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ABSTRACT

Center Manifold Analysis of Delayed Liénard Equation and Its Applications.

(August 2009)

Siming Zhao, B.E., Harbin Institute of Technology, China

Chair of Advisory Committee: Dr. Tamás Kalmár-Nagy

Liénard Equations serve as the elegant models for oscillating circuits. Motivated

by this fact, this thesis addresses the stability property of a class of delayed Liénard

equations. It shows the existence of the Hopf bifurcation around the steady state.

It has both practical and theoretical importance in determining the criticality of the

Hopf bifurcation. For such purpose, center manifold analysis on the bifurcation line

is required. This thesis uses operator differential equation formulation to reduce the

infinite dimensional delayed Liénard equation onto a two-dimensional manifold on

the critical bifurcation line. Based on the reduced two-dimensional system, the so

called Poincaré-Lyapunov constant is analytically determined, which determines the

criticality of the Hopf bifurcation. Numerics based on a Matlab bifurcation toolbox

(DDE-Biftool) and Matlab solver (DDE-23) are given to compare with the theoretical

calculation. Two examples are given to illustrate the method.
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CHAPTER I

INTRODUCTION

A. Motivation and Literature Review

Starting from the early days of nonlinear dynamics, there has been a great deal of

research in nonlinear oscillators. In particular, during the development of radio and

vacuum tubes, Liénard equations were intensely studied since they served as elegant

models of oscillating circuits. These equations are second-order differential equations

of the form [1]

ẍ + f(x)ẋ + g(x) = 0, (1.1)

it is a generalization of the Van der Pol and unforced Duffing equation. It can be

interpreted mechanically as the equation of motion for a unit mass subjecting to a

damping force −f(x)ẋ and a restoring force −g(x). With appropriate hypotheses on

f(x) and g(x), this equation admits an unique stable limit cycle. See [2] for a proof.

This thesis considers a delayed version of the above Liénard equation, which

assumes the form

ẍ(t) + f(x(t))ẋ + g(x(t− τ)) = 0, (1.2)

where f, g ∈ C4, f(0) = K > 0, g(0) = 0, g′(0) = 1, and τ > 0 is a finite time delay.

Equation of type (1.2) is called delay differential equation (DDE). At each time

instant, the behavior of the system not only depends on the current states, but

also on the past ones. A good exposition of delay equations can be found in [3].

Several classical methods developed to study ordinary differential equations can be

well applied to DDEs, these include the method of multiple scales [4], the Lindstedt-

The journal model is IEEE Transactions on Automatic Control.
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Poincaré method [5, 6], harmonic balance [7] and the averaging method [8]. Among

all the available methods, center manifold theory [9] is one of the most rigorous

mathematical tools to study local bifurcations of delay differential equations [10].

Luk [11] and Zhang [12] derived necessary and sufficient conditions for the bound-

edness of all solutions by using Lyapunov-functional approach. Zhang [13] and Omari

[14] showed the existence of periodic orbits for this equation. Metzen [15] proved the

existence of periodic orbits in a Duffing-type equation with delay and studied the

effects of delay on the solvability of the problem. Acosta and Lizana [16] and Xu and

Lu [17] investigated the linear stability of equation (1.2). Xu and Lu [17] performed

a center manifold based Hopf bifurcation analysis. Campbell et al. [18] also used

center manifold analysis of single and double Hopf bifurcations of a similar second

order delay-differential-equation. Colonius [19] studied optimal periodic control of

(1.2).

B. Problem Statement

The goal of this thesis is to investigate the bifurcation structure of the steady state

of equation (1.2), i.e. how time delay and the nonlinearities affect system dynamics.

This is an important problem of both application and theoretical merit.

In this thesis, center manifold reduction is used to project this infinite dimen-

sional system onto a two dimensional local manifold which describes the local dy-

namics of the the system. Xu and Lu [17] first proposed this problem. But in their

analysis, the curvature of the center manifold, caused by the quadratic terms, was

not accounted. It will be considered in this thesis.

The main challenge of this thesis is the analytical determination of the criti-

cality of the Hopf bifurcation. It requires operator formulation and large symbolic
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calculations.

C. Outline of the Thesis

This thesis is organized as follows. Mathematical preliminaries required are reviewed

in Chapter II. Main results are presented in Chapter III. Chapter IV contains numer-

ical simulations. Chapter V shows two examples to illustrate this method. Lastly,

Chapter VI concludes the thesis.
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CHAPTER II

MATHEMATICAL PRELIMINARIES

Center manifold analysis of delay differential equations requires mathematical tools

such as advanced calculus and functional analysis. The work here is an extension

and application of well established theory on delay differential equations ([10]). Main

mathematical techniques that will be used throughout this thesis are the topics of

this chapter.

A. Delay Differential Equation

In most engineering applications, system is modeled by ordinary differential equation

which assumes future behavior of the system is uniquely determined by the present

states and independent of the past. In delay differential equation (DDE), the past

exerts its influence on the future in a significant manner. In this section, some basics

on DDE will be discussed. The contents followed Hale [10] and Niculescu [20].

1. Definition, Existence and Uniqueness

This thesis will adapt definitions from [10]. Let C([a, b], Rn) be the Banach space

of continuous functions mapping the interval [a, b] into Rn. If t0 ∈ R, d > 0 and

x ∈ C([t0 − τ, t0 + d], Rn), then for any t ∈ [t0, t0 + d], let xt ∈ C be defined by

xt(θ) = x(t + θ),−τ 6 θ 6 0. The following relation

ẋ = f(t,xt), (2.1)

is called functional differential equation. Equations of this type are very general and

it includes delay differential equation (DDE).

A function x is said to be a solution of (2.1) if there exists t0 ∈ R, d > 0



5

such that x ∈ C([t0 − τ, t0 + A], Rn) and x satisfies (2.1) for t ∈ (t0, t0 + d). In

this case x is defined as a solution of (2.1) on [t0 − τ, t0 + d) with initial condition

x(t0 + δ) = φ(δ), δ ∈ [−τ, 0].

If the function f(t,x) is continuous and it satisfies local Lipschitz condition in

terms of x, then solution x defined above exists and is unique. The solution is also

continuous dependent on the initial data φ(δ), δ ∈ [−τ, 0].

2. Step Method

Step method was first proposed by Bellman and Cooke [3]. Almost all existing DDE

numerical solvers are based on this method. More discussion and further references

can be found in Cryer [21]. Consider the following DDE

ẋ = f(t,x,x(t− τ)), (2.2)

with initial data x(t0 + δ) = φ(δ), δ ∈ [−τ, 0].

In order to propagate the equation, the ’minimum’ amount of initial data nec-

essary for the existence of a solution is the initial function defined in the interval

[t0 − τ, t0]. From (2.2), it can be observed that the solution x(t0, φ) on the interval

[t0, t0 + τ ] is defined by the solution of

ẋ1 = f(t,x1,x1(t− τ)) = f(t,x1,x(t− τ)), ∀t ∈ [t0, t0 + τ) (2.3)

since the initial data x(t− τ), t ∈ [t0, t0 + τ) is given, solution x(t0, φ) on the interval

[t0, t0 + τ) can be solved as an ordinary differential equation with initial condition

x1(t0) = x(t0) = φ(0).

Apply same procedure on the next interval [t0 + τ, t0 + 2τ ], the solution x(t0, φ)
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on [t0 + τ) is defined by the solution of

ẋ2 = f(t,x2,x2(t− τ)) = f(t,x2,x1(t− τ)), ∀t ∈ [t0 + τ, t0 + 2τ) (2.4)

where x1(t− τ) = x1(δ), δ ∈ [t0, t0 + τ).

By iteration, this procedure can be continued, the solution of DDE (2.2) can be

solved up to any finite time.

3. Stability Property of DDE

Let CH = ψ ∈ C : |ψ| < H. Consider system (2.1) with f(t,0) ≡ 0 which satisfies all

conditions for existence and uniqueness of the solutions. Solution x = 0 is a trivial

solution of the system, it’s stability is defined as

Definition 1. [10]

The solution x = 0 of (2.1) is called stable at t0, t0 > 0 if

1. There exists a b = b(t0) > 0 such that ψ ∈ Cb = ψ ∈ C : |ψ| < b implies the solu-

tion x(t0, ψ) of (2.1) exists for t > t0 and xt(t0, ψ) is in CH = ψ ∈ C : |ψ| < H

for t > t0.

2. For every ε > 0, there exists a δ = δ(t0, ε) > 0 such that ψ ∈ Cδ = ψ ∈ C : |ψ| < δ

implies the solution x(t0, ψ) satisfies xt(t0, ψ) ∈ Cε = ψ ∈ C : |ψ| < ε for t > t0.

The solution x = 0 of (2.1) is called asymptotically stable at t0, t0 > 0 if it is

stable and there exists an H0 = H0(t0) such that ψ ∈ CH0 implies the solution x(t0, ψ)

satisfies

lim
t→∞

|xt(t0, ψ)| = 0.

The solution x = 0 of (2.1) is called unstable at t0 if it is not stable at t0.

Similar like ODE, Lyapunov stability analysis can also be applied into DDE. If
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there exists a continuous function V : R+ × CH → R, define

V̇ (t, ψ) = lim sup
h→0

1

h
[V (t + h,xt+h(t, ψ))− V (t, ψ)], (2.5)

where xt+h(t, ψ) is the solution of (2.1). Then the following theorem can be applied

to determine Lyapunov stability.

Theorem 1. [10]

Suppose f takes closed bounded sets of R+ × CH into closed bounded sets of Rn.

Suppose u(s), v(s) and w(s) are continuous functions for s ∈ [0, H). Both u(s) and

v(s) are positive and nondecreasing for s 6= 0, u(0) = v(0) = 0, w(s) is nonnegative

and nondecreasing. If there exists a continuous function V : R+×CH → R such that

u(|ψ(0)|) 6 V (t, ψ) 6 v(|ψ|),

V̇ (t, ψ) 6 −w(|ψ(0)|),

then solution x = 0 of (2.1) is uniformly stable. If, in addition, w(s) > 0 for

s > 0 while w(s) is nondecreasing, then the solution x = 0 of (2.1) is uniformly

asymptotically stable.

Local linear stability of the solution x = 0 is determined by the characteristic

equation of the linearized equation around x = 0

ẋ = Ax + Bx(t− τ), (2.6)

the following defines the characteristic equation of (2.1) around x = 0

F(λ) = det(λI − A−Be−λτ ). (2.7)

This is a transcendental equation with infinite number of zeros. One of common

ways in analyzing this equation is to substitute λ = iω into it, which corresponds to
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stability boundary of the system. Later in the thesis, the procedure will be further

elaborated. For more discussions on the distribution of zeros of such characteristic

equation, see Bellman and Cooke [3], Stépán [22] and MacDonald [23].

B. Center Manifold Theory

Center manifold theory is one of the most powerful tools to study local behaviors

of a dynamical system. It forms the foundation for bifurcation theory. Here in this

section, center manifold theory for ODE will be briefly introduced. It systematically

followed Kuznetsov [24].

First, consider the following linear system

ẋ = Ax, (2.8)

where A is a n×n matrix. The system has invariant subspaces Es, Ec and Eu which

are spanned by the generalized eigenvectors which in turn corresponds to eigenvalues

having negative, zero and positive real parts. Solutions of this system will decay to

zero/neither grow nor decay/become unbounded if initial conditions are started from

Es/Ec/Eu.

If the linearized version of a nonlinear system around the fixed point has zero

eigenvalues, this equilibrium is called non-hyperbolic fixed point. The main idea for

center manifold theory is to find an invariant manifold passing through this fixed

point to which the system could be restricted in order to study local behaviors of the

fixed point. Consider the following nonlinear system

ẋ = f(x), x ∈ Rn, (2.9)

where f is sufficiently smooth, f(0) = 0. Let the eigenvalues of the Jacobian ma-
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trix evaluated at the fixed point x0 = 0 be λ1, λ2, . . . , λn. Assume that there

are n−/n0/n+ eigenvalues with negative/zero/positive real parts, they span linear

eigenspaces Es, Ec and Eu correspondingly. Rewriting (2.9) in an eigenbasis formed

by all eigenvectors of its Jacobian matrix

u̇ = Bu + g(u,v),

v̇ = Cv + h(u,v), (2.10)

where u ∈ Rn0 , v ∈ Rn++n− , matrix B has all its eigenvalues on the imaginary axis.

A center manifold W c of the system (2.10) can be locally represented as the graph of

a smooth function (Figure 1)

W c = {(u,v) : v = V(u,v)},

where V : Rn0 → Rn++n− . Since W c is tangent at the fixed point, V = O(||u||2).

x0

Re v1

v3

Im v1

W
c

λ1

λ2

λ3

Fig. 1. A 2-D center manifold as the graph of a function v = V(u).
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The following theorem tells the existence and property of the center manifold. It

is beautifully introduced and proved by Carr [25].

Theorem 2. There exists a smooth n0-dimensional invariant manifold Vc of (2.10)

which is tangent to Ec at t = 0. The dynamics of (2.10) restricted to the center

manifold in the neighborhood of the fixed point is given by

u̇ = Bu + g(u,V(u)), (2.11)

the above system is topologically the same with (2.10).

The obvious question now is how to compute the center manifold. Differentiating

v = V(u) with respect to time implies v̇ = DVu̇. Substituting (2.10) into the above

differentiated form gives a condition each center manifold needs to satisfy

N (
V(u)

) ≡ DV[Bu + g(u,V(u))]−Cv − h(u,V(u)) = 0, (2.12)

the above equation is a quasilinear partial differential equation which is a necessary

condition for V(u) to be an invariant manifold.

This equation is very difficult to solve. But the following theorem gives a method

for computing an approximate solution of (2.12), the proof is also in Carr [25]

Theorem 3. Let φ : Rn0 → Rn++n− be a mapping with φ(0) = Dφ(0) = 0 such that

N (
φ(u)

)
= O(|u|q) as u → 0 for some q > 1. Then

|V(u)− φ(u)| = O(|u|q), u → 0. (2.13)

Theorem 2 allows the center manifold to be computed to any desired degree of

accuracy by solving (2.12) to the same degree of accuracy. For this reason, power series

expansions will work out nicely. In this thesis, second order power series expansion

will be used to approximate the center manifold.
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CHAPTER III

MAIN RESULTS1

The main results of this thesis are presented in this chapter. Followed by linear

stability analysis, operator differential form is formulated in order to project the

infinite dimensional system onto a two dimensional manifold. The so called Poincaré-

Lyapunov constant is calculated based on the projected equation.

A. Model Description and Linear Stability Analysis

The equation considered here assumes the form

ẍ(t) + f(x(t))ẋ + g(x(t− τ)) = 0, (3.1)

where f, g ∈ C4, f(0) = K > 0, g(0) = 0, g′(0) = 1, and τ > 0 is a finite time delay.

Obviously, x ≡ 0 is the null solution of the equation.

Equation (3.1) can be rewritten in the following state space form

ẋ(t) = y(t)− S(x(t)),

ẏ(t) = −g(x(t− τ)), (3.2)

where S(x) =
∫ x

0
f(δ)dδ.

Expanding (3.2) in the neighborhood of the null solution up to third order yields

ẋ(t) = y(t)−Kx(t) + ax2(t) + bx3(t),

ẏ(t) = −x(t− τ) + cx2(t− τ) + dx3(t− τ), (3.3)

1Reprinted with permission from S.M. Zhao and T. Kalmár-Nagy, Center man-
ifold analysis of the delayed Liénard equation, Delay Differential Equations-Recent
Advances and New Directions, pp. 203219, Balachandran, B., Kalmár-Nagy, T.,
Gilsinn, D.E. (Eds.), copyright[2009] by Springer.
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where a = −1
2
f ′(0), b = −1

6
f ′′(0), c = −1

2
g′′(0), and d = −1

6
g′′′(0). By defining a new

vector z = (x, y)T , the above system can be written in vector form

ż(t) = Lz(t) + Rz(t− τ) + f (z) , (3.4)

where

L =



−K 1

0 0


 , R =




0 0

−1 0


 , f (z) =




ax2 + bx3

cx2(t− τ) + dx3(t− τ)


 .

(3.5)

The above third order Taylor expanded form (3.3) up to is topological equivalent

to the original nonlinear system [26]. The center manifold analysis in this thesis is

based on this expanded form (3.3).

Note that state space form (3.2) is not unique. The reason why (3.2) is used here,

is that the nonlinearity f(z) only contains the first component of the state vector z,

which can simplify further calculations.

Neglecting the higher order terms yields the following linear system which will

be used to carry out linear stability analysis

ż(t) = Lz(t) + Rz(t− τ), (3.6)

whose characteristic equation reads

λ2 + Kλ + e−λτ = 0. (3.7)

On the stability boundary, the characteristic equation (3.7) has a pair of pure

imaginary roots. To find out such roots, substituting λ = iω, ω > 0 into (3.7) and
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separating the real and imaginary parts

ω2 = cos ωτ,

Kω = sin ωτ. (3.8)

Using simple trigonometry, (3.8) can be reduced to

K =

√
1− ω4

ω2
,

τ =
1

ω
(2nπ + arctan

K

ω
), (3.9)

where 0 < ω < 1 and n is a nonnegative integer.

Note that (3.9) describes infinitely many curves in the (τ, K) plane, but the the

first branch (n = 0) (shown in Figure 2) actually separates the stable and unstable

regions (this is a consequence of a theorem by Hale [10]).

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

τ

K

Stable region

Unstable region

Fig. 2. Linear stability boundary of the delayed Liénard equation.

For a fixed time delay τ , the critical value of the bifurcation parameter K (i.e.

on the stability boundary) will be denoted by k. A necessary condition for the
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existence of periodic orbits is that by changing bifurcation parameter K, the critical

characteristic roots cross the imaginary axis with nonzero velocity, i.e. dλ/dK |K=k 6=
0. Taking the first derivative with respect to K in (3.7) and using (3.9) gives

γ = Re
dλ

dK
|K=k=

ω2(2 + kτ)

(k − τω2)2 + (2ω + kτω)2
> 0, (3.10)

which means that the root crossing velocity is positive. This velocity γ will later be

used to estimate the vibration amplitude.

In order to prove the existence of the Hopf bifurcation, criticality of such bifur-

cation needs to be addressed, which requires normal form of the Hopf bifurcation on

the local manifold around the origin. It is a well established procedure from Hale [10].

The following sections will closely follow a friendly-explained version by Kalmár-Nagy

et al. [27].

B. Operator Differential Equation Formulation

Generally delay differential equations can be expressed as abstract evolution equations

on the Banach space H of continuously differentiable functions µ : [−τ, 0] → R2

żt = Dzt + F(zt), (3.11)

where the shift of time zt(ϕ) ∈ H is defined as

zt(ϕ) = z(t + ϕ), ϕ ∈ [−τ, 0]. (3.12)

The linear operator D at the critical bifurcation parameter assumes the form

Du(ϕ) =





d
dϕ

u(ϕ), ϕ ∈ [−τ, 0)

Lu(0) + Ru(−τ), ϕ = 0
,
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while the nonlinear operator is written as

F(u)(ϕ) =





0, ϕ ∈ [−τ, 0)

f(u), ϕ = 0
,

f(u(ϕ)) =




au2
1(0) + bu3

1(0)

cu2
1(−τ) + du3

1(−τ)


 .

In order to calculate the center manifold, the adjoint operator needs to be defined

on the adjoint space H∗ of continuously differentiable functions θ : [0, τ ] → R2, which

assumes the form

D∗u(θ) =




− d

dϕ
u(ϕ), ϕ ∈ (0, τ ]

L∗u(0) + R∗u(τ), ϕ = 0

with respect to the bilinear form (·, ·) : H∗ ×H → R

(υ, µ) = υ∗(0)µ(0) +

∫ 0

−τ

υ∗(δ + τ)Rµ(δ)dδ. (3.13)

Since the critical eigenvalues of the linear operator D just coincide with the crit-

ical characteristic roots of the characteristic function D(λ,K), the Hopf bifurcation

can be studied on the two-dimensional center manifold embedded in the infinite di-

mensional phase space. The center subspace is spanned by the real and imaginary

parts of the complex eigenfunction p(ϕ) of D corresponding to the critical charac-

teristic roots iω. The complex eigenfunction p(ϕ) and the eigenfunctions q(θ) of the

adjoint operator D∗ can be found from

Dp(ϕ) = iωp(ϕ),

D∗q(θ) = −iωq(θ). (3.14)
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The general solutions to (3.14) are of the form

p(ϕ) = p1(ϕ) + ip2(ϕ) = ceiωϕ,

q(θ) = q1(ϕ) + iq2(ϕ) = deiωθ, (3.15)

the constants p and q are found by using the boundary conditions embedded in the

operator equations (3.14)

(iωI− L− e−iωτR)c = 0,

(−iωI− LT − eiωτRT)d = 0.

The vectors p and q should not be aligned, i.e. the bilinear form of q and p

should be nonzero

(q,p) = β 6= 0, (3.16)

the constant β can be freely chosen. From the bilinear form defined by (3.13), the

following equation can be achieved

(q,p) = q∗(0)p(0) +

∫ 0

−τ

q∗(ξ + τ)Rp(ξ)dξ

= d∗c + d∗Rce−iωτ

∫ 0

−τ

dξ (3.17)

= d∗(I + τe−iωτR)c.

To summarize, the vectors c and d can be found from the following equations

(iωI− L− e−iωτR)c = 0, (3.18)

(iωI + LT + eiωτRT)d = 0, (3.19)

d∗(I + τe−iωτR)c = 2. (3.20)

There are 4 complex unknowns for the above three complex equations. (3.18)
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and (3.19) result in (note that c1 and d2 are complex variables)

c =




1

k + iω


 c1, d =



−iω

1


 d2.

The following equation can be obtained from (3.20)

c1d
∗
2[k − ω2τ + i(2ω + kωτ)] = 2. (3.21)

Fixing 1 unknown (choosing c1 = 1) yields

d∗2 =
2

k − ω2τ + i(2ω + kωτ)
. (3.22)

After separating the real and imaginary part, c and d have the following form

c1 = Re c =




c11

c12


 =




1

k


 ,

c2 = Im c =




c21

c22


 =




0

ω


 ,

d1 = Red =




d11

d12


 = Ω




ω2(1 + 1
2
kτ)

1
2
(k − ω2τ)


 ,

d2 = Imd =




d21

d22


 = Ω



−ω

2
(k − ω2τ)

ω(1 + 1
2
kτ)


 ,

where Ω = 4γ
ω2(2+kτ)

.

Decomposing the solution zt(ϕ) into two components y1(t) and y2(t) lying in the

center subspace and the infinite-dimensional component w transverse to the center
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subspace

zt(ϕ) = y1(t)p1(ϕ) + y2(t)p2(ϕ) + w(t)(ϕ),

y1(t) = (q1, zt) |ϕ=0, y2(t) = (q2, zt) |ϕ=0 .

These new coordinates above transform the operator differential equation (3.11)

into

ẏ1 = ωy2 + qT
1 (0)F, (3.23)

ẏ2 = −ωy1 + qT
2 (0)F, (3.24)

ẇ = Dw + F(zt)− qT
1 (0)Fp1 − qT

2 (0)Fp2. (3.25)

Note that the nonlinear operator in (3.25) should be written as

F(y1p1 + y2p2 + w) =





0, ϕ ∈ [−τ, 0)

F, ϕ = 0
,

where F = (f1, f2)
T and f1 and f2 are given as (neglecting terms higher than third

order)

f1 = a(w1(0) + y1)
2 + b(w1(0) + y1)

3 = a(y2
1 + 2y1w1(0)) + by3

1, (3.26)

f2 = c(w1(−τ) + cos ωτy1 − sin ωτy2)
2 + d(w1(−τ) + cos ωτy1 − sin ωτy2)

3

= c(ω4y2
1 + k2ω2y2

2 − 2kω3y1y2 + 2ω2w1(−τ)y1 − 2kωw1(−τ)y2)

+ d(ω6y3
1 − k3ω3y3

2 − 3kω5y2
1y2 + 3k2ω4y1y

2
2).

(3.27)

In the next section, dynamics of y1 and y2 in the center manifold will be derived

by approximating w(y1, y2)(ϕ) by quadratic terms (higher order terms of w are not

relevant for local Hopf bifurcation analysis).
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C. Center Manifold Reduction

The center manifold is tangent to y1 − y2 plane at the origin, and is locally invariant

and attractive to the flow of (3.11). Notice that when a = c = 0 (symmetric nonlin-

earities), the center manifold coincides with the center sub-space which is spanned by

the eigenfunctions calculated earlier. Since the nonlinearities considered here are not

always symmetric, center manifold can be a nonlinear surface. Consider the following

quadratic form

w(y1, y2)(ϕ) =
1

2
(h1(ϕ)y2

1 + 2h2(ϕ)y1y2 + h3(ϕ)y2
2). (3.28)

The time derivative of ϕ can be expressed by differentiating the right-hand side

of the above equation via substituting (3.23) and (3.24)

ẇ = h1y1ẏ1 + h2y2ẏ1 + h2y1ẏ2 + h3y2ẏ2

= ẏ1(h1y1 + h2y2) + ẏ2(h2y1 + h3y2)

= −ωh2y
2
1 + ω(h1 − h3)y1y2 + ωh2y

2
2 + O(y3).

(3.29)

Comparing the coefficients of y2
1, y1y2, y2

2 with another form of ẇ from (3.25)

yields the following boundary value problem

1

2
ḣ1 = −ωh2 + mf111 + nf211,

ḣ2 = ωh1 − ωh3 + mf112 + nf212,

1

2
ḣ3 = ωh2 + mf122 + nf222, (3.30)

1

2
(Lh1(0) + Rh1(−τ)) = −ωh2(0) + m(0)f111 + n(0)f211 − s1,

Lh2(0) + Rh2(−τ) = ωh1(0)− ωh3(0) + m(0)f112 + n(0)f212 − s2,

1

2
(Lh3(0) + Rh3(−τ)) = ωh2(0) + m(0)f122 + n(0)f222 − s3, (3.31)
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with

m(ϕ) = d11p1(ϕ) + d21p2(ϕ),

n(ϕ) = d12p1(ϕ) + d22p2(ϕ).

The coefficients of the quadratic terms can be extracted from (3.26) and (3.27)

as

f111 = a, f211 = cω4,

f112 = 0, f212 = −2ckω3,

f122 = 0, f222 = ck2ω2.

Introducing the following notations

h =




h1

h2

h3




, C6×6 = ω




0 −2I 0

I 0 −I

0 2I 0




,

s =




2S0s1

S0s2

2S0s3




, n =




2N0s1

N0s2

2N0s3




,

s1 =




f111

f211


 , s2 =




f112

f212


 , s3 =




f122

f222


 ,

S0 =




d11 d12

kd11 + ωd21 kd12 + ωd22


 ,

N0 =




d21 d22

kd21 − ωd11 kd22 − ωd12


 ,
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Equation (3.30) can be written as the following inhomogeneous differential equa-

tion

d

dϕ
h (ϕ) = Ch + s cos ωϕ + n sin ωϕ, (3.32)

the above linear ODE has the general solution form

h(ϕ) = eCϕK + M cos ωϕ + N sin ωϕ. (3.33)

Substituting this solution form into (3.32) yields the following equations which

solve for M, N and K




C6×6 −ωI6×6

ωI6×6 C6×6







M

N


 = −




s

n


 , (3.34)

Ph(0) + Qh(−τ) = s− r, (3.35)

where

P =




L 0 0

0 L 0

0 0 L



−C6×6,

Q =




R 0 0

0 R 0

0 0 R




, r =




2s1

s2

2s3




.

The expressions for w1(0) and w1(−τ) are given by

w1(0) =
1

2
((M1 + K1)y

2
1 + 2(M3 + K3)y1y2 + (M5 + K5)y

2
2)

= h110y
2
1 + h210y1y2 + h310y

2
2,

(3.36)
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w1(−τ) =
1

2
((e−CτK |1 +M1 cos ωτ −N1 sin ωτ)y2

1

+ 2(e−CτK |3 +M3 cos ωτ −N3 sin ωτ)y1y2

+ (e−CτK |5 +M5 cos ωτ −N5 sin ωτ)y2
2)

= h11τy
2
1 + h21τy1y2 + h31τy

2
2.

(3.37)

From (3.36) and (3.37), the first, third and fifth component of M, N, K, e−CτK

can be calculated



M1

M3

M5




= − 2

3ω




ad21 + cω2(−2d12kω + d22(2k
2 + ω2))

−ad11 + cω2(d22kω + d12(k
2 − ω2))

2ad21 + cω2(2d12kω + d22(k
2 + 2ω2))




,




N1

N3

N5




=
2

3ω




ad11 + cω2(2d22kω + d12(2k
2 + ω2))

ad21 + cω2(d12kω + d22(−k2 + ω2))

2ad11 + cω2(−2d22kω + d12(k
2 + 2ω2))




,




K1

K3

K5




= ζ




ω(−2ak(ω2 − 1) + 3cω2(4 + k4 − 2ω2 − ω4))

a(1− 4ω2 − 2k2ω2) + ck(1 + 2ω4)

ω(2ak(−1 + ω2) + c(2k2 + 8ω2 − 2ω4))




,




e−CτK |1
e−CτK |3
e−CτK |5




=

ζ




ω(−2ak(1 + 2ω4) + cω2(9 + 2k2 + 2k4 + (2k2 − 6)ω2 + 8k2ω4)

a(1− 4ω6) + ckω2(−1− 5k2 + (7 + 4k4)ω2 − 4k2ω4)

ω(2ak(1 + 2ω4) + c(3k2 − 2 + (8− 8k2)ω2 + 8k4ω4))




,

where ζ = 2ω
5+12ω4−8ω6 .



23

D. Hopf Bifurcation Analysis

In order to restrict a third-order approximation of system (3.23) and (3.24) to the

two-dimensional center manifold calculated in the previous section, the dynamics of

y1 and y2 is assumed to have following norm form

ẏ1 = ωy2 + a20y
2
1 + a11y1y2 + a02y

2
2 + a30y

3
1 + a21y

2
1y2 + a12y1y

2
2 + a03y

3
2,

ẏ2 = −ωy1 + b20y
2
1 + b11y1y2 + b02y

2
2 + b30y

3
1 + b21y

2
1y2 + b12y1y

2
2 + b03y

3
2. (3.38)

Using the 10 out of these 14 coefficients ajk, bjk, the so called Poincaré-Lyapunov

constant 4 can be calculated ([9])

4 =
1

8ω
((a20 + a02)(−a11 + b20 − b02) + (b20 + b02)(a20 − a02 + b11))

+
1

8
(3a30 + a12 + b21 + 3b03).

(3.39)

Based on the center manifold calculation, the 10 coefficients are as follows

a20 = ad11 + cω4d12,

b20 = ad21 + cω4d22,

a11 = −2ckω3d12,

b11 = −2ckω3d22,

a02 = ck2ω2d12,

b02 = ck2ω2d22,

a30 = (2ah110 + b)d11 + (2cω2h11τ + dω6)d12,

a12 = 2ah310d11 + (2cω2h31τ − 2ckωh21τ + 3dk2ω4)d12,

b21 = 2ah210d21 + (2cω2h21τ − 2ckωh11τ − 3dkω5)d22,

b03 = −(2ckωh31τ + dk3ω3)d22.
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Substituting all these coefficients into (3.39) yields (tedious simplification)

4 = l1d12 + l2d22, (3.40)

where

l1 =
3

8
dω2 +

a2

4
ωζ(1 + 4ω2 − 2ω4)− ac

2
kωζ(1 + ω2 + ω4)

+
c2

4
ωζ(

11

2
+ k2 + 2ω2 + 12ω4 − 12ω6),

l2 =
3

8
bω − 3

8
dkω +

a2

2
kω2ζ(1− ω2) +

ac

4
ζ(

7

2
+ ω2 + 10ω4 − 10ω6)

+
c2

4
kζ(−11

2
+ ω2 − 12ω4 + 12ω6),

(3.41)

where ζ = 2ω
5+12ω4−8ω6 .

This is the main result in this thesis. All the calculations are prepared for this

constant whose sign determines the criticality of Hopf bifurcation (negative/positive

sign of 4 implies super-critical/sub-critical Hopf bifurcation).
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CHAPTER IV

SIMULATION RESULTS

In order to validate the above center manifold calculation, continuation-based DDE-

Biftool [28, 29] and Matlab numerical solver DDE-23 are used. By defining α = γ
4 ,

the vibration amplitude in the neighborhood of the bifurcation point is estimated as

r =
√

α(K − k). (4.1)

The delayed Liénard equation

ẋ(t) = y(t)−Kx(t) + ax2(t) + bx3(t),

ẏ(t) = −x(t− τ) + cx2(t− τ) + dx3(t− τ), (4.2)

with three different sets of parameters (see Table I) was solved by continuation (DDE-

Biftool) and numerical integration (DDE-23). For τ = 1, 2, 3, 4, Table II shows the

value of k at the bifurcation point, the critical frequency ω and the percent error ε =

100|α−αnum

α
|. The numerical approximation αnum has been obtained from the DDE-

Biftool results (using amplitudes corresponding to values of the bifurcation parameter

K such that |K − k| ≤ 0.0005k) by least-squares fit.

Figures 3, 4 and 5 show the amplitude estimate of (4.2) for the parameters

from Table I. The solid line, dots, and rectangles show the analytical amplitude

estimate based on (4.1), the DDE-Biftool results, and numerical results by DDE-23,

respectively. The DDE-23 results are obtained by combining numerical integration,

estimation of amplitude decay/growth, and bisection to locate periodic orbits.

Finally, by randomly choosing a, b, c, d from [−10, 10] and τ from [0, 5], 1000

DDE-Biftool simulations were performed and the amplitude results were compared

with the analytical ones. It shows that α agrees very well with αnum (approximation
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Table I. Sets of parameter values of three different delayed Liénard equations.

a b c d

I 1 -2 5 -2

II -3 -2 1 -4

III -3 -1 4 3

Table II. Critical bifurcation parameter k, critical frequency ω and error ε evaluated

at different time delays τ .

τ 1 2 3 4

k 0.891 1.552 2.154 2.753

ω 0.824 0.601 0.454 0.360

εI 0.13% 0.10% 0.15% 0.11%

εII 0.91% 0.94% 0.30% 0.25%

εIII 0.29% 0.15% 0.09% 0.15%



27

0.882 0.884 0.886 0.888 0.89 0.892
0

0.005

0.01

0.015

0.02

0.025

0.03

K

A
m

pl
itu

de

a=1, b=−2, c=5, d=−2, τ=1

Stable limit cycle

(a) τ = 1

1.54 1.545 1.55 1.555
0

0.005

0.01

0.015

0.02

0.025

K

A
m

pl
itu

de

Stable limit cycle

a=1, b=−2, c=5, d=−2, τ=2

(b) τ = 2

2.135 2.14 2.145 2.15
0

0.005

0.01

0.015

0.02

0.025

K

A
m

pl
itu

de

Stable limit cycle

a=1, b=−2, c=5, d=−2, τ=3

(c) τ = 3

2.725 2.73 2.735 2.74 2.745 2.75 2.755
0

0.005

0.01

0.015

0.02

0.025

K

A
m

pl
itu

de

Stable limit cycle

a=1, b=−2, c=5, d=−2, τ=4

(d) τ = 4

Fig. 3. Amplitude estimate for K for case I of Table I. The solid line is the estimated

vibration amplitude based on (4.1), the dots and rectangles are results obtained

from DDE-Biftool and DDE-23, respectively. The bifurcation is sub-critical.
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Fig. 4. Amplitude estimate for K for case II of Table I. The solid line is the estimated

vibration amplitude based on (4.1), the dots and rectangles are results obtained

from DDE-Biftool and DDE-23, respectively.
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Fig. 5. Amplitude estimate for K for case III of Table I. The solid line is the estimated

vibration amplitude based on (4.1), the dots and rectangles are results obtained

from DDE-Biftool and DDE-23, respectively. The bifurcation is super-critical.
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is again based on amplitudes within 0.05% of the critical value k): the mean error is

0.8%, with a small variance of 5.43× 10−4.
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CHAPTER V

APPLICATION OF CENTER MANIFOLD ANALYSIS

In this chapter, two examples of Liénard equation will be presented. The first one

is the so-called Sunflower Equation which describes the helical movement of the tip

of sunflower. The second one deals with free vibration of a nonlinear damped mass-

spring system with delayed force.

A. Hopf Bifurcation in the Sunflower Equation

Israelson and Johnson [30] proposed the following equation

y′′ +
A

ε
y′ +

B

ε
sin y(t̃− ε) = 0, (5.1)

to explain the helical movement of the tip of sunflower. The upper part of the stem

performs a rotating movement. y(t̃) is the angle of the plant with respect to the

vertical line, the delay factor ε corresponds to a geotropic reaction time in the effect

due to accumulation of the growth hormone alternatively on both side of the plant.

The parameters A and B can be obtained experimentally.

Somolinos [31] proved the existence of periodic solutions for (5.1), this result

covers both small amplitude limit cycle generated by Hopf bifurcation and large am-

plitude limit cycles. Casal and Freedman [5] computed a perturbation expansion

based on the Lindstedt-Poincaré method. MacDonald [7] performed first order har-

monic balance of (5.1).

Introducing a time scaling t →
√

B
ε
t̃ and expanding (5.1) about the null solution

up to third order

ẍ +
A

τ
ẋ + x(t− τ)− 1

6
x3(t− τ) = 0, (5.2)
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where τ =
√

Bε, x(t) = y(
√

ε
B

t̃).

This equation is in the same form as (3.1) with K = A
τ
,a = b = c = 0,and d = 1

6
,

therefore previous results can be directly applied. The characteristic equation has the

following form

λ2 +
A

τ
λ + e−λτ = 0. (5.3)

On the stability boundary

ω2 = cos ωτ,

A

τ
ω = sin ωτ. (5.4)

The parametric curve (τ (ω) , Acr (ω)) describes the stability boundary (see Fig-

ure 6).

0 1 2 3 4 5
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10

12
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16

τ
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Unstable Region

Stable Region

Fig. 6. Linear stability boundary of the Sunflower equation.

Now substituting Acr

τ
= k into the Poincaré-Lyapunov constant formula (3.40)

4 = − Ω

32τ
(Acrω

2 + τ 2) < 0, (5.5)

where Ω = 4τ2

(Acr−τ2ω2)2+(2τω+Acrτω)2
. In order to obtain the amplitude estimate, rooting
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crossing velocity on the stability curve is required

γ = Re
dλ

dA
|A=Acr= −ω2

4τ
(2 + Acr)Ω < 0. (5.6)

It can be concluded that the Hopf bifurcation of the Sunflower equation is always

super-critical. This conclusion is in full agreement with the earlier studies referred

above. From (4.1), (5.5) and (5.6), the amplitude of the limit cycle can be estimated

as

r = 2ω

√
−2(2 + Acr)(A− Acr)

Acrω2 + τ 2
. (5.7)

Figure 7a shows the amplitude estimate for B = 4 and ε = 1. The solid line

denotes the plot of the analytical result based on (5.7), while the dots and triangles

correspond to the numerical results of DDE-Biftool based on the original equation

(5.1) and the Taylor expanded one (5.2). Figure 7b shows the x−ẋ plot corresponding

to point C (A = 3, B = 4, ε = 1) in Figure 7a. The initial function is chosen as

x(t) = 0.1, t ∈ (−1, 0].
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Fig. 7. Simulation results of the sunflower equation 5.1 and 7.
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B. Self-Excitation of a Delayed Liénard Oscillator

Free vibration of a nonlinear damped mass-spring system with delayed force can be

modeled as

ẍ + Kẋ + x(t− τ) + βx3(t− τ) = 0, (5.8)

where K > 0 is the positive damping force and time delay τ is caused by the time-

dependence of the deformation of the spring element when the spring is no longer an

idea elastic body. For detailed discussion of this problem, readers are referred to [32].

In [33], the resonance of this positive damped equation is analyzed by applying

averaging method. Das and Chatterjee [34] studied Hopf bifurcation of the same

equation by using multiple scales. Wang et al. [35] considered it through energy

analysis and averaging technique.

This equation has the same form as (3.1) with a = b = c = 0, d = −β, therefore

the previous results can be directly applied, substituting all these coefficients into the

Poincaré-Lyapunov constant formula (3.40)

4 =
3γβ(kω2 + τ)

4ω2(2 + kτ)
. (5.9)

From (5.9) it can be interpreted that the direction of the Hopf bifurcation is

determined by the sign of β, the bifurcation is sub-critical for β > 0 and super-

critical for β < 0, this result agrees well with the ones in the literature. Figure 8

shows the amplitude estimate of (5.8) when β > 0 and β < 0.
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Fig. 8. Amplitude estimate for K when fixing time delay τ = 1, the solid

line denotes the estimated vibration amplitude by using our pre-calculated

Poincaré-Lyapunov constant, the dot points are obtained from DDE-Biftool.
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CHAPTER VI

CONCLUSION

This thesis has shown the existence of the Hopf bifurcation around the null solution

of a class of delayed Liénard equation using center manifold analysis. Based on a

projected two-dimensional manifold, a closed-form criterion for the criticality of the

Hopf bifurcation is derived. The amplitude estimate for the bifurcating limit cycle was

obtained by using the calculated root crossing velocity (γ) and Poincaré-Lyapunov

constant (4). The analytical results agree well with the numerical ones obtained from

DDE-Biftool and DDE-23. Finally, two examples have been discussed to illustrate

the method.
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