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ABSTRACT 

Antimicrobial Interventions to Reduce Listeria spp. Contamination on Shrimp. 

(August 2009) 
 

Tsui-Yin Wong, B.S., University of Chai-Yi (Taiwan); 
 

M.S., Texas A&M University 
 

Co-Chairs of Advisory Committee: Dr. Leon Russell 
                                                     Dr. Ron Richter 

 

   The effects of selected antimicrobials, applied singularly or in 

combination, and frozen or refrigerated storage conditions on the survival of 

Listeria spp. on inoculated shrimp was evaluated in this study. A combination of 

0.5% CPC (Cetylpyridinium Chloride) with a water wash at room temperature 

and freezing of the shrimp at -22.3°C was the only treatment that had a 

significant antimicrobial effect on the Listeria spp. Antimicrobial effects and the 

mode of action of PEF (Pulsed Electric Field) and CPC on Listeria cells were 

evaluated in detailed studies. PEF in 0.1% sodium chloride had a bacterostatic 

effect toward Listeria spp. during refrigerated storage, but no immediate or 

bacteriostatic effect was caused by freezing the samples. A concentration of 1% 

sodium chloride reduced the Listeria spp. population after freezing by 1.1 log; 

however, the pungent chlorine odor that was generated during treatment might 

cause discomfort for employees in shrimp processing facilities. Also, chlorine 

might cause corrosion of metal surfaces of processing equipment. There was no 

difference in the antimicrobial effects on the survival of Listeria spp. by PEF 
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between the exposure times of 1 or 2 min, as well as in the sodium chloride 

concentrations of 0.1 and 0.5%. PEF treatment in the presence of 0.1% sodium 

chloride is recommended.  A solution of 0.5% CPC effectively inhibited all of the 

strains of Listeria spp. in the cell suspensions. A treatment of 0.5% CPC 

combined with PEF treatment in a sodium chloride concentration of 0.1% 

caused a delayed effect on the Listeria spp. after 2 d of refrigerated storage. 

After 2 d of frozen storage, the formation of ice crystals was decreased in the 

number of Listeria spp. when contaminated samples were treated with water. 

The results indicated chemicals (e.g. CPC and NaCl) might protect Listeria spp. 

from the formation of ice crystals. TEM (Transmission Electron Microscopy) 

micrographs revealed that cell membranes were damaged by PEF treatment 

and that cells were ruptured by CPC treatment. A maximum reduction of 2.76 

log10 CFU/g of Listeria spp. on shrimp was achieved by a combination of PEF-

CPC. 
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INTRODUCTION 

Listeria monocytogenes is a foodborne pathogen that can survive and 

even grow at refrigerated temperatures in foods and in food processing 

environments. Seafood products, including shrimp, are processed in 

environments that might create potential for cross-contamination with this 

organism. Therefore, efforts to minimize cross-contamination and to inactivate 

pathogens in contaminated product are needed.   

Selected antimicrobial agents that have been approved by FDA for use in 

foods were evaluated in this study for their listericidal and bacteriostatic effects 

with and without the combined application of physical treatments (freezing, 

ultrasonication and pulse electric fields). Antimicrobial intervention combinations 

were evaluated for the reduction in levels of Listeria spp. inoculated raw shrimp. 

  Farm-raised shrimp from a Texas processor was used for these 

experiments. Shrimp were in blocks or IQF (Individual Quick Freezing) and kept 

frozen until used in experiments. The shrimp were transported to the Microbial 

Challenge Pilot Plant at the Poultry Science Center at Texas A&M University. 

Beheaded shrimp samples were inoculated with a five-strain cocktail composed 

of L. monocytogenes ATCC 15313, L. monocytogenes Scott A46, L. 

monocytogenes Strain A, L. innocua NRRC b33076, and L. innocua ATCC 

33090.   

____________ 
This dissertation follows the style of Journal of Food Protection. 
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All shrimp samples were treated with one of five defined antimicrobial 

treatments. Some of these treatments combined chemical interventions with 

physical treatments such as freezing, ultrasonication, and pulse electric fields in 

order to evaluate the interactions between antimicrobials. Populations of Listeria 

spp. were enumerated before and after each treatment combination. Separate 

sets of samples were evaluated to determine their survival under frozen and 

refrigerated storage.  

Transmission Electron Microscopy was used to illustrate morphological 

changes of Listeria cells caused by antimicrobial interventions tested that might 

explain the mode of actions of any observed effects. The long term goal of this 

project was to define the optimal combinations of interventions to reduce 

contamination with Listeria monocytogenes in raw samples by the combination 

of physical and chemical interventions.  The mechanisms of inactivation caused 

by the antimicrobial treatments were described to understand the limitations of 

the treatments and the commercial applicability in processing settings. 
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LITERATURE REVIEW 

Introduction 

It is estimated that approximately 1,800 cases of human listeriosis occur 

in United States each year, with a fatality rate of 15 to 25% in affected 

individuals (89). The symptoms of listeriosis, which are often predisposing in 

pregnant women, newborns, the elderly and the immunocompromised, or 

immunodeficient can be varied from mild flu-like illness to meningitis and 

meningoencephalitis (1). Data from a summary of the minimal temperature (ºC) 

for the growth of Listeria spp. in selected foods are in Table 1. Listeria 

monocytogenes can propagate over a temperature range from 0 to 42ºC with 

optimum growth reported at 30-35ºC. This pathogen can tolerate and grow in 

food products containing up to 10% sodium chloride (1). This microorganism is 

almost ubiquitous in the environment (1).  In addition, the organism can be found 

in wet and low temperature food processing environments (1). Vehicles of 

transmission often associated with outbreaks or sporadic cases of listeriosis 

include soft and semi-soft cheeses, hot dogs, deli-meats, and vegetables (44). A 

few cases of listeriosis have been associated with seafood and seafood 

products (24, 25, 36). This is important, especially in some countries where 

seafood is the primary source of protein. Cases of listeriosis associated with 

seafood products, are most often associated with the ingestion of ready-to-eat 

(RTE) fishery products (44). Such products include spiced and pickled fish, cold-

smoked rainbow trout or salmon, hot-smoked salmon, cooked crabmeat, cooked 
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shrimp, cooked lobster, surimi-based products, and “ceviche”, which is an 

acidified fish and shrimp product (30, 49, 69).  

 

TABLE 1. The minimal temperature (ºC) for the growth of Listeria spp. in 
selected foods (46). 
 

Microorganisms Minimal growth 
temperature (ºC) 

Food 

L. monocytogenes 0.8-1.4 Deli-meat, hot dogs, 
semi-soft cheese, 

shredded cabbage and 
seafood 

L. innocua 1.7-3.0 Meats, milk, frozen 
seafoods, semi-soft 

cheese, whole egg, and 
vegetables 

L. seeligeri 1.7-3.0 Raw milk, vegetables, 
cabbage, radishes,  and 

pork 

L. welshimeri 1.7-3.0 Raw milk, meat roasts, 
vegetables, and turkey 

meat 

L. grayi 1.7-3.0 Raw milk 
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A comprehensive review by the International Commission on 

Microbiological Specifications for Foods (41, 45) stated that if a food product 

contains ≤100 CFU/g of L. monocytogenes, it does not pose a health risk for 

normal persons. However, U.S. regulatory agencies have adopted a zero-

tolerance policy for L. monocytogenes in RTE food products due to the lower 

resistance in susceptible populations and because of its potential to grow in 

different food matrices at refrigerated temperatures (74).  Contamination with L. 

monocytogenes usually occurs after the product has been subjected to a lethal 

process, generally thermal treatments. The problem arises because the 

organism is capable of growing in a contaminated cooked and meat or poultry 

product due to the lack of competitive microflora. Because of the frequent 

presence of L. monocytogenes in contaminated cooked products and the 

pathogen’s lethal effect on susceptible people, the Food Safety and Inspection 

Service (FSIS) have three alternatives for ready-to-eat meat and poultry 

processors to control L. monocytogenes contamination (29). These alternatives 

include: 1) both a post-lethality treatment (e.g. post-packaging treatment) that 

will destroy the organism if the product is contaminated and an antimicrobial 

agent or a process that inhibits its potential growth if present; 2) either a post-

lethality treatment or an antimicrobial agent or a process that inhibits growth that 

should be combined with a sanitation program specifically to control the 

organism in areas where contamination could occur; and, 3) a sanitation 

program specific for L. monocytogenes with measures and procedures aimed at 
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limiting or suppressing the growth of this pathogen or its presence in processing 

environments (29).  No specific regulations have been imposed for seafood or 

fishery products; however, with the adoption of these alternatives in the meat 

and poultry industry, there is a possibility that some of these alternations could 

be applied to seafood processing. Therefore, more research is needed to focus 

on the effects of single or combinations of antimicrobial treatment (s) or process 

(es), as well as their effects when used in combination with subsequent freezing 

or refrigerated storage of commercially processed seafood products. 

Listeria monocytogenes in seafood and seafood products 

Seafood products, especially shrimp, feature a high protein profile and 

are rich in essential amino acids that are required for proper human nutrition 

(20). Thus, the seafood products account for a significant share of the protein 

intake in many populations. Seafood products, including shrimp are harvested 

from natural sources and are also produced in seafood farms around the world 

with significant international commercialization. For instance, the international 

trading of shrimp products accounts for about 20% of the total sales of seafood 

products worldwide (20). Despite the existence of more than a hundred shrimp 

species, only a few of these species are used for commercial production 

purposes. Specific studies on the presence of Listeria spp. in different seafood 

products are summarized below: 
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Shrimp 

Gudmundsdόttir et al. (33) stated that shrimp has been implicated as a 

vehicle in epidemiological studies of listeriosis. The prevalence of Listeria spp. 

varies greatly in shrimp products. Reports of prevalence varying from 1.5 to 

28.8% in raw shrimp and from 8.1 to 11.4% in cooked shrimp products have 

been published (33).  

Motes (69) reported that Listeria spp. were recovered more frequently 

from shrimp samples rather than estuarine water sources and oyster samples. 

They also found that recovery of Listeria spp. from shrimp was not affected by 

the salinity or fecal coliform count of the harvesting water. Shrimp positive for 

Listeria spp. (5%, 4/78) were all L. monocytogenes (100%, 4/4).  The authors 

concluded that L. monocytogenes contaminated shrimp can serve as a potential 

source for the contamination of processing environments and final products (69). 

McCarthy (66) also reported that crustacean exoskeletons are most likely 

entrapped within the equipment during cleaning and peeling in seafood 

processing plants. Potential points in shrimp processing where contamination 

with L. monocytogenes can occur are shown in Figure 1. 
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FIGURE 1. Possible contamination site (bold front) and shrimp processing line 
(partial flow diagrams) were adapted from Venugopal (100). 
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A study by McCathy (66) reported that crustacean exoskeletons are most 

likely entrapped within the equipment during cleaning and peeling in seafood 

processing plant. Chitin, the structural unit of the exoskeleton of crustaceans, is 

a major compound of shrimp and is very resistant to chemical solvents and 

bacterial enzymes. Because of these properties, it has been used in many 

industrial applications, such as soil treatments, insecticides, livestock, fish feed, 

fertilizers, and wastewater treatment.  

Raw fish 

Listeriosis has been rarely linked to consumption of raw tropical or deep 

water fish (28). Nevertheless, Listeria spp. can grow or survive at refrigeration 

temperatures (as low as 1ºC) and tolerate a concentration of 20% sodium 

chloride (36); hence, these microorganisms can be isolated from contaminated 

raw fish at very low microbial counts (36). Autio et al. (5) reported that L. 

monocytogenes was not the most important microorganism in the contamination 

of cold-smoked rainbow trout. Masuda et al. (64) reported that L. 

monocytogenes was isolated from only 1.8% (12/683) of fresh seafood sampled 

at wholesale settings and retail shops in Tokyo during the summers of 1989 and 

1990. Although the presence of L. monocytogenes on raw seafood is rare, it has 

been more frequently documented in RTE products. Therefore, additional 

information is needed on the incidence of this microorganism and the effects of 

minimal processing (freezing, packaging, etc) on its survival in raw seafood. 
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Processed seafood products 

Processed seafoods, including cooked, smoked, pickled seafood, and 

surimi, do not normally receive any additional post-process treatment. The 

growth of L. monocytogenes on contaminated processed seafood was not 

prevented by refrigeration (66). Specific studies on different varieties of cooked 

seafood are summarized below: 

Smoked fish 

The Food Agriculture Organization (28) reported that cold- smoked fish, 

e.g. salmon fillets, have been found to be contaminated with L. monocytogenes 

at 100 CFU/g. It was also reported that an increase in the concentration of the 

contamination is likely to occur during long periods of refrigeration due to the 

psychrotrophic growth of L. monocytogenes. The temperature applied during the 

smoking process is not sufficient to inactivate all L. monocytogenes cells in fish 

products (36) and more validation studies are needed to assess the effects of 

the commercial cold-smoking process on survival of this organism during 

refrigerated storage. Cold-smoked (30-40ºC) salmon or hot-smoked (80-100ºC) 

mackerel, herring, trout, or cod has been shown to be contaminated with L. 

monocytogenes from the processing environment (30). RØrvik et al. (85) also 

found that L. monocytogenes could be isolated from environmental samples 

(26%, 42/142) in the fish smokehouse at various processing facilities.  Because 

of this, the evaluation of antimicrobial interventions with the potential activity to 
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lower the prevalence of L. monocytogenes in cold- and hot-smoked fish after 

processing is warranted. 

Seafood salads 

Widespread nutritional trends toward low caloric diets have resulted in a 

significant increase in the consumption of salads, and other dishes featuring 

fruits and vegetables. Some of these salad products are complemented with a 

source of high protein, namely poultry products. The addition of seafood 

components; however, is showing increased consumption as seafood salads.  

Seafood salads are made from many different raw or cooked seafood 

ingredients and typically contain some type of salad dressing. A high prevalence 

of L. monocytogenes has been found in seafood salads containing smoked or 

spiced and picked fish (36). These findings indicate that mayonnaise and other 

acidic dressings may not necessarily lower the pH of salads sufficiently to 

inactivate the growth of L. monocytogenes (44).  Hwang and Tamplin (44) found 

that L. monocytogenes (six strains in a cocktail culture) was able to grow slowly 

(by 2 logs under vacuum; by 4.5 logs under aerobic conditions) in an artificially 

inoculated shrimp-crabmeat (1:1) seafood salad containing mayonnaise.  The 

mayonnaise product used in this study had a pH of 3.7 and the product was kept 

for up to 22 d of storage at 4ºC. This finding demonstrated the growth of L. 

monocytogenes in a pre-cooked shrimp salad product mixed with mayonnaise 

during a long-term refrigerated storage period. 
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Tracking the sources of contamination  

Smoked or raw fish products 

Johansson et al. (48) evaluated the prevalence of L. monocytogenes in 

hot-smoked whitefish or mackerel (n=48), cold-smoked rainbow trout (n=30), 

and cold-salted rainbow trout (n=32) from Finland. L. monocytogenes (20%, 

22/110) was found in all three types of RTE retail fish products. Ten of these 

positive samples (9.0%) were contaminated with L. monocytogenes at a 

concentration > 100 CFU/g. The highest prevalence of L. monocytogenes (50%, 

16/32) was in cold-salted rainbow trout. Six of these positive samples (19%) 

were contaminated with L. monocytogenes in the range of 100-9900 CFU/g. The 

second highest prevalence of L. monocytogenes (17%, 5/30) was found in cold-

smoked rainbow trout. Four of these samples (13.6%) were contaminated with L. 

monocytogenes in the range of 1 X 102 to 1.4 X 104 CFU/g. The lowest 

prevalence of L. monocytogenes (2%, 1/48) was found in the hot-smoked fish 

products. On the other hand, Chou et al. (21) found using repetitive element 

Polymerase Chain Reaction (rep-PCR) that L. monocytogenes was the most 

predominant Listeria spp. in raw channel catfish fillets (n=240) from three 

different processing plants in the U.S. during four time periods (summer, fall, 

winter, and spring), with a prevalence range from 25 to 47%. They also found L. 

monocytogenes was most predominant during the winner with a prevalence of 

51%. A possible explanation of this finding might be related to its psychotropic 

characteristic. The prevalence of L. monocytogenes in raw and whole crawfish 
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products and its processing environments were also reported by Lappi et al. 

(55). In their study, the prevalence of L. monocytogenes increased from 3.85 

(first year) to 10.79% (second year) in raw and whole crawfish products (n=78 

for the first year; n=101 for the second year) and 0.65% (n=155, first year) to 

0.98% (n=204, second year) for environmental samples. However, the increase 

of prevalence was not statistically significant. This finding may have been related 

to the differences in production volumes which was four to five times more in 

year two than in year one, as well as a mixture (50:50) of wild and farm-raised 

crawfish during the second year. 

Processing environments or steps for smoked fish products  

RØrvik et al. (85) reported the prevalence of L. monocytogenes from the 

environment of a salmon slaughterhouse (16.6%), from a smokehouse (88%), 

and from equipment used during the smoking process (90%) in Norway using 

MEE (Multilocus Enzyme Electrophoresis). This indicates that the smokehouse 

can serve as a reservoir for this microorganism. 

Autio et al. (5) reported that all Listeria isolates were characterized by 

PFGE (Pulsed Field Gel Electrophoresis) at different production stages and in 

the environment of a cold-smoked rainbow trout facility in Finland. They reported 

the following prevalence: slaughterhouse (1.6%), machines (24%), brine solution 

(67%), fish after brining (70%), fish after smoking (80%), fish after slicing (70%), 

and the final product (100%). Vogel (101) noted similar findings using RAPD 

(Randomly Amplified Polymorphic DNA), isolating L. monocytogenes from 
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products and processing environments in two Danish cold-smoked salmon 

processing plants. Listeria monocytogenes contamination of the cold-smoked 

salmon in the two plants was 31 to 85% and 0 to 25%, respectively. Results 

indicated that product contamination in both plants was a result of contamination 

in the processing environment. They also found that L. monocytogenes was 

capable of surviving in the processing environment for up to four years. 

Processing environments or steps for cooked or raw shrimp   

Gudmundsdόttir et al. (33) found Listeria spp. (12.5%, 87/695) in both the 

raw material (defrosted shrimp) and the environment in two shrimp processing 

plants. Listeria monocytogenes was positively identified in 89.7% (78/87) of 

these samples. The result of PFGE showed that the percentage of L. 

monocytogenes in the raw material (20.9%, 9/43) increased during the cooking 

and peeling process to 40.6%, mainly by cross-contamination.  
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This finding indicated that equipment can serve as a reservoir for L. 

monocytogenes. They also recovered 18.9% from 53 samples collected 

following the plants equipment in both processing plants indicating that these 

procedures were not adequate to reduce L. monocytogenes in the processing 

environment.  

Another study by Destro et al. (22) reported that two molecular typing 

methods, RAPD (two primers: 155, 11 composite profiles and 127, 16 composite 

profiles) and PFGE (two enzymes: SmaI, 13 composite profiles and ApaI, 15 

composite profiles), demonstrated a strong discriminatory power for discerning 

different L. monocytogenes strains (a total of 115 samples) from the 

environment, fresh samples, and from handlers in a shrimp processing plant. An 

executive summary on the prevalence (%) of Listeria spp. in selected seafood 

samples, processing steps, and environments is shown in Table 2. 
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TABLE 2. The prevalence (%) of Listeria spp. in selected samples, processing 
steps, and environments. 
 

Sources Prevalence (%) of 
Listeria spp. 

References 

Products   

Hot-smoked white or 
mackerel 

2 (48) 

Raw channel catfish 25-47 (21) 

Cold-smoked rainbow 
trout 

13.6 (48) 

Cold-salted rainbow 
trout 

19 (48) 

Raw fresh shrimp 15-28.8 (33) 

Cooked shrimp 8.1-11.4 (33) 

Processing 
environments for cold-
smoked fish products 

  

Slaughter house 16.6 (85) 

Smoke house 88 (85) 

Production steps, 
equipment, and solution 

for cold-smoked fish 
products 

  

Brining 70 (5) 

Smoking 80-90 (5, 85) 

Slicing 70 (5) 

Machine 24 (5) 

Brine solution 67 (5) 

Final product 100 (5) 
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TABLE 2. Continued. 
 

Sources Prevalence (%) of 
Listeria spp. 

References 

Production steps and 
environment for RTE 

shrimp 

  

Raw material 20.9 (33) 

Cooking and peeling 40.6 (33) 

Equipment after cleaning 18.9 (33) 
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Tracking microbial biofilms in seafood processing plant 

 A comprehensive review of microbial biofilms by Kumar and Anand (54) 

stated that the persistence of accumulated pathogenic bacteria in biofilms may 

contribute to the contamination of products and processing environments. 

Blackman and Frank (12) reported that the presence of complex growth 

nutrients (food residues) on various processing surfaces can support the 

development of biofilms that may harbor L. monocytogenes, if sufficient time is 

given. Their research indicated a need for food processors to decrease the level 

of complex nutrients on wet surfaces in plant environments.   

 Electronic and light microscopy techniques have been widely used for 

identifying the formation of biofilms. Carpentier and Chassaing (18) 

demonstrated interactions between L. monocytogenes and other resident 

microorganisms within biofilms in food industrial settings using epifluroscence 

microscopy. The formation of L. monocytogenes biofilms on chitin incubated for 

2 and 7 d at 25ºC after disinfection with or without iodine solution was observed 

by Scanning Electron Microscopy (66). 

Post-harvest interventions to control L. monocytogenes in seafood and 

seafood products 

There have been several attempts to use antimicrobial interventions to 

reduce the prevalence of pathogenic organisms in or on seafood products. 

Antimicrobial agents currently available for use with raw and cooked seafood 

products are discussed below: 
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Raw seafood products 

Chemical treatments 

Aqueous chlorine dioxide (ClO2) solutions at concentrations of 40, 100, 

and 200 ppm, as well as commercial ClO2 at concentrations of 100, 200, and 

400 ppm were more effective than aqueous chlorine in inhibiting a streptomycin-

resistant (StrR) L. monocytogenes on cubes of Mangrove snapper (59).  

Acidified sodium chlorite (ASC), an oxidative agent, has been approved 

by the FDA for use as an antimicrobial rinse in the meat and poultry industry as 

an intervention to control the presence of pathogenic bacteria in raw and cooked 

products.  Su and Morrissey (95) reported that ASC at concentrations of 40 to 50 

ppm has been approved by the FDA for use in rinsing, thawing, transportation 

and storage of seafood products. The antimicrobial mechanism of this 

compound has been explained by Lim et al. (58) as a process that inhibits 

microorganism survival by interfering with cellular protein synthesis functions. 

This compound specifically attacks amino acid components, such as sulphide 

and disulphide linkages. Su and Morrissey (95) reported a 0.43 log10 CFU/cm2 

reduction of L. monocytogenes on whole salmon washed with a 50 ppm acidified 

sodium chlorite solution for 1 min and then stored at -18ºC for one month, and 

on salmon fillets stored on ice or at 5°C for 7 d. Moreover, they found a 0.32 to 

0.47 log10 reduction in total plate count for salmon fillets similarity washed and 

stored on ice for 7 d. Researchers also found a 0.62 log10 CFU/g reduction after 

7 d of storage in ASC-treated salmon fillets, inoculated with L. monocytogenes 
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(initial inoculum of 103 CFU/cm2 or 104 CFU/g).  However, there was no 

significant reduction of L. monocytogenes counts found on ASC-treated salmon 

skin. These results indicated that an ASC solution had a delayed effect on 

artificially-contaminated L. monocytogenes on salmon fillets after 7 d of storage 

but may not be as effective on the skin. 

Cetylpyridinium Chloride (CPC) is a cationic surfactant belonging to the 

group of quaternary ammonium compounds (QACs). QACs are membrane 

active antimicrobial agents that have five sequential modes of action on bacteria 

(23). These five mechanisms are: 1) absorption by or penetration of the cell wall; 

2) protein-lipid interaction followed by membrane disorganization; 3) release of 

low molecular weight constituents from the cell; 4) degradation of the protein and 

nucleic acids; and 5) cell lysis (87). At concentrations of 0.05 to 1.0%, this 

compound has been used for decontamination of L. monocytogenes on the 

surfaces of raw, peeled, and cooked shrimp, as reported by Dupard et al. (23). 

In this study, they found a 1% CPC solution applied with or without subsequent 

water rinse reduced the level of L. monocytogenes V7 on the surface of raw 

shell-on shrimp by approximately 3.88 log10 CFU/g (23). However, research data 

in regard to the application of this chemical on seafood products and the 

combined effect of the interventions subsequent to other further processing 

operations such as chlorine washes and the freezing of seafood is limited. Acetic 

acid (0.75-3.0%) has been reported to have listericidal activity in unassociated 

form (16). However, Bremer and Osborne (15) found that the D-value (decimal 
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reduction time) increased up to 2.3 times in green shell mussels when they were 

marinated with acetic acid (3.0%) containing L. monocytogenes.  

Physical treatments  

Harrison et al. (35) reported that vacuum packaging with low density 

Ethylene Vinyl Acetate (EVA) and Polyvinylidene Chloride (PVDC, Saran™ 

wrap) films produced 1.12 and 1.05 log10 reductions, respectively, in L. 

monocytogenes Scott A-contaminated brown and white de-headed shrimp 

during 21 d of storage on ice. Silva et al. (92) reported that there was a zero 

prevalence of L. monocytogenes in refrigerated channel catfish (Ictalurus 

punctatus) fillet strips packaged using Modified Atmosphere Packaging (MAP) 

with a high concentration (63-87%) of carbon dioxide (CO2) and followed by 

storage at 2ºC for one month. 

Cold-processed seafood products 

Chemical treatments 

Pelroy et al. (74) reported that sodium lactate (2-3%) in combination with 

sodium chloride (3%)  and sodium nitrite (125 ppm) was an effective in inhibition 

of L. monocytogenes (10 cells/g) when added to comminuted raw salmon stored 

at both 5 and 10ºC for up to 50 d. They also found in a separate study that the 

greatest inhibitory effect on L. monocytogenes (10 cells/g) was achieved by 

combining 190-200 ppm of sodium nitrite with 5% water-phase sodium chloride 

in a vacuum package and stored at 5ºC for 34 d (75). Pelroy et al. (74, 75) found 

that adding a mixture of these chemical agents (sodium lactate, sodium chloride, 
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and sodium nitrate) to smoked salmon can offer the potential for enhanced shelf-

life. However, a total salt content above 4% in cold-smoked fish product is not 

practical because of acceptability and health concerns for consumers (74). 

Physical treatment 

Bell et al. (9) reported that a combination of carbon dioxide (100%) and 

storage at - 1.5ºC can have a bactericidal effect on the growth of three 

psychotropic pathogens: A. hydrophila, L. monocytogenes, and Y. enterocolitica 

on smoked blue cod.  

Treatment combinations 

Nilsson et al. (71) reported that a combination of nisin (≥30 IU/ml) and 

sodium chloride (5%) in vacuum or carbon dioxide (100%) packaging can 

increase the sensitivity of L. monocytogenes to nisin in cold-smoked salmon; 

therefore, providing a potential anti-listerial agent to this product.  

Hot-processed seafood products 

Physical treatment  

Bremer and Osborne (15) determined the thermal death time (TDT) for 

hot smoking processes on L. monocytogenes (106 CFU/g) cells in green shell 

mussels. They found the thermal-time for D values at 56, 58, 59, 60, and 62ºC 

was estimated to be 48.1, 16.3, 9.5, 5.5, and 1.9 min, respectively. This 

indicates that small changes in the center temperature of a product during hot 

smoking can have a pronounced impact on the inactivation of L. monocytogenes 

cells in a hot-smoked product. 
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Ready-to-eat seafood products 

Physical and chemical treatments 

Pothuri et al. (79) reported that counts from a mixture of two L. 

monocytogenes strains (Scott A and F5027) artificially inoculated on crayfish tail 

meats (104 CFU/g) substantially decreased (~a 3 log10 reduction, P < 0.05) 

during 20 d of storage at 4ºC after being treated with lactic acid (2%) and 

packaged under air, vacuum, or modified atmosphere (78.4% CO2, 14.8% N2, 

and 10.4% O2). These authors also found that L. monocytogenes in crayfish tail 

meats, treated with 1% lactic acid and packaged under modified atmosphere, 

started to propagate after 8 d of storage at 4ºC. This indicates that lactic acid 

solutions have a bacteriostatic effect that delays growth of L. monocytogenes in 

food products maintained in refrigeration.  

After treatment with Cetylpyridinium Chloride (CPC, 1.0%), L. 

monocytogenes V7 counts (37°C, 24 h) on the surface of commercially 

precooked and shell-on shrimp were reduced by approximately 7 log10 CFU 

units (23). However, the effect of further washes on treated and untreated 

products were not reported in this publication. 

A potential biochemical treatment 

ε-polylysine, an antimicrobial peptide, has been shown to have significant 

antimicrobial activity against Gram positive and Gram negative bacteria when 

used at concentrations ranging from 1 to 8 μg/ml (91). This compound consists 

of at least ten L-lysine residues of cationic monomers and has antimicrobial 



 

 

24

activity against several microorganisms. Shima et al, (91), using Transmission 

Electron Microscopy (TEM), reported that the morphology of E. coli K12 cells 

was changed in the presence of ε-polylysine at a concentration of 50 μg/ml when 

compared to non-treated E. coli K12 cells. Higher concentrations of ε-polylysine 

(1,000-5,000 ppm) have been used for spraying and dipping sliced fish and fish 

sushi in Japan (37). The Food and Drug Administration (FDA) indicated that they 

have no objection to the use of ε-polylysine in seafood, except in cooked or 

sushi rice where it should be limited to less than 50 ppm (31). Geornaras and 

Sofos (31) reported that ε-polylysine at concentrations of 0.01% at 4°C and 

0.02% at 24°C were effective for reducing  L. monocytogenes strains (10-strain 

culture mix) to non-detectable levels in vivo during 30 d of storage. The 

antimicrobial effect of this compound was also reported in food extracts. The 

same authors found this compound at a concentration of 0.02% was effective for 

reducing 10-strain of L. monocytogenes culture mix in rice and vegetable 

extracts during 6 d of storage at 12°C (32). These experiments indicated that ε-

polylysine, a potential antimicrobial agent, can be used for decontamination of L. 

monocytogenes in certain food extracts (32), ready-to-eat fish products, boiled 

rice, noodles soup stocks, noodles, and cooked vegetable (37).  
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Control environmental Listeria spp. and the biofilms in seafood processing 

plants 

Chemical treatment 

 Tuncan (97) reported the germicidal effectiveness of three common 

sanitizers (quaternary ammonium compound, iodophor, and chlorine) at different 

temperatures (2ºC and 25 ºC) for 30 s and various concentrations (25, 50, 100, 

and 200 ppm) on a cocktail mix (four strains) or on individual strains of Listeria. 

In this study, it was reported that the germicidal effectiveness of chlorine was not 

influenced by cold temperatures and that the Listeria cocktail (>7 log10 CFU/ml) 

was inactivated after 30 s with chlorine concentrations ranging from 25 to 200 

ppm. Exopolysaccharide (EPS) produced by microorganisms during biofilm 

formation may act to various degrees to interrupt normal diffusion modifier, or 

may act as a molecular sieve, or an absorbent. The three dimensional structures 

of biofilms may impart some degree of resistance against antimicrobials but this 

resistance is lost as soon as this structure is ruptured (54). The authors reported 

that detergents containing chelating agents, e.g. EDTA and ethylene glycol-bis 

(β-aminoethyl ether) N, N, N’, N’-tetracetic acid (EGTA) can disrupt EPS 

structure. However, McCarthy (66) suggested that sanitizers (iodine, chlorine, 

and quaternary ammonium compounds) at the recommended levels and the 

exposure time of 20 min might not effectively eliminate the attachment of L. 

monocytogenes from contact surfaces. The authors also concluded disinfectants 
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should be chosen accordingly to control specific contamination problems of 

individual processors, time (s) of exposure, and concentrations. 

Physical treatment 

Liu et al. (60) found that the application of electrolyzed oxidizing water 

(EO, 0.05-0.2% sodium chloride) following conventional cleaning procedures 

significantly reduced a L. monocytogenes cocktail applied on the surfaces (5 X 5 

cm2) of stainless steel sheets, ceramic tiles, or floor tiles by 3.73, 4.24, and 5.12 

log10, respectively. Based on these findings, they concluded that electrolyzed 

oxidizing water (EO) can potentially be used as a sodium hypochlorite 

alternative for inactivating L. monocytogenes on seafood, and other processing 

surfaces. Kumar and Anand (54) reported a combination of antimicrobials with 

the use of a low level electric current was successful in controlling biofilms 

formation.  

Biocontrol 

Bower et al. (13) reported that L. monocytogenes cells on silica surfaces 

can be completely destroyed by a high concentration of nisin (1.0 mg/ml). 

Contaminated surfaces treated with a lower concentration of nisin (0.1 mg/ml) 

only exhibited a small degree of inhibition. The authors concluded that the 

inhibitory activity of nisin on L. monocytogenes contaminated surfaces is 

concentration-dependent. 
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Antimicrobial interventions to control of Listeria spp. in artificially-

inoculated headless shrimp 

Antimicrobial interventions to control Listeria spp. that naturally or 

artificially contaminate raw or cooked seafood products have been reviewed 

previously. These interventions were divided into three categories: chemical, 

physical, and biological intervention that can be used individually or in 

combination. The interventions that were selected to control Listeria spp. in this 

study were:   

Biodegradable treatments 

Citrate Extracts (Citrosan®) 

No data has been published in peer reviewed journals to elucidate the 

mode of action of this antimicrobial on microorganisms. Based on manufacturer 

(Diken group, Mexico) information, this natural antimicrobial agent consists of 

amino acids, acidic sugars, acidic pectins, organic acids, Vitamin C or E, 

glycerin, and bioflavanoids. A concentration of 0.25% citrate extract for 60 s was 

also recommended by this manufacturer for use as an antimicrobial agent. 

Chemical treatments 

Chlorine and chlorinated compounds 

Baker (6) reported that hypochlorous acid (HOCl) produced from 

hypochlorites (Cl2) added to water provided the germicidal function by the 

formation of the anion hypochlorite OCl- which is partially dissociated from HOCl 

(equations 1 and 2).  
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Cl2+H20→ HOCl+ HCl                                                                     (1) 

HOCl ↔ H++OCl-                                                                             (2)      

Morris (67) developed a theoretic curve for the relative germicidal 

efficiency of HOCl and anion hypochlorite OCl- to kill 99% of E. coli in water 

within 30 min at 2°C and 5°C within the pH range of 4 to10. His results indicated 

that HOCl had 80 times more germicidal potency than OCl-. An advanced theory 

for the destruction of bacteria by chlorine was reported by Baker (7).  The author 

found that chlorine combined with proteins of cell membranes to form N-chloro 

compounds, and caused the eventual death of microorganisms. Brackett (14) 

reported that sodium hypochlorite of 50-200 mg/L (ppm) applied for up to 20 s 

was effective for the reduction of both L. monocytogenes LCDC 81-861 and L. 

monocytogenes Scott A populations. In the same study, artificially inoculated 

Brussels sprouts dipped into a 200 mg/L solution of hypochlorite for 30 s 

reduced Listeria populations by two orders of magnitude. 

Cetylpyridinum Chloride (CPC, Cecure®) 

 Cetylpyridinium Chloride (CPC) is a quaternary ammonium salt with 

hydrophilic and hydrophobic properties (Fig. 2) that has a molecular weight of 

358.07 (4, 42). It is also a wetting agent or a low-tension surfactant (43). 
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FIGURE 2. The chemical structure of Cetylpyridinium Chloride (42). 

 

The FDA has approved the use of this quaternary salt as an anti-plaque 

agent for oral quaternary salt as an anti-plaque agent for oral hygiene and an 

over-the-counter drug. Common products include mouthwashes and throat 

lozenges (4). The FDA Plaque Subcommittee allows a concentration level of 

0.045% to 0.10% CPC in a highly bioavailable compound and alcohol-free 

formulation to treat plaque-induced gingivitis (62). Throat lozenges contain 1 to 2 

mg CPC and are formulated to dissolve slowly in the back of the mouth (4). The 

FDA amended the food additive regulations on April 2, 2004 to permit the use of 

CPC as an antimicrobial agent when applied as spray during the final wash of 

poultry processing at less than 0.3 g of CPC per pound of poultry (4). 

 The toxicological effects of the hydrophilic portion and the basic portion of 

CPC is caused by interactions with negative charges on bacterial cell membrane 

because the compound causes leakage of the bacterial cell’s structure, the 

disruption of the cell membrane, and the inhibition of cell growth, which 

subsequently causes cell death (2,58,102). Strain sensitivity to CPC may be 

affected by differences in the cell structure between gram (+) and gram (-) 
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bacteria. Negatively charged teichoic acids (Fig. 3) are found only in gram (+) 

bacteria and easily interact with the cell and CPC. The cell surface of G (+) 

bacteria is more hydrophobic than the cell surface of G (-) bacteria and it permits 

a greater interaction with the hydrophobic molecules of CPC compared to that of 

G (-) bacteria. This interaction intervenes in the respiration of G (+) bacteria (42, 

58).  

 

 
FIGURE 3. The structures of teichoic acids found in G (+) bacteria are the 
polymers of (a) polyglycerol phosphate and (b) polyribitol phosphate (51).  
 

 

Fresh-cut vegetables treated with 0.1% and 0.5% CPC solutions were 

more effective for reducing G (+) than G (-) bacteria (102). Treatments of 1% 

CPC showed more germicidal effectiveness than chlorine treatment on fresh-cut 

vegetables; however, the residual level of 1% CPC FDA limits for human 
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consumption (102). Listeria monocytogenes, Salmonella Typhimurium, and E. 

coli O157:H7 treated with 0.5% CPC were reduced (P ≤ 0.05%) compared to 

that treated with 0.1% CPC (102). Lim and Mustapha (58) also reported that 

0.5% CPC reduced the concentration of L. monocytogenes on sliced roast beef 

to an undetectable level (< 1 log10 CFU/cm2) during storage at 4°C for 10 d, as 

compared to the inhibitory activity of 0.12% acidified sodium chlorite (ASC) or 

0.25% CPC-0.06% ASC (58). The use of a low concentration of CPC was 

studied in broiler skin. A study by Kim et al. (52) reported that the differences of 

1.0 to 1.6 log10 in Salmonella Typhimurium cell numbers observed between the 

control and the 0.1% of CPC-treated chicken skins were significant. The authors 

also found no differences in cell counts between sprayed and immersed chicken 

skins. 

Physical treatments 

Ultrasound 

 The use of ultrasound for the removal or decontamination of spoilage 

microorganisms and certain food-borne pathogens from fresh produce and raw 

poultry products has been reported (57, 88, 90). The bactericidal action of this 

treatment is caused by ultrasonic waves that are generated by mechanical 

vibrations at frequencies higher than 15 kHz. When such waves propagate in 

liquid media, alternating compression and expansion cycles are formed. High 

frequency ultrasound waves causes small bubbles to grow in a liquid media and 

makes the fluid appear to boil.  When the bubbles attain a volume that no longer 
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absorbs energy, they implode violently. This phenomenon is called cavitation. 

The temperature of the gas bubbles can exceed 200°C with pressures greater 

than 300 atm when the bubble is at minimum volume. Under such conditions, 

the formation of free radicals is induced from water vapor in the bubble. 

Microorganisms in the liquid suspension may be inactivated by the shock-wave 

formed when the bubbles collapse or the free radicals (81, 88). Coordinating the 

FDA-approved interventions with the chilling step in broiler processing, Sams 

(88) found that ultrasonication did not enhance the reduction in Aerobic Plate 

Count (APC) counts after post-chill drumstick skins were treated with 1% lactic 

acid (LA). The authors also found that pre-chill ultrasonication did not reduce 

APC on drumstick skins at any of exposure duration (15 min and 30 min) and 

temperature combination (25°C and 40°C) during 14 d of storage. However, 

Lillard (57) found that sonication of Salmonella cell suspensions produced an 

extra of 1 o 1.5 log10 reduction per 15 min of treatment in presence of free 

chlorine at 0.5 ppm. Sams (88) concluded that the greatest reduction in counts 

occurred when sonication and chlorination were used concurrently. The 

decontamination efficiency of food-borne pathogens using both sonication and 

washing treatments was also evaluated in fresh produce. Seymour et al. (90) 

reported the effect of ultrasound frequency (32-40 kHz) during small-scale 

washing trials (2 L) of vegetables. The study found that a further 1 log10 

reduction of S. Typhimurium populations on cut iceberg lettuce was observed in 

ultrasound and chlorine combination during washing for 10 min, as compared 
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with ultrasound or chlorine treatment alone. In contrast to large-scale trials (40 

L), four ultrasound frequencies (0, 25, 40, and 62-70 kHz) were tested to access 

the decontamination efficiency against an ampicillin resistant strain of E. coli on 

cut iceberg lettuce and strawberries compared to chlorine (25 ppm) and water 

washing treatments. The study found that the frequency of ultrasound had no 

significant effect on the decontamination of E. coli from the fresh produce tested. 

Pulsed Electric Field (PEF) 

 High voltage Pulsed Electric Field (PEF) has been studied intensively in 

recent years with increased popularity in food applications. This process has 

been used to inactivate a variety of microorganisms, including Bacillus subtilis, 

Lactobacillus delbrueckii, and Saccharomyces cerevisiae. PEF treatment 

involves applying pulses with a magnitude at least 20 kV/cm and a short 

duration time from 500 ns to 4 µs (86) to liquid and semi foods. A severe electro-

breakage of cell membrane is most commonly reported at this level. The 

instabilities in the membranes of treated microorganisms were induced by 

electrochemical compression and electroporation (38, 61, 86, 105). Two 

diagrams of electrochemical compression and electroporation on cell membrane 

are illustrated in Figs. 4 and 5, respectively. 
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FIGURE 4. Process of cell membrane compression, reversible and irreversible 
electric breakdown when exposed to high electric field strength (19, 53, 80, 99). 
EC represents the critical electric field intensity. (a) cell membrane in the 
absence of electric field, E = 0 (b) membrane compression in the presence of 
electric field, E < EC (c) reversible pore formation in the presence of electric field, 
E > EC  (d) irreversible pore formation in the presence of electric field, E >> EC.  
 

 

 

 

 

FIGURE 5. A sequence of electroporation on cell membrane by high intensity 
PEF (19, 38, 99). 
 
 
 
 Most studies indicated that PEF compromises the structural integrity of 

the cell membrane and affects other metabolic functions as a mode of action to 

inactivate bacteria. The mode of inactivation on microorganisms by PEF was 

described in Calderón-Miranda et al (17). The trans-membrane potential of the 

cell membrane is induced when an external field is applied to bacterial cells. 

Free charges due to the trans-membrane potential are generated on both sides 

of the cell membrane and then are attracted to each other. Subsequently, cells 
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are compressed.  When the trans-membrane potential of cells is greater than 

that of natural cells (1 V), the cell membrane subsequently loses its stability and 

breaks down. As a result, pore formation is generated in cells and causes 

permanent damage to cell permeability or death occurs. Damaged cell 

membrane no longer functions properly to regulate the electron transport that 

controls entrance and exit of small molecules in time.  

 In a review paper, Wouters et al. (104) reported a selective medium 

plating technique might not be adequate for the detection of sub-lethally injured 

cells induced by PEF treatment. The authors also concluded that consistent 

findings can be drawn from other studies published for enumerating L. innocua 

on selective as well as non-selective media. Transmission Electron Microscopy 

(TEM) revealed that PEF-treatment with 6,000 pulses at 30 kV/cm cause rupture 

of the cell wall, the loss of intracellular contents (e.g. cytoplasmic and nucleic 

materials), and the production of cellular debris because irreversible 

electroporation (86). Calderón-Miranda et al. (17) reported that significant 

morphological changes to bacteria and yeast were caused by treatment with 

PEF. These changes included a significant increase in surface roughness, 

appearance of craters in the cell wall, elongation and disruption of organelles, 

cell wall breakage, and pore formation. 

   Several studies have reported that PEF inactivation is dependent on the 

electrical field strength, treatment time, pulse number, or temperature alone, or 

in a combination of factors (10, 27, 34, 38, 39, 61, 83, 99, 104). Jayaram et al. 
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(47) found that 2 or 3 log10 reductions of Lactobacillus brevis cells could be 

achieved with a field strength as low as 5 kV/cm.  

 Increments of 5 ms (millisecond) in treatment time caused a great 

reduction of the population of Lactobacillus brevis in spite of temperature and 

media type. All treatments showed that an increase in pulse number (0-5) 

produced a significant reduction of E. coli O157:H7; however, the reductions 

resulted mostly from the first pulse (61). On the contrary, Ho et al (38) reported 

that an increase in the electrical field strength and pulse number might not 

achieve a desired microbial decay. The study found that a minimum field 

strength of 10 kV/cm and pulse number of 10 decreased Pseudomonas 

fluorescens population by 6 log10 cycles.  

 Two studies (47,106) reported that the effectiveness of PEF inactivation 

could be enhanced by increasing the temperature of the media suspension. The 

population of E. coli O157: H7 decreased more at room temperature than at 0°C 

when cells were treated with PEF at the field strength of 12.5 kV/cm (61). 

Ravishankar et al. (83) reported a greater reduction of E. coli O157:H7 

(maximum~3.0 log10) when the PEF treatment was applied at a temperature of 

55ºC compared to temperatures of 5,15, 35, and 50°C, with a field strength of 30 

KV/cm and 10 pulses at a rate of one per minute. Ho et al. (38) found that an 

electric field strength at 10 kV/cm for 10 pulses (2 sec pulse period and 2 µs 

pulse width) with a spike of reverse polarity produced a significant reduction of 

P. fluorescens population in various aqueous solutions. Fleischman et al. (27) 
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also reported PEF processing applied at the electrical field strength of 20 kV/cm, 

pulse number of 10, and temperature of 55ºC can achieve reduction of Listeria 

monocytogenes up to 4.5 log10/ml CFU in milk. The electric field strength and 

pulse numbers from 15 to 30 kV/cm and 5 to 50, respectively, were also 

evaluated in this study. The results showed that a maximum 1 log10 reduction 

was observed at 30 kV/cm and no improved reductions (< 1 log10) were found 

even when using 50 pulses at these conditions.  

 Inactivation of microorganisms by PEF treatment can also be influenced 

by the type of microorganism, the physiological conditions of the cells, initial 

inoculum size, the ionic strength and the conductivity of the suspension medium 

(61,104). HÜlsherger et al. (40) reported the lethal effect of an electric field in the 

range of 0.2 V/µm to 2.0 V/µm and number of pulses in the range of 2 to 30 on 

Gram positive bacteria, Gram negative bacteria, and yeast cells. When low 

pulse numbers were applied to G (+) bacteria, Gram (-) bacteria, and yeasts, the 

G (+) bacteria and the yeast were less sensitive to electric pulse treatment than 

Gram negative bacteria. Treatment with high pulse numbers could cause less 

than 1% survival rates for all microorganisms. The effectiveness of PEF 

treatment with a mixed population of microorganisms was decreased (98). The 

authors found that PEF inactivation of E. coli reached 6.5 log10 cycles and B. 

subtilis was reduced 3.2 log10 units, while a mixture of E. coli and B. subtilis 

substained 4.0 log10 reductions in pea soup after 30 pulses at a field strength of 

30 kV/cm. Cells in the stationary phase of growth were generally more resistant 
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to PEF treatment. Indeed, PEF treatment inactivates young L. innocua cultures 

effectively (105). Zhang et al (106,107) indicated that inactivation by PEF was 

not a function of the initial inoculum. However, Matsutomo et al (65) 

demonstrated that the effect of initial inoculation and agitation were directly 

associated with PEF inactivation. Agitation in the treatment chamber resulted in 

increased inactivation. Ionic suspension media (e.g. 0.5% sodium chloride and 5 

Mm phosphate buffer) caused slightly greater reduction of E. coli O157:H7 by 

PEF treatment than PEF in non-ionic glycerol and sucrose-based media at the 

field strength of 12.5 kV/cm with the temperature at 25°C (61). Ho et al. found 

that the field strength of 25 kV/cm could cause a desirable reduction in P. 

fluorescens only when sodium chloride was added into the solution as an 

electrical conductor. 

 PEF technology can inactivate both spoilage and pathogenic 

microorganisms in liquid or semi-liquid foods without altering the color and flavor 

in food or reducing the concentration of significant nutrients. As a result, this 

technology might provide consumers with safe, fresh-like, nutritious food. PEF 

treatment has been typically applied to fluid foods with intense electric fields in 

the range of 20 kV/cm to 80 kV/cm and short pulses in the range of 1 µs to 10 µs 

either in a batch or in a continuous flow system at low temperatures (68). A 

study by Reina et al. (84) found a great reduction of viable L. monocytogenes 

cells in three types of inoculated milk (whole, 2%, and skim milk) processed by 

PEF. The extent of reduction increased as treatment time increased. All milk 
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samples were inoculated with approximately 107 CFU/ml of L. monocytogenes 

and were treated with PEF at the field strength of 30 kV/cm at room temperature 

for 100, 300, and 600 µs, respectively. An approximate 3 log10 reduction of 

viable L. monocytogenes cells was obtained after 600 µs PEF treatment. The 

effect of field strength by PEF treatment was also determined in this study. Field 

strengths of 25 kV/cm and 30 kV/cm were used to evaluate PEF inactivation of 

viable L. monocytogenes cells in whole milk. The authors found that the field 

strength of 35 kV/cm and treatment times at 300 µs and 600 µs resulted in a 

greater reduction of viable L. monocytogenes cells. These results also indicated 

that the effect of electric field strength was related to the treatment time. 

Fernández-Molina et al. (26) reported that the survival of P. fluorescens cells in 

whole milk was significantly decreased when the field intensity was increased 

from 31 to 38 kV/cm and the pulse number was increased from 10 to 30. 

Microbial inactivation by PEF application was also studied in pea soup, whole 

egg products, yogurt, and tomato sauce. Martín-Belloso et al. (63) found that the 

inactivation of E. coli in liquid egg was a function of total treatment time. The 

total treatment time was expressed by both pulse duration (2 µs and 4 µs) and 

pulse numbers (up to 100 pulses). Results showed that the survival fraction of E. 

coli in liquid egg was reduced almost 6 log10 with 100 pulses of 4 µs, whereas 

the same number of 2 µs pulses reduced the bacterial population less than 5 

log10. Mosqueda-Melgar et al. (68); however, reported that an increase from 200 

µs to 1000 µs in total treatment time did not enhance the inactivation of 
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Salmonella enterica Ser. Enteritidis population when 35 kV/cm of electric field 

intensity was applied to tomato juice.  

Multiple antimicrobial treatments 

Antimicrobial agents and pulse electric field treatment 

 A synergistic effect of a combination of high intensity pulsed electric field 

(HIPEF) and natural antimicrobials or organic acids have been reported in two 

studies (61, 68). Liu et al. (61) found that colony counts of both control and acid 

(sorbic and benezoic)-treated samples of E. coli O157: H7, respectively, 

decreased progressively, with the field strength of PEF in the range of 6.25 

kV/cm to 20 kV/cm. A different study by Mosqueda-Melgar et al. (68) found that 

during 1 h exposure, combinations up to 0.1% of cinnamon bark oil and 2.0% 

citric acid with HIPEF treatment (35 kV/cm and 1000 µs) were sufficient to 

reduce a Salmonella enterica Ser. Enteritidis population by 5.5-6.0 log10 in 

tomato juice. These studies suggested that PEF processing could rupture the 

membrane of the bacterial cell and thus, facilitate the entry of unassociated 

molecules into the cell and subsequently cause cell death. No research data has 

been identified that demonstrate a synergetic effect of CPC and PEF against 

Listeria spp. inoculated onto shrimp.  

Antimicrobial agents and ultrasound treatment 

 An extra 10 fold reduction of microbial populations has been reported 

using a combination of ultrasound with chlorinated water in fresh produce and 

broiler processing (57, 90). These studies indicated that entrapped bacteria can 
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be easily detached from food products by a high frequency ultrasound wave. 

The combination of treatments has not been reported for the decontamination of 

shrimp inoculated with Listeria spp. 

Antimicrobial agents and storage conditions 

 The bactericidal or bacterostatic effect of antimicrobial agents on 

microbial populations in a variety of food products has been studied during 

refrigerated or frozen storage. These studies (70, 71, 75, 93, 95) showed that 

the effect was dependent on the type of food or the type of microorganisms. A 

study by Mu et al. (70) reported results of treatments to fresh headless shrimp 

and rainbow trout fillets inoculated with approximately 7 log10 of L. 

monocytogenes and dipped in tap water, 10% Trisodium Sodium Phosphate 

(TSP), or 20% TSP solution. They were then packaged with Polyvinylidene 

Chloride (PVDC film) and stored for 0, 3, 6, and 9 d at 4°C. Psychrotrophic plate 

counts were also examined in this study. The study found that no significant 

effect of the 20% TSP dipping solution on the psychrotrophic and L. 

monocytogenes populations of headless shrimp after 6 d of storage at 4°C. The 

20% TSP dipping treatment significantly lowered the psychrotrophic counts of 

rainbow trout fillets at day 0 and remained effective during storage. The 

bacteriostatic effect of CPC against L. monocytogenes in Ready-To-Eat (RTE) 

products during extended storage was published by Singh et al. (93). The 

authors inoculated frankfurters with either a high concentration (7-8 log10) or a 

low concentration (2-3 log10) of L. monocytogenes followed by treatment with 1% 
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CPC or 1% CPC followed by a water rinse at temperatures of 25, 40, and 55°C 

and for 30, 40, and 60 s. An immediate antimicrobial reduction of 1.4-1.7 log10 

units by 1% CPC treatment was observed when it was sprayed onto frankfurters 

prior to packaging, but rinsing did not improve the effect of the CPC. The same 

author found the bacteriostatic effect (increase < 2 log10) was also observed at 

this level of CPC after 42 d of refrigerated storage at both 0°C and 4°C. 

Antimicrobial agents and water wash 

 Studies reported (23, 93, 102) that water rinse after CPC treatment can 

reduce CPC residues to an acceptable level. Moreover, Dupard et al. (23) found 

that water rinse also removed the immediate antimicrobial effect of CPC, 

regardless of concentration, on L. monocytogenes inoculated cooked or raw 

shrimp products. The same result was reported by Singh et al. (93) in RTE food 

which showed that no significant reduction of L. monocytogenes populations 

was obtained from either 1% CPC treatment or 1% CPC treatment followed by a 

wash with water. 

Chlorine production and pH effect after PEF processing 

 Free chlorine is generated at the anode and hydrogen at the cathode 

when electricity is applied to sodium chloride solution through electrodes (3). 

Hypochlorous acid (HOCl) has a stronger germicidal activity against 

microorganisms than hypochloric acid (OCl). More HOCl is produced at a low pH 

compared to a high pH. As a result, chlorine is more active against 

microorganisms in the lower pH range. 
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Transmission Electron Microscopy (TEM) 

 Wouters et al. (103) reported that a selective medium plating technique 

might not be adequate for the detection of sub-lethally injured cells injured by 

PEF treatment. The authors also concluded that consistent findings can be 

drawn from other studies for the enumeration of L. innocua on selective as well 

as non-selective media. Hence, Transmission Electron Microscopy (TEM), might 

provide a better understanding of treatment effects by examining morphological 

changes that were caused by natural extracts (72,82), bacteriocins (17,94), or 

pulsed electric field (17,27,83). A combination of PEF and CPC might achieve a 

better reduction of Listeria populations on raw shrimp or in medium as compared 

to PEF or CPC treatment alone. TEM micrographs might illustrate morphological 

changes on Listeria cells in suspension medium that were treated either by PEF, 

CPC, or a combination of both treatments. Studies (17, 26, 77, 83, 86) have 

been published that showed changes to cell structures of bacteria that were 

caused by PEF treatment. Other studies (2, 58, 102) fully elucidated 

antimicrobial actions of CPC on bacterial cells; however, only limited TEM 

micrographs were published in these papers. Mechanisms of synergism by 

combining PEF with antimicrobials on bacterial cells were reported in these 

studies (76, 96). However, no published studies on TEM micrographs are 

available to illustrate if morphological changes on bacterial cells were induced by 

a combination of both PEF and CPC treatments. 
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OBJECTIVES 

The goal of this project is to develop antimicrobial intervention strategies 

using multi-hurdle approach to reduce contamination of raw seafood products 

with Listeria monocytogenes and Listeria innocua. The specific objectives to 

achieve these goals are:  

 

1. To determine the immediate and residual bactericidal effect of 

selected chemical antimicrobial intervention strategies applied alone 

or in combination on raw shell-on, and beheaded shrimp artificially 

contaminated with Listeria monocytogenes and Listeria innocua 

strains.   

2. To determine the immediate and residual bactericidal effect of 

physical antimicrobial treatments applied alone or in combination on 

raw shell-on, and beheaded shrimp artificially contaminated with 

Listeria monocytogenes and Listeria innocua strains.   

3. To determine the antimicrobial effect of chemical and physical 

treatments on raw shell-on, and beheaded shrimp artificially 

contaminated with Listeria monocytogenes and Listeria innocua 

strains. 

4. To examine treated cells by electron microscopy to determine if the 

treatments caused any structural damage to cells that might elucidate 

the bactericidal effects of the treatments. 
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MATERIALS AND METHODS 

Bacterial cultures  

A cocktail consisting of L. monocytogenes ATCC 15313, L. 

monocytogenes Scott A46, L. monocytogenes Strain A, L. innocua NRRC 

b33076, and L. innocua ATCC 33090 was used. These strains were secured 

from the culture collection at the Department of Poultry Science at Texas A&M 

University and from Dr. Robin Anderson’s laboratory at the Southeast Plains 

Agricultural Research Center of the United States Department of Agriculture in 

College Station, Texas.   

Inoculum preparation 

Each strain from the frozen stock culture was individually inoculated into 

18 x 150 mm glass tubes containing 9 ml of Tryptic Soy Broth (Difco, Detroit, MI) 

and cultured for two consecutive transfers at 37°C for 24 and 18 h, respectively. 

A 1 ml aliquot of fresh culture from each strain (18 h incubation) was combined 

and diluted with 5 ml of Buffered Peptone Water (BPW, Difco). The 

concentration of the inoculum was approximately 9.0-9.5 log10 CFU/ml. This 

inoculum was used to inoculate the shrimp samples. The same concentration of 

inoculum was diluted into 9 ml of BPW to reach an approximately 5-6 log10 

CFU/ml of Listeria spp. for the shelf-life studies. 
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Raw shrimp samples 

 Shell and head-on, farm-raised white shrimp (21~25 count per pound) 

hatched and raised in an artificial pond (~1230 surface acres) with a production 

capability of 3.5 million pounds per year were obtained from Harlingen Farms in 

Bayview, TX. The shrimp (~20 lb) were in blocks or IQF as sold by the 

processor. Frozen samples (-22.4ºC) were transported in refrigerated containers 

to the Microbial Challenge Pilot Plant at the Poultry Science Center of Texas 

A&M University and stored in the frozen state until testing. The same lot of head 

and shell-on shrimp were thawed at 3.3°C for 24 h, manually beheaded and 

then shrimp of uniform size were weighed for testing and inoculation. 

Antimicrobial treatments 

Beheaded shrimp samples were inoculated by submerging 25 g or 81 g  

of shrimp into a Whirl-Pak bag containing 70 ml or 100 ml of inoculum (60 or 90 

ml buffered peptone water and 10 ml of bacterial cultures). Inoculated samples 

were soaked in the bag (Nasco) for 10 min and then air dried for 5 min on a 

sterile strainer to allow bacterial attachment and distribution. A final 

concentration of 7.0 to 7.5 log10 CFU/g Listeria spp. was recovered from air-

dried shrimp. Contaminated samples (three shrimp for each treatment) were 

treated by immersion into selected treatments. These treatments were: 

cethylpyridinium chloride (CPC; 40% concentrate, Cecure®, Safe Foods Corp., 

USA), a chlorine treatment administered as sodium hypochlorite (Bleach; 6% 

concentrate, Household brand, HEB, USA), citrate extracts (CE; 40% 
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concentrate, Citrosan®, Diken group, Mexico) and a retail brand of food grade 

NaCl (0.1% and 0.5%, w/v). Sterile distilled water was used for the control 

treatment and wash in treatments. 

Cell suspension samples were 10 ml of 18 h L. innocua NRRC b33076 or 

L. innocua ATCC 33090 culture. Cell suspensions were added into 90 ml of 

BPW to reach a final concentration of 8.0 log10 CFU/ml, 9.0-10.0 log10 CFU/ml, 

and 9.0-9.5 log10 CFU/ml, respectively. Cell suspensions were treated either 

with PEF in 0.5% NaCl for 4 to 5 min, 0.5% CPC, or the combination of both. 

Listeria enumeration 

 Shrimp samples were transferred into a filter Whirl-Pak bag (Nasco, 

Modesto, CA) containing 25 ml of BPW and homogenized using a Lab-Blender 

400 stomacher (Takmar, Cincinnati, OH) for 60s. Ten-fold serial dilutions were 

prepared in 9 ml of BPW and an aliquot (0.1 ml) of the homogenized sample 

was surface-plated on Modified Oxford agar (MOX, Oxoid, Basingtoke, UK). The 

plates were incubated at 30ºC for 24 to 48 h. Characteristic Listeria spp. 

colonies are small, and are surrounded with a black halo. Results were reported 

as Listeria spp. log10 CFU/g of sample. Treated and untreated samples were 

analyzed within 24 h, 48 h after frozen, and 1, 7 or 8 d after refrigerated storage.  

Combination treatments  

The effect of multi-hurdle interventions using chemical and physical 

interventions employed sample preparation methodologies as described.  

However, the treatments were applied in sequence. Physical treatments 
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included: refrigerated and frozen storage, water washes, pulse electric fields, 

and ultrasonication.  

Chemical and biochemical interventions 

CPC treatment 

 The final concentration of 0.5% (w/v) CPC was made by mixing 12.5 g of 

40% of CPC concentration into 1 L of sterile distilled water for all experiments. 

Contaminated shrimp were treated with CPC and were followed with or without a 

water wash. Shrimp without a water wash were immersed in 60 ml or 100 ml of 

0.5% CPC for an approximately 20 s at room temperature. Shrimp with a water 

wash were immersed in 60 ml or 100 ml of 0.5% CPC for an approximately 20 s 

at room temperature and were followed by a distilled water wash (60 ml or 100 

ml) for an approximately 20 s at room temperature. A 1.25 g aliquot of 40% CPC 

was added to a 100 ml of Listeria cell suspensions that did not contain shrimp 

for 0, 40, 80, 120, 160, 200, 240, and 300 s.  

Chlorine treatment 

 Commercial bleach (6% sodium hypochlorite) was diluted with sterile 

distilled water to prepare chlorine concentrations of 50, 100, and 200 ppm. The 

concentration of total chlorine was measured before immersion of the Listeria 

spp. inoculated shrimp into the solution. Free chlorine concentration was 

measured after immersion of the Listeria spp. inoculated shrimp. Total and free 

chlorine concentrations were determined using a HACH chlorine pocket 
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colorimeter™ (Loveland, CO). Inoculated shrimp were immersed in a 100 ml of 

chlorine solution or a 100 ml of water treatment for 20 s.  

Citrate Extracts (CE) treatment 

 For single treatment, inoculated shrimp were immersed in 0.25% (v/v) 

citrate extracts (2.5 ml/1L) or distilled water for 1 min. For CE treatment in 

combination with PEF, shrimp were immersed in 0.25% CE for 1 min and 

followed by 1% NaCl PEF for 1 min or 1% NaCl PEF for 1 min and followed by 

0.25% CE for 1 min. Water treatment combinations were applied in the same 

manner as described previously. 

Physical interventions 

PEF treatment 

 An electrical stimulation device from Simmons technology (Model 

SF7000, Dallas, GA) was used to generate a maximum output of 30-40 volts 

and 0.26 A for PEF treatments. The remainder of the system consisted of two 

copper electrodes (the average distance between electrodes was 2.5 cm) and a 

glass beaker which served as a conductor and a base, respectively. The 

electrodes were submerged in a Whirl-Pak bag containing samples in the 

breaker and electrical charges were applied to the top of the electrodes. The 

treatment, parameters were a 100 ml of NaCl solution at concentrations of 0.1% 

to 1%, pulse lengths (10 s on and 5 s off), for a duration of 1 to 4 min.  
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Ultrasound treatment 

 One liter of 0.5% (w/v) CPC solution or water was added to the ultrasonic 

cleaning tank (model 5200R-4; Bransonic Ultrasonic Co., Dansbury, CT).  CPC- 

or water-treated shrimp were immersed in the above solutions for 0, 5, 10, 15, 

and 20 min at an ultrasonic energy of 47,000 Hz with a 200 W output.  Shrimp 

were immersed in a 100 ml of sterile water for an approximately 20 s after 

exposure to the sonic treatment. The temperature was monitored and recorded 

during ultrasonic treatment using an Omega digital thermometer (model 

HH501BT, Stamford, CT) during 20 min of exposure. 

Refrigerated and frozen storages 

Frozen treated and untreated samples were stored in a Lowe’s Holiday® 

Styrofoam box (model LCH0701PW, North Wikesboro, NC) for 48 h, and then 

thawed at 3.3°C overnight before enumeration. Samples to evaluate the effect of 

refrigerated storage on the number of Listeria spp. were stored for 1, 7, or 8 d in 

a J&R Hobert® refrigerator (Model W, Troy, OH) before enumeration. Samples 

for the shelf-life study were stored in Whirl-Pak bags (one shrimp per bag) in a 

VWR international incubator (model 2005, Cornelius, OR) at 7°C for 8 d. 

Color determinations   

A CR-200 Minolta chroma meter (Minolta CR 200, Tokyo, Japan) was 

used to measure the color parameters of untreated and treated shrimp before 

and after freezing. Each sample were measured at the head, upper-body, and 

lower-body regions using the CIE Lab system with tristimulus L* (Lightness), a* 
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(redness), and b* (yellowness) values. Averages and standard deviations of L* 

and a* values were calculated (56). 

Free chlorine production and pH effect for PEF treatment 

Sodium chloride solutions were prepared by the addition of 0, 0.1, 0.5, 

and 1.0 g of NaCl to distilled water (100 ml, w/v) and electrodes were 

submerged in the same manner as described previously. Treatment times for 

PEF processing were set to 0, 2, and 4 min. After PEF treatment, free chlorine 

concentration (ppm) and pH values were immediately measured using a HACH 

Pocket colorimeterTM (Loveland, CO) and a Thermo Scientific Orion 2 star pH 

meter (Beverly, MA), respectively. 

Statistical analysis 

Bacterial counts were transformed to log10 values before statistical 

analysis. Three experimental replications were performed for each test. Data 

were analyzed with the appropriate General Liner Model and SAS (Statistical 

Analysis Systems Institute, Cary, NC) software. Significant differences between 

means at a 5% probability level (P = 0.05) were determined using the Tukey test 

and LS means. 

Bacterial preparation for TEM 

 Listeria innocua NRRC b33076 and Listeria monocytogenes ATCC 15313 

used in this study. were obtained from Dr. G. Acuff’s lab, Kleberg Center, Texas 

A&M University (College Station, TX). Listeria innocua NRRC b33076 or L. 

monocytogenes ATCC 15313 were resuscitated from frozen cultures by two 
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sequential transfers into 9 ml of Tryptic Soy Broth (TSB, DIFCO) and were 

incubated for 12 or 18 h at 30°C after each transfer. The active cultures (grown 

for 12 or 18 h) were added to 90 ml of TSB. Untreated cell suspensions were 

used as control and the treatment cell suspensions were subjected to 0.1% 

sodium chloride PEF for 2 min, 0.5% CPC, or the combination of both 

treatments. All of the suspensions were transported to the USDA Southern 

Plains Agricultural Research Center (College Station, TX) for preparation to be 

examined by TEM. 

TEM specimen preparation  

Untreated and treated suspensions of Listeria innocua NRRC b33076 

(107~108 CFU/ml) and Listeria monocytogenes ATCC 15313 (108~109 CFU/ml) 

were washed 3 to 4 times with fresh TSB and centrifuged at 9200 X g for 10 min 

(rotor type SS-34, Sorvall® RC 5C plus) after each washing. Pellets recovered by 

centrifugation were mixed with 4% (vol/vol) glutaraldehyde and 4% (wt/vol) 

paraformaldehyde solution in 0.1 M sodium cacodylate (pH 7.4) and allowed to 

react for 1 h before another centrifugation which was performed as described 

above. The bacteria remaining in the supernatant were captured by filtration 

through nitrite-made filter paper (0.45 microns). Specimens were covered with 

2.0% molten agar and reduced to rectangles before the buffer wash was 

applied. The pellets were washed with 0.1M sodium cacodylate and 0.1M 

sucrose followed by centrifugation at 7100 X g for 5 min (rotor type A-11-8, 

swing bucket, Eppendorf). Cells were suspended with 2.0% molten agar 
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(DIFCO) and centrifuged as described. Pellets were recovered and covered with 

molten agar and reduced to strip sizes.  

Agar-coated pellets were post-fixed with 1% (wt/vol) osmium tetroxide in 

0.1M sucrose and 0.1M sodium cacodylate for 2 h at 4ºC. These pellets were 

dehydrated in an ethanol series (vol/vol) (50%, 75%, and 95%). Ethanol was 

replaced by acetone and the cells were infiltrated and then embedded in epoxy 

resin (ERL 4206, DER 736, NSA, DMAE with lecithin, and DMAE). Thin sections 

were cut with glass knives using a Reichert Ultracut S ultramicrotome (Deerland, 

IN) and picked up on 300 mesh nickel grids. Sections were post stained with 1% 

(wt/vol) aqueous uranyl acetate followed by Reynold’s lead citrate (Reynolds, 

1963). Grids were examined and photographed at an accelerating voltage of 100 

kV in the Hitachi H7100 TEM (Tokyo, Japan). 
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RESULTS AND DISCUSSION 

Effect of CPC treatment on the survival of Listeria spp. on fresh shrimp  

and shrimp subjected to refrigeration (RF) and frozen (FZ) storage 

A total of 1.13 kg of shrimp was used in this study. Contaminated shrimp 

were washed with water, CPC, a double wash with water, and CPC followed by 

a water wash. The effects of the treatments were determined immediately and 1 

d after refrigeration and after 2 d of frozen storage. CPC alone and the CPC 

followed by a wash with water immediately reduced Listeria spp. populations on 

shrimp by approximately 2.0 log10 (P < 0.05, Fig. 6). However, the effect was not 

enhanced by double washes with water. There was no difference between these 

treatments after refrigeration at 3.3°C for 1 d (Fig. 6). The Listeria spp. 

populations of the sample treated with CPC followed by a water wash was 

reduced approximately 2.2 log10 after 2 d of frozen storage (P < 0.05) compared 

to other treatments (Fig. 6). These results indicated the application of CPC in 

combination with a wash with water might have improved the antimicrobial effect 

on Listeria spp. contaminated shrimp during freezing. Contrary to our findings, 

Dupard et al. (23) reported the application of a 1 min water rinse following a 1 

min CPC treatment reduced the bactericidal effectiveness of CPC on Listeria 

spp. inoculated shrimp stored 24 h at 4oC and this effect was more dramatic at 

concentrations > 0.8% CPC than at < 0.6% CPC. This suggests that the 

enhanced bactericidal effect observed with our CPC treatment when followed 

with water wash may have been due to the presence of residual CPC on the 



 

 

55

shrimp during storage following our shorter duration water wash, which was 

applied for only 20 s.  

Significant effects of freezing or refrigeration (P < 0.05) were observed for 

shrimp washed with water only, shrimp subjected to double washes with water, 

and shrimp treated with CPC followed by a wash with water. Freezing caused a 

reduction of approximately 0.4 log10 CFU of Listeria spp. per gram of shrimp 

washed with water and on shrimp treated with CPC followed by a water wash. 

However, the Listeria spp. populations on shrimp receiving these treatments 

increased by 0.5 log10 after 1 d of refrigeration. The use of double washes with 

water, on the other hand, caused the Listeria spp. populations to decrease on 

shrimp by 0.4 log10 CFU/g under refrigeration. However, this reduction reflects 

only 1 d of refrigeration. The Listeria spp. populations of the shrimp that received 

only the wash with water increased after 7 d of storage at 3.3°C (Figure on page 

75). This indicates that the reduction observed after only 1 d of storage was a 

temporary effect. 
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FIGURE 6. Mean Listeria spp. populations on  raw shrimp treated with a single or double water wash, 0.5% CPC, 
a 0.5% CPC and a water wash followed by storage at 3.3°C and -22.3°C for approximately 24 and 48 h. IK= 
immediate killing (Day 0), RF= Refrigeration (Day 1), and FZ=Frozen storage (Day 2). Bars at the storage day 0 
(a, b, c, d), day 1 at 3.3°C (A, B, C), and day 2 at -22.3°C (X, Y, Z) with different letters are significantly different (P 
< 0.05, n = 3). Asterisks (*, **) between means in the same treatment are significantly different (P < 0.05, n = 3) 
after refrigeration and frozen storage. 
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Effect of CPC or water during 20 min of ultrasound washing on the number 

of Listeria spp. on raw shrimp  

Contaminated shrimp (n=30) were immersed in 1 L of 0.5% CPC or in 

water in the tank of the ultrasonicator and were sonicated for 0, 5, 10, 15, and 20 

minutes. After sonication, the shrimp were washed with distilled water. 

Difference in an approximately 0.5 to 1.0 log10 CFU of Listeria spp./g of shrimp 

was found after ultrasonic treatment in water and CPC solution for 15 and 20 

minutes (P < 0.05). However, the effect of the time of ultrasonic treatment was 

not significant (P > 0.05, Fig. 7). Our findings related to ultrasonic treatment are 

in agreement with results reported by Sams and Feria (88). They found no effect 

of sonication on the APC counts of chicken drum sticks treated with water and 

1% lactic acid during 14 d and 10 d of storage at 4°C. However, Seymour et al. 

(90), reported an additional 1 log10 reduction of S. Typhimurium (2.7 log10) on 

iceberg lettuce when ultrasound was combined with a chlorine treatment 

compared to chlorine treatment without ultrasound treatment. Lillard (57) found 

that sonication of poultry skin in water and in chlorinated water reduced S. 

Typhimurium on poultry skin by 1.1 to 1.5 log10 and 2.0 to 3.2 log10, respectively. 

The increase in the temperature of the treatment solutions during 20 min of 

ultrasound treatment is shown in Fig. 8. Our data showed that the temperature 

increase observed during longer sonication times did not enhance the effect of 

ultrasound treatment on the number of Listeria spp. on shrimp. 
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FIGURE 7. Effect of sonication time on Listeria spp. populations of raw shrimp after sonication with 0.5% CPC or 
after sonication in water. n = 3.
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FIGURE 8. Change in temperature with time during sonciation. 
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Effect of chlorine concentration on the survival of Listeria spp. on shrimp  
 

A total of 30 shrimp was used in this study. All of the concentrations of 

chlorine and the washing of shrimp with water caused a significant (P < 0.05) 

decrease in the concentration of Listeria spp. on the shrimp before freezing, as 

compared to the inoculation level (untreated control). Prior to freezing, there was 

no difference between the numbers of Listeria spp. on chlorine and water treated 

shrimp (P > 0.05, Fig. 9). After 2 d of frozen storage, Listeria spp. counts on 

shrimp treated with 50 mg/L (ppm) were not different from the inoculation level 

(untreated control) (Fig. 9). There was also no difference between the numbers 

of Listeria spp. on shrimp treated with the various levels of chlorine and treated 

with water after 2 d of frozen storage (Fig. 9). These findings are contrary to the 

results obtained by Beuchat and Brackett (11) who reported that chlorine 

concentrations of 0.2 and 0.25 ppm caused a significant reduction (P < 0.05) of 

L. monocytogenes on contaminated lettuce at both 5 and 10°C.  
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Brackett (14) also reported that chlorine concentrations less than 50 ppm 

had no antimicrobial effect on cell suspensions of L. monocytogenes Scott A and 

LCDC 81-861. However, when the cells were exposed to chlorine concentrations 

greater than 50 ppm, no viable cells were observed after 20 s of exposure (14). 

Approximately 2 to 3 log10 reductions were observed when contaminated 

Brussels sprouts were dipped into a 200 ppm chlorine solution for 30 s. By 

comparison; however, a 1.4 log10 reduction was observed when contaminated 

Brussels sprouts were dipped into water for about the same time period. Injured 

cells were unable to recover from some batches of Brussels sprouts dipped in 

chlorine. Freezing caused damage to Listeria cells (P < 0.05) in the inoculation 

level (untreated control) and water-treated shrimp in the present experiment, 

which suggests that untreated and water-treated shrimp might more susceptible 

to formation of ice crystals than shrimp treated with a chlorine dip. 
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FIGURE 9. Survival of Listeria spp. on raw shrimp immersed in water, 50, 100, and 200 ppm chlorine solution for 
20s. Bars in the treatment before freezing (a, b) or after freezing (A, B) with different letters are significantly 
different (P < 0.05, n = 3). An asterisk (*) between means in the same treatment are significantly different (P < 
0.05, n = 3) after freezing. 
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Effect of application sequence (PEF, CE, and water) and storage on the 

survival of Listeria spp. on inoculated shrimp 

A total of 42 shrimp was used in this study. The treatment orders were 

PEF in 1.0% NaCl followed by CE or water (PEF/CE, PEF/W) and CE or water 

followed by PEF in 1.0% NaCl (CE/PEF, W/PEF). Shrimp were examined for 

Listeria spp. concentrations immediately after treatment and after storage for 2 d 

at -22.3oC (Fig. 10). For shrimp examined before freezing, an effect of the order 

of treatments (physical and chemical, or chemical and physical) on the Listeria 

spp. populations on shrimp was observed, with PEF in 1% NaCl followed by a 

wash with water-treated (PEF/W), CE followed by PEF-treated (CE/PEF), and 

PEF followed by CE-treated shrimp (PEF/CE) yielding lower (P < 0.05) numbers 

of Listeria spp. than shrimp washed in water followed by PEF in 1% NaCl 

(W/PEF) (Fig. 10). The reduction of Listeria spp. on shrimp treated with 0.25% 

CE was similar (P > 0.05) to the reduction of the Listeria spp. populations 

caused by washing with water (W). A freezing effect was observed for the 

shrimp treated with water, the combination with PEF, and for the inoculation 

level (untreated control) (P < 0.05, Fig. 10). This indicates ice crystals may have 

formed faster during freezing in shrimp treated with water than in shrimp treated 

with CE. Freezing has been observed to damage Listeria spp. on shrimp that 

have been exposed to water in our experiments. CE contains glycerin and 

glycerides which are known to protect microorganisms from damage during 

freezing.  
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FIGURE 10. Mean Listeria spp. populations on raw shrimp treated with water (W), PEF in 1% NaCl followed by a 
water wash (PEF/W), a water wash followed by PEF in 1% NaCl (W/PEF), 0.25% Citrate Extracts (CE), PEF in 1% 
NaCl followed by 0.25% Citrate Extracts (PEF/CE), and 0.25% Citrate extracts followed by PEF in 1% NaCl 
(CE/PEF). Bars in the treatment before freezing (a, b, c) or after freezing (A, B, C) with different letters are 
significantly different (P < 0.05, n = 3). An asterisk (*) between means in the same treatment are significantly 
different (P < 0.05, n = 3) after freezing. 
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Effect of CE and PEF treatments on the color of shrimp before and after 

frozen storage 

 A total of 42 shrimp was used in this study. Inoculated shrimp were not 

used to measure the effect of freezing and CE treatment on the color of shrimp. 

Prior to freezing, the shrimp that received the water and PEF (W/PEF) treatment 

were lighter (P < 0.05) than the untreated (NT) and PEF-water (PEF/W) treated 

shrimp (Fig. 11). However, difference in lightness could not be visualized. There 

was no difference (P > 0.05) between L* values after 2 d of frozen storage for 

untreated (UT) and treated shrimp.   

Similar result were found for a* (redness) values. The a* values of shrimp 

after the water and PEF combination had less redness (P < 0.05) than PEF and 

water, CE, CE and PEF (CE/PEF), and PEF and CE (PEF/CE) combinations 

(Fig. 12) prior to freezing. However, there was no difference between the a* 

values of all treated or untreated shrimp after 2 d of frozen storage (P > 0.05). 

Within the same treatment, the a* value of PEF and water-treated shrimp was 

slightly increased after 2 d of frozen storage (Fig. 12). Differences in L* and a* 

values found prior to freezing were not found after 2 d of frozen storage. 
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FIGURE 11. Lightness (L* values) of untreated (UT) shrimp, and shrimp treated with water (W), PEF and water 
(PEF/W), water and PEF (W/PEF), Citrate Extracts (CE), PEF and Citrate Extracts (PEF/CE), or Citrate Extracts 
and PEF (CE/PEF), and storage at -22.3°C for 48 h. Bars in the treatment before freezing (a, b) or after freezing 
(A) with different letters are significantly different (P < 0.05, n = 9).  
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FIGURE 12. Redness (a* values) of untreated (UT) shrimp, and shrimp treated with water (W), PEF and water 
(PEF/W), water and PEF (W/PEF), Citrate Extracts (CE), PEF and Citrate Extracts (PEF/CE) or Citrate Extracts 
and PEF (CE/PEF), and storage at -22.3°C for 48 h. Bars in the treatment before freezing (a, b) or after freezing 
(A) with different letters are significantly different (P < 0.05, n = 9). An asterisk (*) between means in the same 
treatment is significantly different (P < 0.05, n = 9) after freezing. 
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Antimicrobial effect of PEF in 1% sodium chloride and freezing on the 

survival of Listeria spp. on shrimp  

Shrimp (n=18) were used for this study. PEF in a solution of 1% sodium 

chloride was used to determine if this treatment had an effect on the survival of 

Listeria spp. on shrimp. An effect of 1% added NaCl on the bactericidal effect of 

PEF treatment against Listeria spp. was observed on shrimp only after 2 d of 

frozen storage (P < 0.05, Fig. 13). Before freezing, the concentration of Listeria 

spp. on 1% NaCl PEF-treated shrimp was not different from the concentration of 

Listeria spp. on shrimp that were subjected to PEF in the 0% NaCl (water) only 

treatment (P > 0.05, Fig. 13).  Shrimp treated with PEF in the 1% NaCl solution 

had a lower concentration of Listeria spp. than the shrimp that were treated by 

PEF in water after 2 d of frozen storage. Freezing the shrimp also reduced the 

number of Listeria spp. (P < 0.05) on samples treated by PEF in 0% NaCl and 

inoculation level (untreated control) (Fig. 13). The results indicated that PEF had 

an antimicrobial effect at these conditions and can be useful for the 

decontamination of Listeria spp. from shrimp.  
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FIGURE 13. Effect of PEF in 1% NaCl solution on the survival of Listeria spp. on raw shrimp for pulse duration 
time of 1 min. Bars in the treatment before freezing (a, b) or after freezing (A, B, C) with different letters are 
significantly different (P < 0.05, n = 3). An asterisk (*) in the same treatment are significantly different (P < 0.05, n                      
= 3) after freezing.              
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Effect of exposure time of PEF in 0.1% NaCl and frozen storage on the 

survival of Listeria spp. on shrimp  

 This experiment was conducted using 30 shrimp. These samples were 

exposed to PEF in a 0.1% solution of NaCl for 1 and 2 minutes. There was a 

significant (P < 0.05) reduction in the number of Listeria spp. on shrimp prior to 

freezing for all PEF-treated shrimp as compared to the inoculation level 

(untreated control) (Fig. 14). No difference was found between the counts of 

Listeria spp. when the PEF treatment was applied to shrimp in water (0.0% 

NaCl) and in 0.1% NaCl (P > 0.05, Fig. 14). The time of exposure of shrimp to 

PEF treatment also did not influence the number of Listeria spp. remaining on 

the shrimp. Contrary to our findings, other scientists found a significant reduction 

(3-6 log10) of L. monocytogenes and E. coli which reduction increased as 

treatment time increased in milk and liquid egg, respectively (63, 84). Freezing 

caused (P < 0.05) reductions of Listeria spp. on the inoculation level (untreated 

control) and the shrimp that were exposed to PEF for 2 min in 0% NaCl. The 

results indicated that shrimp not exposed to PEF treatment and shrimp PEF-

treated in water were more susceptible to the formation of ice crystals. Residual 

sodium chloride on PEF-treated shrimp might slow down the formation of ice 

crystals or reduce the size of the ice crystals. 
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FIGURE 14. Effect of PEF in 0.1% NaCl on the survival of Listeria spp. on raw shrimp for pulse duration times of 1 
and 2 mins. Bars in the treatment before freezing (a, b) or after freezing (A, B) are significantly different (P < 0.05, 
n = 3). An asterisk (*) between means in the same treatment are significantly different (P < 0.05, n = 3) after 
freezing.
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Antimicrobial and freezing effects on the Listeria spp. counts of treated 

and untreated raw shrimp  

The effects of the antimicrobial compound CPC on the counts of Listeria 

spp. on shrimp (n=30) after freezing for 2 d at -22.3°C were evaluated in this 

study. The combination of PEF in 0.1% NaCl followed by immersion in 0.5% 

CPC solution and a wash in water (PEF/CPC/W) produced the lowest CFU/g 

(Fig. 15, P < 0.05) of Listeria spp. on shrimp. Our results are in agreement with 

those reported earlier (61, 68, 76, 96) that PEF could rupture the membrane of 

the bacterial cell and allow the entry of antimicrobial compounds into the cell and 

eventually result in cell death. Freezing reduced (P < 0.05) the concentration of 

Listeria spp. on untreated shrimp (Fig. 15), but not the Listeria spp. populations 

of shrimp that were treated with the combination of PEF-CPC-water. The results 

indicated that ice crystals might damage some Listeria cells on untreated shrimp 

but the number of Listeria spp. was not decreased by the combination of other 

treatments after 2 d of frozen storage. The increase in Listeria spp. counts of the 

PEF-CPC-water combination treatment was statistical significant (P < 0.05) after 

2 d of frozen storage but this may not be biological significant (< 1 log10 unit). 
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FIGURE 15. Mean Listeria spp. populations on raw shrimp treated with PEF in 0.1% NaCl for 2 min (PEF), a 
double wash with water (W/W), 0.5% CPC and a water wash (CPC/W),  or the combination of the latter two 
treatments plus a water wash (PEF/CPC/W) and stored at -22.3°C for an approximately 48 h. Bars in the treatment 
before freezing (a, b, c, d) or after freezing (A, B) with different letters are significantly different (P < 0.05, n = 3). 
An Asterisk (*) between means in the same treatment are significantly different (P < 0.05, n = 3) after freezing.
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Effect of storage for 7 days at 3.3°C on Listeria spp. survival 

The effect of antimicrobial treatments on the number of Listeria spp. on 

shrimp (n=30) after refrigerated storage for 7 d at 3.3°C was evaluated in this 

study. The analysis of the data revealed that treatments and storage days had 

significant (P < 0.05) effects on the survival of Listeria spp. At day 0, application 

of CPC treatments with a following water wash (CPC/W) and the combination of 

PEF in 0.1% NaCl with a following water wash (PEF/CPC/W) produced greater 

antimicrobial effects (P < 0.05) on Listeria spp. on shrimp compared to the water 

wash and PEF treatments lacking a following water wash (Fig. 16). A wash with 

double distilled water reduced the Listeria spp. populations (~0.4 log10 unit) of 

the inoculated shrimp more than the PEF treatment. This indicated that the PEF 

treatment alone was not sufficient to cause a significant change in the Listeria 

spp. populations on the inoculated shrimp. However, after storage at 3.3°C for 7 

d; the concentration of Listeria spp. on the shrimp increased for all treatments 

except for the shrimp that received the PEF treatment (Fig. 16). The decrease in 

Listeria spp. populations after 7 d of refrigerated storage of inoculated shrimp 

that received the PEF treatment may not be biological significant.  
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FIGURE 16. Mean Listeria spp. populations on raw shrimp treated with PEF in 0.1% NaCl for 2 min (PEF), double 
wash with water (W/W), 0.5% CPC followed by a water wash (CPC/W), or the combination of the latter two 
treatments plus water wash (PEF/CPC/W) and refrigerated at 3.3°C. Bars in the treatment before refrigeration (a, 
b, c) or after refrigeration (A, B) with different letters are significantly different (P < 0.05, n = 3). An asterisk (*) 
between means in the same treatment are significantly different (P < 0.05, n = 3) after refrigerated storage. 
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Effect of PEF, CPC, and water washes and combinations of these 

treatments on the concentration of Listeria spp. on raw shrimp 

The effect of multiple rinses on the removal of the Listeria spp. from 30 

contaminated raw shrimp was determined before and after 2 d of frozen storage 

at -22.3°C was evaluated in this study. The data showed that additional 

washings did not improve the effect (P > 0.05) of PEF treatment for the 

reduction of Listeria spp. on contaminated shrimp as compared to other 

treatments (Fig. 17). Freezing had no effect (P > 0.05) on the treated shrimp 

after storage (Fig. 17). The findings are similar to studies of Dupard et al. (23), 

Singh et al. (93), and Wang et al. (102). Results of these studies suggested that 

washing with water did not improve the antimicrobial effects of CPC treatments 

on contaminated shrimp. This suggests that a water wash for 20 s might have 

been the boundary for improvement in the effectiveness of CPC treatments on 

contaminated shrimp. 
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FIGURE 17. Reduction of  Listeria spp. populations on raw shrimp treated with a double wash with water (W/W), 
PEF in 0.1% NaCl for 2 min followed by a water wash (PEF/W), 0.5% CPC followed by a water wash (CPC/W), or 
a combination of  the latter two treatments followed by a water wash (PEF/CPC/W). Bars in the treatment before 
freezing (a) or after freezing (A) with different letters are significantly different (P < 0.05, n = 3).   
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Effect of PEF treatment in 0.1% and 0.5% NaCl on the survival of Listeria 

spp. on shrimp  

 The effect of PEF treatments in the presence of 0.1% and 0.5% sodium 

chloride was determined using a total of 18 shrimp. Data for the treatment 

combinations of PEF in 0.1% and 0.5% NaCl followed by 0.5% CPC and a water 

wash (PEF/0.1%/CPC/W, PEF/0.5%/CPC/W) or PEF in 0.1% and 0.5% NaCl 

followed by a water wash (PEF/0.1%/W, PEF/0.5%/W) are presented in Figure 

18. The sodium chloride solution of 0.5% did not increase the antimicrobial effect 

(P > 0.05, Fig. 18) of PEF against Listeria spp. populations on shrimp compared 

to PEF treatment in the presence of 0.1% NaCl. This result showed that a 

concentration of 0.1% NaCl rather than 0.5% NaCl can be used during PEF 

treatment without reducing the effectiveness of the PEF treatment. The use of 

lower NaCl concentrations is desired to minimize health and environmental 

concerns associated with the potential of chlorine gas generation by PEF (3). 

For a single treatment with a water wash, Listeria spp. counts in the presence of 

CPC were significantly lower (P < 0.05) than the number of Listeria spp. 

remaining after the PEF treatment. The CPC caused an immediate decrease in 

the number of Listeria spp. on shrimp. Other authors (58, 73) have found an 

immediate reduction in the populations of L. monocytogenes on contaminated 

beef products after the beef was treated with a 0.5% CPC solution. 
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FIGURE 18. Populations of Listeria spp. on raw shrimp after treatment by PEF in 0.1% and 0.5% NaCl for 2 min 
followed by a water wash (PEF/0.1%/W, PEF/0.5%/W), 0.5% CPC followed by a water wash (CPC/W), or a 
combination of CPC and PEF at NaCl concentrations of 0.1% and 0.5% followed by a water wash 
(PEF/0.1%/CPC/W, PEF/0.5%/CPC/W). Bars with different letters are significantly different (P < 0.05, n = 3).
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Effect of PEF treatment in 0.5% NaCl and a 0.5% concentration of CPC on 

the survival of Listeria spp. in buffered peptone water 

 The PEF and CPC treatments were applied directly to suspensions of 

Listeria spp. in BPW. The CPC treatment and the combination of PEF and CPC 

(PEF/CPC) caused an immediate reduction of 7 log10 CFU of Listeria spp./ml in 

BPW (P < 0.05), as compared to the inoculation level (untreated control) (Fig. 

19). Similar reductions in microbial counts were also found using two strains of 

Listeria innocua after treatment with the same concentration of 0.5% CPC (Fig. 

20). CPC treatment had an immediate bactericidal effect against Listeria cells in 

suspension and on contaminated shrimp (Figs. 18, 19, and 20). A similar result 

has been reported by Özdemir et al. (73) who found an immediate reduction of 2 

log10 CFU of L. monocytogenes-on contaminated raw beef dipped into 0.5% 

CPC solution.  
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FIGURE 19. Effect of PEF in 0.5% NaCl for 4 min (PEF), 0.5% CPC (CPC), or a combination of the PEF and CPC 
treatments (PEF/CPC) on the inactivation of Listeria spp. populations in buffer peptone water. Bars with different 
letters are significantly different (P < 0.05, n = 3).         
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Effect of 0.5% CPC or PEF applied in 0.5% NaCl on Listeria innocua NRRC 

b33076 and Listeria innocua ATCC 33090 

After 18 h of incubation, Listeria innocua NRRC b33076 or Listeria 

innocua ATCC 33090 cultures grown in BPW were exposed to 0.5% CPC or 

PEF applied in 0.5% NaCl for 0, 40, 80, 120, 160, 200, 240, and 300 s, 

respectively. Differences (P < 0.05) in strain susceptibility were observed, with 

cells of L. innocua NRRC b33076 being more susceptible to treatment with PEF 

in 0.5% NaCl than cells of L. innocua ATCC 33090 and this difference was 

evident immediately upon exposure to the treatment as treated L. innocua 

NRRC b33076 cell concentrations were always lower (P < 0.05) than inoculation 

level (untreated control) (Fig. 20). Conversely, concentrations of L. innocua 

ATCC 33090 were only lower (P < 0.05) than inoculation level (untreated 

control) after 300 s exposure to PEF in 0.5% NaCl (Fig. 20). For both strains, the 

application of PEF in 0.5% NaCl caused at most 0.3-0.5 log10 decrease in cell 

concentrations compared to inoculation level (untreated control). CPC-treatment 

on the other hand, caused an immediate and marked reduction (P < 0.05) of 

approximately 7 to 8 log10 (P > 0.05) in cell concentrations of both L. innocua 

NRRC b33076 and L. innocua ATCC 33090 (Fig. 20). Thus, whereas 0.5% CPC 

treatment appeared to be equally effective against both L. innocua NRRC 

b33076 than L. innocua ATCC 33090 in this experimental system, its effect was 

markedly more dramatic than PEF treatment applied in 0.5% NaCl which was 

more effective against L. innocua NRRC b33076 than L. innocua ATCC 33090.  
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FIGURE 20. Effect of exposure time on the numbers of L. innouca NRRC b33076 and L. innocua ATCC 33090 
after treated with PEF in 0.5% NaCl or 0.5% CPC. n = 3.
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Effect of storage for 8 days at 7oC after antimicrobial treatments on the 

survival of Listeria spp. on shrimp  

The effects of antimicrobial treatments on the concentrations of Listeria 

spp. on 48 contaminated shrimp during 8 d of storage at 7°C were evaluated in 

this study. Rates of Listeria spp. growth after 2 d of storage at 7°C were lower on 

shrimp treated with 0.5% CPC and a water wash (CPC/W), and those shrimp 

treated with PEF in 0.1% NaCl, 0.5% CPC, and a water wash (PEF/CPC/W) 

compared to the inoculation level (untreated control) thus indicating a 

bacteriostatic effect (P < 0.05) of these treatments (Fig. 21). However, the 

bacteriostatic effect appeared to be diminished by 4 d of storage. Singh et al. 

(93) also reported an antimicrobial effect of a 1% CPC treatment when sprayed 

and allowed 30s exposure on polish sausage inoculated with low (3 log10 CFU/g) 

and high (7 log10 CFU/g) concentrations of L. monocytogenes  and stored 42 d 

at 0 and 4°C. Özdemir et al. (73) reported that the number of L. monocytogenes 

on raw beef muscles treated with 0.5% CPC decreased slightly after 5 d of 

storage, but the decrease was not significant (P > 0.05). However, Wang et al. 

(102) found that L. monocytogenes, E. coli O157:H7 and Salmonella 

Typhimurium were able to recover after treatment of fresh-cut vegetables with 

0.1 and 0.5% CPC-solutions. As a result, Wang et al. (102) found no difference 

(P > 0.05) between the number of L. monocytogenes and E. coli 0157:H7 in 

samples that were immersed in the CPC solution or in water. 
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FIGURE 21. Listeria spp. populations on raw shrimp treated by PEF in 0.1% NaCl for 2 min (PEF), 0.5% CPC with 
a water wash (CPC), or a combination of the PEF and CPC treatments at 0, 2, 4, and 8 days of refrigeration at 
7°C. n = 3.
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Chlorine production and pH changes during PEF treatment at different 

concentrations of NaCl and times of exposure 

The effects of sodium chloride concentration and the time of treatment on 

chlorine production were monitored in this study. Free chlorine was not detected 

in the distilled (control) water. Chlorine production increased (P < 0.05) after 

PEF treatment for 4 min in 0.5% NaCl and after PEF treatment in 1.0% NaCl for 

2 and 4 minutes (Fig. 22A). During PEF processing, a pungent chlorine odor 

was detected when PEF was conducted in 1.0 % NaCl.  The smell could cause 

discomfort for the workers and the chlorine in the air might corrode some metal 

surfaces (3). Sodium chloride concentration and the treatment time (s) affected 

(P < 0.05) the pH of the water; however, the effect was not linear (Fig. 22B). The 

pH of the solutions of 0%, 0.5% or 1.0% NaCl increased after exposure to PEF 

for 2 min. The changes might have been the result of the sensitivity and the 

accuracy of pH probe. Consequently, further investigation of the effect of PEF 

treatment on pH values in each treatment is recommended.  
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Electrolyzed water did not increase in acidity at any concentration of 

sodium chloride used in our study. The pH values of this water were in the range 

of 6 to 8 even after exposure to PEF for 4 min. The maximum NaCl used in our 

study was 1% and the duration of the PEF treatment was 4 min. Bari et al. (8) 

reported that sodium chloride solution at 0.1% (dissolved with tap water) after 

electrolysis normally has a pH ≤2.7 and free chlorine concentrations of 10-80 

ppm. With the same concentration of sodium chlorine solution (dissolved with 

distilled water), an average concentration of 0.50 ppm free chlorine was 

produced after electrolysis (Fig. 22A). Chlorine is more effective for inactivating 

microorganisms either at a high concentration or at a low pH (pH ≤ 6). The low 

concentration of chlorine and an average of pH > 6 in our study (Fig. 22B) 

indicated that residual chlorine was not the reason Listeria cells were damaged 

by PEF.  
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FIGURE 22. Effect of NaCl concentration on free chlorine (ppm) production and pH change during pulsed electric 
field treatment (A) free chlorine (ppm) and (B) pH values. n = 3. 
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FIGURE 22. Continued. 
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Bacterial cell changes observed by TEM after treatment with PEF and CPC 

Untreated cells of Listeria innocua NRRC b33076 and Listeria 

monocytogenes ATCC 15313 harvested and examined after incubation for 12 

and 18 h, respectively, had clearly defined outer and inner cell membranes and 

cell wall structure (Figs. 23a and 24a).  Outer cell membrane disruption (Figs. 

23b and 24b) was observed after cells were added to 0.1% sodium chloride and 

exposed to PEF treatment at 30.6 volts for 2 min of pulse duration. This type of 

cell disruption is the beginning of cell morphological changes. The extent of 

morphological changes in cells was reported in other studies (17, 34, 77, 86). 

TEM micrographs revealed that cells that were PEF-treated with 6,000 pulses at 

30 kV/cm caused the rupture of the cell wall, the loss of intracellular contents 

(e.g. cytoplasmic and nucleic materials), and the release of cellular debris due to 

irreversible electroporation (86). Calderón-Miranda et al. (17) reported that 

significant morphological changes to bacteria and yeast were caused by 

treatment with PEF. These changes include a significant increase in surface 

roughness, appearance of craters in the cell wall, elongation and disruption of 

organelles, cell wall breakage, and pore formation. TEM micrographs by 

Pothakamury et al. (77) showed that cytoplasmic contents leaked from S. aureus 

cells after treatment at with 64 pulses at 60 kV/cm.  The findings suggested that 

damaged cells were the function of electric field strength and the injury to the 

cells was probably induced by electromechanical breakdown. Hamilton and Sale 

(34) used TEM and observed unimpaired membranes in erythrocytes and E. coli 



 

 

91

after they were treated with 10 pulses and 20 µs of high voltage electric fields up 

to 25 kV/cm. 

 The antimicrobial action of CPC has been reported to involve interaction 

of CPC with negative charges on bacterial cell membranes. These ionic 

interactions on the cell surface are thought to eventually result in cell rupture. 

The bacterial cells in Figs 23c and 24c of our TEM micrographs appear to have 

experienced cellular breakdown or cell disruption. The micrographs of Listeria 

monocytogenes ATCC 15313 and Listeria innocua NRRC b33076 exhibited 

either cell membrane disruption, cell lysis, or cytoplasmic leakage after the cells 

were treated with 0.5% CPC.  

 A synergistic effect of organic acids and PEF has been reported (76, 96) 

to have enhanced antimicrobial properties that exceed the effect of either 

treatment applied singularly. These studies indicated that a high intensity PEF 

might cause disruption of the cell membrane and facilitate entry of antimicrobials 

into bacterial cells. Those observations were based on plate counts and on a 

microbiological predictive model. This possible mechanism of synergism was 

also observed in our finding. Damage to the outer cell membranes was observed 

after the cells were processed by PEF, as seen in both Figs. 23b and 24b. The 

extent of cell membranes disruption and cells lysis was visible in both Figs. 23c 

and 24c after 0.5% CPC treatment. As a result, broken or lysed cell membranes  

(Figs. 23d and 24d) might be due to a synergistic or additive effect by a 

combination of both PEF and CPC treatments.
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FIGURE 23. Transmission Electron Microscopy (TEM) of 18 h Listeria monocytogenes ATCC 15313 cells: 
untreated (a), arrows indicate either outer or inner cell membrane, CW=Cell Wall; treated with 0.1% salt PEF for 2 
min (b), arrows indicate outer cell membrane disruption; treated with 0.5% CPC (c), arrows indicate either cell 
membranes disruption and cells lysis; and treated with a combination of both treatments (d), arrows indicate cell 
membranes disruption. Bar = 200 µm. 
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FIGURE 24. Transmission Electron Microscopy (TEM) of 12 h Listeria innocua NRRC b33076 cells: untreated (a), 
arrows indicate either outer or inner cell membrane, CW=Cell Wall; treated with 0.1% salt PEF for 2 min (b), 
arrows indicate outer cell membrane disruption; treated with 0.5% CPC (c), arrows indicate either cell membranes 
disruption or broken membrane; and treated with a combination of both treatments (d), arrows indicate lysis of cell 
membranes. Bar = 100 µm. 
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CONCLUSIONS 

 
 Results from all experiments were concluded as shown below: 

 
• Listeria spp. counts were reduced on shrimp by a combination of CPC 

and a water wash after frozen storage. 
 

• Listeria spp. counts could not be reduced on shrimp by ultrasonication. 
 
• Chlorine treatment did not reduce Listeria spp. on shrimp. 

 
• Citrate extracts did not reduce Listeria spp. on shrimp. 

 
• Listeria spp. counts were reduced on shrimp treated with PEF in 1% NaCl 

and freezing. 
 

• PEF in 0.1% NaCl was as effective as PEF in 1.0% NaCl for reducing the 
number of Listeria spp. on shrimp. 

 
• CPC was the most effective treatment for reducing the number of Listeria 

spp. on shrimp.  
 

• CPC was the most effective treatment for reducing the number of Listeria 
spp. in buffer peptone water. 

 
• PEF caused damage to cell membranes of Listeria. 
 
• CPC caused structural damage to Listeria cells. 
 
• CPC can be used to reduce Listeria spp. on contaminated shrimp. 
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