diversity path for Rayleigh

fading model are given by

fγi
(x) =

1

γ
exp

(

−
x

γ

)

, x ≥ 0 (2.1)

and

Fγi
(x) = 1 − exp

(

−
x

γ

)

, x ≥ 0, (2.2)

respectively, where γ is the common average faded SNR.

C. Adaptive Transmission System

We consider the constant-power variable-rate M-ary QAM [1] as the adaptive mod-

ulation system of choice for our proposed adaptive transceiver. With this adaptive

modulator, the SNR range is divided into N + 1 fading regions and the constellation

size M = 2n (where n is the number of bits per symbol) is assigned to the nth region

(n = 0, 1, . . . , N). The selection of a constellation size is based on the fading channel

state. Specifically, we partition the range of the SNR after diversity combining into

N + 1 regions, which are defined by the switching thresholds {γT n}
N
n=1, and transmit

using constellation n if the combined SNR is in the interval [γT n/Gmax, γT n+1/Gmax),

where Gmax is the transmitter gain at saturation.

The BER of 2n-QAM constellations with SNR of γ is given in [1] by

BERn(γ) =
1

5
exp

(

−3γ

2(2n − 1)

)

. (2.3)

Given a target instantaneous BER equal to BER0, the region boundaries (or adaptive

modulator switching thresholds) γT n for n = 0, 1, . . .N are given in this case by

γT n = −
2

3
ln(BER0)(2

n − 1) ; n = 0, 1, . . .N. (2.4)
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The adaptive modulator switching thresholds are given for the case of N = 4

and BER0 = 10−3 by the following table.

Table I. M-QAM SWITCHING THRESHOLDS (dB)

γdB
T1

γdB
T2

γdB
T3

γdB
T4

5.48 10.25 13.93 17.24

D. Power Control

In an ideal adaptive power control system, we can assume that the transmitter power

can be varied continuously to accurately follow channel variations. In the FJAMDC

schemes, in addition to the continuous power adaptation, we also consider power con-

trol adaptations accounting for practical implementation constraints including dis-

crete power levels (Gδ) and a transmitter gain saturation (Gmax).

In the beginning of each data burst the transmitter dB gain GdB is initially set to

0 dB with respect to the nominal transmitted power. The combined SNR after power

control is defined by Γ′ = Γ
G

, where Γ is the combined SNR before power control and

G is the value of the gain. We assume that the maximal value of the additional gain,

GmaxdB, is a multiple of the power control step size (GδdB) (i.e. GmaxdB = k ∗ GδdB

where k ∈ Z ). While for continuous adaptation G ∈ [1/Gmax,∞), for the discrete

power adaptation there are M + k power parameters:

{β−k = 1/Gmax < β−k+1 < . . . β−1 = 1/Gδ < β0 = 1 < β1 = Gδ < . . . < βM−1},

where, for practical power control settings, we have

βm =
(

Gδ

)m

for m ∈ [−k, M − 1], (2.5)

If the modulation mode n is selected and the mobile requests the base station to

increase or decrease its power then the SNR after continuous power control will reach
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the threshold γT n. For the discrete adaptation, the SNR will be varied by βm. In

order to respect the error rate constraint, the maximum power control parameter

M − 1 is given by

M − 1 = min
1≤n≤N

⌊

γT n+1dB
− GmaxdB − γT ndB

GδdB

⌋

. (2.6)
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CHAPTER III

MODE OF OPERATION OF THE FJAMDC SCHEMES

A. Processing-Power Efficient FJAMDC Scheme

1. Mode of Operation

The PES-FJAMDC scheme represents a generalization of the PES-JAMDC scheme

proposed and analyzed in [17]. The aim of our first scheme is to reduce the processing

power consumption, by combining the fewest branches possible, while improving the

spectral efficiency of the PES-JAMDC scheme. The mode of operation of the PES-

FJAMDC scheme is summarized in a flowchart given in Fig. 2. In the beginning

of each data burst, the base station transmits a training sequence using the nominal

power level βnom. After estimating and ranking the L available paths, the combiner in

the mobile’s side tries to increase the output SNR above the threshold for the lowest

constellation size by performing MS-GSC with γT 1 as output threshold. Whenever

the combined SNR Γ is larger than γT 1, the mobile stops combining and determines

the highest feasible constellation index n for the given Γ by comparing the combined

SNR to different switching thresholds {γT n/Gmax}
N
n=1. The modulation mode n (2n-

QAM) is selected if Γ is greater than γT n/Gmax but smaller than γT n+1/Gmax. If

Γ ∈ [γT n/Gmax, γT n) then the mobile asks the base station to increase its power in

order to reach the constellation size n. If, on the other hand, Γ ∈ [γT n, γT n+1/Gmax)

then the base station reduces its power level such that the modulation mode n is

still usable. If, even after combining all L paths, the lowest constellation size is not

reached (i.e Γ < γT 1/Gmax), the base station buffers the data and does not transmit

for the next time interval. In the particular case of Gmax = 1, the PES-FJAMDC

scheme reduces to the PES-JAMDC scheme.
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Fig. 2. Mode of operation of the PES-FJAMDC scheme.

2. Statistics of the Output SNR Before Power Control

The statistics of the combined SNR Γ with the PES-FJAMDC scheme can be easily

obtained based on the mode of operation of the scheme described above. We can see

that Γ is the same as the combined SNR of MS-GSC with γT 1 as the output threshold.

The CDF of the received SNR, FΓ(·), of the PES-FJAMDC based on MS-GSC is then

given by
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FΓ(γ) =















F
MSC(γT 1)
γc (γ) , γ > γT 1/Gmax;

F
MSC(γT 1)
γc (γT 1/Gmax) , 0 < γ ≤ γT 1/Gmax;

(3.1)

where F
MSC(γT 1)
γc (·) denotes the CDF of the combined SNR with L-branch MS-GSC

and using an output threshold equal to γT 1, and which is given for the i.i.d. Rayleigh

fading environment in [6, Eq. (24)].

Correspondingly, the expression of the PDF of the combined SNR with PES-

FJAMDC, fΓ(·), is given by

fΓ(γ) = fMSC(γT 1)
γc

(γ)U (γ − γT 1/Gmax)

+fMSC(γT 1)
γc

(γT 1/Gmax) δ (γ) , (3.2)

where U (·) and δ (·) are the unit step function and the delta function, respectively.

In (3.2), f
MSC(γT 1)
γc (·) denotes the PDF of the combined SNR with L-branch MS-GSC

and using an output threshold equal to γT 1, and which is given for the i.i.d. Rayleigh

fading environment in [6, Eq. (26)].

B. Bandwidth Efficient FJAMDC Scheme

1. Mode of Operation

The BES-FJAMDC scheme represents a generalization of the BES-JAMDC scheme

proposed and analyzed in [17]. Our second proposed scheme is designed to maximize

the spectral efficiency by: (i) performing all the the necessary diversity combining

aiming for the highest signal constellation, and (ii) increasing the power level that

both allows to reach the next constellation and obeys to the power constraint.
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Fig. 3. Mode of operation of the BES-FJAMDC scheme.

The mode of operation of the BES-FJAMDC is summarized in a flowchart given

in Fig. 3. In the beginning of each data burst, the base station transmits a training

sequence using the nominal power level βnom. After estimating and ranking the L

available paths, the combiner in the mobile’s side tries to increase the output SNR

above the threshold for the highest constellation size by performing MS-GSC with

γT N as output threshold. Whenever the combined SNR is larger than γT N , the

receiver selects the highest constellation size (N) and asks the transmitter to use the

lowest possible power level such that the highest modulation mode (2N -QAM) is still
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usable. If the combined SNR of all available branches is still below γT N , the mobile

determines the highest feasible constellation size. The modulation mode n is selected

by the mobile if the combined SNR is smaller than γT n+1/Gmax but greater than

γT n/Gmax. If even the lowest constellation size is not feasible, data is buffered, and

there is no transmission for the next time interval. In the particular case of Gmax = 1,

the BES-FJAMDC scheme reduces to the BES-JAMDC scheme.

2. Statistics of the Output SNR Before Power Control

The statistics of the combined SNR Γ with the BES-FJAMDC scheme can easily be

obtained based on the mode of operation of the scheme described above. We can

see that Γ is the same as the combined SNR of MS-GSC with γT N as the output

threshold. The CDF of the received SNR, FΓ(·), of the BES-FJAMDC based on

MS-GSC is given by

FΓ(γ) =















F
MSC(γT N )
γc (γ) , γ > γT 1/Gmax;

F
MSC(γT N )
γc (γT 1/Gmax) , 0 < γ ≤ γT 1/Gmax.

(3.3)

Correspondingly, the expression of the PDF of the combined SNR with PES-

FJAMDC, fΓ(·), is given by

fΓ(γ) = fMSC(γT N )
γc

(γ)U (γ − γT N/Gmax)

+fMSC(γT N )
γc

(γT 1/Gmax) δ (γ) . (3.4)
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(a) Flowchart of BES-FD-FJAMDC.

(b) Finger deactivation process.

Fig. 4. Mode of operation of the BES-FD-FJAMDC scheme.
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C. Bandwidth Efficient with Finger Deactivation FJAMDC Scheme

1. Mode of Operation

The BES-FD-FJAMDC scheme represents a generalization of the BES-FD-JAMDC

scheme proposed in [18]. Our third proposed scheme allows better processing power

efficiency at the cost of a slightly higher transmit power and BER. The aim of the

BES-FD-FJAMDC scheme is to combine the least number of diversity branches that

give the highest bandwidth efficiency (or equivalently the highest constellation size)

while satisfying the instantaneous BER requirement. The mode of operation of the

BES-FD-FJAMDC scheme is summarized in a flowchart given in Fig. 4. After the

modulation mode n is selected by the mobile, the BES-FD-FJAMDC scheme will

start the finger deactivation process summarized in Fig. 4(b). If the combined SNR is

smaller than γT n+1/Gmax but greater than γT n then the mobile selects the minimum

number of paths that are needed such that the output SNR remains greater than γT n

(i.e. turning off the weakest branches while conserving the same modulation mode).

The deactivation process is continued until turning off another diversity path leads

to an output SNR below γT n. After this, the base station reduces its power level such

that the selected constellation is still usable. If even the lowest constellation size is

not feasible, data is buffered, and there is no transmission for the next time interval.

In the particular case of Gmax = 1, the BES-FD-FJAMDC scheme reduces to the

BES-FD-JAMDC scheme.

2. Statistics of the Output SNR Before Power Control

Based on the mode of operation described above and using the expression of the CDF

of the combined SNR of the bandwidth efficient and power greedy scheme proposed

in [14], we give the expression of the CDF of the combined SNR before power control
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of the BES-FD-FJAMDC scheme as

FΓ(x) = (3.5)














































































































F
MSC(γT N )
γc (x), x ≥ γT N or

γT n/Gmax ≤ x < γT n;

F L−MRC
γc

(γT n) +
∫ x

γT n

∫ γT n+1/Gmax−γ

0
pγ1:L,z1

(γ, z) dz dγ

+
∑L−1

l=2

∫ γT n

0

∫ min[y/(l−1),x−y]

γT n−y

∫ γT n+1/Gmax−y−γ

0
pyl,γl:L,zl

(y, γ, z) dz dγ dy

+
∫ γT n

0

∫ min[y/(L−1),x−y]

γT n−y
pyL,γL:L

(y, γ)dγ dy,

γT n ≤ x < γT n+1/Gmax;

F L−MRC
γc

(γT 1/Gmax), 0 < x < γT 1/Gmax,

where F L−MRC
γc

(·) is the CDF of the combined SNR with L-branch MRC scheme and

is given in closed form for i.i.d. Rayleigh fading in [11, Eq. (25)] by

F L−MRC
γc

(x) = 1 − e−(x/γ)
L−1
∑

l=0

(

x
γ

)l

l!
. (3.6)

The closed-form expressions of the joint PDFs pγ1:L,z1
(γ, z) and pyL,γL:L

(y, γ) can be

easily obtained as marginals of the joint PDF pyl,γl:L,zl
(y, γ, z) given in closed-form

for i.i.d. Rayleigh fading in [19, Eq. (20)] by

pyl,γl:L,zl
(y, γ, z) =

L!

(L − 1)! (l − 1) γL

[y − (l − 1) γ]l−2

(l − 2)! (L − l − 1)!
e−

y+γ+z
γ U

(

y − (l − 1)γ
)

×

L−l
∑

i=0

(

L − l

i

)

(−1)i(z − iγ)L−l−1U
(

z − iγ
)

,

γ > 0, y > (l − 1)γ, z < (L − l)γ. (3.7)
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After differentiating FΓ(x) with respect to x, a generic formula for the PDF of

the output SNR with BES-FD-FJAMDC can be found as

fΓ(x) = (3.8)














































































































































f
MSC(γT N )
γc (x), x ≥ γT N or

γT n/Gmax ≤ x < γT n;

∫ γT n+1/Gmax−x

0
pγ1:L,z1

(x, z) dz

+
∑L−1

l=2

(

∫ γT n
l−1

l
x

∫ γT n+1/Gmax−x

0
pyl,γl:L,zl

(y, x− y, z) dz dy

×
(

U(x − γT n) − U(x − l
l−1

γT n)
)

)

+
∫ γT n

L−1

L
x
pyL,γL:L

(y, x− y) dy

×
(

U(x − γT n) − U(x − L
L−1

γT n)
)

,

γT n ≤ x < γT n+1/Gmax;

δ(x)F L−MRC
γc

(γT 1/Gmax), 0 < x < γT 1/Gmax.
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CHAPTER IV

PERFORMANCE ANALYSIS

A. Transmit Power Gain

While in the JAMDC schemes, the transmitter starts sending using its maximal

power, in the proposed FJAMDC schemes the transmitter starts sending using its

nominal power. Based on this nominal initial power transmitted and on the MS-GSC

diversity combining, we assume that we have a combined SNR of Γ and that we

reached the constellation size n. The transmitter will then vary its power depending

on the value of Γ.

1. Continuous Power Control

The case of continuous power adaptation will allow us to reach exactly the value

of γT n. If the combined SNR before power control Γ verifies γT n/Gmax < Γ ≤ γT n

then transmitter will increase its power by γT n/Γ. If on the other hand γT n < Γ ≤

γT n+1/Gmax, the transmitter will reduce its power by Γ/γT n. In both these cases the

transmit power gain is given by G = Γ/γT n. Hence, the average transmit power gain,

in decibels, GdB, is given by

GdB =
N

∑

n=1

∫ γT n+1/Gmax

γT n/Gmax

10 log10

(

γc

γT n

)

fΓ(γc) dγc

=

N
∑

n=1

∫ γT n+1/Gmax

γT n/Gmax

10 log10 (γc) fΓ(γc) dγc (4.1)

−
N

∑

n=1

10 log10 (γT n)

(

FΓ

(

γT n+1/Gmax

)

− FΓ (γT n/Gmax)

)

,

where we define γT N+1 = ∞.
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2. Discrete Power Control

Let us start by summarizing the choice of the power parameter β for the discrete

power adaptation. For γT n/Gmax < Γ ≤ γT n+1/Gmax, n ≥ 1, and −k ≤ m ≤ M − 1

β = βM−1, iff
Γ

γT n

≥ βM−1

...

β = βm−1, iff βm−1 ≤
Γ

γT n

< βm

...

β = β0 = 1, iff β0 ≤
Γ

γT n

< β1

... (4.2)

β = β−m+1, iff β−m+1 ≤
Γ

γT n

< β−m

...

β = β−k =
1

Gmax

, iff β−k ≤
Γ

γT n

< β−k+1

The average transmit dB power gain is then given by

GdB =

N
∑

n=1

∫ γT n+1/Gmax

γT n/Gmax

10 log10

(

γc

γc/β

)

fΓ(γc) dγc

=
N

∑

n=1

∫ γT n+1/Gmax

γT n/Gmax

10 log10 (β) fΓ(γc) dγc (4.3)

=

N
∑

n=1

M−1
∑

m=−k

10 log10 (βm)

(

FΓ (γT nβm+1) − FΓ (γT nβm)

)

,

where γT nβM = γT n+1/Gmax.
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B. Average Number of Combined Paths

We quantify the power consumption for diversity combining in terms of the average

number of combined paths. For the PES-FJAMDC scheme, it can be shown that the

average number of combined paths is given by

N c = 1 +
L−1
∑

i=1

F L/i−GSC
γc

(γT 1) − LF L−MRC
γc

(γT 1/Gmax), (4.4)

where F
L/i−GSC
γc (·) is the CDF of the combined SNR with L/i-GSC scheme and is

given in closed-form for i.i.d. Rayleigh fading in [20] by

F L/i−GSC
γc

(γ) = 1 −
i−1
∑

l=0

Al γ
l e−γ/γ

γ l l!
+

L−i
∑

k=1

Bk e−(1+k/i) γ/γ , γ ≥ 0, (4.5)

where

Al =
i−l−1
∑

j=0

al+j = al + Al+1, with A−1 = 0, (4.6)

where

ai−1−l =

(

L

i

) L−i
∑

k=1

(

L − i

k

)

(−1)k+l+1 i l

kl
, (4.7)

and

Bk =
i bk

k + i
, (4.8)

where

bk =

(

L

i

) (

L − i

k

)

(−1)i+k i i−1

k i−1
. (4.9)

Using Eqs. (3.6) and (4.5), we obtain the average number of combined paths of
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the PES-FJAMDC scheme in closed form as

N c =

L−1
∑

i=1

[

L−i
∑

k=1

Bk e−(1+k/i) γT 1/γ −

i−1
∑

l=0

Al γT 1
l e−γT 1/γ

γ l l!

]

(4.10)

+L e−
γT 1

γ Gmax

L−1
∑

l=0

(

γT 1

γ Gmax

)l

l!

Similarly, it can be shown that the average number of combined paths for the BES-

FJAMDC scheme is given by

N c = 1 +

L−1
∑

i=1

F L/i−GSC
γc

(γT N) − LF L−MRC
γc

(γT 1/Gmax). (4.11)

which is also given in closed form by

N c =

L−1
∑

i=1

[

L−i
∑

k=1

Bk e−(1+k/i) γT N/γ −

i−1
∑

l=0

Al γT N
l e−γT N/γ

γ l l!

]

(4.12)

+L e−
γT 1

γ Gmax

L−1
∑

l=0

(

γT 1

γ Gmax

)l

l!
.

The average number of combined paths for the BES-FD-FJAMDC can be calcu-

lated as [14, Eq. (24), Option 2]

Nc =
L

∑

l=1

N
∑

n=1

l Pl,n, (4.13)

where Pl,n denotes the probability that mode n is used with l combined branches.

Based on the mode of operation of the BES-FD-FJAMDC, the expression of Pl,n

is given, for n = N , by
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Pl,N

=















1 − F
L/1−GSC
γc (γT N/Gmax) , l = 1;

F
L/(l−1)−GSC
γc (γT N/Gmax) − F

L/l−GSC
γc (γT N/Gmax) , 1 < l ≤ L;

(4.14)

=















∑L−1
k=1 L

(

L−1
k

) (−1)k

k+1
e−(k+1)

γT N
γ Gmax , l = 1;

F
L/(l−1)−GSC
γc (γT N/Gmax) − F

L/l−GSC
γc (γT N/Gmax) , 1 < l ≤ L;

(4.15)

and for n < N by

Pl,n (4.16)

=















































































Pr
[

γT n ≤ γ1:L&
∑L

j=1 γj:L < γT n+1/Gmax

]

, l = 1;

Pr
[

∑l−1
j=1 γj:L < γT n ≤

∑l
j=1 γj:L&

∑L
j=1 γj:L < γT n+1/Gmax

]

, 1 < l < L;

Pr
[

∑L−1
j=1 γj:L < γT n ≤

∑L
j=1 γj:L < γT n+1/Gmax

]

+Pr
[

γT n/Gmax ≤
∑L

j=1 γj:L < γT n

]

, l = L;

Using the same steps and the definitions of the joint PDF’s of yl, γl:L, and zl as

in [14], and taking Gmax into consideration, (4.16) can be calculated as
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Pl,n

=















































































































∫

γT n+1

Gmax

γT n

∫

γT n+1

Gmax
−γ

0 pγ1:L,z1
(γ, z) dz dγ, l = 1;

∫

l−1

l

γT n+1

Gmax

l−1

l
γT n

∫

y
l−1

γT n−y

∫

γT n+1

Gmax
−y−γ

0 pyl,γl:L,z1
(y, γ, z) dz dγ dy

+
∫ γT n

l−1

l

γT n+1

Gmax

∫

γT n+1

Gmax
−y

γT n−y

∫

γT n+1

Gmax
−y−γ

0 pyl,γl:L,z1
(y, γ, z) dz dγ dy, 1 < l < L;

∫

L−1

L

γT n+1

Gmax

L−1

L
γT n

∫

y
L−1

γT n−y pyL,γL:L
(y, γ) dγ dy

+
∫ γT n

L−1

L

γT n+1

Gmax

∫

γT n+1

Gmax
−y

γT n−y pyL,γL:L
(y, γ) dγ dy

+
(

FΓ(γT n) − FΓ(γT n/Gmax)
)

, l = L;

(4.17)

where FΓ(·) is the CDF of the combined SNR with BES-FD-FJAMDC and it is given

in (3.5).

C. Average Spectral Efficiency

A general expression of the average spectral efficiency of an adaptive modulation

system is given in [1, Eq. (33)] by

η =
N

∑

i=1

n pn, (4.18)

where pn denotes the probability that the nth constellation is used. The expression

of this probability is given for the PES-FJAMDC scheme by

pn = F MSC(γT 1)
γc

(

γT n+1/Gmax

)

− F MSC(γT 1)
γc

(γT n/Gmax) . (4.19)

Using the above expression of pn and (4.18), we obtain the following expression
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of the average spectral efficiency of the PES-FJAMDC scheme

η = N −
N

∑

n=1

F MSC(γT 1)
γc

(γT n/Gmax) . (4.20)

Similarly, the expression of pn for the BES-FJAMDC, which is equal to that of

the BES-FD-FJAMDC scheme, can be shown to be given by

pn = F MSC(γT N )
γc

(

γT n+1/Gmax

)

− F MSC(γT N )
γc

(γT n/Gmax) . (4.21)

Then the BES-FJAMDC and the BES-FD-FJAMDC schemes have the same

spectral efficiency given by

η = N −
N

∑

n=1

F MSC(γT N )
γc

(γT n/Gmax) . (4.22)

D. Statistics of the Output SNR After Power Control

In order to analyze the bit error rate performance of the three proposed schemes, a

statistical characterization of the combined SNR after power control is needed. Based

on the mode of operation of the FJAMDC schemes, described in chapter III, we give

in what follows the expressions of the PDF and the CDF of the combined SNR after

power control for both continuous and discrete adaptations.

1. Continuous Power Control

Assuming that the modulation mode n has been chosen, the combined SNR after

continuous power control, Γ′, will be set to γT n. The expression of the PMF is then

given, for 0 ≤ n ≤ N , by
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fΓ′(γ′
c) =















FΓ(γT n+1/Gmax) − FΓ(γT n/Gmax), γ′
c = γT n;

0, otherwise;

(4.23)

where we define γT 0 = 0, and γT N+1 = ∞.

The expression of the CDF is then given, for 0 ≤ n ≤ N , by

FΓ′(γ′
c) =















FΓ(γT n+1/Gmax), γT n/Gmax ≤ γ′
c < γT n+1/Gmax;

0, γ′
c < 0;

(4.24)

2. Discrete Power Control

If the combined SNR before power control falls between γT n/Gmax and γT n+1/Gmax,

then the transmitter will vary its power in order to use the constellation size n with a

minimum amount of transmitted power. Starting from the mode of operation of the

proposed schemes, constraining on the length of [γT n, γT n+1/Gmax], and using the

same steps as in [17], we give a simplified expression for the PDF of the combined

SNR after power control as

fΓ′(γ′
c) =















































































∑M−2
j=−k βj fΓ(βj γ′

c)

+βM−1 fΓ(βM−1 γ′
c)U

(

γT n+1

βM−1 Gmax
− γ′

c

)

, γT n ≤ γ′
c < γT n β1;

βM−1 fΓ(βM−1 γ′
c), γT n β1 ≤ γ′

c <
γT n+1

βM−1 Gmax

&γT n βM−1 Gδ ≤
γT n+1

Gmax
;

0, otherwise;

(4.25)
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E. Average Error Rate

The general expression of the average BER for an adaptive modulation system is

given in [1, Eq. (35)] as

BER =
1

η

N
∑

n=1

n BERn, (4.26)

where BERn is the average BER for constellation size n, and is given, using (2.3), by

BERn =

∫ γT n+1/Gmax

γT n/Gmax

BERn (γ′) fΓ′ (γ′) dγ′. (4.27)

Using Eq. (4.27) in Eq. (4.26), we can write

BER =

∑N
n=1 n

∫ γT n+1/Gmax

γT n/Gmax
BERn (γ′) fΓ′ (γ′) dγ′

η
. (4.28)
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CHAPTER V

NUMERICAL EXAMPLES

The performance of the FJAMDC schemes is illustrated in this chapter with some

selected numerical results. For these examples we set the number of available diversity

branches L = 3, the number of signal constellations N = 4, the maximum value of the

dB additional gain GmaxdB = 1 dB, and the bit error rate constraint as BER0 = 10−3.

In the particular case of Gmax = 1 (i.e. GmaxdB = 0), the performance of our

proposed schemes will reduce to that of the JAMDC schemes that we use in this

chapter as comparison with the FJAMDC schemes.
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Fig. 5. Average spectral efficiency versus the average SNR per branch, γ, comparison

between the JAMDC and FJAMDC schemes.
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A. Average Spectral Efficiency and Number of Combined Paths

Fig. 5 illustrates the spectral efficiency improvement that is offered by the the pro-

posed FJAMDC schemes over the JAMDC schemes. This improvement comes at the

expense of a higher number of combined paths in the low SNR range as shown in Fig.

6.
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Fig. 6. Average number of combined paths versus the average SNR per branch, γ,

comparison between the JAMDC and FJAMDC schemes.

These results are explained by the fact that the transmitter in the JAMDC

schemes used to buffer the data whenever the combined SNR does not reach the lowest

constellation size after combining all the available L paths, but in the FJAMDC

schemes if the combined SNR Γ is lower than γT 1 but higher than γT 1/Gmax, the



29

transmitter will send using the lowest constellation size and combining all the L

available paths. For an average SNR above 20 dB, we can see that for both JAMDC

and FJAMDC schemes one diversity path is enough to utilize the highest constellation

size (i.e. 16−QAM modulation).

We can also see from Fig. 6 that, thanks to the finger deactivation process, the

BES-FD-FJAMDC scheme has better processing power performance than the BES-

FJAMDC while keeping the same spectral efficiency.

B. Transmit Power Gain
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Fig. 7. Average transmit power for continuous adaptation versus the average SNR per

branch, γ, for the three proposed schemes.
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Fig. 7 compares the average transmitted power gain of our three proposed schemes.

We can clearly see from this figure that the BES-FD-FJAMDC scheme has the lowest

average transmit dB gain. This is explained by the fact that the finger deactivation

process will turn off all the weakest branches while conserving the same modulation

mode. We can also see from this figure that for the low SNR range the BES-FJAMDC

scheme has higher average transmit gain than the PES-FJAMDC, or equivalently

lower average radiated power, since the processing power efficient scheme will stop

combining as soon as Γ ≥ γT 1 while the BES-FJAMDC continue the combining

process allowing to reach higher SNR and higher power gain.
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Fig. 8. Average transmit power for the PES-FJAMDC scheme versus the average SNR

per branch, γ.
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Fig. 9. Average transmit power for the BES-FJAMDC scheme versus the average SNR

per branch, γ.

We depict in Figs. 8 and 9 the average transmit power gain versus the average

SNR per branch for the PES-FJAMDC and the BES-FJAMDC schemes for both,

continuous and discrete adaptations. These figures confirm that the introduction of

power control reduces significantly the average radiated power. We also see from

these figures that the lower is the power control step size, the higher is the power

gain, and then the lower is the average radiated power.

The shape of the graphs in Figs. 8 and 9 can be explained as follows. As seen from

Fig. 5, at very low SNR data is buffered, hence no transmit power gain is possible.

Increasing the branch SNR up to the intermediate range, we observe a steady increase
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in transmit power gain. In the intermediate range, we see a slight decrease in the

power gain, due to a combination of that i) the increased branch SNRs are used to

facilitate larger constellations, and ii) the two intermediate intervals for constellations

n = 2, 3 are shorter than the interval for n = 1, as seen from Table I. At high SNR

the maximum reduction for discrete level transmit power control is limited by the

length of the shortest interval according to the expression of M − 1 given in (2.6)

and to the values of the switching thresholds given by Table I. This explains why

the average transmit power gain saturates in different values depending on the used

power control step size. This is not the case for the continuous power adaptation

since for the high SNR range the gain with continuous power control is unbounded.

C. BER Performance

In Fig. 10, we show the BER of the FJAMDC proposed schemes. For reference, we

also compare the BER performances of the BES-FJAMDC, the PES-FJAMDC, and

the BES-FD-FJAMDC schemes using constant full power.

For continuous power control adaptation, the three proposed schemes have the

same BER performance. For this case, the BER is constant and is equal to BER0,

since the combined SNR after continuous power control will be set to the switching

threshold corresponding to the used constellation. For discrete power control adapta-

tion, we show that the BES-FJAMDC scheme has slightly better error performance

than the PES-FJAMDC scheme. The reason behind this is that in the low SNR

range the BES-FJAMDC scheme needs to combine more branches than the PES-

FJAMDC. We also show from this figure that the BES-FD-FJAMDC has a slightly

higher BER than the two other schemes. The reason behind this is the finger deacti-

vation process which decreases the average number of combined paths while keeping
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a higher transmitted power.
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Fig. 10. Average bit error rate versus the average SNR per branch, γ, when

L = 3, N = 4, and with a BER constraint BER0 = 10−3.
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CHAPTER VI

CONCLUSION

Future wireless communication systems, which will provide multimedia services to

the power/size limited mobile terminals, are characterized by limited bandwidth and

power resources. These systems should be able to support high spectral efficiency

with good link reliability. This need for higher bandwidth efficiency motivates further

optimization of the use of wireless resources. Due to user mobility and highly time-

variant propagation environments, resource management in wireless communications

becomes a difficult task. In order to facilitate the management of these resources,

adaptive techniques seem to be one of the best solutions. These adaptive solutions

include adaptive modulation, adaptive diversity combining, and power control.

Capitalizing on some recently proposed schemes using these three techniques

jointly, and in order to have better spectral efficiency, better BER performance, and

less radiated power, we offered in this thesis a generalization of the existing schemes

by proposing three fully joint adaptive modulation, diversity combining, and power

control FJAMDC schemes. These schemes can be viewed as general variants of some

existent joint adaptive modulation and diversity combining schemes using post com-

bining power control, by the introduction of a joint power control process that can

both increase and decrease the power level.

In this thesis, we gave the modes of operation of the proposed schemes and ana-

lyzed their performance in terms of average spectral efficiency, average BER, diversity

combining complexity, and transmit power gain and compared this performance to

that of the PES-JAMDC and the BES-JAMDC schemes proposed in [17] and the

bandwidth-efficient and power-greedy scheme proposed in [14]. Selected numerical

examples show that the newly proposed schemes considerably increase the spectral
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efficiency with a slight increase in the average number of combined path for the

low SNR range while maintaining compliance with the BER performance and a low

radiated power which leads to a substantial decrease in interference to co-existing

systems/users.
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