
A STUDY OF HEURISTIC APPROACHES FOR RUNWAY SCHEDULING

FOR THE DALLAS-FORT WORTH AIRPORT

A Thesis

by

PAUL WILLIAM STIVERSON

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2009

Major Subject: Mechanical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4276177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A STUDY OF HEURISTIC APPROACHES FOR RUNWAY SCHEDULING

FOR THE DALLAS-FORT WORTH AIRPORT

A Thesis

by

PAUL WILLIAM STIVERSON

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Sivakumar Rathinam
Committee Members, Darbha Swaroop

Kumbakonam Rajagopal
Sergiy Butenko

Head of Department, Dennis O’Neal

May 2009

Major Subject: Mechanical Engineering

iii

ABSTRACT

A Study of Heuristic Approaches for Runway Scheduling

for the Dallas-Fort Worth Airport. (May 2009)

Paul William Stiverson, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Sivakumar Rathinam

Recent work in air transit efficiency has increased en-route efficiency to a point that

airport efficiency is the bottleneck. With the expected expansion of air transit it will

become important to get the most out of airport capacity. Departure scheduling is

an area where efficiency stands to be improved, but due to the complicated nature

of the problem an optimal solution is not always forthcoming. A heuristic approach

can be used to find a sub-optimal take-off order in a significantly faster time than the

optimal solution can be found using known methods.

The aim of this research is to explore such heuristics and catalog their solution

characteristics. A greedy approach as well as a k-interchange approach were developed

to find improved takeoff sequences. When possible, the optimal solution was found to

benchmark the performance of the heuristics, in general the heuristic solutions were

within 10–15% of the optimal solution. The heuristic solutions showed improvements

of up to 15% over the first-in first-out order with a running time around 4ms.

iv

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Separation Constraints . 2

B. Runway Layout . 3

C. Current Practice . 3

D. Research Objectives . 5

E. Assumptions . 5

F. Literature Review . 5

G. Contribution . 8

II DEPARTURE SCHEDULING WITH A SINGLE FEEDER . . . 9

A. Swap Procedure . 9

B. Order Feasibility . 9

C. Objective Check . 12

III GREEDY HEURISTIC . 14

A. Required Separation . 14

B. Greedy Choice . 17

C. Implementation . 18

D. Objective Check . 18

IV 2-INTERCHANGE HEURISTIC 19

A. Interchange Procedure . 20

B. Order Feasibility . 20

C. Objective Check . 26

V LOWER BOUNDS USING A MIXED INTEGER LINEAR

PROGRAM . 28

A. Objective Functions . 30

VI CONCLUSIONS . 32

A. Testing Schema . 32

B. Data Generation . 33

C. Computational Results . 33

v

CHAPTER Page

REFERENCES . 37

VITA . 40

vi

LIST OF TABLES

TABLE Page

I Minimum Separation (in Seconds) Required Between Aircraft 17

II Minimum Separation (in Seconds) Required Between Aircraft Including

Crossings . 17

vii

LIST OF FIGURES

FIGURE Page

1 A Simplified View of a Queueing Area at the North-East Corner

of the DFW Airport. 4

2 Order Feasibility Checking Visualized, Three Queues Required 12

3 Order Feasibility Checking Visualized, Four Queues Required 12

4 Iterating Through the Greedy Heuristic 16

5 Example of a 2-Interchange . 20

6 Generating a Revised Initial Order 23

7 Average Run Times for the Various Heuristics 34

8 Average Optimal Solution Times . 34

9 Average Percent Objective Improvement of the Various Heuristics

Over the First-In First-out Order . 36

10 Average Percent Objective Improvement of the Optimal Solution

Over the Various Heuristics . 36

1

CHAPTER I

INTRODUCTION

There has been significant interest in problems related with air traffic control as air

transportation plays a critical role in the growth of the U.S. Economy. The Joint

Economic Committee (JEC) of the United States Senate estimated that air transit

delays caused 41 billion dollars of economic losses in 2007 alone.[1] The monetary

losses stem from increases in operating costs on the part of the airlines, and wasted

time on the part of the passenger. Apart from the monetary losses delay also causes

an increase in fuel consumption and emissions as well as degrading the passenger

experience. There are a number of factors that cause delay, chief among these is

weather. Some factors, like mechanical troubles, cause a localized delay that doesn’t

necessarily affect other aircraft. It is reported that 20% of all delay occurs as aircraft

taxi between the gates and the runway.[1] Currently, human controllers determine the

schedule of the aircraft at the runways Real-time simulation tools could assist human

controllers and improve the efficiency of the taxiways.

The research presented in this thesis focuses on improving the order in which the

aircraft are allowed to utilize a departure runway subject to timing, separation, and

ordering constraints. The takeoff orders generated using the algorithms explained

within are tested against the objective functions described below.

Total Delay The sum of the delays incurred by all aircraft, this measures how many

plane-hours are being spent in the queue. The delay is defined as the amount of

time between the aircraft’s earliest departure time and its proposed departure

time.

The journal model is IEEE Transactions on Automatic Control.

2

Makespan The minimizing the maximum take-off time, this objective measures how

long it takes push all the aircraft through the queueing area (into the air).

The timing constraint requires that the departure time of an aircraft must at

least be equal to the earliest available time of the aircraft, that is to say: an aircraft

cannot depart until it has reached the runway.

A. Separation Constraints

The efficiency of a takeoff sequence depends primarily on two factors: First, the air-

craft type; and second the aircraft destination (or departure fix). There is a required

separation between the departure times of any two aircraft based on their sizes and

weights, this separation needs to be enforced for the sake of safety and to preserve

the condition of the runway surface. Consider, for instance, scheduling a Boeing 747

and a short range turbo-prop aircraft. If the 747 were allowed to take off first then

the smaller aircraft would be forced to wait for the vortices generated by the large

aircraft to dissipate. However, if the order were reversed the separation between the

aircraft would be reduced since the larger craft will not be significantly affected by

the wake of the small aircraft.

The second factor to consider when generating a takeoff sequence deals with

airspace restrictions. Often, due to weather or destination airport constraints, there

is a need to limit the throughput of a specific airspace. For safety and fuel savings it

is preferable to meter the aircraft while on the ground rather than in the air, so—if

an aircraft is departing toward airspace that is subject to a throughput restriction—

its departure time will be dependent on the previous aircraft that departed toward

that airspace. The direction in which an aircraft heads immediately after takeoff is

known as a “fix”. In the research presented in this thesis these airspace restrictions

3

are referred to as “fix constraints”.

B. Runway Layout

This paper will focus on departure scheduling for a single runway at the DFW airport.

Each departure runway has associated with it a series of queues where aircraft

are supposed to wait for takeoff clearance. It is assumed for this research that once

an aircraft enters a queue it is not permitted to change queues, or otherwise leave

the queue until it enters the runway for takeoff. Once on the runway it cannot be

re-queued. The model used considers 3 queues.

The aircraft enters the queues from the general taxiway; the geometry of the

taxiway is complicated and outside the scope of the paper, however it will be assumed

that there are three taxiways that can feed each of the queues equally. For the

remainder of the paper these taxiways will be referred to as “feeders”. Figure 1

shows the configuration of the pertinent parts of the DFW airport, note that many

of the details have been omitted and the positions have been modified for clarity.

Due to the layout of the airport it is possible (and often necessary) for arriving

aircraft to cross the departure runway. So, while focusing on departures it would be

shortsighted to neglect arrivals. In this paper we consider five runway crossings to

accommodate arriving aircraft.

C. Current Practice

In the course of operations the ground controller has many choices for routing aircraft

from the apron (the area where the aircraft load and unload passengers) to the runway.

However, to simplify routing, the set of possible choices has been limited to a set

“playbook”, each “play” tells the pilot which taxiway to use and ultimately which

4

(aprons)
Terminals

Arrival Runway

Queues

Crossings

(F
ee

de
rs

)

T
ax

iw
ay

s

Departure Runway

Figure 1: A Simplified View of a Queueing Area at the North-East Corner of the

DFW Airport.

queue to enter. The plays consist of a list of taxiways the aircraft should take, and

the queue the aircraft should enter. This paper assumes that the taxiway decisions

have been made, and that the feeder the aircraft will use to approach the queueing

area is given.

The ground controller doesn’t have the capacity to deal with all the constraints

efficiently as the aircraft reach the queueing area so they use shortcuts to speed up the

decision-making process. For instance, if there are several aircraft that are subject to

fix constraints then the controller might put them all into a single queue and let them

wait their turn without regard to their ordering within the queue. This approach

allows aircraft that are not subject to a fix constraint speedy access to the runway by

keeping two queues open, but it could cause undue delay for certain fix-constrained

aircraft.

5

D. Research Objectives

The goal of this research was to develop a series of algorithms to generate optimal

departure sequences quickly enough to be implemented in a real-time simulation

system.

E. Assumptions

This research involves several simplifying assumptions. The current practice of depar-

ture sequencing is assumed to reflect the First-in First-out (FIFO) ordering. Human

controllers do deviate from the FIFO order, however no study has been done to char-

acterize the sequences produced by human controllers. We assume that there is no

upper-limit on the number of aircraft that can occupy a queue, crossing, or feeder.

The optimal departure sequence would be affected by the differences in aircraft cruis-

ing speed, however this research does not consider the cruising speeds. This research

assumes that aircraft cannot be reordered while in the feeders, however the geometry

of airport can allow reordering.

F. Literature Review

There are several heuristics[2, 3, 4, 5] and optimal algorithms[6, 7, 8, 9] available for

addressing aircraft scheduling problems in the literature. Most of the work related to

the departure scheduling problem (DSP) in air traffic control has been in the area of

scheduling aircraft landings. The constraints in problems involving landing aircraft

are similar to the constraints in the DSP. The precedence (or ordering) constraints of

the DSP addressed in this paper have a special structure where the departing aircraft

are queued in the form of chains. These chain-like ordering constraints present in

the DSP represent a simplified model of the physical layout of the runway queues

6

presented earlier. A set of arriving aircraft does not necessarily have this special

structure.

Irrespective of whether an algorithm produces an optimal or a good approxima-

tion of the optimal solution, it is important to note that it would be useful to develop

algorithms that can ultimately be used in a real-time simulation system. An exact

algorithm produces optimal solutions but may have a running time that could make

it infeasible in a real-time simulation. On the other hand, a heuristic could run fast

but there are no guarantees on the solution quality. Optimal costs or tight lower

bounds to the optimal costs are required to evaluate the quality of a heuristic.

It is important to understand that aircraft scheduling problems—such as the

departure scheduling problem—differ from the classic Traveling Salesman Problem

(TSP) with timing constraints or the single machine, job scheduling problem in the

following way: if an aircraft, i, is departing after another aircraft, j, the departure

time of aircraft i is not only dependent on the departure time of aircraft j, but also

may depend on the departure time of aircraft departing before j. This could happen

due to the additional separation constraints present for aircraft when they fly to a

common departure fix. In the following discussion, a review of the existing literature

related to the single runway, aircraft scheduling problem is presented.

Dear and Sherif were among the earliest to address the static and dynamic

scheduling of landing aircraft.[2, 3] In static scheduling, a sequence is determined

for a given set of aircraft. In dynamic scheduling, new aircraft are added continu-

ously to the system and the schedules are updated frequently to include the new set

of aircraft. Dear and Sherif introduced the concept of Constraint Position Shifting

(CPS) as a feasible way to address the dynamic problem.[2] In this concept, a First

Come First Served (FCFS) Sequence is initially generated based on the predicted

landing times of all the aircraft. Then, an optimal sequence is generated such that no

7

aircraft can be shifted more than a given number of positions away from its original

position in the FCFS sequence. For example, if the position of an aircraft in the FCFS

sequence is 5 and the maximum number of shifts allowed is 1, then the aircraft in the

optimal sequence can be in positions 4, 5, or 6. If CPS is not present, the position

of an aircraft can be shifted several places for each update of the aircraft sequence.

Therefore, by incorporating CPS while scheduling aircraft, one can eliminate these

huge shifts in the positions of the aircraft. Heuristics were presented in Dear and

Sherif to solve the aircraft scheduling problem with CPS.[3]

There are several other heuristics available for variants of the aircraft scheduling

problems.[4, 5, 7, 10, 11, 12] Venkatarishnan et al.[4] presented a heuristic based

on the dynamic programming approach by Psaraftis to solve the arrival scheduling

problem with time window constraints.[13] Genetic algorithms are given in Abela et

al.[5], and Ernst et al.[7] to solve a generlization of the arrival scheduling problem.

There are few ways in which optimal solutions can be obtained for aircraft

scheduling problems. One way is to formulate the problem as an integer or mixed

integer linear program (MILP) and solve the resulting program using any standard

optimization software (CPLEX, GLPK).[6, 7, 14] This approach has a drawback, in

the sense that the running times of the solvers could vary significantly[14] depending

on a given instance of the problem. However, it is important to note that this ap-

proach can deal with several generalizations of the DSP. For example, it can readily

deal with problems where the separation times do not follow the triangle-inequality.

There are four papers that are most relevant to this work. Three of the papers are

from Atkin et al. who investigate the taxiway layout of the London Heathrow Airport

by considering a complex structure of holding points.[10, 11, 12] The group goes

on develop meta-heuristics (simulated annealing, tabu search) to improve traditional

heuristic solutions to the departure scheduling problem. Brinton et al. . . .

8

G. Contribution

The departure scheduling problem considered in this thesis has not been addressed

in the literature. The following are the main contributions of this work:

1. construction and improvement heuristics for solving the departure scheduling

problem while considering runway crossings from arriving aircraft,

2. lower bounds on the optimal solution using a mixed integer-linear program

formulation, and

3. results from simulations showing sequence improvements in the direction of

optimality over FIFO ordering.

9

CHAPTER II

DEPARTURE SCHEDULING WITH A SINGLE FEEDER

The initial work was essentially a proof of concept involving a simple swap, a feasibility

check, and a check of the objective function. To facilitate the feasibility checking only

a single feeder was considered. No results were generated from this algorithm, but

the experience gained while developing and coding the algorithm was invaluable to

the rest of the project.

A. Swap Procedure

Algorithm 1 was used to make the swaps in the preliminary work. Lines 1–3 are

initialization, 9 and 10 are the swap. Lines 11–18 is where the feasibility and objective

value checking takes place. The preliminary algorithm continues to make swaps until

there is no improvement found in lines 11–18.

B. Order Feasibility

The number of queues needed to accommodate a sequence is the same as the minimum

number of increasing disjoint subsets contained in the proposed take-off sequence.

Given a proposed order and the number of available queues, the feasibility of an order

can be found using Algorithm 2 (assuming the initial order is the natural order).

In Algorithm 2 lines 1 and 2 are initialization, gathering the proposed order, and

setting the number of queues needed, n, to zero. The while loop on lines 3–12 will be

executed once for every queue needed. The variable l holds the last aircraft that was

moved to a queue, and it is re-initialized with each new queue. The loop on lines 5–10

executes for each aircraft that has not been moved to a queue, inside the loop the

10

1: I ← initial order (list)

2: improvement← 1

3: oldObjective← prelimObjectiveCheck

4: while improvement = 1 do

5: improvement← 0

6: for i← 1→ |I| do

7: for j ← 1→ |I| do

8: P ← I

9: P [i]← I[j]

10: P [j]← I[i]

11: if prelimOrderFeasible then

12: objecive← prelimObjectiveCheck

13: if objective < oldObjective then

14: I ← P

15: oldObjective← objective

16: improvement← 1

17: end if

18: end if

19: end for

20: end for

21: end while

Algorithm 1: Single Feeder Swap Algorithm

11

1: P ← proposed order (list)

2: n← 0

3: while P 6= ∅ do

4: l← 0

5: for i ∈ P do

6: if i > l then

7: P ← P \ i

8: l← i

9: end if

10: end for

11: n← n + 1

12: end while

13: if n > MaxQueues then

14: return false

15: else

16: return true

17: end if

Algorithm 2: Single Feeder Order Feasibility Algorithm, prelimOrderFeasible

current aircraft is tested to see if it falls after the aircraft previously moved (and thus

is able to enter the queue). If it does fall after then it is removed from the proposed

order (is put into the queue), and the variable l is updated. The variable n is checked

against the number of available queues.

It is possible to adapt the order feasibility algorithm to execute faster by stopping

the while loop once the available number of queues is reached. It is also possible to

modify it to accept an arbitrary initial order. Figure 2 shows an execution of the

algorithm for an order which requires three queues, and Figure 3 shows a four queue

case.

12

Initial Order 1 2 3 4 5 6 7 8 9

Proposed Order 1 5 3 7 2 6 4 8 9

Queue 1 1 5 7 8 9

Queue 2 3 6

Queue 3 2 4

Queue 4 ∅
Figure 2: Order Feasibility Checking Visualized, Three Queues Required

Initial Order 1 2 3 4 5 6 7 8 9

Proposed Order 1 8 6 7 2 4 3 5 9

Queue 1 1 8 9

Queue 2 6 7

Queue 3 2 4 5

Queue 4 3

Queue 5 ∅
Figure 3: Order Feasibility Checking Visualized, Four Queues Required

C. Objective Check

Apart from being feasible, the proposed order had to represent a better takeoff order

than the incumbent, which means the objective function had to be lower. For the

purposes of the preliminary algorithm—not in the interest of speed—the objective

was re-tabulated for each feasible order. Finding the (throughput) objective value

involves iterating through all the aircraft (in the order of the proposed take-offs), and

tightening their leave times based on the required separation between aircraft types,

as is shown in Algorithm 3. If the last aircraft’s leave time is lower than that of the

previous order’s last leave time then the order is kept and the algorithm continues

searching for an improvement.

13

P ← proposed order (list)

objective← 0

for i← 2→ |P | do

objective← objective + Separation(P [i− 1], P [i])

if objective < Leave(P [i]) then

objective← Leave(P [i])

end if

end for

return objective

Algorithm 3: Single Feeder Objective Checking Algorithm, prelimObjec-

tiveCheck

14

CHAPTER III

GREEDY HEURISTIC

The greedy heuristic will generate a feasible take-off sequence given the initial condi-

tions of a problem instance. To do this it chooses the “best” aircraft to send to the

takeoff order from a pool of aircraft chosen from all the unscheduled aircraft. The

pool of aircraft represents those that are available for takeoff: those at the head of a

queue, the head of a crossing queue, or—if a queue is open—any aircraft in a feeder.

If no aircraft meet the pooling criteria then the (un-departed) aircraft with the lowest

early departure time is scheduled for take-off at its early departure time. Choosing

from this pool ensures that the final take-off order is feasible. Figure 4 shows a few

iterations of the greedy heuristic, and the pseudocode for the algorithm is given as

Algorithm 4.

A. Required Separation

As was explained in Chapter I, there is a prescribed amount of time that is required

to elapse between any two aircraft utilizing the runway (to take off). This amount

of time is dependent on the leading and following aircrafts’ type, as defined by the

FAA.[15] The three main aircraft classes that use DFW are Large, Heavy, and the

Boeing 757; the separation times required are shown in Table I.

Since this research also deals with aircraft crossing the runway it is necessary

to expand the separation matrix to reflect the required crossing times.[15] Table II

shows the revised separation matrix.

There is a special case where the separation matrix doesn’t hold, and that is

the “Simultaneous Crossing”, wherein two arriving aircraft are allowed to cross the

runway at the same time. At that point in time the runway is just another taxiway,

15

1: Q[i]← Aircraft in ith queue (ordered list)

2: C[i]← Aircraft in ith crossing queue (ordered list)

3: F [i]← Aircraft in ith feeder (ordered list)

4: T ← ∅ {Takeoff order}
5: while Q ∪ C ∪ F 6= ∅ do

6: pool← ∅ {Pool of aircraft to compare}
7: emptyQueue← false

8: for i ∈ Q do

9: if Q[i] = ∅ then

10: emptyQueue← i

11: else

12: pool← pool ∪ head(Q[i])

13: end if

14: end for

15: if emptyQueue 6= false then

16: for i ∈ F do

17: pool← pool ∪ F [i]

18: end for

19: end if

20: for i ∈ C do

21: pool← pool ∪ head(C[i])

22: end for

23: incumbent← null

24: for i ∈ pool do

25: incumbent← compareIncumbent(i, incumbent)

26: end for

27: if incumbent ∈ F then

28: i← incumbent[location]

29: for j ∈ F [i] do

30: if j = incumbent then

31: break

32: end if

33: qIncumbent← null

34: for k ∈ Q \ emptyQueue do

35: qIncumbent← compareQIncumbent(head(Q[k], incumbent)

36: end for

37: popAircraft(head(F [i]), qIncumbent)

38: end for

39: end if

40: popAircraft(incumbent,T)

41: end while

Algorithm 4: Main function for the greedy algorithm

16

7

U
N
W
A
Y

Q
U
E
U
E
S

F
E
E
D
E
R
S

CROSSIN
G

(a) (b)

(c) (d)

1

3

8

9

1

3

6

8

9

1

3

6

8

9

1

3

8

9

6

2

7

5

4

5

7

6

4

4 4

2

2 2
7

55

R

Figure 4: Iterating Through the Greedy Heuristic: The bold numbers represent air-

craft that are in the pool, the circled number represents the aircraft selected to take

off next. (a) Only the aircraft at the heads of the queues and crossings are in the pool,

aircraft 2 takes off. (b) Only the aircraft not at the head of the queue or crossing

(aircraft 4) is not in the pool, 7 is selected, but cannot move because aircraft 5 is in

the way. (c) Aircraft 5 is moved to a queue, 7 is now free to move. (d) Aircraft 7

takes off, pool re-established.

17

Table I: Minimum Separation (in Seconds) Required Between Aircraft[15]

Following
Type Large Heavy B757

Leading
Large 55 75 55
Heavy 110 100 110
B757 90 75 60

Table II: Minimum Separation (in Seconds) Required Between Aircraft Including

Crossings
Following

Type Cross Large Heavy B757

Leading

Cross 10 40 40 40
Large 55 55 75 55
Heavy 55 110 100 110
B757 55 90 75 60

so there are no restrictions other than the inline separation. That said, the separation

between two crossing aircraft is only 10 seconds when the two crossing aircraft are

using the same crossing point.

The other factor that limits an aircraft’s leave time is the aforementioned fix-

constraint. If two aircraft are supposed to go toward the same direction (or fix), then

there could be an airspace constraint that requires them to stay a certain distance

apart. So, the algorithm also checks the departing aircraft’s fix to ensure that the fix

separation is not violated.

B. Greedy Choice

Once the pool of potential take-offs has been determined the greedy choice can be

made. The criteria for the choice depends on the chosen objective function, for the

throughput objective the aircraft that is available for take-off the soonest should be

18

chosen. If delay (total, or max) is of interest then the choice needs to be based on

the delay as well as the separation.

Should the best greedy choice happen to be an aircraft located in the feeder, then

the algorithm must move all the aircraft in front of the chosen plane into a queue.

The queue selection is based on the required separation between the aircraft to be

moved and those already present in the queues, and—of course—the open queue is

omitted from the selection.

C. Implementation

To facilitate the pool selection, a linked list representing each queue, feeder, and

crossing is stored. The linked lists hold an identifying integer for each aircraft held

therein, there is also a linked list representing the take-off order. Storing the aircraft

in this way allows for initial conditions to be set easily, so it is possible to find

an improved takeoff sequence at any point in your planning horizon. To prevent

accounting errors, the function that moves an aircraft from one linked list to another

can only move an aircraft from the head of one list to the tail of another. A global

array of all aircraft is maintained which stores all the data pertaining to early times,

leave times, aircraft type, fix, and location.

D. Objective Check

Checking the objective value is done after all the aircraft have been scheduled, the

makespan of the departure sequence is equal to the departure time of the last aircraft

in the sequence. For optimization based on delay it is necessary to iterate through

each of the aircraft keeping summation of each aircraft’s delay.

19

CHAPTER IV

2-INTERCHANGE HEURISTIC

The primary inspiration for this research was from the Ascheuer et al. paper dealing

with the Asymmetric Traveling Salesman Problem with Time Windows (ATSP-TW).

In the paper they outline an exact solution to the ATSP-TW using a branch and

cut algorithm, they also present a series of heuristics they employed to solve the

same problem.[16] Their approach was to strategically run their data through a large

number of algorithms in order to continuously improve their solution. With each

added heuristic they were able to get closer to the optimal solution, but since the

algorithms were all efficient they did not significantly increase the overall running time

(at least not to the level of the optimal solution runtime).[16] Ascheuer employed a

total of 10 heuristics in several different configurations and in many of their test cases

they were able to solve the problem to optimality in a fraction of the time required

for the branch-and-cut algorithm.[16] The success of Ascheuer et al. was a motivating

factor to tailor the 2-opt heuristic to the departure scheduling problem.

The k-interchange concept involves modifying a sequence (or traveling salesman

tour) by replacing k edges with a different set of k edges to—hopefully—improve the

objective. As Savelsbergh points out the 2-interchange can be quite fast in imple-

mentation, but as k grows larger the running time of the algorithm can suffer,[17]

so the implementation in this research is currently limited to the 2-interchange. In

a 2-interchange two links in the departure sequence are replaced thereby reversing

the aircraft order between the interchanged nodes, Figure 5 shows a 2-interchange

graphically.

20

(b)

−1

n−1

i −1

+1i −1k +1k j −1

n−1

+1k +1i−1k

+1j +1j

j −1

. . .

.

. . .

1

2

k

n

. . .

.

. . .

1

2

i

k
j

n

j i

(a)

i

Figure 5: Example of a 2-Interchange: (a) The original order, the dotted lines repre-

sents the links that are to be broken, and the dashed lines show the new links that

are to be forged. (b) The updated order, notice the reversal of the aircraft within the

interchange.

A. Interchange Procedure

What the algorithm does is iterate through all the possible 2-interchanges accepting

a change in the proposed order if the objective is improved and the order is feasible.

In order to prevent the algorithm from slipping into the O(n3) complexity the swap

window (or swap span) was limited, the span was set to five aircraft for the majority

of the testing, this means that the scope of the subset order reversal was limited to

five aircraft. This swap span was implemented in an attempt to maintain Dear and

Sherif’s idea of Constraint Position Shifting, to prevent an aircraft from being shifted

too far from its original position.[2] In practice an aircraft can still move far from its

original position in the takeoff order, however it will require several interchanges to

do so.

B. Order Feasibility

Checking the order feasibility is a non-trivial part of this algorithm. Given an initial

(feasible) order, {1, 2, 3, . . . , n}, when a 2-interchange is performed on aircraft i and

21

1: I ← initial order (list)

2: P ← initial order (list) {This will hold the proposed order}
3: currObj← objectiveCheck(I)

4: span ← swap span

5: for i← 1→ |I| do

6: for j ← i + 1→ i + span + 1 do

7: for k ← 0→ j − i do

8: P [i + k]← I[j − k]

9: end for

10: if orderFeasible(P,i,j) then

11: obj← objectiveCheck(P)

12: if obj < currObj then

13: currObj← obj

14: I ← P

15: end if

16: end if

17: end for

18: end for

Algorithm 5: The 2-opt Heuristic

22

j (i < j) a proposed order, {1, 2, 3, . . . , i − 1, j, j − 1, . . . , i + 1, i, j + 1, . . . , n}, is

formed (like Figure 5) and its feasibility needs to be confirmed. The feasibility check

of the proposed order can be broken down into four cases, all but the first case

ignore arriving aircraft waiting in the crossing queue; adding crossings only makes

the remaining cases trivially more difficult so long as the instance passes the first

case. For an aircraft to be considered “in the interchange” it must fall between the

ith and jth aircraft, and thus the order of its neighbors are reversed in the proposed

order.

Case 1 At least two aircraft in the interchange belong to the same queue. This case

is infeasible since aircraft in a specified queue must take off in the same order

as they enter the queue (the same holds for crossings).

Case 2 All aircraft in the interchange belong to different queues, and no aircraft are

in feeders. This case is feasible since aircraft in different queues can depart in

any order.

Case 3 None of the interchanged aircraft, or aircraft after the interchange, are in

the queues, all of them are in feeders. To check the feasibility of the proposed

order a revised initial order needs to be generated This revised order is gener-

ated by iterating through the proposed order locating each aircraft in its feeder

and pulling it (as well as any aircraft in front of it in the same feeder that

hasn’t previously been pulled forward) forward to the revised order. Figure 6

shows an example of generating a revised initial order. The revised order is a

representation of the multiple feeders in a single feeder. Doing the increasing

subsequences test against the revised initial order will give a confirmation of

the feasibility of the proposed sequence. It should be noted that, unlike the

feasibility algorithm outlined in Chapter II, the increasing subsequences are not

23

7 6 5

1234

8

7 6 512834

Figure 6: Generating a Revised Initial Order: Given a proposed departure sequence,

{7, 5, 2, 1, 8, 4, 3, 6}. Aircraft 7, being the first to depart, is pulled forward along with

the aircraft in front of it (5 and 6). Since 5 has already been pulled forward it is

skipped, 2 is the next aircraft to be pulled forward (1 comes with it). Then 8, then

4 (with it 3). Performing the increasing subsequences test against the revised order

shows that the proposed order is feasible.

generated from the order of the natural numbers but instead from the revised

initial order from the feeder.

Case 4 There is at least one aircraft in or after the interchange that is in a queue.

The feasibility of the feeder orders which contain an aircraft in the interchange

needs to be checked as was done in Case 3. However, a subset of the aircraft

representing the occupied queues must be added to the beginning of the revised

feeder order before checking its feasibility. This representative subset should

include the last aircraft from each queue that is proposed to take off after aircraft

i−1, and the subset’s order should be reversed from that of the proposed takeoff

order.

24

1: P ← Order to be tested

2: start← i Start of interchange (index)

3: end← j End of interchange (index)

4: inQueue[:]← 0 {Track the number of aircraft in each of the queues}
5: inFeeder[:]← 0

6: inCross[:]← 0

7: for i ∈ P [start : end] do

8: if i[locale] = queue then

9: inQueue[i[location]] + +

10: if inQueue[i[location]] > 1 then

11: return false{Case 1}
12: end if

13: else if i[locale] = feeder then

14: inFeeder[i[location]] + +

15: else {i is in a crossing queue}
16: inCross[i[location]] + +

17: if inCross[i[location]] > 1 then

18: return false{Case 1}
19: end if

20: end if

21: end for

22: for i ∈ P [end + 1 : |P |] do

23: if i[locale] = queue then

24: inQueue[i[location]] + +

25: end if

26: end for

27: interference← ∅
28: if

∑
i inQueue[i] > 1 ∧

∑
i inFeeder[i] > 1 then

29: usedQueue[:]← ∅
30: for i← |P | → start do

31: if P [i][locale] = queue ∧ P [i][location] /∈ usedQueue then

32: usedQueue← usedQueue ∪ P [i][location]

33: interference← interference ∪ P [i]

34: end if

35: end for

36: end if

37: {Continued in Algorithm 7}

Algorithm 6: Order Feasibility Checking for 2-opt Heuristic, orderFeasible

25

1: P ′ ← P [start : end] {Copy the proposed order}
2: I ′ ← interference

3: while P ′ 6= ∅ do

4: if P ′[1][locale] = feeder then

5: for i← 1→ |P | do

6: if P [i][locale] = feeder ∧ P [i][location] = P ′[1][location] then

7: I ′ ← I ′ ∪ P [i]

8: if P [i] = P ′[1] then

9: P ′ ← P ′ \ P [i]

10: break

11: else if P [i] ∈ P ′ then

12: P ′ ← P ′ \ P [i]

13: end if

14: end if

15: end for

16: else

17: P ′ ← P ′ \ P ′[1] {Aircraft not in feeders are of no concern at this point.}
18: end if

19: end while

20: count← 0

21: testOrder← ∅
22: for j ← 1→ |P | do

23: if (P [j][locale] = feeder ∧ P [j][location] = i) ∨ P [j][locale] = queue then

24: for k ∈ P do

25: if P [j] = k then

26: testOrder← testOrder ∪ count

27: break

28: else

29: count← count + 1

30: end if

31: end for

32: end if

33: end for

34: if ¬prelimOrderFeasible(testOrder) then

35: return false

36: end if

37: return true{All tests passed}

Algorithm 7: Continuation of the Order Feasibility Checking Algorithm

26

C. Objective Check

Before accepting a proposed order, its objective function value must be confirmed as

lower than the previous objective. As the objective function is checked, the algorithm

stores the updated leave times for the aircraft within the swap, it also re-orders the

fix links so the fix-constraints are maintained. Once the leave times for the aircraft

in the swap are known and stored the objective check begins.

Using the leave times for the aircraft within the swap, the leave times for all

aircraft after the swap are calculated and the pertinent data are used for objective

comparison. This ensures that the objective is improved on each accepted iteration.

Algorithm 8 shows generally how the objective checking is done.

27

1: P ← Order to be tested

2: prevAC← null {Previous aircraft to utilize the runway (can be an arrival)}
3: prevTO← null {Previous aircraft to take off}
4: prevAtFix[:]← null {Previous aircraft at each fix}
5: usedCross← ∅
6: cumDelay← 0 {Cumulative Delay}
7: for i ∈ P do

8: if prevAC = null then

9: i[leave]← i[early]

10: prevAC← i

11: if i[locale] 6= crossing then

12: prevAtFix[i[fix]]← i

13: end if

14: continue

15: end if

16: if i[locale] = prevAC[locale] = crossing ∧ i[location] /∈ crossUsed then

17: i[leave]← max{prevAC[leave], i[early]}
18: cumDelay← cumDelay + i[leave]− i[early]

19: usedCross← crossUsed ∪ i[location]

20: else

21: usedCross← ∅
22: leave1← prevAC[leave] + sep[prevAC][i]

23: leave2← prevTO[leave] + sep[prevTO][i]

24: if i[locale] 6= crossing then

25: leave3← prevAtFix[i[fix]][leave] + fixSep[i[fix]]− prevAC[leave]

26: prevAtFix[i[fix]]← i

27: prevTO← i

28: else

29: leave3← 0

30: end if

31: i[leave]← max{i[early], leave1, leave2, leave3}
32: cumDelay← cumDelay + i[leave]− i[early]

33: end if

34: prevAC← i

35: end for

36: if objective = totalDelay then

37: return cumDelay

38: end if

39: if objective = throughput then

40: return prevAC [leave]

41: end if

Algorithm 8: Objective Checking for the 2-opt heuristic, objectiveCheck

28

CHAPTER V

LOWER BOUNDS USING A MIXED INTEGER LINEAR PROGRAM

In order to benchmark the performance of the heuristics it was necessary to find the

optimal solution to the problem, or at least a bound on the solution. The Mixed

Integer Linear Program (MILP) formulation and description follows. The variables

used are described below.

A The set of aircraft to be scheduled.

K The set of queues and crossing queues.

ai The earliest possible take-off time for aircraft i, assuming the aircraft’s taxi to the

runway is unencumbered.

ti Decision variable. The actual (calculated) take-off time for aircraft i.

ci The class (type) of aircraft i, the class of an arriving aircraft should indicate that

it is an arrival.

di The departure flag for aircraft i, if aircraft i is departing then di = 1, if aircraft i

is an arrival then di = 0.

fi The fix that aircraft i is departing along. The departure fix for an arrival should

be null.

Sij The required separation between an aircraft of class i (leading) and class j (fol-

lowing).

Fi The required separation along fix i.

zij Decision variable. Take-off ordering, if aircraft i precedes aircraft j in the take-off

order then zij = 1, otherwise zij = 0.

αij Queue, feeder, or crossing order. If aircraft i and j are in the same queue, feeder,

or crossing, and aircraft i precedes aircraft j then αij = 1, otherwise αij = 0.

yk
i Decision variable. The queueing of aircraft i, if aircraft i enters (or begins in)

queue k then yk
i = 1.

29

Now for the problem constraints.

zij + zji = 1 ∀i, j ∈ A : i 6= j (5.1)

ai ≤ ti ∀i ∈ A (5.2)∑
k∈K

yk
i = 1 ∀i ∈ A (5.3)

zij ≥ αij − (2− yk
i − yk

j) ∀i, j ∈ A, ∀k ∈ K : i 6= j (5.4)

(zij − 1)M ≤ tj − ti − Sij ∀i, j ∈ A : i 6= j (5.5)

(zij − 1)M ≤ tj − ti − Ffi
∀i, j ∈ A : i 6= j, fi = fj (5.6)

zij ∈ {0, 1} ∀i, j ∈ A : i 6= j (5.7)

yk
i ∈ {0, 1} ∀i ∈ A, ∀k ∈ K (5.8)

Equation 5.1 exists to prevent ambiguity in the take-off order, it prevents an aircraft

from being both in front of and behind another aircraft. Equation 5.2 prevents an

aircraft from being scheduled before it is available for departure. The constraint given

in Equation 5.3 ensures that an aircraft only belong to a single queue or crossing.

Equation 5.4 enforces proper re-ordering when moving from a feeder to queue or a

queue to the take-off order. This constraint has only been proven to hold for the

single feeder case, thus any results presented for the multiple feeder case represent a

lower bound on the optimal solution.

Proper separation between aircraft (based on class) is ensured by Equation 5.5,

this constraint uses a large integer M to overcome a non-linearity in the desired

constraint given by Equation 5.9.

zij(tj − ti − Sij) ≥ 0 ∀i, j ∈ A : i 6= j (5.9)

30

To accommodate simultaneous crossing Equation 5.5 must be further modified to

Equation 5.10, which relaxes the separation constraint if both the lead and follow

aircraft are arrivals and do not belong to the same crossing.

(zij − 1)M ≤

tj − ti, αij 6= 1, αji 6= 1, di = dj = 0;

tj − ti − Sij, otherwise.

∀i, j ∈ A : i 6= j

(5.10)

The fix constraints are dealt with by Equation 5.6, if two aircraft have the same depar-

ture fix then they must be separated by the prescribed amount. Equations 5.7 and 5.8

ensure that the associated decision variables remain binary—of course, to solve the

problem these constraints are relaxed to · · · ∈ [0, 1].

For the purposes of initialization the initial conditions in the queues can be set

by defining another input to the problem: Qk
i , wherein Qk

i = 1 if aircraft i is initially

in queue k. Further the constraint given in Equation 5.11 needs to be added to the

formulation.

yk
i ≥ Qk

i ∀i ∈ A, ∀k ∈ K (5.11)

A. Objective Functions

Depending on what objective value is sought one of the following arrangements should

be used. For the throughput objective a constraint should be added:

Z ≥ ti ∀i ∈ A,

and Z should be minimized. This is an adaptation of the standard min-max objective.

The max delay objective is another adaptation of the min max, this time D should

31

be minimized and the following constraint added:

D ≥ ti − ai ∀i ∈ A.

The total delay doesn’t require an added constraint, instead set the following as

the objective:

min
∑
i∈A

ti − ai.

32

CHAPTER VI

CONCLUSIONS

A. Testing Schema

To test and benchmark the algorithm a series of tests were run on the many different

facets of the code, and—when applicable—the optimal solution was found using the

MILP formulation. For the purposes of testing, several subroutines were written for

file input/output, data generation, and to find the First-in First-out (FIFO) objective

value. The code will accept (through the command line) a file holding the pertinent

aircraft data—it can also output data in this format—as well as outputting data in the

format required by the MILP solver (OPL/CPLEX). For testing, a case is randomly

generated (as described below) and the data stored to a file in both formats, then the

following tests were run and the objective values recorded:

1. First-in First-out discipline,

2. Greedy heuristic,

3. 2-interchange heuristic, and

4. 2-interchange using the greedy order as initial feasible order.

Finally, if possible the optimal solution was found using the MILP, due to time re-

strictions only cases with fewer than 18 aircraft were solved to optimality. All the

odd numbers of aircraft from 5–45 were tested with 50 cases each.

33

B. Data Generation

In order for the tests to be meaningful the aircraft had to be attempting to leave faster

than than the runway could handle them1. The aircraft type is defined randomly

(even probability) except for aircraft one, which is automatically defined as large.

The first aircraft’s leave time is set as zero, and the other aircraft’s leave times are

randomly chosen from a window which starts from the previous aircraft’s leave time.

The window length is based on a the desired number of departures per hour. The

locale (queue, feeder, or crossing) of each aircraft is randomly assigned, but only

aircraft leaving before a specified time (based on the number of aircraft) can enter

the queue. Once the locale is determine the location within the locale can be set

(randomly), the location corresponds to which of the feeders, queues, or crossings the

aircraft is in. The fixes are also randomly generated with even probability.

C. Computational Results

Figure 7 shows the average running times for the various algorithms for the specified

quantities of aircraft. The plot may not be clear, but it is clear that the run time

hovers around 4ms. As the number of aircraft approaches 50 the runtime increases,

but only slightly, this is probably due to the fact that a large portion of the code is

the overhead required to make the calculations: the memory allocation, and data-

structure initialization. The average runtimes for MILP formulation are given in

Figure 8, note that the dependent axis is given in seconds. The solution is reasonably

fast for fewer than 15 aircraft, but entirely too slow for greater than 17 aircraft (the

17 aircraft cases average to 76.3 seconds, the point was omitted for clarity).

1Otherwise there would be a significant number of no-delay aircraft, thus little
room for optimization.

34

2−Int+Greedy

 4

 4.2

 4.4

 4.6

 4.8

 5 10 15 20 25 30 35 40 45

Ti
m

e
(m

s)

Aircraft

FIFO
Greedy

2−Int

 3.8

Figure 7: Average Run Times for the Various Heuristics

Aircraft

 1

 2

 3

 4

 5

 6 8 10 12 14 16

Ti
m

e
(s

ec
)

 0

Figure 8: Average Optimal Solution Times

35

The solution quality is normalized against both the optimal solution and first-in

first-out, Figure 9 shows the percent objective improvement of the various heuristics

over the first-in first-out ordering. Twelve to fifteen percent improvement is possible

from the most complicated algorithm. The swap algorithm alone yields a better

result over the greedy algorithm. It should be noted that human operators do not

necessarily maintain first-in first-out ordering, so the improvements shown are not

necessarily realistic with regard to current practice. No study has been done to

characterize the quality of sequences generated by human operators. Figure 10 shows

the percent improvement of the optimal solution over the heuristics tested, once again

the most complicated yields the best results, between seven and fifteen percent worse

than the optimal solution. The swap alone gets within fifteen to twenty percent of

the optimal solution.

36

2−Int+Greedy

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 5 10 15 20 25 30 35 40 45

Pe
rc

en
t I

m
pr

ov
em

en
t

Aircraft

Greedy
2−Int

 4

Figure 9: Average Percent Objective Improvement of the Various Heuristics Over the

First-In First-out Order

2−Int+Greedy

 5

 10

 15

 20

 25

 30

 35

 6 8 10 12 14 16

Pe
rc

en
t I

m
pr

ov
em

en
t

Aircraft

FIFO
Greedy

2−Int

 0

Figure 10: Average Percent Objective Improvement of the Optimal Solution Over the

Various Heuristics

37

REFERENCES

[1] Joint Economic Committee, “Your flight has been delayed again,” Tech. Rep.,

United States Senate, May 2008.

[2] R. G. Dear and Y. S. Sherif, “The dynamic scheduling of aircraft in high density

terminal areas,” Microelectronics and Reliability, vol. 29, no. 5, pp. 743–749,

1989.

[3] R. G. Dear and Y. S. Sherif, “An algorithm for computer assisted sequencing

and scheduling of terminal area operations,” Transportation Research, vol. 25,

no. 25, pp. 129–139, 1991.

[4] C. S. Venkatakrishnan, A. Barnett, and A. R. Odoni, “Landings at logan airport:

Describing and increasing airport capacity,” TranSci, vol. 27, no. 3, pp. 211–227,

1993.

[5] J. Abela, D. Abramson, M. Krishnamoorthy, A. De Silva, and G. Mills, “Com-

puting optimal schedules for landing aircraft,” in Proceedings of the 12th Na-

tional ASOR Conference, Adelaide, Australia, 1993, pp. 71–90.

[6] J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson, “Schedul-

ing aircraft landings—the static case,” TranSci, vol. 34, no. 2, pp. 180–197, 2000.

[7] A. T. Ernst, M. Krishnamoorthy, and R. H. Storer, “Heuristic and exact algo-

rithms for scheduling aircraft landings,” Networks, vol. 34, no. 3, pp. 229–241,

September 1999.

[8] H. Balakrishnan and B. Chandran, “Scheduling aircraft landings under con-

strained position shifting,” in Navigation and Control Conference, Keystone,

Colorado, August 2006, AIAA Guidance.

38

[9] H. Lee and H. Balakrishnan, “Fuel cost, delay and throughput tradeoffs in

runway scheduling,” in Proceedings of the American Control Conference, Seattle,

Washington, June 2008, pp. 2449–2454.

[10] J. A. D. Atkin, E. K. Burke, J. S. Greenwood, and D. Reeson, A Metaheuristic

Approach to Aircraft Departure Scheduling at London Heathrow Airport, vol.

600 of Lecture Notes in Economics and Mathematical Systems, pp. 235–252,

Springer, San Diego, California, 2008.

[11] J. A. D. Atkin, E. K. Burke, J. S. Greenwood, and D. Reeson, “Hybrid meta-

heuristics to aid runway scheduling at london heathrow airport,” TranSci, vol.

41, no. 1, pp. 90–106, 2007.

[12] J. Atkin, E. Burke, J. Greenwood, and D. Reeson, “An examination of take-off

scheduling constraints at london heathrow airport,” in Electronic Proceedings

of the 10th International Conference on Computer-Aided Scheduling of Public

Transport, Leeds, UK, June 2006.

[13] H. N. Psaraftis, “A dynamic programming approach for sequencing groups of

identical jobs,” Operations Research, vol. 28, no. 6, pp. 1347–1359, 1980.

[14] T. Fahle, R. Feldmann, S. Götz, S. Grothklags, and B. Monien, “The aircraft

sequencing problem,” in Computer Science in Perspective: Essays Dedicated

to Thomas Ottmann, pp. 152-166. New York: SpringerVerlag, 2003.

[15] H. Balakrishnan and Y. Jung, “A framework for coordinated surface operation

planning at Dallas-Fort Worth International Airport,” in Proceedings of the

AIAA Guidance, Navigation, and Control Conference, Hilton Head, NC, August

2007.

39

[16] N. Ascheuer, M. Fischetti, and M. Grötschel, “Solving the asymmetric travel-

ling salesman problem with time windows by branch-and-cut,” Mathematical

Programming, Series A, vol. 90, no. 3, pp. 475–506, May 2001.

[17] M. W. P. Savelsbergh, “Local search in routing problems with time windows,”

Annals of Operations Research, vol. 4, no. 1, pp. 285–305, December 1985.

40

VITA

Paul William Stiverson received his Bachelor’s degree in mechanical engineering

from Texas A&M University in 2006. He promptly entered graduate school at the

same institution, and took a position as a Teaching Assistant for Dr. Dara Childs in

Dynamics and Vibrations. His love for teaching soon spread and he took up tutoring

other courses, eventually composing and typesetting a full note set for Dynamic Sys-

tems and Controls. In the summer of 2008 he was invited to work at the NASA Ames

Research Center in Moffett Field, California by the University Affiliated Research

Center. At Ames he began the research that would become his Master’s thesis work,

and upon his return to Texas A&M he resumed his teaching assistantship. In the

spring of 2009 he was awarded funding by the Education Associates Program which

provides scholarly funding for NASA’s student researchers.

Paul may be reached by writing to Paul Stiverson, Texas A&M University—

Mechanical Engineering, Mail Stop 3123, College Station TX 77845.

