

FUNCTION-BASED DESIGN TOOLS FOR ANALYZING

THE BEHAVIOR AND SENSITIVITY OF COMPLEX SYSTEMS

DURING CONCEPTUAL DESIGN

A Dissertation

by

RYAN SCOTT HUTCHESON

Submitted to the Office of Graduate Studies of

Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2009

Major Subject: Mechanical Engineering

FUNCTION-BASED DESIGN TOOLS FOR ANALYZING

THE BEHAVIOR AND SENSITIVITY OF COMPLEX SYSTEMS

DURING CONCEPTUAL DESIGN

A Dissertation

by

RYAN SCOTT HUTCHESON

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Daniel McAdams
Committee Members, Julie Linsey
 Make McDermott
 Hamid Toliyat
Head of Department, Dennis O’Neal

May 2009

Major Subject: Mechanical Engineering

iii

ABSTRACT

Function-based Design Tools for Analyzing the Behavior and Sensitivity

of Complex Systems During Conceptual Design. (May 2009)

Ryan Scott Hutcheson, B.S., Missouri University of Science and Technology;

M.S., Missouri University of Science and Technology;

Chair of Advisory Committee: Dr. Daniel McAdams

Complex engineering systems involve large numbers of functional elements. Each

functional element can exhibit complex behavior itself. Ensuring the ability of such

systems to meet the customer’s needs and requirements requires modeling the behavior

of these systems. Behavioral modeling allows a quantitative assessment of the ability of

a system to meet specific requirements. However, modeling the behavior of complex

systems is difficult due to the complexity of the elements involved and more importantly

the complexity of these elements’ interactions.

In prior work, formal functional modeling techniques have been applied as a means of

performing a qualitative decomposition of systems to ensure that needs and requirements

are addressed by the functional elements of the system. Extending this functional

decomposition to a quantitative representation of the behavior of a system represents a

significant opportunity to improve the design process of complex systems.

To this end, a functionality-based behavioral modeling framework is proposed along

with a sensitivity analysis method to support the design process of complex systems.

These design tools have been implemented in a computational framework and have been

used to model the behavior of various engineering systems to demonstrate their maturity,

application and effectiveness. The most significant result is a multi-fidelity model of a

hybrid internal combustion-electric racecar powertrain that enabled a comprehensive

quantitative study of longitudinal vehicle performance during various stages in the

iv

design process. This model was developed using the functionality-based framework

and allowed a thorough exploration of the design space at various levels of fidelity. The

functionality-based sensitivity analysis implemented along with the behavioral modeling

approach provides measures similar to a variance-based approach with a computation

burden of a local approach. The use of a functional decomposition in both the

behavioral modeling and sensitivity analysis significantly contributes to the flexibility of

the models and their application in current and future design efforts. This contribution

was demonstrated in the application of the model to the 2009 Texas A&M Formula

Hybrid powertrain design.

v

TABLE OF CONTENTS

 Page

ABSTRACT.. iii

TABLE OF CONTENTS... v

LIST OF FIGURES... vii

LIST OF TABLES... xi

1. INTRODUCTION: THE DESIGN OF COMPLEX SYSTEMS 1

 1.1 Objectives of the Research... 3
 1.2 Foundations of the Solution – Functional Modeling........................... 3
 1.3 Procedure .. 6
 1.4 Terminology.. 6
 1.5 Comprehensive Example ... 7

2. PRODUCT DESIGN ... 9

 2.1 Early Engineering Design.. 10
 2.2 Reconciling the Various Methods .. 14
 2.3 Product Planning ... 16
 2.4 Conceptual Design .. 20
 2.5 Functional Organization of Early Design for Complex Systems......... 25
 2.6 Tools to Assist Design of Complex Systems...................................... 33

3. FUNCTIONALITY ASSISTED BEHAVIORAL MODELING....................... 34

 3.1 The Design of Systems .. 35
 3.2 Function-Based Behavioral Modeling.. 40
 3.3 Automotive Model Example.. 49
 3.4 Conclusions... 66

4. SENSITIVITY ANALYSIS IN EARLY DESIGN... 68

 4.1 Sensitivity Analyses in Engineering Design....................................... 70
 4.2 Hybrid Variation-Based Local Sensitivity Measures.......................... 73
 4.3 Example .. 77
 4.4 Conclusions... 85

vi

Page

5. COMPUTATIONAL IMPLEMENTATION OF THE DESIGN TOOLS......... 87

 5.1 Automated Model Assembly and Solution in Practice........................ 87
 5.2 Model Assembly and Solution Framework .. 88
 5.3 Development of a Modeling Framework.. 92
 5.4 Framework Example ... 117
 5.5 Conclusions... 122

6. THE EARLY DESIGN OF A FORMULA HYBRID POWERTRAIN............. 124

 6.1 Example Introduction .. 124
 6.2 Pre-design Activities ... 128
 6.3 Design Process .. 134
 6.4 Design Synthesis ... 148

7. CONCLUSION.. 160

REFERENCES.. 163

APPENDIX 1 .. 170

APPENDIX 2 .. 173

APPENDIX 3 .. 182

APPENDIX 4 .. 183

APPENDIX 5 .. 185

VITA... 188

vii

LIST OF FIGURES

FIGURE Page

 2.1 Functional Model of the Design of a System ... 29

 2.2 Planning Functional Model.. 29

 2.3 Conceptual Design Functional Model.. 30

 2.4 Modified Design Decomposition Functional Model................................. 32

 2.5 Modified Design Synthesis Functional Model ... 33

 3.1 Hybrid Powertrain Black-box Model... 42

 3.2 Hybrid Powertrain Functional Model .. 43

 3.3 Hybrid Powertrain Type I Flow Routing.. 45

 3.4 Hybrid Powertrain Functional Model (Version 2).................................... 51

 3.5 Type 2 Model Flow Routing.. 52

 3.6 Convert Chemical Energy to Rotational Energy Type I Model Element... 54

 3.7 Provision Electrical Energy Type I Model Element 55

 3.8 Convert Electrical Energy to Rotational Energy Type I Model Element... 55

 3.9 Distribute Rotational Energy Type I Model Element 55

 3.10 Transfer Mechanical Energy Type I Model Element................................ 56

 3.11 Distribute Mechanical Energy Type I Model Element 56

 3.12 Convert Chemical Energy to Rotational Energy Type II Model Element . 59

 3.13 Provision Electrical Energy Type II Model Element................................ 59

 3.14 Convert Electrical Energy to Rotational Energy Type II Model Element . 59

viii

FIGURE Page

 3.15 Distribute Rotational Energy Type II Model Element 60

 3.16 Distribute Mechanical Energy Type II Model Element 60

 3.17 Transfer Mechanical Energy Type II Model Element 60

 3.18 Autocross Speed Profiles... 64

 4.1 Example Functional Model.. 78

 4.2 Example Flow Routing and Type Model ... 78

 4.3 HyVar Results Charted.. 82

 4.4 Global Variation-based Results Charted .. 85

 5.1 Example System Functional Model ... 89

 5.2 Example System Flow Routing Model .. 89

 5.3 User Definition of Model Element Flow Chart .. 93

 5.4 PROV_ELCE_II_0000_a Class Definition .. 94

 5.5 PROV_ELCE_II_0000_a Constructor ... 95

 5.6 PROV_ELCE_II_0000_a Parameter Sample ... 95

 5.7 PROV_ELCE_II_0000_a SetParameterValues Method........................... 96

 5.8 PROV_ELCE_II_0000_a Process Method .. 96

 5.9 PROV_ELCE_II_0000_a FeedForward Method...................................... 97

 5.10 PROV_ELCE_II_0000_a Integration Methods.. 97

 5.11 User Definition of New Model Flow Chart.. 98

 5.12 FullSensTest Class Definition ... 99

 5.13 FullSensTest Naming Conventions.. 99

ix

FIGURE Page

 5.14 FullSensTest Constructor .. 101

 5.15 FullSensTest PreProcess Method... 102

 5.16 Example Main Function .. 103

 5.17 Model Element Assembly Flow Chart ... 103

 5.18 FeedForward Order of Evaluation Determination Flow Chart.................. 104

 5.19 BuildFeedForwardMaps Allocation Code.. 106

 5.20 BuildFeedForwardMaps Generation Code (1) ... 106

 5.21 BuildFeedForwardMaps Generation Code (2) ... 107

 5.22 BuildFeedForwardMaps Generation Code (3) ... 108

 5.23 Local to Global Flow Variable Mapping Flow Chart 109

 5.24 BuildStateMap Initialization Code... 110

 5.25 BuildStateMap Generation Code ... 111

 5.26 BuildStateMap Clean Up Code.. 111

 5.27 Model Solution Algorithm Flow Chart .. 112

 5.28 IntegrateRK4HybridSens Initialization Code (1) 113

 5.29 IntegrateRK4HybridSens Initialization Code (2) 113

 5.30 IntegrateRK4HybridSens Solution Loop (1) .. 114

 5.31 IntegrateRK4HybridSens Solution Loop (2) .. 114

 5.32 IntegrateRK4HybridSens Solution Loop (3) .. 115

 5.33 IntegrateRK4HybridSens Solution Loop (4) .. 115

 5.34 IntegrateRK4HybridSens Solution Loop (5) .. 116

x

FIGURE Page

 5.35 IntegrateRK4HybridSens Solution Loop (6) .. 116

 5.36 IntegrateRK4HybridSens Solution Loop (7) .. 117

 6.1 Design Decomposition .. 128

 6.2 Design Synthesis ... 128

 6.3 Hybrid Powertrain Functional Model .. 136

 6.4 Type I Model Point Scoring Predictions .. 143

 6.5 Autocross Event Sensitivities .. 145

 6.6 Electric Only Acceleration Event Sensitivities... 146

 6.7 Unrestricted Acceleration Event Sensitivities .. 146

 6.8 Hybrid Powertrain Functional Model for Type II Analysis 150

 6.9 Hybrid Flow Type/Routing Model for Type II Analysis 150

 6.10 Predicted Point Scoring from Type II Analysis.. 153

 6.11 Autocross Sensitivities for Best AC Concept... 156

 6.12 Autocross Sensitivities for Best DC Concept... 156

xi

LIST OF TABLES

TABLE Page

 2.1 Engineering Design Process Stages ... 9

 2.2 Cross’s Design Activities... 11

 2.3 Characteristics of Early Design.. 11

 2.4 Mapping Characteristics to Activities .. 12

 2.5 Early Design Activities.. 12

 2.6 Early Design Activities Recommended by Pahl and Beitz........................ 12

 2.7 Activities in Ullman’s Early Design Process.. 13

 2.8 Otto and Wood Early Design Activities ... 13

 2.9 Combined List of Design Activities... 14

 2.10 Reconciled Early Design Process... 15

 3.1 Flow Variable Types ... 44

 3.2 Hybrid Powertrain Type I Flows.. 45

 3.3 Hybrid Powertrain FourCC Codes ... 45

 3.4 Behavioral Model Element Types.. 47

 3.5 Type Trends .. 47

 3.6 Convert Elec. E. to Rot. E. Type I Model Variables................................. 48

 3.7 Convert Elec. E. to Rot. E. Type I Model Example.................................. 48

 3.8 Type 2 Model Flow Variables ... 52

 3.9 Type 1 Model Elements... 53

xii

TABLE Page

 3.10 Type 2 Model Elements... 57

 3.11 Type I Model Parameters... 62

 3.12 Type II Model Parameters ... 63

 3.13 Acceleration Results .. 63

 3.14 Autocross Results .. 63

 4.1 Characterization of Sensitivity Analysis Methods 71

 4.2 Example FourCC Codes .. 79

 4.3 Model Flow Variables ... 79

 4.4 Model Relationships .. 79

 4.5 Model Parameters.. 80

 4.6 HyVar Results ... 81

 4.7 Sensitivity Parameters ... 83

 4.8 Global Variation-based Results.. 84

 5.1 Three-function Model Flow Variables ... 89

 5.2 Three-function Model Elements... 90

 5.3 Model Element Descriptions.. 118

 5.4 Flow Variable Descriptions ... 118

 5.5 Causal Variable Descriptions... 118

 5.6 PROV ELCE Element Description .. 119

 5.7 CONV ELCE to ROTE Element Description... 119

 5.8 EXPR ROTE Element Description .. 119

xiii

TABLE Page

 5.9 Feedforward Input Map ... 120

 5.10 Feedforward Output Map... 120

 5.11 Feedforward Evaluation Order... 121

 5.12 Flow Variable Map.. 121

 6.1 High Level Formula Hybrid Requirements .. 131

 6.2 Top Five Team Results from 2008 Formula Hybrid Competition............. 135

 6.3 Hybrid Racecar Structured Requirements .. 137

 6.4 Early Design Requirements ... 138

 6.5 Filtered Early Design Requirements .. 139

 6.6 Performance Metrics ... 140

 6.7 Type I Model Parameter Values... 142

 6.8 Identified Solutions ... 149

 6.9 Parameter Values for Type II Behavior Analysis 151

 6.10 Predicted Results for Selected Concepts .. 158

 A1.1 Product Requirements.. 172

 A2.1 Car System Requirements.. 173

 A2.2 Powertrain Requirements... 174

 A2.3 Structure and Safety Requirements .. 175

 A2.4 Control Requirements.. 179

 A2.5 Suspension Requirements .. 180

 A2.6 Driver’s Safety Requirements.. 181

xiv

TABLE Page

 A4.1 Type I Model Variables ... 183

 A4.2 Type II Model Variables.. 183

 A5.1 Raw Type I Analysis Results ... 185

 A5.2 Raw Type II Analysis Results.. 186

 1

1. INTRODUCTION: THE DESIGN

OF COMPLEX SYSTEMS

As developments in technology have matured, the task of designing engineering systems

has become more difficult. The design of a modern engineering system includes

complex multidisciplinary problems, multi-level optimization and shorter design cycles.

As a result, engineering designers have been increasingly relying on structured design

processes along with model-based design techniques as a means of facilitating and

organizing the design process of systems. Within both the Systems Engineering [1, 2]

and Design Theory communities [3-6], model-based approaches to design have been

proposed as a means of developing, representing, storing and communicating critical

information about a system, its desired functionality and the various potential solutions

to its functionality.

During conceptual design, the use of quantitative models to assist concept generation

and selection has become more prevalent. These models, often referred to as behavioral

models, describe the performance of a concept relative to a set of target metrics and are

used to evaluate the concept’s ability to meet requirements and customer needs. For

example, a dynamic drivetrain model may be used during the design of a hybrid

automobile in order to select an appropriate drivetrain configuration.

Unfortunately, the actual process used to create such models during conceptual design is

often not well explained in design literature. For example, the Systems Engineering and

Analysis text [2] used in engineering design courses at several universities (including

Texas A&M) clearly demonstrates the need for creating behavioral models during design

but does not present a process for how to actually implement them within the design

process or how to create them using the physical modeling skills learned in traditional

engineering courses (statics, linear systems, etc.). 1

This dissertation follows the style of the Journal of Mechanical Design.

 2

In practice, these models are made once a concept has been fully developed and all form

solutions to desired functionality are known. Recent developments in component-based

modeling have facilitated this model definition process by associating model elements

with specific components [7-9]. This approach promotes model re-use and allows

multiple combinations of components to be investigated. The basic modeling process

used in this approach is as follows:

1. Describe the desired functionality of the system,

2. Find component solutions for functions,

3. Combine solutions into concepts,

4. Model the components (or re-use model elements),

5. Combine the elements to produce a complete system model,

6. Evaluate the concept using the model,

7. Manually restart the process at Step 2 until a satisfactory set of concepts has been

found.

The first two steps are generally espoused in design engineering texts [1-6] but not in the

context of behavioral model creation. However, for such component-based approaches

to be used, a full set of components must be established before the system can be

modeled and a function-based approach (Steps 1 and 2) is generally recommended to

find these components. Additionally, manual modeling and model assembly work is

required in order to develop behavioral models for each concept once components have

been identified. While component-based modeling approaches promote model re-use, it

is only at the component level.

Creating behavioral models based on the functionality of a system presents several

opportunities to improve current system design practices during early design. Three

specific tools that utilize the function-based behavioral modeling approach were

developed and are presented in this work. These tools include a quantitative behavioral

analysis based on a formal functional decomposition, a function-based sensitivity

analysis along with new sensitivity metrics and a software implementation of the

behavioral and sensitivity modeling techniques.

 3

1.1. OBJECTIVES OF THE RESEARCH

To overcome the limitations of traditional component-based modeling approaches, it is

proposed that recent developments in functional representations [10] along with

precedents found in object-oriented programming [11] be used to re-structure the

behavioral modeling process of systems during the early design phase. Specific

objectives of this restructuring include:

• Integration with activities currently performed in the early design process,

• A broad solution domain and range of applications,

• Promotion of model reuse at the functional level along with the solution family

and component levels,

• Multi-fidelity modeling,

• A computational implementation that utilizes modern programming philosophies.

1.2. FOUNDATIONS OF THE SOLUTION – FUNCTIONAL MODELING

Functional models are graphical tools for representing the routing and transformation of

energy, material and signal flows through a system. Traditionally, functional models

have been created informally as schematics, block-diagrams and function structures.

Recently, significant research has been performed to streamline and formalize the

process of creating and representing functional models [10]. This research has enabled

the development of several function-based design tools aimed at improving the design

process in all phases (from product planning to detailed design). Specifically, several

tools have been proposed that use the functions in a functional model as a starting point

for component identification [12, 13]. In general, these tools use qualitative means for

selecting valid component combinations such as historic compatibility and failure rates.

Additionally, attempts have been made to create behavioral models based on these

functional models in order to provide a quantitative means of performing concept

identification and selection [14]. However, these methods are generally limited in scope

with respect to model representation and system complexity.

 4

The implementation of such an approach has a precedent in the transition in software

development from procedural programming to object-oriented software design.

Essentially, behavioral modeling currently resembles the approach used in procedural

programming. The object in procedural programming, as described by Bjarne Stroustrup

(the creator of the C++ programming language) in [11] is to “decide which procedures

you want” then “use the best algorithms you can find.” Such programming practices

have a strong focus on the process the algorithms employ rather than the objects they are

acting on. This style of programming is analogous to the concept of building behavioral

models for a system once the components of that concept have been completely

identified.

Modular programming is described as “decide which modules you want” then “partition

the program so that data is hidden within modules” [11]. This paradigm focuses more

on the “organization of data” [11] instead of the “design of procedures” [11] and relates

to the practice of using component-based modeling during the design of systems in that

modules are created to contain the data related to specific components and then

combined to produce a complete model.

Object-oriented programming is described as “decide which classes you want; provide a

full set of operations for each class” and then “make commonality explicit by using

inheritance” [11]. Inheritance provide a means for describing the behavior of an object

(using a class) then allowing this description to be modified by creating new classes that

inherit the interface and base attributes of the parent class. This concept provides a

precedent for using a functional model to guide the behavioral modeling process of

systems. Essentially, in such an approach a class (functionality) is used to describe an

aspect of a system and then specific solutions to this functionality are described with

classes that inherit from the parent functionality and include the parent’s interface

(boundary flows in the functional model). As stated in [15], the object-oriented

“paradigm closely reflects the structure of systems in the real world and is therefore well

suited to model complex systems with complex behavior.” Many of the concepts used in

 5

object-oriented programming relate to concepts in the behavioral modeling world

including:

• Mapping between functions (in the design domain) and classes (in the

programming domain),

• Mapping between flows (in the design domain) and messages (in the programming

domain),

• Mapping between behavioral models (in the design domain) and methods (in the

programming domain),

• Mapping between parameters (in the design domain) and attributes (in the

programming domain),

• Polymorphism (inherited classes overriding the behavior of their parent classes

while using the same interface), which naturally enables multi-fidelity modeling,

• Inheritance and instancing as it relates to the mapping of the concept of functions,

solution families for functions and solution instances,

• Encapsulation (hiding class attributes from other non-related classes) and the

hiding internal parameters for a solution to a function from neighboring functions

that do not physically have access to this information,

• Abstraction (inheriting classes to the level required by the program) and modeling

functions at the appropriate level of abstraction required for the behavioral model.

To this end, object-oriented behavioral modeling approaches (Modelica most

significantly) have been created. However, these approaches fail to recognize the role of

functionality as the highest level in the model hierarchy. By leaving this aspect out of

the models, such approaches limit their application in the conceptual design stage of

systems engineering when components and solutions are not fixed. As a result, there is

an opportunity to develop a comprehensive, function-based modeling paradigm that

includes the beneficial aspects of object-oriented programming as well as current

systems modeling practices. The result of this research is such an approach.

 6

1.3. PROCEDURE

To develop this approach, modern design methods and Systems Engineering practices

were investigated to produce a clear picture of the recommended activities during early

design (Section 2). The ability of current component-based modeling methods to assist

these activities was then investigated. Next, various model representation formats were

identified for use in the method. The space between a conceptual design and the

mathematical definition of a concept’s performance was then investigated and a design

framework that bridges this gap was developed (Section 3). The framework was then

applied to the development of an appropriate sensitivity analysis method (Section 4) and

a functioning software implementation was made (Section 5). A series of examples

were completed to demonstrate the application of the method and appear through the

work. A comprehensive example of the approach appears in Section 6. The work is

summarized and concluded in Section 7. Terminology used throughout the work is

defined next.

1.4. TERMINOLOGY

1.4.1. Early Design

Formal design processes are prescribed in virtually every modern engineering design

textbook. Each proposed method differs from the next but in general the same basic set

of design activities and general sequence is promoted. In general, the proposed design

methods include four basic stages:

Product Planning – Determining what product to make and what attributes it
should have,

Conceptual Design – Identifying desired functionality and potential physical
solutions to the desired functionality. Combining these solutions to develop
concepts,

Embodiment Design – Translating a complete design into a description that can
be used to create actual physical implementations of the design,

 7

Detailed Design – Refining, detailing and analyzing selected concepts to make
sure they will be capable of satisfying requirements.

These four stages of design are explicitly described in several engineering design texts

and can be abstracted from the proposed processes in others. Within the early stage of

design (product planning and conceptual design), behavioral models are recommended

as a means to facilitate the evaluation of concepts. In order to develop a new approach

for creating and managing behavioral models, the role these models play in the design

process must be completely understood. Section 2 presents a comprehensive look at the

early design process of systems.

1.4.2. Behavioral Modeling

Several tools have been developed to assist the process of creating and managing

behavioral models for systems. These include component-based modeling languages

and implementations such as Modelica [7], Simscape [8] and 20-Sim [9] as well as

general systems modeling languages such as SysML [16]. Additionally, there have been

attempts to adapt component-based modeling to conceptual design including the

Schemebuilder project outlined in [14]. Generally, current modeling tools and languages

fail to include the explicit definition of system functionality and as such are ill-suited for

use in conceptual design. SysML includes functional models based on the Enhanced

Function-Flow Block Diagram [1, 2] approach but does not include a provision for

implementing complex behavioral models based on this functional model (simple

behavioral model are specified as a separate model class). Often, prior attempts at

developing behavioral modeling tools for use in conceptual design immediately limit

their applicability by restricting the models to a specific domain (Bond Graphs [17] in

the case of Schemebuilder [14]). The newly proposed modeling approach (Section 3)

was developed with these factors in consideration and provides an approach that utilizes

the strengths of existing tools while overcoming their limitations.

1.5. COMPREHENSIVE EXAMPLE

To assess the ability of the method to meet its pre-defined objectives, a sufficiently

complex example was conducted using the method and the various tools developed that

 8

implement the method. The system selected for this example was a Formula Hybrid

racecar. The specific aspect of the system explored in the example was the early design

process with a focus on powertrain development. This system was selected due to its

complexity, relevance to modern engineering challenges and the ability to work with

Texas A&M’s 2009 Formula Hybrid team.

The developed modeling framework was applied to this system in order to explore the

performance and sensitivity of various solutions to the required functionality of the

system. The ability of the method to promote the generation and exploration of a variety

of concepts in a timely matter was benchmarked relative to current practices in the

design of hybrid vehicles [18-20]. The result of the example is a set of feasible concepts

for the system and provided to Texas A&M’s Formula Hybrid team along with the tools

used to develop and model the concepts. Thus, in additional to validating the modeling

approach the chosen example provides a real, tangible benefit to the local engineering

community. This example appears in its entirety in Section 6.

 9

2. PRODUCT DESIGN

Formal design processes are prescribed in virtually every modern engineering design

textbook [1-6, 21, 22]. Each proposed method differs from the next but in general the

same basic set of design activities and general sequence is promoted. In general, the

proposed design methods include four basic stages:

Product Planning – Determining what product to make and what attributes it
should have,

Conceptual Design – Identifying desired functionality and potential physical
solutions to the desired functionality and combining these solutions to develop
concepts,

Embodiment Design – Translating a complete design into a description that can
be used to create actual physical implementations of the design.

Detailed Design – Refining, detailing and analyzing selected concepts to make
sure they will be capable of satisfying requirements,

These four stages of design are explicitly described in several engineering design texts

[3, 4, 21, 22] and can be abstracted from the proposed processes in others [5,6]. Table

2.1 includes several popular engineering design texts along with the highest-level

proposed stages of engineering design.

Table 2.1. Engineering Design Process Stages

Source Design Stage
Exploration
Generation
Evaluation

Cross

Communication
Customer Domain
Functional Domain
Physical Domain

Suh

Process Domain
Conceptual Design
Preliminary Design Blanchard and Fabrycky
Detailed Design
Concept Development
System-level design
Detail Design

Ulrich and Eppinger

Testing and Refinement

 10

Table 2.1 Continued.
Source Design Stage

Planning and Clarifying the Task
Conceptual Design
Embodiment Design

Pahl and Beitz

Detailed Design
Specification development/planning
Conceptual Design Ullman
Product Design
Understand the opportunity
Develop a Concept Otto and Wood
Implement a Concept

2.1. EARLY ENGINEERING DESIGN

For the remainder of this work, the phrase “early engineering design process” will refer

to the first two general stages of a structured design process: product planning and

conceptual design. In general, at the completion of the early engineering design process

a number of potential concepts have been developed that are predicted to be able to meet

the customer’s needs and system requirements as well as the design firm’s own

expectations. As with the overall design process, engineering design texts propose

basically the same set activities and sequence during early engineering design. The

remainder of this section presents an outline of various early engineering design

activities as proposed by several popular engineering design texts. These activities are

then reconciled to produce a complete early engineering design process for use in the

development of the function-based modeling tools and the comprehensive example.

2.1.1. Cross

In Engineering Design Methods, Cross [21] defines three basic activities for the design

process including exploration, generation and evaluation. All three activities occur

through the design of a product but in general they can be mapped to the two standard

phases of early design in the follow manner:

Product planning – exploring the market, generating customer needs and
requirements, evaluating your firm’s position to complete the design process,

Conceptual design – generating functional requirements, exploring solutions for
functionality, generating concepts, evaluating concepts.

 11

The specific activities recommend by Cross along with a mapping to the type of activity

appear in Table 2.2.

Table 2.2. Cross’s Design Activities

Activity Stage
Clarifying objectives Exploration
Establishing functions Exploration
Setting requirements Exploration
Determining characteristics Exploration
Generating alternatives Generation
Evaluating alternatives Evaluation

Improving details
Exploration,
Generation and
Evaluation

2.1.2. Suh

Rather than describe engineering design as a process, in Axiomatic Design, Suh [22]

identifies various domains in which an engineering designer functions. For an

engineering designer operating in the early design phase, three basic domains are

identified including customer, functional and physical. These domains along with

characteristics of the domains as they relate to early design appear in Table 2.3.

 Table 2.3. Characteristics of Early Design

Characteristic Domain
Attributes that customers desire Customer
Desired performance Customer
Customer satisfaction Customer
Attributes desired of the overall system Customer
Functional requirements specified Functional
Required properties Functional
Physical variables for functional requirements Physical
Components Physical

In order to reconcile the various product design methods, Suh’s characteristics were

mapped to appropriate design activities. This mapping was completed by identifying

activities from other design processes and associating them to the listed characteristics.

The results of this mapping process appear in Table 2.4.

 12

Table 2.4. Mapping Characteristics to Activities
Characteristic Mapping to activity
Attributes that customers desire Find attributes customer's desire
Desired performance Determine desired performance
Customer satisfaction Develop metrics to ensure customer satisfaction
Attributes desired of the overall system Determine overall system requirements
Functional requirements specified Determine functional requirements
Required properties Develop a set of desired physical attributes
Physical variables for functional requirements Define performance metrics
Components Determine components that satisfy functions

2.1.3. Ulrich and Eppinger

The early design process is described as a single concept development stage by Ulrich

and Eppinger in Product Design and Development [3]. In this all-inclusive early stage

of design, several activities are proposed. These activities are outlined in Table 2.5.

Table 2.5. Early Design Activities

Activity Stage
Identify customer needs Concept Development
Establish target specifications Concept Development
Analysis of competitive products Concept Development
Concept generation Concept Development
Concept selection Concept Development
Refinement of specifications Concept Development
Economic analysis Concept Development
Project planning Concept Development

2.1.4. Pahl and Beitz

Engineering Design by Pahl and Beitz [4], long considered a staple of modern product

design, defines the four major stages of product development explicitly. The specific

activities proposed by Pahl and Beitz for the early design process appear in Table 2.6.

Table 2.6. Early Design Activities Recommended by Pahl and Beitz

Activity Stage
Analyze market and company position Planning and Clarifying the Task
Find and select product ideas Planning and Clarifying the Task
Formulate a product proposal Planning and Clarifying the Task
Clarify the task Planning and Clarifying the Task
Elaborate a requirements list Planning and Clarifying the Task
Identify essential problems Conceptual Design
Establish function structures Conceptual Design
Search for working principles and working structures Conceptual Design
Combine and firm up into concept variants Conceptual Design
Evaluate against technical and economic criteria Conceptual Design

 13

2.1.5. Ullman

In The Mechanical Design Process by Ullman [5], the early engineering design process

can be broken down into two stages: specification development/planning and conceptual

design. These stages directly translate to the previously described product planning and

conceptual design stages. A list of Ullman’s proposed activities for these stages appears

in Table 2.7.

Table 2.7. Activities in Ullman’s Early Design Process

Activity Stage
Developing customer requirements Specification Development/Planning
Assessing the competition Specification Development/Planning
Generating engineering requirements Specification Development/Planning
Establishing engineering targets Specification Development/Planning
Planning for design Specification Development/Planning
Functional decomposition Conceptual Design
Generating concepts from functions Conceptual Design
Judging feasibility Conceptual Design
Assessing technology readiness Conceptual Design
Go/no-go screening Conceptual Design
Using the decision matrix Conceptual Design

2.1.6. Otto and Wood

Otto and Wood [6] summarize the early engineering design process in two steps as well

in Product Design: understanding the opportunity and developing a concept. Once

again, these two stages correspond identically to the product planning and conceptual

design stages previously described. The specific activities proposed for these two stages

appear in Table 2.8.

Table 2.8. Otto and Wood Early Design Activities

Activity Stage
Develop a vision Understand the Opportunity
Market Opportunity Analysis Understand the Opportunity
Customer Need Analysis Understand the Opportunity
Competitive Analysis Understand the Opportunity
Portfolio Planning Develop a Concept
Functional Modeling Develop a Concept
Product Architecture Development Develop a Concept
Concept Engineering Develop a Concept

 14

2.2. RECONCILING THE VARIOUS METHODS

To create a comprehensive summary of early design, the proposed activities outlined in

the previous section were reconciled. To perform this reconciliation, the activities

proposed by the various authors as previously described were combined into a single list

of activities. These activities were then sorted in general temporal order and grouped by

commonality. The resulting complete list appears in Table 2.9.

Table 2.9. Combined List of Design Activities
Activity Source
1 Develop a vision Otto and Wood
2 Analyze market and company position Pahl and Beitz
3 Market opportunity analysis Otto and Wood
4 Find and select product ideas Pahl and Beitz
5 Formulate a product proposal Pahl and Beitz
6 Clarify the task Pahl and Beitz
7 Clarifying objectives Cross
8 Customer need Analysis Otto and Wood
9 Developing customer requirements Ullman
10 Identify customer needs Ulrich and Eppinger
11 Find attributes customer's desire Suh
12 Assessing the competition Ullman
13 Competitive analysis Otto and Wood
14 Analysis of competitive products Ulrich and Eppinger
15 Elaborate a requirements list Pahl and Beitz
16 Generating engineering requirements Ullman
17 Establishing engineering targets Ullman
18 Develop a set of desired physical attributes Suh
19 Define performance metrics Suh
20 Establish target specifications Ulrich and Eppinger
21 Determine desired performance Suh
22 Develop metrics to ensure customer satisfaction Suh
23 Determine overall system requirements Suh
24 Identify essential problems Pahl and Beitz
25 Planning for design Ullman
26 Portfolio Planning Otto and Wood
27 Functional Modeling Otto and Wood
28 Functional decomposition Ullman
29 Establish function structures Pahl and Beitz
30 Establishing functions Cross
31 Determine functional requirements Suh
32 Setting requirements Cross
33 Determining characteristics Cross
34 Product Architecture Development Otto and Wood
35 Concept Engineering Otto and Wood
36 Generating concepts from functions Ullman
37 Search for working principles and working structures Pahl and Beitz
38 Combine and firm up into concept variants Pahl and Beitz
39 Concept generation Ulrich and Eppinger
40 Identify working mechanisms Suh
41 Determine components that satisfy functions Suh
42 Generating alternatives Cross
43 Evaluating alternatives Cross
44 Concept selection Ulrich and Eppinger
45 Evaluate against technical and economic criteria Pahl and Beitz
46 Judging feasibility Ullman

 15

Table 2.9 Continued.
Activity Source
47 Assessing technology readiness Ullman
48 Go/no-go screening Ullman
49 Using the decision matrix Ullman
50 Improving details Cross
51 Refinement of specifications Ulrich and Eppinger
52 Economic analysis Ulrich and Eppinger
53 Project planning Ulrich and Eppinger

Activities that accomplish the same basic tasks in the design process were then grouped

together and re-labeled to create a condensed list that includes all of the activities

proposed in the various engineering texts. The result of this reconciliation is the

proposed early design process that appears in Table 2.10. The grouping of activities

from the various authors is included as well. This reconciled process represents a

comprehensive approach for completing the early design of a product. Each step in this

process will be outlined in the next section.

Table 2.10. Reconciled Early Design Process

Stage Reconciled Activity Original Activity
Develop a vision 1
Analyze the market for opportunities 2,3,4
Formulate a product proposal with objectives 4,5,6,7
Perform a comprehensive assessment of customer needs 8,9,10,11
Compare needs to competitive products 12,13,14
Translate needs to engineering requirements 15,16,23
Develop performance metrics for requirements 17,18,19
Set target values for metrics to ensure that needs are met 20,21,22
Identify specific design challenges 24

Pr
od

uc
t P

la
nn

in
g

Plan for the remainder of the design process 25,26
Develop functional requirements 31,32,33
Develop a conceptual functional model of the product 27,28,29,30
Generate functional alternatives using the functional model 34
Identify component solutions to functions 35,36,37,41,43
Combine components to produce concepts 38,39,40,42
Estimate performance of concepts relative to target metrics 43,44
Select a set of concepts for further consideration 45,46,47,48,49
Refine system and functional requirements 51
Finalize concepts 50 C

on
ce

pt
ua

l D
es

ig
n

Develop plan for embodiment and detailed design of concepts 52,53

 16

2.3. PRODUCT PLANNING

2.3.1. Developing a Vision

In general, developing a vision includes identifying products that are not currently being

offered in the market and assessing why these products are not being produced or why

current products fail to satisfy certain needs [6]. In certain cases, the vision is already

prescribed to the designer by management or is a result of other outside influences.

Once a vision for a product has been achieved, the next step is to assess whether

continuing a design process around the vision is a viable option.

2.3.2. Analyze the Market for Opportunities

In a business environment, assessing the viability of a new product requires an

estimation of the potential revenue that can be extracted from the market [6]. This

includes both an estimate on price as well as market volume. From the product of price

and volume, profit may be deducted resulting in an estimate of cost limits for producing

the product.

Pahl and Beitz describe a structured approach to completing both the development of a

vision and market analysis. This approach includes the following general steps [4]:

1) Analyzing the current situation of the company and its products (a situation

analysis),

2) Formulating search strategies using the strengths and weaknesses of the

company,

3) Finding product ideas,

4) Selecting product ideas,

5) Defining products by elaborating on the ideas.

The analysis of the market is embedded in the fourth step, selecting product ideas. In

this step, price, volume and profit concerns are used to assess which product ideas to

pursue further.

 17

2.3.3. Formulate a Product Proposal with Objectives

At the conclusions of the two prior steps, a product proposal with associated objectives

should be completed. In general, a product proposal should include the highest-level

desired functionality of the product along with a preliminary set of requirements and

objectives. Requirements should be listed in a solution-neutral way [4] (i.e. the

requirement should not prescribe a specific set of physical solutions to desired

functionality). Cost targets and a basic budget should be included as well [4]. Tools

such as an objectives tree can be used in formulating this proposal to outline and order

specific objectives [21].

2.3.4. Perform a Comprehensive Assessment of Customer Needs

Once a proposal has been created for a product, a comprehensive assessment of the

needs of the customer must be performed. The high-level requirements and objectives

previously developed should be used as a guide for performing this assessment. Often

this step in the design process is described as listening to and interpreting the “voice of

the customer” [6]. The most essential aspect of this step is to ascertain the desires of the

customer and to isolate those desires from the desires of the engineers developing the

product [5]. Otherwise, the result of the design process may be a product that the

engineers love but the customer, and hence the market, abhors.

This activity is often a source of problems for the engineering designer. Potential

problems include customers not being aware of the specific item their opinion is being

solicited for and obtaining only information about what customers don’t like about

current products rather than what they do like [6].

To determine and manage customer needs, tools have been developed including QFD

and the device used to represent the activities used in QFD: The “House of Quality” [5,

6]. Essential early steps in QFD include identifying the customer, determining customer

requirements and defining relative importance of requirements. The remainder of the

steps in QFD occur later in the reconciled design process.

 18

2.3.5. Compare Needs to Competitive Products

The next step in QFD, and the reconciled design process, is to compare the generated set

of customer needs to competitive products in the market [5]. In general, to complete this

process a table of customer needs along with importances is developed and competitor

products are qualitatively assessed in their ability to satisfy these needs [3]. For a

quantitative analysis, engineering requirements and performance metrics are required.

2.3.6. Translate Needs to Engineering Requirements

In most cases, the customer is not an engineer and does not think like one. To formally

represent the objectives of the design process, customer needs must be translated into

engineering requirements. Recent work in the field of Systems Engineering has led to

excellent descriptions of the process of identifying and managing requirements. At the

highest level, requirements should be set to scope:

• The product’s mission,

• Performance and physical parameters,

• Operational deployment or distribution,

• Operational life-cycle,

• Utilization requirements,

• Effectiveness factors,

• The environment in which the product will operate.

These factors are described by Blanchard and Fabrycky in Systems Engineering and

Analysis [2]. The essential process of identifying requirements is to take each customer

need and identify as many measures as possible that assess the ability to satisfy that need

[5]. These measures often take on numerical values, which leads to the next step in the

reconciled product design process.

 19

2.3.7. Develop Performance Metrics for Requirements

For each requirement, a performance metric should be created in order to quantify the

satisfaction of the requirement and hence ensure the underlying customer need is met.

Once again, Systems Engineering offers useful insight into quantifying requirements.

Technical Performance Measures (TPMs) are “measures of the attribute and/or

characteristics which are inherent within the design” [2]. These TPMs assess a product’s

ability to meet requirements and often form contradictory sets [2]. For example, a

performance hybrid automobile must be able to complete quick lap times (a TPM of lap

time in seconds) but also must be fuel efficient (a TPM of fuel economy in kilometers

per unit of fuel). These contradictions are what makes the lives of engineering designers

difficult but also are the key to developing successful products.

Once these metrics have been identified, it is possible to quantify the ability of

competitive products to meet established requirements. It is also possible to set target

values for the product to be designed.

2.3.8. Set Target Values for Metrics to Ensure that Needs are Met

Target values for the established metrics should be created as a benchmark for assessing

concepts and ensuring that the ultimate product will adequately satisfy customer needs.

These target values generally take on two classes: ideal targets and marginally

acceptable targets [3]. Ideal targets are the optimal target for the design team while

marginally acceptable targets “just barely make the product commercially viable” [3].

The metrics usually have engineering units and the targets consist of equalities (equal to)

or inequalities (greater than, less than, between) or a set of discrete values. These

metrics will be used for the remainder of the design process to compare concepts and

guide the development of the chosen concept(s) into complete products. Some aspects

of the product might not be able to be reduced to a set of metrics. These specific design

challenges should be identified at this point.

 20

2.3.9. Identify Specific Design Challenges

Aspects of a product that cannot be fully described with a set of metrics should be

identified and characterized at this point. Attributes such as the aesthetic appeal of an

automobile or its handling cannot be completely captured with a set of numerical values.

These factors often result from complex interactions between the product and human

operators. The user’s senses play a large role in defining these characteristics.

2.3.10. Plan for the Remainder of the Design Process

The final step in the product planning stage of design is to plan for the remainder of the

design process. Ullman recommends a five-step process for completing this planning

task [5]:

1. Identifying the tasks to be performed in the remainder of the design process,

2. Stating objectives for each task,

3. Establishing the personnel and time required for each task,

4. Sequencing the tasks,

5. Estimating product development costs.

These tasks and their attributes can be represented in a Gantt Chart as recommended by

Otto and Wood [6]. This step is critical to ensure that the remainder of the design

process proceeds in an orderly and timely manner. At the completion of this activity, the

product planning stage of design is over and the conceptual design stage is ready to be

initiated.

2.4. CONCEPTUAL DESIGN

The reconciled conceptual design stage contains ten basic activities. Each of these

activities is summarized in the following section. The primary goal of this stage of the

early engineering design process is to identify a single concept, or a small set of

concepts, that are capable of meeting the requirements established in the product

planning stage.

 21

2.4.1. Develop Functional Requirements

Most engineering design textbooks agree that the first step in developing concepts is to

translate customer needs and system requirements into functional requirements [3-6, 21,

22]. The basic process for performing this task varies based on the specific method used

for the functional modeling task that occurs in the subsequent step. In general,

developing functional requirements involves the identification of all of the energy,

material and information flows that impact the ability of the product to satisfy customer

needs and meet system requirements. Next, the essential transformations of flows the

product must perform in order to satisfy the customer needs and requirements must be

identified. These flows and functions will be structured in the next step in the

conceptual design process.

2.4.2. Develop a Conceptual Functional Model of the Product

A functional model is a graphical depiction of the functional requirements outlined in the

previous step. Functional models include functions, generally represented as verbs,

which describe the desired transformations of flows, which are generally described using

nouns. The process for creating a functional model depends on the modeling

methodology chosen but in general involves the following basic steps:

1. Create a black-box model that includes the overall functionality of the product

along with external flows,

2. For each input flow in the black-box model identify the sequence of functional

transformations that are required to produce one or more of the output flows,

3. Aggregate these function sequences into a complete functional model for the

product,

4. Assess the model’s coverage of customer needs and system requirements, add

functions/flows or decompose as required.

The multitude of reasons for creating a functional model during product design are

detailed by Otto and Wood [6]. In general, the primary reason is to create a solution-

neutral method of representing what a product needs to do without assuming how it is

 22

going to do it. This mapping of what to how represents the remainder of the conceptual

design process.

2.4.3. Generate Functional Alternatives Using the Functional Model

For many design problems, and especially in complex systems with multiple energy

domains, there may be multiple combinations of functionality that utilize varying

energy, material and information flows to satisfy the customer needs and requirements.

In this case, a functional decomposition for each identified configuration should be

created. Ideally, these various decompositions should abstract up to a single uniform

model (which at the highest level is the single-function black box model). There is

rarely a single functional description that adequately models all possible form-solutions

to a design problem.

2.4.4. Identify Component Solutions to Functions

Once various functional configurations of the product have been identified, component

solutions to the functions in each configuration should be found. The objective of this

task is to use historical information and designer experience to identify physical

components that implement the desired functionality. Sources for this component

information include [3]:

• Interviewing lead users (users who will have access to the product before the

general populace),

• Patent searches,

• Searching published literature,

• Benchmarking related products,

• Internal searches.

Once identified, component solutions can be represented in a morphological matrix [6].

A morphological matrix contains product sub-functions as rows and component

solutions to sub-functions in columns. For each cell (representing a single component

solution to a specific sub-function) a graphic or text description is used to represent the

 23

solution. This chart is useful for performing the next task in the design process,

combining components to product concepts.

2.4.5. Combine Components to Produce Concepts

To create complete concepts, a component element for each sub-function should be

selected and then these elements should be combined. A morphological matrix is a

useful tool for completing this process [6] in that it provides a graphical guide for

combining the various identified component solutions. Ulrich and Eppinger recommend

a similar construct called a concept combination tree [3] for performing this task. Pahl

and Beitz suggest a similar approach [4].

Once component combinations have been identified, they must be firmed up in order to

produce viable concepts. This process usually involves a design team taking each

configuration and determining aspects including component compatibility, function-

sharing possibilities and additional components necessary to produce a product that

satisfies all desired functionality. Once a set of concepts has been developed, they must

then be evaluated based on the established performance metrics.

2.4.6. Estimate Performance of Concepts Relative to Target Metrics

To evaluate concepts relative to each other and to existing target metrics, tools such as a

Pugh chart [23] or weighted scoring matrix [3] can be used. These tools include weights

for each evaluation criteria and a qualitative measure of the ability of each concept to

satisfy the criteria. Quantitatively evaluating potential concepts is generally difficult at

this stage in the design process due to the time, resources and knowledge required to

produce mathematical models capable of predicting performance (behavioral models).

Without detailed models, performance is generally estimated through simple calculations

and experience with similar products.

2.4.7. Select a Set of Concepts for Further Consideration

Once the performance of the concepts has been estimated, it should be entered into a

selection tool (Pugh chart, scoring matrix, etc.). Since the estimation of performance is

inherent in using such tools, they are generally used to sort and identify a few good

 24

concepts rather than select the “best” concept. Some caveats that result from using such

selection methods include [3]:

• The quality of the decomposition of the product’s functionality,

• The subjectivity of the selection criteria,

• How cost is factored into the approach,

• Selecting elements of complex design problems,

• The use of concept development throughout the design process.

The result of this step is a set of good concepts that are to be considered for the

remainder of the design process. At any time during the remainder of this process,

concepts that are found to be incapable of meeting the overall needs and requirements

should be eliminated. Additionally, in later stages of design aspects of the various

chosen concepts can be combined to produce new concepts. Ultimately, the design

process converges on a single concept that is fully developed and described for

production.

2.4.8. Refine System and Functional Requirements

The identification and comparison of concepts often reveals missing or incomplete

system and/or functional requirements. At this point, the requirements tables and

functional models should be updated to reflect any of these identified requirements.

Once recorded, the set of concepts should be evaluated based on these new requirements

to ensure that they still offer satisfactory performance.

2.4.9. Finalize Concepts

Next, the concepts should each be considered in the context of the design problem. The

ability of each concept to satisfy the designer’s vision, the customer’s needs, system and

functional requirements and any other identified criteria should be assessed by the

design team.

 25

2.4.10. Develop Plan for Embodiment and Detailed Design of Concepts

The final step in the conceptual design stage is to develop a plan for completing the

remainder of the design process including the embodiment and detailed design stages.

This includes updating project management tools (the Gantt chart if one was used) and

restructuring cost and personnel evaluations based on the new information available

regarding potential concepts and their form-specific solutions.

2.5. FUNCTIONAL ORGANIZATION OF EARLY DESIGN FOR COMPLEX

SYSTEMS

The design approaches summarized in Section 2.1 have their roots in the Design Theory

community and the traditional (sometimes called the European) school of design. These

methods were developed as a means of classifying the various steps that generally occur

during the design of a system. For the most part, these methods were developed by

studying particular design examples in detail and abstracting the tools and techniques

that resulted in successful designs.

In parallel, the Systems Engineering community took a different approach to classifying

the design of systems. Systems Engineering evolved from the software and industrial

engineering communities. Both software engineering and modern industrial designs

usually involve very complex multi-level problems. As a result, the Systems Engineering

community developed tools and methods for managing complexity (usually in the form

of some kind of model) and then proposed methods for using these tools in new systems

engineering projects.

Both approaches to representing design have their merits and limitations. The traditional

school of Design Theory provides a clear process for designing products that can be

taught to new designers (generally starting at the Freshmen level in the collegiate

curriculum). However, to generate a process that was simple enough to be

communicated to novice designers, the applicability of the process to large multi-scale

design problems was compromised. As can be seen in the reconciliation of these

approaches as shown in Sections 2.3 and 2.4, the design of a system is reduced to a

 26

sequential set of steps with only a cursory decomposition of the design problems

occurring during conceptual design (during the functional analysis step). This works for

simple problems with a relatively small number of constitutive functional elements but is

ill-suited for larger problems such as those found in the modern engineering industry.

The Systems Engineering approach has resulted in a number of modeling tools for

representing complex systems (culminating in the development of SysML [16]).

However, the focus on models and tools and then processes has resulted in a technique

that is not easily relatable to those outside of the engineering profession. Most models

of the systems engineering process that appear in Systems Engineering texts [1, 2] are

vague in the descriptions of the various steps in the process and are often highly circular

in nature and include complex nests of loops within the various general steps.

While these inner loops are inherent in the design process of complex multi-level

systems, the overall early design process itself is essentially linear at the highest level.

There is a clear starting point (a product idea), a clear ending point (some set of valid

concepts) and a general set of activities that must be conducted in a rough temporal

series to get from the start to the end. Essentially, the process of design is a set of

general operations that are performed in sequence on a set of inputs to result in a set of

outputs. As a result, this process is capable of being represented with a transformational

function-type representation. Since functional modeling is proposed to solve such

problems within the context of design activities, the same general idea should apply to

solving the representation of the design process itself! In the following section, this idea

is explored.

2.5.1. Functional Modeling of the Reconciled Design Process

Developing a functional representation of the design process presents a few problems.

First, no standard lexicon (such as the Functional Basis) was intended for such an

approach and therefore new function and flow terms will have to be used. However, the

same principles used in developing the Functional Basis [10] can be used to develop the

terms for the design process model. These principles include identifying a minimal set

 27

of terms to describe the functions and flows in the model and minimizing overlap

between the terms. Additionally, the concept of using verbs for functions and nouns for

flows was preserved. Unlike the development of the Functional Basis, the terms used in

the design process model were defined from a common language dictionary [24] to

ensure a common understanding of their meaning without creating new definitions. The

terms identified in the creation of the model appear in the following section.

2.5.1.1. Definitions

Functions (verbs):

Conceive – “to cause to begin”

Validate – “to support or corroborate on a sound or authoritative basis”

Prescribe – “to lay down as a guide, direction, or rule of action”

Perform – “to do in a formal manner or according to prescribed ritual”

Assess – “to determine the importance, size, or value of”

Observe – “to take notice of and be guided by”

Translate – “to express in more comprehensible terms”

Quantify – “to determine, express, or measure the quantity of”

Find – “to come upon by searching or effort”

Combine – “to unite into a single number or expression”

Compare – “to examine the character or qualities of especially in order to discover

resemblances or differences”

Select – “chosen from a number or group by fitness or preference”

Decompose – “to separate into constituent parts or elements or into simpler compounds”

 28

Flows (nouns):

Concept – “an abstract or generic idea generalized from particular instances”

Process – “a series of actions or operations conducing to an end”

Design – “the arrangement of elements or details in a product or work of art”

Need – “a lack of something requisite, desirable, or useful”

Characteristic – “a distinguishing trait, quality, or property”

Metric – “a standard of measurement”

Target – “a goal to be achieved”

Form – “the component of a thing that determines its kind”

Behavior – “the way in which something functions or operates”

Performance – “the ability to perform (see definition of perform in functions)”

Model – “a system of postulates, data, and inferences presented as a mathematical

description of an entity or state of affairs”

All definitions are taken from Merriam-Webster’s Online Dictionary [24].

2.5.1.2. Models

The reconciled design theory presented in Sections 2.3 and 2.4 was used as a starting

point for creating a functional model for the process of designing systems. To create the

model, the steps in the reconciled theory were reduced to functions and the boundary

flows of information for each function were identified. Next, a verb-noun pair was

selected to represent each function. The list of verbs (for functions) and nouns (for

flows) is shown in the prior section. Each function is presented from the context of the

designer (or design firm) and each function represents some transformational action

performed by the designer.

The first function can be extracted from the need to develop a vision. In this step in the

design process, an idea is conceived by the designer and reduced to a product concept.

 29

Next, this concept is validated through a market analysis. Once validated, a design

process is prescribed (usually represented in a product proposal). This process is then

performed by the designer to result in a product design. This chain of four functions

represents the entirety of the reconciled design theory with the first three steps

corresponding each to a single function in the chain and the remaining seventeen steps

condensed into the act of performing an actual design process. Essentially, this model

isolates the act of preparing and planning a design process from the process itself. The

chain of functions resulting from this analysis appears in Fig. 2.1.

Fig. 2.1. Functional Model of the Design of a System

The remaining seventeen steps in the reconciled design theory were then represented by

a separate series of functions (each contained within the perform process function

appearing in the prior model). The first step identified in this chain is the observation of

customer needs. These needs are then assessed to determine their relative importance

by comparison to other products that satisfy the observed needs. Next, these needs (the

lack of something desirable) are translated into characteristics (this broad classification

includes the traditional concept of requirements) of the product to be designed. Next,

these characteristics are quantified to result in a series of product metrics. From these

metrics, a series of target values is generated. This chain of five functions represents

the seven final activities proposed in the reconciled design theory’s product planning

phase and appears in Fig. 2.2.

Fig. 2.2. Planning Functional Model

 30

The design activities in the conceptual design phase of the reconciled design theory were

also reduced to a chain of functions. This chain essentially represents the transformation

of the desired characteristics of the product into a validated concept for the product. The

first function identified in this chain is to translate the characteristics into functions. The

result of this step is a functional model. This functionality is then used to find form

solutions. These forms are then combined to produce a set of product concepts. Next,

the behavior of the concepts is assessed and then compared to the target values generated

in the product-planning function chain. From this comparison, concepts can be selected

and finally validated based on the customer needs and characteristics that were identified

in the product planning process. The result of this chain of functions (Fig. 2.3) is a

validated set of concepts.

Fig. 2.3. Conceptual Design Functional Model

2.5.2. Update of Model for Complex Systems Design

Since the functional analysis of the early design process was based on activities

reconciled from traditional Design Theory texts, it inherits the general weaknesses of

such approaches. Namely, an inability to address the difficulties inherent in complex

multi-level design problems and the need for rigorous modeling and validation across

these multiple levels. To overcome these limitations, the models developed from

traditional Design Theory were extended to include concepts from Systems Engineering

including multi-level modeling and validation as well as requirements flowdown.

In this modification, the first function in the product planning chain (observing needs)

was removed. For the remainder of the modified design process, it is assumed that a set

of needs has been established (with or without the involvement of the designer). The

 31

next step, translating needs to characteristics, is decomposed into two separate functions:

translating needs to functions and then finding characteristics based on functions. This

decomposition is necessary due to the fact that needs represents a lack of something and

a characteristic represents the presence of something. Between these representations, an

intermediate form is necessary to ensure a complete transformation between these

concepts. In the modified design process, functionality forms this bridge. This

transformation can be qualified as follows: needs, representing the lack of something,

must be fulfilled through operation of the product; as a result the product has to include

some kind of functionality to ensure this fulfillment; once the desired functionality of the

product has been identified it can then be used to define characteristics of the product

that must exist to ensure this functionality can be performed. Once identified, these

characteristics can then be quantified as done in the previous model of the design

process. However, the next step, prescribing targets, is decomposed into three separate

functions in the new model. This decomposition results from the implementation of

models to perform the target setting process as recommended in Systems Engineering

methods. The first step in this newly decomposed chain is to find a prescriptive (rather

than descriptive) model for the metrics. This model is then assessed and the resulting

behavior used to set the target values for metrics.

The design process diverges at this point. In a traditional design process the targets,

needs and characteristics identified would be used to find concepts. However, for

complex multi-level systems there are different approaches that can be taken. Rather

than model all of the various approaches, a modular and scalable representation was

developed. At the completion of the first chain of design functions (shown in the top

row of Fig. 2.4) a system-level concept generation, descriptive modeling and concept

selection process (referred to as a synthesis chain) may be implemented to develop

concepts at the system level. These three steps are modeled in the synthesis function

chain appearing in Fig. 2.5 and are essentially identical to the chain developed for

conceptual design in the prior design process model (Fig. 2.3). At the completion of this

sequence of functions, decomposition can be performed using the same basic set of

 32

functions as those in the top row of Fig. 2.4. This decomposition results in a set of sub-

system needs, characteristics and targets that can be used as the inputs to a new synthesis

chain at the sub-system level. Once completed, the results of this chain can be used to

validate the behavior of the refined system relative to the prescribed targets generated

from the previous higher-level analysis. This decomposition and synthesis sequence can

be repeated until a detail level has been achieved that is appropriate for the level of

complexity of the system being designed. Such an approach would be classified as “top-

down”.

An alternative approach would be to proceed with the complete decomposition of the

system and then begin the synthesis chain at the lowest level and proceed with synthesis

and validation from the bottom-up. This approach would be classified as a “top-down-

bottom-up” approach along with any derivatives of this sequence. A purely “bottom-up”

approach is not classified because some form of the decomposition sequence must be

performed before the synthesis sequence can be completed. A purely “bottom-up”

approach is not practical during systems design as it would mean that the system is

synthesized at the lowest level with no information regarding the system’s overall

intended functionality, needs to fulfill or desired characteristics. The resulting models

for the decomposition and synthesis function chains appear in Figs. 2.4 and 2.5

respectively along with groupings of related functions.

Fig. 2.4. Modified Design Decomposition Functional Model

 33

Fig. 2.5. Modified Design Synthesis Functional Model

2.6. TOOLS TO ASSIST DESIGN OF COMPLEX SYSTEMS

To assist the implementation of the modeling approach identified in the previous section,

several design tools are proposed. The first design tool proposed is functionality assisted

behavioral modeling. This tool utilizes the functional models created during system

decomposition to assist the prescriptive and later descriptive modeling tasks required in

the design process. Sensitivity measures are useful metrics during systems design and

must also be implemented in the modeling approach. As a result, a sensitivity analysis

method based on a functional decomposition is also proposed. This sensitivity analysis

method is driven by the functionality assisted behavioral modeling approach. Finally, a

software implementation of these tools is presented. A comprehensive application of the

design process developed in Section 2 along with the design tools developed to support

the process is shown in Section 6.

 34

3. FUNCTIONALITY ASSISTED BEHAVIORAL MODELING

A behavioral model is a quantitative representation of selected aspects of the behavior of

a system. Such models are often used during the design of systems, and specifically

complex systems, to find quantitative answers to specific questions including:

• What should the values for performance target metrics be?

• How can I design a system that satisfies these targets?

• What can be changed within a system to affect its performance and to what degree

do these changes impact performance?

• How do changes in fidelity of models affect the performance predictions from the

models?

In general, the questions tasked to behavioral models are “what” and “how.”

Specifically, what is the behavior of a system under a specific set of assumptions and

how does it accomplish that behavior? Both questions must be answered in the course of

a complex design problem. As a result, a modeling framework that enables designers to

answer both questions in parallel provides a significant contribution to the practice of

modern systems design. To produce such a framework, it is necessary to know when

each question (“what” versus “how”) should be asked and then apply the answers to

further the design process.

The same “what” versus “how” scenario can be seen in the realm of functional

modeling. Functional modeling originally evolved as a means of representing “what” a

system should do independently from “how” it is done [25, 26]. The difficulty in this

distinction lies in the fact that the two questions are not entirely independent from each

other. What something does is generally dependent, to some measure, on how it is done.

During design, there is a general trend of “what” initially being the most important

question and “how” becoming more important as the process continues.

 35

As functional modeling matured, it was found that models created by reverse

engineering products differed in information content from those created during the

course of a new design [27]. This trend of a model expressing more content focusing on

“how” something is done rather than “what” it does is consistent with the flow of

information in the design process. Essentially, the changes in the functional

representation of system between the early design stages and at the completion of a

design process capture the evolution from what a system is supposed to do into how it is

done in the ultimately designed system. Since the same transitions from “what” to

“how” appear in both functional and behavioral modeling, there is merit in investigating

whether these technologies can be used in conjunction during the design of systems.

The result of such an investigation is presented in this section.

The results of this work are presented in four sub-sections. The first sub-section outlines

functional modeling and behavioral modeling in the context of design. The second sub-

section describes a modeling approach that combines both function and behavior along

with a cursory example. A complete case study for a hybrid automotive system is then

presented in the third sub-section. Finally, conclusions and continuations of the work

appear in the fourth sub-section.

3.1. THE DESIGN OF SYSTEMS

As stated in Section 2, two broad schools of formal design practices for systems exist:

the “European,” or traditional, school of design and the “Systems Engineering”

approach. Traditional thoughts on design are best summarized by the work of Pahl and

Beitz [4]. They define the design process for a system in four basic phases: (1) product

planning, (2) conceptual design, (3) embodiment design and (4) detailed design. Other

research into design methodologies within this body of work define similar processes

involving more or less the same four steps [5, 6, 22]. Some of these methodologies

move the boundaries of the steps around and regroup the basic activities differently but

in total represent the same basic sequence of events: 1) The first phase of design is to

gather information about the system’s user and their needs and to map this information

to the highest level functionality of the system. 2) The required functionality is explored

 36

in detail and potential solutions for this functionality are created and evaluated. 3) After

selecting a concept for production, the physical requirements for the concept are defined

along with solutions for the product’s auxiliary functionality. The overall performance

of the concept relative to the user’s needs is then assessed. 4) A complete description of

the system is made to allow the product to be manufactured. A complete description of

these steps appears in Section 1.

A full account of the “Systems Engineering” method of design can be found in Sage and

Armstrong [1]. Systems Engineering focuses more on management and information

control during the design process for large systems and emphasizes the understanding

and development of requirements (formal statements of a user’s needs). Specific

processes for designing electromechanical systems are not generally defined. However,

the classifications used in Systems Engineering: formulation, analysis and interpretation

[1] can be mapped to the first two phases in the traditional method of engineering

design. Formulation, which includes problem definition, value system design and

system synthesis, straddles the product planning and conceptual design phases of the

traditional design method. The problem definition and value system design activities in

Systems Engineering map to activities in the product planning and system synthesis

phases of conceptual design. The analysis classification includes system analysis and

modeling along with refinement of alternatives. These activities are followed by an

interpretation that includes decision making and planning for action. The activities that

occur in the analysis and interpretation classification in Systems Engineering map to

activities that occur during conceptual design in the traditional engineering design

method.

In summary, when it comes to the actual process of designing systems, both schools of

engineering design promote the same basic order of operations during the initial stages

of system design: determine what needs to be done at a functional level, find solutions

that can potentially accomplish this functionality, compare the solutions through the use

of models and make a decision about which solutions to investigate further.

 37

3.1.1. Functional Modeling During Design

The functional decomposition of a complex design problem is promoted in both

traditional engineering design [4] and Systems Engineering [1]. Several methods exist

for performing this decomposition such as formal methods [6] and the Function-Flow

Block Diagram (FFBD) approach as used in Systems Engineering [1, 2].

The functional decomposition approach used in this work evolved within the traditional

engineering design approach beginning in the early 1960s [25]. This functional analysis

approach focuses on the use of verb-noun pairs along with an explicit breakdown of

flows into energies, materials and signals [26]. This flow-based approach has been

extensively researched as of late and significantly formalized in the work of Hirtz et al.

[10]. The benefits of this approach over the FFBD approach include the use of a

standard modeling language (the Functional Basis) and an emphasis on the energy,

material and flow-based identification of functions (FFBDs do have advantages in the

modeling of logic and data flow within the model). A complete survey of this branch of

functional analysis appears in the work of Nagel and Hutcheson [28]. For the remainder

of this work, a functional model will refer to a functional decomposition of a system

using the flow based methodology and Functional Basis lexicon approach [29].

The functional decomposition of a system allows a complex design problem to be

broken down into smaller elements based on those elements’ intended functionality.

These elements can then be analyzed in greater detail individually. In most formal

system design methods, the functional decomposition is also recommended as the

starting point for identifying potential solutions to the design problem in order to

decouple the task of representing what a system needs to do from how it is going to do it

[3-6]. Thus, the desired functionality of a system can be described before actual

solutions are identified. From morphological charts [6] to current knowledge driven

concept generation algorithms [30], significant research has been conducted into

expanding the ability to explore the solution space for a problem by using a function-

based solution identification method.

 38

3.1.2. Behavioral Modeling During Design

A behavioral model is a quantitative representation of a system, or a specific aspect of

that system. Such models can be used to prescribe performance targets early in the

design process and can predict the performance of systems relative to these targets later

in the design process. There are two general approaches for creating such models: the

abstraction approach and the component-based approach.

In the abstraction approach, a behavior of interest is identified and a model is created

based on an abstraction of the system that exhibits the behavior of interest [31-33]. For

example, if the performance of an internal combustion engine needs to be modeled an

abstracted model of the engine may be created by using an approximation of the

combustion processes or results from dynomometer testing. Such a model represents a

parameterized abstraction of the behavior of the system. The component-based

approach for modeling the same system would be to model the constitutive elements of

the engine separately and then combine them (generally through an automated or semi-

automated process) to produce a complete system model.

Both approaches have their strengths and weaknesses. Abstract models are generally

more focused on the behavior of interest while component-based models are generally

more closely associated with the system itself. As a result, an abstract model may

provide a good description of the behavior of interest but may be of little use if the

system changes or if the assumptions made about the system during the abstraction

process are faulty. Conversely, a component-based model can provide a variety of

information about a system but may not able to predict a specific aspect of its behavior

as well as a model abstracted solely for that purpose. Essentially, these models answer

two separate questions. Abstract models answer the question of what a system does and

component-based models answer the questions of how a system functions through the

action of its constitutive elements.

The abstraction method of modeling systems is generally the method taught in

engineering educations. Traditional engineering classes (physics, thermodynamics, etc.)

 39

focus on modeling systems by creating a set of equations or relationships that represent

an abstracted behavior of a complete system. In general, the result of this type of

modeling process is set of algebraic or differential equations, which are then used to

investigate some aspect of the system’s performance. This method of modeling provide

good insight into what a system does by providing elegant analytical equations but is

generally limited to small systems that exhibit rather simple behavior (when compared to

larger, more complex systems).

In contrast, generic component-based system modeling platforms such as Simulink [8],

Dymola [34] and Bond Graph based applications [14] have been developed as a means

to model complex systems across multiple domains. The Modelica approach has its

roots in the object-oriented modeling approach developed by Elmqvist [35] while Bond

Graphs originated from Paynter [36]. In these approaches, the behavior of a component

of the system is modeled independently from the other components of system and then

these model elements are automatically assembled to produce a complete system model.

Such an approach is necessary for large complex systems and does a good job modeling

how system behavior results from the behavior of its constitutive elements.

3.1.3. Functional Abstraction and Behavioral Modeling

A functional model contains encapsulations of desired transformations (in the form of

the functions themselves), explicit definitions of energy, material and signal flows and

flow routing information. In general, this approach mimics the one used in component-

based modeling but in a qualitative, rather than quantitative manner. In component-

based modeling, a system is broken down into constitutive elements, boundary variables

are identified, model elements are created to represent the relationships between these

variables and then the elements are combined according to a connectivity schematic.

In prior work, functional modeling techniques have successfully been used to drive

quantitative reasoning in systems in limited application [14, 37-40]. The use of

functional models to assist model-based design of systems using discrete state behavioral

models is demonstrated in Bhatta et al. [37]. In Bhatta’s work, the functions in the

 40

functional models are represented as “a schema that specifies the behavioral state the

function takes as input, the behavioral state it gives as output” [37] along with a link to

internal causal behavior that identifies the behavior that enables the function. Behaviors

are “represented as sequences of state transitions between behavioral states” [37]. This

explicit input to output transformational representation is generally not suited to

modeling the behavior in large complex systems that require acausal modeling

techniques [38]. Research into the augmentation of SysML with multi-aspect behavioral

models for components has also been performed [39]. While SysML provides an object-

oriented framework for representing systems, it does not include a formal representation

of functionality.

The objective of the work presented here is to investigate the use of formal functional

modeling techniques in the behavioral modeling process of systems. A formal

functional model is one created using a standard method and a fixed lexicon of function

and flow terms. To perform this investigation, a functional model driven behavioral

modeling approach will be developed and applied to the behavioral modeling of a multi-

domain engineering system. The results of the approach and insights gained in its

application are used to assess its effectiveness and potential uses in the design process of

systems.

3.2. FUNCTION-BASED BEHAVIORAL MODELING

The proposed process of using a functional model to drive the behavioral modeling of a

system consists of the following four basic steps along with iterations between the steps:

1. Functional modeling,

2. Flow variable identification,

3. Behavioral model element definition,

4. Model assembly and solution.

These steps are outlined in the remainder of this section along with an introductory

example.

 41

3.2.1. Functional Modeling

The first step in the process is to create a functional model of the aspect of the system

being investigated. The objective of this step is to model all of the important

transformations of energies, materials and signals that occur during the behavior of

interest. To assist this modeling step and promote model reuse in subsequent steps, a

standard lexicon such as the Functional Basis is necessary when creating functional

models. The purpose of this step is to establish a baseline set of input and output flows

along with a general idea of what the system does.

Functional modeling begins with the creation of a black box model. This model captures

the overall functionality of the aspect of the system being investigated along with

external energy, material and signal flows. These external flows are used later to create

detailed chains of internal functions. For the black box, the overall function may be

represented in free language terms (it is sometimes difficult to clearly express overall

high level functionality with Functional Basis function-flow pairs). If model reuse at the

system level is desired, the overall function should be named with Functional Basis

terms along with the free-language terms. An example of a black box model appears in

Fig. 3.1. This model was created for use in developing the behavioral models for the

powertrain of a hybrid racecar (a complete example appears in Section 3.3). The overall

functionality of this system is to store and supply rotational energy for use in propelling

the car. When combined, the store and supply functions can be represented as the

provision function using the Functional Basis lexicon. For the investigation performed

on this system, the inputs selected were the flow of chemical energy from the fuel,

control inputs from the driver and status signals from the vehicle. The outputs were the

rotational energy from the powertrain along with control signals to the conventional

braking system of the vehicle (to be used in conjunction with regenerative braking). In

the model, dashed arrows represent signal flows and solid lines represent energy flows

(thick solid arrows represent material flows in functional modeling but none are

considered in this analysis). A two-way arrow means that the flow is thought to be bi-

directional. Two-way arrows are not a standard part of functional modeling but are used

 42

for convenience and do not have an explicit relationship with causality in the behavioral

models created based on the functional model.

Fig. 3.1. Hybrid Powertrain Black-box Model

Once the black box model has been created, an appropriately abstracted functional

model must be made. This model qualitatively captures the set of transformations that

must occur on external input flows in order for them to become the desired outputs and

vice-versa. The level of detail required in such a model depends on the intended use of

the behavioral model. The purpose of creating this model is to identify the distinct

functional elements of the system along with the flows that connect these elements. An

example of such a model appears in Fig. 3.2. This model is based on a hybrid

powertrain and represents a very high-level view of the functions involved in such a

system. Specifically, storing and supplying electrical energy (the powertrain is based

around the needs of a Formula Hybrid racecar and mandates the use of electrical

energy), converting this energy to rotational energy, converting chemical energy to

rotational energy, distributing these two rotational energies and controlling the various

conversion processes according to driver and vehicle inputs. A simple abstraction of the

suspension and chassis functionality is included for reference and because these

functions will need to be modeled later on in order to perform a complete investigation

on the powertrain system.

 43

Fig. 3.2. Hybrid Powertrain Functional Model

The functions in a functional model can be identified though a variety of methods

including prior experience with similar systems, analogies to other systems and reverse

engineering of existing solutions. The objective of this step is to determine exactly what

needs to be done by the system in order to satisfy the user’s needs. The general process

for creating such a functional model involves selecting an input flow from the black box

and identifying the chains of functions that must occur in sequence in order to transform

the input flow into one or more of the output flows. The functions in these models

should be expressed with a standard taxonomy such as the Functional Basis to ensure

user independence of the model and allow storage of model elements according to

functionality. The chains are then aggregated by combining common functions in the

chains to result in a complete functional model.

3.2.2. Flow Variable Identification

The functional model for a system qualitatively captures the transformations of energies,

materials and signals through the operation of the system. A behavioral model

quantitatively expresses these transformations. The first step in creating a behavioral

model from the functional model is to select a set of variables for these transformations.

These variables come from the flows listed in the functional model and represent

 44

numeric quantities that are expressed in the elements of the behavioral model that

correspond to each transformational function. In general, three classes of flow variable

types have been identified in the course of this work. These three types are summarized

in Table 3.1 along with an example for each. For additional reference the type of

variable used to represent each flow type is presented in the context of a C++ program

(double means double precision floating point, long means long integer, struct means a

user-defined data structure and class means a user-defined object).

Table 3.1. Flow Variable Types

Flow Type Description Rotational Energy Example C++ Representation
Type I Single Parameter Description Power (kW) double, long
Type II Multi-parameter Description Flow (rad/s), Effort (N*m) vector<double,long>
Type III Special Description Flow, Effort, Constraints struct, class

In general, the higher the type, the higher the fidelity model needed to represent the

transformations required to capture the system’s behavior. Most component-based

modeling techniques focus on Type I and Type II flows as models using these flows can

generally be solved using automated techniques such as the approach used in the

Modelica language for representing hybrid differential algebraic equations along with

Modelica solvers such as Dymola [34]. For systems involving complex flow variable

sets (Type III), custom solvers are generally required.

An example of a set of Type I flows appears in Table 3.2. This table was generated

during the creation of a simple model for the hybrid powertrain system introduced

previously. The routing of these flows in the functional model for the hybrid powertrain

is shown in Fig. 3.3. In Table 3.2 and Fig. 3.3 a FourCC (four character code) identifier

was associated to each function and flow from the Functional Basis. A FourCC code

allows a simple four character code to be used to identify each flow or function in a

format that is human readable but also extremely computationally efficient (each

FourCC can be represented as a single 32-bit integer instead of a character string or a

custom string class) thus saving storage space and decreasing the computational burden

for flow and function matching in a computational application. The use of FourCC

 45

codes bridges the gap between computational and human-friendly representations. A

description of the FourCC codes used in the models discussed in this section appears in

Table 3.3.

Table 3.2. Hybrid Powertrain Type I Flows

Flow Symbol Type Units Description
Electrical Energy ELCEIa,x,0 Power kW Power Flow
Chemical Energy CHMEIa,x,0 Power kW Power Flow
Rotational Energy ROTEIa,x,0 Power kW Power Flow
Control
Signal CNTLIa,x,0 Analog Varies A single analog control signal

Status
Signal STASIa,x,0 Analog Varies A single analog status signal

Fig. 3.3. Hybrid Powertrain Type I Flow Routing

Table 3.3. Hybrid Powertrain FourCC Codes
Flow FourCC Function FourCC
Control CNTL Convert CONV
Electrical ELCE Distribute DIST
Mechanical MCHE Process PROC
Rotational ROTE Provision PROV
Status STAS Transfer TFER

 46

3.2.3. Model Element Definition

The next step in the behavioral model development process is to develop or reuse

behavioral model elements. These elements correspond to the concept of a component

in the field of component-based modeling but are abstracted to the boundaries of the

functional elements in the functional model rather than traditional component

boundaries. These behavioral model elements express relationships between the flow

variables identified in the previous step. Like the identification of flow variables, the

development of a behavioral model element is related to the intended use of the model,

the desired local and global model fidelity and the amount of information available

regarding the aspect of the system being modeled. In the case of new model element

development, the flow types identified in the previous step serve as a starting point in

identifying the relationships that make up the behavior of the element. From these

variables, physical principle and domain specific knowledge can be used to develop

equations that relate the variables. This process is explained in the context of object-

oriented modeling in [38] and in conventional abstraction modeling in [32, 33].

Essentially, this step is completed in the same fashion as a traditionally abstracted model

but at a smaller, and easier to manage scale. As such, the specific process of making

these models is left outside the scope of this work. However, like the flow classification

system, a model element classification system has been developed as well to guide the

application and development of model elements. These types are outlined in Table 3.4

and have a rough correspondence to the types of flows that are connected to the element

(e.g. a Type I model element generally has Type I flows connecting to it, although this is

not always the case). For some modeling tasks, models with locally different levels or

fidelity are appropriate. For example, the hybrid powertrain model developed in the

subsequent example used all Type I elements in one model and mixed Type I and Type

II elements in another.

 47

 Table 3.4. Behavioral Model Element Types

Behavior Type Description Convert Elec. E. to Rot. E. Example
Type I Form neutral representation Power conservation equation (no form)

Type II Form family dependant Constant torque, constant power transitional motor model
(based on the motor solution family)

Type III Solution specific Multiphysics FEA motor model (based on a specific motor)

The general trends associated with model element type and various factors in the

application of the behavioral model appear in Table 3.5. In the context of this work,

fidelity is defined as “accuracy in details” [24] with accuracy being “conformity to truth

or to a standard or model” [24]. As such, as the model type increases, the predicted

behavior more closely approximates a physical implementation of the solution, thus the

fidelity, as defined, increases with model element type. With the cost of accuracy comes

the additional need for form specific information (which may or may not be available

depending on when the model is being used and what it is being used for) and in general

increased solution difficulty (both in time and increased modeling resources). The

models also become less flexible as they become more closely tied to a specific form of

the solution. Essentially, lower type models answer the question “what” and are

generally appropriate for prescriptive use (what do I want this system to do) and higher

type models are more appropriate for descriptive use (how does this system work).

Table 3.5. Type Trends

Increasing Type:
+Fidelity
+Form Information
+Solution Difficulty
-Flexibility
-Prescriptive Use
+Descriptive Use

An example of a Type I model element from the hybrid powertrain example follows.

The element describes the quantitative transformation of electrical energy to rotational

energy in response to a control input. Such functionality is generally realized with an

electric motor. However, at the Type I level, no assumptions were made regarding the

form of the solution. The variables used in this model element appear in Table 3.6. Flow

 48

variables are labeled as such and use the naming convention shown in Table 3.4.

Parameters are also listed along with a FourCC code plus index naming convention (for

use in a computational implementation). Units and a short description are also included.

The actual relationships developed for this model element are shown in Table 3.7. In

this element, two relationships were identified that describe the intended behavior: a

linear relationship between a control signal and the rotational power output by the

element (Equation 0 in Table 3.7) and a two-way efficiency relationship between the

rotational energy and electrical energy flows (power can flow both ways through the

element in this case, Equation 1). The intended use of this element is to determine an

efficiency required by the eventual solution to the element. Once established, this

information can be used to select a solution. Once a solution has been identified, a Type

II model can be developed based upon the form-specific information obtainable from the

selected solution family (e.g. an electrical motor/generator). The results of the Type II

model can be used to verify whether or not the selected solution family is capable of

meeting the efficiency requirements set using the Type I model. The model element

shown is used as part of the example in Section 3.3.

Table 3.6. Convert Elec. E. to Rot. E. Type I Model Variables

Sym.(E) Sym.(L) Type Units Description
PM ROTEIa,0,0 Flow kW Rotational Power
PA ELCEIa,0,0 Flow kW Electrical Power
ξM PARM0 Parameter (0,1] Conversion Efficiency
PM,max PARM1 Parameter kW Maximum Power
CM CTLS Ia,0,0 Flow [-1,1] Motor Control

Table 3.7. Convert Elec. E. to Rot. E. Type I Model Example
Relationship Type Ref. Number

!

P
M
"C

M
P

M ,max
= 0

Exp. Lin. Alg. Eq. 0

!

if CM() >= 0 :

PA "
PM

#M
= 0

else :

PA " PM $ #M = 0

Hyb. Imp. Alg. Eq. 1

 49

3.2.4. Model Representation, Assembly and Use

The technique required to represent, assemble and use model elements depends on the

type of model developed and the nature of its elements. For Type I and Type II models

in the engineering domain, the models often take the form of hybrid implicit non-linear

differential algebraic equations (DAEs) or some subset of this rather large class of

equations. Certain subsets of this model class have existing commercial solvers. As

such, it is left to the model developer to choose which solution is appropriate based on

the model elements developed and their intended use. For Type III models, it is

generally the case that a custom solution framework must be developed (an earlier

example by the author demonstrates this need [40]). In most cases, an existing

component based modeling representation and solution framework should be used once

model elements have been identified. Such frameworks include Matlab+Simulink for

model elements that can be adapted to a fixed causality block diagram format or

Modelica+Dymola for general acausal modeling with hybrid DAEs. The models used in

the hybrid powertrain example following were represented within an object oriented

programming environment (C++) and solved using a sophisticated non-linear equation

solver [41] along with a Runge-Kutta 4 integrator. The details of this implementation

appear in Section 5. Since in the general case, model representation, assembly and

solution is problem dependent, an all-inclusive solution method is not proposed nor

presented in this work. An example application of the proposed functional model based

behavioral modeling method outlined in this section and implemented in a custom

computational framework follows.

3.3. AUTOMOTIVE MODEL EXAMPLE

To investigate the use of a functional model in the derivation of a behavioral model, an

example was conducted based on the design challenges faced by Formula Hybrid teams.

Formula Hybrid is a collegiate design competition that requires students to design, build,

test and compete with a prototype electric hybrid open-wheeled racecar [42] and is a

spin-off of the Formula SAE competition [43]. In addition to the challenges presented

by Formula SAE, the successful design of a Formula Hybrid car requires an

 50

understanding of the behavior of a system with multiple energy domains, complex

control problems and a variety of potential solutions outside the domain of conventional

automotive solutions. In the design process of such a vehicle, behavioral models are

required in order to understand how design choices will impact vehicle performance.

Conventional hybrid design knowledge is not well suited to this design problem due to

the increased emphasis on performance that a hybrid racecar must demonstrate over a

hybrid passenger car. To design a competitive entry, a variety of potential powertrain

options must be evaluated and fundamentally sound choices must be made before

embodiment and detailed design can be completed. The lack of existing knowledge and

expertise in this area, and the wide variety of powertrain functionality configurations,

perfectly suit this example to the application of functional modeling to assist behavioral

model creation.

In this example, two models were developed. An exclusively Type I model that was

primarily based on energy conservation analyses that was targeted for making high-level

decisions about powertrain configurations and performance targets (answering the what

question) and a mostly Type II model that was targeted for solution family selection for

the powertrain’s various functional elements (to answer the how question).

3.3.1. Functional Modeling

The first step in developing the behavioral model was to create an appropriately

abstracted functional model. The black-box model shown in Fig. 3.1 was used as the

starting point for creating a functional model that described the powertrain system of a

hybrid racecar at a level of detail that was appropriate for the analysis to be performed.

In this case, two behavioral models were created. The first model was to be used in a

preliminary, low-fidelity power flow analysis to prescribe efficiency and performance

targets while the second was to be used as a descriptive model of various powertrain

concept’s performance. To create this model, each input and output flow to the black-

box was investigated and a set of functions was developed to represent the

transformations necessary to implement the desired functionality of the powertrain. The

result of this process was the functional model shown in Fig. 3.2. This model was used

 51

for the Type I analysis. For the Type II analysis, a slightly more detailed representation

of the vehicle was necessary. As a result, the transfer mechanical energy function in the

model (which represents the functionality of the suspension elements of the car) was

decomposed into two separate elements for the front and rear suspensions. Thus

allowing the analysis of each to be separated during the modeling process. The

resulting model appears in Fig. 3.4.

Fig. 3.4. Hybrid Powertrain Functional Model (Version 2)

3.3.2. Flow Variable Identification

The flow variable identification process for the Type I model appears and is described in

Section 2. For the newly abstracted model developed for the Type II analysis, the same

process was applied and resulted in the flow variable set and flow routing model shown

in Table 3.8 and Fig. 3.5 respectively. A complete listing of the variables appearing the

models shown in this section appears in Appendix 4.

 52

Fig. 3.5. Type 2 Model Flow Routing

As seen in Fig. 3.5, most of the flows in the model are of Type II. The only exceptions

are the Type I flows used for the various signals passing through the system as well as

the flow of chemical energy into the system. The chemical energy was left at Type I

because a breakdown of the flow into constitutive elements was not required for the

analysis to be performed (fuel energy delivery rate was the only piece of information

required and could be found with a Type I flow).

Table 3.8. Type 2 Model Flow Variables

Flow Symbol Type Units Description
ELCEIIa,x,0 Voltage V Effort Electrical Energy
ELCEIIa,x,1 Current A Flow
ROTEIIa,x,0 Moment N*m Effort Rotational

Energy ROTEIIa,x,1 Ang. Vel. rad/s Flow
MCHEIIa,x,0 Moment N*m Effort, rot.
MCHEIIa,x,1 Force, x N Effort, trans.
MCHEIIa,x,2 Force, y N Effort, trans.
MCHEIIa,x,3 Ang. Vel. rad/s Flow, rot.
MCHEIIa,x,4 Velocity m/s Flow, trans.

Mechanical Energy

MCHEIIa,x,5 Velocity m/s Flow. trans.

3.3.3. Model Elements

The next step in developing the behavioral models for the hybrid powertrain system was

to create behavioral model elements for each functional element. An example of a Type

I model element was shown earlier in Table 3.7. Model development was completed by

 53

using the flow variable information selected in the previous step along with the desired

level of model fidelity to select a model type and class. The first model elements

developed for the hybrid powertrain were targeted for a cursory analysis of the power

demands of the system and were intended to be as form-neutral as possible to prevent

preconceived ideas for the powertrain configurations from influencing the course of the

design. The resulting model elements were developed based on the flow variables

routed to each functional element and the relationships that could be developed based on

these flows. As a result most of these relationships were derived from power

conversion efficiencies and throttling in relation to control signals. The developed

model elements (Table 3.9) are rather low in fidelity but allow the desired information

from the model to be obtained with as little knowledge about specific form

implementations as necessary. In this and subsequent tables, the following abbreviations

are made: Imp. – Implicit, Exp. Explicit, Lin. – Linear, Alg. – Algebraic, Eq. - Equation,

Hyb. – Hybrid, Diff. – Differential, Ord. – Ordinary. The equations are linked to the

flow variables in each function as shown in Figs. 3.6-3.11.

Table 3.9. Type 1 Model Elements

Function Model Description Relationship Details

!

P
E
" P

F
$

E
= 0 Imp. Lin.

Alg. Eq.
Convert
Chem. E. to
Elec. E.

One-way power converter with linear proportional
control

!

P
E
"C

E
P

E ,max
= 0 Imp. Lin.

Alg. Eq.
Provision
Elec. E.

Energy storage and supply with single parameter
efficiency. If power is flowing out of the element, the
first equation is used, if power is flowing out the
second is used.

!

if Pa() >= 0 :

˙ C A "
Pa # $A

EMax

= 0

else :

˙ C A "
Pa

$A # EMax

= 0

Imp. Hyb.
Ord. Diff.
Eq.

!

P
M
"C

M
P

M ,max
= 0 Exp. Lin.

Alg. Eq.
Convert
Elec. E. to
Rot. E.

Two-way power converter with linear proportional
control and single parameter efficiency. The first
equation relates power out to a control signal. The
second equation relates input power to output power
based on the sign of the control signal.

!

if CM() >= 0 :

PA "
PM

#M
= 0

else :

PA " PM $ #M = 0

Hyb. Imp.
Alg. Eq.

 54

Table 3.9 Continued.
Function Model Description Relationship Details
Distribute
Rot. E.

Power conservation

!

P
M

+ P
E
" P

D
= 0 Imp. Lin.

Alg. Eq.
Distribute
Mech. E.

Application of Newton’s 2nd law

!

˙ v
H
"

P
D
" P

B

v
H

m
H

= 0
Imp. Lin.
Diff. Eq.

Transfer
Mech. E.

Linear proportional power sink

!

P
B
"C

B
P

B ,max
= 0

Imp. Lin.
Alg. Eq.

!

vT = f dH()
Cubic
Spline Fit

!

˙ d
H

= v
H

Exp. Ord.
Diff. Eq.

!

if vT " vH() > 0() :

CT =min vT " vH()gC ,1()
else :

CT =max vT " vH()gC ,"1()

Hyb. Exp.
Alg. Eq.

Process
Control

Simple hybrid controller with regenerative braking
capability. Control error is based on a set speed versus
distance spline.

!

if CT > 0() :

CE = CT

CC = CT

CB = 0

else :

CE = CT

CC = 0

CB = abs CT()

Hyb. Exp.
Alg. Eq.

Fig. 3.6. Convert Chemical Energy to Rotational Energy Type I Model Element

 55

Fig. 3.7. Provision Electrical Energy Type I Model Element

Fig. 3.8. Convert Electrical Energy to Rotational Energy Type I Model Element

Fig. 3.9. Distribute Rotational Energy Type I Model Element

 56

Fig. 3.10. Transfer Mechanical Energy Type I Model Element

Fig. 3.11. Distribute Mechanical Energy Type I Model Element

Using the same approach but with the Type II flows shown in Table 3.8 and the slightly

more detailed functional description in Fig. 3.5, Type II model elements were also

developed for the powertrain system. These model elements operated on a larger flow

variable set with the power flows in the Type I models broken down into flow and effort

pairs in a similar manner to the approach used in Bond Graph modeling [17]. The model

elements created based on these flows can generally be created using first principles

from physics and resemble the traditional concept of component-based modeling. The

increase in fidelity that comes from using such models comes at the expense of needing

more information regarding the form solutions to the functionality of the system along

 57

with the extra information required to fully parameterize each model element during

model use. As a result, these models are more appropriate for a coarse analysis of

specific concepts during conceptual design rather than a high-level power flow analysis

like the one enabled by the mainly Type I model. The Type II model elements appear in

Table 3.10. The equations are linked to flow variables in Figs. 3.12-3.17.

Table 3.10. Type 2 Model Elements

Function Model Description Relationship Type

!

ME = f "E() #CE Exp. Alg. Eq. Convert Chem. E. to
Elec. E.

Spline fit to torque curve from engine
dynamometer test with single parameter
efficiency for fuel power calculation

!

P
F
"
M

E
#$

E

%
E

#
kW

1000W
= 0

Imp. Lin.
Alg. Eq.

!

V
B ,nom

"V
B
" I

B
R

B
= 0 Imp. Lin.

Alg. Eq.
Provision Elec. E. Linear battery model with internal

resistance

!

˙ C
A

=
"I

B

Q
B ,max

Exp. Lin.
Diff. Eq.

!

"
T

=
P
Max

#V
S

M
Max

#V
Rated

Exp. Alg. Eq.

!

if "M >"T() :

MM #MMax $CM = 0

else :

MM #
PMax $VS $CM

"M $VRated

= 0

Hyb. Imp.
Lin. Alg. Eq.

Convert Elec. E. to
Rot. E.

Constant torque to constant power
transitional electrical machine model
with linear proportional control

!

I
S
" I

Rated
#C

M
= 0

Imp. Lin.
Alg. Eq.

!

"
E

="
R
X

G
 Exp. Alg. Eq.

!

"
M

="
R
X

M
 Exp. Alg. Eq.

!

XG = f "E()
Exp. Alg. Eq.

!

M
M
" X

M
+ M

E
" X

G
#M

R
= 0

Imp. Lin.
Alg. Eq.

!

M
F

= 0
Imp. Lin.
Alg. Eq.

Distribute Rot. E. Lossless post-transmission torque
coupled rear wheel hybrid drivetrain
with multi-ratio transmission for engine
and fixed ratio motor reduction

!

M
Rxn
"M

F
"M

R
= 0

Imp. Lin.
Alg. Eq.

!

FF ,z " wH #CGx() #MF ,y # FR ,z "CGx

#MR ,y + MRxn + FR ,x "CGz + FF ,x "CGz = 0

Imp. Lin.
Alg. Eq.

!

F
F ,x

+ F
R ,x
"m

H
˙ v

H
= 0

Imp. Lin.
Diff. Eq.

Distribute Mech. E.

2D automotive chassis model with force
and moment summations and no
aerodynamic effects

!

"FF ,z " FR ,z + mH # g = 0

Imp. Lin.
Alg. Eq.

 58

Table 3.10 Continued.
Function Model Description Relationship Type

!

"
W

=
#
W
$ r
W
% v

W

v
W

Exp. Alg. Eq.

!

FW ,x " 2 # f $W ,
FW ,z

2

%

&
'

(

)
* = 0

Imp. Non-
Lin. Alg. Eq.

!

M
D
"M

W
" F

W ,x
r
W
" J

W
˙ $

W
= 0

Imp. Lin.
Diff. Eq.

Transfer Mech. E.

2D paired wheel set with a Pacejka ’96
longitudinal tire model and a linear
proportional brake model

!

M
W
"M

B ,Max #CB
sgn $

W() = 0

Imp. Non-
Lin. Alg. Eq.

!

vT = f dH()
Cubic Spline
Fit

!

˙ d
H

= v
H

Exp. Ord.
Diff. Eq.

!

if vT " vH() > 0() :

CT =min vT " vH()gC ,1()
else :

CT =max vT " vH()gC ,"1()

Hyb. Exp.
Alg. Eq.

!

if "R >"
1
 and "R <"

2() :

CS = "R #"1() / "
2
#"

1()

else if "R >"
2() :

CS = 0

else;

CS =1

Hyb. Exp.
Alg. Eq.

Process Control Hybrid controller for RWD vehicle with
regenerative braking and limited traction
and anti-lock braking control. Control
error is based on a set speed versus
distance spline fit.

!

if CT > 0() :

CE = CT "CS

CC = CT "CS

CB = 0

else :

CE = CT

CC = 0

CB = abs CT()

Hyb. Exp.
Alg. Eq.

 59

Fig. 3.12. Convert Chemical Energy to Rotational Energy Type II Model Element

Fig. 3.13. Provision Electrical Energy Type II Model Element

Fig. 3.14. Convert Electrical Energy to Rotational Energy Type II Model Element

 60

Fig. 3.15. Distribute Rotational Energy Type II Model Element

Fig. 3.16. Distribute Mechanical Energy Type II Model Element

Fig. 3.17. Transfer Mechanical Energy Type II Model Element

 61

3.3.4. Model Solution

For both sets of models, the resulting equations form a set of hybrid differential

algebraic equations (this is the usual case for a component-based modeling approach

applied to an engineering system). There are multiple options for solving such

problems. A direct approach to numerically solving such systems without preprocessing

or an alternative representation generally fails [44]. Alternative representations include

formatting the model elements to the standards of the Modelica [7] language and using a

Modelica compiler and solver (such as Dymola) or reformatting the models as causal

block diagram elements and implementing them in MATLAB/Simulink. Alternatively,

the model elements could be analytically combined to produce a reduced set of equations

that could then be implemented in an analytical solution. The appropriate

representation and solution method depends on the intended use of the models. In the

case of the hybrid powertrain model elements an extensive investigation of various

powertrain configurations and an intensive optimization of powertrain performance with

respect to concept selection and parameterization was required. As a result, a highly

robust, highly modular, extremely computationally efficient and flexible model

representation, assembly and solution approach was required. As a result, a custom

model representation and assembly format was developed using C++ classes for the

model elements and efficient parallel non-linear system solvers along with a Runge-

Kutta 4 integrator. This approach was selected due to the ability to control every aspect

of the solution and allow a completely modular and automated approach to investigating

both parametric effects and model element choice and was possible due to the nature of

the equations (index 0 non-linear DAEs). As the method proposed in this work

primarily involves the relationship between functionality and behavioral model

development, the details of the solution approach used are outside of the scope of this

work and not included.

3.3.5. Model Results

For reference, results from an analysis of a single system configuration for both the Type

I and II models are presented next. To use the models developed earlier, a full

 62

parameterization and model use case had to be developed for each. For each parameter

shown for each model element in both sets of models, values were selected based on

estimates of efficiencies (for the Type I models) and the availability of components (for

the Type II models). These parameters are shown in Table 3.11 for the Type I elements

and Table 3.12 for the Type II elements.

For each model, a simulated acceleration run from a standing start was performed for

both electric only and electric plus internal combustion configurations of each (both

represent Formula Hybrid events). In these events, time to complete the 75m run was

recorded and the runs were terminated when vehicle displacement reached 75m.

Autocross performance was also tested with the models. To simulate the powertrain

demands for an autocross event, a data set from Texas A&M’s 2008 Formula SAE entry

over a complete autocross lap was used to generate a target speed profile (it was

assumed the an optimal Formula Hybrid car would match the powertrain performance of

a Formula SAE car). The powertrain models were then simulated using this target speed

profile.

The results of the acceleration testing are shown along with the charge remaining in the

powertrain’s energy accumulators in Table 3.13. The autocross results are shown in

Table 3.14. In this table, runs are shown with and without regenerative braking along

with the actual time recorded from the 2008 TAMU car. Speed profiles from each of

these autocross runs superimposed over the target speed profile appear in Fig. 3.18.

Table 3.11. Type I Model Parameters

Function Symbol Value Units Description
ξE 0.30 [0,1] Conversion Efficiency Convert Chem. E. to Rot.

E. PE,max 20.0 kW Maximum Conversion Power
Emax 4000 kJ Max. Energy Storage Provision Elec. E.
ξA 0.80 (0,1] Provision Efficiency
ξM 0.85 (0,1] Conversion Efficiency Convert Elec. E. to Rot.

E. PM,max 10.0 kW Maximum Power
Distribute Mech. E. mH 300.0 kg Vehicle Mass
Transfer Mech. E. PB,max 120.0 kW Max Braking Power
Process Control gC 10.0 s/m Control Gain

 63

Table 3.12. Type II Model Parameters
Function Symbol Value Units Description

ξΕ 0.30 [0,1] Conversion Efficiency Convert Chem. E. to Rot.
E. F Lookup N*m Based on WR250X Dyno

VB,nom 72.0 V Nominal Voltage
RB 0.1 � Internal Resistance

Provision Elec. E.

QB,max 60000.0 A*s Battery Capacity
VRated 48.0 V Rated Voltage
PMax 13.41 kW Maximum Power

Convert Elec. E. to Rot.
E.

IRated 350.0 A Rated Current
Distribute Rot. E. f Lookup unitless Fixed ratio gearbox model (5-speed)

mH 281 kg Vehicle Mass
CGx 0.765 m Vehicle CG Location, x
CGz 0.05 m Vehicle CG Location, z
wH 1.7 m Vehicle Wheelbase

Distribute Mech. E.

g 9.81 m/s2 Gravitational Acceleration
MB,max 2000 N*m Max Braking Moment
rW 0.254 m Wheel Radius

Transfer Mech. E.

JW 1.2 kg*m2 Wheel Inertia, y
gC 1.0 s/m Control Gain
k1 0.2 m/s Slip Ratio Cut Start

Process Control

k2 0.4 m/s Slip Ratio Cut Stop

Table 3.13. Acceleration Results
Accel Unrestricted Electric Only
Model Time Charge Time Charge
Type I 3.98s 99.1% 5.73s 98.6%
Type II 4.71s 97.25% 5.54s 96.8%

Table 3.14. Autocross Results
AutoX With Regen. No Regen.
Model Time Charge Time Charge
FSAE N/A N/A 49.7s N/A
Type I 50.64s 96.8% 50.64s 96.0%
Type II 51.87s 92.2% 51.87s 91.4%

To simulate an autocross start (a standing start), the initial speed for the simulated runs

was set to 0m/s. Thus, a direct comparison between the hybrid cars and the convention

car was not made but for reference, a simulated run of the car parameterized based on

the 2008 TAMU car was performed using the Type II model with an initial speed that

matched the initial speed from the target speed profile. The simulated car ran the lap in

49.84 seconds compared to the actual run of 49.7 seconds. It should be noted that the

models, as developed, were strictly used for a powertrain capability analysis, for a full

lap simulation analysis a more detailed model is required (a 3D type II model is

 64

appropriate for such an analysis and was developed using this approach in prior work for

a conventional FSAE car [40]).

Fig. 3.18. Autocross Speed Profiles

By using a functional model to guide the behavioral modeling process for the hybrid

powertrain system, it was possible to generate two models of very different fidelity

within the same framework. The elements in the models had similar boundaries and

flows from a functionality standpoint and used a typing system to define the variable set

for each flow. The resulting model elements have a higher degree of modularity than a

typical component based model. This modularity is improved through the use of

common boundary flow types as well as the increased information on content and

application resulting from the use of a formal typing system.

3.3.6. Discussion

The process of constructing a behavioral model based on a functional model is proposed

to be completed in four steps: functional model creation, flow variable identification,

model element identification and model solution along with any iterations required to

 65

arrive at the desired solution. The result of the application of this process is a behavioral

model of a system that is tied to its functionality. Through example applications, driving

the behavioral modeling of a system with a functional model has been found to provide

the following contributions to system modeling:

• A link between behavioral model decomposition and functional decomposition,

• Potential reuse of behavioral model elements based on common functionality and

established flow and model element types,

• Implementation of multi-fidelity modeling through the use of standard type

definitions,

• Linking function-based component identification with quantitative component

combination evaluation.

The first contribution results from the use of functional modeling to drive the behavioral

modeling process. If implemented, the evolution of the functional model can in turn be

used to assist the evolution of the representation of the system’s behavior (as seen in the

transition from the Type I to Type II model for the hybrid powertrain). The second

contribution is enabled through the storage of behavioral model elements based on their

associated function, form solution, and flow classification information. Once a complete

behavioral model has been created for a system, model elements that were not re-used

from prior solutions can be stored, along with their associated functions, form solutions

and type information, plus the assumptions made during the model creation process, in a

design repository such as the one demonstrated in [45]. When creating behavioral

models for new systems, the functional model of the new system can be used to look up

model elements and component solutions from prior designs based on common

functionality and desired function and flow types. Even if the returned models are not

compatible with the new system they may prove useful in assisting the model creation

process for the new system.

The third contribution stems from the use of a formal typing system for flows and

behavioral model elements. This typing system establishes common boundaries and a

 66

rough level of fidelity for a model element. These boundaries can then be used to

develop higher or lower fidelity model elements within each function type given a set of

connected flows and their corresponding types.

If a large set of existing model elements is available for the functions in a functional

model and specific type level and the behavioral model elements for each function have

compatible connecting flow types, the method allows the rapid development of

component-based models for use in numerical explorations of the solution space for a

system at varying levels of fidelity thus enabling the fourth contribution.

The method presented extends current component-based modeling methods by allowing

an association between functionality and behavior through a structured process

independent from the ultimate model representation and solution format. A major

objective of the work is to not limit the approach to a specific model representation

format and/or solution method. At a minimum, the approach provides a layer of

functional abstraction over traditional component-based modeling techniques and assists

the identification of variables, desired level of fidelity of elements and element re-use.

3.4. CONCLUSIONS

The objective of the work presented in the section was to investigate an approach for

developing a complete behavioral model for a system based on a functional description.

Specific benefits of the work include the assistance of concept selection through the use

of a functional model as a unifying starting point for concept identification and

evaluation, improved storage and re-use of behavioral model elements by primary

association with functionality and typing information and integration of behavioral

modeling decomposition with functional decomposition. Additionally, the method

facilitates model element fidelity swapping and the storage of modeling knowledge.

The proposed method begins with functional modeling and includes flow variable

identification and typing, model element identification and typing and finally model

implementation. In the functional modeling step, the overall functionality and flows are

identified along with a complete description of the system’s detailed functionality.

 67

During the flow variable identification step, potential model types are investigated and

flow variables are identified based on the flows in the functional model and their

selected types. Next, behavioral model elements are defined for each functional

element in the functional model based on the intended use of the model and desired

fidelity. The boundaries of these model elements correspond to those of the functions to

which they are associated. The model elements themselves operate on the flow variables

identified in the previous step. The models themselves form relationships between the

input and output flow variables as identified from the flows in the functional model. The

model can then be solved using the appropriate solution method given the type of

models used and selected representation format. A complete example of the approach

for two global levels of model fidelity was completed for a Formula Hybrid racecar

powertrain. This example demonstrates the development of models within the approach

at two levels of fidelity and proves that the approach can lead to the development of an

accurate and useful model.

 68

4. SENSITIVITY ANALYSIS IN EARLY DESIGN

During the conceptual design of engineering systems, investigating the sensitivity of a

concept’s performance with respect to parametric uncertainty is an important task. High

sensitivity to parameters that are inherently noisy can lead to poor, or unexpected

performance. However, parameters with high sensitivities can also be used as

performance tuning variables later in the design process since changes in their values

result in significant changes in performance. As a result, knowledge of the relative

sensitivity of design parameters is as important as performance predictions when

evaluating and selecting concepts during the early design process. Ideally, having this

information as early as the conceptual design process can enable designers to make

better choices during concept identification and selection. In order to quantify and

mitigate (for noise) or utilize (for tuning) sensitivity during the design process, resources

must be allocated to accurately identify and model its impact in a system. Identifying

these effects as early as the conceptual design process allows better resource allocation

throughout the entire design process. However, often during the conceptual design of a

system, little is known about the potential physical forms of the solution. Without this

information, it is difficult to define performance models and the probability distributions

for the design parameters in these models.

The development of function-based behavioral modeling, as shown in Section 3, enables

a function-based sensitivity analysis to be performed alongside the behavioral modeling

of systems. In addition to the behavioral model re-use promoted by a functional

decomposition, sensitivity information from previous design efforts can be re-used as

well as providing the use appropriate sensitivity measures.

Another problem encountered in performing sensitivity analyses on models of complex

systems during design is the associated computational burden. In general, local

sensitivity analyses require at least two model evaluations per design variable in the

 69

model and global analyses using Monte Carlo methods require large numbers of

evaluations (>>1000) to provide useful results.

In this work, it is proposed that the task of performing a sensitivity analysis during the

design of a system be decomposed into two phases: a local sensitivity analysis for

screening a large number of concepts during conceptual design and a global sensitivity

analysis to be performed during the later stages of design. The approach is

recommended due to the inherent differences in the information required to make

decisions in early design versus the later stages of design. To facilitate the transition

from a local analysis to a global analysis, it is recommended that a similar sensitivity

analysis method be used in each.

Typically, a local analysis involves the use of derivative-based methods. For global

analyses, variation-based methods are generally suggested [46-48]. In this work, a

simplified local method similar to a variation-based approach is developed that allows a

seamless transition from a local analysis of several concepts to a global analysis of a

few. Since the problem of efficiently performing global variation-based sensitivity

analyses has been well researched, most of the work presented here focuses on using a

variation-like local method during the analysis of multiple conceptual solutions of a

design problem. The primary novelty of this work lies in its use of a functional

decomposition of the system, the behavioral model of the system and the associated

sensitivity analysis.

The results of the work are presented in four subsections. The first sub section (4.1)

details the reasoning behind and current methods for performing sensitivity analyses in

design. The second sub-section (4.2) proposes a hybrid local sensitivity analysis derived

from global variation-based methods. In the third sub-section (4.3), an example is

presented that demonstrates how to apply the hybrid method to a functionally

decomposed behavioral model (the method is certainly not exclusive to a functional

decomposition but such a decomposition is helpful). Finally, conclusions and extensions

of the work are presented in sub-section four (4.4).

 70

4.1. SENSITIVITY ANALYSES IN ENGINEERING DESIGN

A sensitivity analysis is a study of how the variation of the inputs to a model create

variation in the outputs of the model [47]. Such analyses can be qualitative or

quantitative. A qualitative analysis identifies the relative importance of various design

parameters to the overall sensitivity of the model. A quantitative analysis provides

numerical measure of how sensitive the model is to variation of the design parameters.

To perform a sensitivity analysis, a model of the system’s behavior is required along

with inputs (in the case of a design problem these are the design and noise parameters)

and outputs (performance evaluations from the model).

Sensitivity analyses are used in a variety of fields in addition to engineering including

the economic [49], environmental [50] and scientific [46] industries.

There are multiple methods available for performing a sensitivity analysis. A list of

several methods currently used follows along with a characterization of these methods in

Table 4.1.

Local Derivative (LD) - A sensitivity analysis approach characterized by the
use of the local partial derivative of an output variable in response to an input
variable of choice. The resulting measure carries units of the output variable
divided by the input variable and does not require knowledge of input
distribution or estimation of output distribution. Such approaches typically use
two evaluation of the model for each parameter (at perturbed high and low
values) to produce a second-order estimate of the local derivative [46].

Normalized Derivative (ND) – A normalization of a local derivative measure to
the standard deviation of the input variable and output variable (other
normalizations are sometimes used). This normalization produces a unitless
measure and requires knowledge of the input variable’s distribution and an
estimation of output variable deviation. The results is a unitless signed measure
[46].

Monte Carlo Regression (MCR) – A linear model fit to the results of a Monte
Carlo simulation of the system. This approach requires full knowledge of input
variable distributions and is significantly more computationally complex
compared to a local derivative approach as it requires numerous evaluations of
the model (>>1000) for each parameterization. The resulting measures provide a
global breakdown of sensitivity contribution [46].

 71

Variance-based (VB) – A sensitivity analysis performed using estimates of
model variance and parametric contributions to variance. Analogous to MCR
under certain conditions and has similar characteristics [46].

Simplified model fit (SMF) – A more computationally efficient model (such as
a kriging model [51]) is fit to the system performance model. A sensitivity
analysis is then performed on the resulting model. This approach shares
characteristics of the variation-based analysis approach used but with a decrease
in computational burden at the expense of an increase in model uncertainty
(inherent in the model fitting process). In certain cases analytical solutions are
possible [48].

Table 4.1. Characterization of Sensitivity Analysis Methods

Method

Characteristic LD

N
D

M
C

R

V
B

SM
F

Computationally efficient X X X
Works directly on model X X X X
Does not require add. info. X
Unitless X X X X
Contributive measure X X X
Local/Global L L G G G

During the design of engineering systems, the following consideration must be made

when selecting a sensitivity analysis:

• Local information versus global information [48, 49, 52],
• Computational burden [48, 51, 52],

• Knowledge of design parameter distribution and distribution parameters,
• Usefulness of resulting knowledge,

• Modeling requirements.

In the context of conceptual design, behavior and sensitivity information can be used as

selection criteria when evaluating various concepts. Within the context of engineering

design, a sensitivity analysis can provide useful information in the form of sensitivity

magnitude (quantitatively, how sensitive is a system?) and sensitivity contribution (what

is the relative contribution of each variable to the system’s sensitivity?). Variation-based

sensitivity measures provide both pieces of information in the form of the overall

variation of the model along with main effect contributions.

 72

During conceptual design, limited information is available about potential concepts.

This limited information may exclude knowledge of parametric distributions. As a

result, it may not be possible to perform a full variation-based sensitivity analysis for

these concepts. Additionally, such analyses are computationally expensive (even with

the more efficient approaches discussed in [48, 52]). Local measures of sensitivity

(derivative-based approaches) provide quantitative measures of each variable’s effect on

the system’s performance at a single nominal operating point but cannot be used in a

contributive manner or provide an overall sensitivity magnitude like a variation-based

approach. However, unlike variation-based measures, local measures do not require

specific information about parametric distributions and are generally much faster to

evaluate computationally (typically, two performance evaluations are required for each

variable considered in the sensitivity analysis). Since the results of a typical local

analysis are derivatives (normalized or not) and the result of a variation-based analysis is

a set of main effect contribution percentages and an overall variance, the results of the

two analyses are not compatible.

To reconcile the various approaches to performing a sensitivity analysis in conceptual

design, a hybrid local variation-based (HyVar) analysis is proposed. This analysis uses

the basic mechanics and output information of a traditional sample-based variation-

method and combines it with the cost of evaluation of a local derivative method.

Essentially, this approach replaces a derivative-based local measure with a variation-

based measure. In this approach, derivative information as well as a variance-like

sensitivity magnitude along with main effect contributions are calculated for a nominal

parameterization of each concept. The resulting measures provide the same results of a

local derivative approach along with measures similar to that of a full variation-based

analysis. The analysis is still a local analysis and does not replace full variation-based

global sensitivity analysis but requires significantly less knowledge about parameter

distributions and is suitable for screening a large number of parameterized concepts

during the early stages of design.

 73

The benefits of using the HyVar approach over local derivative methods are the

compatibility of the results of the HyVar analysis with a full variation-based method

while retaining a similar computational burden to a local method. Due to this reduced

computational burden, it is feasible to operate on an existing model rather than use a

fitting process (polynomial or kriging). Additionally, since the output parameters from

the hybrid analysis have the same format as the output parameters of a full variation-

based approach, the result of the two analyses can be directly compared. An example of

where such a comparison would be useful is between a HyVar analysis performed during

conceptual design versus a full variation-based approach performed on the same model

during detailed design once parametric distributions are known.

The sensitivity measures provided by the proposed HyVar approach allow grouping of

sensitivity contributions by direct addition of percentages. This is a primary reason for

implementing them over a traditional derivative-based approach and allows the approach

to be used in a functionality decomposed system behavior model. A derivation of these

measures with an illustration of how the measures are combined to represent the

sensitivity contribution of functions in presented in the next section.

4.2. HYBRID VARIATION-BASED LOCAL SENSITIVITY MEASURES

By applying the same basic calculations used in a traditional variation-based global

sensitivity analysis to a local analysis, it is possible to get contribution measures of a

system with the same computational burden as a traditional derivative based measure.

While the approach still results in a local measure (distributions of parameters are not

used) of sensitivity and carries the same caveats of a local approach, it does provide

contribution measures that are not found with a derivative-based analysis. The format of

these measures is compatible with those of a full variation-based approach (the output of

both approaches is a set of sensitivity percentages that correspond to the contribution to

total variation for each parameter).

In general, the variance of a finite population can be calculated using the formula shown

in Equation 4.1. In the context of the results of a system performance model,

!

Y
i
 would

 74

be the model output for a particular parameterization of the model and

!

Y would be the

mean value of the outputs of all parameterizations performed (up to N total).

!

" 2 =
1

N
Y

r
#Y ()

2

r=1

N

$ (4.1)

For a complex system behavioral model that has been decomposed based on

functionality, the input parameters will be grouped according to function and it is

possible that the performance output might not be a single output variable (one model

may produce several performance outputs). In this case, the output is a vector rather

than a scalar and the parametric inputs to the model are a series of vectors (one for each

function in the model). A mathematical representation of such a model appears in

Equation 4.2 where

!

Y
i
 is a specific row in the performance vector and

!

fi

r
x
1
,
r
x
2
K

r
x iK

r
x f() represents an evaluation of that performance by the set of input

vectors

!

r
x

i
 associated with each function up to a number of F total functions.

!

Yi = fi

r
x
1
,
r
x
2
K

r
x iK

r
x F() (4.2)

In the context of a design problem, a concept represents a unique parameterization of a

model. For each parameter in the parameter vectors for each function in a concept, a

slightly higher or lower value of the parameter can be substituted for the nominal value

(as is done in partial differencing in a derivative-based local sensitivity analysis). For

each case (high and low), the output predicted by the model can be compared to the

nominal value of performance found using the nominal parameterization for the concept.

This comparison can be made using the same basic calculation as the variance of a

population where the population mean is replaced with the nominally predicted

performance of the concept. This comparison can be performed for each parameter in

 75

each function for each performance output. The mathematical representation of this

comparison appears in Equation 4.3. A discussion of the perturbation size and its affect

on results appears in Section 4.3.

!

Vi, j ,k =
Yi,x j ,k+ + "Yi()

2

+ Yi,x j ,k" "Yi()
2

2
 (4.3)

In this equation, the index i represents the performance output, the index j represents the

function and the index k represents the local parameter in the function j. Since two

comparisons are made for each of the high and low values, the squared-deviation from

the nominal performance is divided by 2. The result. Vijk, is a measure of the average

squared deviation from nominal performance found from perturbing the parameter of

interest. For each function, these deviations can be summed as shown in Equation 4.4.

In this equation, P is a vector that contains the number of local parameters for each

function.

!

Vi, j = Vi, j,k

k=1

Pj

" (4.4)

The result is a measure of the deviation in performance produced by a single functional

element of the model. These functional deviations can then be summed as well

(Equation 4.5) to produce a total measure of deviation in the model resulting from the

parametric perturbations.

!

Vi = Vi, j

j=1

f

" (4.5)

 76

Like in a variation-based sensitivity analysis, the various deviations of each parameter

and each function can then be divided by the total model variation to produce a

percentage measure of contribution to the total deviation (Equations 4.6 and 4.7). The

resulting measures, Sij and Sijk represent the relative contribution to the total deviation of

the performance (i) for a specific function (j) and a parameter within a function (k). The

measure Sijk corresponds to the main effect sensitivity contribution as calculated in a full-

variance based approach. The Sij measure is a newly proposed measure that relates the

role a single grouping of parameters based on the functional decomposition of the

model. The approach can be applied to a system without a functional decomposition by

assuming a single functional element (F=1) with all model parameters in that functional

element.

!

Si, j =
Vi, j

Vi

 (4.6)

!

Si, j ,k =
Vi, j ,k

Vi

 (4.7)

If the functions in a system have a relatively equal contribution to the overall variation of

the system, the S measure for each function should be approximately 1/F where F is the

number of functions in the system. As a result, a direct comparison between the

sensitivity contribution of a function that appears in both large and small systems (large

and small values of F respectively) cannot directly be made. To normalize the

sensitivity contribution measures to allow such comparisons, the S measure should be

multiplied by F, the number of functions in the system, to produce a normalized unitless

ratio of sensitivity (Equation 4.8). A value of SRij equal to 1 indicates a sensitivity

contribution of 1/F for function j with respect to performance variable i. This indicates

that the function has a sensitivity contribution equal to its functional contribution.

 77

Values greater than 1 indicate a relatively higher contribution to sensitivity than the

contribution to functionally. The opposite is true for values less than one. This measure

allows a particular function’s tendency to be over- or under-sensitive to be characterized

outside of the context of the particular model or concept being studied. For systems with

more than one performance variable, the sensitivity ratio can be averaged per Equation

4.9 where Z is the number of performance variables considered in the analysis.

!

SRi, j = Si, j " f (4.8)

!

SR j = SRi, j

i=1

Z

" (4.9)

The use of these measures on a functionally decomposed behavioral model along with a

discussion of the results appears in the example presented in the following section.

4.3. EXAMPLE

To illustrate the application of the hybrid variation-based local (HyVar) sensitivity

analysis, an example is presented based on a simple three-function system. The system

represents a simple combination of an electrical power source, an electrical-to-rotational

energy conversion and a rotational load. This system is represented with a formal

functional model in Fig. 4.1. In this model, the three functional elements of the system

are provision electrical energy, convert electrical energy to rotational energy and export

rotational energy. The provision function includes a charge status signal output and the

convert function includes a throttle control signal.

 78

Fig. 4.1. Example Functional Model

As per the functionality-based behavioral modeling approach presented in Section 3, a

flow routing map was created based on this functional model and is shown in Fig. 4.2.

The first two functions are based on the hybrid automotive models appearing in Section

3.3.2 and the final function (export rotational energy) was created specifically for this

example with a compatible interface to the energy conversion function.

Fig. 4.2. Example Flow Routing and Type Model

 The model elements selected for each functional element are of Type II (tied to form

family solution) as described in 3.1.2.3. For reference, the FourCC codes used to briefly

and uniquely described the functions and flows used in this work appear in Table 4.2. A

description of the flow variables used in this example appears in Table 4.3 along with

the mathematical relationships used in the behavioral model elements for each function

in Table 4.4. Since this is a Type II analysis, form family solutions are required for each

function. For the provision function, a chemical battery was selected; the energy

conversion function was satisfied by an AC induction motor and the export function by a

simple rotational load with inertia and friction. The motor and battery parameterizations

 79

and modeling are based on model elements used in the analysis of a hybrid Formula

SAE racecar. The load model was derived and parameterized to interact with these

components.

Table 4.2. Example FourCC Codes
Flow FourCC Function FourCC
Control CNTL Convert CONV
Electrical ELCE Distribute DIST
Rotational ROTE Export EXPR
Status STAS

Table 4.3. Model Flow Variables
Flow Symbol Type Units Description

ELCEIIa,x,0 Voltage V Effort Electrical Energy
ELCEIIa,x,1 Current A Flow
ROTEIIa,x,0 Moment N*m Effort Rotational Energy
ROTEIIa,x,1 Ang. Vel. rad/s Flow

Control Signal CNTLIa,x,0 Analog Varies A single analog control signal
Status Signal STASIa,x,0 Analog Varies A single analog status signal

Table 4.4. Model Relationships
Function Model Description Relationship Type

!

V
B ,nom

"V
B
" I

B
R

B
= 0 Imp. Lin. Alg. Eq. Provision Elec. E. Linear battery model with internal

resistance

!

˙ C
A

=
"I

B

Q
B ,max

Exp. Lin. Diff. Eq.

!

"
T

=
P
Max

#V
S

M
Max

#V
Rated

Exp. Alg. Eq.

!

if "M >"T() :

MM #MMax $CM = 0

else :

MM #
PMax $VM $CM

"M $VRated

= 0

Hyb. Imp. Lin.
Alg. Eq.

Convert Elec. E. to
Rot. E.

Constant torque to constant power
transitional electrical machine model
with linear proportional control

!

I
S
" I

Rated
#C

M
= 0

Imp. Lin. Alg. Eq.

Export Rot. E. Simple inertial and frictional load

!

M
L
" J

L
˙ $

L
" B

L
#$

L
= 0 Imp. Lin. Diff. Eq.

The function-based behavioral model assembly and solution process demonstrated in

Section 3 was then used to create a well-posed model of the system that was capable of

predicting the time required for the rotational load to reach a prescribed target speed

 80

from a standing start. Essentially, the model represented a battery, connected to a motor

connected to a flywheel with a linear velocity-dependant friction force. Although this is

a relatively simple system, it provides a useful illustration of how to apply the HyVar

analysis presented earlier in the work. A more thorough example applied to a larger

system is presented in the example shown in Section 6. Each functional element in the

model has a set of parameters associated with it. These parameters are tied to the

mathematical relationship selected to represent the function and are used to establish and

distinguish various conceptual solutions to the system. A nominal set of parameters was

selected to represent a single concept and is shown in Table 4.5.

Table 4.5. Model Parameters

Function Symbol Value Units Description
VB,nom 72.0 V Nominal Voltage
RB 0.1 W Internal Resistance

Provision Elec. E.

QB,max 60000.0 A*s Battery Capacity
VRated 48.0 V Rated Voltage
PMax 13.41 kW Maximum Power

Convert Elec. E. to Rot. E.

IRated 350.0 A Rated Current
BLoad 2.0 N*m*s/rad Load Friction Constant Export Rot. E.
JLoad 6.0 kg*m^2 Load Inertia

Based on this nominal parameterization, a nominal performance vector can be calculated

from the assembled system behavioral model. In this example, one performance

variable is considered (time for the flywheel to accelerated to 200 rad/s).

Using this model, a variety of sensitivity analyses can be performed. In this example, a

derivative-based local analysis is performed along with the HyVar method presented in

Section 4.2. Additionally, a full variation-based Monte Carlo sensitivity analysis is

performed as well with an assumed set of parametric distributions for the variables in

each function.

The results of these analyses appear in Tables 4.6, 4.7 and 4.8. Table 4.6 contains the

results of three different applications of the HyVar method at three different variable

perturbations (0.10%, 1.0% and 10%). Using a constant perturbation percentage for

each variable represents a constant coefficient of variation in a full variation-based

approach. Due to the significant reduction in evaluation cost of the HyVar analysis

 81

versus a full global analysis, it is recommended that a variety of perturbation steps be

used. Smaller steps capture local effects better than larger steps but may not capture

behavior that occurs further from the nominal performance. Performing three

evaluations with three steps sizes varying by an order of magnitude provides a large

range of coverage around each design variable. If significant variation in results occurs

between the three step sizes, it is recommended to perform a full Monte Carlo sensitivity

analysis. At each percentage, the sensitivity contribution, derivatives and normalized

derivatives (normalized to the magnitude of the input variable perturbation) are tabulated

along with the time required to perform the analysis and the nominal performance. As

shown in this table, the most significant contribution to overall sensitivity in

performance of the system is the nominal voltage of the battery. This is followed by the

inertia of the load then the rated power of the motor, rated torque of the motor and

finally the friction of the load. The results of this analysis are charted in Fig. 4.3.

Table 4.6. HyVar Results

 Parameter Offset Percentages
Variables 0.10% 1% 10%
Nominal Voltage 44.33% -0.0239 -0.0034 44.36% -0.0239 -0.0344 49.77% -0.0260 -0.3738
Rated Power 16.94% -3.11E-05 -0.0021 16.93% -3.11E-05 -0.0213 16.15% -3.20E-05 -0.2194
Rated Torque 8.42% -0.0053 -0.0015 8.41% -0.0053 -0.0150 7.92% -0.0054 -0.1544
Load Friction 3.31% 0.2354 0.0009 3.31% 0.2352 0.0094 2.88% 0.2361 0.0945
Load Inertia 27.00% 0.2242 0.0027 26.99% 0.2240 0.0269 23.27% 0.2240 0.2688
Analysis Time (s) 0.0327 0.0338 0.0329
Nominal Perf (s) 1.3338 1.3338 1.3338

 82

Fig. 4.3. HyVar Results Charted

Table 4.7 shows the tabulated results of the HyVar sensitivity analysis at a 1%

perturbation using the nomenclature and grouping established in Section 4.2. As shown

in this table, the provision electrical energy function contributes 44.4% to the overall

sensitivity of the system followed by the export rotational energy function at 30.3% and

then the convert electrical energy to rotational energy function at 25.3%. Once

normalized to the number of functions in the system, the sensitivity ratios for these

functions become 133.09%, 76.02% and 90.89% respectively. Thus, the provision

electrical energy function provides a larger contribution to overall sensitivity than it

does to functionality. The opposite is true with respect to the convert electrical energy

to rotational energy and export rotational energy functions. A sensitivity contribution

greater than one indicates that the parameters in the model of the functional element

affect the performance of the system to a greater degree than the parameters in other

functional elements in the system. Depending on the design problem, this information

 83

may be used for a variety of purposes. If the overall contribution of each functional

element is desired to be equal, then the sensitivity ratios of each function should be

driven to values around 1.0. If certain functions are desired to contribute more to the

overall performance of a system, the sensitivity ratio of these elements should be driven

to values greater than 1.0. If the opposite is true, and certain elements are desired to

contribute less to the overall performance, the sensitivity ratios of these elements should

be driven to values less than 1.0. The form of the measures (numbers with values

around 1.0) allows their direct use in an optimization framework (a fitness function in a

genetic algorithm for instance). Thus, if a specific sensitivity ratio profile is desired, a

formal optimization problem can be set up to use the measures. This allows not only the

optimization of performance (as typical in an engineering optimization problem) and

overall sensitivity (total variation) but also the sensitivity profile of the functional

elements in the system.

Table 4.7. Sensitivity Parameters

Contributor Label Value
Nominal Voltage S1,1,1 44.36%
Rated Power S1,2,1 16.93%
Rated Torque S1,2,2 8.41%
Load Friction S1,3,1 3.31%
Load Inertia S1,3,2 26.99%
Provision Elec. E. S1,1 44.36%
Convert EE to RE S1,2 25.34%
Export Rot. E. S1,3 30.30%
Provision Elec. E. SR1,1 133.09%
Convert EE to RE SR1,2 76.02%
Export Rot. E. SR1,3 90.89%

For reference, a full variation-based Monte Carlo sensitivity analysis was performed as

well at a variety of sample sizes. The SA method presented in [47] was used to

complete this analysis. In order to perform the analysis, parametric distributions for the

variables in the model were required. As mentioned before, these distributions are not

commonly available or applicable in early design but are necessary to apply a full global

variation-based approach. As seen in Table 4.8, for small numbers of samples (<<1000)

the results are unreliable (variations should not have negative values). At a sample size

of 1000, the results begin to stabilize and after 10000 samples the precision of the

 84

analysis improves. However, this increased precision requires a significant

computational burden as seen by the linearly increase in analysis time. The resulting

sensitivity contribution measures are charted in Fig. 4.4. The relative contribution of

each parameter differs from that of the HyVar analysis but that is to be expected as the

two analyses are working on separate sources of input (the full analysis considers the

actual distribution of each parameter versus the HyVar analysis that considers a

perturbation of each parameter). The primary result of this analysis is the relative

magnitude of analysis time required for each method. The HyVar method required

0.0338 seconds versus 184.2 seconds for a reliable full Monte-Carlo analysis. It should

be noted that the HyVar method is not intended as a replacement for a global analysis

but rather a complement for the early stages of design where such a large computational

burden (even with efficiency improvements demonstrated by [48] and [52]) and

additionally required information are not practical. As mentioned before, the HyVar

analysis provides the same type of information as a global analysis (relative

contribution) but uses a method that is feasible for use in early design when considering

multiple concepts.

Table 4.8. Global Variation-based Results

 Monte Carlo Samples
Variables 10 100 1000 10000
Nominal Voltage 87.18% 61.69% 62.02% 63.63%
Rated Power -6.58% -3.73% 1.04% 0.58%
Rated Torque 33.76% 4.41% 7.69% 8.20%
Load Friction -7.83% 0.40% 8.63% 7.02%
Load Inertia -28.66% 17.46% 25.34% 22.48%
Analysis Time (s) 0.1886 1.8039 18.20 184.2
Mean Perf. (s) 1.3498 1.3482 1.3467 1.3457
Variance (s^2) 0.0039 0.0078 0.0095 0.0093

 85

Fig. 4.4. Global Variation-based Results Charted

4.4. CONCLUSIONS

The HyVar sensitivity analysis approach presented in this work is a local sensitivity

analysis method that uses an approach similar to a full variation-based analysis. The

method provides the same qualitative measures as the full approach with the

computational burden of a derivative-based local approach. This approach provides a

bridge between a local analysis of many concepts during early design and a global

analysis of a smaller set of concepts later in the design process. The approach does not

require detailed information regarding the distributions of the various parameters used in

a model of a concept and thus is appropriate for early concept analysis when this

information may not be available. The method has a computational burden similar to a

derivative-based approach and can be completed at the same time as such an approach

with little overhead. As a result, it is recommended to augment current local derivative

 86

based sensitivity approaches with the HyVar analysis in order to obtain contribution

measures along with the information typically provided by a derivative-based approach.

The resulting contribution measures can then be used in the same manner as the

contribution measures produced by a full variation-based analysis. If a full variation-

based analysis is required, it should be performed once a relatively small set of feasible

concepts have been developed and there is sufficient knowledge to establish parametric

distributions. In this case, the measures from the full analysis can be directly superceded

by the measures generated by the HyVar analysis.

The HyVar approach also allows direct addition of single parameter measures that

provides a means of assessing the sensitivity contribution of a function in a functionally

decomposed system behavioral model. The normalization of the measures to the

functional size of system allows the measure to be used outside of the context of a

particular system design and is conducive to design repository storage (see [45] for a

discussion of a function-based design repository).

 87

5. COMPUTATIONAL IMPLEMENTATION

OF THE DESIGN TOOLS

The behavioral modeling and sensitivity analysis approaches presented in Sections 3 and

4 are conceptual in nature and require an actual implementation platform in order to be

used in the context of a design problem. To this end, a software implementation of these

methods was developed for use in completing examples and as an investigation of the

requirements necessary for implementing the approaches. This implementation is

detailed in this section and was used to generate the numerical results that appear

throughout this work.

5.1. AUTOMATED MODEL ASSEMBLY AND SOLUTION IN PRACTICE

Component-based modeling of systems has been used extensively to solve industrial

design problems. Probably the most widespread modeling tool that implements

component-based modeling is the MATLAB/Simulink combination [8]. This modeling

platform uses block diagram-based models to represent the constitutive elements of a

system and has been used to model a variety of complex system. In addition to block-

diagram based modeling tools, modeling languages such as Modelica have been

developed that enable a more verbose description of the behavior of the components of a

system. Modelica is an object-oriented modeling language derived from the early work

of Elmqvist [35]. Tools such as Dymola [34] and OpenModelica [53] assemble and

solve models represented in the Modelica language. Other simulation modeling

frameworks [9] have been developed as well using similar philosophies.

The model development approach presented in Section 3 of this work is based on a

functional decomposition rather than a component-based representation. In the

functional decomposition approach, a function may be represented by a conceptual

notion of how the function should be solved (a Type I model element), a model based on

a family of solutions for the function (a Type II model element) or a very specific model

 88

developed based on a single particular solution (a Type III element). Additionally, a

very specific model lexicon (the Functional Basis [10]) and development approach [29]

is used in this modeling process. The use of such a lexicon promotes knowledge storage

and reuse based on the concept of common functionality [45]. Existing modeling

platforms, such as Simulink and Dymola with Modelica, were not developed around a

functional decomposition. As a result, they are ill-suited for implementing such an

approach.

Earlier work by the author implemented a functionality decomposed behavioral model in

Simulink. In this work, the causal nature of the block diagram based models limited the

potential reuse of model elements. Acausal model platforms, such as the Modelica

language, overcome this limitation. However, the Modelica specification is currently

being developed and refined and at the time this research originated there were limited

Modelica compiler options. Currently, there is an open-source modeling platform being

developed (OpenModelica) that implements the Modelica language. Since the Modelica

specification and feature set has not stabilized and the OpenModelica suite (or another

freely-available, multiplatform Modelica compiler) has not been sufficiently refined, its

use in implementing the function-based modeling approach was not considered.

5.2. MODEL ASSEMBLY AND SOLUTION FRAMEWORK

The primary objectives in developing the model assembly and solution framework

presented here were to create a useable implementation of the behavioral modeling and

sensitivity work presented in Sections 3.1 and 3.2, to enable the application of these

tools to the design of a complex system to demonstrate their effectiveness and to create a

base of knowledge and software platform for future developments in the work.

Other objectives of the work included using a solution technique that allowed the

example problems to be solved quickly and flexibly. To this end it was decided to use a

general purpose, yet still relatively low-level programming language (C++) for model

representation, assembly and solution.

 89

The inputs to the modeling framework are the results of the application of the function-

based behavioral modeling work shown in Section 3. The functional model along with

the flow variable sets and model elements developed for each function represent the

primary information required to be supplied by the modeler. To illustrate how the

modeling framework was developed and provide a complete, yet tractable, example a

simple three-function system (the work shown in Section 4) is presented along with the

framework. The functional model for this system appears in Fig. 5.1 along with the flow

routing information shown in Fig. 5.2. The flow variables used in this system are

detailed in Table 5.1 along with the symbolic model elements in Table 5.2.

Fig. 5.1. Example System Functional Model

Fig. 5.2. Example System Flow Routing Model

Table 5.1. Three-function Model Flow Variables
Flow Symbol Type Units Description

ELCEIIa,x,0 Voltage V Effort Electrical Energy
ELCEIIa,x,1 Current A Flow
ROTEIIa,x,0 Moment N*m Effort Rotational Energy
ROTEIIa,x,1 Ang. Vel. rad/s Flow

Control Signal CNTLIa,x,0 Analog Varies An analog control signal
Status Signal STASIa,x,0 Analog Varies A single analog status signal

 90

Table 5.2. Three-function Model Elements
Function Model Description Relationship Type

!

V
B ,nom

"V
B
" I

B
R

B
= 0 Imp. Lin. Alg. Eq. Provision Elec. E. Linear battery model with internal

resistance

!

˙ C
A

=
"I

B

Q
B ,max

Exp. Lin. Diff. Eq.

!

"
T

=
P
Max

#V
S

M
Max

#V
Rated

Exp. Alg. Eq.

!

if "M >"T() :

MM #MMax $CM = 0

else :

MM #
PMax $VM $CM

"M $VRated

= 0

Hyb. Imp. Lin.
Alg. Eq.

Convert Elec. E. to
Rot. E.

Constant torque to constant power
transitional electrical machine model
with linear proportional control

!

I
S
" I

Rated
#C

M
= 0

Imp. Lin. Alg. Eq.

Export Rot. E. Simple inertial and frictional load

!

M
L
" J

L
˙ $

L
" B

L
#$

L
= 0 Imp. Lin. Diff. Eq.

5.2.1. Functional Decompositions and the Object-Oriented Software Philosophy

To develop the model representation, assembly and solution framework, object-oriented

programming practices were used. As introduced in Section 1, function-based design

and object-oriented programming share the same philosophical underpinnings. Namely,

the organization of the functional elements of a system into discrete elements with local

information and interfaces for passing information to other functions in the system.

However, this decomposition alone does not sufficiently describe function-based design

(or object-oriented programming). Inheritance, polymorphism, encapsulation and

abstraction are all important aspects of both approaches (and the keys to their similarity).

5.2.2. Inheritance and Instancing

Inheritance in object-oriented programming results from deriving new classes based on

the structure of existing classes. Once defined, a class must be instantiated in order to be

used. An instance of a class is a uniquely defined object that uses the representation

provided by the class definition. In the realm of engineering design, the concept of

inheritance relates to the hierarchy of definition used for functions and the solutions to

these functions. For example, a three-phase induction motor inherits from the family of

AC motors, which inherits from the family of electrical machines, which solve the

 91

function of converting electrical energy to rotational energy (and vice-versa). The class

of three-phase induction motor may be instantiated by selecting or defining a full

description of a specific motor in this context.

5.2.3. Polymorphism

Polymorphism allows an inherited class to override the behavior of its parent class. In

the context of engineering design, a model may be made for a functional element of a

system at a variety of levels. For example, a high-level model of a system that needs the

functionality of an electrical machine may require a simplified model of this function’s

behavior during the early stages of design. However, later in the design process, a more

detailed model for this functionality may be needed to provide the desired information

from the system model. In this case, the behavior of the previous model must be

replaced with the behavior of the newer model. Building polymorphism into a design

framework allows this replacement of models to be performed seamlessly. A primary

difference between the modeling approach presented in this work and prior efforts in

integrating object-oriented programming philosophies into engineering design [35] is the

formal inclusion and definition of functionality.

5.2.4. Encapsulation

Encapsulation involves the “hiding” of certain information within classes from other

classes. In C++, the variables (members) of a class can be hidden from all other classes

(private), exposed to inherited classes (protected) or can be exposed to all classes

(public). In the engineering design domain, encapsulation is more strongly enforced in

that the various components that comprise a system cannot “share” their internal

properties at all. Energy, material and signal flows through the boundaries of the

elements are the only method of communication a sub-system has with other sub-

systems. However, in the context of a design problem, it can be useful to implement the

programming perspective of encapsulation during modeling.

 92

5.2.5. Abstraction

Abstraction is the primary difference between modular programming and true object-

oriented programming. As stated by Bjarne Stroustrup, the creator of C++, a key aspect

of object-oriented software development is to “make commonality explicit by using

inheritance” [11]. Having a true object-oriented modeling framework allows an explicit

representation of the abstraction of a design problem.

5.3. DEVELOPMENT OF A MODELING FRAMEWORK

To implement the function-based behavioral modeling tools presented in Sections 3.1

and 3.2, an object-oriented programming platform was used. Several programming

languages support this paradigm and for this work C++ was selected. C++ is one of the

most common languages used in modern application development [54] and supports the

object-oriented design philosophy (OOP) while retaining and supporting most aspects of

the C programming language. C++ compares favorably to many other languages that

support OOP such as Java and scripting languages in terms of speed of execution at the

expense of coding effort and complexity [55]. Since the author was familiar with C++ at

the time of developing this framework, the speed benefit was chosen over the burden of

becoming familiar with a different, but possibly simpler, language. Additionally, several

numerical equation solvers are available for C (and hence C++) including the

SUNDIALS package [41] that is used in this work.

5.3.1. Definition of Model Elements

The first task is creating an implementation of the behavioral modeling and sensitivity

analysis framework was to create a class definition for a behavioral model element.

Each function in the functional model requires such an element to express the

mathematical relationships that represent behavior. Eight key functions were identified

for a class that represents a behavioral model element including:

1. Initialization of the model element,

2. Loading of various parameterizations (to define concepts),

3. Allowing distributions for parameters and perturbations,

 93

4. Interfacing with causal flow variables,

5. Interfacing with acausal flow variables,

6. Integration of flow and internal variables,

7. Local termination of the global system model,

8. Handling of local element members and methods.

These eight functions are implemented in a modeling framework that uses seven basic

steps. This modeling process is outlined in the flow chart shown in Fig. 5.3 and each

step is detailed next.

Fig. 5.3. User Definition of Model Element Flow Chart

 94

To this end, a virtual parent class (named BModelElement) was created that enabled

each of these functionalities. A virtual class is incomplete and cannot be used in its

defined form. A child class must be created that inherits from the virtual class and

defines any missing functionality. An example of such a child class is the

PROV_ELCE_II_0000_a class as defined in Fig. 5.4.

Fig. 5.4. PROV_ELCE_II_0000_a Class Definition

As shown in Fig. 5.4. The PROV_ELCE_II_0000_a class inherits from

BModelElement and defines the eight characteristics of this behavioral model element.

The naming convention used for this class includes the FourCC codes presented earlier

in the work (PROV for provision and ELCE for electrical energy) along with a model

element type definition (II), a number indicating the specific model (in this case 0000)

and a variant (a). All model elements used in the remainder of this work conform to this

convention. The definition of each of the eight characteristics is noted in the figure. The

constructor (a method that is called each time the class is instantiated) initializes the

 95

model element and loads a set of parameterized concepts for the element as shown in the

code in Fig. 5.5.

Fig. 5.5. PROV_ELCE_II_0000_a Constructor

The code shown in Fig. 5.5 opens a solution file (a text file like that shown in Fig. 5.6)

and loads five parameter values along with their distributions for each concept (noted

with a [solution] tag in the text file). Currently, the modeling framework accepts uniform

and normal distributions with a single parameter each. Due to the object-oriented design

of the model assembly code, it a simple matter to extend the method to handle additional

distributions that require more than one parameter if necessary.

Fig. 5.6. PROV_ELCE_II_0000_a Parameter Sample

The third aspect of functionality, allowing distributions and perturbations of parameter

values for a sensitivity analysis, is implemented for an element as shown in the code in

Fig. 5.7. In this code, the local parameter values can be set based on a call to the

SetParameterValues method with an input of an array containing variable values.

Additionally, initial values are then set (such as the charge and charge integral variables

for the element shown).

 96

Fig. 5.7. PROV_ELCE_II_0000_a SetParameterValues Method

The acausal relationships for each model element are defined using a set of residual

functions. Acausal relationships take the form of implicit equations (f(x)=0) rather than

explicit equation (y=f(x)). For this reason, they are generally referred to as constraints

or relationships rather than equations. For the local acausal constraints to be satisfied,

the values of these residual functions must be zero. The code shown in Fig. 5.8

implements these functions for the PROV_ELCE_II_0000_a element. As shown in

this figure, two flow variables are sent to the Process method in the

pdLocalFlowVariables array along with the value of the independent variable and an

array containing the values of the residuals. The first two lines of code in the Process

method create named variables for the flow variables for convenience. The last line

defined is the single residual function for the element. The function is based on the

mathematical relationship defined for this element as shown in Fig. 3.13.

Fig. 5.8. PROV_ELCE_II_0000_a Process Method

The FeedForward method shown in Fig. 5.9. implements the causal modeling

functionality of the element. For this method, a set of causal inputs are provided (from

the causal outputs of connected elements upstream) and a set of causal outputs are

computed (and sent to the inputs of connected causal elements downstream). In the case

 97

of the PROV_ELCE_II_0000_a element, the charge in the element is computed and

populated into the output vector.

Fig. 5.9. PROV_ELCE_II_0000_a FeedForward Method

An interface to integration is provided by two methods: GetIntegrals and

UpdateIntegrals respectively. The first method takes the locally stored value for an

integral and populates it into an array. The second method sets the local integral value

based on an incoming array. The actual integration is handled by the BModel class

(which is detailed later in this work). The integration methods used are shown in Fig.

5.10.

Fig. 5.10. PROV_ELCE_II_0000_a Integration Methods

For each element, a set of local variables can be established in the class definition along

with a custom local termination function that allows the global solution to be terminated

and interpolated based on local termination criteria. For the PROV_ELCE_II_0000_a

element, the local variables are shown in Fig. 5.4. and the Terminate method is set to

simply return the value -1.0. Return values of the Terminate method less than one

indicate that the solution should not be terminated based on local conditions while values

between 0.0 and 1.0 indicate that the solution should terminate and linearly interpolate

 98

the performance and output variables between the last integration step (0.0) and the

current integration step (1.0).

The code shown in Figs. 5.4-5.10 represents all the code necessary to completely

represent a single model element. The actual assembly and solution of model elements

is handled by the BModelElement parent class along with a BModel class that contains

instances of the individual model elements included in the model. For each system

model, a new class should be created that inherits from the class BModel. The BModel

class handles all of the automated assembly and solution code and, like the

BModelElement class, is virtual and requires the definition of a few methods in order to

be used. A flow chart outlining the actions that must be performed by a modeler

implementing a new child class of BModel appears in Fig. 5.11.

Fig. 5.11. User Definition of New Model Flow Chart

 99

A sample of a useable class inherited from BModel is shown in Fig. 5.12. In this code, a

new model class called FullSensTest is defined from the parent class of BModel. This

class was used in the sensitivity analysis performed in Section 4.3. For this new class, a

constructor is defined along with an empty destructor (no operations are performed upon

de-allocation of instances of this class). Additionally, a PreProcess method is defined

that handles any custom computations required before an attempted solution of the

model. As with the model elements, local variables can be defined for the model as a

whole (in this case cost and mass variables for the entire system).

Fig. 5.12. FullSensTest Class Definition

In the developed modeling framework, each model element (corresponding to a function

in the functional model) is added to a vector. When adding a new element, it is useful to

create a descriptive name for the index of the newly added element. To this end,

#define statements can be used to implement such naming as shown in Fig. 5.13. In this

code, the elements are named using the FourCC convention along with the model

element type and a unique number for each identical function name (since each function

appears only once in this example, each is numbered 0).

Fig. 5.13. FullSensTest Naming Conventions

 100

Now that a class definition has been made along with naming conventions, the methods

for the derived FullSensTest class can now be defined. First, a constructor is needed to

add model elements and establish the flow routing in the system. The code for this

method appears in Fig. 5.14. The first three lines of code create new instances of each

element and push each of the elements to a vector. The following lines of code add the

causal and acausal flow variables and any necessary internal variables to the system.

The first flow added is the voltage from the PROV_ELCE_II_0 element to the

CONV_ELCE_ROTE_II_0 element. As seen in the code that adds this flow, a

descriptive name (Accum. Voltage) and three Boolean flags used. The first flag (true)

indicates that this variable should be logged to a data file during the solution. The

second flag (false) indicates that this variable is not a performance (output) variable.

Finally, the third flag (false) indicates that this variable does not need to be integrated

during the solution. The remaining flow variables in the system are added in the

following two lines of code along with an internal variable that represents the

acceleration and its integral (the third flag is true, meaning this variable must be

integrated).

The causal variables are then added to the model. In the case of the FullSensTest model,

three causal variables are used including the throttle control signal, a speed status signal

and a charge status signal. The order of elements shown in the

AddFeedForwardVariable method represents a strict order from origin element to

destination element. Additionally, a descriptive name and logging and performance

flags are included. In the developed framework, causal variables were not allowed to be

integrated (if integration of a causal is necessary it can be implemented with an internal

flow variable such as the “Load Accel” variable).

The final lines of code shown in Fig. 5.14 add two output variables to the model: mass

and cost. These variables are computed and then output to a performance file at the

completion of a solution. Finally, three methods are called to build the maps necessary

 101

to assemble and solve the model. These functions are defined in the BModel class and

are described later in this work.

Fig. 5.14. FullSensTest Constructor

For each model, a PreProcess method is defined to allow any computations necessary

before a solution is attempted. In the case of the FullSensTest model, the cost and mass

variables are calculated by getting the values of cost and mass for each element and

summing them. Since PreProcess is a virtual method and is user-defined, any code may

be included in this method. This represents a primary difference between a fixed

simulation modeling environment or modeling language and the framework presented

here. Since the model representation code is C++, any C or C++ code can be

incorporated into the virtual methods built into the framework. This enables access to

any number of external sources of data or other programs (code could be added to access

a spreadsheet, or the results of simulation program, etc.). Additionally, the use of the

object-oriented design philosophy enables developers to create derived classes from

BModel that include such external accessibility tools in their definition, thus alleviating

the need of the modeler to custom create such tools. Essentially, using C++ and object-

oriented design allows a modeler freedom to do as much (custom coded access tools) or

 102

as little (using someone else’s custom-coded access tools) as desired (or necessary)

while having full access to all of the resources available with a general purpose

programming language. The PreProcess method for the FullSensTest class appears in

Fig. 5.15.

Fig. 5.15. FullSensTest PreProcess Method

Once a BModel derived class has been defined and the various virtual methods

developed, the resulting model can then be solved. A number of integration and

sensitivity analysis methods were built into the BModel base class. For the FullSensTest

model, a fixed-step Runge-Kutta 4 integration [56] is used along with the hybrid

sensitivity analysis presented in Section 4. The complete code required to create a new

instance of the FullSensTest model and solve it is shown in Fig. 5.16. As seen in this

figure, only two lines of code are needed to create a new instance of the model and solve

it. This represents another strength of the object-oriented design philosophy. Once a

class has been fully defined, the actual implementation of the class can be simply

performed. In the code shown in Fig. 5.16, an instance (Test) of the FullSensTest class

is created. Upon creation, all of the code listed in the constructor for this class (Fig. 5.4)

is called and the behavioral model for the system is built. Next, a call to the

IntegrateRK4HybridSens method is made (this method is defined in the BModel class)

along with integration parameters. The first parameter is the length of integration (10.0

seconds). Next is the integration step (0.01 seconds) followed by the perturbation to be

used in the sensitivity analysis (0.1%). Finally, there is a flag to indicate whether or not

each run of the sensitivity analysis should be logged separately (in this case true for yes).

 103

Fig. 5.16. Example Main Function

5.3.2. Representation, Assembly and Solution

The code shown in the previous sections represents the user-supplied code necessary to

define and implement a behavioral model in the developed framework. The actual pre-

defined code that allows this definition and actually performs the assembly, solution and

integration of the model is presented next. This code is defined in the BModel and

BModelElement classes and is transparently included when a class is derived from

either of these parent classes. A flow chart outlining the model assembly process

appears in Fig. 5.17.

Fig. 5.17. Model Element Assembly Flow Chart

 104

The determination of causal model evaluation order and variable routing is performed in

five basic steps. These steps are outlined in Fig. 5.18 and are detailed next.

Fig. 5.18. FeedForward Order of Evaluation Determination Flow Chart

The first method presented is BuildFeedForwardMaps. This method sorts the

feedforward causal variables for processing during solution and integration and is

necessary to sequence the casuals so that they can be processed in order (casual variables

and relationships may be added to the system model out of the sequence in which they

must be evaluated). For example, a motor controller needs to know the charge of the

batteries connected to it before it can calculate the throttle to be provided to the motor.

This set of operations can be defined using strictly acausal variables and relationships

(such as used in the Modelica language) or strictly causal (such as in a block diagram

model like those used in Simulink) but a mixed approach, allowing both causal and

acausal modeling is useful from the standpoint of the modeler. For example, logical

 105

operations can be implemented in causal modeling that would be prohibitively difficult

to solve in acausal modeling (requiring a highly sophisticated hybrid DAE solution).

However, some relationships are difficult to express in a causal manner during the

modeling of elements [35, 38] and necessitate an acausal approach.

From an assembly standpoint, causal modeling is actually more difficult than acausal

modeling as the sequencing of equations must be performed (order is not important in

acausal modeling). However, the solution of the resulting model is much easier for

causal modeling as the elements can be evaluated in isolation and outputs can be passed

to the next element’s inputs. Acausal model solution is extremely difficult and generally

requires symbolic manipulation and state identification (usually performed with

Pantelides’ [57] algorithm) along with a robust DAE solver (this is the approach used in

Modelica compilers). However, if most of the causal relationships are extracted and

explicitly defined by the modeler leaving only a minimum of acausal relationships for

each element and higher-index constraints are not used, an acausal solution can be

attempted using an non-linear solution method along with a standard integration

approach (such as a Runge-Kutta 4 method). Essentially, such a modeling approach

reduces to solving a set of non-linear equations at each integration step and then

integrating the system as a set of ODEs. This approach is sufficient for modeling the

systems considered in this work and many systems encountered in the engineering

modeling domain (most engineers with undergraduate educations are not even exposed

to the formal concept of a DAE, let alone hybrid DAEs with high-index constraints).

To implement causal modeling in the developed modeling framework, a set of

input/output maps are used to determine the order in which model elements are

evaluated and how causal variables should be passed from element to element. The code

for this implementation is shown in Figs. 5.19 through 5.22 and begins with the

definition of input and output maps as shown in Fig. 5.19. Each map is a two-

dimensional array. The first index of the array is the element, the second index is the

local causal input (for the input map) or the output (for the output map). Each element

of the array (keyed by element and local variable) is the global identifier for that causal

 106

variable. This global identity is established in the order the casuals are added to the

model in the constructor and starts with an unsigned integer value of 0.

Fig. 5.19. BuildFeedForwardMaps Allocation Code

The code shown in Fig. 5.20 populates the input and output maps by going through each

feedforward variable and adding its origin and destination elements. An example of the

population of these maps is shown in Section 5.4.

Fig. 5.20. BuildFeedForwardMaps Generation Code (1)

 107

Once the input and output maps are established, they can be used to determine the order

in which the model elements need to be evaluated. To perform this ordering, an order

vector (puiFeedForwardOrder) must be created and initialized. This is performed

using the code shown in Fig. 5.21. In this code, each element is checked for input

variables. If there are no input variables, it is added to the order vector (if there are no

inputs the element is not dependant on the evaluation of prior elements). If all elements

have been added at the completion of this step, no sorting of elements is required and the

method returns.

Fig. 5.21. BuildFeedForwardMaps Generation Code (2)

If some of the elements in the model require inputs from other elements, the order in

which the elements should be evaluated must be determined. This determination is

performed in the code shown in Fig. 5.22. For each element not already added to the

evaluation order, a check is performed versus all other elements to determine if it can be

added to the order. If all elements providing inputs to the element being considered are

already in the order, the element can be added. If not, then another element is checked

 108

using the same criteria. This reordering is similar to a traditional sort algorithm and

completes once all elements have been added. If all elements cannot be added, an order

could not be established and the system is unsolvable.

Fig. 5.22. BuildFeedForwardMaps Generation Code (3)

The same method is applied to feedback variables (feedforward variables are computed

first, then feedback variable are computed based on the result of the feedforward

analysis). This enables two paths of causal execution before the acausal elements are

solved. Once ordered, the actual calculation of the causal variables is performed in the

elements themselves and the local inputs and outputs are routed to the global causal

variable list based on the input and output maps.

 109

Four basic steps are used to assemble the local acausal relationships and relate local flow

variables to global flow variables. These steps are outlined in Fig. 5.23 and are detailed

next.

Fig. 5.23. Local to Global Flow Variable Mapping Flow Chart

For the acausal variables, order of evaluation is not important. The primary difficulty in

assembling the elements operating on these variables is the routing of global to local

information and vice versa. To accomplish this task, a set of maps, similar to the input

and output maps used in the causal analysis, are utilized. The method that performs this

mapping is BuildStateMap and must be called in the constructor of a class derived from

BModel. The code for this method is detailed in Figs. 5.24 through 5.26. The primary

map used is the ppuiStateMap shown in Fig. 5.24. This map is a two-dimensional array

that contains references to the global identifier of each flow and internal variable added

to the model (starting at an integer value of 0). The first index of this array is the

element in the system and the second index is the local variable identifier. Thus, for a

given element identifier and a local variable identifier, a global variable identifier is

stored. This allows the quick mapping of local variable values to global variable values.

 110

These values are routed using the ppdStates and ppdIntegrals arrays. These arrays

hold the actual numerical values of flow variables as they are passed from the global list

of variables to local elements during the solution of the model. The ppdResiduals array

holds the residual evaluations for each element. The definition and initialization of these

arrays is shown in Fig. 5.24.

Fig. 5.24. BuildStateMap Initialization Code

To populate the state map, each flow variable (including the internal variables) is

inspected for its origin function and destination. Each time a flow variable originates or

terminates at a particular function, the local variable identifier for that function is

incremented and the global identifier of that variable is recorded in the variable map.

Additionally, this code records each performance variable for use later on. The variable

map generation code appears in Fig. 5.25.

 111

Fig. 5.25. BuildStateMap Generation Code

The remaining code in the BuildStateMap method appears in Fig. 5.26. This code

cleans up memory and allocates vectors for storing the performance evaluations of the

current and last integration steps. These vectors are used to interpolate the performances

of models that terminate between integration steps.

Fig. 5.26. BuildStateMap Clean Up Code

Once the casual order and acausal variable routing maps are established, a solution can

be attempted for the global model. The IntegrateRK4HybridSens method called in

Fig. 5.16 for the FullSensTest derived model represents one of the solvers developed for

the modeling approach. This method is detailed in the following section. Figs. 5.28

through 5.36 contain the code for this method. Fig. 5.27 outlines each step executed in

the IntegrateRK4HybridSens method.

 112

Fig. 5.27. Model Solution Algorithm Flow Chart

The IntegrateRK4HybridSens method integrates the model using a fixed time step and

a Runge-Kutta 4 integration method and performs the hybrid sensitivity analysis method

shown in Section 4. The first task in solving the system model is to build a nominal

 113

configuration for the system and enumerate the number of total available concepts based

on the number of configurations loaded for each element. For example, if there are three

elements in a system and each element has two values, the total number of

configurations is 2*2*2 = 8. Each of these configurations is assigned a unique integer

identifier in sequence within the BuildDefaultSolution method. Next, the number of

parameters to be included in the sensitivity analysis is computed. This is done by

looping through each element and checking to see which local parameters have been

flagged as having distributions (this is defined in the text input file as seen in Fig. 5.6).

The code that builds the default solution and counts parameters appears in Fig. 5.28.

Fig. 5.28. IntegrateRK4HybridSens Initialization Code (1)

Next, the first enumerated solution is set as the current working solution and a

performance file is opened. A solution must be set to open the file in order to generate

the file’s header (the performance log is a comma-delimited file that can be opened with

any common spreadsheet program). The code for these functions is shown in Fig. 5.29.

Fig. 5.29. IntegrateRK4HybridSens Initialization Code (2)

 114

For each enumerated configuration, the nominal performance and sensitivity measures

are then computed. The code for these computations is shown in Fig. 5.30. The first

step is to create a log file for the results of the solution for the current active

configuration. Next, the active configuration is set using the SetSolution method. A

vector is then created to hold the performance evaluations to be generated from the

model solution. Methods are then called to allocate memory to a set of matrices that

hold the performance evaluations used in the sensitivity analysis and the values of the

parameters used in the analysis.

Fig. 5.30. IntegrateRK4HybridSens Solution Loop (1)

The next step in the solution is to integrate the system for the nominal parameterization

of the current configuration. The results of this integration are then stored in the

nominal performance vector. These steps are shown in the code in Fig. 5.31.

Fig. 5.31. IntegrateRK4HybridSens Solution Loop (2)

 115

After the calculation of nominal performance, a sensitivity analysis is performed. For

this analysis, arrays are created to hold the contributions and contribution sums for the

analysis. The creation and initialization of these arrays is shown in Fig. 5.32.

Fig. 5.32. IntegrateRK4HybridSens Solution Loop (3)

The actual sensitivity analysis is performed in the code shown in Fig. 5.33. For each

parameter in the analysis, a high and low perturbation is generated and the system’s

performance is evaluated at each of the perturbed values. The performances are stored

and memory is allocated to store the contributions and contribution sums for each

performance variable along with derivative information.

Fig. 5.33. IntegrateRK4HybridSens Solution Loop (4)

 116

Next, sensitivity contribution sums are computed and stored in the ppdUValues array.

This array is indexed by parameter then performance variable. Derivatives are computed

as well and normalized. The code for these computations is shown in Fig. 5.34.

Fig. 5.34. IntegrateRK4HybridSens Solution Loop (5)

The sensitivity contribution sums are then normalized to produce sensitivity contribution

measures as shown in Fig. 5.35.

Fig. 5.35. IntegrateRK4HybridSens Solution Loop (6)

After the computation of the sensitivity measures for each parameter, memory is cleaned

up and the log files are closed as shown in Fig. 5.36.

 117

Fig. 5.36. IntegrateRK4HybridSens Solution Loop (7)

The analysis shown in Figs. 5.30 through 5.36 is completed for each configuration of the

system and saved to the performance log file. At the completion of the solution of all

concepts, the method cleans up memory, closes the log file and returns.

Once assembled, the actual system of equations resulting at each time step is solved

using the KINSOL portion of the SUNDIALS numerical solution package. SUNDIALS

is a set of equation solvers developed at the Lawrence Livermore National Laboratory

[41]. KINSOL is C-based solver for systems of non-linear equations based on Newton-

Krylov method. To implement KINSOL in the developed modeling framework, a

wrapper class was developed using C++. This wrapper class, Solver, is initialized with

a pointer (a reference) to the model being solved. The BModel base class contains the

methods necessary to format and pass the solution vector and residuals to the solver in

the format required by KINSOL.

5.4. FRAMEWORK EXAMPLE

To illustrate the operations performed during the model assembly and solution process,

the mapping process of the example outlined in Section 5.2 is included. As shown in the

code in Figure 5.14, the FullSensTest model uses three model elements and a number of

causal and acausal variables. The details of each of these elements, including number of

local equations, number of local flow variables, number of causal inputs and outputs and

the global identifier that would be assigned by the model assembler is shown in Table

 118

5.3. As seen in this table, there are four total acausal equations, seven total acausal flow

variables and three causal variables (each has an input and output). Each model element

is assigned a global ID starting with 0 (BME_x).

Table 5.3. Model Element Descriptions

BModelElement Eqs. Flow Vars. FF Inputs FF Outputs Global ID
PROV_ELCE_II_0000_a 1 2 0 1 BME_0
CONV_ELCE_ROTE_II_0000_a 2 3 2 0 BME_1
EXPR_ROTE_II_0000_a 1 2 1 2 BME_2

Each flow variable added to the model is listed in Table 5.4. In this table, the flow

variable name (using the FourCC naming convention), a descriptive name, origin

element, destination element and Global ID are shown. There are four total flow

variables in the model, the last flow variable shown, ROTE_II_2a_0_1, is an internal

variable in this model (it is not passed from one element to another but is internally

needed for integration). Each flow variable is assigned a Global ID in the form of

GFV_x starting with x=0.

Table 5.4. Flow Variable Descriptions

Flow Variables Description Origin Destination Global ID
ELCE_II_2a_0_0 Accumulator Voltage PROV_ELCE_II_0000_a CONV_ELCE_ROTE_II_0000_a GFV_0
ELCE_II_2a_0_1 Accumulator Current PROV_ELCE_II_0000_a CONV_ELCE_ROTE_II_0000_a GFV_1
ROTE_II_2a_0_0 Load Torque CONV_ELCE_ROTE_II_0000_a EXPR_ROTE_II_0000_a GFV_2
ROTE_II_2a_0_1 Load Accel EXPR_ROTE_II_0000_a EXPR_ROTE_II_0000_a GFV_3

The causal variables are defined in a similar manner to the acausal flow variables. These

variables are described in Table 5.5 along with a Global ID in the GFF_x format where x

again starts at 0.

Table 5.5. Causal Variable Descriptions

FF Causal Var. Description Origin Destination Global ID
CNTL_I_1a_0_0 Throttle EXPR_ROTE_II_0 CONV_ELCE_ROTE_II_0 GFFI_0
STAS_I_1a_0_0 Load Speed EXPR_ROTE_II_0 CONV_ELCE_ROTE_II_0 GFFI_1
STAS_I_1a_1_0 Charge PROV_ELCE_II_0 EXPR_ROTE_II_0 GFFI_2

 119

For each model element, there is a set of local variables. These local variables are used

for the actual description of the element’s behavior and must be defined independently

from the global variables to allow model re-use and automated assembly. These model

elements are described in Tables 5.6 through 5.8 respectively. In these tables, the local

identifiers for each flow, causal, integral and residual variable are shown.

Table 5.6. PROV ELCE Element Description
BModelElement PROV_ELCE_II_0000_a Local ID

ELCE_II_2a_0_0 LFV_0 Flow Variables
ELCE_II_2a_0_1 LFV_1

FF Inputs None N/A
FF Outputs STAS_I_1a_1_0 LFFO_0
Integrals ELCE_II_2a_0_1 LFVI_1
Residuals Voltage Sum LRF_0

Table 5.7. CONV ELCE to ROTE Element Description
BModelElement CONV_ELCE_ROTE_II_0000_a Local ID

ELCE_II_2a_0_0 LFV_0
ELCE_II_2a_0_1 LFV_1

Flow Variables

ROTE_II_2a_0_0 LFV_2
CNTL_I_1a_0_0 LFFI_0 FF Inputs
STAS_I_1a_0_0 LFFI_1

FF Outputs None N/A
Integrals None N/A

Torque Calculation LRF_0 Residuals
Current Calculation LRF_1

Table 5.8. EXPR ROTE Element Description
BModelElement EXPR_ROTE_II_0000_a Local ID

ROTE_II_2a_0_0 LFV_0 Flow Variables
ROTE_II_2a_0_1 LFV_1

FF Inputs STAS_I_1a_1_0 LFFI_0
CNTL_I_1a_0_0 LFFO_0 FF Outputs
STAS_I_1a_0_0 LFFO_1

Integrals ROTE_II_2a_0_1 LFVI_1
Residuals Torque/Accel Equation LRF_0

To assemble the models, a set of maps is created to relate the local identity of variables

to a set of global identifiers. The implementation of these maps in the framework is

detailed in Section 5.3.2. The result of the application of this code is shown in Tables

5.9 through 5.12. The first table (5.9) shows the results of applying the

BuildFeedForwardMaps method. The result of this method is a map

(ppuiFeedForwardInputMap) that contains a global reference to each local

 120

feedforward input and output for each model element. As shown in this table, the first

model element PROV_ELCE_II_0000_a (Global ID = BME_0) has no feedforward

inputs (thus the elements of the array are empty). The second model element in the

system, CONV_ELCE_ROTE_II_0000_a (Global ID = BME_1), has two local

feedforward inputs that correspond to the GFF_0 and GFF_1 global causal variables

respectively. The final model element, EXPR_ROTE_II_0000_a (Global ID = BME_2),

has one feedforward input that corresponds to the GFF_2 global variable.

Table 5.9. Feedforward Input Map
ppuiFeedForwardInputMap LFFI_0 LFFI_1

BME_0 Empty Empty
BME_1 GFF_0 GFF_1
BME_2 GFF_2 Empty

The same mapping process is completed for the feedforward outputs and is shown in

Table 5.10. In this table, global element BME_0 outputs global variable GFF_2. Global

element BME_1 outputs no feedforward variables. Finally, global element BME_2

outputs both the GFF_0 and GFF_1 variables. Both tables (5.9 and 5.10) are generated

automatically based on the origin and destination information supplied by the modeler.

Table 5.10. Feedforward Output Map

ppuiFeedForwardOutputMap LFFO_0 LFFO_1
BME_0 GFF_2 Empty
BME_1 Empty Empty
BME_2 GFF_0 GFF_1

From the input and output maps, an order of evaluation is generated for the causal

operations of the model elements. Since the first element of the model (BME_0) has no

causal inputs, it can be evaluated first. The second model element (BME_1) requires

variables GFF_0 and GFF_1 so it cannot be evaluated until these variables have been

produced. Since element BME_2 produced these values, it is added to the evaluation

order after BME_0. Now, all of the variables required for BME_1 are available so it can

be added to the evaluation order. A description of the code that performs these

 121

operations along with the code itself appears in Section 5.3.2. The evaluation order is

shown in Table 5.11.

Table 5.11. Feedforward Evaluation Order

puiFeedForwardOrder Global ID
First Evaluation BME_0

Second Evaluation BME_2
Third Evalution BME_1

For the acausal flow and internal variables, a local-to-global routing map is required.

This map is shown in Table 5.12 for the FullSensTest model. As described in Section

5.3.2, this table (ppuiStateMap) has two indices, the first being the model element and

the second being the local variable in that element. This map is generated automatically

using the flow variable origin and destination information provided by the user. As seen

in Table 5.12, for the FullSensTest model the first function (BME_0) has two local flow

variables (LFV_0 and LFV_1) that correspond to the GFV_0 and GFV_1 global

variables respectively. The next element (BME_1) has three local flow variables that

correspond to the GFV_0 through GFV_2 global variables. Finally, the BME_2 element

has two local flow variables: GFV_2 and GFV_3. The generation of this routing map

allows the solver to treat the set of elements and local variable as a single model with

one vector of variables.

Table 5.12. Flow Variable Map
ppuiStateMap LFV_0 LFV_1 LFV_2

BME_0 GFV_0 GFV_1 Empty
BME_1 GFV_0 GFV_1 GFV_2
BME_2 GFV_2 GFV_3 Empty

The same mapping process is used to transform the local residual evaluations to a single

vector of global residuals. The global variable and global residuals are passed to the

Solver class and used by the KINSOL solver to solve the resulting non-linear system.

For a numerical example of the solution of the FullSensTest model see Section 4. For a

more detailed system model, see the hybrid powertrain example presented in Section 6.

 122

5.5. CONCLUSIONS

The modeling framework presented here enables a behavioral model of a system to be

decomposed into elements based on functionality then automatically assembled and

solved. The framework also allows a sensitivity analysis to be performed on the

resulting model. This work is an extension of the function-based behavioral modeling

and sensitivity work presented in Sections 3.1 and 3.2. The framework itself was created

as a platform for evaluating and exploring the use of functionality-based behavioral

modeling. Rather than adapt an existing component-based modeling scheme to the

needs identified for the modeling framework, a from-scratch approach was used.

This approach was selected due to the lack of support for functional decompositions in

existing methods and an opportunity to investigate the specific challenges necessary in

producing a complete and operational model assembly and solution tool. The resulting

framework and modeling tools have been implemented on several systems from the

three-function test model shown here to the full design engineering example presented in

Section 6. Developing a custom framework provided key insight into the challenges and

opportunities present in modeling the behavior of complex systems that would have been

absent from adapting existing technologies to perform this task. This insight includes

the usefulness of a general purpose programming language, such as C++, in the

modeling process. A general purpose language allows complete access to the tools and

potential of a modern computer. However, the strict use of such a language generally

limits the solution techniques for models to direct numerical methods. Specific

modeling languages, such as Modelica, allow symbolic manipulation that is not possible

with traditional programming languages at the expense of the flexibility of a general

purpose programming language. Current trends in modeling languages, such a

Modelica, suggest a movement towards incorporating features from general purpose

languages. Object-oriented syntaxes and the ability to export simulation code in general

purpose languages (such a C) are common in modern modeling languages. However,

after extensive work exploring the needs of a modeling tool for use in engineering

design, it is the view of the author that existing programming languages are sufficient for

 123

all modeling needs except symbolic representation of equations. As made apparent in

the examples presented in this work, a variety of systems can be sufficiently modeled

using a general-purpose language. Rather than add the feature set of general purpose

programming languages to modeling languages (or general-purpose language exporters),

it seems that adding the symbolic representation and solution capability to existing

general purpose languages makes more sense. Essentially, it is suggested that adding

one feature to an existing and robust platform entails less risk and effort than adding an

entire world of features to a platform designed originally for one purpose. Having stated

this, the current state-of-the-art in modeling languages and programming languages has

forced this work to use one platform for its implementation. Due to the robustness and

flexibility of programming languages versus current modeling languages, a

programming language was selected for this work and all examples were successfully

completed using it.

 124

6. THE EARLY DESIGN OF A FORMULA

HYBRID POWERTRAIN

This section contains a comprehensive example that illustrates the use of the function-

based behavioral modeling and sensitivity analysis tools. The computational framework

shown in Section 5 was used to implement the example and produce the included results.

6.1. EXAMPLE INTRODUCTION

To demonstrate the application of functionally derived behavioral models within the

context of a complex system’s design process, a comprehensive example was completed.

Currently, there is not an agreed upon definition for a complex system. The definition of

the term “system” itself, is however well defined. In general, a system is a set of

interconnected parts that act together as a whole [24]. In the context of this work, a

complex system must exhibit the following attributes:

1. A large number of functional elements,

2. Elements from varying engineering disciplines,

3. Emergent behavior resulting from interactions (the overall functionality is

significantly more complex than the functionality of the elements).

In addition to satisfying the goal of being a complex system, the following criteria were

used to select an appropriate example for illustrating the application of the functionally

derived behavioral modeling work. The complex system should:

1. Be primarily, but not exclusively, comprised of elements from the author’s

engineering domain (mechanical),

2. Have a clearly defined customer and pre-existing set of needs,

3. Be appropriately scoped in scale,

4. Be topical and relevant to the challenges faced by today’s engineering designers,

5. Be capable of being assessed by a set of well-defined metrics with prior

examples of the design problem being available for comparison.

 125

The first attribute is a practical requirement, in order to complete the design process in a

reasonable amount of time without significant resources from other disciplines, it is

necessary that most of the elements of the system be from the mechanical engineering

discipline. However, the selected system must also include elements from other

disciplines in order to satisfy the requirement of being considered complex.

The second attribute is necessary to ensure that the system is designed to solve an

existing problem with an existing set of needs. This prevents the designer, in this case

the author, from crafting the solution to fit his own needs rather than the needs of the

customer. Additionally, this set of needs must be clear to avoid the influence of the

designer’s interpretation of the customer’s needs.

The third attribute is required due to the availability of resources and the time allocated

to the project. The selected system must be sufficiently complex and labor intensive to

satisfy the overall objective of the work but also must be scoped so that the design

process can be completed in a reasonable amount of time with the available resources.

Next, the example must be relevant to current engineering practices. Specifically, the

example must reflect the challenges faced by modern system designers and should be of

interest to the general populace as well. The problem must be interesting and also have

practical value in its completion.

Finally, the successful completion of the example should be capable of being assessed

by a clear set of metrics. This is to ensure that at the conclusion of the design process, a

significant improvement over current solutions to the design problem has resulted.

To this end the example that was selected for the design process was a Formula Hybrid

racecar. Formula Hybrid is a recently conceived collegiate engineering design

competition that is a spin-off of the Formula SAE racing series. The objective of the

Formula Hybrid competition is “to encourage and promote the development of high-

efficiency automotive drive trains” [42]. The competition uses the existing set of

Formula SAE rules [43]. For the Formula Hybrid competition, an open-cockpit racecar

 126

that utilizes a combination of electrical and internal combustion engine based propulsive

energy must be designed, constructed and raced.

This example was chosen due to several factors in addition to its satisfaction of the

previously described attributes. These factors will be presented next along with a

discussion of how the chosen example satisfies the necessary attributes for the project.

A primary factor in the selection of the example was that Texas A&M’s Formula SAE

race team was switching to compete in Formula Hybrid in the 2009 competition year.

As a result, a preliminary research class was conducted in the Spring 2008 Semester to

explore various aspects of the competition and high-level requirements for the design of

a hybrid racecar. The activities conducted in the class represented some of the earliest

stages in a structured design process and will be included later in the presentation of this

work. By selecting the design of a Formula Hybrid racecar as the primary example of

this work, it will be possible to leverage the work done as part of the research class and

provide a significant advantage to Texas A&M’s Formula Hybrid team in future years.

The Formula Hybrid example also satisfies the previously stated project attributes. Due

to the author’s experience as a mechanical engineer and previous Formula SAE design

work, the example fits the first listed criteria. Additionally, due to the nature of the

competition, the customers and their requirements are clear and well-defined. For

Formula Hybrid, the customer for the car is a weekend autocrosser [43] and the

customer’s needs can be directly obtained through the Formula SAE and Formula

Hybrid rule book. The project is also adequately scoped for the needs of this example.

Due to prior experience and the scale of the early design process it will be possible to

complete the task in the allotted time. Additionally, the design of a hybrid vehicle is

very relevant to today’s engineering world as well as the consumer market in light of

global concerns into the use of alternative energy sources. The success of the product

can also be benchmarked using the points system supplied by the Formula SAE and

Hybrid rules. This will enable different design concepts to be compared to each other as

well as to prior Formula Hybrid entries.

 127

Most importantly, the Formula Hybrid example represents a sufficiently complex

system. The design of a Formula SAE car itself presents significant challenges but is

generally limited to a few engineering domains (primarily mechanical with some

aerospace aspects). Also, Formula SAE is a mature competition and as a result there has

been significant evolutionary convergence within the top teams. This leaves few

opportunities for novel designs that significantly improve performance over existing

levels. Formula Hybrid is a newer competition with only two years of competition

history and includes all of the design challenges of Formula SAE with the addition of

more challenges through the increased emphasis of the electrical (power systems) and

computer engineering (control systems) disciplines. The relative age of the competition

along with the increased complexity means that Formula Hybrid offers a significant

opportunity to develop designs that provide significant improvements to racecar

performance. The relevance to modern engineering design challenges also means that

there is the potential to apply these results to the industry.

6.1.1. Scoping the Example

The complete design of a Formula Hybrid vehicle is a significant task and is generally

completed by a large group of students (up to 50 in the case of Texas A&M). Thus, the

design problem was scoped down to a single system of the car that demonstrated all of

the required aspects of a complex system. The selected system was the powertrain as

this represents the most significantly changed system over a traditional FSAE car and

includes the aspects of hybrid vehicle design that are most critical to its success. The

powertrain system of a car includes the aspects of the car that store, supply, convert and

transfer the propulsive energies used to accelerate the car in the longitudinal direction.

In completing the design process on this system, the formal design method proposed in

Section 2.5 was used.

6.1.2. The Design Process

As described in Section 2.5, the design method used in this example includes design

decomposition and design synthesis chains of activates. These two chains appear along

with a grouping of related activities in Figs. 6.1 and 6.2.

 128

Fig. 6.1. Design Decomposition

Fig. 6.2. Design Synthesis

Before the design process can be started, the activities recommended during Product

Planning (in traditional design) and the pre-design process in the proposed method must

be completed. The result of these activities is a product proposal that summarizes the

vision, objectives and high-level requirements for the system to be designed. The

following section presents the development of such a proposal for the Formula Hybrid

powertrain example.

6.2. PRE-DESIGN ACTIVITIES

6.2.1. Developing a Vision

The first step in the pre-design phase of product development is to develop a vision. For

this example, the product to be designed is a Formula Hybrid powertrain targeted for a

2009 competition entry. In the Formula SAE rules, the target market for the product is

the non-professional weekend autocrosser [43]. The primary objective of the

competition (as summarized in the FSAE rules) is “for the students to fabricate and

demonstrate a prototype car for evaluation as a production item” [43]. Formula Hybrid

does not explicitly change this customer but it can be assumed that the inclusion of

hybrid components means that the ultimate customer has energy-efficiency on their mind

in addition to on-track performance.

 129

However, the demands of the hypothetical customer for Formula SAE (and Formula

Hybrid as well) are usually ignored as they factor little into the scoring that ultimately

determines the winner of the competition. In reality, the actual customer is the design

team itself and their primary objective is usually to win the competition entered. As a

result, the customer considered for this project is Texas A&M’s Formula Hybrid team.

Thus, the vision for the design process is to produce a concept that is capable of being

handed over to the remainder of the design team for detailed and embodiment design

within future competition entries.

6.2.2. Analyze the Market for Opportunities

Compared to the decades old Formula SAE program, Formula Hybrid is significantly

younger with only two competitions (2007 and 2008) to date. As a result, there are

fewer entries with 6 registered teams in 2007 and 16 in 2008. The age of the

competition and the additional design challenges offered over Formula SAE produce the

opportunity to develop truly novel concepts.

Since the product is prescribed by the Formula Hybrid competition rules (and hence the

bulk of the Formula SAE rules), the potential product identification steps proposed by

Pahl and Beitz [4] are unnecessary. Additionally, no current design exists for a Formula

Hybrid car at Texas A&M. Thus, a “from-scratch” design process is required by the

team to develop a hybrid racecar.

As described in the Formula SAE rules, the car is to be produced as a prototype for a

manufacturing firm. The goals of the firm are to produce four units a day that cost less

than $25,000 each. Once again, the described target for the car is not the actual target.

Ultimately, the car will be produced by the design team and raced for one competition

year (there is currently one competition for Formula Hybrid). Unlike Formula SAE,

Formula Hybrid does not include a cost event as part of the competition. As a result, the

actual production cost of the car is not a performance attribute but rather a feasibility

attribute. For this study, the estimated powertrain budget will be $10,000.

 130

In conclusion, the market for the car is the Texas A&M Formula Hybrid team. The cost

for the product must be less than $10,000 and one unit will be produced. The next step

in the design process is to use this information to develop a product proposal.

6.2.3. Formulate a Product Proposal with Objectives

A product proposal describes the product to be designed as well as its place in the

market along with the highest-level objectives, requirements and functionality. Cost and

budget requirements should be included as well.

The ultimate result of the early design process is a concept that is to be further developed

into a complete design that will then be manufactured, tested and implemented within a

complete Formula Hybrid entry. The overall functionality of the powertrain system can

be simply summarized: develop and manage the propulsive energies required to produce

a vehicle capable of winning the Formula Hybrid competition.

For this design project, the following objectives were established based on the needs of

the team as well as the FSAE and FH rulebooks:

• Produce a design that can be practically implemented by the team,

• Produce a design that is capable of winning future competitions,

• Design must stay in budget,

• Produce a vehicle with very high performance (FSAE),

• Use as many common parts as possible (FSAE),

• Use good engineering practices (FSAE),

• Create an efficient product (FH),

• Produce a system that is easy to maintain (FSAE),

• Produce a system that is safe (FSAE).

From the overall functionality and the stated objectives, a set of high-level requirements

was generated. To facilitate the development of requirements and provide a common

 131

representation format, a standard requirements table is used in the remainder of this

work. The requirements table includes the object for the requirement, the level (system,

sub-system, etc.), the requirement itself and any references for the requirement. Each

requirement is listed in sentence form and uses the “shall” language to promote

uniformity in the description. The high-level requirements for the FH design appear in

Table 6.1.

Table 6.1. High Level Formula Hybrid Requirements

Req.# The Object Level Shall Requirement
S1 The powertrain system shall be manufacturable by the target team
S2 The powertrain system shall be capable of winning the 2009 FH competition
S3 The powertrain system shall have an estimated cost of less than $10000
S4 The powertrain system shall enable a high level of performance
S5 The powertrain system shall use as many common parts as possible
S6 The powertrain system shall utilize good engineering practices
S7 The powertrain system shall be energy efficient
S8 The powertrain system shall be easy to maintain
S9 The powertrain system shall be safe

The first requirement involves the manufacturability of the product. Due to restrictions

on the equipment available to the team and time limitations, the car must be relatively

simple to produce. Texas A&M runs Formula SAE (and will run Formula Hybrid) as a

senior design class with the first semester being design and the second semester being

construction and testing. This schedule limits production time to a few months and as a

result manufacturability is a highly important aspect of the car’s design. This

requirement is related to Requirements S3 and S5. Requirement S5 necessitates the use

of common parts on the car wherever possible. This reduces the number of custom parts

required and relieves some of the manufacturing burden from the team. Additionally,

using common parts generally reduces the cost of the parts and helps the team meet the

budgetary requirement (S3).

S2 is another highly important requirement. The powertrain must result in a car capable

of winning competitions. In addition to serving as a senior design project, competing in

industry sponsored projects serves as a recruiting tool and source of prestige for

engineering departments. Texas A&M has enjoyed success in the Formula SAE

 132

competition and continuing this tradition in the Formula Hybrid competition is

demanded. Requirement S4 is explicitly stated in the rules for Formula SAE but is also

implicitly required to satisfy Requirement S2 (winning the competition).

Winning the Formula Hybrid competition requires outscoring the other participating

teams based on the following points breakdown:

• Static events

o Presentation – 100

o Engineering Design – 100

• Dynamic Events

o Acceleration – Electric – 75

o Acceleration – Unrestricted – 75

o Autocross – 150

o Efficiency and Endurance – 400

In the context of this design exercise, the dynamic events and the engineering design

events will be considered. The Presentation event is primarily a human performance-

centric event rather than being car design and performance focused. The engineering

design event involves the student design team defending their design choices and

answering technical questions related to the car. It is difficult to factor this event into

requirements for the car (due to the human judging element) so it will be assumed that

methods used during the remainder of the design process will ensure that the team and

car will be well-positioned for this event.

The dynamic events include two types of acceleration events, an autocross event and an

efficiency and endurance event. Completing the electric acceleration event is a

requirement in order to be considered a hybrid vehicle in the context of the competition

and is worth 75 points. Both acceleration events involve completing a 75m straight run

from a standing-stop. The time required to complete the runs is measured and compared

 133

to the other competition entries to produce a score. The electric-only acceleration

requires the car to complete the event using only electrical energy stored by some means

on board. The unrestricted acceleration event allows both electric and internal

combustion power.

The autocross event involves completing a lap of a road-course style racetrack laid out

on a large, flat surface that utilizes parking cones and/or temporarily marked lines to

demarcate the track. This event begins from a standing start and the time required to

complete the event is used for scoring. Hitting cones during the lap or going off course

results in the addition of time penalties to the lap.

The endurance and efficiency event involves completing a roughly 22km race on a

closed autocross-style course in two 11km segments (with different drivers for each

segment). The time required to complete the event is used for scoring purposes. Like

autocross, hitting cones or going off-course results in the addition of a time penalty.

Efficiency is not directly scored in the competition but a fixed amount of fuel is given to

each team before the start of the endurance event. The maximum fuel given is

approximately 85% of the fuel required for an average FSAE car to complete the same

events and roughly corresponds to one gallon of gasoline. No points are awarded for

any fuel not used in the endurance event. Essentially, the objective is to use the given

quantity of fuel as efficiently and completely as possible while completing endurance as

quickly as possible.

The same explicit and implicit relationship between Requirement S2 exists for

Requirements S6 and S8. Requirement S6 states that good engineering practices should

be used in the design of the car. Since this is judged in the design event, it directly

affects the ability of the car to win. Additionally, good engineering practices are also

necessary to produce a fast and reliable car so it indirectly affects this requirement as

well. Requirement S8 as stated in the FSAE rules and is directly judged in the design

event and indirectly affects the performance of the car should a maintenance activity be

required during the competition.

 134

Formula Hybrid rules necessitate improved fuel economy over a Formula SAE car. This

leads to requirement S7, the need for the car to be fuel efficient (compared to an FSAE

car). Since the car must complete all events on a fixed amount of energy, this directly

affects the ability of the car to win (S2).

Requirement S9 is the most important requirement of all, the car must be safe. This

requirement is related to Requirements S6 and S8. A system that utilizes good

engineering practices is going to be safer than one that does not (S6). Additionally, a car

that is easy to maintain reduces the avoidance of repairs due to excessive difficulty in

performing the repair (S8). Requirement S9 is also directly implemented through the

meeting of all of the technical rules and regulations associated with Formula SAE and

Formula Hybrid.

The results of these pre-design activities have been summarized in the product proposal

shown in Appendix 1. At the completion of this proposal, the actual design process of

the system was initiated. The activities performed in this design process along with the

results of the process are detailed in the following sections.

6.3. DESIGN PROCESS

6.3.1. Assessing Needs

Since most of the needs of the customer are described in the Formula SAE and Formula

Hybrid rulebooks, performing a customer need assessment for this project is relatively

simple compared to traditional design projects. The bulk of the customer’s needs can be

derived from the rules and the remainder assessed from any additional needs of the team.

The objectives and requirements developed in the prior step represent most of these

needs. Essentially, the primary needs of the customer are to produce a highly

competitive design that meets all rules and regulations.

To satisfy this need, the team must outscore the other competition entries to the event.

The Formula Hybrid competition is relatively new but there is data available that can be

used to estimate the potential performance of the competitors. Table 6.2 presents the

scoring results from the top five teams in the 2008 Formula Hybrid competition [42].

 135

Since the points scoring is relative to the performance of the participating teams, it is

difficult to use raw score as a competitive benchmark. However, the timing results for

the events are available as well. The timing results can be used to develop a set of

benchmarks for assessing the performance of the car to be designed and hence its ability

to outscore competitive teams. During the performance target establishment activity

later in the design process, this scoring information will be used to set target values for

the performance of the car to be used in selecting potential concepts.

Table 6.2. Top Five Team Results from 2008 Formula Hybrid Competition[42]
Entry Score Design Acceleration

Electric
Acceleration
Unrestricted Autocross Endurance

McGill 781.00 121.52 54.01 55.47 150.00 400.00
Embry-Riddle 629.88 200.00 28.25 43.87 113.75 244.01
Dartmouth 481.63 126.58 75.00 75.00 94.91 110.13
Illinois Inst. of Tech. 575.57 125.32 79.82 370.43
UW-Madison 256.71 67.09 189.62

6.3.2. Translating Needs Into Functionality

From the customer needs, a set of desired functions for the powertrain system can be

developed. These functions can be defined and represented using the formal Functional

Modeling method described in Section 3. The model used for the powertrain example

appears in this section along with its derivation. The model, shown again in Fig. 6.3,

represents the highest-level intended functionality of the hybrid powertrain system. In

this example, only post IC transmission torque-coupled parallel hybrids are considered.

This decision resulted from the consensus of the Texas A&M Formula Hybrid design

team. This configuration represents one of the simplest hybrid powertrain configurations

and represents the smallest change from Formula SAE architecture that produces a

Formula Hybrid legal car. Series hybrid powertrains were not considered due to their

increased complexity (the need for two electrical machines) and the absolute reliance on

an electrical machine for all propulsive forces. Series coupled hybrids (in the context of

Formula Hybrid) use an internal combustion engine connected to a generator, which is in

turn connected to an energy storage device. The energy is then supplied to motor and

 136

finally to the drivetrain of the vehicle. Such a system requires two separate electrical

machines, each of which carries a significant weight burden. Speed coupled parallel

powertrains were not considered due to the added complexity of such systems over a

fixed-ratio torque coupled system. Speed coupling requires a variable speed

transmission between the motor and drive system of the car and adds significant

complexity and weight over a torque-coupled system that uses a fixed mechanical

coupling between the engine and motor.

Fig. 6.3. Hybrid Powertrain Functional Model

6.3.3. Finding and Quantifying Characteristics of the System

Although the list of customer needs is relatively short and simple to describe, translating

these needs into a comprehensive set of requirements is a significant challenge. High-

level requirements have already been defined from the overall objectives of the

powertrain system. However, to meet the need of passing all of the FSAE and Formula

Hybrid rules and regulations, an extensive list of requirements was developed from the

perspective of the entire car. These requirements were generated using the rulebooks as

a guide. The requirements were then sorted and partitioned into manageable sets for use

in analyzing specific requirements for the hybrid powertrain system.

 137

The first step in this process was to group and re-order the requirements established

during the product proposal and customer needs search. Some of the requirements were

redundant and a hierarchy was not used during their development. To remedy this, a

new requirements table was developed that utilized a hierarchical decomposition and

numbering system. This updated table of system-level requirements appears in Table

6.3. This table represents a complete view of the car as a whole rather than a specific

scoping to the powertrain system.

Table 6.3. Hybrid Racecar Structured Requirements
Req.# The Object Level Shall Requirement
S1 The car system shall be manufacturable by the target team
S1.1 The car system shall use as many common parts as possible
S1.2 The car system shall include as few complex custom parts as possible
S1.3 The car system shall make use of efficient structures (simple yet strong)
S1.4 The car system shall be designed with manufacturability in mind
S1.5 The car system shall be designed with the team's budget in mind
S2 The car system shall be capable of winning the 2009 FH competition
S2.1 The car system shall meet all 2009 FH and relevant FSAE rules
S2.2 The car system shall pass all competition tests
S2.3 The car system shall be completed early enough to have sufficient test time
S2.4 The car system shall receive a competition score higher than all other entered teams

S2.4.1 The car system shall utilize a well-research, thorough and document design process
(Design Event)

S2.4.2 The car system shall be aesthetically pleasing (Presentation and Design)

S2.4.3 The car system shall exhibit a high level of performance (Acceleration, Autocross
and Endurance)

S2.4.4 The car system shall be energy efficient (Endurance)
S2.4.5 The car system shall utilize good engineering practices (All events)
S2.4.6 The car system shall be comfortable to its drivers (All events)
S2.4.7 The car system shall easy to setup and control (All events)
S2.4.8 The car system shall be reliable (All events)
S3 The car system shall be safe
S3.1 The car system shall be comfortable to its drivers
S3.2 The car system shall conform to FSAE and FH safety rules
S3.3 The car system shall utilize good engineering practices
S3.4 The car system shall be designed with safety in mind
S4 The car system shall be easy to maintain
S4.1 The car system shall use as many common parts as possible
S4.2 The car system shall be designed with maintenance in mind
S4.3 The car system shall be reliable (All events)

Satisfying the Formula Hybrid and relevant Formula SAE rules involves meeting a

significant number of technical requirements. In the rulebooks, these requirements are

stated in paragraph form and are roughly grouped by the impacted sub-system. The

previously utilized requirements development process and representation format was

 138

used to translate the rulebooks into a set of engineering requirements. In total, over 300

requirements for the car were derived from the FSAE and Formula Hybrid rules. A

complete list of these requirements appears in Appendix 2.

Only a fraction of these requirements are relevant to the early engineering design

process. Most involve specific aspects of a physical implementation that cannot be

addressed until significantly later in the design. As a result, the requirements had to be

sorted to produce a set for consideration for the remainder of this design exercise. Each

requirement was individually assessed for its relevance during conceptual design and

regrouped to produce a new set of requirements. This reduced set appears in Table 6.4

and will be used for the remainder of the early design process.

Table 6.4. Early Design Requirements

The Object Level Shall Requirement Ref.
The car system shall cost less than $25,000 1.2
The car system shall exhibit a high performance 1.2

The car system shall be designed and fabricated in accordance with good
engineering practices 1.3

The car system shall be conceived, designed, fabricated and maintained by the
student team 2.2.1

The car system shall be open-wheeled 3.1.1
The car system shall be open-cockpit 3.1.1
The car system shall have a wheelbase of at least 1525mm 3.1.2
The car system shall have four wheels 3.1.2
The car system shall have all four wheels not in a straight line 3.1.2

The car system shall have a smaller track that is no less than 75% of the larger
track 3.1.3

The car system shall be equipped with a fully operating suspension sub-system 3.2.1
The car system shall have wheels greater than 203.2mm in diameter 3.2.3.1
The car system shall use any size or type of tire, slick or treaded as its dry tire 3.2.3.2
The car system shall have a steering sub-system that effects at least two wheels 3.2.4
The car system shall have a braking sub-system 3.2.5
The car system shall have a steering wheel assembly 3.4.6

The car system shall have a track and CG that combine to produce adequate
rollover protection 3.4.8

The car system shall must not roll when tilted at angle of 60 deg to the horizontal
(either direction) with the tallest driver 3.4.8.1

The car system shall have all aerodynamic or ground effect devices satisfy 3.7.1 3.7.1

The car system shall be capable of completing a 75m acceleration run in electric-
only mode in less than 15s FH-1.2

The electrical
propulsion sub-system shall have a maximum voltage of 600V DC or AC RMS under all

circumstances FH-2.1

The engine sub-system shall be internal combustion, four-stroke, with a maximum
displacement of 250cc 3.5.1.1FH

The engine sub-system shall be of modified or custom fabricated type and follow section
3.5.4FH or: 3.5.1.1.1FH

The engine sub-system shall be of stock type (section 3.5.1.1.2FH) 3.5.1.1.2FH
The engine sub-system shall use 93 octane pump, E-85 or Biodiesel 3.5.2FH

The fuel sub-system shall not alter the temperature of the fuel to improve fuel
economy 3.5.2.1

The fuel sub-system shall not use any agents other than fuel and air 3.5.2.2

 139

Table 6.4 Continued.
The Object Level Shall Requirement Ref.
The powertrain sub-system shall be equipped with a muffler to reduce noise levels 3.5.5.1
The accumulator assembly shall shall meet the type and size rules listed in FH-2.5 FH-2.5
The accumulator assembly shall have a maximum standardized cost of $6000 FH-2.5
The accumulator assembly shall be of battery or capacitor type FH-2.5
The fuel tank assembly shall be of any capacity 3.5.3.1FH
The braking sub-system shall act on all four wheels 3.2.5
The braking sub-system shall be operated by a single control 3.2.5

The braking sub-system shall have two independent hydraulic circuits with separate
reservoirs 3.2.5

The braking sub-system shall be capable of locking all four wheels in the brake test 3.2.5
The braking sub-system shall not use "brake-by-wire" 3.2.5

The braking sub-system shall
have its last 50% travel operate the hydraulic system
described in 3.2.5 (the first 50% travel may be used for
regen. braking)

3.2.5FH

The steering sub-system shall have less than +/-3 degrees of rear wheel steering 3.2.4
The steering sub-system shall be mechanically connected to front wheels 3.2.4
The suspension sub-system shall have shock absorbers front and rear 3.2.1
The suspension sub-system shall have a usable wheel travel of at least 50.8mm per wheel 3.2.1
The suspension sub-system shall have at least 25.4mm of jounce and 25.4mm of rebound 3.2.1
The tire component shall not use warmers or traction enhancers 3.2.3.2

This set of requirements can then be parsed to identify specific requirements relevant to

the powertrain system. The results of this parsing process appear in Table 6.5.

Table 6.5. Filtered Early Design Requirements

The Object Level Shall Requirement Reference
The car system shall cost less than $25,000 1.2
The car system shall exhibit a high performance 1.2

The car system shall be designed and fabricated in accordance with good
engineering practices 1.3

The car system shall be conceived, designed, fabricated and maintained by the
student team 2.2.1

The car system shall have four wheels 3.1.2
The car system shall have wheels greater than 203.2mm in diameter 3.2.3.1
The car system shall use any size or type of tire, slick or treaded as its dry tire 3.2.3.2

The car system shall be capable of completing a 75m acceleration run in electric-
only mode in less than 15s FH-1.2

The electrical
propulsion sub-system shall have a maximum voltage of 600V DC or AC RMS under all

circumstances FH-2.1

The engine sub-system shall be internal combustion, four-stroke, with a maximum
displacement of 250cc 3.5.1.1FH

The engine sub-system shall be of modified or custom fabricated type and follow section
3.5.4FH or: 3.5.1.1.1FH

The engine sub-system shall be of stock type (section 3.5.1.1.2FH) 3.5.1.1.2FH
The engine sub-system shall use 93 octane pump, E-85 or Biodiesel 3.5.2FH
The fuel sub-system shall not alter the temperature of the fuel to improve fuel economy 3.5.2.1
The fuel sub-system shall not use any agents other than fuel and air 3.5.2.2
The powertrain sub-system shall be equipped with a muffler to reduce noise levels 3.5.5.1
The accumulator assembly shall shall meet the type and size rules listed in FH-2.5 FH-2.5
The accumulator assembly shall have a maximum standardized cost of $6000 FH-2.5
The accumulator assembly shall be of battery or capacitor type FH-2.5
The fuel tank assembly shall be of any capacity 3.5.3.1FH

The braking sub-system shall have its last 50% travel operate the hydraulic system described
in 3.2.5 (the first 50% travel may be used for regen. braking) 3.2.5FH

The tire component shall not use warmers or traction enhancers 3.2.3.2

 140

6.3.4. Develop Performance Metrics for Requirements

The next step in the design process is to distill the requirements into a set of performance

metrics that can be used to assess the ability of concepts to meet the requirements and

hence satisfy the customer’s needs. These metrics are a set of numerical quantities (or

logic statements) that quantify (or qualify) the satisfaction of requirements. For the

hybrid powertrain the metrics to be used are shown in Table 6.6 along with units and the

references requirements.

Table 6.6. Performance Metrics

Metric Units Reference Req.
Cost U.S. Dollars S1.5
Dynamic Event Score Points (700) S2
Electric Accel. Test Pass/Fail S2.2
Functional Sensitivities Percentages S2.4.7
Mass kg S2.4.5

The first metric to be assessed is cost. Cost is not directly associated with the

performance of the car at competition but must be used to assess the ability of the team

to construct the car. This metric was identified to represent Requirement S1.5, which

involves the team keeping in its budget.

Requirement S2, developing a design that has the capability to win the competition, is

one of the most important requirements. To assess the satisfaction of this requirement,

the estimated dynamic event score metric will be used. This metric will be calculated

based on estimates of event performance and will use the 2009 score normalization

algorithms to compare concepts. Since efficiency is built into the scoring system, the

car’s energy efficiency will also be assessed by this metric.

To meet Requirement S2.2, the car must pass the electrical acceleration event.

Otherwise, the car is not considered a hybrid and is not eligible for the competition.

This requirement is assessed with a pass/fail metric that represents the estimated ability

of the design to pass this event.

As this design process represents a first attempt at creating a hybrid powertrain system,

understanding the parametric sensitivities of the system is necessary in order to allocate

 141

sufficient modeling and design resources in the embodiment and detailed stages of

design. To this end, the functionality-based sensitivity approach presented in Section 4

will be applied during the design process of the powertrain system.

These metrics will be used to assess the performance of the various concepts that will be

developed. However, these metrics only cover a fraction of the overall set of

requirements. As a result, the satisfaction of the remaining requirements will have to be

assessed on a concept-by-concept basis once a preliminary set of concepts has been

developed and sorted using the metrics. Ultimately, this task lies outside the context of

early design and is left to the embodiment and detailed design phases.

6.3.5. Finding a Model and Assessing Behavior

The development of the behavioral models for this system at the highest level are

presented in the Type I analysis shown in Section 3. The result of this analysis for a test

case is presented in that section. This same model was used for a first-pass analysis of

the performance capabilities of the powertrain system in the context of the established

performance metrics. To use this model, various parametric configurations were

necessary. Although the development of a Type I model makes minimal assumptions

regarding the form of a system, the parametric instantiation of the model requires

knowledge of feasible values for the various parameters included in the model. For the

Type I analysis of the hybrid powertrain, several solutions to each of the functions were

identified through brainstorming sessions with the Texas A&M team and surveys of

existing solutions to these functions. The parametric values used to represent these

conceptual solutions appear in Table 6.7.

The automated model assembly and solution methods presented in Section 5 was used to

evaluate the performance of each permutation of possible concepts using the identified

solutions to the various powertrain functions. The results of this analysis were sorted

based on predicted Formula Hybrid points using the total analyzed solution space to

normalize the scores. The ranked concepts appear in Fig. 6.4. A complete listing of the

results of this analysis appear in Appendix 5.

 142

Table 6.7. Type I Model Parameter Values
Function Concept Parameter Value Units

Maximum Power 6.00 kW
Efficiency 0.30 Unitless
Cost 500.00 U.S. Dollars

Small Industrial

Mass 25.00 kg
Maximum Power 31.00 kW
Efficiency 0.30 Unitless
Cost 2000.00 U.S. Dollars

250CC MC 1

Mass 45.00 kg
Maximum Power 27.00 kW
Efficiency 0.30 Unitless
Cost 1500.00 U.S. Dollars

250CC MC 2

Mass 45.00 kg
Maximum Power 18.00 kW
Efficiency 0.30 Unitless
Cost 1000.00 U.S. Dollars

Convert Chem. To Rot. E.

Hypothetical

Mass 35.00 kg
Maximum Power 10.00 kW
Efficiency 0.90 Unitless
Cost 1000.00 U.S. Dollars

Small Sep. Ex.

Mass 25.40 kg
Maximum Power 15.00 kW
Efficiency 0.90 Unitless
Cost 1250.00 U.S. Dollars

Medium Sep. Ex.

Mass 25.40 kg
Maximum Power 20.00 kW
Efficiency 0.90 Unitless
Cost 1400.00 U.S. Dollars

Large Sep. Ex.

Mass 25.40 kg
Maximum Power 13.00 kW
Efficiency 0.90 Unitless
Cost 2500.00 U.S. Dollars

Small AC Ind.

Mass 20.10 kg
Maximum Power 20.00 kW
Efficiency 0.90 Unitless
Cost 2900.00 U.S. Dollars

Medium AC Ind.

Mass 20.10 kg
Maximum Power 34.00 kW
Efficiency 0.90 Unitless
Cost 3200.00 U.S. Dollars

Large AC Ind.

Mass 20.10 kg
Maximum Power 14.10 kW
Efficiency 0.85 Unitless
Cost 1720.00 U.S. Dollars

Convert Elec. E. to Rot. E.

PM DC

Mass 11.25 kg
Max. Energy 1000.00 kJ
Efficiency 0.80 Unitless
Cost 800.00 U.S. Dollars

Low Energy

Mass 5.00 kg
Max. Energy 2000.00 kJ
Efficiency 0.80 Unitless
Cost 1600.00 U.S. Dollars

Medium Energy

Mass 10.00 kg
Max. Energy 4000.00 kJ
Efficiency 0.80 Unitless
Cost 3200.00 U.S. Dollars

Provision Elec. E.

High Energy

Mass 20.00 kg
Brake Power 120.00 kW Transfer Mech. E. Suspension
Mass 40.00 kg

Distribute Mech. E. Chassis Mass 200.00 kg

 143

Fig. 6.4. Type I Model Point Scoring Predictions

From this Type I analysis, several predictive results were obtained. Due to the

normalization factors, the endurance event, although worth the most points, provides a

relatively small point spread between concepts. This results from the assumption that

each concept will not fail during the event and will be operated at its maximum potential

throughout the event. Although these assumptions are rarely seen in the actual results of

the Formula Hybrid competition, they are appropriate within the context of an early

powertrain analysis.

Under these assumptions, all concepts are predicted to complete the endurance event in a

time significantly less than the maximum weighted time of one hour and will

automatically receive a minimum of 300 points with the remainder weighted based on

the one hour minimum time and the quickest time recorded from all of the concepts.

The resulting points breakdown shows that as long as the powertrain provides enough

propulsive energy to produce an endurance time significantly less than one hour, most of

the points available in the event will be awarded. For the acceleration events, all

concepts resulted in a relatively even number of points due to the weighting formula

used in these events. Essentially, each concept finished the event in a time significantly

 144

less than 15s (the maximum weighted time) so it received most of the available points.

Interestingly, the weighting of the autocross event (3.5 points for the slowest car and 150

for the fastest) provides the largest opportunity to separate the performance of a

complete car from the other competition entries. Essentially, this event allows a 146.5

point swing from the fastest to slowest cars. Thus, it is highly important that this event

be completed as quickly as possible.

The results of the analysis show that the best concepts are ones that include the highest

performance internal combustion engines and electric motors with the lightest

accumulators considered. Essentially, the performance gains from these choices

overcome the addition of their extra weight (from a powertrain perspective). Although

this seems like an obvious conclusion, without the modeling efforts it is not possible to

know exactly how to trade off the extra weight for the additional performance.

At the completion of this analysis, it was determined that small motors were not worth

considering for the remainder of the analysis. Additionally, the Sep. Ex. motors were

removed as they did not provide any benefit over the AC motors. The PM DC motor

was not ruled out due to its prevalence at the Formula Hybrid competition (many

successful teams use this motor), low cost and availability. Performing this

downselection of potential solutions at this point in the design process allows more

resources to be focused on the concepts with the highest predicted performance later in

the design process.

6.3.6. Sensitivity Analysis

As demonstrated in Section 4, a sensitivity analysis is a useful tool for understanding the

important parameters and functions within a model. Knowing this information allows

attention and resources to be focused on the most significant sources of variation in the

performance of a system. To this end, a HyVar functionality-based sensitivity analysis

was performed using the hybrid powertrain Type I models to obtain a break down of the

sources of variation in the system’s performance. This analysis was performed using the

method shown in Section 4 and the results follow.

 145

The sensitivity analysis was performed for three of the four dynamic events. The

endurance sensitivity was not included in this example due to the significant increase in

solution time over the endurance performance solution time. Since the relative

performance of the various concepts did not have a large impact on the point score for

the endurance event, this decision seemed appropriate. For the three remaining events

(the accelerations and autocross), the dependant variable in the sensitivity analysis was

selected to be the completion time of the event. For each sensitivity analysis for each

concept, a full parametric sensitivity analysis was performed and the results grouped

according the functional breakdown of the system. Pie charts illustrating the average

relative contribution to the overall variation of performance for the autocross, electric

only acceleration and unrestricted acceleration appear in Figs. 6.5, 6.6 and 6.7

respectively.

Fig. 6.5. Autocross Event Sensitivities

 146

Fig. 6.6. Electric Only Acceleration Event Sensitivities

Fig. 6.7. Unrestricted Acceleration Event Sensitivities

 147

As shown in Figs. 6.5 and 6.7, the autocross and unrestricted acceleration events have

similar sensitivity profiles. The most significant contributions to variation in the

performance of the system in these events is the distribute mechanical energy function

that represents the functionality of the vehicle’s chassis. The major parameter that

contributes to this sensitivity is the mass of the vehicle. The next highest contributing

function is the conversion of electrical energy to rotational energy (the motor) followed

by the convert chemical energy to rotational energy function (the IC engine). These two

functions are shown to be relatively equal in their parametric contributions to variation.

For the electric only acceleration event, the distribute mechanical energy and convert

electrical energy to rotational energy functions shared roughly the same contribution to

the overall variation in the system’s performance. In each of the analyses, the remaining

functions contributed insignificantly to the variation of the system’s performance within

the context of the Type I analysis. However, the results do show that for the remainder

of the design process, a relatively equal amount of attention and resources should be

expended between the motor and engine modeling and selection process (one aspect

should not be explicitly favored over the other).

6.3.7. Prescribing Targets

The results of the behavioral analysis show that the autocross event offers the most

significant opportunity to gain points on other competition entries. In the analysis, the

low and medium energy accumulators offer good performance but there are some effects

that were not modeled that may show up in a more detailed analysis. The predicted

times for the acceleration events are low (3.12s and 3.88s for the quickest unrestricted

and electrical only events times respectively) compared to a winning time of around 5s

for both events last year. Traction limits and the inability to operate the power devices at

peak power levels throughout the events explain this result. As a result, the absolute

values predicted from this analysis cannot be used to make confident predictions of the

actual cars performance. However, the relative ranking of concepts provides an

indication of which concepts have more performance potential than others. For

example, the power/mass trade off for the motors and engines looks to favor power. A

 148

mass of around 315 kg and a cost of around $5100 is average among concepts. Slightly

more mass, around 320kg and a cost around $6000 provides top-level performance.

6.4. DESIGN SYNTHESIS

The next step in the design process for the hybrid powertrain was to find appropriate

solutions to the functions of the system and combine them into concepts. Next, the

behavior of these concepts was investigated along with its sensitivity. This behavior was

then used to perform another downselection and ultimately resulted in a set of feasible

concepts to be considered for implementation in the racecar.

6.4.1. Finding and Combining Forms

In the Type I analysis, general information about component solutions to functionality

was used to develop parameter sets for use in the model. The model itself, being

targeted for a Type I analysis, was not developed with the specific performance

characteristics of the available (or possible) component solutions to functionality. Now

that a general set of feasible solution types is known, a more focused component solution

identification process can be completed. Due to the requirement of using common and

off-the-shelf components where possible, it was necessary to identify existing solutions

for as many of the powertrain functions as possible. The provision electrical energy,

convert electrical energy to rotational energy and convert chemical energy to rotational

energy functions could all be solved with commercially available components. Through

the course of the Texas A&M Formula Hybrid research and design courses, it was

determined that commercially available lithium-ion battery packs for power tools

provided the best combination of availability, cost and performance. To this end, these

packs will provide the basis for selecting an appropriate accumulator to solve the

provision electrical energy function. Specifically, combinations of DeWalt 36V power

tool packs utilizing the A123 Systems brand li-ion cells were identified as the most

appropriate technology to use. Additionally, 72 Volts was selected to be the nominal

voltage of the accumulator due to the availability of motors in this range. Within the

context of these design choices, there are several important factors to investigate.

Specifically, the parameters include battery pack capacity (in amp*s), cost, and mass

 149

along with motor selection. Additionally, an appropriate internal combustion engine

must be selected to complement the electric motor and provide suitable performance.

Without a detailed model of these components and their contributions to system-level

performance, it is not possible to make an informed decision as to the best set of

solutions. As a result, a more detailed behavioral analysis of the system is required

based on the new information available from making these design decisions. To make

these models, the set of potential component solutions to the major functions of the

hybrid powertrain system was limited to those appearing in Table 6.8. From this

selection, it is now possible to make Type II models and explore the performance on the

system in a higher fidelity.

Table 6.8. Identified Solutions
Function Solution
Convert Chem. To Rot. E. Honda GX240
 Yamaha WR250X
 Prototype Engine
Convert Elec. E. to Rot. E. EM AC-1
 EM AC-2
 PMG 132-1
 PMG 132-2
Provision Elec. E. 4-36V Dewalt
 8-36V Dewalt
 16-36V Dewalt

The number of solutions identified for each powertrain function were selected so that an

exhaustive search of the space generated by permuting these solutions was feasible.

The total number of solution combinations generated was 36. To model each of these 36

solutions, the automated behavioral model assembly and solution method shown in

Section 5 was used along with the functionality-derived behavioral modeling approach

used in the Type I analysis.

Since component solution information is available, a Type II analysis could be

performed. For this analysis, a better approximation of the complete vehicle dynamics

was desired. To this end, the functionality of the vehicle’s suspension, wheels and tires

was decomposed from a single function into two functions (one for the front and one for

 150

the rear). This decomposition facilitates the development of a dynamic model that

includes longitudinal weight transfer effects and allows the use of a high fidelity tire

model. This tire model allows the affects of limited traction to be observed in the model

and improves upon the assumptions made in the Type I analysis where potential traction

was not modeled. This functional decomposition results in a new functional model for

the system along with a new set of flows. For the Type II analysis developed for the

hybrid powertrain system, the functional model and flow routing models shown in Figs.

6.8 and 6.9 were used.

Fig. 6.8. Hybrid Powertrain Functional Model for Type II Analysis

Fig. 6.9. Hybrid Flow Type/Routing Model for Type II Analysis

 151

6.4.2. ASSESSING BEHAVIOR

The development of the Type II behavioral model elements for the hybrid powertrain

system is shown in Section 3. Like the Type I analysis, a full parameterization for each

solution to each function is required to use the model. For the solutions shown in Table

6.8, model parameters were identified. These parameter values appear in Table 6.9.

Table 6.9. Parameter Values for Type II Behavior Analysis
Function Concept Parameter Value Units

Low Speed Sample 209.00 rad/s
Med. Speed Sample 283.00 rad/s
High Speed Sample 377.00 rad/s
Low Torque 16.50 N*m
Med. Torque 17.00 N*m
High Torque 15.50 N*m
Max. Speed 375.00 rad/s
Min. Speed 200.00 rad/s
Cost 500.00 U.S. Dollars

Honda GX240

Mass 27.00 kg
Low Speed Sample 420.00 rad/s
Med. Speed Sample 838.00 rad/s
High Speed Sample 1047.00 rad/s
Low Torque 16.60 N*m
Med. Torque 22.36 N*m
High Torque 16.94 N*m
Max. Speed 1100.00 rad/s
Min. Speed 600.00 rad/s
Cost 2000.00 U.S. Dollars

Yamaha WR250X

Mass 45.00 kg
Low Speed Sample 420.00 rad/s
Med. Speed Sample 838.00 rad/s
High Speed Sample 1047.00 rad/s
Low Torque 16.60 N*m
Med. Torque 31.00 N*m
High Torque 20.00 N*m
Max. Speed 1100.00 rad/s
Min. Speed 600.00 rad/s
Cost 2000.00 U.S. Dollars

Convert Chem. To Rot. E.

Prototype Engine

Mass 45.00 kg
Rated Voltage 84.00 V
Rated Power 34.27 kW
Max. Current 550.00 A
Rated Torque 142.00 N*m
Max. Speed 838.00 rad/s
Mass 20.10 kg

EM AC-1

Cost 3200.00 U.S. Dollars
Rated Voltage 84.00 V
Rated Power 18.60 kW
Max. Current 300.00 A
Rated Torque 108.00 N*m
Max. Speed 838.00 rad/s
Mass 20.10 kg

Convert Elec. E. to Rot. E.

EM AC-2

Cost 2600.00 U.S. Dollars

 152

Table 6.9 Continued.
Function Concept Parameter Value Units

Torque Constant 0.19 N*m/A
Speed Constant 5.24 (rad/s)/V
Int. Resistance 0.03 Ohm
Max. Current 400.00 A
Max. Speed 350.00 rad/s
Mass 11.25 kg

PMG 132-1

Cost 1700.00 U.S. Dollars
Torque Constant 0.19 N*m/A
Speed Constant 5.24 (rad/s)/V
Int. Resistance 0.03 Ohm
Max. Current 200.00 A
Max. Speed 350.00 rad/s
Mass 11.25 kg

Convert Elec. E. to Rot. E.

PMG 132-2

Cost 1500.00 U.S. Dollars
Int. Resistance 0.10 Ohm
Nominal Voltage 72.00 V
Capacity 14000.00 Amp*s
Cost 800.00 U.S. Dollars

4-36V Dewalt

Mass 5.00 kg
Int. Resistance 0.05 Ohm
Nominal Voltage 72.00 V
Capacity 28000.00 Amp*s
Cost 1600.00 U.S. Dollars

8-36V Dewalt

Mass 10.00 kg
Int. Resistance 0.03 Ohm
Nominal Voltage 72.00 V
Capacity 56000.00 Amp*s
Cost 3200.00 U.S. Dollars

Provision Elec. E.

16-36V Dewalt

Mass 20.00 kg
CG X Location 0.77 m
CG Z Location 0.05 m
Wheelbase 1.70 m

Distribute Mech. E. Chassis

Mass 200.00 kg
Max. Vehicle Speed 30.00 m/s Distribute Rot. E. Torque-coupled DT
Gears 5.00 Integer
Throttle Gain 10.00 1/(m/s)
TC Slip Start 0.15 Unitless

Process Control Controller

TC Slip Stop 0.30 Unitless
Rot. Inertia 1.20 kg*m^2
Tire Radius 0.25 m
Peak Brake Torque 2000.00 N*m

Transfer Mech. E. Front Suspension

Mass 30.00 kg
Rot. Inertia 1.20 kg*m^2
Tire Radius 0.25 m
Peak Brake Torque 2000.00 N*m

Transfer Mech. E. Rear Suspension

Mass 30.00 kg

Using these parameter values, the performance of each of the 36 total concept

permutations was predicted for the autocross, endurance and acceleration events. Like

the Type I analysis, the Formula Hybrid score weighting system was used to rank these

concepts by predicted point scoring capability.

 153

6.4.3. Comparing Behaviors

The results of the Type II analysis were sorted based on predicted scoring capability and

appear in Fig. 6.10. The general trends shown in this figure match the trends from the

Type I analysis in that the autocross event represents the most significant source of total

point variation in the competition. Essentially, all of the concepts provided enough raw

performance to finish the endurance event in significantly less time that one hour and as

a result received most of the points available in this event. Like the Type I analysis, the

performance in the unrestricted acceleration event did not significantly vary due to the

15 second maximum weighted time. However, the electric acceleration event does show

a significant variation between concepts and thus is shown to be a larger contribution to

the relative performance of a concept than was determined in the lower-fidelity Type I

analysis. The raw predicted times from this analysis appear in Appendix 5. Specific

observations from the Type II analysis follow.

Fig. 6.10. Predicted Point Scoring from Type II Analysis

As with the Type I analysis, the best performance was achieved with large AC motors

and as high of a performance engine as possible. However, unlike the Type I analysis,

 154

larger electrical accumulator sizes outperformed smaller ones for the concepts with large

electrical motors. It is theorized that this result comes from the power losses incurred

when large motors pull large amounts of current through a small accumulator (for a

given type of battery and total accumulator voltage, the larger the capacity the lower the

internal resistance). Since this effect was not modeled in the Type I analysis, it does not

affect the results (this is shown in the zero percent contribution to sensitivity in the

results of the Type I sensitivity analysis). However, the higher fidelity Type II analysis

includes the resistance of batteries and its effect on the performance of the system. For

example, the highest scoring concept completed the electric only acceleration in 5.0668s

compared to the same concept with a smaller battery size completing the event in

7.1725s (both concepts did not significantly deplete the capacity of their batteries during

the event). Thus, the low energy battery packs were removed from further

consideration.

From the results, additional cuts were made from the set of feasible solutions. The EM

AC-2 motor provides no advantages over the EM AC-1 except a slightly cheaper cost.

However, the cost difference was not determined to merit its inclusion in further

analyses. Likewise, the prototype engine offers significant performance over the

WR250X and at the time of the analysis, engines of this kind were available. Thus, the

WR250X was excluded from the set of solutions. Although the performance of the

permanent magnet DC motors was significantly less than that of the AC motors, their

availability and proven performance at competition was judged sufficient to retain them

in the analysis. A concept with a small industrial engine and large accumulator provided

a reasonably high score at 662 points but due to the need to develop a multi-ratio

gearbox for this engine it was decided to exclude it from the analysis as well.

As with the Type I analysis, a sensitivity analysis was performed once infeasible

performing solutions had been culled. The same sensitivity analysis technique was used

to create a breakdown of the parametric sensitivities of the system’s performance based

on functional boundaries. Pie charts illustrating this break down for the autocross event

for the highest scoring AC and DC concepts appear in Figs. 6.11 and 6.12. Unlike the

 155

Type I sensitivity analysis, most of the functions in the system produced significant

contributions to the overall performance of the concepts.

By using a functional grouping of the parametric sensitivities, it is possible to directly

compare the impact of each powertrain function on the overall performance of the

system between various configurations. As shown in Figs. 6.11 and 6.12, the

significance of each function can vary greatly between different physical solutions. The

sensitivity with respect to the functionality of the motor was roughly equal for the AC

and DC concepts as was the sensitivity with respect to the internal combustion engine.

However, the DC concepts proved to be much more sensitive to variation in the

functions performed by the rear suspension/wheels/tire. This result at first seems

counterintuitive, but results from the sensitivity of the system to the overall mechanical

advantage between the motor and the tire/ground interface. AC motors, which operate

primarily in a constant power regime, are much less sensitive than the DC motors used,

which operate in a constant torque/current limited regime as implemented (with fixed

ratio gearing). As a result, the DC motor is rarely at its peak power level. This effect is

readily apparent in the significant increase in electric only acceleration time for the

concept using DC motors as compared to those using AC motors.

 156

Fig. 6.11. Autocross Sensitivities for Best AC Concept

Fig. 6.12. Autocross Sensitivities for Best DC Concept

 157

As seen in the difference between the sensitivity profiles resulting from the Type I

analysis (Fig. 6.5) and the Type II analysis (Figs. 6.11 and 6.12), the contribution to

sensitivity can change significantly between the two analysis types. The Type I

autocross analysis breaks down the overall contribution to three functions: convert

electrical energy to rotational energy, convert chemical energy to rotational energy and

distribute mechanical energy. These functions represent the electric motor, IC engine

and chassis respectively. The Type II analysis of the best AC concept (Fig. 6.11) shows

that the motor and engine still contribute significantly to the overall sensitivity of the

system but the contribution of the chassis is significantly less and the other elements of

the system show significant contributions (unlike the Type I analysis). This results from

the difference in the models used between the Type I and Type II analysis. In the Type I

analysis, a lumped parameter model of the chassis was used. In the Type II analysis, the

effects of the suspension were modeled and included in separate functions.

Additionally, the increase in fidelity between the two analyses meant that more

parameters and behaviors were included for each function. For the AC concept, this

meant that the contribution of the chassis was reduced and replaced by elements that

became more important once the fidelity of their models improved.

For the DC concept (Fig. 6.12), a different phenomenon is seen. In the Type II analysis,

the transfer mechanical energy function representing the rear suspension and wheel/tire

combination became one of the most significant contributions to sensitivity. This result

seems out of line with the Type I analysis and the AC Type II analysis but has a simple

explanation (as explained earlier). The inclusion of higher fidelity models in the Type II

analysis allows this inconsistent, but explainable, behavior to be made apparent. Thus

demonstrating the importance of performing a functional sensitivity contribution

analysis for each model type and concept.

6.4.4. Selecting Concepts

From the results of the Type II analysis, four concepts were selected. The first selected

concept utilizes the EM AC Motor Variant 2 (the larger of the two EM AC motors), a

medium energy battery pack (8 DeWalt Packs) and the prototype engine. This concept

 158

offers exceptional performance (the third highest out of the entire considered set) with a

significant cost decrease over the top performers. The second concept identified was the

highest performing concept that utilizing the EM AC Variant 2 motor, 16 DeWelt packs

and the prototype engine. This concept is the most expensive at $8400 but offers the

best performance predicted through the analysis. Additionally, since concepts 1 and 2

are highly similar, either could be built and then adapted to meet the specifications of the

other in subsequent testing. The final two concepts used the PMG 132 PM DC motor.

These concepts offer good performance (around 640 points out of 700 in this analysis)

but use a motor that is more available than the AC motor and has been tested in

competition. These two concepts also offer significant cost and mass savings over the

AC concepts. The primary advantage of the AC powered concepts is the reduced

electrical only acceleration time. The predicted performance of these four concepts

along with cost and mass appears in Table 6.10.

Table 6.10. Predicted Results for Selected Concepts

Concept EE Accel UR Accel Autocross Endurance Points Mass Cost
1 5.39 4.36 51.06 1054.8 683 340 6800
2 5.07 4.18 50.92 1053.2 698 350 8400
3 8.21 4.54 51.23 1053.6 640 341 6900
4 8.10 4.51 51.19 1054.1 643 331 5300

6.4.5. Design Process Conclusions

A structured design method built around the use of functionality organized behavioral

models and sensitivity analyses was performed for a hybrid powertrain system intended

for use in a Formula Hybrid racecar. Feedback from the Texas A&M Formula Hybrid

team was used throughout the process to assist in the selection of solutions and

generation of customer needs. In this process, a large number of initial concepts was

conceived and evaluated using a Type I behavioral and sensitivity analysis. The results

of this analysis were then used to reduce the set of concepts to enable a more detailed

analysis.

 159

The reduced set of concepts was then used to perform a more focused search for

solutions to conceptual functionality. The results of this search were then used to

develop Type II behavioral models for the elements of the system. An exhaustive study

of the behavior of the identified solutions was then performed along with another

sensitivity analysis. The results of these analyses were then used to identify a set of

feasible concepts for implementation within the racecar. The use of a structured design

process and function-based design tools allowed consistent comparisons to be made

between the results of the Type I and Type II analyses and provided a clear path for

iteratively identifying, analyzing and selecting solutions. The analysis allowed a guided

decision making process that translated a broadly scoped complex engineering design

problem into a series of sequential actions that resulted in a narrowing of the available

solution space to a small number of quantitatively evaluated viable solutions.

Additionally, the method is structured in a manner than allows further analysis of these

concepts to be performed using the same framework and basic iteration of activities.

 160

7. CONCLUSION

During the design of a complex system, behavioral models are a necessity. Such

systems exhibit behavior that is not capable of being analyzed with traditional

abstraction-based modeling approaches. Component-based modeling approaches have

been developed to allow the modeling of complex systems but fail to include a highly

important aspect of modeling: a formal functional decomposition. Functional

decompositions have been used throughout the design of complex systems in the form of

schematics, block diagrams and flow charts but only recently has there been a push for

developing a formal functional modeling approach.

Such a formal approach, including a modeling lexicon and a standardized modeling

method, offers significant benefits over informal modeling practices. Namely, the

ability to key critical design information to specific functions. This enables model re-

use and shared knowledge between systems based on common functionality. Formal

functional modeling also promotes the creation of a form-neutral representation of a

system to support conceptual design enabling a formal representation of “what” a system

must do independent of “how” it is to be done. In the context of a complex system’s

design, behavioral models may be used to answer both of these questions: What is the

behavior I need in order to satisfy the system’s needs and requirements? How can this

behavior be realized with physically available solutions?

To support the answering of these questions and to integrate with recommended

practices in formal functional modeling, a functionality-based behavioral modeling

framework has been developed. The novelty in this approach is the use of a formal

functional decomposition as the driving force for behavioral model decomposition,

creation, assembly and solution. Additionally, a novel sensitivity analysis is proposed to

augment the behavioral modeling framework. The implementation of these tools in a

software framework and their use in an actual design problem demonstrate not only their

completeness, but also their applicability.

 161

The functionality-based behavioral modeling approach extends the concept of a

component-based model to include a formal definition of function. This allows the

behavioral modeling process for a system to be better integrated with the design process

through the common use of functional decomposition. The formal inclusion of

functionality as an abstraction above form solutions results in a modeling process that

more closely resembles the object-oriented design process that has revolutionized the

software development industry. Adopting the object-oriented design philosophy in the

engineering design paradigm has long been prescribed. Earlier attempts at performing

this reconciliation fail to recognize the necessity of decoupling functionality (what) from

form (how). The work presented here extends existing philosophies to a functional

abstraction and integrates the behavioral modeling process into a rigorous design

method. The design method itself was carefully researched and reconciled from both the

Design Theory and Systems Engineering philosophies.

The functional decomposition of behavioral modeling also supports the concept of a

function-based sensitivity analysis. However, existing sensitivity analysis approaches

are not suited to performing this analysis in early design. Local derivative-based

approaches do not provide the measures necessary for functional association of

sensitivity contribution and global approaches require too much information and have

too high a computational burden to be used in early design. The HyVar method

presented in this work allows a local contributive sensitivity analysis of many concepts

during early design that allows a smooth transition to a full global analysis in the later

stages of design. This transition is enabled through the use of a common approach

(variation) and similar measures (contribution parameters). Additionally, the HyVar

approach allows the calculation of sensitivity ratios that provide insight into the relative

contribution of functions to overall sensitivity in a manner that is amenable to formal

optimization as well as being comprehensible to a designer.

Both the behavioral modeling framework and the HyVar sensitivity analysis have been

sufficiently developed to enable the creation of a computational implementation. This

implementation has been used to solve a number of design problems and utilizes strong

 162

object-oriented design principles to facilitate its integration with the developed design

tools and support future extensions of the work.

The methods, implemented within the computational framework, are presented along

with a comprehensive design example based on a Formula Hybrid racecar powertrain.

This example illustrates the process of defining and decomposing a difficult design

problem using the concepts developed in this work. The tools and methods develop here

are used to solve this design problem and provide a set of feasible concepts for future

investigation and potential use in Formula Hybrid racecars. The result of this analysis

would not be possible without the design tools and implementation developed in the

course of this work.

Through the presentation of this work and the results presented in the various examples,

it should be apparent that a formal functional decomposition represents a significant

opportunity to improve current behavioral modeling practices and allows such modeling

to better integrate within the context of a modern complex design problem. It is the

author’s sincerest hope that readers, if presented with a difficult modeling problem in the

future, will attempt the functional decomposition and model development method

suggested here.

 163

REFERENCES

[1] Sage, A., and Armstrong, J., 2000, Introduction to Systems Engineering, Wiley-

Interscience, New York.

[2] Blanchard, B. S., and Fabrycky, W. J., 2006, Systems Engineering and Analysis,

Prentice-Hall, Upper Saddle River, NJ.

[3] Ulrich, K. T., and Eppinger, S. D., 2004, Product Design and Development,

McGraw-Hill/Irwin, Boston, MA.

[4] Pahl, G., Beitz, W., Feldhusen, J., and Grote, K. H., 2007, Engineering Design: A

Systematic Approach, Springer Verlag, London, UK.

[5] Ullman, D. G., 2002, The Mechanical Design Process 3rd Edition, McGraw-Hill,

Inc., New York.

[6] Otto, K., and Wood, K., 2001, Product Design: Techniques in Reverse Engineering,

Systematic Design, and New Product Development, Prentice-Hall, New York.

[7] The Modelica Association, 2009, Modelica and the Modelica Association,

http://www.modelica.org.

[8] The Mathworks, Inc., 2008, The Mathworks Simulink - Simulation and Model-Based

Design, http://www.mathworks.com/products/simulink.

[9] Controllab Products, 2008, 20-Sim the Power in Modeling, http://www.20sim.com.

 164

[10] Hirtz, J., Stone, R., Mcadams, D., Szykman, S., and Wood, K., 2002, "A Functional

Basis for Engineering Design: Reconciling and Evolving Previous Efforts," Research in

Engineering Design, 13(2), pp. 65-82.

[11] Strousrup, B., 1997, The C++ Programming Language, Addison-Wesley, Reading,

MA.

[12] Bryant, C. R., Bohm, M. R., Stone, R. B., and McAdams, D. A., 2007, "An

Interactive Morphological Matrix Computational Design Tool: A Hybrid of Two

Methods," Proc. ASME International Design Engineer Technical Conferences and

Computers and Information in Engineering Conference 2007, Las Vegas, NV,

DETC2007-35583.

[13] Kurtoglu, T., and Tumer, I. Y., 2007, "A Graph-Based Framework for Early

Assessment of Functional Failures in Complex Systems," Proc. ASME International

Design Engineer Technical Conferences and Computers and Information in Engineering

Conference 2007, Las Vegas, NV, IDETC2007-35421.

[14] Bracewell, R. H., and Sharpe, J. E. E., 1996, "Function Descriptions Used in

Computer Support for Qualitative Scheme Generation – Schemebuilder," AI EDAM

Journal – Special Issue: Representing Functionality in Design, 10, pp. 333-346.

[15] Wirth, N., 2006, "Good Ideas, through the Looking Glass," Computer, 0018-

9162(06), pp. 28-39.

[16] SysML Partners, 2007, Open Source Specification Project - SysML,

http://www.sysml.org.

 165

[17] Karnopp, D. C., Margolis, D.L and Rosenberg R. C., 2000, System Dynamics,

Wiley-Interscience, New York.

[18] Husain, I., 2003, Electric and Hybrid Vehicles, Design Fundamentals, CRC Press,

Boca Raton, FL.

[19] Ehsani, M., and More, 2005, Modern Electric, Hybrid Electric, and Fuel Cell

Vehicles, CRC Press, Boca Raton, FL.

[20] Chan, C. C., and Chau, K. T., 2001, Modern Electric Vehicle Technology, Oxford

Science Publication, New York.

[21] Cross, N., 2000, Engineering Design Methods: Strategies for Product Design, John

Wiley & Sons, LTD, Chichester, UK.

[22] Suh, N., 2001, Axiomatic Design: Advances and Applications, Oxford University

Press, New York.

[23] Pugh, S., 1990, Total Design, Addison-Wesley, New York.

[24] Merriam-Webster, 2009, Dictionary and Thesaurus - Merriam-Webster Online,

http://www.merriam-webster.com.

[25] Miles, L., 1961, Techniques of Value Analysis and Engineering, McGraw-Hill, New

York.

[26] Rodenacker, W., 1971, Methodisches Konstruieren, Springer, Berlin, Heidelberg,

New York.

 166

[27] Gietka, P., and Verma, M., 2002, "Functional Modeling, Reverse Engineering, and

Design Reuse," Proc. ASME International Design Engineer Technical Conferences and

Computers and Information in Engineering Conference 2002, Montreal, CA,

IDETC2002-34019.

[28] Nagel, R. L., Hutcheson, R. S., Stone, R., Mcadams, D., and Donndelinger, J.,

2008, "Function Design Framework (FDF): Integrated Process and Function Modeling

for Complex System Design," Proc. ASME International Design Engineer Technical

Conferences and Computers and Information in Engineering Conference 2008,

Brooklyn, NY, IDETC2008- 49369.

[29] Little, A., Wood, K., and Mcadams, D., 1997, "Functional Analysis: A Fundamental

Empirical Study for Reverse Engineering, Benchmarking and Redesign," Proc. ASME

International Design Engineer Technical Conferences and Computers and Information

in Engineering Conference 1997, Sacramento, CA, IDETC-3879.

[30] Kurtoglu, T., and Campbell, M., 2009, "Automated Synthesis of Electromechanical

Design Configurations from Empirical Analysis of Function to Form Mapping," ASME

J. Mech. Des., 20(1), pp. 83-104.

[31] Cross, M., and Moscardini, A. O., 1985, Learning the Art of Mathematical

Modeling, Wiley and Sons, New York.

[32] Fowkes, N. D., and Mahony, J. J., 1994, An Introduction to Mathematical

Modeling, John Wiley, New York.

[33] Giordano, F., 1985, An Introductory Course in Mathematical Modelling, Brooks

Cole, Pacific Grove, CA.

 167

[34] DynaSim A.B., 2008, Dymola Multi-Engineering Modeling and Simulation,

http://www.dynasim.se.

[35] Elmqvist, H., 1978, "A Structured Model Language for Large Continuous

Systems," Lund Institute of Technology, Lund, Sweden.

[36] Paynter, H. M., 1961, Analysis and Design of Engineering Systems, MIT Press,

Cambridge, MA.

[37] Bhatta, S., and Goel, A., 1994, "Innovations in Analogical Design: A Model-Based

Approach," Proc. AI in Design 1994, Lausanne, Switzerland.

[38] Cellier, F., Elmqvist, H., and Ottter, M., 1995, The Control Handbook, CRC Press,

Boca Raton, FL.

[39] Jobe, J. M., Johnson, J. A., and Paredis, C. J. J., 2008, "Multi-Aspect Component

Models: A Framework for Model Reuse in SysML," Proc. ASME International Design

Engineer Technical Conferences and Computers and Information in Engineering

Conference 2008, Brooklyn, NY, IDETC-49339.

[40] Hutcheson, R., Mcadams, D., Stone, R., and Tumer, I., 2007, "Function-Based

Behavioral Modeling," Proc. ASME International Design Engineer Technical

Conferences and Computers and Information in Engineering Conference 2007, Las

Vegas, NV, IDETC-35337.

[41] Lawrence Livermore National Laboratories, 2008, Sundials - Suite of Nonlinear and

Differential/Algebraic Solvers, https://computation.llnl.gov/casc/sundials/main.html.

 168

[42] Dartmouth College, 2008, Formula Hybrid International Competition,

http://formula-hybrid.org.

[43] SAE International, 2007, SAE International Formula Series,

http://students.sae.org/competitions/formulaseries.

[44] Ascher, U., and Petzold, L., 1998, Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations, SIAM, Philadelphia, PA.

[45] Bohm, M., Stone, R., and Szykman, S., 2005, "Enhancing Virtual Product

Representations for Advanced Design Repository Systems," J. Comp. Inf. Sci, in Eng.,

5(4), pp. 360-372.

[46] Saltelli, A. E. A., 2004, Sensitivity Analysis in Practice: A Guide to Assessing

Scientific Models, Wiley and Sons, Hoboken, NJ.

[47] Saltelli, A. E. A., 2008, Global Sensitivity Analysis. The Primer, Wiley and Sons,

Hoboken, NJ.

[48] Chen, W., Jin, R., and Sudjianto, A., 2005, "Analytical Variance-Based Global

Sensitivity Analysis in Simulation-Based Design under Uncertainty," ASME J. Mech.

Des., 127, pp. 875-886.

[49] Leamer, E., 1983, "Let's Take the Con Out of Econometrics," The American Econ.

Rev., 73(1), pp. 31-43.

[50] Larocque, G. R. E. A., 2006, "The Importance of Uncertainty and Sensitivity

Analyses in Process-Based Models of Carbon and Nitrogen Cycling in Terrestrial

 169

Ecosystems with Particular Emphasis on Forest Ecosystems," Proc. International

Society for Ecological Modelling (ISEM 2006), Burlington, VT.

[51] Martin, J., and Simpson, T., 2005, "A Methodology to Manage Uncertainty During

System-Level Conceptual Design," Proc. ASME International Design Engineer

Technical Conferences and Computers and Information in Engineering Conference

2005, Long Beach, CA, IDETC-84984.

[52] Du, X., Sudjianto, A., and Chen, W., 2004, "An Integrated Framework for

Optimization under Uncertainty Using Inverse Reliability Strategy," ASME J. Mech.

Des., 126, pp. 562-570.

[53] The Open Source Modeling Consortium, 2009, The Openmodelica Project,

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica.html.

[54] Dedasys, L.L.C., 2009, Programming Language Popularity,

http://www.langpop.com.

[55] Prechelt, L., 2002, "Are Scripting Languages Any Good? A Validation of Perl,

Python, Rexx, and Tcl against C, C++ and Java," Adv. in Comp., 57, pp. 207-271.

[56] Chapra, S., and Canale, R., 2006, Numerical Methods for Engineers, McGraw-Hill

Higher Education, Boston, MA.

[57] Pantelides, C. C., 1988, "The Consistent Initialization of Differential-Algebraic

Systems," SIAM J. Sci. and Stat. Comp., 9, pp. 213-231.

 170

APPENDIX 1. PROJECT PROPOSAL EXAMPLE

2009 Texas A&M Formula Hybrid Product Proposal
Prepared by: Ryan S. Hutcheson
Date: 6/9/2008

PROJECT OBJECTIVE

The objective of this project is to develop an entry for the 2009 Formula Hybrid

competition. Formula Hybrid is an extension of the Formula SAE competition and

involves the design, manufacture, testing and racing of an open-wheeled, open-cockpit

(formula-style) racecar. The specific aspect covered by this proposal is the early design

phase of the product including product planning and conceptual design.

MARKET

Texas A&M’s 2009 Formula Hybrid team is the market for this product. In past years,

Texas A&M has entered in the Formula SAE competition with great success including

three first place finishes. For 2009, TAMU will switch to competing in Formula Hybrid

rather than Formula SAE. Continuing TAMU’s winning history is a critical result of this

project.

Formula Hybrid is a spin-off series from Formula SAE and utilizes most of the

competition and entry rules. The primary difference between the series is the

requirement of an electric-internal combustion engine hybrid powertrain in Formula

Hybrid. The specific competition events are somewhat different as well. Formula

Hybrid (FH) allows the re-use of existing Formula SAE cars but an early analysis of

prior FH competitors revealed that the increase in weight and changes in drivetrain

configuration resulting from the addition of hybrid components necessitates the design

of a new car.

BUDGET

The proposed budget for the construction of the car is $25,000. Unlike Formula SAE,

Formula Hybrid includes no cost scoring event. The inclusion of a budget into the design

 171

process is purely from a production feasibility standpoint rather than a performance

standpoint.

DESIRED PRODUCT FUNCTIONALITY

The ultimate result of the early design process will be a concept that is to be further

developed into a complete design that will then be manufactured, tested and raced. The

overall functionality of the product can be simply summarized: win the 2009 Formula

Hybrid competition.

DETAILED OBJECTIVES

• From the Formula Hybrid and Formula SAE rules as well as the goals of the

team, a set of high-level product objectives can be formulated for the early

design process of the car. These objectives are itemized in the following list.

• Produce a design that can be practically implemented by the team

• Produce a design that is capable of winning the 2009 competition

• Stay within the allocated budget

• Produce a design that is capable of high performance (FSAE)

• Produce an aesthetically pleasing design (FSAE)

• Produce a comfortable design (FSAE)

• Use as many common parts as possible (FSAE)

• Use good engineering practices (FSAE)

• Create an efficient design (FH)

• Produce a design that is easy to maintain (FSAE)

• Produce a safe design (FSAE)

• Produce a design that accommodates from 5th percentile female to 95th percentile

male (FSAE) drivers

 172

REQUIREMENTS

The overall functionality of the finished product and the objectives for the early design

process have been formulated as a set of engineering requirements. The “shall”

language for representing these requirements along with a standard numbering system

will be used for the remainder of the project (Table A1.1).

Table A1.1 - Product Requirements
Req. # The Object Level Shall Requirement Reference
S1 The car system shall be manufacturable by the target team Objective 1
S2 The car system shall be capable of winning the 2009 FH competition Objective 2
S3 The car system shall be aesthetically pleasing Objective 5
S4 The car system shall have an estimated cost of less than XXXX Objective 3
S5 The car system shall exhibit a high level of performance Objective 4
S6 The car system shall be comfortable to its drivers Objective 6
S7 The car system shall utilize good engineering practices Objective 8
S8 The car system shall be energy efficient Objective 9
S9 The car system shall be easy to maintain Objective 10
S10 The car system shall be safe Objective 11
S11 The car system shall fit drivers from the 5th % female to the 95th % male Objective 12

CONCLUSIONS

To complete the design process for the Formula Hybrid entry, a structured design

process reconciled from various engineering design texts will be used. This process will

include a detailed analysis of the tasks to be performed along with the use of state-of-

the-art function-based design tools. The objective of this design process is to identify

and select a concept that meets the stated requirements and is ready for the detailed and

embodiment stages of product design.

 173

APPENDIX 2. COMPLETE LIST OF CAR REQUIREMENTS

Table A2.1. Car System Requirements
The Object Level Shall Requirement Reference
The car system shall cost less than $25,000 1.2
The car system shall fit a 95th percentile male and a 5th percentile female 1.2
The car system shall be aesthetically pleasing 1.2
The car system shall exhibit a high performance 1.2
The car system shall be comfortable 1.2
The car system shall be designed and fabricated in accordance with good engineering practices 1.3
The car system shall be conceived, designed, fabricated and maintained by the student team 2.2.1
The car system shall be open-wheeled 3.1.1
The car system shall be open-cockpit 3.1.1

The car system shall have "no openings through the bodywork into the driver compartment" other
than the cockpit opening 3.1.2

The car system shall have a wheelbase of at least 1525mm 3.1.2
The car system shall have four wheels 3.1.2
The car system shall have all four wheels not in a straight line 3.1.2
The car system shall have a smaller track that is no less than 75% of the larger track 3.1.3
The car system shall have all items on inspection form visible of capable of being made visible 3.1.4
The car system shall be equipped with a fully operating suspension sub-system 3.2.1
The car system shall not contact the ground during events (except for tires) 3.2.2
The car system shall have wheels greater than 203.2mm in diameter 3.2.3.1
The car system shall use any size or type of tire, slick or treaded as its dry tire 3.2.3.2
The car system shall use any size or type of treaded or grooved tire as its rain tire 3.2.3.2
The car system shall have a steering sub-system that effects at least two wheels 3.2.4
The car system shall have a braking sub-system 3.2.5
The car system shall have no non-crushable objects extend forward of the front bulkhead 3.3.6.5
The car system shall provide adequate visibility for the front and the sides of the car 3.4.3.1
The car system shall provide a minimum field of vision of 200 deg (100 deg to either side) 3.4.3.1
The car system shall utilize a head restraint 3.4.4
The car system shall have a floor closeout component 3.4.5
The car system shall have a steering wheel assembly 3.4.6
The car system shall allow the driver to exit the side of the vehicle in no more than five seconds 3.4.7
The car system shall have a track and CG that combine to produce adequate rollover protection 3.4.8

The car system shall must not roll when tilted at angle of 60 deg to the horizontal (either direction)
with the tallest driver 3.4.8.1

The car system shall have a master switch assembly 3.4.9
The car system shall have a firewall assembly 3.4.10.1
The car system shall have a driver's leg protection assembly 3.4.14

The car system shall prevent the leaking of fuel or any other fluids when tiled to at least 45 degree
when full of fluids 3.5.3.6.1

The car system shall not exceed 110 dBA, fast-weighting in the noise test 3.5.5.3
The car system shall be numbered in three locations as per section 3.6.1 3.6.1
The car system shall include the school's name as per 3.6.2 3.6.2
The car system shall include the SAE logo as per 3.6.3 3.6.3
The car system shall have room for technical inspection stickers on its nose as per 3.6.4 3.6.4
The car system shall have all aerodynamic or ground effect devices satisfy 3.7.1 3.7.1
The car system shall use fasteners that satisfy 3.7.2 3.7.2
The car system shall have any compressed gas cylinders and lines meet 3.7.4 3.7.4
The car system shall have any high pressure hydraulic pumps and lines meet 3.7.5 3.7.5
The car system shall use a transponder as per 3.8 3.8
The car system shall include the IEEE logo as per 3.6.3FH 3.6.3FH

The car system shall be capable of completing a 75m acceleration run in electric-only mode in less
than 15s FH-1.2

The car system shall not operate in wet conditions unless Rain Certified per FH-2.1.3 FH-2.1.3
The car system shall have no HV connections exposed as per FH-2.2 FH-2.2

The car system shall have no HV connections behind the instrument panel or on any cockpit switches
or control panels FH-2.2

The car system shall have all controls, indicators and data acquisition connections isolated using
optical isolators, transformers or equivalent FH-2.2

 174

Table A2.1 Continued.
The Object Level Shall Requirement Reference
The car system shall have all HV systems insulated and wired per FH-2.3 FH-2.3
The car system shall have all HV systems properly fused as per FH-2.4 FH-2.4

The car system shall have a warning strobe that meets FH-2.8 on the highest point of the roll bar
to indicated when the vehicle is energized (HV outside the accumulator) FH-2.8

The car system shall have LV systems ground to the frame FH-2.9
The car system shall have LV systems protected by proper fuse if not current limited FH-2.9
The car system shall have all charging systems maintained in safe working condition FH-2.10

Table A2.2. Powertrain Requirements

The Object Level Shall Requirement Reference

The air intake assembly shall lie within the surface defined by the top of the main roll hoop
and the outside edge of the four tires 3.5.3.9

The air intake assembly shall have any portion lower than 350mm above ground shielded by
structure that meets 3.3.8 3.5.3.9

The cooling sub-system shall use only plain water or plain water plus a rust and corrosion
inhibitor at no more than 0.015L/L of water 3.5.1.6

The drivetrain sub-system shall be sealed to prevent leakage 3.5.1.5

The drivetrain sub-system shall have separate catch can components for the cooling and engine
oil systems 3.5.1.5

The electrical
propulsion sub-system shall have a maximum voltage of 600V DC or AC RMS under all

circumstances FH-2.1

The electrical
propulsion sub-system shall not have any connections between the frame and any part of HV

circuits (HV defined in FH-1.1) FH-2.1

The electrical
propulsion sub-system shall have all HV components isolated from LV circuits following

FH-2.1 FH-2.1

The electrical
propulsion sub-system shall have an on-board ground fault detector that meets FH-2.1.1 FH-2.1

The electrical
propulsion sub-system shall be capable of passing the FH-2.1.2 ground fault check FH-2.1.2

The engine sub-system shall be internal combustion, four-stroke, with a maximum
displacement of 250cc 3.5.1.1FH

The engine sub-system shall be of modified or custom fabricated type and follow section
3.5.4FH or:

3.5.1.1.1F
H

The engine sub-system shall be of stock type (section 3.5.1.1.2FH) 3.5.1.1.2F
H

The engine sub-system shall use 93 octane pump, E-85 or Biodiesel 3.5.2FH

The fuel sub-system shall lie within the surface defined by the top of the main roll hoop
and the outside edge of the four tires 3.5.3.9

The fuel sub-system shall not alter the temperature of the fuel to improve fuel economy 3.5.2.1
The fuel sub-system shall not use any agents other than fuel and air 3.5.2.2
The fuel sub-system shall be capable of being filled without manipulating the tank 3.5.3.4

The fuel sub-system shall
be designed to prevent spillage from contacting the driver
position, exhaust sub-system, hot engine parts or the ignition
sub-system

3.5.3.5

The fuel sub-system shall not allow fuel to accumulate on belly pans 3.5.3.5

The fuel sub-system shall be vented in a manner than prevents fuel from spilling during
hard cornering or acceleration 3.5.3.6

The fuel sub-system shall include a vent check valve to prevent fuel leakage when the tank
is inverted 3.5.3.6

The fuel sub-system shall must vent outside of the body work 3.5.3.6
The fuel sub-system shall not use plastic lines 3.5.3.7

The fuel sub-system shall use bulb or barb fittings to retain rubber lines that use hose
clamps 3.5.3.7

The fuel sub-system shall use hose clamps specifically designed for fuel systems 3.5.3.7
The fuel sub-system shall have its lines securely attached to the vehicle and/or engine 3.5.3.7

The fuel sub-system shall use lines that are shielded from possible rotating equipment
failure or collision damage 3.5.3.7

The fuel
injection assembly shall use metal braided with crimped on or re-usable threaded fittings

for flexible lines or: 3.5.3.8

 175

Table A2.2 Continued.
The Object Level Shall Requirement Reference

The fuel injection assembly shall use reinforced rubber hose with an abrasion resistant
protection for flexible lines 3.5.3.8

The fuel injection assembly shall not use hose clamps on braided lines 3.5.3.8

The fuel injection assembly shall
have any fuel rails securely attached to the engine
block, cylinder head, intake manifold with brackets and
mechanical fasteners

3.5.3.8

The fuel injection assembly shall
have its intake manifold securely attached to the engine
block or cylinder head with brackets and mechanical
fasteners

3.5.3.8

The powertrain sub-system shall have drivetrain guard components 3.5.1.4
The powertrain sub-system shall be equipped with a muffler to reduce noise levels 3.5.5.1

The catch can components shall have a minimum volume of ten percent of the fluid
being contained or 0.9L 3.5.1.5

The catch can components shall be capable of containing boiling water without
deformation 3.5.1.5

The catch can components shall be located rearwards of the firewall below driver's
shoulder level 3.5.1.5

The catch can components shall have a vent with a minimum diameter of 3mm 3.5.1.5
The catch can components shall have a vent that points away from the driver 3.5.1.5

The catch can components shall have their vent lines routed to the intake system
upstream of the restrictor (if routed to intake) 3.5.1.5

The drivetrain
guard components shall be at least 2.66mm steel and have a width at least three

times the width of the chain (chain systems) 3.5.1.4

The drivetrain
guard components shall

be at least 3.0mm aluminum and a minimum width that
is equal to the width of the belt plus 35% on each side
(1.7 times the belt width) (belt systems)

3.5.1.4

The drivetrain
guard components shall be attached with a minimum of 6mm grade M8.8

hardware 3.5.1.4

The drivetrain
guard components shall mounted so they remain laterally aligned with the chain

or belt under all conditions 3.5.1.4

The battery component shall be securely attached to the frame of the car 3.4.11

The battery component shall be enclosed in a nonconductive marine-type container
if of wet-cell design 3.4.11

The battery component shall have its hot terminal insulated 3.4.11
The drain fitting component shall be at the lowest point on the fuel tank 3.5.3.1FH
The drain fitting component shall be used to drain the tank 3.5.3.1FH
The drain fitting component shall be accessible from under the vehicle 3.5.3.1FH

The drain fitting component shall not protrude below the lowest plane of the vehicle
frame 3.5.3.1FH

The drain fitting component shall have a provision for safety wiring 3.5.3.1FH
The filler cap component shall have a provision for a seal component 3.5.3.2FH

The filler cap seal component shall prevent the filler cap from being removed and should
met 3.5.3.2FH 3.5.3.2FH

The accumulator assembly shall be securely attached to the frame of the car 3.3FH
The accumulator assembly shall shall meet the type and size rules listed in FH-2.5 FH-2.5
The accumulator assembly shall have a maximum standardized cost of $6000 FH-2.5
The accumulator assembly shall be of battery or capacitor type FH-2.5
The accumulator assembly shall be in a closed container FH-2.6
The accumulator assembly shall be isolated with normally open relays FH-2.6
The accumulator assembly shall contain an appropriately rated fuse or circuit breaker FH-2.6
The accumulator assembly shall not use contactors or realys containing mercury FH-2.6

The accumulator assembly shall meet the voltage decay, probe provision and indicator
rules in FH-2.6 FH-2.6

The accumulator assembly shall be of sturdy construction and electrically insulating,
fireproof and transparent to meet FH-2.7 FH-2.7

The accumulator assembly shall be labeled with high voltage signs that meet FH-2.7 FH-2.7
The accumulator assembly shall have an active vent if H2 gas can be released FH-2.7

The exhaust assembly shall be routed in a manner that prevents the drivers from
being subjected to fumes at any vehicle speed 3.5.5.2

The exhaust assembly shall have its outlet not more than 60cm behind the
centerline of the rear axle 3.5.5.2

 176

Table A2.2 Continued.
The Object Level Shall Requirement Reference
The exhaust assembly shall have its outlet no more than 60cm above the ground 3.5.5.2

The exhaust assembly shall
have any protruding components in front of the main
roll hoop shielded to prevent contact by persons
approaching the car or the driver exiting

3.5.5.2

The fuel tank assembly shall be shielded from side impact collisions (by structure
that meets 3.3.8) 3.5.3.9

The fuel tank assembly shall be of any capacity 3.5.3.1FH
The fuel tank assembly shall have drain fitting component 3.5.3.1FH
The fuel tank assembly shall have a filler cap component 3.5.3.2FH

Table A2.3. Structure and Safety Requirements

The Object Level Shall Requirement Reference
The chassis sub-system shall have a jacking point assembly 3.2.6
The chassis sub-system shall include a primary structure assembly 3.3.1
The chassis sub-system shall include an impact attenuator component 3.3
The head restraint sub-system shall have a minimum area of 232 sq. cm 3.4.4
The head restraint sub-system shall be padded with an energy absorbing material 3.4.4

The head restraint sub-system shall be attached in a manner that can withstand a
890N force in the rearward direction 3.4.4

The main roll hoop sub-system shall include a roll bar pad over all areas than can be
impacted by the driver's head 3.4.4

The driver's restraint
harness mount components shall have an outer diameter of greater than 25.0mm 3.3.3.1

The driver's restraint
harness mount components shall have a wall thickness of 1.75mm 3.3.3.1

The front bulkhead components shall have an outer diameter of greater than 25.0mm 3.3.3.1
The front bulkhead components shall have a wall thickness of 1.75mm 3.3.3.1

The front bulkhead
support components shall have an outer diameter of greater than 25.0mm 3.3.3.1

The front bulkhead
support components shall have a wall thickness of 1.5mm 3.3.3.1

The roll hoop brace components shall have an outer diameter of greater than 25.0mm 3.3.3.1
The roll hoop brace components shall have a wall thickness of 1.75mm 3.3.3.1

The roll hoop components shall have 4.5mm inspection holes drilled in non-
critical locations 3.3.9

The roll hoop components shall prevent the driver's head and hands from
contacting the ground at any rollover attitude 3.3.4

The roll hoop components shall
allow 50mm of clearance between a line
extending from the front to main hoop and all
drivers and the 95th percentile male template

3.3.4

The roll hoop components shall not have a bend radius of less than three times
their outside diameters 3.3.4.1

The roll hoop components shall have smooth and continuous bends with no
evidence of crimping 3.3.4.1

The roll hoop components shall be securely integrated into the primary structure
assembly 3.3.4.1

The side impact components shall have an outer diameter of greater than 25.0mm 3.3.3.1
The side impact components shall have a wall thickness of 1.75mm 3.3.3.1

The side impact components shall be comprised of at least three tubular members on
each side of the driver 3.3.8.1

The diagonal side
impact component shall

connect the upper and lower side impact
components forward of the main hoop and
rearward of the front hoop

3.3.8.1

The energy absorbing
material component shall have a minimum thickness of 38mm 3.4.4

The energy absorbing
material component shall be less than 25mm away from the helmet of the

driver in the uncompressed state 3.4.4

The floor closeout component shall be made of at least one panel 3.4.5
The floor closeout component shall have gaps between panels of less than 3mm 3.4.5
The floor closeout component shall extend from the foot area to the firewall 3.4.5

 177

Table A2.3 Continued.
The Object Level Shall Requirement Reference
The floor closeout component shall prevent track debris from entering the car 3.4.5
The floor closeout component shall be made of a solid non-brittle material 3.4.5

The front bodywork component shall have no forward facing sharp edges or other
protruding components 3.3.7

The front bodywork component shall
have no forward facing edges with a radius of
less than 38mm 45 degrees from the forward
direction

3.3.8.1

The front bulkhead component shall be constructed of closed steel tubing 3.3.6.1
The front bulkhead component shall be located forward of all non-crushable objects 3.3.6.1

The front bulkhead component shall
be located so the soles of the driver's feet, when
touching the pedals, are rearward of the bulkhead
plane

3.3.6.1

The front bulkhead component shall be securely integrated to the frame 3.3.6.2

The front bulkhead component shall

be supported back to the front roll hoop by at
least three frame members on each side with the
top member being at least 50.8mm from the top
of the component

3.3.6.2

The front bulkhead component shall be supported with frame members connected
node-to-node forming triangles 3.3.6.2

The front bulkhead component shall be supported with closed section tubing 3.3.6.2
The front roll hoop component shall be no lower than the top of the steering wheel 3.3.4
The front roll hoop component shall be braced no lower than 50mm from its top 3.3.4

The front roll hoop component shall be integrated into the frame and surrounding
structure 3.3.4

The front roll hoop component shall be constructed of closed section metal tubing 3.3.4.3

The front roll hoop component shall
extend from the lowest frame member on one
side of the frame up over and down to the lowest
frame member on the other side of the frame

3.3.4.3

The front roll hoop component shall be no more than 250mm forward of the steering
wheel component 3.3.4.3

The front roll hoop component shall have no part included greater than 20 deg from
vertical 3.3.4.3

The front roll hoop component shall be braced by two main front hoop brace
components 3.3.5.2

The front roll hoop component shall be braced from the rear if its angle of inclination
is >10 deg from vertical 3.3.5.2

The front roll hoop
brace component shall be integrated into the frame and surrounding

structure 3.3.4

The front roll hoop
brace component shall protect the drivers legs 3.3.5.2

The front roll hoop
brace component shall extend forward of the front roll hoop 3.3.5.2

The impact attenuator component shall be forward of the front bulkhead 3.3.1
The impact attenuator component shall be installed forward the front bulkhead 3.3.6.3
The impact attenuator component shall be at least 200mm long 3.3.6.3
The impact attenuator component shall be oriented along the fore/aft axis of the frame 3.3.6.3
The impact attenuator component shall be at least 100mm high 3.3.6.3

The impact attenuator component shall be at least 200mm for a minimum distance of
200mm forward of the front bulkhead 3.3.6.3

The impact attenuator component shall not penetrate the front bulkhead in the event of an
impact 3.3.6.3

The impact attenuator component shall include a 1.5mm steel plate or 4.0mm aluminum
plate of foam filled or honeycomb 3.3.6.3

The impact attenuator component shall be attached securely and directly to the front
bulkhead 3.3.6.3

The impact attenuator component shall

provide a minimum deceleration of 20gs in the
event of the impact of a 450kg car with a solid,
non-yielding barrier with an impact velocity of
7m/s

3.3.6.4(FH)

The lower side impact component shall connect the bottom of the main and front hoops 3.3.8.1
The main roll hoop component shall have an outer diameter of greater than 25.0mm 3.3.3.1

 178

Table A2.3 Continued.
The Object Level Shall Requirement Reference
The main roll hoop component shall have a wall thickness of 2.5mm 3.3.3.1
The main roll hoop component shall be braced no lower than 16cm from its top 3.3.4
The main roll hoop component shall be braced with at least a 30 deg included angle 3.3.4

The main roll hoop component shall be constructed of a single piece of uncut,
continuous, close section steel tubing 3.3.4.2

The main roll hoop component shall
extend from the lowest frame member on one
side of the frame up over and down to the lowest
frame member on the other side of the frame

3.3.4.2

The main roll hoop component shall have its top portion within 10 deg of vertical 3.3.4.2

The main roll hoop component shall
have its vertical members at least 380mm apart at
the location where the component is attached to
the major structure of the frame

3.3.4.2

The main roll hoop component shall be braced by two main roll hoop brace
components 3.3.5.1

The main roll hoop
brace component shall be constructed of closed section steel tubing 3.3.5.1

The main roll hoop
brace component shall extend from the main hoop on the same side it is

inclined towards 3.3.5.1

The main roll hoop
brace component shall be attached as close to the top of the main hoop

as possible 3.3.5.1

The main roll hoop
brace component shall be straight (no bends) 3.3.5.1

The main roll hoop
brace component shall transmit load from the main hoop to the major

structure of the frame without compromising 3.3.5.1

The main roll hoop
brace component shall not transmit all loads through the engine or

transmission 3.3.5.1

The roll hoop brace component shall be securely attached to the frame using 8mm
Grade 8.8 bolts (if not welded) 3.3.5.3

The roll hoop brace component shall use mounting plates at least 2.0mm thick 3.3.5.3

The roll hoop brace component shall not allow the drivers shoulder to pass under or
neck to contact 3.3.5.4

The seat component shall be no lower than the bottom surface of the lower
frame rails or: 3.4.13

The seat component shall have a tube the meets the requirements for side
impact tubing pass below the seat 3.4.13

The roll bar pad component shall be comprised of an energy absorbing material 3.4.4
The roll bar pad component shall have a minimum thickness of 12mm 3.4.4

The driver's leg
protection assembly shall

keep all moving or sharp components between
the front roll hoop and a vertical plane 100mm
rearward of the pedals away from the driver's legs

3.4.14

The driver's leg
protection assembly shall be consist of a solid shield 3.4.14

The driver's leg
protection assembly shall allow access to the suspension and steering

components 3.4.14

The driver's leg
protection assembly shall 3.5.11(FH)

The shoulder harness

mounting component shall have an outer diameter of greater than 25.0mm 3.3.3.1

The shoulder harness
mounting component shall have a wall thickness of 2.5mm 3.3.3.1

The upper side impact component shall

connect the main hoop and front hoop at a height
between 300mm and 350mm above the ground
with a 77kg driver seated in the normal driving
position

3.3.8.1

The firewall assembly shall
separate the driver compartment from all
components of the fuel supply, engine oil and
liquid cooling systems

3.4.10.1

The firewall assembly shall protect the neck of the tallest driver 3.4.10.1

 179

Table A2.3 Continued.
The Object Level Shall Requirement Reference

The firewall assembly shall

extend sufficiently far upwards and/or rearwards
such that any point less than 100mm above the
bottom of the helmet of the tallest driver is not
direct sight with any part of the fuel, cooling or
oil systems

3.4.10.1

The firewall assembly shall be made of a non-permeable surface 3.4.10.1
The firewall assembly shall be fire-resistant 3.4.10.1
The firewall assembly shall utilize grommets to seal pass-through 3.4.10.1
The firewall assembly shall be sealed at joints between any panels 3.4.10.1
The frontal impact assembly shall completely contain the driver's feet 3.3.6
The jacking point assembly shall be capable of supporting the car's weight 3.2.6

The jacking point assembly shall be capable of engaging the organizers' quick
jacks 3.2.6

The jacking point assembly shall be at the rear of the car 3.2.6
The jacking point assembly shall be oriented horizontally 3.2.6
The jacking point assembly shall be perpendicular to the centerline of the car 3.2.6
The jacking point assembly shall be made from round 25-29mm O.D. tube 3.2.6
The jacking point assembly shall be made from aluminum or steel 3.2.6
The jacking point assembly shall be a minimum of 300mm long 3.2.6

The jacking point assembly shall be exposed around the lower 180 degrees of its
circumference 3.2.6

The jacking point assembly shall be exposed over a minimum length of 280mm 3.2.6

The jacking point assembly shall be at least 75mm above the ground at its lowest
point 3.2.6

The jacking point assembly shall
allow the wheels to be clear of the ground at full
rebound when the bottom of the assembly is
200mm above ground

3.2.6

The primary structure assembly shall include a front roll hoop component 3.3.1
The primary structure assembly shall include a main roll hoop component 3.3.1
The primary structure assembly shall include roll hoop brace components 3.3.1
The primary structure assembly shall include side impact components 3.3.1
The primary structure assembly shall include front bulkhead components 3.3.1
The primary structure assembly shall include front bulkhead support components 3.3.1

The primary structure assembly shall
include all components that transfer load from the
driver's restraint sub-system into the primary
structure components

3.3.1

The primary structure assembly shall be constructed of round, mild or alloy, steel
tubing with a minimum of 0.1% carbon 3.3.3

The chassis sub-system shall have a jacking point assembly 3.2.6
The chassis sub-system shall include a primary structure assembly 3.3.1
The chassis sub-system shall include an impact attenuator component 3.3

Table A2.4. Control Requirements

The Object Level Shall Requirement Reference
The brake light component shall be of at least 15W or equivalent 3.2.5.3
The brake light component shall emit red light 3.2.5.3

The brake light component shall be clearly visible from the rear of the car in very bright
sunlight 3.2.5.3

The brake light component shall be mounted between the wheel centerline and driver's
shoulder level vertically 3.2.5.3

The brake light component shall be approximately on the vehicle's centerline laterally 3.2.5.3

The brake over-travel
switch component shall shut down all drive systems and trip the accumulator

isolation relays 3.2.5.2FH

The primary master
switch component shall be red, 60mm diameter latching type 3.4.9FH

The quick-release component shall be capable of being operated by the driver while in a
normal driving position with gloves on 3.4.6.2

The brake light assembly shall be equipped with a brake light component 3.2.5.3

The brake over-travel
switch assembly shall kill the ignition and cut power to any electrical fuel

pumps 3.2.5.2

 180

Table A2.4 Continued.
The Object Level Shall Requirement Reference

The brake over-
travel switch assembly shall not allow a repeated actuation of the switch to restore power 3.2.5.2

The brake over-
travel switch assembly shall be designed so that the driver cannot reset it 3.2.5.2

The brake over-
travel switch assembly shall not be implemented by digital components 3.2.5.2

The master switch assembly shall be capable of stopping the engine 3.4.9
The master switch assembly shall be identified with the international electrical symbol 3.4.9
The master switch assembly shall shut down the engine and any other energy generation systems 3.4.9FH
The master switch assembly shall break the flow of the current holding the accumulator relays closed 3.4.9FH
The master switch assembly shall have three switches 3.4.9FH

The master switch assembly shall have switches located to the driver's left and right at approximately
the level of the driver's head and on the dash in reach of the driver 3.4.9FH

The steering wheel assembly shall have a continuous perimeter 3.4.6.1
The steering wheel assembly shall be near circular or near oval 3.4.6.1
The steering wheel assembly shall have a quick-release component 3.4.6.2
The wheel assembly shall use a positive nut retention if using a single wheel nut 3.2.3.1

The vehicle control sub-system shall be operated from inside the cockpit without any part of the driver
being outside the planes of the side impact assembly 3.4.12

The braking sub-system shall act on all four wheels 3.2.5
The braking sub-system shall be operated by a single control 3.2.5
The braking sub-system shall have two independent hydraulic circuits with separate reservoirs 3.2.5
The braking sub-system shall be capable of locking all four wheels in the brake test 3.2.5
The braking sub-system shall not use "brake-by-wire" 3.2.5
The braking sub-system shall not use unarmored plastic lines 3.2.5

The braking sub-system shall be projected by scatter shields from failure of the drivetrain or
collisions 3.2.5

The braking sub-system shall have an over travel switch assembly that stops the engine if the
brakes fail 3.2.5.2

The braking sub-system shall have a brake light assembly 3.2.5.3

The braking sub-system shall have its last 50% travel operate the hydraulic system described in
3.2.5 (the first 50% travel may be used for regen. braking) 3.2.5FH

The steering sub-system shall have positive steering stops 3.2.4

The steering sub-system shall have less than 7deg of steering system play measured at the steering
wheel 3.2.4

The steering sub-system shall have less than +/-3 degrees of rear wheel steering 3.2.4
The steering sub-system shall be mechanically connected to front wheels 3.2.4

Table A2.5. Suspension Requirements

The Object Level Shall Requirement Reference
The rain tire component shall have a manufacturer supplied tread or groove pattern 3.2.3.2
The rain tire component shall have a minimum of 2.4mm tread depth 3.2.3.2
The suspension sub-system shall have shock absorbers front and rear 3.2.1
The suspension sub-system shall have a usable wheel travel of at least 50.8mm per wheel 3.2.1

The suspension sub-system shall have at least 25.4mm of jounce and 25.4mm of rebound with driver
seated 3.2.1

The suspension sub-system shall have at least 25.4mm of ground clearance with driver 3.2.2
The tire component shall not use warmers or traction enhancers 3.2.3.2

Table A2.6. Driver’s Safety Requirements

The Object Level Shall Requirement Reference
The shoulder harness component shall be of the over-the-shoulder type 3.4.1
The shoulder harness component shall be of a separate strap design 3.4.1
The shoulder harness component shall be 76mm wide 3.4.1
The shoulder harness component shall be threaded through three bar adjusters 3.4.1

The shoulder harness component shall be mounted behind the driver to a structure that meets section 3.3.3
of the FSAE rules 3.4.1

The shoulder harness component shall have mounting points between 178mm and 229mm apart 3.4.1

 181

Table A2.6 Continued.
The shoulder harness component shall must be between 10 deg. above and 20 deg. below horizontal 3.4.1

The lap belt component shall pass around the pelvic area of the driver below the Anterior
Superior Illiac Spines 3.4.1

The lap belt component shall be at an able of between 45 and 65 degrees to horizontal 3.4.1
The lap belt component shall not be routed over the sides of the seat 3.4.1
The driver's restraint harness assembly shall be of 5,6 or 7 point design 3.4.1
The driver's restraint harness assembly shall be made of Nylon or Dacron and in new or perfect condition 3.4.1
The driver's restraint harness assembly shall use a single quick-release type latch 3.4.1
The driver's restraint harness assembly shall meet SFI Specification 16.1 or FIA specification 8853/98 3.4.1

The driver's restraint harness assembly shall be replaced following 12/31 on the 2nd year after the date of
manufacture (SFI) 3.4.1

The driver's restraint harness assembly shall be replaced following 12/31 on the year marked on the label
(FIA) 3.4.1

The driver's restraint harness assembly shall consist of a 76mm lap belt, 76mm shoulder straps and a 51mm
anti-submarine strap (5-point) 3.4.1

The driver's restraint harness assembly shall consist of a 76mm lap belt, 76mm shoulder straps and two 51mm
anti-submarine strap (5-point) 3.4.1

The driver's restraint harness assembly shall be securely attached to the primary structure assembly 3.4.1
The driver's restraint harness assembly shall be connected by freely pivoting attachments 3.4.1

 182

APPENDIX 3. STATICS ANALOGY

Statics Free-Body Diagrams Corresponding Functional Models

 183

APPENDIX 4. VARIABLE DEFINITIONS

Table A4.1 Type I Model Variables
Function Sym.(E) Sym.(L) Type Units Description

PE ROTEIa,0,0 Flow kW Power Output
PF CHMEIa,0,0 Flow kW Power Input
ξE PARM0 Parameter [0,1] Conversion Efficiency
PE,max PARM1 Parameter kW Maximum Conversion Power

Convert
Chem. E. to
Rot. E.

CE CNTL Ia,0,0 Control [0,1] Engine Control
PA ELCEIa,0,0 Flow kW Power Flow
CA Int0 Internal unitless Charge
Emax PARM0 Parameter kJ Max. Energy Storage

Prov. Elec. E.

ξA PARM1 Parameter (0,1] Provision Efficiency
PM ROTEIa,0,0 Flow kW Rotational Power
PA ELCEIa,0,0 Flow kW Electrical Power
ξM PARM0 Parameter (0,1] Conversion Efficiency
PM,max PARM1 Parameter kW Maximum Power

Convert Elec..
E. to Rot. E.

CM CNTL Ia,0,0 Control [-1,1] Motor Control
PM ROTEIa,0,0 Flow kW Motor Power
PE ROTEIa,1,0 Flow kW Engine Power

Dist. Rot. E.

PD ROTEIa,2,0 Flow kW Drive Power
PD ROTEIa,0,0 Flow kW Drive Power
PB ROTEIa,1,0 Flow kW Brake Power
mH PARM0 Parameter kg Vehicle Mass

Dist. Mech. E.

vH STAS Ia,0,0 Status m/s Vehicle Speed
PB ROTEIa,0,0 Flow kW Brake Power
CB CNTL Ia,0,0 Control [0,1] Brake Control

Transfer
Mech. E.

PB,max PARM 0 Parameter kW Max Braking Power
vH STAS Ia,0,0 Status m/s Vehicle Speed
vT N/A Internal m/s Target Speed
dH N/A Internal m Distance Traveled
gC PARM 0 Parameter s/m Control Gain
CT N/A Internal [-1,1] Speed Control
CE CNTL Ia,0,0 Control [-1,1] Electrical Throttle
CC CNTL Ia,1,0 Control [0,1] Chemical Throttle
CB CNTL Ia,2,0 Control [0,1] Brake Control

Process
Control

f() N/A Function m/s Target Speed Profile

Table A4.2. Type II Model Variables

Function Sym.(E) Sym.(L) Type Units Description
ME ROTEIIa,0,0 Flow N*m Engine Moment
ωE ROTEIIa,0,1 Flow rad/s Engine Speed
PF CHMEIa,0,0 Flow kW Fuel Power Input
ξE PARM0 Parameter [0,1] Conversion Efficiency
f N/A Function N*m Spline Fit Function

Convert
Chem. E. to
Rot. E.

CE CNTL Ia,0,0 Control [0,1] Engine Control
VB ELCEIIa,0,0 Flow V Battery Voltage
IB ELCEIIa,0,1 Flow A Battery Current
CA N/A Internal unitless Charge
VB,nom PARM0 Parameter V Nominal Voltage
ΡB PARM1 Parameter Ω Internal Resistance

Prov. Chem.
E.

QB,max PARM2 Parameter A*s Battery Capacity
MM ROTEIIa,0,0 Flow N*m Motor Moment
ωM ROTEIIa,0,1 Flow rad/s Motor Speed
VM ELCEIIa,0,0 Flow V Supply Voltage
IS ELCEIIa,0,1 Flow A Supply Current
VRated PARM0 Parameter V Rated Voltage
PMax PARM1 Parameter kW Maximum Power

Convert Elec.
E. to Rot. E.

IRated PARM2 Parameter A Rated Current

 184

Table A4.2. Continued.
Function Sym.(E) Sym.(L) Type Units Description

ωT N/A Internal rad/s Transition Speed Convert Elec.
E. to Rot. E. CM CNTL Ia,0,0 Control [-1,1] Motor Control

MM ROTEIIa,0,0 Flow N*m Motor Moment
ωM ROTEIIa,0,1 Flow rad/s Motor Speed
ME ROTEIIa,1,0 Flow N*m Engine Moment
ωE ROTEIIa,1,1 Flow rad/s Engine Speed
MR ROTEIIa,2,0 Flow N*m Rear Wheel Moment
ωR ROTEIIa,2,1 Flow rad/s Rear Wheel Speed
MF ROTEIIa,3,0 Flow N*m Front Wheel Moment
ωF ROTEIIa,3,1 Flow rad/s Front Wheel Speed
MRxn ROTEIa,0,0 Flow N*m Frame Reaction Moment
XG N/A Internal unitless Engine Gear Ratio
XM N/A Internal unitless Motor/Engine Ratio

Dist. Rot. E.

f N/A Function unitless Transmission Model
FF,x MCHEIIa,0,1 Flow N Front Wheel Force, x
FF,z MCHEIIa,0,2 Flow N Front Wheel Force, z
MF,y MCHEIIa,0,0 Flow N*m Front Wheel Moment, y
FR,x MCHEIIa,0,1 Flow N Rear Wheel Force, x
FR,z MCHEIIa,0,2 Flow N Rear Wheel Force, z
MR,y MCHEIIa,0,0 Flow N*m Rear Wheel Moment, y
MRxn ROTEIa,1,0 Flow N*m Driveline Reaction
mH PARM0 Parameter kg Vehicle Mass
CGx PARM1 Parameter m Vehicle CG Location, x
CGz PARM2 Parameter m Vehicle CG Location, z
wH PARM3 Parameter m Vehicle Wheelbase
g PARM4 Parameter m/s2 Gravitational Acceleration

Dist. Mech. E.

vH STAS Ia,0,0 Status m/s Vehicle Speed
FW,x MCHEIIa,0,1 Flow N Wheel Force, x
FW,z MCHEIIa,0,2 Flow N Wheel Force, z
MW MCHEIIa,0,0 Flow N*m Wheel Moment, y
MD ROTEIIa,1,0 Flow N*m Drive Moment
ωW ROTEIIa,1,1 Flow rad/s Wheel Speed
CB CNTLIa,0,0 Flow unitless Brake Control
vW STASIa,0,0 Flow m/s Ground Speed
MB,max PARM 0 Parameter N*m Max Braking Moment
rW PARM 1 Parameter m Wheel Radius
JW PARM 2 Parameter kg*m2 Wheel Inertia, y
f N/A Function N Pacejka ’96 Magic Eq.

Transfer
Mech. E.

κW N/A Internal unitless Slip Ratio
vH STAS Ia,0,0 Status m/s Vehicle Speed
vT N/A Internal m/s Target Speed
dH N/A Internal kW Distance Travelled
gC PARM 0 Parameter s/m Control Gain
CT N/A Internal [-1,1] Speed Control
CE CNTL Ia,0,0 Control [-1,1] Electrical Throttle
CC CNTL Ia,1,0 Control [0,1] Chemical Throttle
CB CNTL Ia,2,0 Control [0,1] Brake Control
CS N/A Internal [0,1] Slip Control
κR STAS Ia,1,0 Status m/s Rear Wheel Slip Ratio
κ1 PARM 1 Parameter m/s Slip Ratio Cut Start
κ2 PARM 2 Parameter m/s Slip Ratio Cut Stop

Process
Control

f() N/A Function m/s Target Speed Profile

 185

APPENDIX 5. COMPLETE EXAMPLE RESULTS

Table A5.1. Raw Type I Analysis Results
UN
Accel

EE
Accel

Auto-
cross Endur. Mass Cost

Provision
Elec. E.

Convert Elec. E.
to Rot. E.

Convert Chem. E.
to Rot. E.

3.12 3.88 50.17 1043.37 315.1 6000 Low Energy Large AC 250CC MC 2
3.14 3.90 50.17 1043.15 320.1 6800 Med. Energy Large AC 250CC MC 2
3.19 3.88 50.20 1043.90 315.1 5500 Low Energy Large AC 250CC MC 1
3.17 3.94 50.19 1043.05 330.1 8400 High Energy Large AC 250CC MC 2
3.21 3.90 50.21 1043.51 320.1 6300 Med. Energy Large AC 250CC MC 1
3.24 3.94 50.22 1043.15 330.1 7900 High Energy Large AC 250CC MC 1
3.33 3.83 50.27 1048.40 305.1 5000 Low Energy Large AC Hypothetical
3.35 3.86 50.27 1046.64 310.1 5800 Med. Energy Large AC Hypothetical
3.38 3.90 50.29 1043.38 320.1 7400 High Energy Large AC Hypothetical
3.39 4.62 50.29 1043.66 315.1 5700 Low Energy Medium AC 250CC MC 2
3.40 4.65 50.30 1043.40 320.1 6500 Med. Energy Medium AC 250CC MC 2
3.40 4.65 50.30 1043.71 320.4 4050 Low Energy Large SepEx 250CC MC 2
3.59 3.79 50.40 1100.11 295.1 4500 Low Energy Large AC Small Industrial
3.42 4.67 50.31 1043.43 325.4 4850 Med. Energy Large SepEx 250CC MC 2
3.61 3.81 50.41 1088.22 300.1 5300 Med. Energy Large AC Small Industrial
3.65 3.86 50.43 1063.73 310.1 6900 High Energy Large AC Small Industrial
3.44 4.70 50.32 1043.41 330.1 8100 High Energy Medium AC 250CC MC 2
3.48 4.62 50.34 1044.30 315.1 5200 Low Energy Medium AC 250CC MC 1
3.46 4.72 50.33 1043.43 335.4 6450 High Energy Large SepEx 250CC MC 2
3.50 4.65 50.35 1043.79 320.1 6000 Med. Energy Medium AC 250CC MC 1
3.50 4.65 50.35 1044.42 320.4 3550 Low Energy Large SepEx 250CC MC 1
3.52 4.67 50.36 1043.87 325.4 4350 Med. Energy Large SepEx 250CC MC 1
3.53 4.70 50.37 1043.57 330.1 7600 High Energy Medium AC 250CC MC 1
3.55 4.72 50.38 1043.59 335.4 5950 High Energy Large SepEx 250CC MC 1
3.49 5.15 50.35 1043.77 306.25 4520 Low Energy PM DC 250CC MC 2
3.52 5.12 50.36 1043.83 320.4 4200 Low Energy Medium SepEx 250CC MC 2
3.51 5.17 50.36 1043.54 311.25 5320 Med. Energy PM DC 250CC MC 2
3.54 5.14 50.37 1043.57 325.4 5000 Med. Energy Medium SepEx 250CC MC 2
3.69 4.57 50.45 1049.71 305.1 4700 Low Energy Medium AC Hypothetical
3.55 5.23 50.37 1043.59 321.25 6920 High Energy PM DC 250CC MC 2
3.58 5.20 50.39 1043.62 335.4 6600 High Energy Medium SepEx 250CC MC 2
3.71 4.60 50.47 1047.34 310.1 5500 Med. Energy Medium AC Hypothetical
3.56 5.34 50.38 1043.83 315.1 5300 Low Energy Small AC 250CC MC 2
3.72 4.60 50.47 1050.12 310.4 3050 Low Energy Large SepEx Hypothetical
3.60 5.15 50.40 1044.46 306.25 4020 Low Energy PM DC 250CC MC 1
3.74 4.63 50.48 1047.64 315.4 3850 Med. Energy Large SepEx Hypothetical
3.58 5.36 50.39 1043.63 320.1 6100 Med. Energy Small AC 250CC MC 2
3.63 5.12 50.42 1044.56 320.4 3700 Low Energy Medium SepEx 250CC MC 1
3.62 5.17 50.41 1043.92 311.25 4820 Med. Energy PM DC 250CC MC 1
3.75 4.65 50.49 1044.02 320.1 7100 High Energy Medium AC Hypothetical
3.65 5.14 50.43 1043.90 325.4 4500 Med. Energy Medium SepEx 250CC MC 1
3.78 4.67 50.50 1044.06 325.4 5450 High Energy Large SepEx Hypothetical
3.61 5.42 50.41 1043.68 330.1 7700 High Energy Small AC 250CC MC 2
3.66 5.23 50.43 1043.80 321.25 6420 High Energy PM DC 250CC MC 1
3.69 5.20 50.45 1043.83 335.4 6100 High Energy Medium SepEx 250CC MC 1
3.67 5.34 50.44 1044.49 315.1 4800 Low Energy Small AC 250CC MC 1
3.69 5.36 50.45 1043.85 320.1 5600 Med. Energy Small AC 250CC MC 1
3.73 5.42 50.47 1043.92 330.1 7200 High Energy Small AC 250CC MC 1
3.66 5.85 50.43 1043.95 320.4 3800 Low Energy Small SepEx 250CC MC 2
3.68 5.88 50.44 1043.81 325.4 4600 Med. Energy Small SepEx 250CC MC 2
3.72 5.94 50.47 1043.88 335.4 6200 High Energy Small SepEx 250CC MC 2
3.87 5.09 50.56 1050.04 296.25 3520 Low Energy PM DC Hypothetical
3.89 5.06 50.58 1050.49 310.4 3200 Low Energy Medium SepEx Hypothetical

 186

Table A5.1 Continued.
UN
Accel

EE
Accel

Auto-
cross Endur. Mass Cost

Provision
Elec. E.

Convert Elec. E.
to Rot. E.

Convert Chem. E.
to Rot. E.

3.89 5.12 50.57 1047.57 301.25 4320 Med. Energy PM DC Hypothetical
3.92 5.09 50.59 1047.69 315.4 4000 Med. Energy Medium SepEx Hypothetical
3.79 5.85 50.51 1044.73 320.4 3300 Low Energy Small SepEx 250CC MC 1
3.81 5.88 50.52 1044.10 325.4 4100 Med. Energy Small SepEx 250CC MC 1
3.93 5.17 50.60 1044.58 311.25 5920 High Energy PM DC Hypothetical
3.96 5.14 50.62 1044.66 325.4 5600 High Energy Medium SepEx Hypothetical
3.85 5.94 50.54 1044.19 335.4 5700 High Energy Small SepEx 250CC MC 1
3.95 5.28 50.62 1050.16 305.1 4300 Low Energy Small AC Hypothetical
3.98 5.31 50.64 1047.35 310.1 5100 Med. Energy Small AC Hypothetical
4.02 5.36 50.67 1044.99 320.1 6700 High Energy Small AC Hypothetical
4.15 4.52 50.79 1108.28 295.1 4200 Low Energy Medium AC Small Industrial
4.17 4.55 50.82 1095.49 300.1 5000 Med. Energy Medium AC Small Industrial
4.17 4.55 50.82 1110.18 300.4 2550 Low Energy Large SepEx Small Industrial
4.22 4.60 50.87 1069.05 310.1 6600 High Energy Medium AC Small Industrial
4.19 4.58 50.84 1097.06 305.4 3350 Med. Energy Large SepEx Small Industrial
4.24 4.63 50.90 1070.67 315.4 4950 High Energy Large SepEx Small Industrial
4.11 5.79 50.76 1050.79 310.4 2800 Low Energy Small SepEx Hypothetical
4.14 5.82 50.78 1047.66 315.4 3600 Med. Energy Small SepEx Hypothetical
4.18 5.88 50.82 1046.41 325.4 5200 High Energy Small SepEx Hypothetical
4.47 5.03 51.20 1110.41 286.25 3020 Low Energy PM DC Small Industrial
4.48 5.01 51.21 1112.77 300.4 2700 Low Energy Medium SepEx Small Industrial
4.50 5.06 51.24 1097.75 291.25 3820 Med. Energy PM DC Small Industrial
4.50 5.04 51.25 1098.72 305.4 3500 Med. Energy Medium SepEx Small Industrial
4.55 5.09 51.32 1070.25 315.4 5100 High Energy Medium SepEx Small Industrial
4.55 5.12 51.31 1071.35 301.25 5420 High Energy PM DC Small Industrial
4.60 5.22 51.39 1111.62 295.1 3800 Low Energy Small AC Small Industrial
4.63 5.25 51.44 1097.51 300.1 4600 Med. Energy Small AC Small Industrial
4.68 5.31 51.52 1068.24 310.1 6200 High Energy Small AC Small Industrial
4.90 5.73 51.96 1115.19 300.4 2300 Low Energy Small SepEx Small Industrial
4.93 5.76 52.02 1100.04 305.4 3100 Med. Energy Small SepEx Small Industrial
4.98 5.82 52.13 1068.61 315.4 4700 High Energy Small SepEx Small Industrial

Table A5.2. Raw Type II Analysis Results

EE
Accel

UR
Accel

Auto-
cross Endur. Mass Cost

Provision
Elec. E.

Convert Elec. E.
to Rot. E.

Convert Chem.
E. to Rot. E.

5.07 4.18 50.92 1053.2 350 8400 16 Pack EM AC-2 Prototype
5.07 4.41 51.10 1063.1 350 7900 16 Pack EM AC-2 WR250X
5.39 4.36 51.06 1054.8 340 6800 8 Pack EM AC-2 Prototype
5.97 4.35 51.03 1051.7 350 7800 16 Pack EM AC-1 Prototype
5.39 4.51 51.17 1066.4 340 6300 8 Pack EM AC-2 WR250X
6.10 4.36 51.04 1054.0 340 6200 8 Pack EM AC-1 Prototype
5.97 4.55 51.24 1061.3 350 7300 16 Pack EM AC-1 WR250X
4.97 4.63 51.35 1170.0 332 6900 16 Pack EM AC-2 Honda GX240
6.62 4.45 51.12 1055.1 335 5400 4 Pack EM AC-1 Prototype
6.10 4.59 51.29 1065.1 340 5700 8 Pack EM AC-1 WR250X
6.62 4.68 51.43 1067.3 335 4900 4 Pack EM AC-1 WR250X
7.17 4.65 51.34 1056.0 335 6000 4 Pack EM AC-2 Prototype
8.10 4.51 51.19 1054.1 331 5300 8 Pack PMG132-400 Prototype
8.21 4.54 51.23 1053.6 341 6900 16 Pack PMG132-400 Prototype
8.21 4.57 51.22 1054.6 326 4500 4 Pack PMG132-400 Prototype
5.29 4.87 51.71 1186.6 322 5300 8 Pack EM AC-2 Honda GX240
8.10 4.78 51.46 1065.6 331 4800 8 Pack PMG132-400 WR250X
8.21 4.77 51.46 1064.1 341 6400 16 Pack PMG132-400 WR250X
7.17 4.91 51.70 1068.5 335 5500 4 Pack EM AC-2 WR250X
8.21 4.85 51.57 1066.2 326 4000 4 Pack PMG132-400 WR250X
11.33 4.77 51.46 1054.6 326 4300 4 Pack PMG132-200 Prototype
11.42 4.79 51.48 1054.2 331 5100 8 Pack PMG132-200 Prototype
11.63 4.87 51.56 1053.5 341 6700 16 Pack PMG132-200 Prototype

 187

Table A5.2 Continued.
EE
Accel

UR
Accel

Auto-
cross Endur. Mass Cost

Provision
Elec. E.

Convert Elec. E.
to Rot. E.

Convert Chem.
E. to Rot. E.

5.84 5.25 52.42 1160.7 332 6300 16 Pack EM AC-1 Honda GX240
5.97 5.34 52.62 1180.8 322 4700 8 Pack EM AC-1 Honda GX240
11.33 5.11 51.90 1066.2 326 3800 4 Pack PMG132-200 WR250X
11.42 5.13 51.93 1065.5 331 4600 8 Pack PMG132-200 WR250X
11.63 5.20 52.03 1064.0 341 6200 16 Pack PMG132-200 WR250X
6.51 5.63 53.34 1191.5 317 3900 4 Pack EM AC-1 Honda GX240
7.90 5.93 53.19 1183.5 313 3800 8 Pack PMG132-400 Honda GX240
7.95 6.03 53.30 1174.7 323 5400 16 Pack PMG132-400 Honda GX240
7.94 6.03 53.62 1188.2 308 3000 4 Pack PMG132-400 Honda GX240
7.05 5.93 55.74 1196.0 317 4500 4 Pack EM AC-2 Honda GX240
10.98 6.86 55.24 1187.9 308 2800 4 Pack PMG132-200 Honda GX240
11.08 6.89 55.30 1182.6 313 3600 8 Pack PMG132-200 Honda GX240
11.26 7.01 55.51 1171.5 323 5200 16 Pack PMG132-200 Honda GX240

 188

VITA

Name: Ryan Scott Hutcheson, Ph.D.

Address: Texas A&M University
 Department of Mechanical Engineering
 3123 TAMU
 College Station, TX 77843

Email Address: ryan.hutcheson@gmail.com

Education: B.S., Mechanical Engineering, Missouri University of Science and

Technology, 2003
M.S., Mechanical Engineering, Missouri University of Science
and Technology, 2005

