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ABSTRACT

Historical Demography and Genetic Population Structure of the Blackfin Tuna (Thunnus

atlanticus) from the Northwest Atlantic Ocean and the Gulf of Mexico. (May 2009)

Brandon LaRoy Saxton, B.S., Texas A&M University - Galveston

Chair of Advisory Committee: Dr. Jaime Alvarado-Bremer

Little is known about the population structure and genetic variability of blackfin

tuna despite catch increases over the past 25 years. In this thesis, levels of genetic

variation contained in 323bp of the mitochondrial DNA (mtDNA) control region-I (CR-I)

and in six microsatellite loci were characterized for two regions: the Gulf of Mexico

(GoM) and the Northwest Atlantic. Large amounts of mtDNA diversity (h>0.99; =0.047)

were observed in both regions. Mismatch distribution analysis of the CR-I sequence

data, using a mutation rate of 1.6% Ma-1for scombroid fishes, indicate blackfin tuna

underwent population expansion about 1.4 Ma, a timeline concordant with the expansion

of other tunas and billfishes. Estimates of female effective population size were very

large at 7.8 million and 12.8 million individuals for the NW Atlantic and the GoM,

respectively.

Both mtDNA and six microsatellite loci were used to determine blackfin tuna

population structure. Microsatellite and mtDNA AMOVAs revealed significant

differentiation (msat st=0.01, p=0.006 and mtDNA st=0.01, p=0.049) between the GoM

and the NW Atlantic samples. Migration estimates using mtDNA data indicate
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that twice as many females enter the NW Atlantic from the GoM (346 

individuals/generation) than the opposite direction (150 individuals/generation). 

Migration estimates using microsatellite data were substantially smaller, with the Gulf 

receiving 7 individuals/generation and the NW Atlantic 4 individuals/generation. 

Finally, low levels of genetic differentiation using microsatellite data have been 

reported in other highly abundant marine fishes, which have been attributed to 

homoplasy in allele size.  To test this hypothesis, the allele frequency distributions of 

blackfin and yellowfin tuna at six microsatellite loci were compared.  The distances 

between species were surprisingly small (Da=4.0%, (�µ)²=1.08),  with a large degree of 

similarity in frequency distributions at four loci.  The comparison of bigeye tuna at two 

microsatellite loci revealed additional inter-specific similarities.  A mutation rate for 

these loci was estimated by modifying an equation used to estimate time since 

divergence.  Microsatellites in tunas appear to evolve at a rate (4.3x10-7 Ma-1) that is two 

orders of magnitude slower than other fishes (1x10-5 Ma-1).  Accordingly, microsatellite 

allele size similarities are plesiomorphic and not due to homoplasy. 
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CHAPTER I 
 

INTRODUCTION 
 

Blackfin tuna, Thunnus atlanticus, is a highly migratory, tuna that is present in 

pelagic waters of the western Atlantic (Adams 2004).  Their range includes the entire 

Gulf of Mexico and the Caribbean Sea, and in the Atlantic from Martha’s Vineyard off 

the coast of the U.S. (40oN) to Rio de Janeiro, Brazil (22oS), although it has been 

recorded as far as 31oS (Freire et al. 2005) (Fig. 1-1).  Blackfin tuna reach a maximum 

size of 108cm in total length (TL), with males typically being larger than females when 

they attain sexual maturity around age 2 (Adams 2004; Freire et al. 2005; Gothreaux 

2007).  Around Florida and in the Gulf of Mexico, spawning occurs year round far 

offshore over epipelagic waters (Collette 1983).  By contrast, spawning off northeastern 

Brazil occurs year round with a possible peak in December (Freire et al. 2005; Vieira et 

al. 2005). 

 

 

 

 

 
 
 
 
 
 
Figure 1-1.  Geographic distribution of T. atlanticus, based on a map from the FAO species 
catalogue (Collette 1983).  
____________ 
This thesis follows the style of Journal of Heredity. 
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Blackfin tuna are members of the tropical subgenus Neothunnus; along with 

yellowfin tuna, Thunnus albacares, and longtail tuna, T. tonggol (Collette 1979).  

Internal synapomorphies of Neothunnus include the presence of central heat exchangers, 

multiple modifications in the vertebral column, a post cardinal vein that joins with the 

right cutaneous vein, and the ventral surface of the liver contains no striations with no 

vascular cones present on the dorsal surface (Gibbs and Collette 1967; Collette 1979).  

Phylogenetic analyses using mitochondrial DNA (mtDNA) control region (CR) 

sequence data confirms the very close relationship of the three Neothunnus species 

(Alvarado Bremer et al. 1997). 

Blackfin tuna is subject to commercial and recreational exploitation and no 

management regulations are currently in place by the International Commission for the 

Conservation of Atlantic Tunas (ICCAT)   (ICCAT 2008).  Annual landings of blackfin 

tuna between 1980-2004 throughout all regions averaged 2,929 metric tons (MT).  

Although landings are characterized by substantial inter-annual variability, they have 

increased gradually over past 25-year period (Fig. 1-2) (ICCAT 2006).  Blackfin tuna are 

caught with various types of gear and support various fisheries.  For instance, in the US, 

blackfin tuna support important recreational fisheries in the Gulf of Mexico and 

northwestern Atlantic.  In Cuba and the Lesser Antilles, blackfin tuna is captured 

primarily using hook and line as by-catch of skipjack tuna fishery (Collette 1983; 

Luckhurst et al. 2001).  In Brazil, blackfin tuna are by-catch of the longline fisheries 

targeting other large pelagic species.  However, in the Rio Grande do Norte state there is 

an artisanal handline fishery, which is economically important to this region (Freire et al. 
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ICCAT Estimated Blackfin Tuna Landings
By All Countries 

(1980-2004)
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2005).  With such diverse fisheries data, correct estimates of abundance are difficult.  

However, with the imminent decline of other more valuable tuna stocks because of 

overfishing (Myers and Worm 2003), heavier fishing pressure could be placed on 

blackfin tuna in the near future. 

 

 

 

 

 

 

 

 

 

Figure 1-2.  ICCAT reported numbers of T. atlanticus over a 25 year period based from data in 
SMT-Table-1 (ICCAT 2006).  Regression line (red) represents the average increase in the number of 
landings over the time period. 
 
 
 

Fisheries management involves an assessment of the fishery’s health derived 

from estimates of abundance, recruitment, mortality, age structure, growth rates, and the 

reproductive structure, or the sex ratio and reproductive biomass, of the stock (Gulland 

1983; Cooper 2006).  Here, a stock corresponds to an intraspecific group of randomly 

mating individuals with temporal and spatial integrity (Ward 2000).  Stock resolution is 

necessary for management because each stock is affected by it own set of environmental 
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conditions, and the goal for management should be to sustain long-term fisheries and 

reduce the risk of depletion (Laikre et al. 2005).  Resolving stock structure can be 

accomplished through various means, including tagging studies, otolith chemistry, and 

genetic analyses (Alvarado Bremer 1998; Carlsson et al. 2004; Block et al. 2005; Rooker 

et al. 2008b; Rooker et al. 2008a; Arkhipkin et al. 2009).  This study will assess the 

genetic stock structure and the levels of genetic variation of blackfin tuna in the Gulf of 

Mexico and Northwest Atlantic Ocean.  Alvarado Bremer et al. (1997) characterized the 

levels of variation in the mtDNA control region for a few individuals with the purpose of 

determining its phylogenetic relatedness relative to other tunas.  By contrast, this study 

will characterize variation of a large number of individuals at both the mitochondrial and 

nuclear genomes.  The present study is unique in that it seeks to characterize the genetic 

population structure before the species suffers dramatic reductions in population size.  

Accordingly, the information generated could be used as baseline data to aid managers 

monitoring blackfin tuna populations and prevent future losses of genetic variation 

(Ward 2000). 

The remainder of this thesis consists of three chapters.  In Chapter II the 

historical demography of blackfin tuna is reconstructed by characterizing 322 base pairs 

(bp) of sequence of the mitochondrial DNA (mtDNA) control region I (CR-I), also 

known as the left domain of the d-loop region. These mtDNA CR-I sequences are used 

in Chapter III to test whether samples blackfin tuna from the Gulf of Mexico and the 

NW Atlantic regions correspond to the same population.  In addition, six nuclear 

microsatellite loci used previously in yellowfin tuna (T. albacares) and Pacific bluefin 
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tuna (T. orientalis) (Grewe and Hampton 1998; Takagi et al. 1999; Appleyard et al. 

2001). Microsatellites were used because they are assumed to evolve more rapidly than 

the mtDNA CR-I, and thus may better resolve the genetic population structure of 

blackfin tuna.  Chapter IV estimates the genetic distance between two tuna sibling 

species by comparing mitochondrial and microsatellite data of blackfin tuna (this study) 

against the corresponding data of yellowfin tuna (Farnham 2003). These comparisons 

are used to estimate the mutation rates of the mtDNA CR-I and microsatellites by 

employing estimated divergence time of blackfin tuna and yellowfin tuna.  Finally, the 

conclusions of this thesis are given in Chapter V. 
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CHAPTER II 
 

HISTORICAL DEMOGRAPHY OF BLACKFIN TUNA 
  

(Thunnus atlanticus) 
 

Introduction 

 The gradual increase in the total catch (MT) of blackfin tuna during the past 25 

years (see Chapter I) is likely to continue given the dramatic reductions in biomass of 

other tunas, and the increase in demand of fish products worldwide (Pauly et al. 2000).  

Most often ‘new’ or expanded fisheries are exploited without possessing relevant 

biological information necessary to implement sound management practices.  For 

blackfin tuna in particular, factors affecting recruitment, current and historical levels of 

genetic variability and stock structure (see Chapter III) are all unresolved.  

Information on the current levels of genetic variation within- and among-

populations (population structure), and an understanding of the historical demographic 

factors that may explain the distribution of this variation, when analyzed together, could 

become valuable tools for conservation.  Specifically, assessments of the current levels 

of genetic variation could be employed in the future as benchmark data to assess the 

impact of fisheries, particularly if the population experiences severe reductions in 

population size.  Similarly, historical demography data may provide information on 

whether a population experienced recent or ancient bottlenecks or whether that 

population is at equilibrium or undergoing growth or decline (Slatkin and Hudson 1991; 

Rogers and Harpending 1992).  Accordingly, these data could also be used to predict 

future rates of loss as a result of fluctuations in population size caused by natural or 
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anthropogenic activities, or the combination of both and could be used for future 

management purposes.  

The analysis of mismatch distributions and neutrality tests are tools that can be 

used to give insight into a population’s past.  Mismatch distribution consists of the 

tabulation of the number of pairwise differences among all DNA sequences in a sample, 

with the shape of the distribution affected by the demographic history of a population 

(Rogers and Harpending 1992).  Populations that have been stationary for a long time 

tend to have multimodal distributions, often described as ragged or erratic, whereas 

populations that experienced rapid expansion typically have smooth uni-modal Poisson-

like distributions. Because mtDNA is not recombined any new mutations are assumed to 

lead to the increase in the number of pairwise differences.  Larger more stable 

populations have a wider range in the number of pairwise differences that occur in more 

similar frequencies, generating the multimodal distribution.  Populations having 

experienced rapid expansion have a smaller range with a number of pairwise differences 

occurring in a higher frequency with others varying around the mean, therefore creating 

the wave-like distribution.  In addition, the smaller the initial population the steeper the 

leading face of the wave should be.  The position of this mode, or �, reflects the amount 

of time since expansion under the assumption that mutation rate is constant (Li 1977; 

Rogers and Harpending 1992; Harpending 1994).  In some cases the distribution is 

indicative of an ancient bottleneck followed by a rapid expansion, whereas others, 

characterized by haplotypes separated by one or two steps, resulting in a star-like 
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phylogeny, indicate a more recent population expansion (Slatkin and Hudson 1991; 

Alvarado Bremer et al. 2005a).   

Estimates of the demographic parameters �0 (effective population size before 

expansion event) and �1 (effective population size after expansion event) can help 

explain levels of genetic differentiation between sub-populations (Rogers and 

Harpending 1992).  For instance, using mtDNA data Ely et al. (2005) found that the 

signal of genetic differentiation between Atlantic and Pacific samples of yellowfin tuna 

was extremely low and absent for skipjack tuna.  The corresponding reduction and 

absence in the signal of genetic partitioning between oceans, was attributed to the 

extremely large female effective population size (Nef) of yellowfin tuna, and the even 

larger Nef of skipjack tuna, as indicated by their very high values of �1, as the effects of 

random genetic drift on the mtDNA genome would be minimized. 

One limitation of employing mismatch distributions to reconstruct the 

demographic history of populations is that the associated tests are extremely 

conservative (Ramos-Onsins and Rozas 2002).  Neutrality tests offer an alternative 

approach to infer such histories especially when studying neutral segments of DNA, 

such as the mtDNA control region (CR-I) (Tajima 1989; Harpending et al. 1993; Fu 

1997; Ramos-Onsins and Rozas 2002).  Ramos-Onsins and Rozas (2002) compared the 

statistical power of several neutrality test statistics and found that under a variety of 

scenarios Fu’s Fs, which uses information from haplotype distribution, and Ramos-

Onsins and Rozas R2, which uses the difference between singleton sites and the average 

number of nucleotide differences, had the highest power to detect historical population 
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growth.  They provide evidence that Fu’s Fs test performs better with larger sample 

sizes, whereas their R2 was far superior for small sample sizes, whereas Tajima’s D 

(Tajima 1989) and the raggedness index (Harpending et al. 1993) performed at much 

lower levels. 

The demographic history of the mtDNA CR has been characterized for several 

highly migratory pelagic fishes, including swordfish (Xiphias gladius), sailfish 

(Istiophorus platypterus), bluefin tuna (Thunnus thynnus), skipjack tuna, and yellowfin 

tuna (Farnham 2003; Alvarado Bremer et al. 2005a; Ely et al. 2005; Bangma 2006).  

These studies contain useful comparative data for the interpretation of blackfin tuna 

demographic history.  Data for Atlantic yellowfin tuna is particularly appropriate, as this 

species is very closely related to blackfin tuna (Sharp and Pirages 1978; Alvarado 

Bremer et al. 1997).  The mismatch distribution of yellowfin tuna mtDNA CR-I 

generates a smooth bell-shaped and a statistically significant Fu’s Fs test (Farnham 

2003), both of which are indicative of population expansion.  Because of the close 

phylogenetic relationship between blackfin tuna and yellowfin tuna, it could be expected 

to possess similar demographic signatures of expansion.  However, these two species 

have distinct geographic distributions and environmental limitations, with yellowfin tuna 

being cosmopolitan and blackfin tuna restricted to the NW Atlantic and waters above 

20oC, and thus it is likely that these species experienced different paleoceanographic 

conditions.  Accordingly, the Atlantic populations may have very distinct demographic 

histories and the timeline of expansion events may not coincide.  
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In this chapter, a 323 base pair sequence from the hypervariable mtDNA CR-I 

was used to reconstruct the historical demography of blackfin tuna.  The data was used 

to test for evidence of past population expansion, and to estimate historical effective 

female population sizes.  Results were compared against the demographic signal of 

yellowfin tuna and other highly migratory pelagic species. 

 

Methods 

In total 163 blackfin tuna specimens was collected in the Gulf of Mexico and the 

NW Atlantic.  The Gulf of Mexico sample (GoM) consisted of adults (n=54) and larvae 

(n=74) collected between 2001-2007.  The NW Atlantic sample consisted of adults (NW 

Atl, n=35) collected between 1994-1995 (Table 2-1).  Tissue samples from Gulf of 

Mexico adults consisted of axial muscle that was initially frozen and then stored in a 

70% ethanol solution.  Tissue from the NW Atlantic consisted of heart or spleen 

preserved in SDS-Urea.  Adult samples from the Gulf of Mexico and the NW Atlantic 

were collected through recreational fisheries.  Larvae from several species of tuna were 

collected from 2005-2007 in the Gulf of Mexico using neuston nets (500�m and 1200�m 

mesh) towed just below the surface at 2.5 knots for 10 minutes at a time (Tidwell et al. 

2008).  Larvae were preserved in 70% ethanol and each individual was assigned a 

unique identification number (Appendix A).  Seven tows, consisting of 20 individual 

larvae, were randomly selected and were forensically identified in the laboratory (see 

below for details). 
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Table 2-1.  Sample data of blackfin tuna, grouped by region of capture from the NW Atlantic 
(NW Atl) and the Gulf of Mexico (GoM).  (GoML)= Larval samples from the Gulf of Mexico.  
Location data for the Charleston sample could not be identified so region of capture was used. 

Group Sample Year n Tissue Type Location 

NW Atl 
 n=35 

Charleston 1994 18 Adult North Atlantic 
Islamorada 1994 16 Adult 26 N, 80 W 
Bermuda 1995 1 Adult 35 N, 65 W 

GoM 
n=125 

Freeport 
2001 17 Adult 27 N, 94 W 
2002 1 Adult 27 N, 94 W 

Venice 
2002 19 Adult 28 N, 94 W 
2003 18 Adult 28 N, 94 W 

GoML 
2005 3 Larvae 27-28 N, 88-94 W 
2006 46 Larvae 27-28 N, 88-94 W 
2007 25 Larvae 27-28 N, 88-94 W 

 

  

DNA extraction protocols for the various preservation methods followed those 

described by Farnham (2003) (Appendix B).  A segment of the control region (CR-I) 

was amplified using fish specific primers CSBD-H and L15998 (Alvarado Bremer 

1994).  The DNA sequences of successful amplicons were then determined using an ABI 

Prism™ 310 Genetic Analyzer, and an ABI 3130™ Genetic Analyzer.  Details of DNA 

extractions, PCR conditions, and sequencing methods are given in Appendix C.  

Multiple sequence alignments were performed using CLUSTAL (Thompson et al. 1994; 

Higgins et al. 1996) implemented in MEGA 4.0 (Tamura et al. 2007) followed by visual 

inspection for optimization.  Previously characterized CR-I sequences of yellowfin tuna, 

longtail tuna (outgroups), and blackfin tuna (Alvarado Bremer et al. 1997) were used 

during the alignment process.  Two yellowfin and two bluefin tuna larvae were 

identified, and removed from further analyses. 

After additional optimizations of the mtDNA CR-I alignment without the 

outgroup, standard diversity indices including, number of segregating sites (S), 
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nucleotide diversity (�), and haplotypic diversity (h) were estimated with ARLEQUIN 

3.11 (Excoffier et al. 2005).  The best evolutionary model to account for the observed 

substitution pattern in blackfin tuna was estimated using MODELTEST 3.7 (Posada and 

Crandall 1998).  The HKY+I+G distance model, with �= 0.70 was selected, and this 

gamma value was then used in ARLEQUIN to calculate demographic parameters (see 

below).  Gene-trees were generated in MEGA 4.0 (Tamura et al. 2007) using neighbor-

joining (NJ) (Saitou and Nei 1987) with the pair-wise deletion option and Tamura-Nei 

distances since MEGA 4.0 does not support the HKY+I+G distance model.  Trees were 

then examined for pattern of phylogeographic association of blackfin tuna haplotypes.  

Only forensically identified blackfin tuna adults (n=89) and larvae (n=74) were included 

in this tree, which was rooted using yellowfin tuna and longtail tuna sequences as 

outgroups. 

The demographic history of blackfin tuna population was reconstructed using 

two approaches.  First, an un-rooted NJ tree was generated excluding outgroups to 

determine the shape of the tree topology, where a star phylogeny would be indicative of 

a recent population expansion; a second unrooted NJ tree was created using yellowfin 

tuna data (n=159) generated by Farnham (2003) and used in comparison with blackfin 

tuna.  Second, a mismatch distribution and the population parameters �, �0 and �1, were 

estimated using ARLEQUIN 3.11.  Estimates of effective female population size (Nef) 

prior and after expansion were estimated using �0 and �1, respectively.  In addition, the 

theta estimates derived from segregating sites (�s), were calculated using MIGRATE 2.0 

(Beerli 1997-2004; Beerli and Felsenstein 1999; Beerli and Felsenstein 2001) that 
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reports the maximum likelihood (ML) estimators of the posterior distribution of the 

effective population sizes, under the assumption that migration rates remained constant 

over time.  The �s parameter was estimated using Markov chain Monte Carlo (MCMC) 

approaches.  This approach tends to yield better results when the start parameters are 

close to the ML values; which can be accomplished by running several short chains and 

using the result of the last chain as a starting point (Beerli 1997-2004).  Ten short chains 

with 500 recorded steps per chain and three long chains with 5,000 recorded steps per 

chain were run with a burn-in of 10,000 trees for each chain. 

Time since expansion was estimated by substituting the estimated � value in the 

formula �=2�t, where � is the mutation rate per sequence per generation and t is time 

(Harpending 1994).  In this study we employed a slow-paced molecular clock rate for 

scombrid fishes of about 1.6% per million years (Alvarado Bremer et al. 2005a) and the 

faster paced teleost rate of 4.9% Ma-1 (Donaldson and Wilson Jr. 1999; Tringali et al. 

1999), and a mean generation time of 2 years, the age when 50% of the females are 

sexually mature.  

Statistical tests of neutrality were carried out using Fu’s Fs (Bailey et al. 1997) 

and Ramos-Onsins and Rozas’ R2 statistics (Ramos-Onsins and Rozas 2002) in DNASP 

4.5 (Rozas et al. 2003).  An excess of recent mutations yields negative Fs values, and 

therefore large negative values for a selectively neutral segment are likely the result of 

population expansion as opposed to selection (Bailey et al. 1997).  
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Results 

Phylogenetic Analysis 

A total of 323 base pairs of the mtDNA CR-I was characterized for 163 adult and 

larval blackfin tuna.  Of the 155 blackfin tuna haplotypes identified, the majority 

occurred once and only eight repeated twice.  Haplotype tree and frequency tables are 

found in Appendix A.  Consequently, the values of gene or haplotypic diversity 

approached unity (h>0.995), and thus indicative of the high probability that any pair of 

haplotypes drawn randomly from any sample will be different (Table 2-2).  In addition, 

all groups showed identical values of nucleotide diversity (π=0.047).  Accordingly, any 

random pair of haplotypes differs by about 5%, or roughly 15 nucleotide differences 

between the pair (k�15).  The neighbor joining (NJ) tree generated in MEGA 4.0 (see 

Appendix A) that reconstructed the phenetic relationship of lineages revealed no obvious 

pattern of phylogeographic association.  Haplotypes from all regions were interspersed 

throughout the tree, however small pockets of haplotype clustering, mostly in the Gulf of 

Mexico sample, were observed; possibly attributing to any observed differentiation 

between the Gulf of Mexico and NW Atlantic samples (Chapter III).  Accordingly, a test 

for isolation by distance (IBD) conducted for the regions of capture listed above (see 

Methods), was not significant (See Chapter III for details).  Based on these results, 

samples were pooled within-region, resulting in two regional samples, namely GoM 

(n=128) and NW Atl (n= 35).  However, when appropriate, analyses were conducted for 

the total pooled sample (n=163).  

 



15 
 

  

Table 2-2. Summary of diversity indices for blackfin tuna within region of capture for a 323 bp 
segment of the mitochondrial control region I.  n= number of samples, M= number of haplotypes, S= 
number of segregating sites, h= haplotypic diversity, �= nucleotide diversity, k= mean number of 
pairwise differences.  Values in parentheses are standard deviations. 

Population n M S h � k  
NW Atlantic 35 32 61 0.995 (0.008) 0.047 (0.02) 14.97 (6.86) 

Gulf of Mexico 128 123 103 0.999 (0.001) 0.047 (0.02) 15.18 (6.83) 
 

 

Mismatch Distribution and Population Expansion  

 Historical demographic parameters and neutrality tests were analyzed separately 

by region (Gulf of Mexico, and NW Atlantic).  Separate analyses are justified since both 

mtDNA CR-I and microsatellites data show a shallow, but significant signal of genetic 

differentiation between regions (Chapter III).  Values of Fu’s Fs test were large and 

negative, providing statistically significant evidence of rapid population expansion for 

both samples (Table 2-3). The R2 statistic failed to confirm these results, however, that 

test is more suitable for small sample sizes (n<20) and when the number of segregating 

sites is small (S<50).  Estimates of sudden expansion are given in Table 2-4, and the 

mismatch distributions are shown in Fig. 2-1.  In all cases, the curves are smooth and 

unimodal. The resulting NJ tree topology of the blackfin tuna CR-I haplotypes (Figure 2-

2a) has characteristics of a species having undergone rapid population expansion, but is 

not a true star-phylogeny such as that of yellowfin tuna (Figure 2-2b).  Furthermore, the 

distance between any two blackfin tuna haplotypes is nearly twice as long as the average 

distance between any two yellowfin tuna haplotypes. 
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Table 2-3.  Estimates of selective neutrality tests as estimated in DnaSP with blackfin tuna CR- 
I sequences.  Values in parentheses are p-values for the tests.  Sample designations are the same 
as previously used.  Both statistics test the null hypothesis of a population in neutrality. 

  NW Atlantic Gulf of Mexico  
Fu's Fs -16.530 (0.000) -24.070 (0.000)  

R2 0.082 (0.154) 0.057 (0.098)  
 

 

Table 2-4.  Estimates of historical demographic parameters for blackfin tuna samples.  �= 
units of mutational time before the present, �0= diversity before expansion, and �1= diversity 
after expansion.  95% confidence intervals (CI) in parentheses.   

Population �0 �1 � 

NW Atlantic 0.000 (0.000, 1.860) 592.500 (181.410, Inf.) 12.436 (9.460, 13.380) 

Gulf of Mexico 0.000 (0.000, 1.930) 741.250 (363.750, Inf.) 14.379 (12.250, 15.390) 
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Figure 2-1. Mismatch distributions for blackfin tuna samples. (a) North West Atlantic samples, (b) 
Gulf of Mexico samples.  Distributions generated using mtDNA CR-I data in ARLEQUIN with bars 
being the observed number of pairwise differences between sequences, and the yellow line the 
expected number of pairwise differences between the sequences within samples. 
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Figure 2-1. Continued 
 
 
 
 

 
 
Figure 2-2. Unrooted NJ trees showing the phenetic relationship of control region I haplotypes (h) of 
a) blackfin tuna (n=163, h=155), and b) yellowfin tuna (n=159, h=155).  Yellowfin tuna sequences 
are from Farnham (2003).  Trees are drawn to the same scale. 
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Historical demography estimates from the sudden expansion model are listed in 

Table 2-4.  Based on the corresponding values of τ and divergence rate for the mtDNA 

CR-I of about 1.6% Ma-1, and a generation time of 2 years (see Materials and Methods), 

the Gulf of Mexico blackfin tuna population expanded at about 1.4 Ma. The estimate of 

expansion for the NW Atlantic is slightly more recent, at about 1.2 Ma. Using the faster 

teleost rate of 4.9% Ma-1 yielded proportionately younger expansion times, with 

expansion in the Gulf of Mexico at 788 ka and in the NW Atlantic at 600 ka.  It should 

be noted that there is substantial overlap in the respective upper and lower limits of τ for 

the NW Atlantic and the Gulf of Mexico (Table 2-4).  This difference in expansion times 

in between the Gulf of Mexico and the NW Atlantic are tentative at best. The estimates 

of female effective population size (Nef) before expansion event (�0) ranged from zero to 

several thousands of fish. The estimates of Nef after expansion event (�1) at the 1.6% rate 

are extremely large at about 72 million females for the Gulf of Mexico and 57 million 

females for the NW Atlantic.  Again, the estimates using the faster rate of 4.9% are 

about one third those reported using the slower rate of 1.6%.  Nef
 values obtained with 

ML were substantially smaller at about 12.8 and 7.8 million females respectively for the 

Gulf of Mexico and the NW Atlantic, and a third of that size if the 4.9% Ma-1 rate is 

adopted (See Table 2-5).  The samples used in this study are assumed to be 

representative of both the NW Atlantic and the Gulf of Mexico populations.  At the level 

of blackfin mtDNA large amounts of genetic diversity were observed between the adults 

and the larval samples.  Furthermore, both the NW Atlantic and Gulf of Mexico samples 



19 
 

  

yielded similarly large values of haplotypic diversity and nucleotide diversity regardless 

of sample size. 

 

Table 2-5.  Estimates of female effective population size (Nef) for the Gulf of Mexico and NW 
Atlantic samples using the 1.6% and 4.9% rates for �1, �s.  Reported values are in millions of 
individual females. 

Sample Rate �1 �s 

NW Atlantic 1.60% 57 million 7.8 million 
4.90% 19 million 2.6 million 

Gulf of Mexico 
1.60% 72 million 12.8 million 
4.90% 24 million 4.3 million 

 

 

Effects of Sample Size on Mismatch Distribution Analysis and Neutrality 

 Historical demography estimates and in particular neutrality tests are different 

between the Gulf of Mexico and the NW Atlantic samples (see tables 2-3, and 2-4).  The 

Gulf of Mexico sample with its smooth, unimodal mismatch distribution conforms to the 

expectation of a population that expanded rapidly.  By contrast, the NW Atlantic sample 

is characterized by a more ragged distribution (Figure 2-1).  While this distribution may 

indeed represent the demographic signal of the NW Atlantic population, it is possible 

that the observed differences between regions are due to sampling error.  To test the 

effect of small sample sizes on the shape of mismatch distributions, three replicate sets 

of 35 haplotypes were selected without replacement from the various cohorts from the 

Gulf of Mexico sample utilizing a random number generator.  Mismatch distributions 

were estimated in ARLEQUIN, and neutrality tests were calculated for each replicate in 

DNASP.  Results are given in Table 2-6.  Mismatch graphs were less smooth in the 

replicate sets (Fig. 2-3) than for the entire sample from the Gulf of Mexico, and one of 
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the replicates (Replicate 1) yielded a statistically significant value for the R2 statistic, in 

contrast with replicates 2 and 3 that yielded non-significant values.  The � estimates for 

replicates 1 and 3 were similar (�1= 14.836, and �3= 14.355), whereas the value for 

replicate 2 was lower (�= 13.467) (Table 2-6).  The results from the replicate sets 

indicate that the signal observed in the NW Atlantic sample could be generated by its 

small sample size.  

 

Table 2-6.  Neutrality test statistics and tau values of the Gulf of Mexico replicates as 
estimated in DnaSP.  Values in parentheses are p-values 

  Replicate 1 Replicate 2 Replicate 3 
Fu's Fs -23.330 (0.000) -19.10 (0.000) -23.837 (0.000) 

R2 0.070 (0.044) 0.081 (0.126) 0.078 (0.089) 
� 14.836     13.467 14.355 
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Figure 2-3. Mismatch distribution analysis of 3 random replicate sets, using the Gulf of Mexico 
sample. (a) Replicate 1, (b) Replicate 2, (c) Replicate 3.  Distributions generated using mtDNA CR-I 
data in ARLEQUIN with bars being the observed number of pairwise differences between 
sequences and the line being the simulated number of pairwise differences between the sequences 
within samples. 
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Figure 2-3. Continued 
 

 

Discussion 

Population Expansion 

Blackfin tuna mtDNA CR-I contains extremely large values of diversity with 

mean nucleotide differences between individual haplotypes larger than any other tuna 

characterized so far and rivaled only by skipjack tuna (Table 2-2).  Both the Gulf of 

Mexico and the NW Atlantic samples yielded similarly large values of haplotypic 

diversity and the same value of nucleotide diversity despite the size discrepancy between 
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the two samples, both sample sets.  Thus, estimates of CR-I diversity are only marginally 

influenced by the sample sizes employed in this study.  

Blackfin tuna in the Gulf of Mexico and the NW Atlantic appears to have 

experienced a major population expansion at about 1.4 Ma and 1.2 Ma, respectively.  

Support for a rapid population expansion, in both from a very small population, in both 

samples, is supported by the overall mismatch distribution of pairwise differences with 

the characteristic bell-shaped curve (Figures 2-1 and 2-3), by the �0 estimates (Table 2-

4), and by statistically significant tests indicating departures from neutrality (Slatkin and 

Hudson 1991; Harpending et al. 1993; Harpending 1994; Fu 1997; Ramos-Onsins and 

Rozas 2002).  While other forces, such as a selective sweep, could potentially generate 

similar distributions, however the mitochondrial control region is most likely neutral 

exhibiting very high levels of nucleotide diversity, making this alternative explanation 

unlikely (Farnham 2003).  By contrast, the NW Atlantic sample mismatch distribution 

displays characteristics that are different than that of the Gulf of Mexico.  A shift 

between the observed and simulated vales was observed.  This shift is believed to be a 

function of small sample size, and not a function of the natural population.  However, 

these results should be interpreted with caution because of the relatively small size of the 

NW Atlantic sample.  In fact, randomly generated replicate sets of the Gulf of Mexico 

sample revealed that small samples have the potential to yield signals similar to that 

observed in the NW Atlantic.  Furthermore, future studies of blackfin tuna in the NW 

Atlantic should employ larger sample sizes to verify whether or not the differences 
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between the Gulf of Mexico and the NW Atlantic are a function of the difference in 

sample size. 

Population expansions similar to that of blackfin tuna have been documented in 

several highly migratory pelagic fishes in the Atlantic.  For instance, Farnham (2003) 

employed a molecular clock rate for the CR-I of 5 and 10% Ma-1 and estimated that 

yellowfin tuna population in the Atlantic expanded at 40-80 ka.  However, these dates 

were underestimated by more than 10-fold as the value of µ employed in that study was 

not corrected by the length of the segment of sequence, or by the generation time. 

Calculations based on the demographic parameters in Farnham (2003), and using the 

rates of 1.6% and 4.9% divergence per million years, yield expansion times occurring at 

1.4 Ma and 487 ka, respectively.  Remarkably similar expansion times have been 

reported for other highly migratory pelagic species (Table 2-7).  Adopting the 1.6% Ma-1 

rate in the ensuing discussion, we find that the Atlantic populations of bluefin tuna 

(Thunnus thynnus), swordfish (Xiphias gladius) and sailfish (Istiophorus platypterus) all 

expanded at about 1.4 Ma (Alvarado Bremer et al. 2005b; Alvarado Bremer et al. 2005a; 

Ely et al. 2005; Bangma 2006) that also coincide with the population expansion of 

blackfin tuna reported in here.  In sharp contrast, highly abundant pelagic fishes like 

skipjack tuna (Katsuwonus pelamis) and albacore tuna (T. alalunga) display 

characteristics of populations that have remained at equilibrium for a long time (see 

Table 2-7).  These species mtDNA CR-I have multi-modal mismatch distributions, tree 

topologies with deep branch lengths, and non-significant neutrality tests (Ely et al. 2005; 

Bangma 2006).  Such historical demographic signatures are expected for ancient 
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populations, or for populations with extremely large effective population sizes, such as 

skipjack tuna and albacore tuna. 

 

Table 2-7.  Historical demographic parameters for the mtDNA CR-I of other highly migratory 
pelagic fish species. �= units of mutational time before the present, �0= diversity before expansion, 
and �1= diversity after expansion.  95% confidence intervals (CI) in parentheses. T= time since 
expansion using the 1.6% rate in Ma. 

Reference Species �0 �1 � T 
Farnham (2003) Thunnus albacares 0.030 682.813 8.475 1.400  

Ely (2005) Katsuwonus pelamis 13.500 6655.000 15.320 1.400  
Alvarado (2005) Thunnus thynnus 0.001 104.805 8.062 1.400  
Alvarado (2005) Xiphias gladius (Clade-I) 1.472 71.150 7.022 1.450  
Bangma (2006) Istiophorus platypterus (Clade-I) 1.527 13.026 4.838 1.400  

 

 

The Atlantic Ocean underwent dramatic changes during the Pleistocene, 

including fluctuations in sea level, sea surface temperature (SST), and shifts in deep 

water circulation (Mix and Fairbanks 1985; Rampino and Self 1992; McManus et al. 

1999).  All of these paleoceanographic changes could have influenced the expansion 

events of many of these tunas and billfishes.  However, further studies are needed 

resolve the cause of this expansion event. 
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CHAPTER III 

THE GENETIC POPULATION STRUCTURE OF BLACKFIN TUNA (Thunnus 

atlanticus) IN THE GULF OF MEXICO AND NORTH WEST ATLANTIC 

Introduction 

Fisheries management has become necessary to ensure long-term sustainable 

exploitation of commercial fisheries and to assist in the recovery of depleted stocks 

(Ward 2000).  In order to be effective, management requires the proper assessment of 

stock abundance and dynamics, as well as accurate productivity estimates (Gulland 

1983; Cooper 2006). This entails also the characterization of the stock’s spatial 

distribution, or stock structure (Deriso and Quinn 1998).  In here, stock is considered as 

an intra-specific group of randomly mating individuals with temporal and spatial 

integrity (Ihssen et al. 1981), a definition closely tied to the biological reality of a 

population.  Unfortunately, most genetic assessments of variation and population 

structure are conducted after the stocks have been severely overfished (Gold and Turner 

2002; Farnham 2003; Clark et al. 2004; Bangma 2006).  An assessment of genetic 

variation conducted before the stock is overfished could serve as a baseline data for 

future assessments, and as an aid to select among various conservation strategies that 

would allow long-term preservation of genetic variation (Ward 2000).  

  Studies have shown that determining the genetic stock structure of marine fishes 

is difficult because in general the levels of differentiation among populations are much 

lower than in freshwater fishes (Ward 2000).  Such disparity is largely due to the 

geographic isolation of freshwater systems (i.e., lakes and drainages), the precursor of 
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genetic differentiation, but also because the effective population size (Ne) of marine fish 

populations is substantially larger, which minimizes the effects of random genetic drift 

(DeWoody and Avise 2000).  Such disparity would be particularly accentuated in large 

highly migratory pelagic fishes because in addition to large Ne there is high dispersal 

potential for all life stages in a continuous and dynamic ocean environment (Ward et al. 

1994; Feldheim et al. 2001).  Surprisingly, significant and even pronounced 

differentiation among the populations of several pelagic fishes has been reported using 

both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). These examples include 

differentiation between Atlantic and Pacific populations of blue marlin (Makaira 

nigricans), sailfish (Istiophorus platypterus), swordfish (Xiphias gladius), albacore tuna 

(T. alalunga) and bigeye tuna (T. obesus) (Graves 1998).  Furthermore, the genetic 

characterization of Atlantic bonito (Sarda sarda), a species with epineritic habits similar 

to blackfin tuna, revealed a pattern of genetic structure that conforms to isolation by 

distance (IBD) along the Mediterranean Sea (Vinãs et al. 2004).  

  All tuna species of the genus Thunnus are important for commercial fisheries 

(Takagi et al. 1999), and as other tuna stocks become severely overfished, heavier 

pressure may be placed upon blackfin tuna.  However, there are no published studies on 

stock differentiation of blackfin tuna.  Evidence of differentiation could be inferred from 

records of spawning activity, particularly if temporal-spatial discreetness exists.  Around 

Florida the spawning season extends from April to November with a peak in May, 

whereas in the Gulf of Mexico it extends from June to September (Collette 1983).  

Blackfin tuna have also been observed spawning off northeastern Brazil (Freire et al. 
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2005).  Unfortunately, there is very little independent evidence from either fisheries data 

or tagging experiments to infer levels of connectivity throughout the range of the 

species.  The one exception is an ongoing tagging study of blackfin tuna in Bermuda 

waters characterized by a large proportion of tag recoveries (Luckhurst et al. 2001).  It is 

assumed that blackfin tuna leave the feeding grounds around the Bermuda Seamount 

during the winter, head south towards tropical waters to reproduce, and return to the 

Bermuda Seamount the following summer. If site fidelity towards spawning grounds is 

also observed, and assuming that similar patterns are happening elsewhere, and then the 

possibility to detect genetic differentiation on a regional basis exists. 

Studies of genetic differentiation of pelagic fishes have involved the 

characterization of variation in the mitochondrial and the nuclear genomes. 

Mitochondrial DNA is particularly well suited for studies of population differentiation 

because it is non-recombining, maternally inherited and has a high average rate of 

mutation (Parker et al. 1998).  Specifically, the mtDNA control or d-loop region is 

appropriate because it is selectively neutral and displays a faster mutation rate than the 

rest of the mitochondrial molecule.  In addition, the control region is highly conserved in 

length and contains taxon-specific sequence pattern, making it possible to forensically 

identify all species of the genus Thunnus (Alvarado Bremer et al. 1997; Farnham 2003).  

Furthermore, the analysis of sequence data of the first domain of the control region (CR-

I) has revealed population differentiation among populations within species of tunas and 

bonitos (Alvarado Bremer 1998; Carlsson et al. 2004; Vinãs et al. 2004; Viñas et al. 

2006; Carlsson et al. 2007). 
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Despite the utility of mtDNA CR-I data to unravel population substructure in 

pelagic fishes, this molecule lacks the power to account for population mixture or 

whether a local sample belongs to a single panmictic population (Takagi et al. 1999).  

These limitations can be resolved using nuclear DNA markers.  In particular, nuclear 

microsatellite loci have been shown to resolve low levels of differentiation in a variety 

of pelagic fishes (Shaw et al. 1999; Nesbo et al. 2000; Appleyard et al. 2001; Wirth and 

Bernatchez 2001; Selkoe and Toonen 2006).  Microsatellites are fast evolving, tandemly 

repeated, short sequences of DNA, usually with di-, tri-, tetra-, and penta-nucleotide 

patterns (Schlötterer 2000).  Because of their faster mutation rate, microsatellites are also 

thought to have higher resolving power to identify population structure more accurately 

than allozymes or mitochondrial DNA (Bentzen et al. 1996; Blouin et al. 1996; 

DeWoody and Avise 2000; Gold and Turner 2002; Chistiakov et al. 2006; Selkoe and 

Toonen 2006).  

In this chapter, a 323 base pair fragment from the hypervariable mitochondrial 

control region and six Thunnus-specific microsatellite markers were characterized.  The 

mtDNA data was used to test for isolation-by-distance between the regions of capture.  

Both mtDNA and microsatellite data was used to test the null hypothesis of no 

differentiation among samples collected in the Gulf of Mexico and the North West (NW) 

Atlantic, as well as estimate the possible number of migrants between the two basins. 
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Methods 

Adult and larval blackfin tuna muscle tissue from the Gulf of Mexico 

(mitochondrial DNA, n=128 and nuclear, n=76) and the NW Atlantic (mitochondrial, 

n=35 and nuclear, n=49) (Table 3-1) were used for this study; further details on sample 

collection data can be found in Chapter II and Appendix A.  Protocols for tissue 

digestion, DNA extraction and isolation, polymerase chain reaction (PCR), sequencing, 

and microsatellite amplification and fragment analysis are described in detail in 

Appendices B, C and D respectively.  

 

Table 3-1.  Sample Data of Blackfin tuna, grouped by region of capture.  (GoML)= Larval 
samples.  Location data for the Charleston sample could not be identified so region of capture 
was used. 

Group Sample Specimen ID n Tissue Type Location 

Gulf of 
Mexico 

Freeport Tatl 068-087 17 Adult 27 N, 94 W 
Venice Tatl 030-064, 088-108 37 Adult 28 N, 94 W 
GoML GoML 001-140 74 Larvae Gulf of Mexico 

NW Atlantic 
Islamorada Tatl 109-138 16 Adult 26 N, 80 W 
Charleston Tatl 002-021 18 Adult North Atlantic 
Bermuda Tatl 028 1 Adult 35 N, 65 W 

 

 
Mitochondrial Control Region Analysis 

The control region (CR-I) was amplified using fish specific primers CSBD-H and 

L15998 (Alvarado Bremer 1994).  Nucleotide sequences were aligned and determined in 

MEGA 4.0 (Tamura et al. 2007) as detailed in Chapter II, and were used to analyze the 

genetic population structure of blackfin tuna in the Gulf of Mexico and the NW Atlantic.  

The number of haplotypes (M), values of haplotypic diversity (h), nucleotide diversity 

(�), and mean number of pairwise differences (k) were calculated using ARLEQUIN 
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3.11 (Excoffier et al. 2005) (see Chapter II).  The HKY+I+G distance, with �= 0.70 was 

identified as the optimal substitution model for blackfin tuna mitochondrial DNA CR-I 

using a hierarchical series of likelihood ratio tests implemented in MODELTEST 3.7 

(Posada and Crandall 1998) (see Chapter II).  This distance was used in PAUP 4.0 

(Swofford 1993) to calculate a Neighbor Joining (NJ) tree, which was used to detect 

phylogeographic association of haplotypes.  The same value of � was then used in 

ARLEQUIN  to correct the Tamura-Nei distance matrix employed in the analyses of 

molecular variance (AMOVAs) (Excoffier et al. 1992) since ARLEQUIN does not allow 

the implementation of the HKY+I+G distance model.  Isolation-by-distance (IBD) tests 

were carried by comparing pairwise FST values, generated in ARLEQUIN, between 

localities of capture for adult blackfin tuna (Table 3-1) against the geographic distance 

between localities, which was estimated to be the shortest marine route between 

samples, and was subjected to regression analysis.  It has been shown that comparing 

these FST values produce less biased slopes when gene flow is expected to be high 

(Pogson et al. 2001). 

 

Microsatellite Analysis 

A total of six nuclear microsatellite loci were amplified using Thunnus-specific 

primers originally designed for yellowfin tuna (cmrTA-113, 125, 144, and 208)  

(Appleyard et al. 2001) and Pacific bluefin tuna (Ttho-1, and Ttho-4) (Takagi et al. 

1999).  Fragments were amplified for each sample using multiplex PCR.  Each locus 

was fluorescently labeled with one of three dyes (FAM, HEX, or TET) and grouped 
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accordingly.  More details on the multiplex microsatellite analysis can be found in 

Appendix D.  Fragment sizes were directly read and analyzed using GENESCAN 3.7 

(Applied Biosystems, Foster City, California).  Allele frequencies, number of alleles per 

locus, test of Hardy-Weinberg equilibrium (HWE) (Heterozygote deficiency test), and 

the amount of genic (allele frequency) differentiation were calculated using GENEPOP 

4.0 (Rousset 2008).  Loci found to be out of HWE were checked with MICRO-

CHECKER 2.2 (Van Oosterhout et al. 2004) for the presence of null alleles, stuttering 

and allelic dropouts.  Loci with possible null alleles present were visually re-inspected 

and rescored by eye (Appendix D). 

Both, global and locus-by-locus AMOVAs and corresponding FST values were 

conducted in ARLEQUIN.  However, Wright’s (1951) FST assumes a low mutation rate, 

and that the result of a mutation event is independent of the prior allelic state.  

Alternatively, the RST statistic has been proposed for microsatellite data because the 

index accounts for higher mutation rates and assumes a stepwise mutational model 

(Slatkin 1995).  The RST test statistic assumes populations of equal size and equal 

variances across all loci which cannot be met by the data (Goodman 1997).  Therefore, 

the genetic differentiation parameter RHO will be calculated using RSTCALC (Goodman 

1997) because it is an unbiased estimator of Slatkin’s RST and accounts for the 

differences in variance between loci and differences in sample size between populations 

(Goodman 1997). 

The number of possible migrants between the Gulf of Mexico and NW Atlantic 

data sets was estimated with MIGRATE 2.0 (Beerli 1997-2004; Beerli and Felsenstein 
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1999; Beerli and Felsenstein 2001) from both mitochondrial and microsatellite data.  The 

number of migrants was estimated using Markov chain Monte Carlo (MCMC) 

approaches.  This approach tends to yield better results when the start parameters are 

close to the ML values, which can be accomplished by running several short chains and 

using the result of the last chain as a starting point (Beerli 1997-2004).  Ten short chains 

with 500 recorded steps per chain and three long chains with 5,000 recorded steps per 

chain were run with a burn-in of 10,000 trees for each chain. 

 

Results 

mtDNA Analysis 

Blackfin tuna mtDNA CR-I contained 97 segregating sites, 92 of which were 

parsimony informative (sites that contains at least two types of nucleotides).  Of the 155 

blackfin tuna haplotypes identified, the majority occurred once and only eight repeated 

twice.  Haplotype tree and frequency tables are found in Appendix A.  The pooled 

sample had a haplotypic diversity of 0.999 ± .001, and a nucleotide diversity of 0.047 ± 

0.02; other standard diversity indices can be found in Chapter II.  The IBD test revealed 

a regression line no different from zero, with no correlation between locality of capture 

and geographic distance (Table 3-2 and Figure 3-1).  Samples were pooled within region 

to increase sample sizes.  An AMOVA of the pooled samples revealed that the majority 

of the variance (99%) was contained within samples, yet a small (1%) but significant 

(P< 0.05) proportion of the variance differentiates the Gulf of Mexico and the NW 

Atlantic samples (Table 3-3).  The estimates of the number of migrants per generation 
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using CR-I data obtained with MIGRATE, suggests that in the NW Atlantic twice as 

many migrants per generation come from the Gulf of Mexico (M=346) than the reverse 

(M=150).  

 

Table 3-2.  Table of pairwise FST values generated in ARLEQUIN.  The Tamura-Nei 
distance matrix was used along with Gamma �=0.70.  P-values shown in parentheses. 

  NW Atl. Islamorada Venice  
Islamorada -0.002 (.460) 0   

Venice 0.008 (.130) 0.011 (.190) 0  
Freeport 0.004 (.350) 0.034 (.070) 0.007 (.250)  

 

 

Table 3-3.  Analysis of Molecular Variance (AMOVA), using nucleotide sequence data 
from the mitochondrial control region I comparing the Gulf of Mexico with the NW 
Atlantic.  Results generated in ARLEQUIN with the Tamura-Nei distance matrix and a 
Gamma �=0.70. 

Source of Variation d.f. Sum of Variance Percentage of 
    Squares Components Variation 

Among Populations 1 11.794 0.07682 Va 1.00 
     

Within Populations 161 1218.863  7.57058 Vb 99.00 
Total 162 1230.657     
Fixation Index FST= 0.01005    

Va and FST P=0.049 ± 0.008       
 

 

 

 

 

 

 

 
Figure 3-1.  Correlation between geographic distance and linearized pairwise FSTs generated in 
ARLEQUIN for blackfin tuna sample localities.  Least-squares regression line in red. 
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Microsatellite Analysis (Larval) 

A substantial amount of genetic heterogeneity (FST= 0.081, P=0.000) 

differentiated the GoM larval and the pooled GoM adult samples.  Inspection of the 

allele frequency histograms for all six loci reveals that the larval sample contained a 

relatively large proportion of alleles outside the range observed in adults (Figure 3-2).  

These included a large proportion of smaller alleles at locus cmrTA-125 and of larger 

alleles at locus cmrTA-208.  Re-inspection of the raw data revealed that these ‘alleles’  

are more likely artifacts associated with failed amplifications, as in many individuals, 

peaks corresponding to the expected allele size for the corresponding locus could be 

observed.  However, because the signal of the ‘true’  alleles was weak, re-scoring was not 

possible.  Accordingly, and to prevent the introduction of a possible bias in the 

comparison of microsatellite data between the NW Atlantic and the Gulf of Mexico 

samples, the GoM larvae were excluded in subsequent analyses.  Similar difficulties in 

scoring larval microsatellite samples have been reported in Farnham (2003) and Bangma 

(2006). 
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Fig. 3-2c. cmrTA-113
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Fig. 3-2d. cmrTA-208
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Figure 3-2(a-f).  Allele frequency histogram for six microsatellite loci, comparing the NW Atlantic 
(NWAtl), Gulf of Mexico (GoM), and the Gulf of Mexico larval (Larvae) samples.  Allele frequencies 
were generated with GENEPOP. 
 
 

Microsatellite Analysis (Adult) 

125 adult blackfin tuna (NWAtl, n=49 and GoM, n=76) were successfully 

amplified at all six dinucleotide microsatellite loci.  All loci examined were found to be 

polymorphic, except locus 144 in the NW Atl sample, which was fixed for allele 174 
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(Figure 3-2).  Allele tables for both sample groups for all six loci can be found in 

Appendix D.  Summary data regarding the six microsatellite loci analyzed is in Table 3-

4.  The NW Atlantic had an average of 5.2 alleles/loci with an average gene diversity of 

58.4%, whereas the Gulf of Mexico averaged 10.0 alleles/loci, with a slightly larger 

average gene diversity of 58.9%.  The GoM sample had higher values of allelic richness 

(AR) at most loci.  However, the allelic richness was larger in the NW Atlantic at locus 

Ttho-4 (Table 3-4).  The observed heterozygousity values (HO) were similar to the 

expected heterozygousity values (HE) for both samples at all loci (Table 3-4).  With the 

exception of locus 144 that could not be tested in the NWAtl, all other loci were in HW 

equilibrium in both samples (Table 3-5). 

 

Table 3-4.  Summary statistics for the six microsatellite loci analyzed for the NW Atlantic 
(NWAtl) and the Gulf of Mexico (GoM) samples. Summary statistics are n (number of 
individuals), NA (Number of alleles), AR (Allelic Richness), R (range of alleles in bp), HE 
(expected heterozygotes), HO (observed number of heterozygotes), and FIS (calculated in 
GENEPOP). 
    Locus 

Location   
cmrTA-

125 
cmrTA-

144 
cmrTA-

113 
cmrTA-

208 Ttho-1 Ttho-4 
Mean  

(all loci) 
NW Atl n 37 21 47 48 41 42 39.33 

 NA 6 1 9 4 6  5.2 
 AR 4.7 1.0 8.0 3.1 5.5 17.5 6.63         
 R 146-162 174 109-125 135-141 181-191 140-188 - 
 HE 23.6 0 38.5 25.5 31.7 39.1 26.40 
 HO 26 0 44 25 30 41 27.67 
 FIS -0.102 N/A -0.144 0.02 0.054 -0.049 -0.044 
         

GoM n 68 44 75 76 72 73 68.00 
 NA 8 3 12 4 8 25 10.00 
 AR 6.0 2.7 9.0 3.7 5.6 16.7 7.30         
 R 142-158 168-174 105-129 135-141 177-193 140-194 - 
 HE 45.9 12.2 62.8 44.4 51.5 68.2 47.50 
 HO 47 12 69 56 50 73 51.17 
  FIS -0.025 0.015 -0.1 -0.264 0.029 -0.071 -0.069 
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Fig. 3-3d. cm rTA-208
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Table 3-5.  P-value (standard error) of Heterozygote deficiency test (HWE test) at each locus 
for the NW Atlantic (NWAtl) and Gulf of Mexico (GoM) as generated in GENEPOP.  H0= no 
evidence of heterozygote deficiency. 

Locus NWAtl GoM  
TA125 0.9446 (0.0038) 0.0802 (0.0046)  
TA144 - 0.5841 (0.0000)  
TA113 0.9902 (0.0016)  0.7416 (0.0137)  
TA208 0.5022 (0.0000) 0.8000 (0.0000)  
Ttho-1 0.4339 (0.0061) 0.1898 (0.0113)  
Ttho-4 0.2842 (0.0285) 1.0000 (0.0000)  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-3(a-f).  Allele frequency histogram of six microsatellite loci comparing the NW Atlantic 
(NWAtl), Gulf of Mexico (GoM) blackfin tuna samples.  Allele frequencies were generated with 
GENEPOP 4.0. 
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The global AMOVA with microsatellite data between the NW Atlantic and Gulf 

of Mexico revealed that while most of the variance (99.0%) is contained within the 

samples, a statistically significant proportion of the variance differentiated samples from 

the two regions (Table 3-5).  Evidence of differentiation between the Gulf of Mexico and 

the NW Atlantic is also supported with RHO estimates (p= 0.000) (Table 3-6).   The 

locus-by-locus AMOVA (Table 3-7), and the test of genic differentiation (Table 3-8), 

indicate that the observed heterogeneity between the Gulf of Mexico and NW Atlantic 

sample was explained by only two (cmrTA-144, and Ttho-1) of the six loci examined.  

Estimates of migration between the two regions from microsatellite data, generated in 

MIGRATE, indicates that NW Atlantic receives approximately four migrants per 

generation from the Gulf of Mexico, while the Gulf of Mexico receives on average seven 

individuals per generation from the NW Atlantic.  

 
 
 

Table 3-6.  Global AMOVA, using microsatellite data from six loci, comparing the Gulf of 
Mexico with the NW Atlantic, as generated in ARLEQUIN.  Also, includes summary of the 
genetic differentiation RHO calculations from RSTCALC. Comparisons are across all loci with 
100 permutations.  VC- value averaged over the variance component, Loci- value averaged over 
loci. 

Source of Variation Sum of Variance Percentage of 
  Squares Components Variation 

Among Populations 3.526 0.020 Va 1.000 
Within Populations 439.464 1.936 Vb 99.000 

Total 442.990 1.955   
Fixation Index FST= 0.010  RHO (VC)= 0.02753 (0.000) 

Va and FST P=0.0056   RHO (Loci)= 0.02940 (0.000) 
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Table 3-7.  Results from the locus-by-locus AMOVAs from six microsatellite loci comparing the 
Gulf of Mexico with the NW Atlantic, as generated in ARLEQUIN. 

Locus % variation FST P-value 
cmrTA-125 1.023 0.010 0.087 
cmrTA-144 9.126 0.091 0.015 
cmrTA-113 -0.223 -0.002 0.512 
cmrTA-208 -0.005 -0.000 0.284 

Ttho-1 2.028 0.020 0.032 
Ttho-4 0.045 0.001 0.307 

 
 
 

Table 3-8.  Genic (allele frequency) differentiation between the NWAtl and GoM samples at 
each microsatellite locus as calculated in GENEPOP.  Values are probabilities with standard 
errors. Across all loci the values are �², (degrees of freedom), and p-value. 

 125 144 113 208 Ttho-1 Ttho-4 �
2 across loci 

NWAtl:GoM 0.185 
±0.005 

0.004 
±0.000 

0.797 
±0.004 

0.078 
± 0.002 

0.005 
 ±0.0001 

0.316 
±0.001 

33.048 (12) 
0.001 

 
 
 
Discussion 
 
 Results from this study suggest that the mtDNA CR-I of blackfin tuna (n= 164) 

contains extremely high levels of genetic diversity. Specifically, nucleotide diversity for 

this locus was two times larger than in Atlantic yellowfin tuna (n= 187) (Farnham 2003).  

This result is particularly interesting, given that yellowfin tuna populations, which have 

a cosmopolitan distribution, and that in the Atlantic can be found in all regions, are 

reportedly much larger.  However, assuming constancy in mutation rate between species 

(see Chapter II), it follows that the observed levels of variation fall within what would be 

expected for the shorter generation time of blackfin tuna.  The high levels of diversity in 

the mtDNA CR-I are mirrored by considerable amount of variation found in five of the 

six microsatellite loci surveyed in this study.  All loci, except cmrTA-144, had wide 

allele ranges for both the Gulf of Mexico and the NW Atlantic samples (Table 3-4). 
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Population Differentiation between the Gulf of Mexico and the NW Atlantic 

 The null hypothesis of a single panmictic population between the Gulf of Mexico 

and the NW Atlantic was rejected for this study.  Both the mitochondrial CR-I and the 

global microsatellite AMOVA identified a statistically significant proportion of variance 

between the Gulf of Mexico and the NW Atlantic samples (Tables 3-3, 3-5). This 

differentiation is supported by the RST calculations, as the RHO values were significant for 

both the sample and locus comparisons (Table 3-6).  It should be noted that most of the 

microsatellite heterogeneity was driven by two of the six loci characterized in this study 

(Table 3-7).  The locus-by-locus AMOVA indicates that locus 144 was responsible for 

explaining the highest proportion of among-group variation.  The comparatively high 

amount of variation (9.1%) can be explained by the NW Atl sample being fixed for 

allele 174, and this allele is also the most common allele in the GoM sample. 

 The estimated number of migrants per generation from microsatellite data 

(M=11) was much smaller than that estimated from mtDNA CR-I (M=496). 

Mitochondrial data suggest that twice as many females per generation (M=346) migrate 

from the Gulf of Mexico into the NW Atlantic, than in the opposite direction (M=150). 

No similar asymmetry in the number of migrants was detected with microsatellite data. 

However, the number of migrants estimated with both markers is sufficiently large to 

prevent fixation haplotypes within region.  Luckhurst et al. (2001) analyzed catch and 

tagging data for yellowfin tuna and blackfin tuna from Bermuda waters.  They observed 

that blackfin tuna landings are the highest during the 3rd quarter of the year.  They also 

had high recapture rates of tagged individuals for both species. However, all blackfin 
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tuna recaptures were local and give little indication of migratory patterns.  Tagging 

studies conducted on other tunas, predominately bluefin tuna, indicate migration 

between the Gulf of Mexico and the NW Atlantic for spawning purposes (Block et al. 

2001; Block et al. 2005; Wilson et al. 2005).  However, inferring patterns of migration 

from one species to another is inappropriate. Tagging studies are needed to verify the 

levels of exchange of individuals in blackfin tuna between the Gulf of Mexico and the 

NW Atlantic. 

 

Oceanographic Patterns and Population Connectivity 

The role of oceanographic features both present and past appear to influence the 

contact between pelagic populations, and thus the degree of genetic structuring. For 

instance, uni-directional gene-flow from the Indo-Pacific into the South Atlantic appears 

to be facilitated by the Aguhlas in many cosmopolitan pelagic species (Finnerty and 

Block 1995; Graves and McDowell 1995; Alvarado Bremer 1998; Graves 1998; 

Alvarado Bremer et al. 2005a; Bangma 2006).  The role of currents has been invoked to 

account for genetic differences between east and west populations of Atlantic bluefin 

tuna (Thunnus thynnus thynnus) in the Mediterranean (Carlsson et al. 2004).  It is 

possible that circulating patterns effecting the Gulf of Mexico and western North 

Atlantic could be influential in the level of differentiation between blackfin tuna 

populations in these areas. The Gulf Stream enters the Gulf of Mexico from the 

Caribbean, via the Strait of the Yucatan, and forms the Loop Current that travels 

northwest, then south, then east, to finally exit into the NW Atlantic through the Straits 
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of Florida (Fig. 3-4). This strong unidirectional flow could potentially carry blackfin 

tuna eggs and larvae from the Gulf of Mexico into the NW Atlantic, while preventing 

larvae originating in the NW Atlantic to enter the Gulf of Mexico. This interpretation 

would be consistent with the larger proportion of migrants leaving the Gulf of Mexico 

into the NW Atlantic, as indicated by mtDNA CR-I data. The weak level of 

differentiation detected, could also be explained in part by this oceanographic feature 

that promotes connectivity unidirectionally. This interpretation would also include the 

possibility of gene-flow from the Caribbean into the Gulf of Mexico facilitated by the 

Yucatan Current entering from the south; however samples from the Caribbean are 

needed to assess this possibility.  

 This study provides baseline genetic data on the population structure of blackfin 

tuna between the Gulf of Mexico and the NW Atlantic that could be useful for 

management purposes.  However, more intensive tagging and genetic assessments, 

utilizing samples representative of entire geographic distribution, are needed to further 

resolve the stock structure of the blackfin tuna
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CHAPTER IV 

PATTERNS OF MOLECULAR EVOLUTION OF MICROSATELLITES: INSIGHTS 

FROM THE COMPARISON OF TWO CLOSELY RELATED TUNA SPECIES 

Introduction 

Microsatellites, or Short Tandem Repeats (STRs), are highly variable co-

dominant loci consisting of short repeating units (2-6 base pairs long) believed to be 

selectively neutral.  They have gained wide acceptance in population studies because 

their typically high levels of polymorphism provide enough power to obtain robust 

estimates of migration, kinship, and effective population size (Ne).  Because of their 

faster mutation rate, microsatellites are also thought to have higher resolving power to 

identify population structure more accurately than allozymes or mitochondrial DNA 

(Bentzen et al. 1996; Blouin et al. 1996; DeWoody and Avise 2000; Gold and Turner 

2002; Chistiakov et al. 2006; Selkoe and Toonen 2006).  Interestingly, the mutation rate 

of most microsatellite loci is not known, but it is always assumed high, ranging from 10-2 

to 10-6 mutations per locus per generation with an average of 5x10-4 (Weber and Wong 

1993; Balloux and Lugon-Moulin 2002; Selkoe and Toonen 2006).  The most accurate 

method for estimating the mutation rate is direct observation of the number of mutation 

events that occur during a given number of generations (Heyer et al. 1997; Schlötterer 

2000), but this approach is generally not feasible when studying wild populations.  

Theoretically, in a population in that has reached mutation drift equilibrium (MDE), 

mutation rate can also be calculated from Ne provided the variance in repeat number (V) 

and the mutational model are known parameters.  Unfortunately, the mode of mutation 
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of microsatellites is a subject of controversy and direct measures of Ne (number of 

effective breeders) are difficult to obtain accurately in natural populations(Schlötterer 

2000). 

   Because of the complications to estimate mutation rate, it has become common 

practice to adopt the rates from another species or taxonomic group when studying wild 

populations (Buchanan et al. 1994; DeLeon et al. 1998; Goodman 1998; Bagley et al. 

1999; Turner et al. 2002; Ball and Chapman 2003; Poulsen et al. 2006).  In some 

instances, rate constancy is assumed for all microsatellites and for all members of a 

taxonomic group (e.g., fishes).  However, selecting a rate that is too fast or slow can lead 

to gross under/overestimates in certain population parameters for the species in question 

(Buonaccorsi et al. 2001; Selkoe and Toonen 2006), and may translate into ineffective 

management recommendations.  A substantial degree of bias is a function of the 

potential large variance in mutation rate across loci.  Mutation rate in microsatellites 

appears to depend on multiple factors, such as repeat type, base composition, nature of 

the flanking regions, and variance across taxonomic groups (Balloux and Lugon-Moulin 

2002). Therefore, instead of adopting an ‘average’  mutation rate, alternative methods to 

estimate the mutation rates in microsatellites are needed. 

The approach used in this study involves estimating the mutation rate using the 

genetic distance (�µ)² (Goldstein et al. 1995) between two closely related species, the 

generation time (g) and a time of divergence (TD) that is concordant with fossil record of 

tunas (Graham and Dickson 2004).  Although this distance also assumes mutation drift 

equilibrium (MDE) which is rarely met, other parameters, such as variance in mutation 
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rate or Ne, are not required.  Furthermore, since generation time and frequency data for 

the same loci for two sibling species is incorporated, a more realistic estimate of the 

microsatellite mutation rate can be expected, particularly when compared to adopting 

‘universal’  molecular clock rates.  Accordingly, the estimates of certain demographic 

parameters, such as Ne, should be more accurate. 

 

Sibling Tuna Species 

Phylogenetic analyses using mitochondrial DNA (mtDNA) control region (CR) 

sequence data confirms the very close relationship of the Yellowfin tuna (Thunnus 

albacares) and blackfin tuna (Thunnus atlanticus) (Alvarado Bremer et al. 1997).  

Population parameters using microsatellites have been estimated for these two closely 

related species in other studies that lends them to be used to test the method employed in 

this study.  

The purpose of this study is to estimate the genetic distance between blackfin 

tuna and yellowfin tuna, and provide estimates of mutation rate using six microsatellite 

markers and a divergence time concordant with the fossil record (Graham and Dickson 

2004).  The mutation rates derived in such manner will be then compared with ‘average’  

mutation rates for fishes and other vertebrates. 

 

Methods 

 Data consisted of fragment sizes of six microsatellite (msat) loci amplified using 

primers originally designed for yellowfin tuna (cmrTA-113, 125, 144, 208) (Appleyard 
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et al. 2001) and Pacific bluefin tuna (Ttho-1 and Ttho-4) (Takagi et al. 1999).  A total of 

76 adult blackfin tuna were characterized with all six microsatellites.  In addition, 322 bp 

of sequence of the mitochondrial control region I (mtDNA CR-I) were obtained for 73 

adult blackfin tuna.  Data (msats, n=49; mtDNA, n=73) for adult yellowfin tuna from the 

Gulf of Mexico was generated in Farnham (2003).  Methods of DNA extraction, PCR, 

and characterization of fragment sizes and sequencing are included in Farnham (2003), 

and were optimized when necessary for use with blackfin tuna; and are given in detail in 

Appendices B-D. 

 Standard diversity measurements between the two species were estimated in 

ARLEQUIN 3.11 (Excoffier et al. 2005), for both mitochondrial and microsatellite data.  

Locus by locus AMOVAs using FST and RST estimates between blackfin tuna and 

yellowfin tuna were also generated in ARLEQUIN.  The average genetic distance (Da) 

(Nei et al. 1983), between the two species, was estimated in MEGA 4.0 (Tamura et al. 

2007) for CR-I data, and using Microsatellite Analyzer (MSA) (Dieringer and 

Schlötterer 2003) for microsatellite data.  The genetic distance measure (�µ)² (Goldstein 

et al. 1995) was estimated in RSTCALC (Goodman 1997) because it determines the 

distance in mean microsatellite allele size between “populations”.  Goldstein’ s (1995) 

(�µ)² is independent of population size (Goldstein et al. 1995) and is fairly robust to 

evaluations of MDE (Takezaki and Nei 1996); and should allow direct estimation of the 

rate when the divergence time is known.  Allele frequencies, number of alleles per locus, 

the exact test of Hardy-Weinberg  equilibrium (HWE), and the amount of genic (allele 

frequency) differentiation were estimated with GENEPOP 4.0 (Rousset 2008).  Loci 
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found to be out of HW equilibrium were checked with MICRO-CHECKER 2.2 (Van 

Oosterhout et al. 2004) for the presence of null alleles, stuttering and allelic dropouts.  

Loci with possible null alleles present were visually re-inspected and rescored 

(Appendix D). 

 Ritz et al. (2000) used Equation 4-1 to estimate divergence time (TD) between 

various species of the tribe Bovini; selecting Crawford and Cuthbertson’ s (1996) sheep 

mutation rate (ß= 1.1 x10-4) that incorporates Goldstein’ s (1995) (�µ)² distance 

parameter, such that: 

 

TD = [(�µ)²/2ß]g.                       (4-1) 

 

In Ritz et al. (2000), all of the species had the same generation (g) time (g= 7 years). In 

here, the microsatellite mutation rate was estimated by solving equation 4-1 for ß, such 

that  

 

ß = (1/2*(�µ)²g)/TD.                                 (4-2) 

 

However, since blackfin tuna and yellowfin tuna differ in generation time, 2 and 

3.5 years, respectively, the mean (g= 2.8) was used.  The rise of the Isthmus of Panama, 

about 3 million years ago (Ma) (Bermingham et al. 1997), was used as the timeline of 

divergence between these currently parapatric species. It is assumed, that yellowfin tuna, 

longtail tuna and blackfin tuna, evolved in allopatry respectively in the Pacific, Indian 
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and Atlantic Ocean, and that the current cosmopolitan distribution of yellowfin tuna is 

the result of a population expansion during the Pleistocene (Farnham 2003). 

 

Results 

Mitochondrial DNA Data 

There were 72 blackfin tuna CR-I haplotypes, with only one haplotype repeated 

twice.  Farnham’ s (2003) yellowfin tuna sample contained 65 CR-I haplotypes, with 

eight haplotypes repeated more than once.  Haplotypic diversity (h) approached unity in 

both species; however, nucleotide diversity (�) was nearly twice as large in blackfin tuna 

(� =0.047) than in yellowfin tuna (�= 0.027).  The corrected genetic distance (Da) 

between blackfin tuna and yellowfin tuna is 3.2%. 

 

Microsatellite Data 

All six microsatellite loci were polymorphic (Fig. 4-1) and in HWE for each of 

the tuna species (Table 4-2).  Blackfin tuna had 148 haplotypes and an average gene 

diversity of 52.2%, where as the yellowfin tuna had 81 haplotypes and an average gene 

diversity of 58.9% (Table 4-1).  The corrected average distance between the two species 

from microsatellite data was Da= 4.0%, whereas the (�µ)² was estimated to be 1.08.  The 

overall mutation rate (ß) was estimated to be 4.3x10-7 Ma-1 to 5.2x10-7 Ma-1 (Table 4-3). 
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Table 4-1.  Diversity indices calculated using six microsatellite loci for blackfin tuna (BKF) and 
yellowfin tuna (YFT) from the Gulf of Mexico. 
      Mean number of Pairwise Average Gene 
  h n Differences (S.D.) Diversity (S.D.) 

BKF 148 76 3.132 0.5220 (0.3023) 
YFT 81 49 3.534 0.5890 (0.3336) 

 

 

Table 4-2.  P-value (standard error) of Hardy-Weinberg Equilibrium heterozygote deficiency 
test at each locus for blackfin tuna (BKF) and yellowfin tuna (YFT).  Results generated in 
GENEPOP, with the null hypothesis being no heterozygote deficiency. 

Locus BKF YFT 
TA125 0.0742 (0.0046) 0.1091 (0.0054) 
TA144 0.5841 (0.0000) 1.0000 (0.0000) 
TA113 0.7188 (0.0141) 0.1358 (0.0108) 
TA208 0.8000 (0.0000) 0.5155 (0.0090) 
Ttho-1 0.1844 (0.0105) 0.0973 (0.0055) 
Ttho-4 1.0000 (0.0000) 0.9783 (0.0039) 

 

 

Table 4-3.  Reported microsatellite mutation rates for various species that have been re-
estimated using Equation 4-2. 
Species TD g (�µ)² Reported (�) Est. (�) 
Human 30KY-100KY 27 2.07-6.47 5.6x10-4 6.0x10-4 to 9.3x10-4 
Sheep 1.5KY 4 0.2* 2.7x10-4 2.7x10-4 
Tuna 3.5 MY 2.8 1.08   4.3x10-7 to 5.2x10-7 

Note:  * Nei’s (1987) distance was used. 

 

 

 

 

 

 

 

Figure 4-1 (a-f).  Allele frequency histogram of six microsatellite loci for adult blackfin tuna (BKF) 
and yellowfin tuna (YFT) from the Gulf of Mexico. 
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Fig. 4-1 c.  cm rTA-113
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Figure 4-1(a-f). Continued 

 

Discussion 

All loci were in HWE for both blackfin tuna and yellowfin tuna (Table 4-2). 

 Blackfin tuna microsatellite loci were amplified using primers designed for yellowfin 

tuna and for the more distantly related bluefin tuna, yet no evidence of null alleles or 

allelic drop-out was detected.  This is relevant because in species with large Ne and fast 

mutation rate, such as insects and mollusks, a high occurrence of null alleles has been 

reported, as mutations affect the priming sites and thus amplification success (Chapuis 

and Estoup 2007).  Yellowfin tuna and blackfin tuna also have large effective 

populations sizes (Ely et al. 2005; Chapter II), but the absence of null alleles can be 
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partially explained by a slow rate of mutation. A broader comparison involving 

additional cross-species amplification would be required to confirm this hypothesis. 

 

Estimation of Mutation Rate 

 The estimated microsatellite mutation rate obtained by comparing the distance 

between blackfin and yellowfin tuna was 4.3x10-7 to 5.2x10-7
 Ma-1.  This value is three 

orders of magnitude slower than the rates reported for other vertebrates, with an average 

rate of 1x10-4.  To examine whether the estimates obtained using Equation 4-2 were 

reasonable, commonly used rates for humans and sheep were re-estimated using the 

corresponding data for humans (Goldstein et al. 1995) and sheep (Forbes et al. 1995) 

(Table 4-3).  The estimated lower range for humans is slightly higher than average 

human rate of 5.6x10-4 Ma-1 reported by Goldstein’ s (1995), whereas the estimated 

mutation rate for sheep, at 2.7x10-4 Ma-1, is the same as that in Forbes (1995).  These 

results suggest that equation 4-2 provides reasonable estimates of average microsatellite 

mutation rate, provided, that comparative data from sister-taxa is available.  Its use 

would significantly reduce the bias introduced when population demographic estimates 

are calculated using the mutation rate of microsatellites from another species.  

 

Allele Size Homoplasy or Plesiomorphy? Insights from the Comparison of Microsatellite 

Alleles in Two Closely Related Tuna Species 

 
One striking observation of this study is similarity in allele frequency 

distributions of yellowfin tuna and blackfin tuna at four of the six microsatellite loci 
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(Fig. 4-1).  Loci cmrTA-125 and Ttho-4 had allele distributions significantly different 

for both the FST and RST estimates between the two tuna species (Table 4-4), with 

minimal overlap towards the edges (Fig 4-1 a, f).  Locus cmrTA-144 also had substantial 

amounts of differentiation for both estimates (highest amount for FST estimate); however, 

it still had a very limited range of allele sizes.  Loci cmrTA-113, 208 and Ttho-1 had 

levels of differentiation expected to be observed between intraspecific populations. 

Locus Ttho-1 had non-significant p-values for both estimates (PFST= 0.086, PRST=0.076), 

whereas cmrTA-113 and 208 had non-significant RST estimates only (P= 0.850 and 

0.361, respectively).  The extreme similarity in allele frequency distributions prompted 

us to compare these data with four cmrTA loci used to characterize bigeye tuna from the 

Philippines (Grewe and Hampton 1998). 

 

Table 4-4.  Locus by locus AMOVA FST and RST results between blackfin tuna (BKF) 
and yellowfin tuna (YFT) as calculated in ARLEQUIN.  Values in italics had non 
significant p-values. 

 BKF:YFT 
  FST RST 

cmrTA-125 0.411  0.848  
cmrTA-144 0.710  0.554  
cmrTA-113 0.038  -0.008 
cmrTA-208 0.130  0.000 

Ttho-1 0.012  0.018 
Ttho-4 0.216  0.628  
All loci 0.264  0.585  

 

 

The allele distributions of Grewe and Hampton’ s (1998) bigeye tuna at loci 

cmrTA-113 and cmrTA-208 are extremely different from those of Farnham’ s (2003) 

yellowfin tuna and blackfin tuna.  In addition, bigeye tuna is characterized by a wider 
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Fig. 4-2 a. cm rTA-125
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Fig. 4-2 c. cm rTA-113
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allele size range at these two loci (Fig. 4-2).  However, the allele size range at locus 

cmrTA-144 among the three species is extremely similar, whereas at locus cmrTA125, 

the similarities in allele frequency between bigeye tuna and yellowfin tuna are striking, 

and very different from blackfin tuna (Fig 4-2a).  But which mechanisms best account 

for the observed patterns?  First, a constraint in the number of repeat copies clearly 

limits variability at microsatellite cmrTA-144. Constraints in the number of repeats can 

result from either natural selection (Kunkel 1993) or the mutation process (Walsh 1987).  

Because this locus together with all other microsatellites characterized in this study 

conform to HWE, the role of selection may not be as important to constrain the copy 

number compared to the mutation process operating in that locus.  

 

 

 

 

 

 

 

 

 

 

 
Figure 4-2 (a-d).  Allele frequency histogram of six microsatellite loci comparing adult blackfin tuna 
(BKF) and yellowfin tuna (YFT) from the Gulf of Mexico and bigeye tuna (BET) from the 
Philippines. 
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Fig. 4-2 d. cm rTA-208
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Figure 4-2 (a-d). Continued 

 

Conversely, the similarities in allele size frequency distribution at microsatellite 

locus cmrTA125 between yellowfin tuna and bigeye tuna, and at loci cmrTA113, and 

cmrTA208 between yellowfin tuna and blackfin tuna, all appear to indicate that they are 

symplesiomorphic (shared by common descent) and not due to homoplasy (convergent 

evolution) in repeat number. Garza and Freimer (1996) reported similarities in 

homoplasy in allele size between human and chimpanzees, but the reported similarities 

consist of shared allele sizes where the tails of the respective allele frequency 

distribution overlap.  Homoplasy in allele size between populations and among species 

has also been reported in felids (Culver et al. 2001; Driscoll et al. 2002).  In fact, this is 

the first study that provides evidence of inter-specific microsatellite symplesiomorphy, 

and it is particularly significant given that the comparison included an outgroup (bigeye 

tuna).  If mutation rates in microsatellites were as fast as those reported for other 

vertebrates, including fishes, then the allele distributions would differ in shape and or 

have minimal overlap in allele sizes.  Instead, the low divergence level estimated 

between blackfin tuna and yellowfin tuna at both mtDNA and microsatellites, is similar 
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to that observed between populations of other vertebrate species, and therefore 

consistent with an extremely slow mutation rate in these fishes. 

Blackfin tuna and yellowfin tuna have an estimated level of divergence of 3.2% 

for the 322bp fragment of mtDNA CR-I, and 4.0% divergence for the six nuclear 

microsatellites analyzed in this study.  Low level interspecific divergence has been 

reported between the sister species of white marlin (Tetrapterus albidus) and striped 

marlin (Tetrapterus audax) (mtDNA= 2.3%) (Graves and McDowell 2003), and between 

clades of bigeye tuna (Thunnus obesus), swordfish (Xiphias gladius), blue marlin 

(Makaira nigricans) and sailfish (Istiophorus platypterus), all which have higher 

divergence values than those reported here between yellowfin tuna and blackfin tuna, 

ranging between 4%- 6% for mtDNA (Alvarado Bremer et al. 1996; Alvarado Bremer et 

al. 1997; Durand et al. 2005; Bangma 2006).   

In addition, the estimated (�µ)² between blackfin tuna and yellowfin tuna was 

1.08 at TD= 3.5 Ma.  Unfortunately, there is no comparative data for other tuna or billfish 

species-pairs to evaluate whether this value is reasonable.  However, the value is lower 

than the divergence between certain human populations.  Goldstein et al. (1995) 

estimated genetic distances between groups of modern humans based on archaeological 

estimates, and found that the distance between Amerindians and the East Asian group 

from which they separated approximately 30 ka is (�µ)²= 2.07(Goldstein et al. 1995).  

Accordingly, the rate of molecular evolution of microsatellites in blackfin tuna and 

yellowfin tuna is roughly 200 times slower than in humans.  Similarly, the estimated 
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mutation rate for tunas (ß= 4.3x10-7- 5.2x10-7 Ma-1) is two orders of magnitude slower 

than what has been used for other fishes of 1x10-5 (Turner et al. 2002).   

Rico et al. (1996) estimated a mutation rate of the sequences flanking 

microsatellites at about 0.05% Ma-1 for various marine fish species, representing three 

major super orders, whereas the rate for cetaceans is slightly faster rate of 0.09-0.15% 

Ma-1 (Schlötterer et al. 1991).  The rate of mutation of the flanking regions of the 

microsatellites characterized in this study is unknown, but can be assumed to be 

extremely slow.  However, this can only be confirmed by generating sequence data for 

the three species of tuna compared in this study.  These data would also help to confirm 

whether the reported similarities in allele sizes are plesiomorphic.  While in general the 

rates of mutation of microsatellite in marine organisms are thought to be slower than 

terrestrial species (Fitzsimmons et al. 1995; Rico et al. 1996), the extreme slow pace of 

mutation reported here has no parallel. Such discrepancy raises questions whether our 

data truly reflects a slowed-down rate of molecular evolution in tunas, as opposed to a 

sampling artifact of the loci selected, or due to a bias or an error introduced in the 

calculation.  Given that all the microsatellites characterized in this study are polymorphic 

both among-species and within-species, inclusive of being capable of distinguishing 

populations of blackfin tuna (Chapter III), and correspond to a variety of repeat types in 

both content and length (Appendix D), it is unlikely that these loci are not representative 

of tuna microsatellites.  An important bias may have been introduced by selecting the 

rise of the Isthmus of Panama as the event that explains, and calibrates the distance 

between yellowfin tuna and blackfin tuna.  However, to account for the reported 
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disparity, the speciation event that gave rise to these sibling species would have occurred 

only about 40ka.  This date is not consistent with the fossil record (Graham and Dickson 

2004) that places the origin of Neothunnus about 5Ma.  A way of verifying whether the 

estimate of mutation rate of microsatellites calculated here is reasonable is to estimate 

the effective population size of blackfin tuna, and compare this value with the results 

obtained with mtDNA CR-I data (Chapter II).  If we employ the accepted fish 

microsatellite rate of 1x10-5, the Ne for blackfin tuna in the NW Atlantic would consist of 

2,250 individuals.  By comparison, using the slowed-down rate from this study a more 

realistic estimate of 2.1 million breeding individuals is obtained, which is also more 

congruent with the 7.9 million individuals estimated using mtDNA data.  Furthermore, 

the extremely high values of variability reported at the mtDNA CR-I (Chapter II) and 

microsatellite data (this study) could not be accounted for if the Ne in blackfin tuna 

consisted of a couple thousand individuals. 

Finally, the reported disparities up to three order of magnitude different between 

census estimates and genetically derived Ne, have been hypothesized to be the result of 

extreme levels of reproductive variance in marine fishes (Turner et al. 2002), associated 

with a variance in reproductive success reported for marine invertebrates (Hedgecock et 

al. 1994).  By contrast, the possibility that such disparity is due to substantial differences 

in mutation rates needs to be considered as it could have pronounced implications in 

term of management of wild population
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CHAPTER V 
 

CONCLUSIONS 
 

In this thesis I examined the historical demography, the genetic population 

structure and the microsatellite mutation rate of the blackfin tuna from the Gulf of 

Mexico and the Northwest (NW) Atlantic.  The following conclusions were arrived at.  

First, the analysis of the mitochondrial control region-I (CR-I) revealed high levels of 

genetic variation in blackfin tuna.  Mitochondrial DNA analysis also revealed evidence 

of population expansion.  Using a slow paced molecular clock rate of 1.6% to 4.9% Ma-1 

and a generation time of 2 years, it is estimated that blackfin tuna in the Gulf of Mexico 

underwent expansion 1.4 Ma to 788 ka, whereas NW Atlantic blackfin tuna are slightly 

younger having undergone expansion at 1.2 Ma and 600 ka, however these estimates 

were not significantly different between the two samples.  When compared to other 

highly migratory pelagic fish species it was found that bluefin tuna, yellowfin tuna, 

skipjack tuna, swordfish from clade-I, sailfish from clade-I, and blackfin tuna all have 

similar times since expansion (~1.4 Ma).  However, more in-depth studies, utilizing 

larger sample sizes, are needed to resolve the cause of this expansion event.  Historical 

demography analysis also revealed that sample size can have an effect on estimates of 

demographic parameters.  Replicates of the Gulf of Mexico, utilizing smaller sample 

sizes (n=35), produced more “ragged” mismatch distribution graphs and different 

estimates of neutrality. 

Second, data analyzed from the mitochondrial DNA CR-I and six microsatellite 

loci revealed evidence of significant population differentiation between blackfin tuna 
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from the Gulf of Mexico and the NW Atlantic.  AMOVA revealed a significant 1% 

differentiation between the two samples for both the mtDNA CR-I and the microsatellite 

loci.  It is argued that the Loop Current and Gulf Stream may play a role in influencing 

the pattern of genetic diversity detected in this study.  As the current exits into the NW 

Atlantic it potentially prevents Atlantic blackfin tuna larvae from entering the Gulf of 

Mexico, while the Loop Current transports Gulf of Mexico larvae into the NW Atlantic.  

This theory is supported by the estimated number of migrants entering the NW Atlantic 

being larger than the estimates of individuals entering the Gulf of Mexico using the 

mitochondrial data.  However, more studies utilizing larger sample sizes and samples 

encompassing the blackfin tuna’ s entire geographic distribution should be conducted to 

verify this weak differentiation. 

Finally, a genetic distance and an overall microsatellite mutation rate (ß) between 

blackfin tuna and yellowfin tuna were estimated using six microsatellite loci.  The 

genetic distance between these two tuna species was estimated to be 3.2% for the 

mtDNA CR-I and 4.0% for microsatellite data.  The genetic distance for the mtDNA 

CR-I is smaller than distances between sister-species of billfish and between clades of 

other pelagic fishes.  Analysis of the microsatellite data revealed a mutation rate much 

slower in tunas than in other terrestrial organisms.  Back-calculation of ß revealed a slow 

mutation rate of 4.3x10-7- 5.2x10-7 Ma-1 between blackfin and yellowfin microsatellites.  

This is supported by multiple pieces of evidence.  The test for HWE revealed no 

heterozygous deficiencies or evidence of null alleles or allelic dropout at any of the loci 

used.  This is relevant because species with large Ne and a fast mutation rate display null 
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alleles.  A significant amount of similarity was observed in the allele frequencies of the 

species analyzed.  Results also indicate the similarity in allele frequencies is 

symplesiomorphic and not due to size homoplasy.  If tuna microsatellites were mutating 

at a fast rate it would be expected that the three species would have different frequency 

distributions.  This is also the first study to note inter-specific symplesiomorphy in 

microsatellites. 

The findings from this thesis provide baseline data that can be used for future 

management purposes to conserve pre-exploitation levels of variation in the blackfin 

tuna.  Large amounts of genetic diversity and the extremely large effective population 

sizes indicate that blackfin tuna can sustain commercial pressure.  This study also 

provides evidence of genetic population structure between blackfin tuna in the Gulf of 

Mexico and the NW Atlantic.  The larval sample validates that blackfin tuna use the 

Gulf of Mexico as a spawning location.  However, more genetic assessments and 

intensive tagging studies are needed to better understand stock structure throughout the 

blackfin tuna’ s entire geographic distribution to ensure long-term sustainability of this 

species.   

Furthermore, population parameters estimated with microsatellite data (i.e. 

effective population size) should be carefully scrutinized as the mutation rate selected 

heavily influences these parameters.  Effective population size estimates in various 

marine species from previous studies were found to be several orders of magnitude 

smaller than adult census size.  These differences were generally attributed to 

reproductive variance.  However, results from this study indicate that reproductive 
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variance may not be the only explanation for the large discrepancy between the two 

population size estimates.  Using the method provided in this study should allow 

researchers to generate more accurate effective population size estimates, allowing for 

more effective management strategies. 
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APPENDIX A 
 

Sampling of Tuna Larvae in the Gulf of Mexico 

Ichthyoplankton surveys were conducted in shelf and slope waters of the 

northern Gulf of Mexico during the summers of 2005 through 2007. Surveys were 

focused in the region from 27 - 28° N and 88 - 94° W.  Larval surveys were conducted 

with neuston nets (2m width x 1m height frame, one 500µm and one 1200µm mesh size) 

ending in a cod end collection bucket with equivalent mesh. Nets were towed through 

the upper meter of the water column at approximately 2.5 knots for 10 minutes. Paired 

tows were taken (port and starboard side of vessel) at each sampling station with 60-70 

equidistant (8 nautical miles apart) stations per survey (Tidwell et al. 2008). 

At each station, GPS start and stop points, water temperature (°C), salinity (ppt) 

and dissolved oxygen (mg/L) were recorded using a Sonde 6920 (YSI Incorporated).   

Fish larvae and associated invertebrates collected in the net’ s cod end were preserved, 

onboard, in 95% ethanol. Preserved samples were sorted in the lab with the use of Leica 

MZ stereomicroscopes and all tuna larvae were removed and stored in 70% ethanol 

(Tidwell et al. 2008).  
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Table A-1.  Haplotype frequencies for NW Atlantic and Gulf of Mexico blackfin tuna mtDNA CR-
I sequences.   Haplotypes aligned by 323bp fragment.  Specimen localities in Table 3-1. 

Haplotype Specimen ID 
NW 
Atl GoM Haplotype Specimen ID 

NW 
Atl GoM 

h001 Tatl 047, GoML 040  2 h050 GoML 052  1 
h002 Tatl 020, GoML 087 1 1 h051 Tatl 074  1 
h003 Tatl 005, Tatl 010 2  h052 Tatl 034  1 
h004 GoML 010, GoML 093  2 h053 Tatl 075  1 
h005 Tatl 006, Tatl 113 2  h054 Tatl 095  1 
h006 GoML 007, GoML 139  2 h055 GoML 001  1 
h007 GoML 082, GoML 135  2 h056 Tatl 068  1 
h008 Tatl 003, Tatl 110 2  h057 Tatl 089  1 
h009 GoML 088  1 h058 Tatl 076  1 
h010 GoML 099  1 h059 Tatl 132 1  
h011 Tatl 088  1 h060 Tatl 082  1 
h012 GoML 120  1 h061 GoML 016  1 
h013 GoML 137  1 h062 GoML 035  1 
h014 GoML 103  1 h063 GoML 081  1 
h015 GoML 029  1 h064 GoML 033  1 
h016 Tatl 098  1 h065 Tatl 017 1  
h017 GoML 009  1 h066 Tatl 052  1 
h018 Tatl 097  1 h067 GoML 023  1 
h019 GoML 006  1 h068 Tatl 106  1 
h020 Tatl 130 1  h069 GoML 053  1 
h021 GoML 037  1 h070 Tatl 083  1 
h022 Tatl 090  1 h071 Tatl 135 1  
h023 GoML 089  1 h072 Tatl 094  1 
h024 Tatl 012 1  h073 Tatl 108  1 
h025 Tatl 015 1  h074 Tatl 030  1 
h026 GoML 018  1 h075 Tatl 008 1  
h027 Tatl 117 1  h076 GoML 039  1 
h028 Tatl 060  1 h077 GoML 014  1 
h029 Tatl 044  1 h078 Tatl 073  1 
h030 GoML 095  1 h079 Tatl 087  1 
h031 GoML 100  1 h080 GoML 008  1 
h032 Tatl 056  1 h081 Tatl 009 1  
h033 GoML 028  1 h082 Tatl 002 1  
h034 Tatl 028 1  h083 Tatl 109 1  
h035 Tatl 084  1 h084 GoML 024  1 
h036 GoML 078  1 h085 Tatl 093  1 
h037 GoML 017  1 h086 GoML 026  1 
h038 GoML 125  1 h087 Tatl 050  1 
h039 Tatl 004 1  h088 Tatl 014 1  
h040 Tatl 111 1  h089 Tatl 055  1 
h041 BLKFIN04 1  h090 Tatl 016 1  
h042 GoML 020  1 h091 BLKFIN27 1  
h043 GoML 084  1 h092 Tatl 081  1 
h044 GoML 128  1 h093 GoML 019  1 
h045 GoML 059  1 h094 Tatl 072  1 
h046 Tatl 031  1 h095 GoML 036  1 
h047 GoML 063  1 h096 Tatl 099  1 
h048 Tatl 018 1  h097 BLKFIN26 1  
h049 Tatl 125 1  h098 GoML 031  1 
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Table A-1. Continued.       
Haplotype Specimen ID NW Atl GoM Haplotype Specimen ID NW Atl GoM 

h099 GoML 005  1 h148 Tatl 107  1 
h100 GoML 004  1 h149 GoML 025  1 
h101 Tatl 021 1  h150 GoML 027  1 
h102 GoML 011  1 h151 GoML 050  1 
h103 Tatl 069  1 h152 GoML 098  1 
h104 GoML 038  1 h153 Tatl 131 1  
h105 GoML 042  1 h154 Tatl 059  1 
h106 GoML 090  1 h155 GoML 003  1 
h107 GoML 030  1      
h108 GoML 034  1      
h109 GoML 131  1      
h110 Tatl 043  1      
h111 Tatl 100  1      
h112 Tatl 091  1      
h113 Tatl 071  1      
h114 Tatl 092  1      
h115 Tatl 070  1      
h116 Tatl 078  1      
h117 GoML 127  1      
h118 BLCKFIN 1       
h119 Tatl 103  1      
h120 Tatl 105  1      
h121 Tatl 104  1      
h122 GoML 068  1      
h123 GoML 021  1      
h124 Tatl 080  1      
h125 Tatl 096  1      
h126 Tatl 035  1      
h127 GoML 013  1      
h128 GoML 002  1      
h129 Tatl 048  1      
h130 Tatl 033  1      
h131 GoML 138  1      
h132 GoML 015  1      
h133 GoML 132  1      
h134 GoML 086  1      
h135 GoML 012  1      
h136 GoML 096  1      
h137 Tatl 102  1      
h138 Tatl 007 1       
h139 Tatl 114 1       
h140 Tatl 101  1      
h141 Tatl 085  1      
h142 Tatl 019 1       
h143 Tatl 126 1       
h144 GoML 094  1      
h145 GoML 091  1      
h146 GoML 107  1      
h147 Tatl 036   1         
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Figure A-1.  Sample localities for both adult and larval blackfin tuna (Thunnus atlanticus) tissue 
samples. 
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Figure A-2: Rooted phylogeny of 155 blackfin tuna control region I haplotypes, to test for 
phylogeographic distribution, constructed in PAUP 4.0 (Swofford 1993). 
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Figure A-3.  Rooted circular NJ tree of 155 blackfin tuna mtDNA CR-I haplotypes characterized in 
this study using yellowfin tuna and longtail tuna as outgroups.  Haplotype numbers for blackfin 
tuna are those given in Table A-1. 
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APPENDIX B 
 

Extraction of Mitochondrial and Nuclear DNA 

Larvae 

 Extraction of DNA followed the protocol described by Simpson et al. (1999) 

modified by Farnham (2003) and Bangma (2006). Briefly, a portion of each larva was 

placed in 30 microliters (�l) of extraction buffer (50mM KCl, 10mM Tris-HCl, pH 8.3, 

2.5mM MgCl2, 0.01% gelatin, 0.9% Tween® 20), 20�l of 10mg/ml proteinase K and 10 

�l of 10mg/ml RNase in a 0.2 ml PCR tube.  Samples were incubated for 60 minutes at 

65oC and denatured for 15 minutes at 44oC.  The supernatant was then used as template 

DNA.  Cross contamination of sample DNA was avoided by using larval tail tissue or an 

eyeball so that gut contents were not accidentally extracted or amplified. 

Adults 

 A small piece of muscle tissue, approximately 4�g, was clipped from each 

sample with sterilized scissors and forceps.  Each sample was then placed in a 1.5 ml 

tube containing 200�l of TENS solution (50mM Tris-HCl, pH 8.0, 100mM NaCl, 

100mM EDTA, and 1% SDS), 20�l of 10mg/ml proteinase K and 10�l of 10mg/ml 

RNase.  Samples were incubated at 55oC, and occasionally inverted until digestion was 

complete. 

 DNA was precipitated by adding 20�l of 5M NaCl and two volumes of ice cold 

95% ethanol to each sample and left to precipitate overnight at -20oC.  Samples were 

centrifuged (Fisher Scientific accuSpinTM) for 10 minutes at 13,000rpm and the resulting 

supernatant was decanted.  DNA pellets were washed with 300�l of cold 70% ethanol, 
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and centrifuged once more.  The supernatant was decanted and the tubes were left open 

to air dry over night to remove any remaining ethanol.  DNA was re-suspended in 100�l 

of TE Buffer (10mM Tris-HCl, pH 8.0, and 1mM EDTA) and incubated at 55oC for 15 

minutes. 

Isolation of SDS-urea Preserved Samples 

Mitochondrial and nuclear DNA from samples stored in SDS-urea was extracted 

following modified protocols from Sambrook et al. (1989) and White and Densmore III 

(1992).  Samples were placed in 500�l of isolation buffer (50mM EDTA, 50mM Tris, 

150mM NaCl, pH 8.0) and digested with 20�l of 10mg/ml proteinase K and 10�l of 

10mg/ml RNase.  Ten percent SDS was added and the samples were allowed to incubate 

at 37oC for at least 2hours to as long as overnight.  After complete digestion, phenol: 

chloroform: isoamyl alcohol (25:24:1) was added to the samples and centrifuged at 

13,000 rpm for 10 minutes at 4oC.  The previous step was repeated once more using the 

aqueous layer.  The aqueous layer was transferred into a new tube and mixed with equal 

volumes of chloroform: isoamyl alcohol (24:1).  The samples were then centrifuged for 

10mins at 4oC.  The aqueous phase was transferred into a new tube, again, and the DNA 

was precipitated out by adding 2 volumes of cold ethanol.  Samples were then placed in -

20oC and allowed to precipitate for 2 hours or more.  After precipitation, samples were 

centrifuged at 13,000rpm at 4oC for 10 minutes.  The supernatant was decanted and the 

pellet was washed with 70% ethanol, and then centrifuged under the same conditions as 

above. The supernatant was decanted and the pellet was allowed to air-dry completely 

overnight.  Template DNA was resuspended in 40�L of TE buffer (Sambrook et al. 
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1989; White and Densmore III 1992). 
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APPENDIX C 

Mitochondrial DNA Amplification and Sequencing 

Amplification 

Amplification and sequencing protocols were modified by Farnham (2003) and 

Bangma (2006) and were optimized for use with blackfin tuna in the lab.  Polymerase 

chain reactions (PCR) were prepared in 12.5�l volumes containing: 8.4�l ddH2O, 1.25�l 

10x Buffer, 0.5�l 2mM MgCl2, 0.25�l dNTP’ s, 0.5�l of each primer (L15998, CSBD-H 

(Alvarado Bremer et al. 1996)), 0.1�l of Taq polymerase, and 1�l of isolated DNA 

template. 

 DNA amplification was carried out in an Eppendorf Mastercycler® Gradient 

thermal cycler.  Initially, a denaturing step of 2 minutes at 94oC was included and 

followed by 36 cycles of strand denaturation for 30 seconds, primer annealing at 53oC 

for 45 seconds, and extension at 72oC for 1 minute.  A final extension step of 72oC for 3 

minutes was also included.  Three microliters of each PCR product was loaded into a 1% 

agarose gel, pre-stained with 0.1 �g/ml of ethidium bromide, and run at 120V for 20 

minutes, and viewed under ultra-violet transilluminator to determine the quality of the 

amplifications. 

 

Sequencing and Forensic Identification  

Excess primers and dNTP’ s were removed from amplified PCR products by 

adding 2�l of ExoSAP-ITTM (USB Corporation, Cleveland, Ohio) to 5�l of PCR 

product, following the manufacturer’ s recommendations.  Alternatively, amplifications 
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were cleaned by adding 0.5�l exo-nuclease I, 0.5�l Shrimp Alkaline Phosphatase (SAP) 

and 0.7�l 10x SAP Buffer (USB Corporation, Cleveland, Ohio) and 0.3 �l of ddH2O to 5 

�l of PCR product.  Big DyeTM Terminator v 1.0 Cycle Sequencing Ready Reaction Kit 

(Perkin-Elmer Corporation, Foster City, California) was used in the cycle sequencing 

reaction.  The reaction involved combining 1�l of BigDyeTM Terminator, 2�l of 5X Big 

Dye Buffer, 4�l of diluted L15998 primer at 3:1 concentration, 2�l of cleaned DNA, and 

1�l of ddH2O.  The samples were pulse centrifuged and then loaded in the thermal cycler 

for cycle sequencing.  Platt et al.’ s (2007) stepped elongation time (STeP) cycle 

sequencing protocol was used to optimize the cycle sequencing reaction by increasing 

the extension time after 15 and 20 cycles, the program consists of an initial denaturation 

step of 95oC for 1 minute, followed by 14 cycles of denaturation at 95oC for 10 seconds, 

annealing at 50oC for 5 seconds, an extension period at 60oC for 1 minute 15 seconds.  

After the first 15 cycles the extension time was increased to 1 minute and 30 seconds for 

4 cycles, at the same temperatures, and the extension time was increased once more to 2 

minutes (Platt et al. 2007). 

 DNA samples sequenced on the older ABI 310 genetic analyzer (Perkin-Elmer 

Corporation, Foster City, California) were precipitated by adding 1�l of 7.5M 

ammonium acetate and 25�l of ice cold 95% ethanol to each 0.2ml tube.  Samples were 

inverted and pulse centrifuged.  After precipitating for 10 minutes at room temperature, 

the samples were placed into the Fisher Scientific accuSpinTM for 25 minutes at 2,000 

rpm, and decanted by inversion.  150�l of 70% ethanol was added to each tube and 

mixed by inverting.  Samples were centrifuged again for 10 minutes at 13,000 rpm.  
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Resulting supernatant was discarded and samples were allowed to completely air dry.  In 

preparation for sequencing in the ABI 310 genetic analyzer (Perkin-Elmer Corporation, 

Foster City, California), 25�l of formamide was added to each sample, vortexed for 10 

seconds and pulse centrifuged.  Samples were denatured in the thermal cycler at 95oC for 

2 minutes, and kept on ice until loaded into the sequencer. 

 DNA samples sequenced on the new ABI 3130 genetic analyzer (Perkin-Elmer 

Corporation, Foster City, California) underwent the same cleaning processes as 

previously mentioned, but the BigDyeTM XTerminator Purification kit (Applied 

Biosystems, Foster City, California) was used in place of ethanol precipitation.  The 

manufacturer’ s recommendations were as follows:  add 45�l of SAMTM solution and 

10�l of BigDyeTM Xterminator solution to cleaned DNA samples.  Place samples on 

Scientific InstrumentsTM Vortex Genie-2 digital plate shaker and agitate for 30 minutes 

at 1900 rpms, centrifuge at 1,000rpm for 2 minutes.  Samples were then loaded onto the 

genetic analyzer. 
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APPENDIX D 

Microsatellite DNA Amplification and Fragment Analysis 

 Four dinucleotide microsatellite loci, primers which were developed for 

yellowfin tuna, Thunnus albacares, by Appleyard et al. (2001), were analyzed and 

included loci cmrTa-113, cmrTa-125, cmrTA-144, and cmrTA-208 (referred in the text 

as 113, 125, 144, 161, and 208).  The forward primer of each primer pair was end-

labeled with one of three fluorescent tags, FAM, HEX, and TET.  Multiplex PCR was 

set up in 12�l reactions with the following final concentrations: 10mM Tris-HCl (pH 

8.3), 50mM KCl, 2.5mM MgCl2, 100�M dNTP’ s, and 0.8�M for each forward and 

reverse primer (Farnham 2003).  Each reaction also contained 1�l of template DNA and 

0.5 units of Taq polymerase.  The PCR conditions followed that of Farnham (2003) as: 

93oC for 10 minutes, 55oC for 15 seconds, 72o C for 2 minutes, and an additional 50 

minutes at 72oC to allow extension to come to completion, to overcome the phenomenon 

of plus-A addition (Breen et al. 1999; Takagi et al. 1999; Farnham 2003).  Multiplex 

PCR primer groups can be found below in Table D-1. 

 Two other dinucleotide microsatellite loci, isolated from Pacific northern bluefin 

tuna, Thunnus thynnus orientalis, that have been shown to amplify in yellowfin tuna 

(Takagi et al. 1999) were also analyzed.  The two loci used were Ttho-1, and Ttho-4.  

The forward primer of each primer pair was also fluorescently end-labeled with FAM or 

HEX tags.  Multiplex PCR was setup in 12�l reactions with the following final 

concentrations: 10mM Tris-HCl (pH 8.3), 50mM KCl, 1mM MgCl2, 0.01% gelatin, 

100�M dNTP’ s, and 0.8�M for each forward and reverse primer (Farnham 2003).  Each 
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reaction also contained 1�l of template DNA and 0.5 units of Taq polymerase.  PCR 

conditions followed that as described by Takagi et al (1999) and modified by Farnham 

(2003) as: 7 cycles of 94oC for 1 minute, 52oC for 30 seconds, and 72oC for 30 seconds, 

followed by 33 cycles of 90oC for 30 seconds, 52oC for 30 seconds, and 72oC for 30 

seconds.  A final 72oC incubation step of 50 minutes was also added to account for plus-

A addition (Breen et al. 1999). 

 Following PCR, the amplicons were prepared for analysis following Farnham’ s 

(2003) protocols and modified in the lab as follows: all amplicons were diluted 1:10. 

Five microliters of the diluted samples were cleaned with 0.5�l of exonuclease-I and 

1.5�l of ddH2O to remove any excess primers or unused dNTP’ s.  Samples were loaded 

onto the thermal cycler; PCR conditions followed that of the ExoSAP-ITTM (USB 

Corporation, Cleveland, Ohio) treatment for cleaning mitochondrial DNA (Appendix B).  

For each reaction, 1�l of a GeneScanTM-500 size standard, either TAMRATM or ROXTM 

(ABI Prism, Applied Biosystems, Warrington, UK), was mixed with 22�l of formamide.  

Twenty-two microliters of this cocktail was mixed with 1�l of the cleaned DNA, 

denatured for 2 minutes at 95oC and placed directly on ice.  The products were run on 

the ABI 310 genetic analyzer and analyzed with the GENESCAN 3.7 program (Applied 

Biosystems, Foster City, CA). 

 After analysis with GENESCAN 3.7 was completed all loci were checked with 

MICRO-CHECKER 2.2 (Van Oosterhout et al. 2004) for the presence of null alleles.  

Affected loci were visually re-inspected and scored by eye.  A common cause of wrong 

allele calls were incorrect scoring of the standard peaks.  After readjusting the standard 
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scores (correct peak with correct base-pair size) shifts of some original scores occurred 

by as much as 10bp.  Another cause was the inability of auto-binning to score a peak if it 

fell on the limits for that particular bin.  Occasionally, GENESCAN 3.7 would call a 

heterozygous individual homozygous, even if the second peak was obvious.  These types 

of scoring errors are possible causes of initial heterozygous deficiencies.  After, re-

inspection the loci were checked with MICRO-CHECKER 2.2 once more.  This 

cleaning process allowed most loci to fall within Hardy-Weinberg equilibrium.  

 

Table D-1.  Microsatellite multiplex PCR groups.  
Author Locus Dye Motif Anneal Temp 

Appleyard (2001) 125 F-Tet (CA)  
cmrTA 144 F-Fam (CA) 55 

  161 F-Hex (CA)   
Appleyard (2001) 208 F-Hex (CA) 55 

cmrTA 117 F-Fam (CA)   
Takagi (1999) Ttho-1 F-Fam (GT) 50 

  Ttho-4 F-Hex (CA)   
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Table D-2.  Microsatellite genotypes for the NW Atlantic (NWAtl) and Gulf of Mexico (G0M) blackfin tuna samples for all six loci.  Specimen 
localities in Table 3-1. 

NW Atl 125 144 113 208 Ttho-1 Ttho-4 NW Atl 125 144 113 208 Ttho-1 Ttho-4 
Tatl002 152,152 174,174 113,125 137,139 185,185 140,170 Tatl125 150,152 174,174 111,121 137,139 183,183 144,148 
Tatl003 148,150 174,174 121,123 135,139 ? ? Tatl126 150,152 174,174 111,121 139,139 183,183 154,188 
Tatl004 150,152 174,174 113,119 137,137 183,183 148,168 Tatl127 152,152 174,174 111,111 137,141 183,183 148,156 
Tatl005 148,152 174,174 111,113 137,137 183,185 158,162 Tatl128 152,152 174,174 111,117 137,139 ? ? 
Tatl006 148,150 174,174 113,113 137,139 185,189 142,150 Tatl129 152,152 ? 111,117 137,139 ? ? 
Tatl007 152,152 174,174 113,121 137,137 187,189 168,176 Tatl130 152,152 ? 111,119 137,139 181,181 150,160 
Tatl008 146,148 174,174 113,125 135,139 183,187 146,148 Tatl131 152,152 ? 111,119 137,139 183,185 148,150 
Tatl009 152,152 ? 113,121 137,139 185,187 146,148 Tatl132 ? ? 111,121 137,139 181,187 152,154 
Tatl010 ? ? ? 139,139 ? ? Tatl133 ? ? 111,119 137,137 183,183 160,184 
Tatl012 152,162 174,174 111,113 137,137 ? ? Tatl134 148,152 ? 111,119 137,139 183,183 152,160 
Tatl014 150,152 ? 113,119 137,137 185,187 142,146 Tatl135 152,152 174,174 111,117 137,139 181,191 160,184 
Tatl015 150,152 ? 113,117 139,139 183,187 152,164 Tatl136 152,152 ? 111,119 137,139 185,187 150,154 
Tatl016 148,150 ? 117,119 137,139 183,187 150,152 Tatl137 152,152 ? 111,119 137,139 181,183 148,150 
Tatl017 148,152 174,174 117,119 139,139 183,187 144,148 Tatl138 152,152 ? 111,119 137,139 185,187 152,160 
Tatl018 150,152 ? 113,123 139,139 183,183 144,148 GoM Sample 
Tatl019 150,152 ? 113,123 139,139 ? ? Tatl030 152,152 174,174 109,109 137,139 183,185 146,148 
Tatl020 ? ? ? ? ? 148,156 Tatl031 152,156 ? 113,117 137,139 183,187 146,180 
Tatl021 ? ? 113,119 137,139 ? ? Tatl032 ? ? 119,121 137,139 183,187 148,154 
Tatl028 152,156 174,174 111,113 137,139 181,183 176,178 Tatl033 ? 174,174 111,113 137,139 181,183 150,154 
Tatl109 150,152 174,174 111,123 137,139 185,185 140,170 Tatl034 ? ? 113,119 137,139 181,185 146,160 
Tatl110 148,150 174,174 119,121 137,137 185,187 148,150 Tatl035 152,152 174,174 117,119 137,141 181,183 154,190 
Tatl111 152,152 174,174 111,117 137,137 183,183 148,168 Tatl036 148,150 ? 119,121 135,137 183,183 148,156 
Tatl112 152,152 ? 111,111 137,137 181,183 158,160 Tatl037 148,152 ? 111,129 137,139 181,183 148,158 
Tatl113 150,152 ? 109,111 137,139 185,189 142,150 Tatl038 148,152 174,174 111,121 137,137 ? 146,154 
Tatl114 150,152 ? 111,119 137,137 185,189 144,152 Tatl039 152,152 174,174 105,111 137,139 183,183 158,182 
Tatl115 148,152 ? 111,123 137,137 185,189 168,176 Tatl040 150,152 ? 113,119 135,139 181,183 150,158 
Tatl116 150,152 ? 111,119 137,137 183,187 146,148 Tatl041 152,152 174,174 111,121 137,139 183,183 146,148 
Tatl117 148,152 174,174 119,121 139,139 185,187 146,148 Tatl042 152,154 ? 115,117 139,139 183,193 146,152 
Tatl118 152,152 ? 111,113 137,139 183,185 160,164 Tatl043 150,156 ? 113,113 137,139 181,183 150,152 
Tatl119 152,152 174,174 111,113 137,137 187,189 172,172 Tatl044 ? ? 111,113 137,139 181,183 146,154 
Tatl120 152,152 ? 115,117 139,139 181,183 174,182 Tatl045 152,152 174,174 113,113 137,139 181,183 150,154 
Tatl121 152,156 ? 111,117 137,137 185,187 142,146 Tatl046 148,152 ? 113,121 137,139 183,183 152,162 
Tatl122 150,152 ? 111,115 139,139 181,185 152,164 Tatl047 148,152 ? 115,119 137,139 181,183 164,166 
Tatl123 148,152 174,174 115,117 137,139 181,187 150,152 Tatl048 148,152 ? 111,115 135,137 183,183 142,144 
Tatl124 152,152 ? 115,117 137,139 181,187 144,148 Tatl049 148,152 174,174 115,121 137,141 181,193 140,160 
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Table D-2.Continued.             

GoM 125 144 113 208 Ttho-1 Ttho-4 GoM 125 144 113 208 Ttho-1 Ttho-4 
Tatl050 152,152 168,174 115,125 137,139 181,183 152,160 Tatl088 148,152 174,174 111,123 137,139 177,187 148,150 
Tatl051 148,150 ? 111,113 137,139 183,185 160,162 Tatl089 152,152 174,174 111,111 137,137 181,185 148,160 
Tatl052 152,156 174,174 117,121 135,137 181,181 160,168 Tatl090 152,152 168,174 111,119 139,139 181,185 146,156 
Tatl053 150,150 174,174 111,113 137,139 183,183 146,148 Tatl091 148,150 174,174 111,119 137,139 181,183 154,166 
Tatl054 148,152 172,174 119,123 137,139 185,185 148,158 Tatl092 152,152 174,174 111,117 137,137 181,183 156,158 
Tatl055 150,152 ? 117,119 137,139 181,185 148,164 Tatl093 152,156 ? 111,127 137,139 183,191 150,152 
Tatl056 150,152 172,174 119,125 137,139 181,187 150,152 Tatl094 146,148 ? 117,119 137,139 183,183 150,170 
Tatl057 148,150 172,174 119,121 137,139 181,181 140,164 Tatl095 148,152 174,174 111,123 137,139 181,183 148,162 
Tatl058 ? ? 113,121 137,139 185,185 142,152 Tatl096 150,152 172,174 111,119 137,137 183,187 146,158 
Tatl059 148,152 172,174 111,113 139,141 183,185 148,154 Tatl097 150,152 ? 111,115 137,137 185,189 148,194 
Tatl060 ? ? ? 139,141 181,181 186,188 Tatl098 152,156 174,174 111,117 137,139 187,187 146,172 
Tatl061 ? ? 117,119 137,139 181,183 150,160 Tatl099 152,156 ? 111,117 137,137 183,183 140,152 
Tatl062 148,152 ? 111,117 137,139 183,183 148,164 Tatl100 150,152 ? 111,117 137,139 183,187 142,144 
Tatl063 150,150 174,174 111,117 137,139 181,183 148,154 Tatl101 148,152 ? 111,117 141,141 183,187 146,162 
Tatl064 148,150 172,174 119,123 137,139 183,185 146,158 Tatl102 148,152 174,174 109,111 137,137 183,183 142,160 
Tatl068 ? ? 111,113 137,139 181,181 154,156 Tatl103 148,148 174,174 111,117 141,141 183,185 152,154 
Tatl069 152,152 174,174 111,119 137,141 181,181 148,156 Tatl104 150,152 172,174 111,121 137,139 185,185 154,158 
Tatl070 150,150 174,174 111,117 137,137 181,183 170,182 Tatl105 152,156 172,174 117,119 139,139 ? ? 
Tatl071 152,158 174,174 117,119 137,139 183,185 182,184 Tatl106 150,152 172,174 121,123 137,137 ? ? 
Tatl072 150,152 ? 117,119 137,141 183,185 150,156 Tatl107 148,152 ? 111,119 137,139 ? ? 
Tatl073 152,152 172,172 109,111 137,139 181,187 146,158 Tatl108 150,152 172,174 111,117 137,137 183,183 142,150 
Tatl074 146,152 174,174 113,123 137,137 181,185 158,162 GoML002 132,136 ? 111,111 ? 179,183 146,148 
Tatl075 146,152 174,174 113,123 139,139 181,185 158,162 GoML003 148,152 168,174 117,117 137,139 183,185 146,148 
Tatl076 152,154 174,174 117,117 137,139 183,185 148,166 GoML004 132,136 ? 117,119 137,141 181,185 146,148 
Tatl077 150,150 174,174 117,119 137,141 181,183 144,150 GoML005 132,136 166,174 117,121 137,139 183,187 148,150 
Tatl078 152,152 174,174 111,115 137,139 183,185 152,190 GoML006 ? 166,174 111,111 ? 181,183 148,160 
Tatl079 142,152 174,174 111,119 139,141 185,185 158,160 GoML007 132,136 166,174 111,131 139,139 181,183 152,162 
Tatl080 152,152 174,174 117,121 137,139 181,183 154,180 GoML008 132,136 166,174 117,119 137,139 181,183 148,154 
Tatl081 154,154 174,174 111,115 137,137 181,183 146,152 GoML009 130,134 ? 111,121 137,137 ? 154,158 
Tatl082 148,150 174,174 109,111 137,137 181,187 144,176 GoML010 132,136 168,174 111,117 139,139 179,179 152,152 
Tatl083 152,156 ? 117,123 137,139 183,187 140,148 GoML011 ? 166,174 111,117 135,137 ? ? 
Tatl084 152,152 ? 109,111 137,139 183,183 144,148 GoML012 130,134 ? 121,123 137,139 183,185 148,154 
Tatl085 152,152 ? 111,117 137,139 183,191 150,162 GoML014 132,136 ? 111,111 135,139 181,183 148,150 
Tatl086 150,152 ? 111,117 137,139 185,187 142,144 GoML016 ? ? 115,135 135,137 ? ? 
Tatl087 150,152 ? 111,111 137,137 183,185 154,156 GoML017 ? ? 111,119 139,141 181,183 148,160 
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Table D-2. Continued.              
GoM 125 144 113 208 Ttho-1 Ttho-4 GoM 125 144 113 208 Ttho-1 Ttho-4 

GoML019 132,136 166,172 111,117 139,143 179,181 150,160 GoML088 148,156 172,174 111,111 139,141 183,185 146,162 
GoML020 ? 166,172 113,121 ? ? ? GoML089 ? 172,174 115,117 137,137 181,183 142,166 
GoML021 134,136 ? 111,119 133,137 181,183 144,146 GoML090 ? 174,174 111,121 139,141 181,183 144,148 
GoML022 ? ? 111,111 137,139 179,181 144,176 GoML091 ? 166,172 113,123 ? 181,183 160,186 
GoML023 132,136 166,174 111,117 139,141 183,185 152,154 GoML092 ? 166,174 ? 137,139 ? 158,160 
GoML024 136,150 166,172 111,121 137,141 183,183 152,154 GoML094 132,136 166,174 119,119 137,139 ? 172,186 
GoML025 136,140 166,172 111,119 137,139 181,185 148,154 GoML095 136,150 166,174 117,139 135,139 179,185 146,148 
GoML026 134,136 166,174 109,111 137,139 ? 142,142 GoML096 ? ? ? 139,139 ? ? 
GoML027 132,138 166,168 111,111 135,137 183,183 154,156 GoML098 134,136 166,174 111,125 139,141 181,183 144,146 
GoML028 136,150 166,174 111,119 135,139 181,185 166,168 GoML099 146,148 166,174 111,117 139,141 181,183 144,148 
GoML029 134,136 166,172 111,111 135,137 181,181 140,142 GoML100 ? 166,174 111,111 139,139 ? ? 
GoML030 132,136 174,174 111,111 137,139 185,185 148,160 GoML103 132,136 170,172 111,119 137,139 183,183 162,164 
GoML031 134,136 ? 111,139 135,137 181,183 146,148 GoML107 140,156 ? 111,111 139,141 181,183 146,164 
GoML033 ? 166,172 113,123 137,141 ? 144,162 GoML120 136,150 166,172 111,111 137,139 181,183 148,174 
GoML034 136,140 ? 121,123 137,139 ? ? GoML125 144,152 ? 111,111 137,139 185,187 148,156 
GoML035 132,136 166,172 113,113 ? 183,187 148,176 GoML127 148,152 172,172 111,113 139,141 181,185 156,162 
GoML036 132,136 166,172 111,137 ? 183,187 142,148 GoML128 134,140 ? 121,127 139,141 181,183 166,182 
GoML037 136,136 166,172 111,121 137,139 183,185 164,186 GoML131 132,152 166,172 117,123 137,139 183,183 146,148 
GoML038 132,136 172,174 111,115 137,139 183,185 142,176 GoML132 152,156 ? 111,117 137,139 181,183 152,168 
GoML039 134,136 ? 117,119 135,139 183,185 146,150 GoML135 130,146 ? 117,121 139,141 181,183 172,182 
GoML040 134,136 166,174 111,111 135,139 155,181 172,174 GoML137 150,152 166,172 111,117 141,141 183,187 146,148 
GoML042 132,136 166,172 113,121 135,139 ? ? GoML138 150,152 ? 111,121 137,139 181,185 156,170 
GoML050 ? ? 111,119 ? ? ? GoML139 150,152 166,174 111,111 135,137 183,187 158,160 
GoML052 ? ? 113,141 ? ? ? GoML140 152,156 174,174 117,135 137,139 181,185 152,162 
GoML053 ? ? 117,139 135,137 181,181 148,148         
GoML054 ? ? 121,139 135,139 ? 136,138         
GoML059 ? 174,176 113,115 131,133 183,183 148,154         
GoML063 ? 172,174 117,119 ? ? ?         
GoML068 ? 166,172 113,119 139,141 179,185 136,136         
GoML078 ? 166,174 111,119 139,141 183,185 146,152         
GoML081 ? 166,174 111,111 139,141 ? 148,156         
GoML082 ? 166,174 117,119 137,139 183,187 ?         
GoML084 150,152 ? 117,119 137,139 ? ?         
GoML086 132,136 166,174 117,139 137,139 ? 146,148         
GoML087 146,152 168,174 117,123 139,141 185,187 144,176               
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