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ABSTRACT

State of the Art Botnet-Centric Honeynet Design. (May 2009)

John Syers III, B.S., University of Houston–Downtown

Chair of Advisory Committee: Dr. Udo W. Pooch

The problem of malware has escalated at a rate that security professionals and

researchers have been unable to deal with. Attackers savage the information technol-

ogy (IT) infrastructure of corporations and governments with impunity. Of particular

significance is the rise of botnets within the past ten years. In response, honeypots

and honeynets were developed to gain critical intelligence on attackers and ultimately

to neutralize their threats. Unfortunately, the malware community has adapted, and

strategies used in the early half of the decade have diminished significantly in their

effectiveness. This thesis explores the design characteristics necessary to create a

honeynet capable of reversing the current trend and defeating botnet countermea-

sures. This thesis finds that anti-virtual machine detection techniques along with

appropriate failsafes are essential to analyze modern botnet binaries.
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CHAPTER I

INTRODUCTION

The problem of security is relatively new, but it has grown at an exponential rate.

It has been just over twenty years since the Morris Worm was unleashed on an un-

suspecting Internet community. At that time, the worm was unprecedented, and the

idea that someone would intentionally unleash such a devastating program was un-

thinkable. At a certain point malware became commonplace. It is expected, indeed,

it is inevitable. Ironically, for the common user, malware has become less disruptive,

yet at the same time much more malevolent.

Malicious programs have developed at a rate greater than the security community

can keep pace with. What can be done? The answer to this question, like the related

field of information assurance, is broad, and could not possibly be answered in a single

paper. Instead, my goal is to focus on a specific subset of malware, namely botnets,

and analyze current security tools, focusing on honeynets, in order to develop a viable

countermeasure.

A. Botnets–The Killer Web App

In 2007 Syngress released a book called “Botnets: The Killer Web App.”[56] This

title faithfully captures the essence of the rise of botnets. Much like email did in

the previous decade, botnets have made a tremendous impact on the World Wide

Web. The major difference is, while email is a highly visible application, botnets

for all practical intents and purposes are invisible. This next step in the malware

evolutionary scale is distinctly different from its predecessors in that botnet writers

The journal model is IEEE Transactions on Automatic Control.
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take great pains to keep the presence of this malware masked. And for the most part,

they have been successful.

How bad is it? The Federal Bureau of Investigations (FBI) placed cybercrime

as their third highest priority, behind terrorism and corporate espionage [29]. They

instituted operation BOT ROAST in 2005. By 2007, the FBI reported that it had

identified over one million botnet infected computers in the United States [18]. In-

terestingly enough, botmasters found a way to use the FBI to actually further their

goals. Instead of using trite social engineering email subjects like ”I love you,” a re-

cent malware push involved emails titled, ”FBI may strike Facebook.” [48] The power

of the FBI and the popularity of Facebook made a powerful recruiting tool for the

Storm Worm/Botnet.

A 2007 report to Congress on Cybercrime reveals that the U.S. lost $62.7 billion

to cybercrime in 2005. Furthermore, it was reported that terrorists have the ability

to conduct cyberattacks that could harm the nation’s critical infrastructure, shutting

down power plants and disrupting air traffic control [70].

The report to congress goes on to cite a particular example of damage caused by

a botnet. A California man operated a botnet from 2004 to 2005. During this time

the botnet performed more than 2 million infections. Victims of the botnet included

hundreds of Department of Defense (DOD) computers in military installations both

in the United States and in our installations overseas. Fortunately, this individual

was apprehended, but one of the distinct problems of the botnet problem is that the

number of botnet operators that are operating unhindered are unknown.

What defenses do we have today against this threat? (Specifically, the threat of

having one’s systems become part of a botnet. There is also the threat of being at-

tacked by a botnet, but this is a different, and arguably harder problem.) The average

consumer has the standard anti-virus programs and internet security suites, but these
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programs are limited in their protective capability. Table I shows a portion of the

November 2008 Retrospective/ProActive anti-virus test from AV-Comparatives [3].

Major anti-virus programs were tested in November against malware samples that

were collected by AV-Comparatives three months prior. The program that demon-

strated the best performance only detected 71% of the malware, while McAfee VirusS-

can+, produced by the second largest anti-virus company in the world, detected a

dismal 37%.

Table I. November 2008 AV-Comparatives Retrospective/ProActive Test

Anti-virus programs are only effective against known botnet infections. A recent

article in Information Week illustrated the weaknesses in typical anti-virus programs.

In the article a sysadmin discovered an infection on a university computer. The com-

puter was called in and disinfected, but as soon as the machine was placed back on the

network, was discovered that the botnet infection remained [30]. The administrator

possessed the tools to detect anomalous activity on the network, but not the tools to

excise the malware from the infected machine.
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Botnets for which no signature has been released can function with impunity. The

Storm worm/botnet was discovered more than two years ago, at its apex boasted over

one million bots and showed no signs of abating [20]. It was rumored to be capable

of disrupting small countries [22]. Fortunately, this botnet was crippled mostly due

to a patch from Microsoft and was abandoned in September of 2008, though some

claim it was divided and sold [63][39]. What resources does the system administrator

have? Intrusion Detection Systems, for one, but the host-based systems are unpopular

because they create a significant drain on performance, and network-based systems

are subject to limitations similar to those of anti-virus programs.

B. Objective

The primary objective of my research is to develop a design for a honeynet capable

of dealing decisively with the current botnet threat. More specifically, my objective

is to

• Review the most effective characteristics of the latest botnets

• Determine necessary honeynet requirements based on botnet anti-honeypot

techniques

• Create a botnet design architecture based on these requirements
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CHAPTER II

BOTNET EVOLUTION

A botnet is one of the newer variants of malware. The botnet shares many charac-

teristics with other forms of malware, often spreading from device to device on the

Internet through various sources, including email and the web. What distinguishes a

botnet from other forms of malware is that instead of solely executing a pre-defined

set of instructions, a bot is also designed to accept instructions remotely from an

individual, who is referred to as a botmaster or botherder. As the bot program prop-

agates throughout the internet, the collective group of bots form a botnet, providing

the botmaster with an arbitrary number of machines to do his bidding.

A. Botnet History

The botnet finds its origins in Internet Relay Chat (IRC), which was created in 1988

at the University of Finland [51][53][45]. The creation of bots, which is short for

robots, followed shortly after. The first known bot was written by Bill Wisner and

called Bartender [37]. Its sole function was to serve drinks to channel users. A short

time later Greg Lindahl created an IRC game manager that allowed users to play

Hunt the Wumpus on a channel [38]. These simple programs paved the way for IRC

operators to write programs to perform simple functions, such as keeping channels

open. Bots grew in scope to the point where the bots were the de facto operators of

IRC; all administrative tasks were run through them.

In 1999, the first malicious IRC bot was discovered: PrettyPark. This was a

worm that installed its own IRC client to a system upon infection. Once installed,

the IRC client contacted an IRC server, and was capable of initiating file transfers of

privileged data, such as passwords and credit card numbers [21].
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The next year, a new IRC-related malware program was released, the Global

Threat (GT) bot. This bot was based on the newly updated mIRC [1], a still-

popular IRC client. mIRC had been endowed with a powerful scripting language that,

combined with socket capability, made a target for hackers. As the name implies, the

GT Bot included a set of commands geared toward conducting attacks. It was capable

of conducting Denial of Service (DoS) attacks using the Internet Control Message

Protocol (ICMP) [45], User Datagram Protocol (UDP) [49], as well as Smurf and

Shiver attacks [6]. The GT Bot was not self-propagating, however.

In 2002, the SDBot surfaced. This bot combined the attack threat capability of

the GT Bot with the self-propagating characteristic of PrettyPark. Unlike the hacked

GT Bot, SDBot was an original work, written in C++ [6]. Another of its distinctive

characteristics was the fact it was a single, trim 40k executable.

SDBot was followed by Agobot. Because code from SDBot was made widely

available, it is believed that Agobot borrowed liberally from SDBot’s code [56]. This

bot was given a three-part modular design, and was made to be easy both to utilize

and to update. The Agobot code base is the code upon which the majority of today’s

botnets are based [6].

As malware has progressed from a method of demonstrating one’s superior hack-

ing skills or showing proof of concept to the means of illicit gain or other more sinister

clandestine activities, the botnet has emerged as the tool of choice. Botmasters sell

their services to the highest bidder, offering the ability to deliver spam, harvest confi-

dential information, provide web hosting, all for the right price. Malware development

is also a lucrative business, with price tags on botnets ranging into thousands of dol-

lars [6].

Even more disturbing is the fact that botnet activities are not limited to simple

money making ventures. With the use of the DoS, botnets can be used to attack
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organizations, and extort them. These attacks have even moved into the political

arena. In 2008, the Russian-Georgian conflict was characterized not only by Russian

tanks, but also by DoS attacks against Georgian government networks [24].

B. Basic Botnet Characteristics and Capabilities

Classifying botnets is a non-trivial task. A traditional hierarchical taxonomy is in-

sufficient for the task because there are several categories of defining characteristics

which overlap and are constantly changing. The initial starting point for the classifi-

cation comes from [26], which outlines the botnet infection process as a sequence of

five transactions that may be observed and subsequently used as a means of detection.

Conceptually, however, there are other defining characteristics of botnets that must

be included, subsequently what follows bears only a small resemblance to the dialog

flow approach of [26].

1. Propagation

Methods of propagation are closely related to the different forms of malware, therefore

some formal definitions are necessary. A virus is a malware program that, like a

biological virus, is dependent upon the ’life’ of a host in order to reproduce. Computer

viruses do not exist and function independently, rather they attach themselves to

other executable programs, and are run when those programs are run. A worm is

not dependent upon a host program in order to replicate. It may or may not be

self-propagating; methods of worm propagation will be discussed shortly. A trojan

horse or trojan is a program that appears to perform a certain benign function,

but surreptitiously perform certain malicious activities upon execution. Regrettably,

there are certain forms of malware that display characteristics of more than one of
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these forms, making them hard to classify. These may be referred to as hybrids. To

further add to the confusion, because viruses were the first and most well known form

of malware, the term virus is sometimes used generically to refer to malware. That

said, none of the botnets studied used the classical virus method for propagation, nor

is this expected to change.

Another issue that deserves mention is the role of social engineering in propa-

gation. The term social engineering itself is merely a buzzword meaning deception,

and most forms of malware–botnets included–employ deceiving the user as a means

of gaining entrance to their system.

a. Worms

Methods of worm propagation fall into two broad categories. The first are worms that

are capable of total self-propagation. This means that the worm requires no direct

assistance from the computer user in order to spread. Generally, these worms perform

network scans for hosts with exploitable vulnerabilities, and then copy themselves to

new hosts and activate themselves through the exploit. Worms started possessing

this capability with SDBot in 2002.

The second category of worms require some type of user-intervention to help them

spread. A common ploy is to send out fake emails to try to get an unsuspecting user

to download and execute a program from a website or open a malicious attachment.

Some worms use the web to spread by exploiting browser vulnerabilities. Rather than

seeking out vulnerable machines, the attacker lets the vulnerable machines come

to him. This approach may be slower, but it really depends on the number and

popularity of the websites used for propagation. MPack [40] is an example of a tool

used to accomplish this. By using an iframe attack [50], legitimate websites can be

used for malware propagation. Because the websites themselves are inadvertently
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spreading malware, worms propagated in this fashion are being referred to as trojans.

b. Trojans

Trojans only propagate by social engineering. While email can be used to spread

trojans, they are principally found on false websites; email (spam) may be used to

draw attention to the sites. A common method for spreading Trojans is to place

them on game or pornography websites. Sometimes these sites are set up solely for

the purpose of spreading malware.

2. Control Structure

The authors of [10] proposed three possible command and control (C&C) models for

botnets: centralized, decentralized, and random. During the course of this study, no

botnets that use a random control structure were found, and given the drawbacks of

such a system, it is unlikely that such a model will be developed in the near future

[10][69]. It is acknowledged that control structures and communication protocols are

very closely related; however in this work they will be discussed independently of each

other.

a. Centralized

Centralized botnets are those that utilize a single host to communicate with bot-

net clients. The majority of known botnets use a centralized control structure. In

April 2008, Arbor Networks posited that 95% of known botnets were centralized

[42]. Advantages for this approach include simplicity and maintainability. The major

disadvantage is that this creates a single point of failure in the system.
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b. Decentralized

The decentralized control structure is in itself a countermeasure. Peer-to-peer (P2P)

systems were first utilized when security expert and law enforcement officials began

actively targeting botnets and botmasters. In the decentralized model, there is no

central point of communication. Bot clients are responsible to send messages to

their peers, making the botnet more difficult to disable. The first P2P botnet to be

discovered was Sinit, in 2003 [60]. Phatbot, a direct descendant of Agobot, abandoned

the former’s C&C model for a P2P based one [61].

3. Protocol

The protocol is the standard that defines the syntax and structure of data in com-

munication between two hosts. This is significant to defenders because captured

data must be interpreted in order to be understood, and knowing the protocol is a

significant part of that.

a. IRC

IRC was the original botnet protocol, and though there are signs that malware writers

are exploring other protocols, the majority of botnets currently in operation still use

IRC. The IRC protocol is tied to the centralized C&C model, this has been the main

motivator for botmasters to seek alternatives. Other disadvantage is the fact that

IRC traffic is not common for many networks and thus is easy for administrators to

pinpoint and block.
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b. Hyper Text Transfer Protocol (HTTP)

The HTTP protocol [19] is also tied to the centralized C&C model, but it has one

important advantage over IRC: the majority of internet traffic on networks is HTTP,

which makes it much more difficult for administrators to isolate malicious traffic.

c. P2P

While it has been suggested that P2P development is increasing [25], Arbor Networks

estimated that at present P2P botnets only comprise 5% of the current botnet pop-

ulation [42]. The reality is that there is insufficient data on botnets currently in the

wild to make an accurate determination. What is known is that several P2P botnets

have been discovered in the past five years, including Phatbot [61][57], Nugache [44],

SpamThru [62] and Peacomm [25].

4. Features

Before bots became modularized, most bots possessed a comprehensive command

list encompassing all of the features discussed in this section. Now bots are being

designed to be more specialized, a family of bots typically exists to serve a certain

function and possesses a commensurate command list. One feature common to all

the following functions is the ability to report results back to the botmaster after

successful or unsuccessful execution of commands.

a. Distributed Denial of Service (DDoS)

The DDoS attack demonstrates the malicious power of a botnet by crippling an

organization’s web services by consuming their bandwidth on bogus requests. As

of yet there is no solid defense against DDoS attacks. Any botnet whose aggregate
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bandwidth exceeds that of its target poses a decisive threat. The following attack

methods are most common:

• TCP SYN Flood [73]

• HTTP GET Flood [46]

• UDP Flood [35]

• ICMP Flood (Smurf Attack) [73]

b. Spam

One of the major obstacles in curtailing spam is that spamming has become one of

the main functions of botnets. Blacklisting has become ineffective because instead of

a handful of mail servers there are hundreds of thousands of zombified clients, and

the list of bots is always changing. If a botmaster commands a large botnet, he can

send out small amounts of spam from each client, thus avoiding creating an anomaly

that might be detected.

c. Server

Bots can be used to provide services to the botmaster and his clientele. A bot might

be set up as an HTTP server to serve web pages in a phishing scheme. Bots have also

been used as FTP servers to store illicit information (such as child pornography).

d. Proxy

Botnets run HTTP and SOCKS (Secured Over Credential-based Kerberos Services

[36]) proxies, providing anonymity to botmasters.
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e. Extortion

Two methods of botnet extortion exist. In the first, the botnet performs a DDoS

attack on an organization, then demands money from the organization in exchange

for a cessation of attacks. In the second, the bot client encrypts data on the host

machine. A message is then sent to the victim, demanding payment in exchange for

the key to unencrypt the data.

f. Data Collection

Any information that is determined to be of value can be retrieved by a bot client.

Some botnets utilize simple keylogger programs. These programs generate large

amounts of data which must be analyzed, thus botmasters have begun to target

specific data. The data itself becomes a commodity to botmasters, often selling off

data to third parties. Data collected includes credit card numbers, CD keys, digital

certificates, and authentication information for computers, email, Outlook, Paypal,

etc. Some data collection is tailored specifically for businesses. A variant of the Prg

botnet has been developed targeting the banking sector, allowing attackers to access

banking accounts without a username or password [28].

g. Self Preservation

One of the first items in a bot script is to disable anti-virus on the host machine

in order to avoid detection. Some systems simply turn off the anti-virus protection.

Others subvert it by tampering with the alerting system. It has become common for

botnets to patch vulnerabilities in the host system after infection so that the system

cannot be exploited by a rival botnet. Botnets also have the ability to receive updates

to the botnet software.
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h. Self Destruction

If a botmaster suspects a bot has been compromised, he can remotely shut down the

bot and erase all data pertaining to the bot.
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CHAPTER III

THE HONEYPOT RESPONSE

The number of tools at a security administrator’s disposal in his defense against

botnets is not large. Honeypots have been recognized as being one of the most useful.

In his book Tracking Hackers, Lance Spitzner gives a comprehensive definition of

what a honeypot is: “A honeypot is a security resource whose value lies in being

probed, attacked or compromised.” [59]

A. Honeypot History

In 1988, an astronomer named Clifford Stoll published a paper entitled “Stalking

the Wily Hacker,” outlining his experience of tracing an intruder in the network he

managed at Lawrence Berkley Laboratory [64]. The following year, Stoll followed up

with a book called The Cuckoo’s Egg [65]. The method that Stoll used did not include

a honeypot; Stoll allowed the hacker to have an almost free run of the lab’s production

network. His reasons for doing this, namely to be able to track the hacker, captured

the interest of the sysadmin community and paved the way for the first honeypots to

be designed.

In 1992, An Evening with Berferd was released. This whitepaper was much closer

to the modern definition of a honeypot. In the whitepaper a system administrator

narrates his surreptitious interactions with a hacker. After the attacker falls into one

of the traps the administrator set up, the administrator built an environment and

crafted responses in real-time in order to study his behavior. There were other goals,

the chief of which was to gather enough information about the attacker to be able

to ascertain his identity, so that he could be apprehended by the proper authorities.

Also prominent was the ability to be able to alert other administrators to the intruder



16

and his practices.[8]

Despite the interest that these documents raised, more than half a decade passed

with no further development, at least development that was made known to the

public. The first widely available honeypot was the Deception Toolkit (DTK), which

was released in 1998 by computer virus expert Dr. Fred Cohen [9]. The toolkit

was a series of Perl scripts and code written in C. These scripts were designed to

run on a Unix system, and causes the system to appear to have a large number of

vulnerabilities. The concept here is that an attacker will be attracted to the system

running DTK through routine vulnerability scans, and will subsequently try to break

into the system. Because the vulnerabilities presented are manufactured, the attacker

will waste time and become frustrated. The toolkit also logs all communications made

with the pseudo-vulnerable ports, which allows the user to gain information on the

tactics and techniques of the attacker.

Several commercial products followed. CyberCop Sting was the first, produced

by Network Associates (now McAfee) in 1998. This product was notable for being

the first developed for Windows based system, as opposed to Unix. Around this time

Verizon, then known as GTE, developed its own honeypot system called NetFacade,

which was capable of simulating a class C network on a single host [71]. Also released

that year was BackOfficer Friendly, by NFR Security. It was designed to spoof as

a BackOrifice server [15], a known exploit at the time [27]. It ran originally on

Windows systems, but was also expanded to Unix systems. In the same vein as

DTK, BackOfficer Friendly was also freely available [66].

In 1999, the Honeynet Project was formed[72]. This was designed to be a col-

laboration between security professionals with the aim of sharing research with the

goal of combatting the growing malware problem. Established procedures were pub-

lished in a series of papers called “Know Your Enemy.” The term Honeynet is used
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to denote a network of honeypots. The Honeynet project also made its tools freely

available. With this collaboration in place, researchers and administrators began

deploying honeypots in larger numbers and collecting data. In 2002, a honeypot

captured an exploit of the Unix Common Desktop Environment (CDE) Subprocess

Control Service (dtspcd), a network daemon that accepts requests from clients to

execute commands and launch applications remotely [7, 59]. The vulnerability was

known, but it was believed that this weakness was not being exploited; examination

of the honeypot showed this to be false. This was the first time that a honeypot was

known to discover an unknown exploit.

B. Honeypot Classification

Current publications classify honeypots as either production or research [59]. Pro-

duction honeypots are those used by organizations as a part of their security plan.

Research honeypots are used by universities and other research groups solely to learn

more about malware and the malware community. While this is a significant dis-

tinction, the differences appear to be in use only, not in actual function. During the

course of this research only one honeypot was found that was described specifically

as a production honeypot. Incidentally, a ’research’ version of this same honeypot

was also released, but the only significant differences between the two systems was

the amount of support provided and the price [43].

The amount of interaction a honeypot provides to the attacker is the only other

viable classifier. Again, previously published information, notably [59], identify three

classes of honeypot interaction: low, medium, and high; however, there is not a clear

distinction between low and medium. Low-interaction honeypots emulate services

and have “limited interaction capabilities;” medium-interaction honeypots also em-
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ulate services, but they are said to provide ’more interaction’ than low-interaction

honeypots. Because there is no clear method to define the difference between low and

medium, this paper disregards medium-interaction and refers to all honeypots that

emulate services as low.

With this change in place, a low-interaction honeypot is a honeypot which emu-

lates certain services, while a high-interaction honeypot provides a complete operating

environment. The latter is accomplished by either using an entire computer, or a vir-

tual machine.

Low-interaction honeypots are usually preconfigured programs that are easy to

deploy and monitor. The drawbacks to such systems is that since they are limited

in the interaction that they allow an attacker, their ability to collect data is also

limited. These honeypots are also more easily detected. Because services are merely

emulated, there is less of a chance that an attacker could use the honeypot to attack

other systems.

Because a high-interaction honeypot is a complete system, there are no prepack-

aged setups. Data detection and maintenance methods have to be created by the

maintainer, although there are some external tools that can aid with this. Most im-

portantly, the attacker will be able to use the honeypot to attack other systems unless

safeguards are put in place. Firewalls are usually erected to keep the honeypot from

sending out malicious traffic but this is a telltale sign to an attacker that the machine

is a honeypot, or at the least a system of limited value.
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CHAPTER IV

ANTI-HONEYPOT TECHNIQUES

Because of the success that defenders have had against the malware community with

honeypots, code has been developed to circumvent them. Deception is a key part

of a honeypot’s effectiveness; it has no value if an attacker knows which systems on

a network are honeypots. Most detection methods involve fingerprinting, finding a

distinct result in which a honeypot differs from its non-honeypot counterpart.

An early example of this is Honeypot Hunter [58], a tool developed by Send Safe

in 2002. The program determines whether a discovered mail relay is legitimate or a

honeypot by running its own mail server and sending a test message to itself via the

mail relay [33]. If the message fails, then the relay is bad; if the message fails but

server responds that the message was successfully sent, the relay is likely a honeypot.

A. VM Detection

Virtualization has become the platform of choice for deploying honeypots. Moreover,

virtual platforms are also used for malware analysis. For this reason, malware devel-

opers have developed routines that check specifically to see if code is being executed

in a virtual environment. Because of the efficiency and availability of VMware, it

specifically has become a target, although User Mode Linux (UML) has also been

used for virtual honeypots.

1. Branding

One of the most obvious ways to determine a virtual machine environment are the

virtual devices. A query of hardware information under VMware will show the model

of both CDROM and hard drives as VMware, clearly showing virtualization. Compare
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the two hardware listings:

Listing 1:
RealCPU:~# lshw

RealCPU
description: Portable Computer
product: Latitude D830
vendor: Dell Inc.
serial: B1234E6

...
*-display:0 UNCLAIMED

description: VGA compatible controller
product: Mobile GM965/GL960 Integrated Graphics Controller
vendor: Intel Corporation

...
*-cdrom

description: DVD writer
product: DVD+-RW TS-L632H

...
*-disk

description: ATA Disk
product: TOSHIBA MK3252GS
vendor: Toshiba

Listing 2:
VMCPU:~# lshw

VMCPU
description: Computer
product: VMware Virtual Platform
vendor: VMware, Inc.
version: None
serial: VMware-ff 4d b7 9a 2c 7c 9c 62-44 c8 bd f4 e9 f7 4f ff

...
*-cdrom

product: VMware Virtual IDE CDROM Drive
...

*-display
description: VGA compatible controller
product: [VMware SVGA II] PCI Display Adapter
vendor: VMware Inc

...
*-disk

description: SCSI Disk
product: Virtual disk
vendor: VMware
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2. System

More differences can be found by looking at low-level functions. One prominent

example is that of the Interrupt Descriptor Table (IDT). Virtual machines emulate the

table, but it is located in a higher location in memory in a virtual environment. This

discrepancy was found by legitimate researchers [31][54], but has also been utilized

and improved by the malware community [12].

3. Timing

Another characteristic of virtual machines is that instructions take longer to execute

on a virtual machine than a regular system, even though the additional time may be

imperceptible to a user. This is because there are additional instructions that take

place, either due to emulation because the actual instruction doesn’t exist in the vir-

tual environment, or because of the time that it takes to pass the instruction through

the virtualization layer. Several successful timing methods have been developed [16],

including one which counts individual instructions [55].

B. Sebek

Sebek [67] is a tool produced by the Honeynet Project. It has a client-server archi-

tecture. The client is located on the honeypot and functions as a kernel module,

detecting syscalls in order to capture keystrokes and other attacker session data. The

server, typically the Honeywall gateway, collects and stores the data. Transmissions

between client and server are done via UDP and are not easily detectable via packet

sniffers. However, the presence of the Sebek kernel module causes the memory loca-

tions of the sys read and sys write system calls to be much farther apart than they

normally would be, constituting a fingerprint [11].
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C. Outbound Connection Validation and Initiation

One of the most challenging issues in running a high-interaction honeypot is dealing

with outbound connections. Inbound connections are always allowed so that the

honeypot can be attacked, but allowing compromised honeypots to become a platform

for attacking other machines has ethical and possibly legal repercussions that are best

avoided. Defenders expect botnets to establish a connection with C&C servers, so

usually a small number of connections are allowed. Still, it is a simple matter for

a bot developer to program his bots to attempt to contact the outside world. One

hacker admonished his fellows to simply contact 20 prominent websites [11].

Along these same lines, an attacker could create an initiation procedure for the

botnet, not allowing a new bot to join the botnet until it completed a certain task,

presumably one that required an outbound connection. The attacker could set up

multiple authorization servers that each passed on part of a key to the bot client,

which would be required by the C&C server for authentication. This method would

require the botmaster to maintain multiple servers, possibly employing redundancy,

or risk having the botnet initiation process fail and limit the size of the botnet as a

result.

Attackers are also aware of the use of Snort inline on outbound connections to

render malicious commands benign[11]. A presumable response could be to initiate a

bot by requiring it to infect another host. The secondary host would then report the

infection to the C&C server which would pass on an authorization key, which would

then be passed back to the original infected bot. A very similar process is outlined

in [74].
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CHAPTER V

REQUIREMENTS AND ARCHITECTURE

Many of the building blocks necessary to deal with these botnet threats already exist.

Most of them are part of a current honeypot solution, some concepts are taken from

other security systems. At present, none of them exist altogether in one framework.

A. Requirements

1. Modular and Upgradable

Taking a page from the botnet developer’s handbook, a honeynet should be as mod-

ular and easy to upgrade as Agobot and all its children. In a manner of speaking,

many botnet components are modular. The Honeynet Project has developed a large

number of tools that work together. Because these tools are open-source, they are

an excellent foundation from which to start to build a customized honeypot solution.

This compatibility must be maintained.

2. Utilizes Virtualization

Despite the challenges posed by virtual machine detection, the benefits of virtualiza-

tion are too great to be ignored. Virtualization allows multiple honeypots to be run

on the same system; a server with a quad-core 2.5 MHz processor and 8 GB of mem-

ory could run up to twenty honeypots. These systems can all be powered on and off,

erased and reimaged by remote control. Another valid question is whether the trend

towards honeypots self-destructing in virtual machine environments will continue, as

there are non-honeypot virtual machine servers that are high-value targets for bot-

masters. Commercial visualization is not marketed primarily towards researchers, but
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businesses who are looking to make their IT expenditures more efficient. It would

seem that it would be counterproductive for a botmaster to ignore these potential

resources.

3. Accept Input From External Networks

The botnet needs to be modular/flexible enough to deal with inbound traffic from

multiple networks. This means that the honeynet’s address space needs to be in-

dependent of any external addresses. It should be capable of receiving traffic from

individual Internet Protocol (IP) addresses scattered throughout subnet or a block

of address space. It should also accommodate addresses from different networks,

such as traffic redirected from a virtual private network (VPN) [23], generic routing

encapsulation (GRE) [17], or internet telescopes [5][41][47].

4. Does Not Allow External Attacks

Despite the fact that this requirement is present in all viable honeypots, it is nontriv-

ial. A honeypot that allows too few connections will be ineffective; one that allows

too many could inadvertently cause those seeking to catch lawbreakers to become

lawbreakers.

5. Automated Analysis and Infiltration

The system should be able to perform simple analysis without human intervention.

It should also be able to extract a network fingerprint and other artifacts from the

botnet binary, allowing a clean client to join the botnet and gain intelligence without

the danger that the botnet client itself would pose, namely infecting other systems.
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6. Allows Secondary Infections

Honeypots should be allowed to infect each other. This allows any initiation require-

ment to be fulfilled.

7. Masks Branding

References to virtual hardware should be concealed or changed.

8. Only Capture Unique Malware

Agreeing with the reasoning of [52], the stated goal of malware collection is to collect

as many bot binaries as possible. However, receiving the same binaries over and over

again is not desired. Unfortunately, this is a highly probable occurrence during the

outbreak of a new worm–victims are assimilated at a high rate, and each new victim is

performing its own scans for vulnerable hosts. Therefore, an amendment is in order:

the stated goal of malware collection is to collect as many unique bot binaries as

possible.

9. Virtualization Failsafe

Because virtual machine detection is a big part of anti-honeypot techniques, some

botnets might avoid collection despite best efforts. The honeynet should be able to

compensate for this.

10. Automated Centralized Malware and Data Collection

Even in a moderately sized honeynet, there will be much data to be collected. Network

statistics and malware are arguably most important. The honeynet should have the

ability to capture data from multiple sources and store it in an organized fashion.
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B. Architecture

Fig. 1. Honeynet Architecture

The architecture for the honeynet is shown in Figure 1. It consists of three main

sections: collection, testing, and control.

1. Collection

The collection section is the heart of the honeynet. It contains three different types of

honeypots: VM high-interaction, low-interaction, and non-VM high-interaction. The

variance in platform provides a way to capture binaries that have virtual machine

detection that has not yet been defeated. Because low-interaction honeypots require

less maintenance, they provide a collection platform that can be run continuously.

Nepenthes [4] is chosen for the low-interaction honeypot because of its ease of use

and its compatibility with other Honeynet Project tools. Because Microsoft Windows

is more frequently targeted by bots, Windows XP with service pack 2 is the operating
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system of choice for both the non-virtual honeypot and the majority of the virtual

honeypots. The remainder of the operating systems consist of an even split of Linux

Debian based and RPM based systems.

The virtual honeypots utilize an existing patch that changes the branding in

VMware to more common device and driver names [32]. Assuming that botnet code

would be looking for specific values (”VMware”), making simple changes should be

sufficient to thwart bot tests, where a flesh-and-blood attacker might not be so easily

fooled.

2. Testing

The testing environment is isolated on a separate virtual local area network (VLAN)

to avoid secondary infections from honeypots. A virtual machine with multiple guests,

designated as spies, is the principal system for testing. A fresh operating system image

can be loaded into the spy, along with a copy of the botnet binary. Two other systems

exist in the testing VLAN, one a victim that exists solely to be infected, and the other

plays the role of the command and control server. The server runs both an IRC and

a HTTP server in order to interact with the bot client. One assumption here is that

the botnet utilizes either the IRC or HTTP protocol. As the bot begins to make

contacts, traffic is redirected to either the server or the victim based on protocol.

If no meaningful communication is established, the controller will erase the test

machine and start over, remembering the previous traffic redirections and reversing

them. The goal here is two fold, to learn more about the infection process, including

any initiation procedures, and to learn how the bot interacts with the C&C server.

This is similar to the approach used in [52]; the difference is that their test environ-

ment does not include a victim host. The server will attempt to communicate with

the bot based on information stored in the database. If the bot self-destructs, the
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controller will reset the test machine and the server will try different responses until

its database is exhausted.

3. Control

The two prominent parts of the control section are the controller and the firewall. The

controller is responsible for managing the honeynet as a whole. The firewall controls

the flow of data both in and out of the honeynet.

The controller is responsible for data collection, one of the most important parts

of the honeynet. Because there are three different types of honeypots, multiple col-

lection methods are needed to automatically extract bot binaries from each different

type of system. Sebek is used for collection purposes on both virtualized and non-

virtualized honeypots. Because of Sebek detection however, one virtual honeypot

utilizes a different collection scheme.

In this case, the virtual machine is shut down at a specified interval. The virtual

machine image is then compared to a clean image, utilizing a whitelist to capture

common system log changes. The remaining files are collected for testing. With the

low interaction honeypots, a simple script captures malware at scheduled intervals.

Finally, data is also collected from the firewall. All data is routed to the database,

running MySQL.

The controller is also responsible for the general maintenance of all systems.

Both virtual and non-virtual machines are rebooted at timed intervals and are reim-

aged with clean copies of their operating systems. With non-virtual systems this

is accomplished with the use of an administrative operating system on a separate

partition.

The firewall performs several tasks, most of which deal with filtering and blocking

traffic. The firewall also redirects all domain name server (DNS) traffic to the internal
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DNS. It is the firewall that produces the efficiency of the honeynet.

In [52], the uniqueness question was dealt with by disabling the download capac-

ity of the low-interaction honeypot Nepenthes, and using an independent download

station. The experiment also included virtual high-interaction honeypots, although

Nepenthes was the primary malware collection platform. Unfortunately, the issues of

reoccurring downloads in the virtual honeypots was never addressed.

The honeyfarm GQ [13] deals with this problem by utilizing two different types

of filtering. The first filter blocks packets that can positively be identified as having

been seen before by the first packet. The second involved using a replay proxy [14]

to continue communication with inbound traffic where more packets are needed to

determine whether the traffic is new. Unique traffic is then played back to a honeypot

and the session is transferred.

While GQ’s solution is novel, it is much more than what is required for a honeynet

designed to handle a class C network. However, a simplification of the idea would be

productive, monitoring incoming traffic to a honeypot and resetting the connection

if it can be determined that the attack has already been stored. While the idea

of dropping traffic is hardly novel, traditionally in honeynets the inbound traffic is

unhindered to allow the greatest amount of infection, while constraints are placed on

outbound packets.

The firewall also applies constraints to outbound traffic, but the principal means

of contraint is not connection counting like Honeywall. Snort inline is the principal

means of constraining traffic, converting known malicious traffic to non-malicious.

The firewall does utilize its own form of connection counting: if the firewall counts

the number of outbound connections per minute exceeding a certain threshold, the

number of connections will be throttled.
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CHAPTER VI

PROPOSED IMPLEMENTATION

The proposed implementation of the work takes place in four phases. The phased

implementation is designed to allow incremental testing. In the first phase, the hon-

eynets are deployed with a preconfigured controller and firewall. The customized

controller is developed in the second phase. Phase three adds the the testing plat-

form. In phase four, the system is modified to accept noncontiguous and external

network connections. A proof of concept was completed that contains a proof of

concept that contains partial elements of the first and second phases. See Appendix

A.
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CHAPTER VII

FUTURE WORK

At the time of writing, phase one has been implemented but not tested. The next

step is to test phase one and continue through with development and test through

the proposed implementation. There are also two additional tools that currently have

not been evaluated but their descriptions look promising. The first is CWSandbox.

This is a commercial tool that creates a simulated malware analysis environment.

The second is botsnoopd, a daemon that spies on botnets. The tool utilizes IRC,

HTTP, and P2P via WASTE. Note that this tool is not publicly available, but can

be obtained by those who have sufficient credentials in the security community.
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CHAPTER VIII

CONCLUSION

In order for a honeynet to be able to retain efficiency and deal with modern anti-

honeypot techniques, it must utilize virtualization. Therefore, it must be able to

defeat virtual machine detection. In order to deal with all contingencies, it should

have a non-virtual honeypot within the network. Sebek is not a must for collection

management, but if it is used, steps must be taken to ensure that it is not detected.

Outbound connections must be flexible enough to allow connection to C&C servers

and fulfill any simple connection verification tests while still disallowing external

attacks.

An efficient-botnet centric honeynet solution is certainly attainable. Unfortu-

nately, attackers and defenders are caught up in a continually escalating arms race,

which means that any viable solution is only effective for a short period before means

are found to overcome it. One of the works referenced in this paper is a fake issue

of Phrack magazine, which contained not only hacking, but some pontificating [11],

claiming that the Honeynet Project was built upon flawed premises:

1. HoneyPot Technology may be openly shared and remain effective.

2. HoneyPot Technology may be deployed in a hostile environment, and remain

undetected.

3. Even if detected, Attackers will not target the honeypot or its operators for

further exploitation.

While it is näive to think that security professionals are unaware of these issues

or are unprepared to deal with them, the first one specifically seems to be a significant
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disadvantage. In many works, including this one, there is much speculation about

what the malware community is doing because the malware community does not

widely disseminate its doings. And then, because of the lack of information, research

create their own scenarios about what hackers may be doing, and in the process,

provide them with additional resources. This is a non-trivial problem, but it reminds

me of why the government has different security clearances and some government

information is classified. Sometimes the public does not need to know.
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APPENDIX A

PROOF OF CONCEPT

The experiment was executed in order to validate the viability of the design.

There are two main contributions to honeynets in this design. The first is in terms

of efficiency, and the second in productivity. Specifically, the experiment was de-

signed to show that honeynets can be more efficient by being selective in allowing

incoming traffic. Allowing all incoming traffic produces redundancy and is therefore

inefficient. It is also designed to show that virtualization failsafes are a necessary part

of honeynets today.

The test consisted on creating a closed network in which a ’victim’ machne was

subjected to various forms of malware as shown in Figure 2. The victim machine

was connected to two separate honeynets, one using ’standard’ configuration, and

one with enhancements based on the proposed design. Data was collected from the

honeynet, upon which conclusions were based.

Fig. 2. Test Network Layout
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The latest version of Honeywall [68] from the Honeynet Project was used as

the ’standard’ honeynet controller. Honeywall utilizes Snort inline with a standard

set of rules designed to restrict outbound traffic. It also includes a Sebek server for

collecting malware into a MySQL database. By contrast, the customized controller

also uses Snort inline, but emphasis was placed on inbound traffic. For simplicity’s

sake, outbound traffic filters were omitted.

The custom controller was designed to automatically generate rules based on

incoming network traffic, so that a honeynet would only be infected with the same

malware once. The initial plan was to use Honeycomb [34], a tool specially designed

to create Snort and Bro signatures. Unfortunately, Honeycomb requires exposure to

network traffic in order to train itself, which posed a problem. This issue was solved

by the creation of a far simpler signature generation tool, makesig. The tool uses a

libpcap trace to generate signatures for self-propagating malware that copies itself

to the host using FTP or TFTP. Packet data is extracted based on port data along

with packet sizes, which was based on previous observations. Using a timed interval,

makesig checks the trace file for packets that meet the pattern, and if the pattern is

matched, new rules are created, the trace file is flushed, and Snort inline is restarted

(See Figure 3).

The standard honeynet uses two virtual high-interaction honeypots. The custom

honeynet has both a virtual and a non-virtual high-interaction honeypot. VMWare

ESI Server 3i 3.5.0 was the virtualization platform used. All honeypots were running

Microsoft Windows SP 2. The malware was obtained from Offensive Computing [2].

Each honeynet was run on a separate IBM eServer xSeries 335, each with two

Intel Xeon 2.4 GHz processor, 2 GB of memory and two 73.4 GB hard drives. The

victim machine and the non-virtual honeypot were both Dell Optiplexes GX240 with

a Intel Pentium 4 1.6 GHz processor, 256 MB of memory and 20 GB of storage space.
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Fig. 3. Expanded Controller View

A Dell Powerconnect 2708 switch was used to connect all machines, utilizing multiple

VLANs to provide traffic separation.

During the course of the experiment it was observed that it took a long time

for self-propagating malware to actually infect the honeypots because they scanned

randomly for IP addresses within the Class A and Class B address space, rather than

starting with their local subnet. To speed up the process, a reverse NAT module

was added to each honeynet. The module was a short program written in C++

that ingored initial packets based on a specified count, then captured two packets
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and mapped them to the two internal honeypots, and forwarded them through the

controller. All subsequent packets were dropped. Resetting the reverse NAT module

also allowed the honeypots to be allowed to be infected multiple times. Each NAT

module was reset once, allowing the machine to be potentially infected with each

virus twice.

Twelve different malware samples were tested. Of the twelve, one signature was

generated, successfully preventing that honeynet from being infected with that mal-

ware again. Surprisingly, four of the samples would not run in a virtual environment.

In addition, there was no observed behavior at all on three of the samples in the test.

These are marked as N/A in Table II.

Table II. Number of Honeynet Infections

Standard Custom

Honeypot 1 Honeypot 2 Honeypot 1 Honeypot 2

1 2 2 1 1

2 N/A N/A N/A N/A

3 N/A N/A N/A N/A

4 0 0 0 0

5 0 0 0 2

6 N/A N/A N/A N/A

7 2 2 2 2

8 0 0 0 2

9 0 0 0 0

10 2 2 2 2

11 0 0 0 2

12 0 0 0 2



48

The results show a significant difference between the standard honeypot and

the custom one. Ideally, a honeynet should capture each malware sample one time.

Multiple collections is inefficient, and a failure to capture is unproductive. Based on

the results, efficiency and productivity are calculated using the equations below:

efficiency =
number of unique collections

number of total collections
(A.1)

productivity =
number of unique infections

number of unique collections
(A.2)

Table III. Honeypot Productivity and Efficiency

Honeynet Productivity Efficiency

Standard 25% 33%

Custom 39% 78%
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