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ABSTRACT 

 

Development of Apple Workgroup Cluster and Parallel Computing  

for Phase Field Model of Magnetic Materials. (May 2009) 

Yongxin Huang, B.S., University of Science and Technology of China 

Chair of Advisory Committee: Dr. Yongmei Jin 

 

Micromagnetic modeling numerically solves magnetization evolution equation to 

process magnetic domain analysis, which helps to understand the macroscopic 

magnetic properties of ferromagnets. To apply this method in simulation of 

magnetostrictive ferromagnets, there exist two main challenges: the complicated micro-

elasticity due to the magnetostrictive strain, and very expensive computation mainly 

caused by the calculation of long-range magnetostatic and elastic interactions. A 

parallel computing for phase field model based on computer cluster is then developed 

as a promising tool for domain analysis in magnetostrictive ferromagnetic materials.   

    

We have successfully built an 8-node Apple workgroup cluster, deploying the 

hardware system and configuring the software environment, as a platform for parallel 

computation of phase field model of magnetic materials. Several testing programs have 

been implemented to evaluate the performance of the cluster system, especially for the 

application of parallel computation using MPI. The results show the cluster system can 
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simultaneously support up to 32 processes for MPI program with high performance of 

interprocess communication. 

  

The parallel computations of phase field model of magnetic materials implemented by 

a MPI program have been performed on the developed cluster system. The simulated 

results of a single domain rotation in Terfenol-D crystals agree well with the theoretical 

prediction. A further simulation including magnetic and elastic interaction among 

multiple domains shows that we need take into account the interaction effects in order 

to accurately characterize the magnetization processes in Terfenol-D. These simulation 

examples suggest that the paralleling computation of the phase field model of magnetic 

materials based on a powerful cluster system is a promising technology that meets the 

need of domain analysis.  
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1 INTRODUCTION 

1.1 Magnetic microstructure analysis 

Magnetic phenomenon and magnetic materials, since their discovery, have been used for 

a very long period of time. Lodestone, the material with a spontaneous magnetic state, 

has been used in the compass to indicate north and south for almost two thousand years. 

With today’s fast growing technology, magnetic materials find wider applications in 

many fields. Among various magnetic materials, ferromagnetic materials, like iron, 

nickel, cobalt, some of rare earths and their alloys, are widely used in permanent 

magnets, information recording system, and so on. This is because ferromagnetic 

materials exhibit many unique behaviors. For example, ferromagnetic materials can be 

significantly magnetized under a relatively small applied magnetic field. Using this 

property, electromagnets, such as iron core solenoids, can multiple an applied magnetic 

field by thousand of times to generate large magnetic fields. After removal of the applied 

magnetic field, ferromagnetic materials tend to keep their magnetized state, leading to 

history dependent behavior, so called hysteresis. With this hysteretic characteristic, 

ferromagnetic materials find important applications as information recording media. 

Another important characteristic of ferromagnetic materials is magnetostriction, a 

phenomenon of interdependence between magnetization and deformation.  

 

This thesis follows the style of Applied Physics Letters. 
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Ferromagnetic materials with significant magnetostriction are used in actuators and 

sensors because they show a measurable mechanical response to the magnetic field and 

vice versa.  

 

The above-mentioned ferromagnetic characteristics can not be explained without the 

magnetic domain analysis. Some basic statements from the domain analysis are listed 

here
1
: (a) Permanent atomic magnetic moments exist in the ferromagnetic materials 

under Curie temperature. (b) The atomic magnetic moments will align with each other 

along certain crystallographic direction to form substructures in ferromagnetic materials. 

A substructure with uniform magnetization direction is called a magnetic domain. (c) In 

a demagnetized state, the magnetic domains with different magnetization directions will 

neutralize each other and the material will exhibit no bulk magnetization. (d)When 

magnetized under a driving magnetic field, the magnetic domain will reorient to align 

with the applied magnetic field and the material will exhibit macroscopic magnetization 

and high permeability.  

 

The domain analysis, mainly based on domain theory, gained success in explaining the 

magnetization process, magnetic hysteresis and so on,  in the first several decades of 20
th

 

century.
1
 At the same time, a growing amount of experimental evidence, confirmed the 

existence of the magnetic domains (see a magnetic domain observation in Figure 1.1). 

Domain analysis bridges the magnetic microstructure and the macroscopic magnetic 

properties of ferromagnetic materials. Today, it has become a necessary tool to 
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understand macroscopic magnetic properties and to develop new magnetic materials. To 

process the domain analysis, domain observation and micromagnetic theory are two 

approaches that complement each other.
2
 

 

Domain observation, such as Bitter patterns, magneto-optical methods, X-ray, and 

transmission electron microscopy (TEM), can directly or indirectly reveal the magnetic 

domain pattern based on different mechanisms. Figure 1.1 shows the domain pattern on 

the surface of Si-Fe single crystal revealed by Bitter patterns.
1
 However, experimental 

observations of domain evolutions under an applied field are time consuming and costly. 

Moreover, the available observation technologies are limited to external surface while 

the domain structure inside the bulk sample is not necessarily the same as that of 

external surfaces. Given this limitation, the domain observation cannot offer enough 

information to study magnetic domains in many cases.  

 

Micromagnetism is an effective theoretical approach to studying domain structures. The 

possible domain structures can be obtained based on the principle of total free energy 

minimization.
3
 However, the micromagnetic equations are highly non-linear and non-

local. The minimization can be done analytically for very limited simple cases in which 

a linearization is possible. Moreover, as mentioned previously, domain structures are 

history dependent, so it is necessary to track the domain evolution in domain analysis. 

Micromagnetic modeling, where the magnetization evolution equation is numerically 

solved, offers a powerful simulation tool for domain analysis.
4,5
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(a) (b) 

Figure 1.1 Magnetic domain patterns on single crystals of silicon iron (a) single domain structure 

(b) complex domain structure.
6
 

 

 

In spite of the big success of the micromagnetic modeling in studying magnetic domain 

phenomena, it cannot realistically treat magnetostrictive effect which involves 

heterogeneous magnetostrictive strain coupled to local magnetization distribution. In this 

thesis, phase field micromagnetic microelastic model is employed to simulate domain 

microstructure evolution, which combines micromagnetic model and phase field 

microelastic model as discussed in the next section. 

1.2 Phase field model 

Phase field method is successfully applied to modeling a wide range of domain 

phenomena
7
, including ferroelectric domain evolution

8-11
, spinodal  decomposition

12
, 

martensintic (ferroelastic) transformation
13-15

 and solidification
16,17

. The phase field 
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method uses the spacial distribution of field variables to describe the domain 

microstructures. For example, in decomposition the local concentration is used as the 

field variable. Therefore, the domain with the homogenous physical property is 

represented by the region with the homogenous field variables in the computational 

region. At the domain boundaries, the field variables change continuously forming 

smooth interfacial regions with finite thickness, i.e., diffused interfaces. For diffused 

interfaces, there is no need to explicitly track the boundaries, which is a great advantage 

of the phase field method. 

 

The spacial and temporal evolution of field variables is described by the phase field 

kinetic equations: Ginzburg-Landau equation for martensitic transformation
18

, Cahn-

Hilliard equation for decomposition
19

, and Landau-Lifshitz equation for magnetic 

switching
20

. The phase field variables obtained by solving the kinetic equations describe 

domain microstructure evolution which decreases the system free energy and eventually 

reaches the energy minimizing equilibrium state under given external condition. 

 

Recently, a phase field micromagnetic microelastic model has been developed to study 

the magnetic domain microstructure evolution in giant magnetostrictive materials, which 

combines micromagnetic model of domain switching and phase field microelastic model 

of martensitic transformation
21,22

. The model is briefly described below. 
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The evolving magnetic domain structure in a magnetic material is described by 

magnetization direction field ( )m r , whose average value gives the macroscopic 

magnetization ( )sM m r  (Ms being saturation magnetization). The total system free 

energy for arbitrarily distributed magnetization field is a sum of magnetocrystalline 

anisotropy energy F
ani

, exchange energy F
exch

, magnetostatic self-energy F
mag

, external 

magnetic energy F
ex-mag

, elastic self-energy F
el
, and external elastic energy F

ex-el
: 

1,21
  

F=F
ani

 + F
ex-mag

 + F
exch

 + F
mag

 + F
el
 + F

ex-el
 

= 2 2 2 2 2 2 2 2 2 3

1 1 2 2 3 3 1 2 1 2 3( )
c c c c c c c c c

K m m m m m m K m m m d r + + + ∫
ex 3

0 ( )s i iM m H d rµ− ∫ r  

2 3( )A grad d r+∫ m r
3

22

0 3

1
( )

2 (2 )
s

d k
Mµ

π
+ ⋅∫ n m k�  

( ) ( ) ( ) ( )
3

0 0 * ex 0 3

3

1

2 (2 )
ijkl p ijpq qr klrs s ij kl ij ij

d k
C n C C n d rε ε σ ε

π
 + − Ω −  ∫∫ n k k r� � , (1) 

where ( ) ( ) ( )c

i ij jm Q m=r r r , ( )Q r  is rotation matrix field describing the grain structure, 

1K  and 2K  are material constants characterizing magnetocrystalline anisotropy, A is 

exchange stiffness constant, H
ex

 is external magnetic field, ~ indicates Fourier transform, 

the integral ∫  is evaluated as a principal value excluding the point 0k = ,  kkn = , 0µ  

is the vacuum permeability, ( )nijΩ  is Green function tensor inverse to ( ) lkikjlij nnC=Ω− n1 ,  

ex
σ  is the external stress, and magnetostrictive strain field 0 ( )ε r  is given as  

                0 ( ) ( ) ( ) ( ) ( ) ( (c

ij pqrs pi qj rk sl k lQ Q Q Q m mε α=r r r r r r) r)                                           (2) 
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Under given external conditions, the evolution of magnetization field is described by the 

Landau-Lifshitz-Gilbert equation: 

( )( , )t t F Fγ δ δ α δ δ∂ ∂ = × − × ×m m r m m m m ,    (3) 

where γ and α are the constants accounting for gyromagnetic process and 

phenomenological damping. 

 

The simulation of domain microstructure evolution in magnetic materials is performed 

by numerically solving Eqs. (1)-(3) over discritized computational grids under given 

initial and external boundary conditions. For such a computation, two major problems 

arise; they are long computation time and large memory.  

 

It is noted that, for a system of N computational grids, dipole-dipole interactions require 

2( )O N  number of floating point computation for each time step, which is reduced to 

( log )O N N  when a Fourier spectral method is adopted.
17

 For our simulations, it is 

usually desirable to consider typical computation size of 512×512 and 256×256×256 for 

2D and 3D simulations, respectively. Moreover, the number of time steps is usually as 

high as one million or even more. Therefore, given current performance of a single 

processor computer, the total computation time would be unacceptable, especially for 

three dimensional problems.  
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Another serious problem for phase field simulations is the large memory requirement. It 

requires a number of arrays to hold the field variables and related parameters associated 

with all computational grids. For the typical simulation sizes used in phase field 

modeling,  the required memory size is far beyond the capability of a single processor 

computer. 

 

 The phase field micromagnetic microelastic model described above allows all domain-

level mechanisms to operate freely, does not impose a priori constraint on the kinetic 

pathways, accurately treats long-range interactions, and takes into account 

magnetoelastic coupling due to magnetostriction. Therefore, the model is uniquely 

capable for domain analysis to help reveal new domain mechanisms and develop new 

magnetostrictive materials. However, its simulations demand for intensive computation 

as discussed, and cannot be realized by a single processor computer available today. 

Parallel computing offers an opportunity here.    

1.3 Parallel computing 

Parallel computation has been widely used in many fields for large scale scientific 

simulations for decades, which effectively overcomes the limitations of sequential 

computation operated by a single processor computer.
23

 The general strategy of parallel 

computation is to make multiple computer resources work simultaneously on one 

problem that does not fit on single processor computers. A large computational problem 

is divided into smaller parts to be solved in parallel by multiple processors. 
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Based on the types of divided or parallelized units in a problem, the parallel computing 

can be classified into four levels: Bit-level, instruction-level, data-level and task-level. 

Most scientific parallel computation falls into the category of data parallelism handling 

huge data but similar operation. “parallelizing loops often leads to similar (not 

necessarily identical) operation sequences or functions being performed on elements of a 

large data structure.”
24

 This is also true for the simulation of magnetic domains based on 

the phase field model. In our simulation, the problem of formidable computer time and 

memory requirement is solved by dividing the data associated with the whole simulated 

volume into smaller subsets.  

 

For parallel computing, the hardware architecture of the parallel computer is important. 

Improper hardware architecture may not support the expected parallelism. There are 

mainly two kinds of hardware architecture: shared memory multiprocessors and 

distributed memory system. Their main characteristics are briefly explained in the 

following. 

 

In the shared memory architecture, multiple processors share the same memory, as 

shown in Figure 1.2. Its advantages include fast memory access by all processors and no 

need for communications among processors, and easy realization of parallelism for 

computer programming. With certain programming interfaces, a programmer may easily 

change the sequential code into shared memory multiprocessing program that 
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significantly reduces computer running time. However, shared memory multiprocessors 

system can not scale well, and the number of multiprocessors involved in the parallel 

computing is limited. It is also constrained by  the available amount of the shared 

memory.  

 

Memory Hard disk

CPU CPU CPU CPU

Data bus

Memory Hard disk

CPU CPU CPU CPU

Data bus

 

Figure 1.2 The architecture of a shared memory multiprocessors system. 

 

A distributed memory system has multiple independent memories and processors, where 

a memory can only be directly accessed by the local processor. The architecture, 

illustrated as Figure 1.3, allows much more memory and processors to be involved in the 

parallel computation, compared to that of shared memories. Therefore, the problems 

simultaneously requiring large memory and computation time can be solved through 

parallelizing the program based on a distributed memory system. But this is not obtained 

without cost. The complicated communications between processors arise. When a 

processor needs data in the memory associated with another processor, it requires 

communiation between the two processors through network, which costs significant 
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computer time. The true challenge we face here is the computer programming to 

optimize communications among the processors. 
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Memory Hard disk

CPU

Memory Hard disk
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Figure 1.3 The architecture of a distributed memory system. 

 

 

 

For the simulations of domain structure evolution using the phase field model as given in 

section 1.2, the parallel computing on a distributed memory system is a better choice. 

Therefore, based on the distributed memory architecture, a more specified parallel 

computing system, computer cluster, is selected as the computational platform. A 

computer cluster is mainly composed of compute nodes and communication networks. A 

compute node is similar to a traditional PC with independent processor and memory, and 
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the network requires high performance with low latency and fast bandwidth speed. The 

technical details of the computer cluster will be introduced in next section.  

1.4 Description of the thesis 

This thesis begins with this Introduction. Development of a computer cluster system as 

platform for parallel computation and the parallel algorithm for phase field model are 

presented in Section 2 and Section 3, respectively. The performance evaluation of the 

developed cluster system is introduced in Section 4. In Section 5, the parallel 

implementation of phase field modeling of magnetization process in Terfenol-D crystals 

is performed on the developed cluster system. The simulation results is presented and 

discussed.  
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2 BUILDING CLUSTER SYSTEM FOR PARALLEL 

COMPUTATION 

2.1 Overview of a computer cluster system 

A computer cluster is a high performance computing system consists of a group of 

computers. The cluster, composed of multiple identical high performance computers 

(compute nodes) and high performance network, is an ideal platform for scientific 

parallel computation. Figure 2.1 shows the topology of a general computer cluster. By 

integrating multiple linked compute nodes into a single cluster under uniform 

administration, the system performs as a single supercomputer. Computer clusters retain 

a reasonable price without compromising computation power. Due to these advantages, 

the computer cluster has become the mainstream of high performance computation and 

widely used in the field of science, engineering and business. From the TOP500 list of 

World’s Most Powerful Supercomputers of year 2008
25

, 80% of supercomputers are 

computer clusters.  

 

Clusters are divided into two types: custom cluster and commodity cluster. By 

customizing the compute nodes, networks and operating system, the custom cluster can 

obtain excellent performance to support parallel computation but at a very high price. In 

contrast, commodity clusters are mainly composed of commercial off-the-shelf hardware 

and open source software so that cost can be minimized while performance can be 
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maximized. Considering the requirement for the computational performance and a 

limited funding, commodity cluster would be a reasonable high performance 

computation solution for small research groups. A book
26

 for guiding how to build a 

commodity cluster was provided by Sterling et al. as a good handbook for developing a 

such cluster system 

 

The cluster system mainly consists of compute nodes and networks. Besides being 

compatible with the given hardware, the software system must meet the needs of 

administration and management, and support parallel computation. Like developing any 

other computer system, selecting and deploying hardware system as well as building the 

software environment are the main tasks when constructing a cluster system. 
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Figure 2.1 Topology of computer cluster. 
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2.2 Hardware system structure 

2.2.1 Compute nodes 

The configuration of each individual compute node is one of the most important 

considerations in the development of a computer cluster. Generally, each individual 

compute node is an independent computer. The procedure of configuring each individual 

compute node is similar to the procedure for configuring a conventional PC. Four basic 

components, the processor, main memory, motherboard, and hard disk, are to be 

considered and will determine the general performance of the nodes. The space occupied 

by the compute node must also be considered when many compute nodes are 

incorporated into the cluster. The commodity cluster may utilize either rack-mounted 

servers or PCs as its compute nodes. Although the price is higher, the rack-mounted 

server has a more powerful computational ability. Also, the uniform compact structure 

of the rack-mounted serve make it easily attachable to the standard enclosure for good 

organization and great space saving.  

 

There are two kinds of nodes in the cluster though they both are called compute nodes: 

Master nodes, and slave nodes. Master node will control other nodes to form a uniform 

system so that the group of nodes would act as a single computer. For small cluster with 

a limited number of nodes, a single master node would be sufficient for the control and 

management work of the whole system. Conversely, slave nodes are controlled by a 

master node to work on assigned job. The master node usually has better performance, 
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such as larger storing capability and faster processors, to support the management of the 

whole system. It may or may not directly take part in the parallel computation jobs based 

on the situation of load balance. For slave nodes, identical configuration is suggested to 

simplify the cluster system and maintain the load balance for parallel computation.  

 

The number of nodes is another important factor to determine the computation capability 

of the whole system. More compute nodes included in cluster would involve more 

processors in the system and naturally increase the computation capability. For example, 

1100 Apple Xserve G5 system serve as compute nodes in the System X cluster at Virgin 

Tech
27

, which delivers an incredible computation speed of 12.35 TFlops, was the fastest 

supercomputer in 2006 all over the world according to the TOP500 list of World’s Most 

Powerful Supercomputers. However, the float operation per seconds can not fully 

describe the performance of users’ practical parallel application on the cluster. Actually, 

many parallel implementations may run satisfactorily on a computer cluster with no 

more than 32 processors, due to the scalability of the program and other factors. 

Therefore, the number of compute nodes must be carefully considered according to the 

requirement of potential parallel computation. 

 

2.2.2 Communication network 

A communication network system connects the compute nodes to form an integrated 

cluster system. In parallel computation, it is used to transfer data among different 

compute nodes. The hardware of a general network system includes a switch, an 
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interface on the compute nodes and cable. Like compute nodes, hardware for the 

network is also based on commercial commodity. For example, common and economical 

Ethernet-based networks are most frequently utilized in clusters. But a better 

performance network with a much higher price is necessary for some parallel 

computation that involved intense data communication. Therefore, the choice of network 

hardware is highly dependent on the requirement of potential parallel computation.  

  

In parallel computation, the network is used to deliver information or data among 

compute nodes. Its performance is described mainly by its bandwidth and latency. 

Bandwidth is the average rate of information or data delivered via the network. It is 

usually measured by Bit/s. Higher bandwidth speed will significantly decrease the 

delivery time, especially for the information with large size. The latency is related to the 

delay of the information delivered, which is mainly caused by the required responding 

time between compute nodes to send and receive information. The efficiency of 

delivering information or data with small size is very sensitive to the latency because the 

delay time, rather than the direct transferring time, takes the main part in the whole 

delivering time.   

 

There may be one or two network systems in one computer cluster. The first 

management network is usually an IP-based Ethernet private network. This network is 

used for sending and receiving controlling messages. Through this network, master node 

can reach the whole cluster system by sending instruction to slave nodes, maintain the 
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operating system, and manage the parallel jobs and so on. Because the management 

messages delivered are usually relatively small, an Ethernet-based network with 

moderate performance can satisfy the management requirement. If the computer cluster 

is used to run some parallel implementation without intense data communication, this 

management network may also be used to support the data communication among 

compute nodes in parallel computation. In that case, a single high performance Ethernet-

based network will support all communication and no secondary network is needed.  

 

Some parallel application involves intensive interprocess communication to share the 

data among different nodes. In that case, it is recommended to separate interprocess 

communication from the management messages through building a secondary high 

performance network. The computer time consumed by a parallel program consists of 

two parts: the direct computation time and interprocess communication time. A high 

performance network with wide bandwidth and low latency would significantly decrease 

the communication time. Through that, a decreased total computer time and better 

scalability may be obtained for parallel programs. Due to the critical role played by the 

network in intensive communication parallel computation, some advanced network 

technology such as Infinitband and Myrinet, at much higher price, will be used in this 

secondary high performance network instead of ordinary Ethernet-based system. And if 

the secondary network is applied, the first management network is only required to have 

moderate performance to save money.  
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2.2.3 Other hardware components  

Some support components are also necessary for the cluster system. If compacted rack-

mounted servers are chosen as compute nodes, a cooling system is critical to prevent 

system failure by over-heating. It will remove the system heat output, which mostly 

comes from the compacted rack-mounted servers. Also, a backup power supply is 

needed to prevent damage due to a power surge. Finally, all of this hardware needs a 

standard enclosure for storage. 

 

2.3 Software environment for cluster system 

2.3.1 Operating system 

An operating system of computer cluster works both for the compute node itself, just 

like an ordinary PC, and also for the whole network system of the cluster. A 

sophisticated operating system for a cluster is used to manage each node such as 

configuring all of hardware resources, managing user accounts, managing memory, 

hosting application program, and so on. Also, the cluster operating system is in charge of 

administration and management of the whole cluster system, creating a uniform software 

environment, building the distributed file system, configuring the private communication 

networks, and so on.  
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2.3.2 Communication mechanism and implementation 

Complex parallel computation requires intense communication for sharing data, 

synchronizing processes and so on. This communication can be done by “message 

passing” for distributed memory system or multithread for SMP (share memory 

multiprocessors). In the distributed memory system, like cluster, through “sending” and 

“receiving” messages containing needed data or other information, the compute nodes 

involved in parallel computation can communicate with each other. Therefore, a 

standard of message-passing become necessary to formalize the communication style. A 

corresponding software implementation will work with programming language, through 

that programmers can control the interprocess communication in their programs.    

 

It is noteworthy that this communication mechanism is highly dependent on the 

architecture of hardware. As mentioned above, “message passing” communication is 

mainly based on a distributed memory system, but contemporary clusters usually utilize 

SMP computers as compute nodes. In another word, the whole cluster is a hybrid system; 

inside of each node, it has the architecture of share memory multiprocessors while 

among the compute nodes it is a distributed memory system. This complex structure, 

called a distributed SMP system, makes the interprocess communication more difficult 

than pure distributed memory system or SMP system. Generally, a mixture of message 

passing and multithread communication mechanisms would optimize performance in a 

hybrid system; however, this would greatly complicate the programming. How to build 

an optimized communication mechanism on this hybrid SMP cluster system is still under 
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research. Today, a message-passing communication is typically used exclusively in a 

SMP nodes cluster though it is obviously not the best choice.  

2.3.3 Workload management software 

The workload management software is used to manage computing resource for the user 

applications. Usually, there are multiple users served by a cluster system. A usage policy 

sets the priority to use computing resource for the applications submitted by different 

users. For example, some users may always have the highest priority to use the 

computing resource, or, only the parallel application submitted by certain group of users 

may use more memory or computing nodes. The workload management software will 

combine the current state of the cluster system and carry out such sets of policy to 

manage the usage of computing resources. Generally, there are five responsibilities for 

the workload management software: 

1. Queuing      

When users want to run any task on a cluster, a job must be submitted to the workload 

management system with enough information about this task, like user’s account, the 

needed number of CPU, the amount of memory, the file to execute, and the path storing 

output files. With the information of submitted jobs, the management system will follow 

the usage policy to rank all of submitted jobs to form a job queue. The jobs will be 

executed following the sequence of the queue whenever the needed computing resources 

become available. Through this queuing system, different usage policies can be carried 

out. The administrator can designate top priority to certain users in order to prevent them 

from waiting in queue. Also, it may prefer to run small tasks during daytime to serve 
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more users, but to run tasks which consume substantial computing resources and 

computer time at night. These kinds of restrictions can be realized by the queuing 

function of workload management software on the cluster.     

2. Scheduling   

 Usually, the usage policy given by the administrator can not fully define the executed 

sequence of submitted jobs. A scheduler will also be used to choose the best job to run. 

The scheduler will consider the usage policy and current available computing resources 

to run the best job and optimize the usage of computing resources. 

3. Monitoring  

The monitoring in workload management software will provide information about 

computing resources. It will check the state of the compute nodes before assigning jobs 

in order to assure the compute nodes are error free and meet the requirement of assigned 

jobs; any discrepancies be reported to system. 

Another important application of resource monitoring is to report the performance of 

running jobs. All of important information such as the usage of CPU, memory, network 

and other resources on a certain job can be viewed through the monitoring function. 

With this information, users can evaluate and improve their parallel program. For 

example, if the resource monitor reported more than 90% computer time was consumed 

by communication, then the data communication strategy within the program need 

requires substantial improvement.  
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4. Resource management  

Once a job is submitted to the cluster system and determined as the current best job to 

run, the workload management software will automatically run the job on the 

corresponding computing resource, and when the job finishes, it will stop the application 

and clean up for the next job. These processes are called resource management.   

5. Accounting  

This function will collect the information of resource usage for certain jobs, users, and 

groups. 

2.3.4 Other software 

Some support software would also be necessary when running the aforementioned 

software. For example, the message passing communication would require OpenSSH as 

the tool for remote logging from master node to slave nodes. 

 

Also, additional commercial software may be required according to the specific 

application of users. Some commercial software companies already offer the edition 

applied for cluster and parallel computation; MATLAB introduced a distributed 

computing toolbox to support parallel computation on clusters. GridMathematica also 

delivers a parallelized Mathmatica environment for cluster platform. Such commercial 

software will allow user to simply explore the advantage of cluster as a parallel 

computation platform without messing up with complex parallel algorithm. 
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2.4 Deploying an 8-nodes Apple workgroup cluster with high performance 

networks 

Our Apple workgroup cluster selects 8 powerful Xserve/Intel servers as compute nodes. 

Mac OS X server, the UNIX based operating system is preinstalled on these servers. 

Xserve/Intel server integrates and optimizes all of hardware needed for computing nodes, 

such as processors, memories and network interface to deliver powerful computation 

capability. The Mac OS X server operating system is customized by the same vendor of 

servers to optimize the performance of single node. This operating system already 

includes many tools for administration and management of the whole distributed 

memory system. 

2.4.1 Compute nodes 

 Two 2.66 GHz Dual-core Intel Xeon processors have been selected for every SMP 

compute node mainly due to two considerations: the first is that this processor one 

generation behind the cutting edge, usually has best performance/price. Another reason 

is that previous computation on other clusters has shown that satisfactory speed can be 

obtained only if the processors have clock rate above 2.0 GHz. Although faster 

processors are always welcomed by users, overall performance/price is the key for 

configuring a system. Especially for a platform of intense parallel computation, the 

performance of networks, not the processors, are usually the bottleneck of computation, 

so the newest and fastest processors costing much funding are most likely not to greatly 

improve the overall performance. 
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The capability of main memory is very important for scientific and engineering 

simulation. The problem of “out of memory” is fatal, and prevents researchers exploring 

some problems interesting but too large (e.g. some 3-dimensional simulation). Therefore, 

a memory requirement for possible largest simulation for phase field model of magnetic 

domain has been estimated. It shows that the amount of memory, for every compute note 

with two Dual-core processors, should be about 8 gigabyte. Accordingly, the total 

memory would be 64 gigabyte.  

 

The capability of hard disk is 80 GB for compute nodes according to the principle that 

local disk capacity should be ten times the main memory capacity. But a much larger 

hard disk (750 GB) is selected for master node for the management work and temporally 

storing users’ data files. 

2.4.2 Interconnect networks 

The first management network for the cluster is an Ethernet private network mainly 

based on 3com 24-port baseline switch, which is a highly affordable, unmanaged Gigabit 

switch. This gigabit switch has 100MBps bandwidth and around 210 us latency.  

 

Myrinet is selected as the second interprocess network system for the Apple workgroup 

cluster. Myrinet, designed by Myricom, is one of the best network solutions for parallel 

computation with intensive communication. Myrinet has fast bandwidth and low latency. 

According to Myricom, the latency of this Myrinet-2000 switch network for data 

communication using Message Passing Interface (MPI), an implementation of parallel 
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communication, is only 2.6µs–3.2µs, and the MPI unidirectional data rate is 247 

MBytes/s. An advantage of Myrinet is that this Myrinet-2000 switch has independent 

processor and memory so that the data transmission would not take the main processor 

clock time to interrupt the process. This feature will significantly improve the efficiency 

of parallel computation.   

 

To build Myrinet high performance network, a 16-port Myrinet-2000 switch and 8 PCI-

X NICs as network interface cards have been selected for the 8-node Apple cluster. The 

switch has 8 ports available for potential update adding more computing nodes into the 

system.  

2.4.3 Other hardware components  

According to Apple Company, the thermal output per Xserve/Intel server is about 1100 

BTU/h. So a cooling system with capacity removing at least heat output of 11000 BTU/h 

is required with 20% headroom for eight compute nodes. But considering the potential 

of adding more compute nodes, a rack air removal unit with much higher cooling power 

has been equipped. 

 

APC 1000VA Uninterruptibel Power Supply (UPS) has been selected for protecting 

head node and networks from damage due to power surges.   
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NetShelter enclosure, a standard enclosure for storage of 19-inch rack –mount hardware, 

is selected to accommodate all of hardware including eight compute nodes, two sets of 

networks switches, rack air removal unit, UPS, and so on.   

 

Appendix A. gives the information of hardware to deploy an 8-node Apple workgroup 

cluster with high performance network. Figure 2.2 shows the eight Apple Xserver 

computing nodes, and figure 2.3 shows the completed cluster system.  

 

 

Figure 2.2 Eight Apple Xserver computing nodes. 
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Figure 2.3 Apple workgroup cluster system. 

 

2.4.4 Mac OS X Serve operating system 

The Mac OS X Serve, designed by Apple Corp for Xserve server, is a powerful 

operating system for administration and management of workgroup cluster. Its 

convenient and nice-interface management tools make administration of computing 

resources and users accounts much easier than traditional Unix/Linux system. At the 

same time, this UNIX based operating system inherits the main advantages of 

Unix/Linux system, like supporting almost all of open source software for UNIX/Linux 

system. In fact, Mac OS X already integrates more than 100 open source projects 

including OpenSSH, X11, GCC,  and so on most used  tools. 
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In addition to the basic administration and management function, Mac OS X Serve also 

has many advantages for scientific computation. It fully supports 64-Bit computing. The 

64-bit addressing of the operating system provides the capability of accessing large 

memory, and what is more excited for high-performance computation, Mac OS X Serve 

already includes many 64-bit optimized math libraries for the hardware of Xserve 

servers, such as BLAS, LAPACK, vBigNum (a vector big number library), vBasicOps 

(a basic algebraic operations library). All of these math libraries can be easily call from 

C or Fortran program. 

2.4.5 MPICH2 for message passing interface in parallel computation 

As 2.3.2 mentioned, a message-passing communication mechanism is used globally in a 

SMP nodes cluster. The message passing process is specified by Message Passing 

Interface (MPI)
28

. MPI provides a set of standards for message passing communication, 

and these standards now have been developed as so-called MPI-2. MPICH2
29

, developed 

by Argonne National Lab, is chosen as the implementation of MPI-2. The actually used 

in the cluster is MPICH2-MX
30

, which is a port of MPICH2 on top of MX (a low-level 

message-passing system for Myrinet networks) developed by Myricom to optimize 

Myrinet networks performance for MPI application. 
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3 PARALLEL COMPUTATION FOR PHASE FIELD MODEL 

3.1 Domain decomposition 

As 1.2 introduces, the magnetic domain structure is described by the spatial distribution 

of local unit magnetization vector ( )m r . Its evolution is then reflected by the evolution 

of ( )m r , which is obtained at every computing grid by solving equations (1)-(3). A 

number of huge data associated with the computing grids are used to accommodate the 

intermediate results, the updated unit magnetization vector field, and other information 

such as free energy density for each cell. How to handle these huge arrays storing the 

information associated with each grid is the key for the parallel computation applied here.  

 

As 1.3 introduced, the parallelism in our simulation is mainly based on the data-level 

parallel model. In this model, the computational domain of a problem is distributed 

among compute nodes. Each compute node has certain subset of the data stored on its 

local memory, and the processor will perform task mainly based on its local data. Figure 

3.1 illustrates this method. The computational domain is divided into four subsets with 

equal size. The data associated with the grid are distributed across four different 

compute nodes. The processor of each node will perform very similar operation but only 

on the subset stored on local memory. Through this so-called domain decomposition 

operation, the huge data array storing large computational domain is easily 

accommodated by multiple memories on involved compute nodes. This is the very 
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reason that the data-level parallel computation on distributed memory system can handle 

the problem of inefficient memory on traditional PC. 

 

In the domain decomposition shown as Figure 3.1, the divided subsets have identical 

size and geometry. But equally decomposing domain is not the universal solution. The 

domain decomposition must follow several general rules. 

 

The domain decomposition is directly related with the work load assigned to each 

compute node. And the load balance is the critical for the efficiency of parallel program. 

Poor load balance among different compute nodes will seriously break down the 

program and waste compute resource. The whole parallel program completes only when 

all of compute nodes complete their subtasks. During this period, the compute nodes 

cannot be released for new task even if some compute nodes may be idle after 

completing their own subtasks. The ideal case is that all of compute nodes complete their 

subtasks at same time. To do so, balance load control is necessary. If the compute nodes 

have very similar operation on the subsets of data, the operation time is mainly 

dependent on the size of data. Therefore, the computational domain is naturally 

decomposed equally, which is just the case of our simulation. But in some complicated 

situation, the subtasks scale may differ. In those cases, there is no general method to do 

the domain decomposition. Some advanced method, like monitoring the load balance 

and real-time adjusting it, may be needed to maintain the parallel performance. 
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Another important reason to equally decompose computational domain is due to the 

similar calculation operated by compute nodes. On each node, the equation is solved 

following almost the same procedures though the data are different. It would be easy for 

programming loops when the subsets of computational domain have identical size and 

shape.   
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Figure 3.1 Domain decomposition (a) original computational domain with 128*128 grids. (b) Four 

subsets of the original computational domain are distributed across four compute nodes. 
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To decrease data communication among compute nodes is another important 

consideration when decompose domain. Comparing with traditional sequential 

programming, complex data communication among compute nodes is the disadvantage 

for parallel computing based on distributed memory system. The overhead from data 

communication may greatly increase the computer time, which seriously worsens the 

performance of parallel computing. Therefore, the domain should be decomposed in a 

way that the data communication is as little as possible and most of calculation can be 

supported by local data. 

3.2 Data communication based on MPI 

Data communication is important in the parallel programming especially on the share 

memory system. A good data communication control means low overhead and most 

CPU time is attributed to the data computation rather than communication. MPI 

(Message Passing Interface) is used in our parallel programming as the communication 

standard, and MPICH2 is the corresponding implementation applied. The main features 

of MPI and some important MPI routines are introduced here, followed by the data 

communication strategy in our program. 

3.2.1 Message passing interface 

MPI is a communication protocol in parallel computation mainly for distributed memory 

system while it still can be used for share memory computer. The goal of MPI is “to 

develop a widely used standard for writing message-passing programs”.  It provides the 
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standards of the process topology, synchronization, point-to-point communication, 

collective operations, and other operations involving in communication of parallel 

computation. In MPI, the communicated data is packaged in a message and passed 

among multiple processors.  MPICH2, used by our cluster, is a high-performance 

implementation of MPI standard. It has a specific set of routines which can be called 

from Fortran or C language. The implementation of MPI allows programmer manage the 

data communication by programming.  

 

Unlike the sequential computation, parallel computation based on MPI involves many 

operations directly controlling the processors and network. We need to understand the 

architecture of actual used cluster before using MPI control the communication. 

Globally, there are eight compute nodes connected by network to form the distributed 

memory system. But for each node, it is a shared memory computer with two CPUs. In 

each CPU, there are two cores which can perform the instructions independently. A 

processor or process defined in MPI should be taken as a single core in our cluster. In 

another word, the Apple 8-node cluster has 32 processors for parallel computation. 

Based on the knowledge of the architecture of our cluster, we can introduce how MPI 

works in the data communication. 

 

Firstly, every MPI session needs a communicator to include a group of processes. Here, 

the process, originally means the set of sequentially executed instructions, always can be 

taken as the processor. For example, four cores in two dual-core CPU would be included 
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in a communicator if users require four processes in the parallel computation. There may 

be more than one communicator in one session to control several groups of processors. 

In each group, the processors are identified by a unique integer between zero and the 

number of processors. In our parallel program, only one communicator is used.   

Once the communicator is set up, the processors can be identified so that the message 

can be passed among specific processors. There are two types of data communication 

applied in our program. The Point-to-Point communication will pass data between two 

specific processes while collective communication happens among all of processes in the 

group. The Point-to-Point communication has blocking and non-blocking mechanisms. 

The blocking communication has some extra operations to assure the process receiving 

message is ready and waiting for the message. It gains more security but with slower 

speed compared with non-blocking communication. Both mechanisms have application 

in our program.    

 

MPICH2 offers routines to manage the data communication operations, like initializing 

and terminating the MPI process, passing and collecting data among processors. Some 

important routines used in our fortran program are introduced as follows.  

 

MPI_INIT(ierr) 

This routine initializes the MPI execution environment to start a MPI process.  

MPI_COMM_SIZE(comm.,size,ierr) 

This routine determines the number of processes involved in the group.  
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MPI_COMM_RANK(comm.,rank,ierr) 

This routine determines the rank of the calling process. The parameter “rank” will return 

a unique integer between 0 to the number of process in the group, which will be used to 

identify the processor. 

MPI_Bcast (buffer,count,datatype,root,coom,ierr) 

This routine broadcast a message from one certain process to all other processes 

involved in the communication group. The message or data address is specified by the 

parameter buffer, and the process sent message is identified by the parameter root, which 

is its rank in the group. The parameter count specifies the message size. 

MPI_Send (buffer,count,datatype,dest,tag,comm.,ierr) `  

This routine sends data located in “buffer” to the process with rank as “dest”. This  

operation is labeled by the parameter tag. 

MPI_Recv(buffer,count,datatype,source,tag,comm.,status,ierr) 

This routine receive data sent from process with rank as “source”. The received message 

is labeled by the parameter tag. This routine always works with MPI_Send to complete 

the message passing. 

MPI_Barrier(comm.,ierr) 

This routine makes synchronization in a communication group. Every process will block 

at the MPI_Barrier routine until all processes in the communication group reach same  

MPI_Allreduce(sendbuffer,recvbuffer,count,datatype,op,comm.,ierr) 

This routine operates a reduction and writes the results in all process. 
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From the above description, it shows that the data communication control in the 

programming is realized by simply setting parameters and calling proper MPI functions. 

Through that, MPI and its implementation MPICH2 offer a convenient way to directly 

control hardware such as the processors and network to realize the data communication 

among independent compute nodes.  

3.2.2 Data read and write in parallel computing 

Equation (3) is an initial value problem for each grid, so the initial information, like the 

initial unit magnetization vector on each computing grid must be given to start the Euler 

scheme. Therefore, program needs to read a huge input file with initial information to 

start the iteration. In addition, these data associated with the mesh of computing grid 

must be assigned to different computing nodes as Figure 3.1 shows. The first problem in 

parallelizing the iteration is how to read the initial data from input files and assigned the 

data to multiple computing nodes. Accordingly, an opposite problem is how to collect 

the resulting data from computing nodes and output them to several files in right 

sequence after the iteration is finished. This parallel reading and writing problem will be 

discussed here.     

 

It would be ideal if each computing node can directly read from (or write to) the same 

file simultaneously. Unfortunately, parallel I/O may induce some serious problem; the 

output file may be overwrote by the multiple writing operation, the parallel reading may 

not be supported by ability of the operating system to handle multiple reading operation 



  38 

    

at the same time. At current technology a parallel I/O system is still uncertain, some 

compromise must be made to perform the parallel reading and writing operation.  

 

In our program, sequential rather than parallel reading and writing is applied. There is a 

process, say the one with rank 1, will handle main operation. The operation includes 

reading from (or writing to) a single file, distributing input data or collecting resulting 

data among the local memories of multiple processors in the communication group, and 

reformatting those data. The actual reading procedure for a parallel implementation is 

shown as Figure 3.2. 

 

Three processes are assumed to take part in the parallel computation without loss of 

generality. The process 1 firstly reads the first part of input data and locates them in its 

local memory. It continues to read the second part of data and uses the MPI routine 

MPI_Send to send this part of data to process 2. The similar operation follows the 

second step except that the destination of third part of data is process 3. Accordingly, the 

process 2 and process 3 will call routine MPI_Recv to receive the data sent from 

process1 and locate them on their local memory. The opposite operation, writing 

resulting data to single file, can be figured out in similar way. 

 

It should be pointed out that the MPI sending or receiving operation during above 

procedure does not have to happen among multiple compute nodes via network. As 2.1 

mentioned, the cluster used here is a hybrid system with shared memory computer as  
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Figure 3.2 Sequential reading/writing data and distributing data through MPI. 
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compute node. Therefore, the multiple processors involved in the communication group 

may belong to the same compute node. As we know, the data communication inside 

single compute node is much faster than that among multiple compute nodes. It is very 

important to understand this character to optimize the performance of the parallel 

implementation on the cluster with hybrid structure. 

 

A similar consideration in above example exists when the first process reads the input 

data file on the hard drive. Through open directory file system, the common directory 

accommodates the I/O files and physically locates on the hard drive of the head node in 

our cluster. Other compute nodes can access the common directory via network, but the 

access speed is much slower than that accessing local hard drive via data bus. Therefore, 

if the first process in charge of reading file from hard drive can be assigned to the head 

node, it will read input file directly from local hard drive through data bus. Especially for 

the situation involving frequent I/O operation, like intense backup of huge intermediate 

results, this kind of optimization should be considered.  

 

The sequential reading and writing operation and distributing data through MPI can 

handle files with moderate size, which is just the case of our current simulation. If the 

simulation size goes much larger in future, some complex parallel reading and writing 

technology have to be introduced in our programming. A book by John M. introduces 

some advanced methods to realize parallel I/O
31

. 
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3.3   Parallel fast Fourier transformation  

After the initial data is read and distributed, the iteration based on Euler scheme can start 

simultaneously on multiple processors in the group. At each step, the main task is to 

calculate the driving force, Fδ δm , based on current unit magnetization vector field. 

But the calculation of driving force for each grid is highly dependent on the information 

related with all other grids in the computational region.  

 

With periodic boundary conditions, fast Fourier transform (FFT) method is often 

employed to deal with the non-local computation when solving phase field equation
32,33

. 

The method “converts the integral-differential equations into algebraic equations”
7
. The 

complexity for the direct computation of interaction between magnetization 

vectors, 2( )O N , will be reduced to ( log )O N N  by using fast Fourier transform.  

 

If FFT is implemented in our parallel program, the algorithm of FFT must be 

parallelized compatible with the parallel program. Because of the wide use of FFT, many 

references can be found on parallelizing FFT method. However, few parallel FFT codes 

are publicly available. 2D and 3D parallel FFT subroutines are developed by our group. 
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4 THE PERFORMANCE EVALUATION OF APPLE 

WORKGROUP CLUSTER 

The performance evaluation includes two parts: test of the software environment to see if 

the cluster supports general MPI program, and test of data communication performance 

on the workgroup cluster. 

4.1 Verify MPI functions 

The developed Apple workgroup cluster is to serve as parallel computing platform for 

MPI programs. After the software environment is set up, all MPI functions must be 

carefully tested. The error checking will assure the cluster system can perform as a 

capable platform of MPI programs.  

 

Some initial tests can be done by directly running the example programs, which come 

with MPICH2 software. If these programs successfully run on the cluster and return 

correct results, then a more thorough test is run with the command “make testing” from 

the top-level of mpich2 directory. It produces a summary of the test results. From the 

summary, all function related with the MPI functions in fortran program are error free in 

our cluster system.  
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4.2 Data communication performance 

4.2.1 Benchmarking point-to-point communication  

The MPI functions test only can determine if the installed version of MPICH2 is 

functioning in the current cluster system. But users may be more interested in the 

performance of their parallel implementation on the cluster system. Besides of the 

parallel implementation itself, the data communication performance is the most 

important factor to determine the overall performance of the potential MPI program. 

Given some performance parameters on the data communication, users may be able to 

estimate the performance of their MPI programs on the cluster system. 

 

The program mpptest is a performance test suite. This program is distributed with 

MPICH2. Once the MPICH2 is installed successfully, the executable, mpptest, is already 

available. It measures the MPI-based communication performance in several ways to 

reflect the performance.  

 

By measure some important parameters during the communication, mpptest provides a 

clear picture both for point-to-point and collective communication performance on our 

cluster system. In our implementation, block and non-blocking point-to-point 

communication, and collective communication are operated. Therefore, the mpptest is 

conducted based on these three types of data communication. 
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Figure 4.1 and Figure 4.2 show the performance of a single message sent between two 

processes based on blocking and non-blocking communication, respectively. The 

bandwidth and latency, two important parameters in communication, are revealed by the 

tests. The size of messages is automatically chosen in order to reveal the message size 

where the change of behavior happens.   

 

From Figure 4.1 and Figure 4.2, the latency for small massage is about 4 microseconds, 

and the maximum bandwidth is about 220MB/sec. The same parameters based on 

similar hardware, reported by Myrinet, are used to compare with our performance 

parameters. According to the report from Myrinet, the maximum bandwidth is about 230 

MB/sec, and the latency for empty message is about 9 microseconds, which proves that 

our cluster system have obtained the expected performance in point-to-point 

communication.  

 

The point-to-point communication tests provide us with certain confidence that the 

cluster system is functioning properly. Also, the test results show the best bandwidth 

performance dependent on the message size. From Figure 4.1(b) and Figure 4.2(b), a 

sudden drop in bandwidth happens when message size is increased to about 32000 bytes. 

This information may be useful when users try to control the message size to optimize 

their implementation performance.  
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                        (a)                                                          (b) 

 

                          (c)                                                     (d) 

Figure 4.1 Performance of blocking communication based on MPI_send routine.(a)latency for short 

message (b) bandwidth for short message  (c) latency for long message (d) bandwidth for 

long message. 
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                             (a)                                                                    (b) 

 

                            (c)                                                   (d) 

Figure 4.2 Performance of non-blocking communication based on MPI_send routine(a) latency for 

short message (b) bandwidth for short message  (c) latency for long message (d) 

bandwidth for long message. 

 

Another interesting phenomenon, revealed by the point-to-point communication test, is 

shown as Figure 4.3.The previous point-to-point communication tests are all conducted 

between two compute nodes via Myrinet network. However, the developed Apple 

workgroup cluster is based on shared memory computer nodes. The point-to-point 

communication can also be operated between two processors within the same compute 

node. In that situation, the data bus, rather than the Myrinet network, will be in charge of 
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the communication, and support faster communication speed as Figure 4.3 shows. This 

communication performance difference may affect the way we distribute parallel tasks 

among our cluster system. 

 

Figure 4.3 Point-to-point communication latency in distributed memory system and shared memory 

system.  

 

4.2.2 Benchmarking collective communication  

Another important data communication type applied in our parallel implementation is 

collective communication. Mpptest also can measure the communication performance 

based on this data communication type. The measured communication performance of 

MPI collective communication routine, MPI_reduce, is showed as Figure 4.4, which 
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behaves similarly with the one according to the report of Myrinet Company. Like point-

to-point communication, a sudden behavior change happens where the message size is 

increased to 1000 bytes.   

 

   (a)                                                                                 (b) 

Figure 4.4 Performance of collective communication based on MPI _reduce routine. 

(a)latency;  (b) bandwidth. 

 

Unlike point-to-point communication, collective communication involves multiple 

processes. As the number of involved processors increases, some MPI routines may 

induce a latency cost proportional to the number of processors. Therefore, scalability is 

another important consideration to evaluate a collective communication on our cluster 

system. Goptest, a MPI benchmarking program distributed with MPICH2, is used to test 

this property. Goptest will measure the collective communication performance 

dependent on the number of processors. 
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Figure 4.5 shows the average time for collective communication dependent on the 

number of processors. The tested MPI routine is MPI_reduce, and the message size 

varies from 256 bytes to 1024 bytes. From Figure 4.5, the message passing time does not 

increase significantly as the number of processors increases. This trend implies that the 

collective communication will not break down as more processors join in the group. 

 
Figure 4.5 Performance of collective communication dependent on number of processors. 

 

 

An interesting phenomenon related with the hybrid architecture of the Apple workgroup 

cluster is found in goptest. Before introducing it, a related background about how 

MPICH2 assigns parallel tasks to processors is given as Figure 4.6 illustrates.  
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Figure 4.6 The sequence to assign processes among multiple compute nodes. (a) circular way; (b) 

consecutive way. 

 

When a parallel implementation is started, MPICH2 needs to assign the parallel 

processes to the involved processors. The computer node in our cluster system has four 

processors. It can take four processes simultaneously. If a parallel job has four processes 

working on two compute nodes, the default operation is rank 0 and 2 will be assigned on 
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first node ,and rank 1 and 3 will be on second node. This circular way is shown in Figure 

4.6.a. But MPICH2 does offer option for users to control the process placement 

explicitly. The user may want to have consecutive ranks on the same node, so that rank 0 

and 1 will be on first node and rank 2 and 3 will be on second node. This consecutive 

way of processes placement is shown in Figure 4.6.b. 

 

The interesting phenomenon in goptest is that the collective communication performance 

is significantly affected by the way of processes placement. Figure 4.7 shows the 

average time for message passing dependent on number of processors. Figure 4.7.a is 

corresponding to the processes placement with circular fashion, and Figure 4.7.b is the 

results based on the processes placement with consecutive rank within one compute 

node. Obviously, the performance is greatly improved by assigning consecutive 

processes within one compute node. 

 

This performance difference induced by the way of processes placement is related with 

the hybrid architecture of our cluster. Unlike sequential computation, parallel 

computation is highly dependent on the architecture of the computing platform. 

Therefore, the optimizing operations for running the parallel implementation are 

encouraged based on the actual situation of the specified cluster system for the users. 
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(a) 

 

(b) 

Figure 4.7 Performance of collective communication. (a) assigning the processes in circular way; (b) 

assigning the processes in consecutive way. 
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5   PARALLEL IMPLEMENTATION OF PHASE FIELD 

MODELING OF MAGNETIZATION PROCESS IN TERFENOL-D 

CRYSTALS* 

Terfenol-D has been the leading magnetostrictive material for magnetomechanical 

transducers and actuators since its discovery in 1970’s.
34

 Because of its lower cost, 

twinned crystals are usually used in technological applications.
35

  Twinned crystals are 

grown along 112< >
c
 direction and composed of alternate crystalline layers of twin 

relation with 
c

{111} plane whose normal is perpendicular to the 112< >
c
 growth 

direction. 

 

Growth twinned Terfenol-D crystals have been studied over the past two decades. 

However, the domain-level mechanisms are still not fully understood. This is because 

the low magnetocrystalline anisotropy results in magnetization rotation that competes 

with domain wall motion, and their interplay leads to complex domain-level processes. 

 

Various models have been proposed to explain the magnetomechanical behaviors of 

Terfenol-D, which are based on different mechanisms. Magnetic domain rotation model 

assumes no interaction among different domains. The simulation of magnetization  

 

*Part of this section reprinted with permission from “Phase field modeling of 

magnetization process in growth twinned Terfenol-D crystals” by Y.Y.Huang and 

Y.M.Jin, 2008. Applied Physics Letters, 93, 142504(3pp.). Copyright © 2009 American 

Institute of Physics. 
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process is then reduced to the single magnetic domain rotation without considering the 

domain wall motion. In the single magnetic domain rotation model, the process is  

 

relative simple. The theoretical results are easy to calculate. In this case, the simulated  

results by the parallel implementation will be compared with the theoretical results to 

test our cluster and the parallel implementation.  

 

However, the single magnetic domain rotation model is not able to realistically describe 

the domain evolution in Tefenol-D. In fact, the magnetic and elastic interaction among 

different domains will greatly affect the magnetic domain evolution. But the 

computation related with the interaction is very complicated. No previous work has been 

reported to properly take into account this important interaction. The phase field model 

of magnetic materials in Section 2.1 can effectively evaluate the interaction effect with 

the help of parallel computing on our developed workgroup cluster. The simulated 

magnetization processes in twinned Terfenol-D crystal by our parallel implementation 

will be presented as a successful application of the parallel computing for phase field 

model of magnetic materials. 

5.1 Simulation of single magnetic domain rotation 

Figure 5.1(a) shows the initial spacial distribution of magnetization vectors in a single 

magnetic domain. All magnetization vectors are oriented along the same easy axis. The 

crystal structure is assumed to be twinning-free. 
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The physical properties of Terfenol-D used in our simulation are listed in Table 5.1. The 

initial horizontal magnetization direction is corresponding to easy axis,[111]
c
. The 

vertical direction, along which the magnetic field is applied, is  [ 1 12]
c
 in the crystal. 

 

 

  (a)                                                         (b) 

 

  (c)                                                           (d) 

Figure 5.1 The magnetic domain temporal evolution under vertical external magnetic field. (a) time 

steps=0; (b)time=100; (c) time =500; (d) time =1000. 
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Table 5.1 The physical properties of Terfenol-D used in the testing simulation 

Ms, Saturation Magnetization 58 10 / m× A
36,37

 

100λ , Magnetostriction 690 10 /mm mm
−×  

111λ  61640 10 /mm mm
−× 36

 

1K ,  Magnetocrystalline Anisotropy 5 30.6 10  J / m− × 38
 

2K  52.0 10  J/m− × 38
 

YE ,  Yong’s modulus 30 Gpa
39,40

 

µ ,  Shear modulus 11.5 Gpa 

γ  ,  Possion ratio  0.3
39,40

 

 

When an external magnetic field is applied along vertical direction, the magnetization 

vectors will homogenously rotate and reorient to the easy axis closer to the direction of 

external field. This magnetization process driven by the applied field, as the result of 

minimizing total free energy, has been previously studied by domain theory. 

 

Figure 5.1 shows the simulated results on the temporal evolution of magnetic domain 

under 2000 Oe applied field along vertical direction. It is shown that the magnetization 

vectors rotate and reorient to the [ 1 11]
c
 easy axis, the closest easy axis to the applied 

field. The simulation results predict same trend of magnetic domain evolution during 

magnetization process as the theoretical prediction according to domain theory. 

 

Besides the qualitative comparison between our simulation results and theoretical 

prediction, an analytical solution for this case is also needed to verify the simulation 

results quantitatively. A simple sequential program can give the correct quantitative 

results for the magnetization process by tracking the magnetization vector corresponding 
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to the minimum energy. Following previous work on magnetic domain rotation model
41

, 

the simulation of a single magnetic domain rotation can be reduced to simulate the 

behavior of a single magnetization vector under an external magnetic field, which is easy 

to be calculated based on the principle of minimization of free energy. The sequential 

code to implement this function is included in the Appendix C.  

 

Figure 5.2 shows the comparison of magnetization curves simulated by the parallel 

implementation of phase field model and a simple sequential program, respectively. The 

exactly same results suggest that the parallel implementation on our cluster system is 

functioning properly.  

0 0.080.0480.0320.016 0.064

-0.5

0

0.5

1.0

Parallel program

Sequential program

sM/Η
 

Figure 5.2 Magnetization curve simulated by parallel implementation and a simple sequential 

program. 
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5.2 Simulation of magnetization process in twinned single crystal 

Most of the previous studies of magnetization processes in Terfenol-D crystal have 

assumed no interaction among different magnetic domains in Terfenol-D
35,37,41,42

. The 

magnetic domain rotation without domain wall motion is considered to be the only 

mechanism during magnetization process, which is against experimental observations. 

Our parallel computing of the phase field model of magnetic materials will include the 

magnetic and elastic interaction to quantitatively describe the magnetization processes 

involving both magnetization rotation and domain wall motion in twinned Terfenol-D 

crystals. 

 

Figure 5.3 (a) illustrates an energy-minimizing domain configuration in growth twinned 

Terfenol-D crystal, which is used as initial state of our simulations. The crystal consists 

of alternate twin-related plate-shaped grains, and magnetization forms continuous 180° 

domains across twin boundaries covering multiple grains, as shown in Figure 5.3 (a).  

Figure 5.3 (b) illustrates the crystallographic orientations of a parent layer and its twin 

layer, as well as the 111 c< >  easy magnetization axes in respective layers. In the initial 

state, magnetization vectors are aligned with easy axes throughout the crystal (i.e., VP1, 

VP1′ in parent crystal and VT1, VT1′ in twin crystal), minimizing magnetocrystalline 

energy. The domain continuity across twin boundaries makes them free of magnetic 

charge and lattice misfit, minimizing magnetostatic and elastic energies. Such a domain 
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state is stable and is observed in experiments by applying a compressive stress along the 

[112]c  growth direction, and is the most desirable initial domain configuration because it  

 

Figure 5.3  (a) Energy-minimizing domain configuration in growth twinned Terfenol-

D crystal. Magnetization vectors are aligned perpendicular to (111) growth 

twin boundaries and form continuous 180°°°° domains. (b) Schematics of 

crystallographic orientations and magnetization easy axes (projected to the 

plane of figure) of a pair of twin-related crystals (parent and twin). Only 

the easy axes whose dot products with applied magnetic field Hex along 

c[112]  growth direction are non-negative are shown.
43

 

 

generates maximum field-induced deformation under magnetic field along [112]c  

growth direction. It is worth noting that, starting from the initial state, complex domain 

evolution processes take place in response to external magnetic field, where the 

complexity results from the frustration in magnetic and elastic compatibilities at twin 

boundaries. With increasing magnetic field applied along [112]c , magnetization vectors 

tend to reorient to easy axes closer to [112]c , namely, VP2, VP3, VT2, and VT3. However, 
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the existence of twin boundaries leads to magnetic charge and lattice misfit there: among 

the easy axes shown in Figure 5.3(b), besides of the initial state, only VP2/VT3 and 

Vp3/VT2 are magnetically compatible, but they are elastically incompatible. As a result, 

significant internal magnetic field and stress field develop, causing strong domain 

interactions. We simulate the detailed domain evolutions to investigate the important 

roles played by magnetic and elastic interactions in the magnetization processes. A 

computation cell of 256×128 with grid size l=10nm and periodic boundary condition is 

used to describe a representative Terfenol-D volume containing parent and twin grains 

and initial 180° magnetic domains. The parameter used in the simulation is the same as 

Table 5.1 lists.  

 

The computer simulations reveal complex domain microstructure evolutions involving 

both magnetization rotation and domain wall motion, and clarify the underlying domain 

mechanisms responsible for the experimentally observed jump effect. In order to analyze 

the respective contributions from magnetostatic interaction and elastic interaction, two 

different cases are considered: (1) magnetically but not elastically interacting domains 

with both magnetization rotation and domain wall motion, and (2) taking into account all 

energy contributions and allowing magnetization to evolve freely. In both cases, 

magnetic field is applied along [112]c .  

 

The simulated magnetization curves are shown in Figure 5.4. A very large discontinuous 

change is observed in both cases. This magnetization jump effects have been reported in  
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Figure 5.4 Simulated magnetization curve in case (1) and (2).  

 

experimental observation.
38

 The magnitude of the applied field corresponding to the 

jump effect is called critical field. The critical field is an important parameter when 

describe the magnetization behavior of Terfenol-D. 

 

A detailed magnetic domain evolution during the magnetization process would help to 

explain the magnetization jump effect. Figure 5.5 and Figure 5.6 show the magnetic 

domain evolution in response to the applied field in case (1) and case (2), respectively.   
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(h)  
Figure 5.5 Magnetic domain evolution for case (1). The vector plotted is the projection of 

magnetization vector on the plane. The contour colors represent the magnetization vector 

component out of the plane. 
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                               (e)                                                                         (f) 
Figure 5.6 Magnetic domain evolution for case (2). The vector plotted is the projection of 

magnetization vector on the plane. The contour colors represent the magnetization vector 

component in horizontal direction. 

 

In case (1), the simulation observes nucleation and growth of VP2, VP3, VT2 and VT3 

domains and finds that domain wall motion is the main mechanism producing one-step 

jump as shown in Figure 5.5. During the magnetization jump, the domains are 

magnetically compatible both inside grains (forming three-domain configurations 
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VP1/VP2/VP3, VT1/VT2/VT3, and two-domain configurations VP1′/VP3, VT1′/VT3) and 

across twin boundaries (forming VP2/VT3 and VP3/VT2 neighboring pairs), which, 

however, is elastically incompatible. Such domain structure is possible only in a system 

where elastic interaction energy is significantly smaller than magnetocrystalline 

anisotropy and magnetostatic interaction energies.  

 

In case (2), the critical field is higher than that in case (1), as Figure 5.6 shows. The 

higher critical field is due to the additional elastic constraint that necessitates a higher 

field to activate nucleation and domain wall motion. More complicated domain 

evolution is also observed in this case. But the phenomenon that domain wall motion 

follows the initial magnetic domain rotation is observed both in case (1) and case (2).  

 

Comparing the simulated domain evolution in case(1) and (2) with the single magnetic 

domain rotation model in 5.1, we found that domain interactions through internal 

magnetic and elastic fields greatly affect the predicted magnetization processes. Thanks 

to the paralleling computing of phase field model based on our cluster system, we can 

take into account these complicated interaction effects in order to accurately characterize 

the magnetization of twinned Terfenol-D crystals, finding the underlying mechanisms 

involve both domain wall motion and magnetization rotation.  
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6 CONCLUSIONS AND FUTURE WORK 

According to the requirement of the parallel computing for phase field model of 

magnetic materials, a workgroup cluster system with high performance network was 

selected as the computation platform to support the parallel implementation. We have 

successfully deployed the hardware system and configured the software environment to 

build an 8-node workgroup cluster system, serving as a parallel computing platform for 

MPI program. The 8-node workgroup cluster can simultaneously support a maximum of 

32 processes for a MPI program to speed up the execution. The distributed memory 

architecture in the cluster system accommodates 64 GB memory to support the parallel 

computation usually involving huge data. And the high performance Myrinet network 

greatly improves the performance of data communication among compute nodes. 

 

Several testing programs have been implemented to evaluate the performance of the 

cluster system, especially for the application of parallel computation using MPI. The 

tested results show that the cluster system can efficiently execute MPI program with 

intensive communication. 

 

A simulation of the single magnetic domain rotation in Terfenol-D crystals was 

performed by our parallel implementation of phase field model of magnetic materials on 

the cluster system. The simulated results agree well with the theoretical prediction. A 

further simulation including magnetic and elastic interaction using our parallel 

implementation shows the important roles of these interaction effects in the 
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magnetization processes of twinned Terfenol-D crystals. This simulation example proves 

that the paralleling computing for the phase field model of magnetic materials based on 

the workgroup cluster system offers a promising tool for realistic domain analysis.  

 

The developed computer cluster and parallel program lay the foundation for our planned 

future work: 

A. Analyze the output of benchmarking implementations to optimize the execution 

of the MPI program; 

B. Perform 3-D simulations of magnetization processes in Terfenol-D single and 

polycrystals; 

C. Simulate domain phenomena in other magnetic materials of interests. 
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APPENDIX A. LIST OF HARDWARE IN THE 8-NODE APPLE 

WORKGROUP CLUSTER 

 

 

hardware description 

Master node Xserve Quad Xeon server: 

Two 2.66GHz Dual-Core Intel Xeon 

8GB (8x1GB) memeory 

750 GB Serial ATA ADM @ 7200-rpm hard drive 

24x Combo (DVD-ROM/CD-RW) 

Slave nodes Xserve Quad Xeon server: 

Two 2.66GHz Dual-Core Intel Xeon 

8GB (8x1GB) memeory 

80 GB Serial ATA ADM @ 7200-rpm hard drive 

24x Combo (DVD-ROM/CD-RW) 

 

First management network 3Com 24-port  Baseline Switch 2824 & cable 

Second high performance 

communication network 

16-port Myrinet-2000 switch with Fiber ports and monitoring  

8 Myrinet-2000 PCI-X NIC (2MB memory) 

Myrinet-2000 fiber cable 

Back up power supply APC Smart-UPS 1000VA USB & Serial Rack-Mount 1U 120V 

Power supply  APC 14-outlet, 15A, 0U PDU (AP9567) 

Cooling system APC rack air removal unit 

Enclosure APC NetShelter SX 42U Enclosure with Sides 
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APPENDIX B. INSTALLED SOFTWARE ON THE 8-NODE 

APPLE WORKGROUP CLUSTER 

 

Software installed  Description 

Mac OS X Serve Operating system, preinstalled by vendor 

Apple Remote Desktop  Remote administration tool 

Absoft Pro Fortran 10.1 x86-32 OSX Commercial fortran compiler for Mac OS 

X system  

MX-2G A low-level message-passing system for 

Myrinet networks 

MPICH2-MX A port of MPICH2 ( an implementation of 

MPI) on top of MX(ch_mx) 

FFTW3 A free C subroutine library for computing 

the discrete Fourier transform (DFT) 
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APPENDIX C.  SEQUENTIAL PROGRAM OF DOMAIN 

ROTATION MODEL Program rotation  implicit none  integer :: length,H_load_period,Record_period,i,n,j  real:: k1,k2,time_step,p  real:: M_initial(3),H_direction(3),H_load_increase(3),tmp,H(3),mh_tmp  real:: Energy,Force(3),tmp_Force(3),Magnetization(3),Magnetization_sqrt(3)  real,allocatable:: Energy_record(:),Magnetization_record(:,:),H_record(:,:) open(unit=11,file="Martensite.dat") read(11,*)time_step,length,record_period read(11,*)H_direction read(11,*)H_load_increase read(11,*)H_load_period read(11,*)M_initial Magnetization=M_initial read(11,*)k1,k2 read(11,*)H read(11,*)p close (11) allocate(Magnetization_record(3,length/record_period+1),H_record(3,length/record_period+1)) allocate(Energy_record(length/record_period+1)) tmp=sqrt(H_direction(1)**2+H_direction(2)**2+H_direction(3)**2) H_direction=H_direction/tmp tmp=sqrt(Magnetization(1)**2+Magnetization(2)**2+Magnetization(3)**2) Magnetization=Magnetization/tmp Magnetization_sqrt=Magnetization**2 Energy=k1*(Magnetization_sqrt(1)*Magnetization_sqrt(2)&    +Magnetization_sqrt(2)*Magnetization_sqrt(3)&    +Magnetization_sqrt(1)*Magnetization_sqrt(3))&    +k2*Magnetization_sqrt(1)*Magnetization_sqrt(2)*Magnetization_sqrt(3)&    -Magnetization(1)*H(1)-Magnetization(2)*H(2)-Magnetization(3)*H(3) Magnetization_record(:,1)=Magnetization Energy_record(1)=Energy do i=1,length if(mod(i,H_load_period)==0)H=H+H_load_increase Magnetization_sqrt=Magnetization**2 Force(1)=-2*k1*Magnetization(1)*(Magnetization_sqrt(2)+Magnetization_sqrt(3))&    -2*k2*Magnetization(1)*Magnetization_sqrt(2)*Magnetization_sqrt(3)&    +H(1) Force(2)=-2*k1*Magnetization(2)*(Magnetization_sqrt(1)+Magnetization_sqrt(3))&    -2*k2*Magnetization(2)*Magnetization_sqrt(1)*Magnetization_sqrt(3)& 
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   +H(2)  Force(3)=-2*k1*Magnetization(3)*(Magnetization_sqrt(2)+Magnetization_sqrt(1))&    -2*k2*Magnetization(3)*Magnetization_sqrt(1)*Magnetization_sqrt(2)&    +H(3)  tmp_Force=Force     mh_tmp=sum(Magnetization*Force) Force=Force-mh_tmp*Magnetization Force(1)=Force(1)+p*(Magnetization(2)*tmp_Force(3)-Magnetization(3)*tmp_Force(2)) Force(2)=Force(2)+p*(Magnetization(3)*tmp_Force(1)-Magnetization(1)*tmp_Force(3)) Force(3)=Force(3)+p*(Magnetization(1)*tmp_Force(2)-Magnetization(2)*tmp_Force(1)) Magnetization=Magnetization+Force*time_step tmp=sqrt(Magnetization(1)**2+Magnetization(2)**2+Magnetization(3)**2) Magnetization=Magnetization/tmp Energy=k1*(Magnetization_sqrt(1)*Magnetization_sqrt(2)&    +Magnetization_sqrt(2)*Magnetization_sqrt(3)&    +Magnetization_sqrt(1)*Magnetization_sqrt(3))&    +k2*Magnetization_sqrt(1)*Magnetization_sqrt(2)*Magnetization_sqrt(3)&    -Magnetization(1)*H(1)-Magnetization(2)*H(2)-Magnetization(3)*H(3) if(mod(i,record_period)==0)then Energy_record(i/record_period+1)=Energy Magnetization_record(:,i/record_period+1)=Magnetization H_record(:,i/record_period+1)=H end if  end do open(unit=10,file="magnetic.dat") n=length/Record_period+1 write(10,*)   'VARIABLES= "t", "H1", "H2", "H3", "M1", "M2", "M3" ' do j=1,n  write(10,*) j,H_record(:,j),Magnetization_record(:,j) end do close (10) open(unit=12,file="Energy.dat") n=length/Record_period+1 do j=1,n  write(12,*)j,Energy_record(j) end do close (12) end 
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