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ABSTRACT

Volumes of Certain Loci of Polynomials

and Their Applications. (May 2009)

Swaminathan Sethuraman, B.E., Anna University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. J. Maurice Rojas

To prove that a polynomial is nonnegative on Rn, one can try to show that it

is a sum of squares of polynomials (SOS). The latter problem is now known to be

reducible to a semi-definite programming (SDP) computation that is much faster than

classical algebraic methods, thus enabling new speed-ups in algebraic optimization.

However, exactly how often nonnegative polynomials are in fact sums of squares of

polynomials remains an open problem. Blekherman was recently able to show that

for degree k polynomials in n variables with k = 4 fixed those that are SOS occupy

a vanishingly small fraction of those that are nonnegative on Rn, as n → ∞. With

an eye toward the case of small n, we refine Blekherman’s bounds by incorporating

the underlying Newton polytope, simultaneously sharpening some of his older bounds

along the way. Our refined asymptotics show that certain Newton polytopes may lead

to families of polynomials where efficient SDP can still be used for most inputs.
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CHAPTER I

INTRODUCTION

A. Motivation and previous work

In my dissertation I study certain quantitative versions of Hilbert’s Nullstellensatz.

We begin by recalling the Positivestellensatz of Stengle,

Theorem 1. Stengle’s Positivestellensatz [1] Let R be a real-closed field, and F a

finite set of polynomials over R in n variables. Let W be the semialgebraic set

W = {x ∈ Rn | ∀f ∈ F f(x) ≥ 0},

and let C be the cone generated by F (i.e., the subsemiring of R[X1, . . . , Xn] generated

by F and arbitrary squares). Let p ∈ R[X1, . . . , Xn] be a polynomial. Then

∀x ∈ W : p(x) > 0 if and only if ∃f1, f2 ∈ C : pf1 = 1 + f2

The Nullstellensatz gives an algebraic framework for the following decision prob-

lem: Given an f ∈ R [x1, . . . , xn] , decide if there exists an x ∈ Rn such that f(x) = 0.

If we let n vary, this problem is known to be NP hard [2]. For n = 1, we can decide if

f has real roots in time polynomial in the degree of f , deg(f). This has been known

since the beginning of the twentieth century [3], [4]. For sparse polynomials an upper

bound polynomial in log deg(f) is unknown. For polynomials with 3 terms, we can

find such a complexity bound due to a result of Rojas [5]. For a real polynomial to

have roots it needs to be either always positive or always negative. So it makes sense

to study positivity and in particular its relations to sums of squares. In particular we

This dissertation follows the style of IEEE Transactions on Automatic Control.
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have the following result:

For, n = 1, f(x) ≥ 0 ⇐⇒ f = f 2
1 + . . . + f 2

k + c

where fi ∈ R [x] and c ≥ 0

Thus in the case n = 1, checking positivity is the same as checking sums of squares.

Checking sums of squares can be done in polynomial time via semi definite program-

ming, but its behavior for sparse polynomials is still not understood. For example,

there are semi definite programming softwares which accomplish this (see [6], [7], [8]).

Hilbert [9] also showed that for n = 2 and degree 4, positivity is the same as SOS

(sums of squares). It was known that in all other cases positivity and SOS are not

the same. Motzkin was the first to produce a counterexample. For example,

p(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2

p ≥ 0, for all x, y, z ∈ R, yet p is not a sum of squares. Choi and Lam showed another

counterexample in 1987 [10].

Nevertheless, these results dont shed any light on the volume of positive polyno-

mials that are not SOS. This question is very important to assess the effectiveness of

algorithms [6], [7] which employ SOS methods to approximate maximum value of a

multivariate polynomial. Blekherman [11] was the first to study positive polynomials

and sums of squares as convex bodies. He showed that for homogeneous polynomials

of n variables and of degree 2k, the volume of positive polynomials goes down as

O(n−1/2), whereas that of SOS polynomials goes down as O(n−k/2). This means that

as k increases, there are significantly more positive polynomials than sums of squares.

In this dissertation, I extend Blekherman’s dissertation to multihomogeneous

polynomials. There are two main reasons for doing this:
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1. There are important problems in control systems theory where SOS methods

are used to determine the postivity of multihomogeneous polynomials [12].

2. Addition of more symmetries occurs in the multihomogeneous case and it is un-

known whether that would have any impact on the ratio of SOS versus positive

polynomials.

We now briefly describe the mathematical setup and our results.

B. Organization of the dissertation

In Chapter II, we introduce the notation and background in a general setting for

our results. After the definition of the objects of interest namely the three cones

of multihomogeneous polynomials - nonnegative polynomials, sums of squares(SOS)

polynomials and sums of powers of linear forms we move onto describe a natural

inner product in the space of multihomogeneous polynomials. Choosing the correct

inner product is of paramount importance in this work, because a suitable choice can

greatly simplify the calculations of the bounds we seek. Chapter II also provides a

basic introduction to the convexity results used in this dissertation. For a greater

understanding of these concepts we provide sufficient references. Chapter II ends

with a discussion of Barvinok’s results which form an important tool for most of the

results we obtain and also an introduction to some of the exotic metrics we use in

this dissertation.

In Chapter III, we examine the case of bihomogeneous polynomials in detail. We

do this for two reasons. The first one being the difficulty posed by the compact general

notation of Chapter II towards the understanding of methods employed. Secondly,

we use the example to help calculate the improvements in our bounds to the ones

obtained by Blekherman. Armed with the insight obtained from Chapter II, we
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proceed to the general multihomogeneous case in Chapter IV.

Chapter V talks about some applications in motion planning of robot systems

arising from our joint work with Mayank Lal [13]. This is one of the first instances of

the application of discriminant variety to motion planning and it provides an insight

as to how recent developments in real algebraic geometry [14] offer fresh approaches

in practical applications of great current interest.

C. Summary of results

Multihomogeneous polynomials are a natural extension of Pn,k to the setting where

the variable are divided into l blocks, with nl variables in each block. Furthermore

each block is homogeneous of degree kl. More specifically if we set N = (n1, . . . , nl)

and K = (k1, . . . , kl), then,

PN,2K = ⊗l
i=1Pni,2ki

It is clear that PN,2K is a vector space. Chapter II describes in greater detail the

properties of this vector space, namely its dimension and also describes a basis for this

vector space. Inside PN,2K , are three cones of interest, the nonnegative polynomials,

PosN,2K , the sums of squares SqN,2K and the sums of powers of linear forms LfN,2K .

For precise definitions we refer the reader to the first section in Chapter II.

One of the goals of this dissertation is to provide a comparison of the volumes of

Pos, Sq and Lf . We use a measure called relative volume which takes into account the

effect of high dimensions [15]. We need to overcome a main hurdle in attempting to

use methods of convex geometry towards this problem. The theorems in convexity are

geared towards convex bodies with origins in their interior. But unfortunately Pos,

Sq and Lf do not have this property. Also they are not compact. The way around is

described in Blekherman [11]. We extend this to our general setting. The solution is
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to take sections of these cones with the linear space of multihomogeneous forms which

integrate to zero over the products of spheres. The next step is to translate these

sections so that the origin lies in their interior. We name these translated sections

P̃ osN,2K , S̃qN,2K and L̃fN,2K .

We are now in a position to state our results.

Theorem 2. Lower bound on the volume of non negative multihomogeneous polyno-

mials

The following is a lower bound on the volume of non negative multihomogeneous

polynomials: (
VolP̃ osN,2K

VolBM

)1/DM

≥ β√
maxi∈1,...,l{ni ln(2ki + 1)}

where β = 1
9e2

This clearly reduces to Barvinok’s result [16] when l = 1. We also have the

following upper bound on the volume of non negative multihomogeneous polynomials.

Theorem 3. Upper bound on the volume of non negative multihomogeneous polyno-

mials

The following is an upper bound on the volume of non negative multihomoge-

neous polynomials: (
P̃ osN,2K

VolBM

)1/DM

≤ 4
l∏

i=1

(
2k2

i

4k2
i + ni − 2

)1/2

Theorem 4. Upper bound on the volume of sums of squares(SOS) of multihomoge-

neous polynomials

The following is an upper bound on the volume of SOS multihomogeneous poly-
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nomials: (
S̃qN,2K

VolBM

)1/DM

≤
√

24
l∏

i=1

(
42ki(2ki)!n

−ki/2
i

ki!

)1/2

Theorem 5. Lower bound on the volume of SOS multihomogeneous polynomials

The following is a lower bound on the volume of SOS multihomogeneous poly-

nomials: (
S̃qN,2K

VolBM

)1/DM

≥ 1√
24

l∏
i=1

(
(ki)!

2

42ki(2ki)!(ni/2 + ki)ki

)1/2

Theorem 6. Lower bound on the volume of sums of powers of linear forms of mul-

tihomogeneous polynomials

The following is a lower bound on the volume of sums of powers of linear forms

of multihomogeneous polynomials:(
L̃fN,2K

VolBM

)1/DM

≥
l∏

i=1

(
(ki)!

√
4k2

i + ni − 2

4ki

√
2(ni/2 + 2ki)ki

)1/2

In the next section we shall discuss the improvements obtained by our results in

contrast with Blekherman’s results. Although we provide these numerical examples

here, the focus of the dissertation is in the methods involved. Hence our numerical

exploration will be brief and confined to this introductory chapter.

D. Discussion of results

All these bounds reduce to Blekherman’s results in the case l = 1. Table I and

Table II compare the improvements obtained by our bounds versus that of Blekher-

man’s, keeping the number of variables and the number of blocks fixed. The greatest

improvement is obtained when the blocks are even sized, that is when k1 = k2.

Our next two tables(Table III and Table IV) compare the case when the degrees

are kept constant at k1 = k2 = 3, but the number of variables is allowed to vary.

Again the results are similar to the one obtained above.
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Table I. Lower bound on non negative polynomials with n1 = 3, n2 = 3

k1 = 1 k1 = 2 k1 = 3 k1=4

k2 =1 0.0046 0.0031 0.0026 0.0023

k2 =2 0.0031 0.0031 0.0026 0.0023

k2 =3 0.0026 0.0026 0.0026 0.0023

k2 =4 0.0023 0.0023 0.0023 0.0023

Table II. Blekherman’s lower bound on non negative polynomials with n1 = 3, n2 = 3

k1 = 1 k1 = 2 k1 = 3 k1=4

k2 =1 0.0016 0.0013 0.0011 0.0010

k2 =2 0.0013 0.0011 0.0010 0.0010

k2 =3 0.0011 0.0010 0.0010 0.0009

k2 =4 0.0010 0.0010 0.0009 0.0009

Finally we shall investigate the effect of increasing the number of blocks l. We

find that keeping the number of variables and the degrees fixed, increasing the blocks

provides a greater improvement in our bounds. For the sake of definiteness, we fix

n = 10 and 2k = 20. Blekherman’s bound for the non negatives is 0.0005. We

compare this value with our results for different number of blocks in Table V.

E. An algebraic geometry method for motion coordination of mobile agents

In this section, we sketch a novel method for motion coordination of mobile agents.

Autonomous mobile agents have a number of applications these days with a lot of

research being done in building them with better capabilities. Multiple robots are
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Table III. Lower bound on non negative polynomials with k1 = 3, k2 = 3

n1 = 2 n1 = 3 n1 = 4 n1=5

n2 =2 0.0039 0.0026 0.0019 0.0015

n2 =3 0.0026 0.0026 0.0019 0.0015

n2 =4 0.0019 0.0019 0.0019 0.0015

n2 =5 0.0015 0.0015 0.0015 0.0015

Table IV. Blekherman’s lower bound on non negative polynomials with k1 = 3, k2 = 3

n1 = 2 n1 = 3 n1 = 4 n1=5

n2 =2 0.0015 0.0012 0.0010 0.0008

n2 =3 0.0012 0.0010 0.0008 0.0007

n2 =4 0.0010 0.0008 0.0007 0.0007

n2 =5 0.0008 0.0007 0.0007 0.0006

more useful than single robots and are capable of doing many tasks which cannot be

done by single robots. Applications include deployment of a group of mobile agents

with sensors mounted on them in an area affected by earthquake, flood etc. so that

data regarding the damage can be assessed and relief provided accordingly. Most of

the research that has been done in the area of motion planning uses the composite

configuration approach or the decoupled planning approach. The method we describe

differs from these methods in that the planning is being done in polynomial space.

The basic idea is that given n agents moving in a 2-D space, we represent them

as point objects. Let (x1i, y1i), .., (xni, yni) be the initial configuration of the agents

and (x1f , y1f ), .., (xnf , ynf ) be the desired final configuration. We create two polyno-
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Table V. Lower bound on non negative polynomials with different block sizes

Lower bound

N =(2, 2, 2, 2, 2) and K = (2,2,2,2,2) 0.0047

N =(3, 3, 2, 2) and K = (3,3,2,2) 0.0026

N =(3, 4, 3) and K = (3,4,3) 0.0017

N =(5, 5) and K = (5,5) 0.0013

mials Pi and Pf from the initial and final configurations respectively, by mapping the

configuration in R2 to C2 and using the n points in C2 as roots of the corresponding

polynomials. Then we deform the intial polynomial Pi to the final polynomial Pf by

means of a straight line path connecting each coefficient. Now the set of polynomials

of degree n having multiple roots is called the discriminant variety, Σn. There is a

result [17] which states that the complement of the discriminant variety in Cn is

connected. There is also a simple parametrization of Σn due to [14]. This enables us

to give a quick method to verify that our deformation indeed does not pass through

the discriminant variety. It is important that the path does not pass through Σn

to ensure that the agents do not collide at any point in time. We shall now briefly

describe the algorithm.

1. Algorithm description

If (x1i, y1i), (x2i, y2i), . . . , (xni, yni) are the coordinates of the agents in the initial con-

figuration and (x1f , y1f ), (x2f , y2f ), . . . , (xnf , ynf ) are the coordinates of the agents in

the final configuration, then we define the initial and final polynomials as follows:

Pi(x) := (x− ı(x1i + y1i)) . . . ı(x− (xni + yni))
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Pg(x) := (x− ı(x1f + y1f )) . . . ı(x− (xnf + ynf ))

Let, Σn be the discriminant variety of polynomials Pn of degree n. Then we know

[17] that the complement of the discriminant variety, that is Pn Σn, is connected. We

consider the following ”straight line” path in the parameter space, P (λ) = (1−λ)Pi+

λPf . The algorithm [13] described in the dissertation computes a path from Pi(x)

to pg(x) which avoids the discriminant variety Σn. This means that we have an

algorithm to move the mobile agents from the initial to final configuration avoiding

collisions.

We can impose velocity and acceleration constraints on each mobile agent by

reparametrizing P. The next main improvement would be to make sure that the

agents avoid stationary obstacles. This is done by first finding the bounding disc for

the agents at any given time. The bounding disc is a disc which contains all the

roots of the polynomial P (λ). This can be obtained by means of the following result

[4]: All the roots of a polynomial , anx
n + . . . + a0 can be bounded within a disc of

radius r = 2 maxk∈{1,...,n} |an−k

an
|1/k. Once the bounding disc is found, we can use any

standard methods of motion planning of a single agent for planning the motion of the

bounding disc.

Chapter V describes all these algorithms in greater detail with illustrative ex-

amples. Since these results are among the first of its kind, there is a lot of scope

to expand this idea. Extending this method to agents in three dimensional space is

clearly one of the main open problems. One can also try to relax the treatment of

agents as point objects. Given the size of the agents , research can be done to find

complete algorithms which guarantee maintenance of a certain distance between the

agents at all times.
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CHAPTER II

NOTATION AND BACKGROUND

A. Preliminaries

In this section, we define the general class of multihomogeneous polynomials and

describe some of their properties. Let Pn,k, denote the set of all homogeneous poly-

nomials in n variables and degree k. Multihomogeneous polynomials are a natural

extension of Pn,k to the setting where the variable are divided into l blocks, with nl

variables in each block. Furthermore each block is homogeneous of degree kl. More

specifically if we set N = (n1, . . . , nl) and K = (k1, . . . , kl), then,

PN,K = ⊗l
i=1Pni,ki

We can define the sums of squares and sums of powers of linear forms analogous

to the l = 1 case.

SqN,2K =

{
f ∈ PN,K such that, f =

m∑
i=1

f 2
i , for some fi ∈ PN,K

}

LfN,2K =

{
f ∈ PN,K such that, f =

m∑
i=1

l∏
j=1

f 2ki
ij , for some fij ∈ Pni,1

}
Also, we have the non negative polynomials,

PosN,2K = {f ∈ PN,K such that, f(x1, . . . , xl) ≥ 0, ∀(x1 . . . xl) ∈ Rn1 × . . .×Rnl}

We shall shortly demonstrate that PN,K can be viewed as a function on a suitable

product of spheres. First the definition. For N = (n1, . . . , nl), we shall use the
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notation SN to denote the product of spheres Sn1−1 . . . Snl−1, i.e.,

SN :=
l∏

i=1

Sni−1

Clearly, PN,K can be considered as a function on SN , because if we know the

value of f ∈ PN,K at some v = (v1, . . . , vl) ∈ SN , the value at any x = (x1, . . . , xl) ∈∏l
i=1 Rni is determined. This is because there are λi such that xi = λivi for all

i = 1 . . . n. Thus the value of f at x would simply be
∏l

i=1 λif(v). Let N =
∑l

i=1 ni.

We can also consider f ∈ PN,K as a function on SN−1. However, PN,K is not invariant

under the action of SO(N ), but it is invariant under the action of
∏l

i=1 SO(ni).

This distinction is the crux of most of the arguments used in subsequent sections.

Henceforth in this dissertation, we shall employ the products of spheres exclusively

and also the product of SO(ni)’s which we shall denote by SO(N), i.e.,

SO(N) :=
l∏

i=1

SO(ni)

B. A natural inner product

Since we would be using a lot of convex geometry methods, it is very essential to

work with a suitable inner product. Due to the fact that we will be exploiting the

invariance of PN,K under SO(N). We have the following lemma, which provides a

way to get an inner product on V1 ⊗ . . . ⊗ Vn, when we have inner products 〈, 〉i on

Vi.

Lemma 1. [15] Given v = v1⊗ . . .⊗ vn and w = w1⊗ . . .⊗wn in V = V1⊗ . . .⊗Vn,

we can construct the following inner product 〈, 〉 on decomposable tensors and extend

them via linearity to all elements of V .
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〈v, w〉 :=
n∏

i=1

〈vi, wi〉i

Example 1. For f , g in Pn,k we have the following natural inner product which is

invariant under the action of SO(n).

〈f, g〉 =

∫
Sn−1

fgdσ

Using Lemma 1 we can extend this to an inner product on PN,K that is invariant

under the action of SO(N).

〈f1 ⊗ . . .⊗ fl, g1 ⊗ . . .⊗ gl〉 :=
l∏

i=1

∫
Sni−1

figidσi

=

∫
Ql

i=1 Sni−1

(f1 . . . fl)(g1 . . . gl)dσ

C. Basics of convexity

For the basic definitions and concepts in convex geometry we refer the reader to the

following excellent books [18], [19]. A delightful intuitive presentation is the excellent

article by K.Ball [20]. We recall some of these in order to be as self contained as

possible but we strongly encourage the reader to consult the above mentioned books.

Definition 1. Let V be a real vector space. A set A ⊂ V is called convex, provided

for all x, y ∈ A, the interval,

[x, y] = {αx + (1− α)y : 0 ≤ α ≤ 1}

is contained in A. An empty set is convex by convention.

If in addition the vector space V is endowed with an inner product 〈, 〉, then we
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can identify V ∗ with V by associating a v ∈ V with every l ∈ V ∗ as follows:

lv(w) = 〈w, v〉

This leads us to the definition of a polar body of a convex set.

Definition 2. Polar of a convex body Let K ⊂ V , be a convex set in a vector space

V . We have the following definition of the polar of K, K◦.

K◦ = {l ∈ V ∗ : l(v) ≤ 1,∀v ∈ K}

In case the vector space V is endowed with an inner product 〈, 〉, then we can

identify K◦ with a subset of V itself.

K◦ = {w ∈ V : 〈v, w〉 ≤ 1,∀v ∈ K}

Definition 3. A subset K of a vector space V is called a cone, if 0 ∈ K and λx ∈ K

for every x ∈ K and λ ≥ 0. Also K is called a convex cone if it is both convex and a

cone or alternatively, αx + βy ∈ K for α, β ≥ 0 and for every x ∈ K.

To describe some of the properties of Pos, Sq and Lf , we shall find it useful

to describe a basis for PN,K . First we shall introduce some compact notations to

represent monomials in the multihomogeneous case. Let, xi = (xi1, . . . , xini
) ∈ Rni ,

for i = 1, . . . , l represent the l blocks of variables with corresponding homogeneous

degrees ki. We denote a monomial in the ith block as follows,

xαi
i := xαi1

i1 . . . x
αini
ini

where αi = (αi1, . . . , αini
) ∈ Zni is the exponent vector such that |αi| :=

∑ni

j=1 αij =

ki.

Now for x = (x1, . . . , xl) ∈ Rn1 × . . .×Rnl , and for a string of exponent vectors
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α = (α1, . . . , αl) ∈ Zn1 × . . .× Znl , we define,

xα := xα1
1 . . . xαl

l

where |αi| = ki for i = 1 . . . l. We also say that |α| = K when this condition holds.

From now on we shall adopt the notation, RN := Rn1 × . . .×Rnl .

Now, a polynomial f ∈ PN,K can be expressed in the following form,

f :=
∑
|α|=K

cαx
α

In fact xα with |α| = K forms a basis for PN,K . We shall call this the standard basis

of PN,2K . This leads us directly to the following lemma.

Lemma 2. The dimension of PN,K is given by,

Dim (PN,K) =
l∏

i=1

(
ni + ki − 1

ki

)
Lemma 3. PosN,2K , SqN,2K and LfN,2K are full dimensional convex cones in PN,2K.

Proof. It is easy to show that Pos, Sq and Lf are convex cones. For example for

f, g ∈ PosN,2K , clearly αf ≥ 0 for every α ≥ 0 and hence αf + βg ∈ PosN,2K , for all

α, β ≥ 0. For f, g ∈ SqN,2K , we have, αf + βg = (
√

α)
2
f +

(√
β
)2

g ∈ SqN,2K . We

can construct a very similar argument for LfN,2K . To show closure is a little more

involved and we shall prove it via the following lemmas.

Lemma 4. The boundary ∂PosN,2K of the cone of non negative polynomials is com-

prised of the set of non negative polynomials that attain zero at some point, i.e ,

M = {f ∈ PosN,2K, such that ∃x 6= 0 ∈ RN , with, f(x) = 0}. We have,

∂PosN,2K = M

Proof. We shall first show that M ⊂ ∂PosN,2K . Let f ∈ M, f 6= 0 be such that
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f(y) = 0 for some y ∈ RN . Let us write a non zero f ∈ M in terms of the above

mentioned standard basis of PN,2K , that is let f =
∑

|α|=2K cαx
α. Since f is non

zero, there is some α̃, such that yeα 6= 0. Let c = sign(yeα). Let fi = −(c/n)yeα + f .

Consider the sequence {fi}∞i=1. Clearly fi /∈ PosN,2K for all i and fi → f . Thus

f ∈ ∂PosN,2K . As for the other direction, let us assume that there exists a sequence

{fi}∞i=1 in PosN,2K such that fi → g, where g /∈ M . This implies that there is some

y ∈ RN such that g(y) = c ≤ 0. Hence there is some L ∈ N such that fi(y) ≤ c/2,

for all i ≥ L. This is clearly a contradiction to fi being in PosN,2K .

To show SqN,2K is closed, we first note that any sequence
∑∞

i=1

∑∞
j=1 f 2

ij that

converges to f ∈ PN,2K can be written as sum of squares whose coefficients are

bounded. Hence we can find a subsequence in {fij}∞j=1 that converges to fi for each

i. Thus we have f =
∑∞

i=1 f 2
i . Hence Sq is closed. A similar argument works for

LfN,2K .

Now we get back to proving that PosN,2K is full dimensional. To do this, we

shall show, that if g /∈ ∂PosN,2K and f ∈ PN,2K , then there exists an Ng ∈ N such

that g − f/N ∈ PosN,2K . First we note that since SN is compact, g has a minimum

on SN , say mg > 0. Also let mf be the minimum of f . Then we see that we can set

Ng ≥ mg/mf . A similar argument works for LfN,2K . For SqN,2K , we refer the reader

to [19].

Definition 4. For a convex body K in a vector space V containing the origin in its

interior, we define the gauge function GK as follows:

GK(x) := sup{λ ≥ 0 : λx ∈ K}

Lemma 5. [20] Let K be a convex body in V with origin in its interior and let 〈, 〉

be an inner product on V . Let S be the unit sphere in V and dµ the SO(V ) invariant
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measure on S. Then we have the following formula for the volume of K.

Vol(K)

VolBM

=

∫
S

GDM
K (x)dµ

where DM is the dimension of the vector space V and BM is the unit ball in V .

Definition 5. [18] For a convex body K in V , a point v ∈ K is called an extreme

point of K if v = αv1 + βv2 with α,β > 0, implies that v1, v2 are multiples of v.

Lemma 6. The extreme points of SqN,2K are squares. That is, if f is an extreme

point of SqN,2K, then f = g2 for some g ∈ SqN,K.

D. Slices of multihomogeneous polynomials

To compare the volumes of PosN,2K , SqN,2K and LfN,2K it would be useful to define

slices of these objects with an appropriate hyperplane in PN,2K . To this end we define

two hyperplane sections and a special polynomial F :

LN,2K := {p ∈ PN,2K |
∫

SN

pdσ = 1}

MN,2K := {p ∈ PN,2K |
∫

SN

pdσ = 0}

F :=
l∏

i=1

(x2
i1 + . . . x2

in1
)ki

Now we are in a position to describe the slices.

Pos
′

N,2K = PosN,2K ∩ LN,2K

Sq
′

N,2K = SqN,2K ∩ LN,2K

Lf
′

N,2K = LfN,2K ∩ LN,2K
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To use all the convexity results mentioned above, we need to work with convex bodies

with origin in their interiors. Hence we shall translate Pos
′
, Sq

′
and Lf

′
by F .

P̃ osN,2K := {p ∈ MN,2K |p + F ∈ Pos
′

N,2K}

S̃qN,2K := {p ∈ MN,2K |p + F ∈ Sq
′

N,2K}

L̃fN,2K := {p ∈ MN,2K |p + F ∈ Lf
′

N,2K}

To take into account the effect of dimension on the volume, we shall define and use

what is called the relative volume [15].

Definition 6. The relative volume RV ol of a convex body K in a D dimensional

vector space V , with respect to the unit ball B in V is defined as,

RV ol :=

(
VolK

VolB

)1/DV

Example 2. P̃ osN,2K is a convex body in MN,2K. The dimension of M is DM =∏l
i=1

(
ni+ki−1

ki

)
− 1, using 2. Thus we have, RV ol(P̃ osN,2K) =

(
VolgPosN,2K

VolBM

)1/DM

,

where BM is the unit ball in MN,2K.

E. Multihomogeneous polynomials as linear functionals on group orbits

It is convenient to view PN,2K as a linear functional in some tensor product space.

This would enable us to use the powerful results of Barvinok [16]. As always we

have N = (n1, . . . , nl) and K = (k1, . . . , kl). Let us begin by considering the tensor

product of Rni ’s.

TN,K := (Rn1)⊗k1 ⊗ (Rn2)⊗k2 ⊗ . . .⊗ (Rn1)⊗kl

We can think of t ∈ T as an l dimensional array, each of whose elements is a
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multidimensional array indexed by ki tuples, {1 ≤ i1 ≤ i2 . . . iki
≤ ni}. That is,

ti = {xi1,...,xki
|1 ≤ i1 ≤ . . . ≤ ki ≤ ni}

Given an x = (x1, . . . , xl) ∈
∏l

i=1 Rni , we have x⊗K given by the following element in

TN,K , whose ith multidimensional array is given by,

x⊗K
i1,...,iki

= {xi1xi2 . . . xiki
|1 ≤ i1 ≤ . . . ≤ ki ≤ ni}

Let, SymK(TN,K) be the symmetric part of TN,K under S(K) :=
∏l

i=1 S(ki),

where S(ki) is the symmetric group of ki objects. This means that y ∈ SymK(TN,K)

implies that, y⊗K
i1,...,iki

= y⊗K
σ(i1),...,σ(iki)

for every σ ∈ S(ki) and every i. Clearly, x⊗K is

in SymK(TN,K).

Now choose e ∈ SN and let w = e⊗2K . Then the orbit {gw|g ∈ SO(N)} lies in

the symmetric part of TN,2K . Let t =
∫

SN gw dσ be the center of the orbit. Then

from [16] t is a multiple of F . Translating the orbit by shifting t to the origin we

obtain the convex hull of the orbit of v = w − t.

B := conv{gv : g ∈ SO(N)}

A multihomogeneous polynomial f =
∑

|α|=2K cαx
α ∈ PN,2K , viewed as men-

tioned above, as a function on the product of spheres SN can be identified with the

restriction onto the orbit {gw : g ∈ SO(N)} of a linear functional l : TN,2K → R,

defined by coefficients cα. Hence it is rather easy to see that the linear functionals

on B are in one to one correspondence with the polynomials in MN,2K . Furthermore

the negative polar −B◦ can be identified with P̃ osN,2K .

We shall now state and explain the theorems of Barvinok alluded to in the above

paragraph.
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Theorem 7. Barvinok’s Theorem [16]

Let G be a compact group acting on a finite dimensional vector space V . Let

v ∈ V be a point and let l : V → R be a linear functional. Let us define

f : G → R, f(g) = l(gv),∀g ∈ G (2.1)

For k > 0, let dk be the dimension of the subspace spanned by the orbit {gv⊗k, g ∈ G}

in V ⊗k. In particular dk ≤
(

dimV +k−1
k

)
. Then,

‖f‖2k ≤ maxg∈G|f(g)| ≤
(
dk

)1/2k‖f‖2k (2.2)

This theorem enables to bound the sup norm of a function f by means of its 2kth

norms. We shall use this in our lower bound results.

Lemma 7. Barvinok’s Lemma [16]

Let G be a compact group acting on a finite d-dimensional real vector space V

endowed with a G− invariant scalar product 〈, 〉 and let v ∈ V be a point. Let

Sd−1 ⊆ V be the unit sphere endowed with the Haar probability measure dc. Then,

for every positive integer k, we have,∫
Sd−1

(∫
G

〈c, gv〉2kdg

)1/2k

dc ≤
√

2k〈v, v〉
d

F. More results from convexity

We shall first describe the Blaschke-Santalo inequality [21], [22], [18], [23]. This

will prove quite useful in this dissertation, to transfer lower bound results into upper

bound results. Let K be a convex set in an n dimensional vector space V , endowed

with an inner product 〈, 〉. We introduced the concept of a polar body above. This

can be generalized to what is called the polar of K with respect to an arbitrary point
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z ∈ V . Thus we have,

Kz := {y + z : 〈y, x + z〉 ≤ 1 , ∀x ∈ K}

Let,

p(K) = inf{(VolKz)(VolK) : z ∈ int(K)}

This infimum is reached for a unique point in V called the Santalo point of K, s(K).

The following is the Blaschke-Santalo inequality.

(VolK)(VolKs(K)) ≤ (VolBM)2

where BM is the unit ball in V . This was proved by fairly technical arguments in [21].

Saint Raymond in 1981 [24] gave a simple proof of this for the special case of centrally

symmetric convex bodies. A simple proof of a generalization of the Blaschke-Santalo

inequality was provided by Meyer and Pajor [25] using Steiner symmetrization.

Definition 7. The sup norm of f ∈ PN,K is defined as,

‖f‖∞ := sup{f(x) : x ∈ SN}

Definition 8. The unit ball in MN,2K under the sup norm is as follows:

B∞ := {f ∈ MN,2K : ‖f‖∞ ≤ 1}

Lemma 8. B∞ is the intersection of P̃ os
◦
N,2K with its negative polar, −P̃ os

◦
N,2K.

Proof. f ∈ P̃ os
◦
N,2K , implies that ‖f‖∞ ≥ −1. Therefore, f ∈ −P̃ os

◦
N,2K , implies

that ‖f‖∞ ≤ −1.Thus clearly we have the desired result.

Lemma 9. For subsets A and B of a vector space V , the polar of A∩B is the convex
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hull of the polars of A and B. That is,

(A ∩B)◦ = Conv{A◦,∩B◦}

Proof. f ∈ Conv{A◦,∩B◦}, implies that there exist f1 ∈ A◦ and f2 ∈ B◦, such that,

f = λf1 + (1− λ)f2. Now 〈f, g〉 = λ〈f1, g〉 + (1− λ)〈f2, g〉. For g ∈ A ∩ B, we have

〈f1, g〉 ≤ 1 and 〈f2, g〉 ≤ 1. This clearly means, 〈f, g〉 ≤ 1.

We shall now introduce the concept of Minkowski addition of subsets of a vector

space. This has widespread applications in many areas of convexity and we encourage

the reader to consult [18] for more on this very useful topic.

Definition 9. For subsets A, B of a vector space V , we define the Minkowski sum of

A and B as follows:

A⊕B = {v ∈ V : ∃x ∈ A, y ∈ B with, v = x + y}

Since a closed convex set is given by the intersection of its supporting half spaces,

such a set can be conveniently described by the position of its support planes. Such a

description is given by the support function. This is used the the proof of the upper

bound for SOS polynomials.

Definition 10. For a non empty closed convex set K ⊂ V , the support function

h(K, .) = hK, is defined by,

h(K, y) := sup{〈x, y〉 : x ∈ K}

The support plane is given by H(K, y) := {x ∈ V : 〈x, y〉 = h(K, y)}. The support

set F (K, y) is nothing but the intersection of the support plane H(K, y) with K.

The intuition of the support function is that it for each v ∈ S(V ) it gives the

element of K that is furthest from v.
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We shall end our section on convexity with an inequality which makes use of the

celebrated Brunn-Minkowski inequality, namely the Rogers-Shephard inequality. The

proof of this is beyond the scope of this dissertation. An useful reference is [18]. But

first a definition.

Definition 11. For a convex body K ⊂ V , the difference body D(K) is defined by,

D(K) := K −K = {x ∈ V : K ∩ (K + x) 6= Φ}

Lemma 10. For K ⊂ V in an n dimensional vector space, V , we have,

Vol(D(K)) ≤
(

2n

n

)
Vol(K)

G. Exotic metrics on PN,2K

1. The gradient metric

We shall now briefly discuss a couple of important metrics that would be used in our

proofs later. Let us begin by defining a multigradient on PN,2K along the lines of

Lemma 1. The idea is that given gradients ∇i on Pni,ki, we can tensor them together

to obtain a gradient on PN,2K .

∇ := ⊗l
i=1∇i

where for every fi ∈ Pni,ki
we have ∇i(fi) = ( ∂fi

∂xi1
, . . . , ∂fi

∂xini
) and ∇(f) would be

⊗l
i=1∇i(fi), when f = ⊗l

i=1fi is a decomposable tensor. Using linearity like before,

we can extend this to the whole of PN,2K .

Definition 12. For f, g ∈ PN,2K, we define the gradient metric as follows:

〈f, g〉G :=
1

4l
∏l

i=1 k2
i

∫
S(N)

〈∇(f),∇(g)〉 dσ

We have the following result of Kellogg [26]that is useful.
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Lemma 11. For f ∈ PN,2K we have,

‖f‖∞ ≥ ‖f‖G

2. The differential metric on the space of multihomogeneous polynomials

We extend the differential metric of Blekherman’s paper to the multihomogeneous

case. First some more notation. Let x1 = (x11, . . . , x1n1), x2 = (x21, . . . , x2n2), . . .,

xn = (xl1, . . . , xlnl
) denote the l sets of variables. Like before, x = (x1, . . . , xl) ∈ Rn1×

Rn2 × . . .×Rnl . We shall use the following compact notation to name the associated

differential operators of monomials. Let α1 = (α11, . . . , α1n1), . . ., αl = (αl1, . . . , αlnl
).

Let α = (α1, . . . , αl). Then,

xα =
l∏

i=1

xαi1
i1 . . . x

αini
ini

and,

Dxα :=
l⊗

i=1

∂αi1 . . . ∂αini

∂xαi1
i1 . . . ∂x

αini
ini

Now for a form f ∈ PN,2K ,

f =
∑

|α|=2K

cαx
α

we can define an associated linear operator as follows:

Df :=
∑

|α|=2K

cαDα
x

Now we finally get to defining the differential metric using a positive definite bilinear

form using Df .

〈f, g〉D := Df (g)
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H. Representation theory

We will need some simple concepts from representation theory for our proof of the

upper bound for non negative polynomials. The basic reference [27] is more than

adequate for our purpose. In particular we shall need the following lemma. If G1 and

G2 are two groups and V1 and V2 are representations of G1 and G2, then the tensor

product, V1⊗V2 is a representation of G1×G2, by (g1×g2).(v1⊗v2) = g1v1⊗g2v2. To

distinguish this ”external” tensor product from the ”internal” tensor product when

G1 = G2, we denote this by, V1 � V2.

Lemma 12. If V1 and V2 are irreducible then V1 � V2 is also irreducible and every

irreducible representation of G1 ×G2 arises this way.
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CHAPTER III

VOLUMES OF CERTAIN CONES OF BIHOMOGENEOUS POLYNOMIALS

A. Preliminaries

In this Chapter we shall obtain extensions of Blekherman’s results [28](also see [29],

[30] and [31]) to the bihomogeneous case. In this section we shall quickly summarize

what the general notation introduced in Chapter II boils down to in the case the

number of blocks l = 2. Thus bihomogeneous polynomials are an extension of the

usual homogeneous polynomials where there are two sets of variables with n1 variables

in the first block and n2 variables in the second block. In the notation of Chapter II,

we have, N = (n1, n2), K = (k1, k2) and of course l = 2.

PN,K = Pn1,k1 ⊗ Pn2,k2

We denote the two blocks by x1 = (x11, . . . , x1n1) and x2 = (x21, . . . , x2n2). We may

also use x = (x1, . . . , xn1) and y = (y1, . . . , yn2), to denote the two blocks. The sums

of squares and the sums of powers of linear forms reduce to the following,

SqN,2K =

{
f ∈ PN,K such that, f =

m∑
i=1

f 2
i , for some fi ∈ PN,K

}

LfN,2K =

{
f ∈ PN,K such that, f =

m∑
i=1

2∏
j=1

f 2ki
ij , for some fij ∈ Pni,1

}
Also like before, we have the non negative polynomials,

PosN,2K = {f ∈ PN,2K such that, f(x1, x2) ≥ 0, ∀(x1, x2) ∈ Rn1 ×Rn2}

We also use the notation P(n1,n2),(k1,k2) and so forth to denote PN,K . As outlined

in IIA, bihomogeneous polynomials can be considered as functions on the product of



27

spheres SN = Sn1−1 × Sn2−1. We have the action of SO(N) = SO(n1)× SO(n2) on

PN,K by means of an orthogonal change of coordinates. We can similarly write down

the SO(n1) × SO(n2) invariant inner product introduced in Chapter II, example 1.

For f1 ⊗ f2, g1 ⊗ g2 ∈ PN,K , we have,

〈f1 ⊗ f2, g1 ⊗ g2〉 =

∫
Sn1−1×Sn2−1

(f1 ⊗ f2)(g1 ⊗ g2) dσ (3.1)

=

∫
Sn1−1

f1g1 dσ1

∫
Sn2−1

f2g2 dσ2

where, dσ is the rotation invariant probability measure on Sn1−1× Sn2−1 and dσi is

the probability measure on Sni−1 for i = 1, 2. The hyperplane sections described in

IID become,

LN,2K := {p ∈ PN,2K |
∫

Sn1−1×Sn2−1

p dσ = 1}

MN,2K := {p ∈ PN,2K |
∫

Sn1−1×Sn2−1

p dσ = 0}

and the polynomial F , reduces to (x2
11 + . . . + x2

1n1
)k1(x2

21 + . . . + x2
2n2

)k2 . The

slices are given by, Pos
′
N,2K = PosN,2K ∩ LN,2K , Sq

′
N,2K = SqN,2K ∩ LN,2K , Lf

′
N,2K =

LfN,2K ∩ LN,2K and the translates are,

P̃ osN,2K = {p ∈ MN,2K : p + F ∈ Pos
′

N,2K} (3.2)

S̃qN,2K = {p ∈ MN,2K : p + F ∈ Sq
′

N,2K}

L̃fN,2K = {p ∈ MN,2K : p + F ∈ Lf
′

N,2K}

From lemma 2 we see that the dimension DM of MN,2K is,

DM =

(
n1 + 2k1 − 1

k1

)(
n2 + 2k2 − 1

k2

)
− 1
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As explained in Chapter II, SM will be the unit sphere in MN,2K and BM the unit

ball in MN,2K . We shall now compute the gauge of P̃ osN,2K .

Lemma 13. The gauge GgPos of P̃ osN,2K at any polynomial f ∈ MN,2K is given by,

GgPosN,2K
(f) = | inf

v∈SN
f(v)|−1

Proof. From definition 4 we have,

GgPosN,2K
(f) = sup{λ > 0 : λf ∈ P̃ osN,2K}

We know from the definition of P̃ osN,2K that if g ∈ MN,2K , then g is in P̃ osN,2K if

infv∈SN g(v) ≥ −1. Let mg = infv∈SN g(v). Clearly if g ∈ MN,2K , then mg < 0. Now

infv∈SN g/|mg| ≥ −1 and infv∈SN g/|mg + ε| ≤ −1 for every ε > 0.

B. A lower bound for the non negative multihomogeneous polynomials

The proof of the lower bound for VolP̃ osN,2K can be broken down into the following

steps, analogous to the approach adopted in [28]:

1. The volume taking into account the effect of higher dimensions is defined using

the integral of gauge function of P̃ osN,2K over the unit sphere in MN,2K , SM .

2. This is then manipulated to an integral involving the sup norm of bihomoge-

neous polynomials over SM .

3. Using Barvinok’s theorem, (Theorem 7) we bound ‖f‖∞ by the kth norm of f ,

‖f‖k, for some suitably chosen k ∈ N.

4. Using Barvinok’s lemma, (Lemma 7) we then bound ‖f‖k to obtain our result,

which we shall state as our first theorem.
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Theorem 8.(
VolP̃ osN,2K

VolBM

)1/DM

≥ β√
max{n1 ln(2k1 + 1), n2 ln(2k2 + 1)}

where α = 9e2 and β = 1
9e2 .

Since P̃ osN,2K is a convex body with origin in its interior, we can use definition 4

and Lemma 26 to represent the relative volume of P̃ osN,2K . One can prove this using

integration in polar coordinates. However we shall not present the proof. Instead the

interested reader can consult [20]. We have,(
VolP̃ osN,2K

VolBM

)1/DM

=

(∫
SM

GDMgPosN,2K
dµ

)1/DM

We notice that we can apply Holder’s theorem, since the right hand side is nothing

but the DM norm of GP . Hence,(
VolP̃ osN,2K

VolBM

)
≥

(∫
SM

GP (f) dµ

)
(by Holder’s Inequality) (3.3)

≥
(∫

SM

| inf
v∈SN

f(v)|−1dµ

)
(by Lemma 26)

≥
(∫

SM

| inf
v∈SN

f(v)|dµ

)−1

(by Jensen’s Inequality)

Finally, it is easy to observe that ‖f‖∞ ≥ | infv∈SN f(v)|. Hence to lower bound the

volume of non negative multihomogeneous polynomials we only have to estimate the

integral of the sup norm over the unit sphere.(
VolP̃ osN,2K

VolBM

)
≥
(∫

SM

‖f‖∞dµ

)−1

We proceed by bounding the ‖f‖∞ norm by ‖f‖2k using Barvinok’s results (The-

orem 7). To apply Barvinok’s theorem, we shall view an f ∈ PN,2K as the restriction

of a linear functional on a particular vector space TN,2K to a SO(n1)× SO(n2) orbit
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in TN,2K . The vector space TN,2K is described in section D.

Lemma 14. Given a vector space V = V1 × V2 and a group action of G = G1 × G2

on V , we have a natural G action on V ⊗K := V ⊗k1
1 ⊗ V ⊗k2

2 . As usual K = (k1, k2).

Proof. For g1× g2 ∈ G, and decomposable tensor (v1⊗ . . .⊗ vk1)⊗ (w1⊗ . . .⊗wk2) ∈

V ⊗K , we set,

g1×g2((v1⊗. . .⊗vk1)⊗(w1⊗. . .⊗wk2)) = (g1(v1)⊗. . .⊗g1(vk1))⊗(g2(w1)⊗. . .⊗g2(wk2)).

We extend this to other elements of V ⊗K by appealing to linearity.

Example 3. In our setting we have a natural action of SO(N) = SO(n1)× SO(n2)

on Rn1 ×Rn2. Following the procedure in Lemma 14, we extend this to TN,2K,

TN,2K = (Rn1)⊗2k1 ⊗ (Rn2)⊗2k2

We can think of TN,2K as an array, indexed by multi indices, that is x(1i1,...,1i2k1
),(2j1,...,1j2k2

),

where 1 ≤ i1, . . . i2k1 ≤ n1 and 1 ≤ j1, . . . j2k2 ≤ n2. Given an x = (x1, x2) ∈

Rn1 ×Rn2, we can think of x⊗K as given by,

x(1i1,...,1i2k1
),(2j1,...,1j2k2

) = (x1i1 . . . x1i2k1
)(x2j1 . . . x2j2k2

) (3.4)

We notice that x⊗K lies in Sym2k1 (Rn1)⊗ Sym2k2 (Rn2). A bihomogeneous polyno-

mial p ∈ PN,2K of the form, as described in Section C

p =
∑
|α|=K

cαx
α

where α = (α1, α2) ∈ Nn1 ×Nn2, with |α1| = k1 and |α2| = k2. We shall write this
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out in all its gory detail just for fun,

p =
∑
|α|=K

cα(xα11
11 . . . x

α1n1
1n1

)(xα21
21 . . . x

α2n2
2n2

) (3.5)

=
∑

1≤i1,...,ik1
≤n1

1≤j1,...,jk2
≤n2

c̃(1i1,...,1i2k1
),(2j1,...,1j2k2

)(x1i1 . . . x1i2k1
)(x2j1 . . . x2j2k2

) (3.6)

We conclude the last equation by comparing with equation 3.4. This basically

means that we have, p(x) = 〈c̃, x⊗K〉. With c̃ as in equation 3.6, we have the following

linear functional lp on T ,

lp(v) = 〈c̃, v〉

for every v ∈ TN,2K . Thus we have the following equivalence p ↔ lp between bi-

homogeneous polynomials and linear functionals on G orbits on T . Let us take

x = (e1, ẽ1) ∈ Sn1−1 × Sn2−1. Then we have, for all g ∈ G,

p(gx) = 〈c̃, gx⊗K〉 = lp(gv)

This means that we have a group action of G = SO(n1) × SO(n2) on TN,2K and a

linear functional on T . Define, f : G → R as f(g) = lf (gx⊗K). For f ∈ SM , we have,

‖f‖∞ = sup
g∈SO(n1)×SO(n2−1)

f(gx) (3.7)

= sup
g∈SO(n1)×SO(n2−1)

lf (gx⊗K) (3.8)

Now we can apply Barvinok’s theorem to bound, ‖f‖∞ by ‖f‖k. For k > 0, let

dk be the dimension of the subspce spanned by the orbit, {g
(
x⊗K

)⊗k}. Then from

Theorem 7, we have,

‖f‖2k ≤ ‖f‖∞ ≤ (dk)
1/2k ‖f‖2k
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It is easy to see that in our case,

dk =

(
n1 + 2k1k − 1

2k1k

)(
n2 + 2k2k − 1

2k2k

)
(3.9)

This leads us to the following upper bound for ‖f‖∞.

‖f‖∞ ≤
(

n1 + 2k1k − 1

2k1k

)1/2k1
(

n2 + 2k2k − 1

2k2k

)1/2k2

‖f‖k (3.10)

We shall now use the following lemma to upper bound the combinatorial factor ap-

pearing in the above equation.

Lemma 15. When k ≥ nln(m + 1),(
n + mk − 1

mk

)1/2k

≤ α

for some absolute constant α.

Proof. From [32] we have the following estimate for
(

a
b

)
,(

a

b

)
≤ exp aH(

b

a
)

where, H(x) = x ln( 1
x
) + (1 − x) ln( 1

1−x
), where 0 ≤ x ≤ 1. We note that H(δ) =

H(1− δ), when 0 ≤ δ ≤ 0.5. Also, H(x) is decreasing in the interval [0.5, 1]. Now,

mk

n + mk − 1
≥ 1− 1

mk

Let δ = n
mk

. Then with b = mk and a = n + mk − 1, using the above inequality and

the properties of H(x), we see that,

H(
b

a
) ≤ H(δ)

Now expanding the entropy function formula and noting that when 0 ≤ x ≤ 0.5,
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x1/x ≥ (1− x)(1/(1−x)), we get the following bound for H(δ):

H(δ) =
n

mk
ln(

mk

n
) +

(
1− n

mk

)
ln(

1

1− n
mk

)

≤ 2n

mk
ln(

mk

n
)

Therefore we get, (
a

b

)
≤ exp

{
mk

2n

mk
ln(

mk

n
)

}
≤

(
mk

n

)2n

Finally using k ≥ n ln(m + 1),(
b

a

)1/2k

≤
(

mn ln(m + 1)

n

) n
n ln(m+1)

≤ 3e

Corollary 1. When k ≥ max{n1 ln(m1 + 1), n2 ln(m2 + 1)},(
n + mk − 1

mk

)1/2k(
n + mk − 1

mk

)1/2k

≤ 9e2

As promised above, using the Corollary 1 in Equation 4.3, and taking k =

max{n1 ln(2k1 + 1), n2 ln(2k2 + 1)}, we obtain,

‖f‖∞ ≤ 3e2‖f‖k

Hence we now have,(∫
SM

‖f‖∞dµ

)
≤ α

(∫
SM

‖f‖kdµ

)

To obtain a bound for ‖f‖K , we use Lemma 7 due to Barvinok [16].
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Letting c = lf , this lemma helps us to bound the integral of ‖f‖k as follows:

(∫
SM

‖f‖kdµ

)
≤

√
k〈v, v〉
DM

But since 〈v, v〉 = DM , we have(∫
SM

‖f‖∞dµ

)
≤ α

√
k

Thus we finally prove that,(
VolP̃ osN,2K

VolBM

)1/DM

≥ β√
max{n1 ln(2k1 + 1), n2 ln(2k2 + 1)}

where α = 9e2 and β = 1
9e2 .

C. An upper bound on the volume of non negative multihomogeneous polynomials

Theorem 9. (
P̃ osN,2K

VolBM

)
≤ 4

(
2k2

1

4k2
1 + n1 − 2

)1/2(
2k2

2

4k2
2 + n2 − 2

)1/2

The proof of the upper bound for P̃ osN,2K can be broken down into the following

steps,

1. Relate the volume of P̃ osN,2K to that of its polar, P̃ os
◦
N,2K , using the Blaschke-

Santalo inequality.

2. Obtain a relation between the polar of the unit ball in the sup norm, B◦
∞ and

P̃ os
◦
N,2K .

3. Introduce gradient metric to upper bound B◦
∞ by the unit ball in the gradient

metric, BG.
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4. Finally bound the ratio of BG to BM using arguments from representation

theory.

We begin by defining the polar P̃ os
◦
N,2K , of P̃ osN,2K , using definition 2.

P̃ os
◦
N,2K = {f ∈ MN,2K : 〈f, g〉 ≤ 1 , ∀g ∈ P̃ osN,2K}

Since ˜PosN,2K is fixed by SO(n1) × SO(n2) and origin is the only point in MN,2K

fixed by SO(n1) × SO(n2). From Chapter II we have that the Santalo point of a

convex body is unique. Hence the origin is the Santalo point of ˜PosN,2K . Using

Blaschke-Santalo inequality, we get the following:

(
VolP̃ osN,2K

)(
VolP̃ os

◦
N,2K

)
≤
(
VolBM

)2

Therefore it would suffice to show that,(
VolP̃ os

◦
N,2K

VolBM

)
≥ 1

4

(
2k2

1

4k2
1 + n1 − 2

)1/2(
2k2

2

4k2
2 + n2 − 2

)1/2

We define the unit ball in the sup-norm as follows,

B∞ = {f ∈ MN,2K | ‖f‖∞ ≤ 1}

Now B∞ is the intersection of P̃ osN,2K with −P̃ os
◦
N,2K :

B∞ = P̃ osN,2K ∩ −P̃ os
◦
N,2K

From Lemma 9, we see that,

B◦
∞ = Conv{P̃ os

◦
N,2K , − P̃ os

◦
N,2K} ⊂ P̃ os

◦
N,2K ⊕−P̃ os

◦
N,2K

We now apply Rogers and Shephard theorem [18] in convex geometry to get a
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bound on the polar of the sup norm unit ball.

VolB◦
∞ ≤

(
2DM

DM

)
VolP̃ os

◦
N,2K

Lemma 16. For n > 0, we have, (
2n

n

)
≤ 4n

Proof. The left hand side is the coefficient of the xn term in the expansion of (1+x)2n.

Taking x = 1, we clearly have,
(
2n
n

)
≤ (1 + 1)2n = 4n.

From Lemma 16 it follows that,(
VolB◦

∞

VolP̃ os
◦
N,2K

)1/DM

≥ 1

4

This reduces the proof of the upper bound to,(
VolB◦

∞
VolBM

)1/DM

≥
(

4k2
1 + n1 − 2

2k2
1

)1/2(
4k2

2 + n2 − 2

2k2
2

)1/2

We now bound the infinity ball using the gradient metric introduced in Lemma 12.

For f ∈ MN,2K , which is decomposable, say f = f1 ⊗ f2, we have,

∇f =

(
∂f1

∂x1

, . . . ,
∂f1

∂xn1

)
⊗
(

∂f2

∂y1

, . . . ,
∂f2

∂yn2

)
From Lemma 12, the gradient metric of f as above would be,

〈f, f〉G =
1

16k2
1k

2
2

∫
Sn1−1×Sn2−1

((
∂f1

∂x1

)2

+ . . . +

(
∂f1

∂xn1

)2
)

((
∂f2

∂y1

)2

+ . . . +

(
∂f2

∂yn2

)2
)

dσ

Let BG be the unit ball in the gradient metric and the corresponding norm ‖f‖G.
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From Kellog’s lemma, (Lemma 11),

B∞ ⊆ BG

Polarity reverses inclusion and so,

B◦
G ⊆ B◦

∞ (3.11)

VolB◦
G =

(VolBM)2

VolBG

(Using the Blaschke-Santalo Inequality) (3.12)

Consequently, we have, VolB◦
∞ ≥ (VolBM )2

VolBG
and hence,

VolB◦
∞

VolBM

≥ VolBM

VolBG

Thus, we are left with proving the following:

Lemma 17. (
VolBM

VolBG

)1/DM

≥
(

4k2
1 + n1 − 2

2k2
1

)1/2(
4k2

2 + n2 − 2

2k2
2

)1/2

Proof. It is enough that we show the following is true for all f ∈ MN,2K .

〈f, f〉 ≥
(

4k2
1 + n1 − 2

2k2
1

)1/2(
4k2

2 + n2 − 2

2k2
2

)1/2

〈f, f〉G

By the invariance of both inner products under the action of SO(n1)× SO(n2), it is

enough to prove the lemma in the irreducible components of the representation. We

know that(Lemma 12), the irreducible components are Hn1,2l1⊗Hn2,2l2 for 0 ≤ l1 ≤ k1

and 0 ≤ l2 ≤ k2. And,

Hn,2l = {f ∈ Pn,2k | f = (x2
1 + . . . + x2

n)k−lh, h ∈ Pn,2l}

If f is a harmonic form of degree 2d in n variables, Stokes’ formula gives us,

〈f, f〉G =
2d

4d + n− 2
〈f, f〉G



38

Also, when f = (x2
1 + . . . + x2

n)k−dh, where h is a harmonic form of degree 2d ≤ 2k,

it is easy to check that,

〈f, f〉G =
d2

k2
〈h, h〉G +

k2 − d2

k2
〈h, h〉

We now obtain the following similar results when f1 = (x2
1 + . . . + x2

n1)
k1−d1h1 and

f2(y
2
1 + . . . + y2

n1)
k2−d2h2. We notice that,

〈f1f2, f1f2〉G = 〈f1, f1〉G〈f2, f2〉G

=

(
d2

1

k2
1

〈h1, h1〉G +
k2

1 − d2
1

k2
1

〈h1, h1〉
)

(
d2

2

k2
2

〈h2, h2〉G +
k2

2 − d2
2

k2
2

〈h2, h2〉
)

=

(
2d2

1 + d1(n1 − 2) + 2k2
1

2k2
1

)(
2d2

2 + d2(n2 − 2) + 2k2
2

2k2
2

)
〈f1f2, f1f2〉

≤
(

4k2
1 + n1 − 2

2k2
1

)(
4k2

1 + n1 − 2

2k2
1

)
〈f1f2, f1f2〉

The last step follows since the minimum clearly occurs when d1 = d2 = 1. This proves

the lemma.

D. Upper bound for bihomogeneous SOS polynomials

Throughout this Chapter we shall assume N = (n1, n2) and K = (k1, k2), and hence

2K = (2k1, 2k2). We can outline the steps involved in computing the lower bound of

multihomogeneous polynomials as follows:

1. Bound the volume of SOS polynomials by the average width using results from

convexity theory [18].

2. Express the average width in terms of an integral involving the support function

of SOS polynomials.
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3. Bound the support function by a max norm.

4. Use Barvinok’s method to bound the integral of the max norm by a high L2p

norm.

We have the following bound for the volume of multihomogeneous SOS polyno-

mials from the Uryshon’s Inequality [18].(
VolS̃qN,2K

VolBM

)1/DM

≤
WfSq

2

Here WfSq is the average width of S̃q and is given by,

WfSq = 2

∫
SM

LfSqdµ

where LfSq is the support function of S̃qN,2K which can be computed by the following

formula:

LfSq(f) = max
g∈fSq

〈f, g〉

Thus we can obtain a lower bound for the volume of multihomogeneous SOS polyno-

mials by bounding their average width WfSq. The extreme points in SqN,2K are clearly

perfect squares. Hence the since S̃q is a translation of Sq by (x2
1 + . . . + x2

n1
)k1(y2

1 +

. . . + y2
n2

)k2 , the extreme points in S̃q are given as below.

g2 − (x2
1 + . . . + x2

n1
)k1(y2

1 + . . . + y2
n2

)k2

where g ∈ PN,K and

∫
Sn1−1×Sn2−1

g2dσ = 1

For f ∈ MN,2K ,

〈f, (x2
1 + . . . + x2

n1
)k1(y2

1 + . . . + y2
n2

)k2〉 =

∫
Sn1−1×Sn2−1

fdσ = 0
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Hence the expression for the support function simplifies to,

LfSq(f) = max
g∈SPN,K

〈f, g2〉

Now we introduce a quadratic form on PN,K whose norm bounds LfSq.

Hf (g) = 〈f, g2〉for g ∈ PN,K

Now,

LfSq(f) ≤ ‖Hf‖∞

We can now use Barvinok’s theorem to bound ‖Hf‖∞ by a high L2p norm of Hf .

Since Hf is a form of degree 2 on the vector space PN,K of dimension DN,K we get,

‖Hf‖∞ ≤ 2
√

3‖Hf‖2DN,K

We now proceed as in the case of non negative multihomogeneous polynomials,

using Hõlder’s inequality to estimate the integral of ‖Hf‖∞.

∫
SM

LfSqdµ ≤

(∫
SM

∫
SPN,K

〈f, g2〉2DN,Kdσ(g)dµ(f)

)1/2DN,K

Since the inner integral depends only on the projection of g2 into MN,2K , we

have, ∫
SM

〈f, g2〉2DN,Kdµ(f) ≤ ‖g2‖2DN,K

2

∫
SM

〈f, p〉2DN,Kdµ(f)

for any p ∈ SM .

We can compute the second integral easily due to the invariance of the inner

product under SO(n1)× SO(n2). See for example [33] and [16].∫
SM

〈f, p〉2DN,Kdµ(f) =
Γ(DN,K + 1

2
)Γ(1

2
DM)

√
ΠΓ(DN,K + 1

2
DM)
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Furthermore, Duoandikoetxea [34](also see [35] has shown that for g ∈ SPn1,k1
,

‖g2‖2 ≤ 42k1 . This implies that for g ∈ PN,K , ‖g2‖2 ≤ 42k142k2

Combining these two results, we have,

∫
SM

LfSq(f)dµ ≤ 42k142k2

(
Γ(DN,K + 1

2
)Γ(1

2
DM)

√
ΠΓ(DN,K + 1

2
DM)

) 1
DN,K

Abramowitz and Stegun [36] list the following inequality for the Gamma function,

Γ(n + a)

Γ(n + b)
≤ 1

nb−a
, for b− a ≥ 0, a ≥ 0, n ∈ N

Using this we obtain, (
Γ(1

2
DM)

Γ(DN,K + 1
2
DM)

) 1
2DN,K

≤
√

2

DM(
Γ(1

2
+ DN,K)
√

π

) 1
2DN,K

≤
√

DN,K

This implies, ∫
SM

LfSq(f)dµ ≤ 42k142k22
√

3

√
2DN,K

DM

Thus we get the following upper bound for the volume on SOS multihomogeneous

polynomials.

Theorem 10. Upper bound on the volume of SOS multihomogeneous polynomials(
VolS̃qN,2K

VolBM

)1/DM

≤ 42k142k2
√

24

√
DN,K

DM

(3.13)

where,DN,K =

(
n1 + k1 − 1

k1

)(
n2 + k2 − 1

k2

)
(3.14)

and DM =

(
n1 + 2k1 − 1

2k1

)(
n1 + 2k1 − 1

2k1

)
− 1 (3.15)
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We can further simplify the above expression to get,(
VolS̃qN,2K

VolBM

)1/DM

≤ 42k142k2
√

24
(2k1)!(2k2)!

k1!k2!
n
−k1/2
1 n

−k2/2
2

E. The differential metric on the space of bihomogeneous polynomials

We would need to switch to a new metric during the course of the proof of the

lower bound for multihomogeneous polynomials. We extend the differential metric of

Blekherman’s paper to the multihomogeneous case. First some more notation. Let

x = (x1, . . . , xn1) and y = (y1, . . . , yn2) denote the two sets of variables. We shall use

the following compact notation to name monomials and their associated differential

operators. Let α = (i1, . . . , in1) and β = (j1, . . . , jn2). Then,

xα = xi1
1 . . . x

in1
n1 and yβ = yj1

1 . . . y
jn2
n2

and,

Dxα :=
∂i1 . . . ∂in1

∂xi1
1 . . . ∂x

in1
n1

and Dyβ :=
∂j1 . . . ∂jn2

∂yj1
1 . . . ∂y

jn2
n2

Now for a form f ∈ PN,2K ,

f =
∑

α=(i1,...,in1 ),|α|=2k1

β=(j1,...,jn2 ),|β|=2k2

cαβx
αyβ

we can define an associated linear operator as follows:

Df :=
∑

α=(i1,...,in1 ),|α|=2k1

β=(j1,...,jn2 ),|β|=2k2

cαβDxαDyβ

Now we finally get to defining the differential metric using a positive definite

bilinear form using Df .

〈f, g〉D := Df (g)
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The reason for defining the differential metric is that a certain linear operator T :

PN,2K → PN,2K maps the dual cone in the usual metric into the dual cone in the

differential metric. It will be shown later that the dual cone of the semidefinite forms

under the differential metric is contained in the cone of semi definite forms. This can

be used to transfer the upper bound result into a lower bound result.

For v ∈ Sn1−1 × Sn2−1 such that v = (v1, v2) we will use v2K where K = (k1, k2)

to denote the following form in PN,2K ,

v2K = (v11x1 + . . . + v1n1xn1)
2k1(v21y1 + . . . + v2n2yn2)

2k2

Now we can define the linear operator T mentioned in the previous paragraph.

For f ∈ PN,2K , we have,

T (f) =

∫
Sn1−1×Sn2−1

f(v)v2Kdσ1dσ2

The reason T maps the dual cone in the usual metric into the dual cone in the

differential metric is due to the following lemma:

Lemma 18. There is the following relationship between the differential and the L2

metric.

〈Tf, g〉D = (2k1!)(2k2!)〈f, g〉

Proof. For f = f1 ⊗ f2, g = g1 ⊗ g2 ∈ PN,2K ,

〈Tf, g〉D = 〈
∫

Sn1−1

f1(v1)v
2k1
1 dσ1

∫
Sn2−1

f2(v2)v
2k2
2 dσ2, g1 ⊗ g2〉D

=

∫
Sn1−1

〈f(v1)v
2k1
1 , g1〉Ddσ1

∫
Sn2−1

〈f(v2)v
2k2
2 , g2〉Ddσ2

Now,

〈v2ki
i , gi〉D = (2ki)!gi(vi) , for i ∈ 1, 2
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and so,

〈Tf, g〉D = (2k1)!(2k2!)

∫
Sn1−1

f(v1)g(v1)dσ1

∫
Sn2−1

f(v2)g(v2)dσ2

= (2k1!)(2k2!)〈f, g〉

We shall now describe the important property of the operator T . Let L be a full

dimensional cone. Let (x2
1 + . . .+x2

n1
)2k1(y2

1 + . . .+ y2
n2

)2k2 be in the interior of L. We

recall MN,2K is the set of all forms in PN,2K whose integral is zero. We translate L

by (x2
1 + . . . + x2

n1
)2k1(y2

1 + . . . + y2
n2

)2k2 as follows,

L̃ = {f ∈ MN,2K |f + (x2
1 + . . . + x2

n1
)2k1(y2

1 + . . . + y2
n2

)2k2 ∈ L}

Let L∗
i and L∗

d be the duals of L in the L2 and the differential metric respectively.

L∗
i = {f ∈ PN,2K |〈f, g〉 ≥ 0,∀g ∈ L}

L∗
d = {f ∈ PN,2K |〈f, g〉D ≥ 0,∀g ∈ L}

Since (x2
1 + . . . + x2

n1
)2k1(y2

1 + . . . + y2
n2

)2k2 lies in the interior of both L∗
i and L∗

d

we can define L̃∗
i and L̃∗

d exactly analogous to L̃. From Lemma 18 it is clear that T

maps L∗
i to L∗

d,

T (L∗
i ) = L∗

d

Since, T commutes with the action of SO(n1) × SO(n2), T acts by contraction in

each irreducible subspace of PN,2K . From [28], we have,

T ((x2
1 + . . . + x2

n1
)2k1(y2

1 + . . . + y2
n2

)2k2) = c(x2
1 + . . . + x2

n1
)2k1(y2

1 + . . . + y2
n2

)2k2
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And c is computed as,

c =

∫
Sn1−1

x2k1
1 dσ1

∫
Sn2−1

y2k2
1 dσ2 =

Γ(2k1+1
2

)Γ(n1

2
)

√
πΓ(n1+2k1

2
)

Γ(2k2+1
2

)Γ(n2

2
)

√
πΓ(n2+2k2

2
)

Therefore (1/c)T is a contraction operator on each irreducible subspace of PN,2K and

the change in volume

(
VolfL∗

d

VolfL∗
i

)1/DM

, is bounded by the largest contraction coefficient:

(
VolL̃∗

d

VolL̃∗
i

)1/DM

≥ k1!Γ(k1 + n1/2)

Γ(2k1 + n1/2)

k2!Γ(k2 + n2/2

Γ(2k2 + n2/2)

Like before we can bound the ration of gamma functions,

Γ(k + n/2)

Γ(2k + n/2)
≥ k!

(n/2 + k)k

Combining these we have the following useful lemma,

Lemma 19. (
VolL̃∗

d

VolL̃∗
i

)1/DM

≥ k1!

(n1/2 + k1)k1

k2!

(n2/2 + k2)k2

We now take the next big step towards obtaining the lower bound via the fol-

lowing lemma.

Lemma 20. The dual cone to the cone of multihomogeneous SOS polynomials in the

differential metric, namely, Sq∗D is contained in the cone of multihomogeneous SOS

polynomials, SqN,2K.

Proof. We recall that,

Sq∗D = {f ∈ PN,2K |〈f, g〉D ≥ 0,∀g ∈ SqN,2K}

Now, for f ∈ Sq∗D, we can associate the following quadratic form Hf in PN,K , for

any p ∈ PN,K ,

Hf (p) = 〈p2, f〉D
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We shall now proceed to show that Hf = HP
q2 , thereby proving that f ∈ SqN,2K . To

each quadratic form A in PN,K , there is a corresponding symmetric matrix MA. Let

W denote the vector space of all quadratic forms on PN,K . Then Hf can be written

as the sum of rank one forms Aq of the form,

Aq(p) = 〈p, q〉2D

and,

Hf =
∑

Aq, for some, q ∈ PN,K

Let V be the subspace of W given by the linear span of Hf where f ∈ PN,2K . P is

the orthogonal projection of W onto V , then,

P(Aq) =

(
2k1

k1

)−1(
2k2

k2

)−1

Hq2

It suffices to show Aq −
(
2k1

k1

)−1(2k2

k2

)−1
Hq2 is orthogonal to Hv2K since forms of this

type span V .

Hv2K (p) = (2k1!)(2k2!)p(v)2K =

(
2k1

k1

)(
2k2

k2

)
Av2K (p)

Hence,

〈Aq −
(

2k1

k1

)−1(
2k2

k2

)−1

Hq2 , Hv2K 〉 = Hv2K (q)− 〈Hq2 , Av2K 〉

= Hv2K (q)−Hq2(vK) = 0

Applying P to both sides,

Hf = P

(∑
Aq

)
=
∑(

2k1

k1

)−1(
2k2

k2

)−1

Hq2 =

(
2k1

k1

)−1(
2k2

k2

)−1

HP
q2
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F. Lower bound for SOS bihomogeneous polynomials

We prove the lower bound by first noting that as a result of Lemma 20 we have,

S̃q
∗
d ⊆ S̃qN,2K

This gives us,
VolS̃qN,2K

VolBM

≥ VolS̃q
∗
d

VolBM

Hence we are done if we find an upper bound for the right-hand side of that above

equation. To do that, we shall obtain inequalities involving the relative sizes of S̃q
∗
d

and S̃q
∗
i and also that of S̃q

∗
i and BM . We begin by observing that, (x2

1 + . . . +

x2
n1

)2k1(y2
1 + . . . + y2

n2
)2k2 lies in the interior of S̃q

∗
d, by Lemma 6. Therefore applying

Lemma 20, (
VolS̃q

∗
d

VolS̃q
∗
i

)1/DM

≥ k1!

(n1/2 + k1)k1

k2!

(n2/2 + k2)k2

For the part involving S̃q
∗
i , we start by defining the unit ball in the sq norm,

namely Bsq.

Bsq = {f ∈ MN,2K : ‖f‖sq ≤ 1}

Let GBsq be the gauge of Bsq. From Lemma 5, we obtain,

VolBsq

VolBM

=

∫
SM

GBsq dµ

It is not very difficult to determine the gauge of Bsq. Indeed we have the following

lemma.

Lemma 21. For f ∈ SM , the gauge of Bsq is given by,

GBsq(f) = ‖f‖−1
sq

Proof. g ∈ ∂Bsq implies that ‖g‖sq =. Thus for f ∈ SM , λf ∈ Bsq means λ‖f‖sq = 1.
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This inturn leads us to our lemma.

We shall go through the same process as in Section IIIC to bound the volume of

Bsq.

VolBsq

VolBM

=

∫
SM

GBsq dµ (3.16)

=

∫
SM

‖f‖−1
sq dµ (by Lemma 31) (3.17)

=

(∫
SM

‖f‖sq dµ

)−1

(by Jensen’s inequality) (3.18)

≥ 1

42k142k2

√
24

k1!k2!

(2k1)!(2k2)!
n

k1/2
1 n

k2/2
2 (3.19)

The last equality follows from Theorem 13, where we essentially had,(∫
SM

‖f‖sq dµ

)
≤ 42k142k2

√
24

(2k1)!(2k2)!

k1!k2!
n
−k1/2
1 n

−k2/2
2

Lemma 22.

Bsq = S̃q
◦
N,2K ∩ −S̃q

◦
N,2K

Lemma 23.

S̃q
◦
N,2K = −S̃q

∗
i

where, S̃q
∗
i is the dual cone of SqN,2K in the differential metric.

From the above two lemmas we get,(
S̃q

∗
i

BM

)1/DM

≥ 1

42k142k2

√
24

k1!k2!

(2k1)!(2k2)!
n

k1/2
1 n

k2/2
2

Combining this with our bound for
(
VolfSq

∗
d

VolfSq
∗
i

)1/DM

, we finally get,

VolS̃q
∗
d

VolBM

≥ 1

42k142k2

√
24

k1!k2!

(2k1)!(2k2)!
n

k1/2
1 n

k2/2
2

k1!

(n1/2 + k1)k1

k2!

(n2/2 + k2)k2
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G. Sums of powers of linear forms

1. Lower bound

Theorem 11.(
VolL̃fN,2K

VolBM

)1/DM

≥ 1

4

(
4k2

1 + n1 − 2

2k2
1

)1/2(
4k2

2 + n2 − 2

2k2
2

)1/2

(
k1!

(n1/2 + 2k1)k
1

)(
k2!

(n2/2 + 2k2)k
2

)
We start with the following observation,

Lemma 24.

LfN,2K = Pos∗d

That is, the sum of powers of linear forms is dual to the non negative polynomials in

the differential metric.

Proof. f ∈ Pos∗d implies, 〈f, g〉D ≥ 0, for all g ∈ PosN,2K . Letting f = v2K we find

using Lemma 20, that

〈v2K , g〉D = (2k1)!(2k2)!g(v)

This implies that if f = v2K , 〈f, g〉D ≥ 0, for all g ∈ PosN,2K . Hence, Pos∗d ⊆ LfN,2K .

Now if we take some g /∈ PosN,2K , the right hand side will be negative for some value

of v and hence we have, LfN,2K ⊆ Pos∗d.

Thus we have,
VolL̃fN,2K

VolBM

=
VolP̃ os

∗
d

VolBM

Lemma 25.

P̃ os
◦

= −P̃ os
∗
i
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Proof. Let us recall the definition of P̃ os
◦
.

P̃ os
◦

= {f ∈ MN,2K : 〈f, g〉 ≤ 1 , ∀g ∈ MN,2K}

We also have,

−Pos∗i = {f ∈ PN,2K : 〈f, g〉 ≤ 0 , ∀g ∈ PN,2K}

Now it is easy to see that the usual tilde operation gives us the desired result.

Hence we have,(
VolL̃fN,2K

VolBM

)1/DM

≥

(
VolP̃ os

◦

VolBM

)1/DM
(
VolP̃ os

∗
i

VolP̃ os
∗
d

)1/DM

≥ 1

4

(
4k2

1 + n1 − 2

2k2
1

)1/2(
4k2

2 + n2 − 2

2k2
2

)1/2

(
VolP̃ os

∗
i

VolP̃ os
∗
d

)1/DM

≥ 1

4

(
4k2

1 + n1 − 2

2k2
1

)1/2(
4k2

2 + n2 − 2

2k2
2

)1/2

(
k1!

(n1/2 + 2k1)k
1

)(
k2!

(n2/2 + 2k2)k
2

)
This concludes the proof of our theorem.
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CHAPTER IV

EXTENSION TO THE GENERAL MULTIHOMOGENEOUS CASE

A. Preliminaries

In this chapter, we shall extend the results of the previous chapter to the general

multihomogeneous case. This is by and large straight forward and hence we shall be

concise to avoid too much repetition. Throughout this chapter, N = (n1, . . . , nl) and

K = (k1, . . . , kl).

From lemma 2 we see that the dimension DM of MN,2K is,

DM =
l∏

i=1

(
ni + 2ki − 1

k1

)
Like before, SM will be the unit sphere in MN,2K and BM the unit ball in MN,2K . We

shall now compute the gauge of P̃ osN,2K .

Lemma 26. The gauge GgPos of P̃ osN,2K at any polynomial f ∈ MN,2K is given by,

GgPosN,2K
(f) = | inf

v∈SN
f(v)|−1

Proof. From definition 4 we have,

GgPosN,2K
(f) = sup{λ > 0 : λf ∈ P̃ osN,2K}

We know from the definition of P̃ osN,2K that if g ∈ MN,2K , then g is in P̃ osN,2K if

infv∈SN g(v) ≥ −1. Let mg = infv∈SN g(v). Clearly if g ∈ MN,2K , then mg < 0. Now

infv∈SN g/|mg| ≥ −1 and infv∈SN g/|mg + ε| ≤ −1 for every ε > 0.

B. A lower bound for the general non negative multihomogeneous polynomials

The proof follows that of the bihomogeneous case closely.
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Theorem 12. (
VolP̃ osN,2K

VolBM

)1/DM

≥ β√
maxi∈{1,...,l}{ni ln(2ki + 1)}

where α = 9e2 and β = 1
9e2 .

Like before the first step is to express VolP̃ osN,2K in terms of the integral of its

gauge function. We have,(
VolP̃ osN,2K

VolBM

)1/DM

=

(∫
SM

GDMgPosN,2K
dµ

)1/DM

We notice that we can apply Holder’s theorem, since the right hand side is nothing

but the DM norm of GP . Hence,(
VolP̃ osN,2K

VolBM

)
≥

(∫
SM

GP (f) dµ

)
(by Holder’s Inequality) (4.1)

≥
(∫

SM

| inf
v∈SN

f(v)|−1dµ

)
(by Lemma 26)

≥
(∫

SM

| inf
v∈SN

f(v)|dµ

)−1

(by Jensen’s Inequality)

Finally, it is easy to observe that ‖f‖∞ ≥ | infv∈SN f(v)|. Hence to lower bound the

volume of non negative multihomogeneous polynomials we only have to estimate the

integral of the sup norm over the unit sphere.(
VolP̃ osN,2K

VolBM

)
≥
(∫

SM

‖f‖∞dµ

)−1

We can bound ‖f‖∞ norm by ‖f‖2k using Barvinok’s theorem. To apply this in

the general setting, we shall generalize TN,2K to the multihomogeneous case.

TN,2K =
l⊗

i=1

(Rni)⊗2ki

Now we can apply Barvinok’s theorem to bound, ‖f‖∞ by ‖f‖k. For k > 0, let
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dk be the dimension of the subspce spanned by the orbit, {g
(
x⊗K

)⊗k}. Then from

Theorem 7, we have,

‖f‖2k ≤ ‖f‖∞ ≤ (dk)
1/2k ‖f‖2k

In the general case,

dk =
l∏

i=1

(
ni + 2kik − 1

2kik

)
(4.2)

This leads us to the following upper bound for ‖f‖∞.

‖f‖∞ ≤
l∏

i=1

(
ni + 2kik − 1

2kik

)
‖f‖k (4.3)

We shall now appeal to Lemma 15 to conclude,

‖f‖∞ ≤ 3e2‖f‖k

Using Lemma 7, (∫
SM

‖f‖kdµ

)
≤

√
k〈v, v〉
DM

But since 〈v, v〉 = DM , we have(∫
SM

‖f‖∞dµ

)
≤ α

√
k

Thus we obtain the following bound in the general case:(
VolP̃ osN,2K

VolBM

)1/DM

≥ β√
maxl

i=1{ni ln(2ki + 1)}

where α = 9e2 and β = 1
9e2 .

C. An upper bound on the volume of non negative multihomogeneous polynomials

Theorem 13. (
P̃ osN,2K

VolBM

)
≤ 4

l∏
i=1

(
2k2

i

4k2
i + ni − 2

)1/2
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The Blaschke-Santalo inequality generalizes to the general setting and we get the

following: (
VolP̃ osN,2K

)(
VolP̃ os

◦
N,2K

)
≤
(

V olBM

)2

Therefore it would suffice to show that,(
VolP̃ os

◦
N,2K

VolBM

)
≥ 1

4

l∏
i=1

(
2k2

i

4k2
i + ni − 2

)1/2

We recall that,

B∞ = {f ∈ MN,2K | ‖f‖∞ ≤ 1}

and that,

B∞ = P̃ osN,2K ∩ −P̃ os
◦
N,2K

From Lemma 9, and applying Rogers and Shephard theorem,

VolB◦
∞ ≤

(
2DM

DM

)
VolP̃ os

◦
N,2K

From Lemma 16 it follows that,(
VolB◦

∞

VolP̃ os
◦
N,2K

)1/DM

≥ 1

4

This reduces the proof of the upper bound to,(
VolB◦

∞
VolBM

)1/DM

≥
l∏

i=1

(
4k2

i + ni − 2

2k2
i

)1/2

We now bound the infinity ball using the gradient metric introduced in Lemma 12.

For f ∈ MN,2K , which is decomposable, say f = ⊗l
i=1fi, we have the following gener-

alization of the graident metric ,

From Lemma 12, the gradient metric of f as above would be,

〈f, f〉G =
1

16
∏l

i=1 k2
i

∫
SN

l∏
i=1

((
∂fi

∂xi1

)2

+ . . . +

(
∂fi

∂xin1

)2
)

dσ
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Let BG be the unit ball in the gradient metric and the corresponding norm ‖f‖G.

From Kellog’s lemma, (Lemma 11),

B∞ ⊆ BG

Polarity reverses inclusion and so,

B◦
G ⊆ B◦

∞ (4.4)

VolB◦
G =

(VolBM)2

VolBG

(Using the Blaschke-Santalo Inequality) (4.5)

Consequently, we have, VolB◦
∞ ≥ (VolBM )2

VolBG
and hence,

VolB◦
∞

VolBM

≥ VolBM

VolBG

Thus, we are left with proving the following:

Lemma 27. (
VolBM

VolBG

)1/DM

≥
l∏

i=1

(
4k2

i + ni − 2

2k2
i

)1/2

Proof. The proof follows that of the bihomogeneous case. We note the invariance

of both inner products under the action of SO(N), it is enough to prove the lemma

in the irreducible components of the representation. In this setting, the irreducible

components are ⊗l
i=1Hni,2li for 0 ≤ li ≤ ki. And,

Hn,2l = {f ∈ Pn,2k | f = (x2
1 + . . . + x2

n)k−lh, h ∈ Pn,2l}

We finally notice that,

〈f, f〉G ≤
l∏

i=1

(
4k2

i + ni − 2

2k2
i

)
〈f, f〉

The last step follows since the minimum clearly occurs when di = 1. This proves the

lemma.
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D. Upper bound for multihomogeneous SOS polynomials

We still have the following bound for the volume of multihomogeneous SOS polyno-

mials from the Uryshon’s Inequality [18].(
V olS̃qN,2K

V olBM

)1/DM

≤
WfSq

2

Bounding their average width WfSq by the support function LfSq, and using the fol-

lowing simplification, we have,

LfSq(f) = max
g∈SPN,K

〈f, g2〉

We shall now bound the support function as follows:

Hf (g) = 〈f, g2〉for g ∈ PN,K

Now,

LfSq(f) ≤ ‖Hf‖∞

We can now use Barvinok’s theorem to bound ‖Hf‖∞ by a high L2p norm of Hf .

Since Hf is a form of degree 2 on the vector space PN,K of dimension DN,K we get,

‖Hf‖∞ ≤ 2
√

3‖Hf‖2DN,K

We now proceed as in the case of non negative multihomogeneous polynomials,

using Hõlder’s inequality to estimate the integral of ‖Hf‖∞.

∫
SM

LfSqdµ ≤

(∫
SM

∫
SPN,K

〈f, g2〉2DN,Kdσ(g)dµ(f)

)1/2DN,K

Since the inner integral depends only on the projection of g2 into MN,2K , we
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have, ∫
SM

〈f, g2〉2DN,Kdµ(f) ≤ ‖g2‖2DN,K

2

∫
SM

〈f, p〉2DN,Kdµ(f)

for any p ∈ SM .

We can compute the second integral easily due to the invariance of the inner

product under SO(N).∫
SM

〈f, p〉2DN,Kdµ(f) =
Γ(DN,K + 1

2
)Γ(1

2
DM)

√
ΠΓ(DN,K + 1

2
DM)

Using, the results of Duoandikoetxea [34], we have,

∫
SM

LfSq(f)dµ ≤
l∏

i=1

42ki

(
Γ(DN,K + 1

2
)Γ(1

2
DM)

√
ΠΓ(DN,K + 1

2
DM)

) 1
DN,K

We also have, (
Γ(1

2
DM)

Γ(DN,K + 1
2
DM)

) 1
2DN,K

≤
√

2

DM(
Γ(1

2
+ DN,K)
√

π

) 1
2DN,K

≤
√

DN,K

This implies, ∫
SM

LfSq(f)dµ ≤
l∏

i=1

42ki
√

3

√
2DN,K

DM

Thus we get the following upper bound for the volume on SOS multihomogeneous

polynomials.
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Theorem 14. Upper bound on the volume of SOS multihomogeneous polynomials(
VolS̃qN,2K

VolBM

)1/DM

≤
l∏

i=1

42ki
√

24

√
DN,K

DM

(4.6)

where,DN,K =
l∏

i=1

(
ni + ki − 1

ki

)
(4.7)

and DM =
l∏

i=1

(
ni + 2ki − 1

2ki

)
(4.8)

We can further simplify the above expression to get,(
V olS̃qN,2K

V olBM

)1/DM

≤
l∏

i=1

42ki
√

24
(2ki)!

ki!
n
−ki/2
i

E. Generalized differential metric

Let α = (α1, . . . , αn1) ∈ Nl. Then,

xα = xα1
1 . . . xn1

n1

and,

Dxα :=
∂α1 . . . ∂αn1

∂xα1
1 . . . ∂x

αn1
n1

Now for a form f ∈ PN,2K ,

f =
∑

αi=(αi1
,...,αin1

),|αi|=2ki

cα1...αl

l∏
i=1

xαi

we can define an associated linear operator as follows:

Df :=
∑

αi=(αi1
,...,αin1

),|αi|=2ki

l∏
i=1

Dxαi

Now we finally get to defining the differential metric using a positive definite
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bilinear form using Df .

〈f, g〉D := Df (g)

The linear operator T can be written as follows. For f ∈ PN,2K , we have,

T (f) =

∫
SN

f(v)v2Kdσ

The reason T maps the dual cone in the usual metric into the dual cone in the

differential metric is due to the following lemma, which in the multihomogeneous case

is:

Lemma 28. There is the following relationship between the differential and the L2

metric.

〈Tf, g〉D =
l∏

i=1

(2ki!)〈f, g〉

Let L∗
i and L∗

d be the duals of L in the L2 and the differential metric respectively.

L∗
i = {f ∈ PN,2K |〈f, g〉 ≥ 0,∀g ∈ L}

L∗
d = {f ∈ PN,2K |〈f, g〉D ≥ 0,∀g ∈ L}

Since, T commutes with the action of SO(N), T acts by contraction in each

irreducible subspace of PN,2K .

Combining these we have the following lemma,

Lemma 29. (
V olL̃∗

d

V olL̃∗
i

)1/DM

≥
l∏

i=1

ki!

(ni/2 + ki)ki

And this leads us to,

Lemma 30. The dual cone to the cone of multihomogeneous SOS polynomials in the

differential metric, namely, Sq∗D is contained in the cone of multihomogeneous SOS
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polynomials, SqN,2K.

F. Lower bound for SOS multihomogeneous polynomials

We prove the lower bound by first noting that as a result of Lemma 20 we have,

S̃q
∗
d ⊆ S̃qN,2K

This gives us,
VolS̃qN,2K

VolBM

≥ VolS̃q
∗
d

VolBM

Hence we are done if we find an upper bound for the right-hand side of that above

equation. Therefore applying Lemma 30,(
VolS̃q

∗
d

VolS̃q
∗
i

)1/DM

≥
l∏

i=1

ki!

(ni/2 + ki)ki

For the part involving S̃q
∗
i , we have like before Bsq.

Bsq = {f ∈ MN,2K : ‖f‖sq ≤ 1}

Let GBsq be the gauge of Bsq. From Lemma 5, we obtain,

VolBsq

VolBM

=

∫
SM

GBsq dµ

It is not very difficult to determine the gauge of Bsq. Indeed we have the following

lemma.

Lemma 31. For f ∈ SM , the gauge of Bsq is given by,

GBsq(f) = ‖f‖−1
sq

We shall go through the same process as in Section IIIC to bound the volume of
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Bsq.

VolBsq

VolBM

≥
l∏

i=1

1

42ki

√
24

ki!

(2ki)!
n

ki/2
i (4.9)

Lemma 32.

Bsq = S̃q
◦
N,2K ∩ −S̃q

◦
N,2K

Lemma 33.

S̃q
◦
N,2K = −S̃q

∗
i

where, S̃q
∗
i is the dual cone of SqN,2K in the differential metric.

From the above two lemmas we get,(
S̃q

∗
i

BM

)1/DM

≥
l∏

i=1

1

42ki

√
24

ki!

(2ki)!
n

ki/2
i

Combining this with our bound for
(
VolfSq

∗
d

VolfSq
∗
i

)1/DM

, we finally get,

VolS̃q
∗
d

VolBM

≥
l∏

i=1

1

42ki

√
24

ki!

(2ki)!
n

ki/2
i

ki!

(ni/2 + ki)ki
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CHAPTER V

A HOMOTOPY APPROACH FOR THE MOTION COORDINATION OF A

GROUP OF MOBILE AGENTS

A. Introduction

Autonomous mobile agents have been gaining a lot of attention in recent years be-

cause of their potential applications in military operations, automated factories and

automated highways. It is widely believed that cooperative mobile robots will have

a number of civilian and defense applications in addition to the ones listed above. In

such scenarios, studying the motion planning algorithms becomes of paramount im-

portance. The following topics generally fall under the umbrella of motion planning

algorithms:

1. Algorithms which enable a group of n mobile agents to change position and

formation

2. Algorithms which enable the mobile agents to avoid obstacles so as to negotiate

through the amibient environment.

In this chapter we summarize our recent works in this area [13]. The listed

references listed give an applied treatment, whereas in this thesis we shall adopt a

more mathematical approach in an attempt to clarify the underlying mathematics.

The motivation for this work has been to provide a complete numerical algorithm for

the problem of pattern change in two dimensions, with central planning and hence

with limited communication among the agents. Although we have not explored ways

to optimize our solution, we believe that our work is among the first to transfer the

motion planning problem to a simple root finding exercise.
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Most of the current research that has been done in this area uses the composite

configuration approach or decoupled planning approach [37], [38], [39]. These ap-

proaches do not often capture the conditions for the combined motion of the agents as

succinctly as out polynomial space approach. Another common approach adopted in

current literature is the distributed motion planning method [40], [41], [42], [43], [44],

[45]. However this approach is limited to motion planning to achieve a limited number

of patterns. Using the method in our work motion planning can be tailored to obtain

any pattern starting from an arbitrary pattern. We shall also extend the algorithm

described in the initial sections in combination with the framework proposed in [46]

to avoid pre specified obstacles in two dimensions.

We shall now quickly summarize our approach. We represent the initial configu-

ration of a group of n mobile agents by means of the roots of a polynomial of degree

n, say Pi and the final configuration by roots of a polynomial Pf . In order to get

from the initial configuration to the final configuration, we deform the coefficients of

Pi to that of Pf . The condition to avoid collision is given by requiring the interme-

diate polynomial to have distinct roots throughout the deformation. The set of all

polynomials of degree n having atleast one multiple root is called the discriminant

variety Σn. It is known that the complement of the discriminant variety is connected

in C [17]. Hence, there is always a path from Pi to Pf which avoids the discriminant

variety, assuring that the agents do not collide. A parametric representation for Σn is

described in [14]. Using this we can obtain a certificate that our path lies entirely in

the complement of Σn. This method requires computation of roots of a polynomial of

degree n at each time step during the deformation. We use Newton Raphson method

for computing the roots. Due to the fact that the deformation changes the coefficients

only slightly at each step, the roots of the previous polynomial would provide us with

a very good guess at each time step for the Newton Raphson method to converge
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effectively.

B. Description of the motion planning algorithm

1. Assumptions

The key assumptions are:

1. The mobile agents move in a two dimensional space.

2. The agents are represented as point objects, that is having no girth.

Although our algorithm only guarantees that the point objects do not collide at any

given time, it is possible to handle finite sized objects as well. This is made possible

by means of a result which lower bounds the minimum distance between roots of a

polynomial of degree n [47]. We shall discuss this in greater detail in the final section

of this chapter where we describe obstacle avoidance.

We now establish some notation and definitions. We consider n agents or objects

R1, R2, . . ., Rn. By a ”pattern” we essentially refer to the set of coordinates of the n

objects in a particular local coordinate system(see Figure 1). We allow for the case

where the coordinate system itself is undergoing some translation.

Definition 13. Discriminant variety The discriminant variety Σn is the set of all

polynomials with coefficients in C of degree n with multiple roots.

Σn := {f ∈ Pn : fhas multiple roots}

where, Pn is the set of all polynomials of degree, n. Hence, Pn − Σn represents the

set of all polynomials of degree n with distinct roots.

According to [17] the complement of the discriminant variety is connected. Hence

given two polynomials in the complement of the discriminant variety we can find a
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path connecting them, that lies entirely in the complement of the discriminant variety.

Lemma 34. [17] The complement of the discriminant variety is connected.

Fig. 1. Local and global coordinates

In our algorithm we represent the position of the agents with respect to some

local coordinate system L in which the motion planning is carried out, by means of

roots of polynomials. Given an initial pattern Qi = {(x1i, y1i), . . . , (xni, yni)}, we can

associate an initial polynomial Pi to Qi as follows:

Pi := (x− (x1i + y1iı) . . . (x− (xni + yniı))

Also, we can expand the above expression and write this in a more familiar

coefficient notation as,

Pi = aoi + a1ix + . . . + anix
n
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Similarly for the final pattern Qf = {(x1f , y1f ), . . . , (xnf, ynf )}, we can associate

a final polynomial Pf to Qf as follows:

Pf := (x− (x1f + y1f ı) . . . (x− (xnf + ynf ı))

and like before we can expand and write this in the more familiar coefficient

notation as,

Pf = aof + a1fx + . . . + anfx
n

Now since we know that in the initial and final patterns, the agents do not collide,

we clearly have that the roots of both these polynomials Pi and Pf are distinct. Hence

we have, Pi, Pf ∈ Σ − Pn. From Lemma 34 we know that this set is connected. Let

T be the time in which we need to deform pattern Qi to Qf in the local frame L. We

shall consider a particularly simple deformation of Pi into Pf and describe a procedure

to ensure that the polynomials arising in the deformation are always in Σn − Pn.

Definition 14. Straight Line Deformation

A straight line deformation of Pi to Pf is given by the following parametrization:

P (λ) := (1− λ)Pi + λPf ,where, λ ∈ [0, 1]

Here we have reparametrized [0, T ] to [0, 1], using λ = t/T , for t ∈ [0, T ].

We can use the results in [14] which describe a way to parametrize Σn ,to verify

whether P (λ) ∈ Σn − Pn, for all λ ∈ [0, 1]. First we note that if a polynomial

p = a0 + a1x + . . . + anx
n has multiple roots, so does any multiple of p. Thus we can

represent each point in Σn, as a point in P (Cn+1). We shall now describe the Horn

parametrization of Σn.
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Lemma 35. Horn uniformization Let A be the following matrix,

A :=

1 1 1 . . . 1

0 1 2 . . . n


Let K be the kernel of A in Cn+1. The discriminant variety is parametrized as follows:

Σn = {[τ1x0 : τ1τ2x1 : τ1τ
2
2 x2 : . . . : τ1τ

n
2 xn] : τ1, τ2 ∈ (C∗)2, (x0, x1, . . . , xn) ∈ K}

We shall now find a basis for K. For (x0, x1, . . . , xn) ∈ K, we have,

x0 + x1 + . . . + xn = 0

x1 + 2x2 + . . . + nxn = 0

Using these two equation, we can conclude that the following (n − 1) vectors

form a basis for K.

v2 = (1 − 2 1 0 . . . 0)

v3 = (2 − 3 0 1 . . . 0)

...

vn = (n− 1 − n 0 . . . 1)

Let π0, π1, πn denote the projections in Cn+1 along (1, . . . , 0), . . . , (0, . . . , 1) re-

spectively. Then from the above we see that the parametrization of the discriminant
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reduces to,

Σn = {[τ1(π0(x2v0 + . . . xnvn) : τ1τ2(π1(x2v0 + . . . xnvn) : τ1τ
2
2 (π2(x2v0 + . . . xnvn) :

(5.1)

. . . : τ1τ
n
2 (πn(x2v0 + . . . xnvn)] : τ1, τ2 ∈ (C∗)2, (x2, x3, . . . , xn) ∈ Cn−2}

(5.2)

= {[τ1(π0(x2w0 + . . . xnwn) : τ1(π1(x2w0 + . . . xnwn) : τ1(π2(x2w0 + . . . xnwn) :

(5.3)

. . . : τ1(πn(x2w0 + . . . xnwn)] : τ1, τ2 ∈ (C∗)2, (x2, x3, . . . , xn) ∈ Cn−2}

(5.4)

where,

w2 = (1 − 2τ2 τ 2
2 0 . . . 0)

w3 = (2 − 3τ2 0 τ 3
2 . . . 0)

...

wn = (n− 1 − nτ2 0 . . . τn
2 )

Lemma 36. A polynomial p = a0 + a1x + . . . + anx
n, lies in Σn if and only if,

(a0 a1 . . . an) lies in the span of w2, . . . , wn.

Proof. This is clear from Equation 5.1

Lemma 37. We can find two vectors, s1 and s2 such that p = a0 + a1x + . . . + anx
n,

lies in Σn if and only if, 〈P, s1〉 = 0 and 〈P, s2〉 = 0.

Proof. If we find two linearly independent vectors orthogonal to w2, . . . , wn, we would

have our result. Since the dimension of the vector space we are considering is n + 1,

the subspace orthogonal to the one spanned by w2, . . . , wn is 2 dimensional. We shall
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now explicitly write down two such vectors. Since, si is orthogonal to w2, . . . wn, we

have,

si
0 − 2τ2s

i
1 + . . . + τ 2

2 si
2 = 0

2si
0 − 3τ2s

i
1 + . . . + τ 3

2 si
3 = 0

...

(n− 1)si
0 − nτ2s

i
1 + . . . + τn

2 si
n = 0

where si
j is the jth component of si, for i = 1, 2 and j = 0, 1, . . . , n. Letting s1

0 =

0, s1
1 = 1 and s2

0 = 1, s2
1 = 0, we have our desired two vectors.

s1 = (0 1 2/τ2 3/τ 2
2 . . . n/τn−1

2 )

s2 = (1 0 − 1/τ 2
2 − 2/τ 3

2 . . .− (n− 1)/τn
2 )

Theorem 15. There exists a continuous path Λ : [0, 1] → C, such that P (λ) =

(1− λ)Pi + λPf is not in Σn for every λ ∈ Image(Λ).

Proof. Using the above mentioned vectors s1 and s2, we construct two polynomial

equations, corresponding to 〈P (λ), s11〉 = 0 and 〈P (λ), s2〉 = 0

We can easily eliminate λ from one of the equations, because it is a linear term.

The polynomial resulting from the elimination is a polynomial in τ2 alone. Each of

the solutions for τ2 gives a corresponding value for λ. Thus there are only finitely

many solutions for λ. Hence we can always find a path Λ : [0, 1] → C which avoids

all the above values of λ. If the value of λ do not lie in [0, 1] then the simple straight

line path Λ : [0, 1] → [0, 1] does the job.
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Once it has been verified that the straight line path between polynomials avoids

the discriminant variety,the roots of the polynomial can be found out at each step

to find the position of each mobile agent in local frame with the current local frame

having undergone a translation from the initial frame. In other words each mobile

agent is translated by the same amount with deformation caused by homotopy of the

polynomial. The planning for translation can be done as in [20]. Given the initial

and final polynomial to each mobile agent, its initial position and the velocity of

translation,using Newton Raphson the mobile agents can calculate their position in

the next time step in a distributed manner. Newton Raphson method can be used as

we have a good initial guess at each time step for calculating the roots. The results

of the simulations are plotted in Figure 2 and Figure 3

Fig. 2. Square to line formation
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Fig. 3. Square to triangle formation

C. Imposing velocity and acceleration constraints

We can impose velocity and acceleration constraints on each mobile agent by repa-

rameterizing P . Suppose we have a path Λ : [0, 1] → [0, 1], such that P (λ) /∈ Σn

for all λ ∈ [0, 1]. Let xi(λ) denote the position of the ith agent. Then its velocity is

given by, dxi/dλ and the speed would be, |dxi/dλ|. Given a constraint on the speed,

γ, our approach would be to reparametrize Λ with f : [0, 1] → [0, 1] so as to main-

tain the new speed, |dxi(λ(f)))/df | below γ. Since |dxi/df | = |dxi/dλ| × |dλ/df |,

we can set |dλ/df | in such a way to keep |dxi/df | below γ. For instance, setting

|dλ/df | < 0.9× γ/|dλ/df | would achieve our goal. Figures 4 and 5 illustrate this.

The sparsely spaced dots in Figure 4 indicate high velocities which are kept

within bounds using velocity constraint as shown in Figure 5.
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Fig. 4. Without velocity constraint
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Fig. 5. With velocity constraint
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D. Illustrative example

We shall present an example which has four mobile agents arranged in a square initial

pattern, which needs to be deformed into a line.

1. Initial pattern, Qi = {(0, 0), (20, 0), (0, 20), (20, 20)}.

Final pattern Qf = {(0, 0), (15, 0), (30, 0), (45, 0)}.

2. Hence, we have the initial and final polynomials as follows:

Pi = (x− 0)(x− 20)(x− 20ı)(x− 20− 20ı)

Pf = (x− 0)(x− 15)(x− 20)(x− 45)

3. Using a straight line deformation, P (λ) = (1− λ)Pi + λPf . The following steps

will verify that P (λ) /∈ Σn, for all λ ∈ [0, 1].

4. We have,

A :=

1 1 1 1 1

0 1 2 3 4


5. We have the following basis for the kernel of A.

v2 = (1 − 2 1 0 0)

v3 = (2 − 3 0 1 0)

v4 = (3 − 4 0 0 1)

6. The discriminant variety is parametrized as ,

Σn = {[τ1(π0(x2w0 + . . . x4w4) : τ1(π1(x2w0 + . . . x4w4) : τ1(π2(x2w0 + . . . x4w4) :

. . . : τ1(πn(x2w0 + . . . x4w4)] : τ1, τ2 ∈ (C∗)2, (x2, x3, x4) ∈ C3}
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where we have,

w2 = (1 − 2τ2 τ 2
2 0 0)

w3 = (2 − 3τ2 0 τ 3
2 0)

w4 = (3 − 4τ2 0 0 τ 4
2 )

7. The following two vectors are orthogonal to w2, w3 and w4.

s1 = (0 1 2/τ2 3/τ 3
2 4/τ 3

2 )

s2 = (1 0 − 1/τ2 − 2/τ 3
2 − (n− 1)/τ 4

2 )

8. Using, 〈P (λ), s1〉 = 0 and 〈P (λ), s2〉 = 0 and solving for λ we get,

λ = {0.6384 + 0.2690ı,−0.0111 + 0.1943ı, 0.0149 + 0.0152ı,

0.0040− 0.5881ı, 0.2441− 0.6700ı}

Clearly these values do not lie in [0, 1]. Hence P (λ) does not intersect the

discriminant variety Σn for any λ ∈ [0, 1]. The simulations shown in Figure 2

also show that the agents do not collide while they are deformed from the initial

to the final pattern.

E. Discussion

Paths were generated for groups of mobile agents for different initial and final shapes.

Also the velocity and acceleration were kept under bounds by reparameterization

which was done numerically using lookup tables. Even though the paths intersect

they do so at different time steps. The paths generated are smooth as expected and

are mostly non-linear.

Since this is a result which is first of its kind there is a lot of scope to extend the
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idea. Given the size of the agents research can go into finding complete algorithms

which guarantee the maintenance of a certain distance between the agents at all

times. This would require moving in a sub space of the discriminant variety space

in which minimum distance between the roots is the sum of the radii of the largest

mobile agents. Research can also be done to find the probability of avoidance of the

discriminant variety using the straight line interpolation. Also if a generalized method

to find all paths parameterized in time in the complement of the discriminant variety

space is found research can go into finding the optimal path. Another interesting idea

is to study the paths in polynomial space which ensure that the mobile agents do not

wander too far off from the group [48]. In other words the idea of bounding the size

of the formation at each time instant using this method will be explored. Also the

3-D extension of the method remains a significant open problem.
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CHAPTER VI

CONCLUSION

Much recent work in optimization and algorithmic real algebraic geometry has arisen

from the fact that deciding whether a polynomial is SOS can be done efficiently via

SDP [8]. In particular, for certain n-variate degree k polynomials, it was shown in

[8] that one could approximate their real minima within nO(1) arithmetic operations

via SOS and SDP. This is in sharp contrast to the kO(n) complex- ity bounds coming

from the best known algorithms from real algebraic geometry [29]. However, for an

approach via SDP to be practical, one obviously needs to know how often nonnegative

polynomials are in fact SOS. In one variable, nonnegative polynomials are actually

always SOS , so one can then safely use SDP to decide nonnegativity and even decide

the existence of real roots. However, since the classical technique of Sturm-Habicht

sequences is already known to have complexity near-linear in the degree [30], the

potential complexity savings of SDP over Sturm-Habicht are not clear. Whether SDP

can provide a significant gain in speed for larger n, for a large fraction of inputs, is thus

an important question. Similarly, many algebraic algorithms lack provable speed-ups

when the input polynomials are sparse or have structured Newton polytopes, and

thus one should also ask if SDP can provides speed gains in these settings as well.

Let us state clearly that while no current bounds (including our own) adequately

describe classes of multigraded polynomial where Σ2K,N occupies a provably large

fraction of P2K,N our results are at least a first step toward incorporating Newton

polytopes and sparsity in the quantitative study of Pn,k and Σn,k. In particular, we

can at least point out new families where there are significantly more nonnegative

polynomials than sums of squares.
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