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ABSTRACT

Robustness Analysis of the Matched Filter Detector
Through Utilizing Sinusoidal Wave Sampling. (May 2009)
Jeroen Stedehouder, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Don R. Halverson

This thesis performs a quantitative study, derived from the Neyman-Pearson
framework, on the robustness of the matched filter detector corrupted by zero mean,
independent and identically distributed white Gaussian noise. The variance of the
noise is assumed to be imperfectly known, but some knowledge about a nominal
value is presumed. We utilized slope as a unit to quantify the robustness for different
signal strengths, nominals, and sample sizes. Following to this, a weighting method
is applied to the slope range of interest, the so called tolerable range, as to analyze
the likelihood of these extreme slopes to occur. A ratio of the first and last quarter
section of the tolerable range have been taken in order to obtain the likelihood ratio
for the low slopes to occur. We finalized our analysis by developing a method that
quantifies confidence as a measure of robustness. Both weighted and non-weighted
procedures were applied over the tolerable range, where the weighted procedure puts
greater emphasis on values near the nominal.

The quantitative analysis results show the detector to be non-robust and deliver
poor performance for low signal-to-noise ratios. For moderate signal strengths, the
detector performs rather well if the nominal and sample size are chosen wisely. The
detector has great performance and robustness for high signal-to-noise ratios. This
even remains true when only a few samples are taken or when the practitioner is

uncertain about the nominal chosen.
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CHAPTER I

INTRODUCTION
Robustness is a central issue in all of today’s complex systems. It plays a funda-
mental role in the area of signal processing. In this field, certain prior assumptions
of the input characteristics are made for creating the optimal scheme to recover a
signal embedded in noise. However, as we cannot predict Mother Nature, it would
be unrealistic to assume the prior assumptions of these input characteristics are al-
ways predicted correctly. Therefore, having inexact prior knowledge could lead to
drastic degradation in performance of such alleged optimum schemes. It is this basic
motivation that provides us with the incentive to search for robust signal processing
techniques; techniques that deliver good performance when assuming nominal condi-
tions and deliver acceptable performance under non-nominal conditions. In [1], such

robust techniques for signal processing are investigated and discussed.

A. Historical

Historically, much research has been carried out in the field of engineering robustness.
An algorithm is considered to be robust if its performance is not too sensitive to the
inexact statistical knowledge. The classical Huber-Strassen saddlepoint technique
was a widely applied method for achieving a robust system [2, 3]. Although this
technique still plays an important role in today’s research, it has major limitations.
Most importantly, this method is non-quantitative, which should be of particular
interest to the practitioner [4]. It obtains an algorithm as a solution of a saddlepoint,

which is considered to be "the” optimal solution. However, any small deviations

The journal model is IEEE Transactions on Automatic Control.



from this solution is simply not robust and cannot be measured as to how close this
solution is to being robust. Clearly, robustness is not a monolithic inflexible quantity
and should not be treated as one. Another limitation of this method is that it does
not readily admit non-stationarity and dependency of the data samples.

As a result of these limitations, a new approach toward measuring robustness
has been developed by Halverson, et. al (see examples [4, 5, 6, 7, 8, 9]). These new
techniques are based on differential geometric methods; they are naturally quantita-
tive and readily admit non-stationarity and dependency of the data samples. This
geometric approach has as aim to measure the robustness locally to a presumed nom-
inal value (i.e., the most expected value) about the underlying distribution, but can
be extended for nonlocal measures as well. Initially, these nonlocal measures were

Y

defined by focusing on ”worst case” distributions [7]. The saddle point technique
takes on this similar approach as its solution is based on what is "least favorable” [7].
However, in reality we would assume the underlying distribution to be much closer
to the nominal value than the "least favorable” solution. Therefore, the saddlepoint
technique is considered to be an overly pessimistic approach and is not as useful for
practical purposes in the field of engineering.

Early work developed by Halverson, et. al, used Euclidean models for the pa-
rameter manifold. However, recent work admitted the use of non-Euclidean models
[8]. Although employing this technique complicates the mathematics, nevertheless it
does allow us to better model reality and eliminate certain limits. A classical exam-
ple to clarify this concept is when we have a covariance matrix where the entries are
imperfectly known. One approach for coping with this problem would be to allow
the entries to vary by +e. If the nominal matrix is positive definite, then for small
enough changes in €, the covariance matrix will still be positive definite. However,

how small does € have to be for this matrix to remain positive definite? Given the



fact that the practitioner might have to take large variations into consideration, we
can see that in such cases the Euclidean model will not always suffice. In [8], the
non-Euclidean model was employed to measure the robustness for linear estimation
using slope with biased perturbations and slope with unbiased perturbations. In this
thesis, we interpret the robustness of the matched detector using the slope with un-
biased perturbations since this allows us to freely vary the variance (#) about some

fixed nominal value (6y).

B. Research Objective

The matched filter is the optimal linear filter for maximizing the signal-to-noise ratio
(SNR) for signals embedded in additive stochastic noise. The matched filter detector,
also referred to as a matched detector, is designed based on the matched filter. The
matched detector has played an important role in the field of engineering. Currently,
researchers have made numerous extensions and/or modifications to the matched
detector model in order to compliment their field of study (see examples [10, 11,
12]). Essentially, a matched detector correlates or matches a nominal signal with
a measured signal to filter out the noise in order to detect the signal. However,
despite all of its suitable applications, we believe the basic matched detector has not
been analyzed up to satisfactory standards with regard to its robustness; it lacks the
quantitative analysis. Thus, our goal in this thesis is to analyze the robustness of the

matched detector based on the quantitative methods developed by Halverson, et. al.

C. Overview of the Thesis

This thesis is organized as follows:

Chapter II presents a brief introduction to signal detection and signal estimation



theory. Our main focus is on signal detection theory as we introduce the basic fun-
damentals and tools to be utilized later for the robustness analysis of the matched
detector.

Chapter III provides the methodology used for quantifying the robustness of the
matched detector. It explains how we design the detector under nominal conditions,
i.e., set the threshold, followed by deriving the performance equation under non-
nominal conditions from which we can obtain the detector’s robustness test (charac-
terized by a slope value) using the quantitative method. Furthermore, an intermediate
analysis of the robustness is performed for both common and extraordinary variances
at the end of the chapter.

Chapter IV is continuation of Chapter III as it implements a weighting method
scheme used for analyzing the likelihood of certain slopes to occur. Based on these
result, a brief intermediate analytical analysis is provided at the end of the chapter.

Chapter V provides two methods for measuring robustness. The first method
simply performs a ratio test of some predetermined areas under the weighted slope
curves in order to measure the likelihood of extreme slopes to occur. The second
method provides a means of quantifying robustness as a measure of confidence signi-
fying the certainty a practitioner can possess for its solution to be robust given this
outcome is less than the nominal. Additionally, we applied a triangular weighting
scheme to this method as values closer to the nominal should be given more weight
as opposed to values further away from the nominal.

Chapter VI presents a discussion and conclusion about the robustness of the
matched detector based on the results calculated in the previous chapters.

A list of references is included at the end of this thesis followed by the appendixes.



CHAPTER II

BACKGROUND AND FUNDAMENTALS
This chapter will introduce the basic concepts of signal detection and signal estimation
theory as they are closely related subjects. Given the fact the practitioner has some
type of prior knowledge, the mathematical and statistical tools developed in this
theory are utilized for the extraction and processing of the available information, thus
leading us to a decision with optimum accuracy. However, our focus in this thesis is
signal detection theory. Therefore, we will primarily provide the fundamentals and
tools necessary for the robustness analysis of the matched filter detector with regard

to this topic.

A. Signal Detection Theory

Detection theory was originally developed by radar and sonar researchers and is
presently applied to areas such as pattern recognition, quality control, sonar (oil
exploration), digital communications, etc. Signal detection copes with the problem
of making a decision among some finite number of possible situations or ”states of
nature” [13]. The problem can be separated into three types of classes; known signals
in additive noise, signals with unknown parameters in additive noise, and random
signals in additive noise [14].

The connection between the observation and the desired information is proba-
bilistic rather than direct [13], implying a distributional model should be used. In this
thesis, we model the noise to be Gaussian and independent and identically distributed
(iid.). If we let X be the random variable modeled according to this Gaussian dis-

tribution, we can subsequently characterize the probability density function (PDF)



of X by:

1 (@=m?
Ix(x) = e =, —00< T <00 (2.1)
oV2rm

where g is the mean and o2

> 0 is the variance. In short notation, we write
X~ N(u,0?) to represent that the random variable X is normally distributed with
mean u and variance o?. We can see the PDF in (2.1) gives us the "point proba-
bilities” [15], these being equal to zero in the continuous case. However, if we are
interested in obtaining the probability over a specific interval, we integrate fx(z)
in (2.1) over the interval of interest in order to obtain the cumulative distribution

function (CDF). For instance, if we want to find all the values of = that are less than

or equal to the random variable X, we write:

r 1 t—p)?
P(X < 2) = Fx(x) = / e~ dt (2.2)

—oo OV 2T

1. The Detection Problem

A simple problem in detection theory involves the making of a decision whether or not
a signal is present, i.e., we decide whether we receive noise only or a signal corrupted
by noise. An example of this problem would be the detection of an aircraft based on
the signal received by the radar. We can model this situation as a binary hypothesis
testing problem, where we need to make a decision from the available data between

the following two hypothesis, which are:

Hy : noise only (2.3)

H, : signal + noise (2.4)

We note that the available data can be collected either continuously or discretely.
In this thesis, we sample our data discretely for simplicity reasons and due to the

fact that discrete time systems are currently gaining popularity. For example, let’s



consider two univariate i.i.d. noise densities fy and f; under Hy and H; respectively.

In the case where n samples are taken, the joint PDF under Hy, and H; could be

written as:
H() . fo(l‘l, e ,I‘n) = H fo([[’z) (25)
i=1
H, Zfl(xla---wxn):Hfl(xi) (2.6)
i=1

Additionally, if the noise is Gaussian, we can write PDF's for both Hy and H;, denoted

by f(x; Ho) and f(z; Hy) as:

1 22

f(z; Hy) = - 27Tef272 (2.7)
1 _(e-p)?

f(z; Hy) = . 27Te 202 (2.8)

where we note f(z; Hy) to be f(z; Hy) shifted by pu.

The detector selects Hy or H; based on the detection algorithm, also known as
the decision rule. In general, the optimal decision rule is one that defines a threshold,
denoted by T}, to where the probability of error is minimized in choosing either H,

or Hi. There are two types of errors associated with the detector, namely:

Type I : choosing H; when Hj is true

Type I1 : choosing Hy when H is true (2.9)

The probability of making a Type [ error is known as the false alarm rate and is
denoted by «. The probability of making a Type II error is known as the miss
probability and is denoted by 1 — (3, where 3 is the probability of choosing H; when
H, is true, also known as the detection probability or performance of the detector.
We note that as the the ”distance” between the PDFs increases, or equivalently, the

signal-to-noise ratio (SNR) increases, the performance of the detector improves as



well. A visual representation of the PDFs under either hypothesis and associated

types of errors can be found in Fig. 1.
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Fig. 1. Decision surface illustrated

2. Decision Rule of the Detector

There are two common frameworks used in detection theory for optimizing the deci-

sion of the detector, namely:
1. Bayesian
2. Neyman-Pearson

The Bayesian approach puts focus on minimizing the loss. For this purpose, a loss
function is established to assign a loss to each possible outcome and each possible

decision, where the decisions made are based on minimizing the average loss [16].



As for the parameters, they are assumed to be random variables, governed by a
prior probability. On the contrary, the Neyman-Pearson (NP) framework is focused
on finding a decision function which maximizes the probability of detection, given
a fixed probability of false alarm. In this thesis, we restrict ourselves to the NP
criterion for the robustness analysis of the matched filter detector as the NP criterion
is optimal for design. In view of the NP lemma [13], we can write the decision rule

of the detector to be:

H,, if My) <T.
Ay) = H, with probability q, if Ny) =T, (2.10)
\Hl, if \(y) > T,
where A(y) is the likelihood ratio of the observation vector yi,...,y, and T, is a

deterministic constant based on the constraint a. If the joint PDF of the n samples
under Hy, H; are fy(y) and fi(y) respectively, then we can write the likelihood ratio

for n independent observations as:

n

_ fl(y) _ fl(ylv"'7yn) _ fl(yl)
)\(y) B fo(}’) B fo(?/h . ">yn) B 21;[1 fO(yi)

On the other hand, if we take the natural logarithm of both the likelihood ratio

(2.11)

and the threshold, we can obtain the log-likelihood ratio test which modifies the NP

decision rule of (2.10) to:

(

H07 if )‘(y) < Iy
Aly) = § H, with probability q, if ;\(Y) =1, (2.12)

H17 if )\(y) > TT

\
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where T, = In T}.. Consequently, the log-likelihood ratio for n independent observa-

tions becomes:

Ay) = len<§(1)8;> (2.13)

To demonstrate the idea of a linear detector in conjunction with the log-likelihood
ratio concept described above, lets suppose we have a constant signal s and i.i.d.
N(0,0?%) noise. The distribution of the random sample Y; under hypothesis Hy and
H, can then be represented by:

Y; =0+ N; = N(0,0?) under H,
(2.14)

Y; = s+ N; = N(s,0?) under H,

The joint PDF of the n samples under Hy, H; can then be given by:

folwro- ) =[] \}_6_;;;2 (2.15)

1 7(yi—5)2
fl(y1>"'ayn) = H \/—6 202 (216)

Hn 1 o (y;—;)2

=1 521 7

Ay) = 2 - (2.17)
H?:l 12 € ﬁ

n —(yi—s)"+y;
=[]e = (2.18)

and the log-likelihood ratio as:

3

—(y? — 2y;s + 8%) + y?
202

In \Ny) = (2.19)

i=1
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2

Since s and o are constants, we can eliminate them from (2.19) to let the log-

likelihood ratio become:
I AY) = 3w (220)
i=1

At last, we are able to define the NP decision rule following to (2.12) with threshold
T, = (202InT + s%)/2s. More information on this and others topics regarding signal

detection theory can be found in literature such as [13], [14], and [17].

B. Signal Estimation Theory

Signal estimation theory was originally developed within the area of statistics and
is applied to areas such as speech, radar, control systems, digital signal processing,
medical science, etc. The objective of estimation theory is to estimate the values
of parameters based on measured or empirical data. For example, in radar, one
might be interested in estimating the location of an aircraft. To accomplish this, an
electromagnetic pulse is transmitted and reflected by the aircraft, causing the radar
station to receive an echo a few moments later. Clearly, we are able to measure
the velocity of the electromagnetic pulse and thus, the distance between the radar
station and the airplane can be computed despite the propagation losses and time
delays introduced by the electronics of the receiver.

In the previous example and all other systems in general, one is faced with the
problem of extracting values of parameters based on continuous-time wave forms [18].
However, we use digital computers to sample and store these continuous-time wave-
forms, and therefore equivalently face the problem of extracting parameter values
from a discrete-time waveform or data set. From a mathematical perspective, we
now have N samples stored as a N-point data set {xg, z1,...,xy_1} which depends

on an unknown parameter 6. Our goal is then to determine 6 based on the data or
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to define an estimator such as:

0 = g(xo,21,...,TNn_1) (2.21)

where ¢ is some function.

There are three types of estimation [8], namely
1. Parametric estimation
2. Non-parametric estimation
3. Robust estimation

In parametric estimation, we assume that the joint and marginal distribution of the
observed signal and the parameter to be estimated are known. Within this class,
there are two types of estimation approaches; classical and Bayesian. In the classical
approach, data is modeled by a PDF since the parameters of interest are unknown
but deterministic. In the Bayesian approach, one incorporates prior knowledge of the
PDF. The parameter we attempt to estimate is then viewed as a realization of the

random variable §. The data are described by the joint PDF"

p(x;0) = p(x|0)p(0) (2.22)

where p(6) is the prior PDF in where our knowledge about € is summarized before
any data are observed, and p(x|f) is the conditional PDF, where our knowledge about
the data x is summarized given that we know 6 [18].

In non-parametric estimation, one can make very few assumptions about the
statistical properties of the quantities to be estimated. There is no knowledge of
the exact distribution of the unknown, however, it may be possible to determine the

generalized family of the symmetric distributions.
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As [8] states, robust estimation has not been formally defined uniquely for a
universal context. However, it is an important concept in practice since it is considered
to lie in between non-parametric and parametric estimation. Basically, we do not have
knowledge of the exact distribution although we must be somewhat familiar with a
nominal value, i.e., a value that is most likely to occur. More information on this
and others topics regarding signal estimation theory can be found in literature such

as [8], [13], [17], and [18].
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CHAPTER III

METHODOLOGY FOR QUANTIFYING ROBUSTNESS
This chapter presents the design process of our matched filter detector assuming
nominal conditions followed by testing the robustness of our detector under non-
nominal conditions. In the design phase, a threshold of the detector is derived, where
in turn this result is used to specify the detection probability where from we can

derive the equation that can be used to analyze the robustness of our detector.

A. Model Assumptions

Lets assume we have independent identically distributed (i.i.d.) additive white Gaus-
sian noise ~ N(0,0?). Additionally, for the detector design and robustness testing

purposes, lets also assume:

1. A constant signal-to-noise ratio (SNR) K defined by:

A2

K
0

(3.1)

where A? represents the signal strength, and 6 represents its noise variance.

Accordingly, one can analyze different SNRs by varying the choice of K.
2. We set our detector to a constant nominal theta 6y based on prior knowledge.
3. We specify a value to the probability of false alarm constraint a.

4. We obtain our samples from a sinusoidal signal with unknown amplitude A.
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B. Sampling of a Sinusoidal Signal With Unknown Amplitude

In this section, we derive the sampling technique used for the robustness analysis.
Let s(t) be a sinusoidal signal with unknown amplitude A, measured at time ¢, be
defined by:

s(t) = Acos(wt+¢), t=0,...,T (3.2)

where the period T of the sinusoidal signal is given by:

27
T=— 3.3
. (33)
Letting the phase shift ¢ = 0, we obtain:
s(t) = Acos(wt +0) = Acos(wt), t=0,...,T (3.4)
Now lets sample this signal every At seconds, and do this ¢ times, ¢ = 1,...,n. The

signal sample at time instance ¢; = ¢At can then be written as:
s; = Acos(wiAt), i=1,...,n (3.5)
Given that w = 27/T', we can see that:

At
S = Acos(QW?i), i=1,...,n (3.6)

In order to simplify our expression, we can let ¢; = cos (2m(At/T)i) and thus rewrite
s; as:

s;=Ac, 1=1,...,n (3.7)

C. Threshold of Matched Filter Detector

In this section we are going to define the threshold 7, of our detector under nominal,

noise only conditions, given the four model assumptions. Let Y; = N; ~ N(0,6)
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under Hy be a random sample, and let y; be a realization of Y;. Subsequently, the
matched filter detector correlates our nominal signal s;, with y; to create the test
statistic > s;,y; used for making a decision based on the computed threshold 7, to
either conclude Hy or Hi. Thus, the optimal detection statistic can be defined as:

n H,y
> siyi 5 T, (3.8)
0

=1

Knowing this, we can calculate the first moment of >  s;,; by:

E{Z%Yi} =Y E{s, Y3} (3.9)

i=1 i=1
= s, B{Yi} (3.10)

i=1
= iy %0 (3.11)

i=1
—0 (3.12)

Similarly, the second moment can then also be calculated by:

E{(isiomf} - E{iisio%nyj} (3.13)

i=1 j=1
=D s B B |+ s B ()
i—1 41 N T
=0 =0
= QOZSZ'OQ (315)
i=1
Hence, under Hy:

D 51V~ N(0,60) sip”) = N(0,60043) ¢”) (3.16)
=1 =1 i=1

= N(0,K6,>> ) (3.17)
=1
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Using (3.8), we can write the probability of false alarm « of our detector, given Hy

under the nominal conditions as:
o= P(isio}ﬁ > T, | Y; = noise only)
i=1
= P(N(, Ke(fzn:cﬁ) > T,)
i=1
Next, using (2.2), we can represent the PDF of (3.19) as:

o = N(O, KQOZZCZ‘Z)
i=1

T

o] 1 _ .2
:/ e2K00° T ¢ (] »
2 n
Tr V2 KOo™ Y iy ¢

If we let w = z/4/K0,” Y| ¢;2, we can rewrite (3.21) to become:

& 1 W?d
o= ——e 2 dw
/# 2T
6o/ KX ¢;?

:/OO . No

0o/ K ST ¢;?
1 T,

RERRA e/ s siavd,

where we note er f(x) to be defined by:

erf(x):/o \/%_Wefdw

:/;N(O,l)

1 o
—-— [ N(0,1
2/ (0,1)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
(3.26)

(3.27)
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At last, using (3.24), we can solve for the threshold 7, constrained by «, resulting in:

(3.28)

D. Performance of Detector

At this point, we are done with the design of our detector under the nominal condi-
tions, and are now going to divert our attention to calculating the detector’s perfor-
mance expressed as the detection probability # assuming non-nominal conditions. In
order to determine this performance, we have to test our detector using H;, where
Y; = s;+ N; ~ N(s;,0?) is a random variable. As a result, we can define our detector

as:
Z SZ'OY; = Z Sio(si -+ Nz) (329)
i=1 i=1

Calculating the first moment of (3.29), we can see that:

E{ZSZ‘OY;} = ZE{SzO(Sz+Nz)} (330)

i=1 i=1
= E{siysi} + > E{si,Ni} (3.31)

i=1 i=1

= E{si,si} +0 (3.32)

i=1
=> s B{si} (3.33)

i=1

i=1
= VEOVED ¢ (3.35)

i=1

=K\/000> ¢ (3.36)
=1



The second moment can be written as:

Var{ i siOYi} = Var{ isio(si + NZ)}
- E{(isio(si + N;) — u)Q}
E{(isio(smtj\fi) —K\/H(T@ZE:C%?}

E{(Z SiONi + Z SigSi — Z SZ'OSZ‘)Q}
1 i=1 =1

=

=Y B{si}B{N}}

Hence, under H;:
D siYi ~ N(KV000 > e}, K0d >~ cf)
i=1 i=1 i=1
Next, using (3.8), we can define (3 as:

6= P(Zsio}/; > T, | Y; = signal + noise)
i=1

- P(N(K\/G(Teg 2, K0y z:; 2) > TT)

19

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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Again, using (2.2), we can represent the PDF of (3.47) as:

B= [ NE\OOY I Kbo> c?) (3.48)
i=1 i=1

T

= \/';‘T_K\/go_gznzl c2 N(O7 1) (349)

/KO0 2

e¢]
- \/9\01/1(2?1 c;2 erf_l(%—a)—K\/GO_nglzl CZZ N(07 1) (350)

\/KGOGZ?:1 cf

using 7). as defined in (3.28). Simplifying our lower integral limit, gives us:

\/%Oerffl(%—a)—\/m

E. Robustness of Detector

1. Performance Change

At this point, we have derived the probability of detection of our detector, and are
interested in the detector’s behavior when the measured # changes. The most straight-
forward and common used method would be to calculate the slope of the tangent to
the performance line at that point, which is done by taking the directional derivative
of the detector’s detection probability  with respect to 6. Applying this method

gives us:

9B

- (3.52)
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1 . sy 1.0
= ——%6_%(\/%06Tf AR AR (—5)6—06rf_1(— —a) (3.53)

Vaserf (L — a)e 3V Fers G- VEELE
B 2V2103

2

~

2. Worst Case Slope to Riemannian Manifold

We previously determined the change of performance by taking the directional deriva-
tive of our performance function 3. In order to consider the worst case used for a
multi-dimensional manifold with regard to robustness analysis, we have to take the
maximum directional derivative [8]. For example, in a two-dimensional manifold (R3
space), the curvature of a surface at a specific point does not have to be identical in
all of the x, y, and z directions. Therefore, the maximum directional derivative at
that point on the plane can be found by searching all directions, and choosing that
particular direction that maximizes the tangent at this point. [8] derives the expres-
sion for the general worst case slope to a Riemannian manifold M using differential

geometry techniques and formulates it as:
(Dgh)? = VRG~'VR" (3.55)

where D ¢h represents the directional derivative of function h, Vh is the gradient of

h, G7! is the inverse of the Riemannian metric g on the tangent space T, M defined
by:
o 0
=gl —, — 3.56
(u;); being the local coordinates P on M.
As previously stated in (3.1), our analysis is based on a constant signal-to-noise

ratio K = A%/0; A% and 6 varying dependently upon each other. Since we recognize

K to be a continuous function, implies K is differentiable. Therefore, the tangent of



K is defined by the inner product:

g = (V1, V1)
= [[Vilf?
= (Az)* + (Ay)®
e (22

dAN 2
=1+ (%)
1
=1+ (5K56‘5)2
K
:1 _
9

Subsequently, we can rewrite (3.55) as:

- (1+3) (Gg)

Slope

:<1+E

Kyt Bolerf (3 — @)% (VBerr - VATTE)
) | - {mh3
N G a))’e (VBerr G-/ KEL, )

27(40 + K)6?

resulting in:

“1(1 _ )2 _(\/ﬁerffl(%—a)—vKZ?:lcz?)Q
Slope(0) = J olerf 75 ~a)) €

27(46 + K)6?

where K, 0y, a, and ¢;, i = 1,...,n are fixed known constants.

22

(3.57)
(3.58)
(3.59)

(3.60)
(3.61)
(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)
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To obtain an intuitive feeling of the derivations performed above, lets consider
Fig. 2, where 0, A are plotted on the horizontal plane, and the third dimension [ is

plotted on the vertical plane. In this illustration, we observe 3 to be curving along

Fig. 2. The derivative components illustrated
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with the horizontal plane defined by K = A%/6. Consequently, if we wish to quantify
the robustness in terms of slope, we need to split up the derivative of the performance

curve 3 into two components:
1. The horizontal derivative, represented by ¢gi;.
2. The vertical derivative, represented by 93/06.

where we subsequently used (3.55) to provide us with the desired results derived

earlier.

F. Robustness Analysis

The robustness quantification curves characterized for n = 1 - 20, containing signal
strength K = {0.1,1,10} with unit nominal variance are given in Figs. 3, 4, and 5.
Additional curves for n = 1 - 20, containing signal strength K = {0.1,1,10} with

nominal variance 6y = {0.1,0.5,2,5,10} are located in Appendix A.
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1. Common Signal Variance, 6 < 10

A first glance will reveal that when given a specific combination of K and 6y, an
increase in n results in an increasing the maximum slope as well. This phenomenon
can be explained due to the fact that each of the n samples contains a measurement
error, and since the noise is i.i.d., the total error for n samples is the product of
each sample’s individual error resulting in an increasing peak slope as n increases.
Furthermore, we examined the consistency of this result for large n as well. Our
findings were that for n > 100, the maximum slope monotonically increases for an
increasing n. In addition, we observed that for 6,, < 6 < 10, where Slope(6,,) =
Slopemaz(0), Slope(f) contains a faster decreasing downward slope for greater n.
Clearly, these results go against our intuition of more samples taken being preferred
to less in terms of the detector’s performance and robustness.

Moreover, we note the peak slope at Slope(6,,), given a fixed 6y and n, to increase
for larger K. The cause for this rising peak is the high performance change AS for
small #. In other words, a small K results in a small AF and a large K results in a
large AB with regard to small 6.

Another recognizable fact is that as 6y increases, given a particular K, the maxi-
mum slope decreases. This can be logically explained due to the fact that setting the
detector to a higher 6, allows a greater range of plausible values for the detection of
a signal, which in turn implies lesser performance, but greater robustness. Thus, in
terms of robustness, high nominal variance is good. In terms of performance, high
nominal variance is bad.

Another interesting point worth mentioning is the fact that for all K and 6y, the
peak of the slope is smaller at n = 3 compared to n = 2. This occurrence happens

to be exceptional as the peak of Slope(6) monotonically increases for all n > 3. We
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investigated this phenomenon and became to realize it was caused by the sampling
method we employed, i.e., if we were to sample at different time instances within the
designated period T', the peak of Slope(f) would monotonically increase ¥Vn. Note
that sampling at just any other random time instances within the designated period
T will not always result in the peak of Slope(6) to monotonically increase Vn.

As of this moment, the results discussed above only hold for the case where we
sample our signal within the limit of one period. In order for us to be able to conclude
whether or not these results hold in general, we researched the effect of sampling
beyond one period using the same sampling procedure as described in Chapter II.
For example, we acquired n samples within the length of 5/4, 4/3, and 3/2 periods.
Our findings were that there are no significant differences between sampling within or
sampling beyond one period. Yet, in the case of sampling within the 3/2 periods, we
found that when comparing n = 3 to n = 2, there exists an increase in the peak of the
slope at n = 3 (special case previously stated) instead. However, this phenomenon
does not have any influence on our overall results and will therefore be ignored in our

research, making the above results valid in general.

2. Extraordinary Signal Variance, 6§ > 10

The previous robustness analysis mainly focused on the common cases of the measured
0 for a fixed 6y, which is of main interest simply because this region contains the
greatest performance change. However, in reality, some signals may contain both
a large amplitude and variance, suggesting the detector has a "high” theoretical
performance as can be seen in Fig. 2 (keep in mind the signal strength K remains
unchanged). Thus, a vast underestimation of the real # not anticipated on by the
fixed nominal value may result in erroneous hypothesis decisions and non-optimal

robustness situations. In this section, we investigate the effect of sample size at the
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design stage of the detector as it is the only parameter we are able to control in order

to preemptively reduce hypothesis decision errors and improve robustness optimality.

a. Larger Sample Size Increases Decision Accuracy for Extraordinary Signal Vari-

ance

From the previous derivations in this chapter, we know that under

H() . Z?:lsi())/i ~ N(O, K‘902Z?:16i2)
(3.69)

Hy 2300 si0Yi ~ N(KVO0 Y0, cf, KO0 o0, cf)
From (3.28) we obtained that the threshold T, = 6yy/K > » ¢;2 erf~1(0.5 — a).
Suppose we have K = 1 and design our detector based on 65 = 5 and o = 0.05.
For n = 1, we obtain 7, ~ 8. For n = 20, T, ~ 26. Under ideal conditions,
0 = 60y. Hence, the threshold and the densities f(x; Hy), f(z; Hy) for n = 1 and
n = 20 become as shown in Figs. 6 and 7. Clearly, when more samples are taken,
we observe the decision surfaces to be less overlapping and the threshold to be less
biased toward H;. Despite only having a few samples, we can say this proposed model
performs well when 6 ~ 6,. But what happens if 8 > 6,7 Let’s suppose the same
scenario previously described, except let # = 15. The decision surfaces then become
as shown in Figs. 8 and 9. Clearly, when only 1 sample is taken (Fig. 8), the large
0 causes a significant overlap between f(z; Hy) and f(x; Hy). Thus, when strictly
adhering to the calculated threshold 7)., we can recognize the fact that there exists
a substantial chance of making the wrong decision exists, i.e., choosing the wrong
hypothesis. However, when 20 samples are taken (Fig. 9), f(z; Hy) and f(x; H,) are
sufficiently separated to the point where the probability is adequately small for the
value of z to reside in the same region of both densities. Furthermore, the threshold

T, makes a more intuitive distinction between the two hypothesis. Hence, when we
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are uncertain about the behavior of #, taking more samples will enhance the ability
of choosing the correct hypothesis.
b. Larger Sample Size Improves Robustness for Extraordinary Signal Variance

Let’s once again refer to Figs. 3 - 5. Observing the shape of the graphs, we perceive
that as 0 increases, Slope(f) seems to decrease exponentially. Therefore, we are
interested in investigating the rate at which the tail of Slope(f) decays. Suppose we

model Slope(#) to be of functional form:
Slope() = Ce™"? (3.70)

where C' is a constant and V' is the parameter of interest representing the rate at

which the exponential decays. Taking the natural logarithm of both sides gives us:
In(Slope(d)) = In(C) — V8 (3.71)

Since we are interested in the rate of change (ROC) of Slope(6) with respect to 6, we

differentiate and obtain:

d%ln(szope(e)) _ d%ln(C) _ d%ve (3.72)
= _V (3.73)

Hence, we can represent the ROC of the (9, S lope(@)) curves over the interval [6,, 6]

for 8 > 10 by:
In(Slope(6y)) — In(Slope(6,))
O, — 0,

The ROC values of the interval [10,15] at K = 0.1, 1,10 have been investigated and

ROC = (3.74)

are shown in tables I - III.

We observe that for all combinations of K and 6, considered, the ROC decreases
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as n increases. Moreover, this result becomes more evident for larger K as the ROC
values for a specific 6, decreases more rapid for an increasing n. Additionally, we
perceive the actual tail values of Slope(6) with n > ng, Yng € N, to descend below the
tail values of Slope(6) with n < ng, given a fixed §; and K. Figs. 10 and 11 illustrate
this concept. Recognizing the fact that both of these results hold in general, we can

conclude that larger sample sizes will provide us with greater robustness for V6 > 10.



Table I. ROC values of the interval [10, 15] at K = 0.1

n | 0p=0.1 O =1 Oy =2 0o =5 0o =10

1 [-0.1225635 | -0.1185736 | -0.1120542 | -0.0899557 | -0.050447
2 | -0.1233543 | -0.1210743 | -0.1155907 | -0.0955475 | -0.058355
3 | -0.1229926 | -0.1199304 | -0.1139731 | -0.0929897 | -0.0547378
4 1-0.1233543 | -0.1210743 | -0.1155907 | -0.0955475 | -0.058355
5 | -0.123673 | -0.122082 | -0.1170159 | -0.0978009 | -0.0615419
6 |-0.1239611 | -0.1229931 | -0.1183044 | -0.0998382 | -0.064423
7 | -0.1242261 | -0.123831 | -0.1194893 | -0.1017116 | -0.0670725
8 | -0.1244727 | -0.1246108 | -0.1205922 | -0.1034554 | -0.0695385
9 |-0.1247043 | -0.1253433 | -0.121628 | -0.1050932 | -0.0718547
10 | -0.1249234 | -0.126036 | -0.1226077 | -0.1066423 | -0.0740454
11 | -0.1251317 | -0.1266949 | -0.1235395 | -0.1081156 | -0.0761291
12 1 -0.1253308 | -0.1273245 | -0.1244299 | -0.1095234 | -0.07812

13 | -0.1255218 | -0.1279283 | -0.1252839 | -0.1108736 | -0.0800295
14 | -0.1257055 | -0.1285094 | -0.1261056 | -0.1121729 | -0.0818669
15| -0.1258828 | -0.12907 | -0.1268984 | -0.1134265 | -0.0836398
16 | -0.1260543 | -0.1296122 | -0.1276653 | -0.114639 | -0.0853545
17 | -0.1262204 | -0.1301378 | -0.1284085 | -0.1158141 | -0.0870163
18 | -0.1263818 | -0.1306481 | -0.1291301 | -0.1169551 | -0.08863

19 1 -0.1265388 | -0.1311444 | -0.129832 | -0.1180649 | -0.0901995
20 | -0.1266916 | -0.1316278 | -0.1305157 | -0.1191458 | -0.0917282

35



Table II. ROC values of the interval [10,15] at K =1

n| 6, =01 fo = 1 0o = 2 b =5 f, = 10

1 1-0.1259585 | -0.1308946 | -0.1297825 | -0.1184127 | -0.090995
2 | -0.1284592 | -0.1388026 | -0.140966 | -0.1360954 | -0.1160022
3 | -0.1273153 | -0.1351853 | -0.1358505 | -0.128007 | -0.1045634
4 1-0.1284592 | -0.1388026 | -0.140966 | -0.1360954 | -0.1160022
5 | -0.1294669 | -0.1419894 | -0.1454729 | -0.1432214 | -0.1260799
6 | -0.130378 | -0.1448706 | -0.1495475 | -0.1496638 | -0.1351908
7 | -0.1312159 | -0.14752 | -0.1532944 | -0.1555883 | -0.1435692
8 | -0.1319957 | -0.1499861 | -0.156782 | -0.1611026 | -0.1513676
9 | -0.1327282 | -0.1523023 | -0.1600575 | -0.1662817 | -0.158692
10 | -0.1334209 | -0.154493 | -0.1631557 | -0.1711803 | -0.1656197
11 | -0.1340798 | -0.1565767 | -0.1661024 | -0.1758395 | -0.1722087
12 | -0.1347094 | -0.1585676 | -0.1689179 | -0.1802912 | -0.1785045
13 1 -0.1353133 | -0.1604771 | -0.1716184 | -0.1845611 | -0.184543
14 1 -0.1358943 | -0.1623145 | -0.1742169 | -0.1886696 | -0.1903533
15 | -0.1364549 | -0.1640873 | -0.1767241 | -0.1926339 | -0.1959596
16 | -0.1369972 | -0.165802 | -0.179149 | -0.196468 | -0.2013819
17 | -0.1375227 | -0.1674639 | -0.1814993 | -0.2001841 | -0.2066373
18 | -0.138033 | -0.1690776 | -0.1837814 | -0.2037925 | -0.2117402
19 1 -0.1385293 | -0.1706471 | -0.186001 | -0.2073019 | -0.2167033
20 | -0.1390127 | -0.1721757 | -0.1881628 | -0.2107201 | -0.2215374
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Table III. ROC values of the interval [10, 15] at K = 10

n| 6,=0.1 b =1 0o = 2 b =5 6o = 10
1 | -0.1329297 | -0.1660928 | -0.1820799 | -0.2046371 | -0.2154544
2 | -0.1408377 | -0.1910999 | -0.2174453 | -0.2605548 | -0.294534
3 | -0.1372205 | -0.1796612 | -0.2012685 | -0.2349771 | -0.2583616
4 |-0.1408377 | -0.1910999 | -0.2174453 | -0.2605548 | -0.294534
5 | -0.1440245 | -0.2011777 | -0.2316974 | -0.2830893 | -0.3264025
6 | -0.1469057 | -0.2102886 | -0.2445822 | -0.303462 | -0.3552139
7 | -0.1495552 | -0.218667 | -0.256431 |-0.3221966 | -0.3817087
8 | -0.1520212 | -0.2264654 | -0.2674596 | -0.3396344 | -0.4063694
9 | -0.1543374 | -0.2337898 | -0.277818 | -0.3560123 | -0.4295313
10 | -0.1565281 | -0.2407175 | -0.2876151 | -0.371503 | -0.4514383
11 | -0.1586118 | -0.2473065 | -0.2969334 | -0.3862365 | -0.4722748
12 | -0.1606027 | -0.2536023 | -0.305837 | -0.4003143 | -0.4921838
13 | -0.1625122 | -0.2596408 | -0.3143767 | -0.4138167 | -0.5112791
14 | -0.1643496 | -0.2654511 | -0.3225938 | -0.4268091 | -0.529653
15 | -0.1661225 | -0.2710574 | -0.3305222 | -0.4393451 | -0.5473817
16 | -0.1678372 | -0.2764797 | -0.3381906 | -0.4514698 | -0.5645286
17 | -0.169499 | -0.2817351 | -0.3456228 | -0.4632212 | -0.5811475
18 | -0.1711127 | -0.286838 | -0.3528394 | -0.4746317 | -0.5972844
19 | -0.1726822 | -0.2918011 | -0.3598582 | -0.4857294 | -0.612979
20 | -0.1742109 | -0.2966352 | -0.3666947 | -0.4965388 | -0.6282657
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CHAPTER IV

WEIGHTING METHOD APPROACH FOR ACHIEVING SLOPE LIKELIHOOD
In the previous chapter we utilized the slope method for quantifying the robustness
of our detector for a variety of constant signal-to-noise ratios K and nominals 6.
We are now going to expand our analysis in a way as such to give these slope values
variable weights over a predetermined range of #’s. This chapter will present why
there is a need for such a weighting method, the implementation details thereof, and

the conclusion of our results.

A.  Weighting Method Background

A weighting method is needed when some particular points on a curve are either over-
or underrepresented. In our analysis, the need for applying a weighting method comes
from the fact that all points on our (9, S lope(@)) curvatures, plotted in Appendix A,
are not equally probable. To recognize this fact, lets first get an intuitive feel of how
(0, A) and Slope(0) are related to each other. Consider the three-dimensional Fig. 12,
where (6, A) is plotted on the horizontal plane, and Slope(0) is plotted on the vertical
plane. Given this illustration, we observe that Slope(f) curves along with (6, A),
making it possible to quantify the robustness of our detector for a combination of
and A.

Lets now refer our attention to Fig. 13, which is a two-dimensional representation
of the horizontal plane of Fig. 12. Two intervals of equal length have been considered,
namely [0y, 0] and [f3,04]. Let Abyy, AAj be the horizontal and vertical change of
[01,0-], and let Afsy, AAsy be the horizontal and vertical change of [03,6,]. In addi-
tion, let dlya, dl3s be the the length of the line segments of [0y, 05], [03, 4] respectively.

Since both [0y, 6] and [f3, 04 are of equal length, implies Afj; = Afsy. However,
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we can clearly perceive that AA;5 # AAsy. Therefore, since the curve is sufficiently
smooth logically implies dly5 # dlz4. As a result, all points on the curve (6, A) are not
equally probable, making each point on the Slope(f) curve not equally probable as
well. Therefore, applying a weighting factor would be the most uncomplicated and

straightforward approach of dealing with these phenomena.

B. Implementation Details

For illustration purposes only, let Fig. 14 represent a typical graph for the quantifica-
tion of robustness with @ plotted on the horizontal axis, and Slope() plotted on the

vertical axis. The first step of our weighting procedure is to evaluate the Slope(6)
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Fig. 14. Intervals used for weighting procedure
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at # = 0y. Once this value has been determined, we need to find 6 = 6, such that
Slope(6y) = Slope(6;). Since guaranteed convergence plays a more important role in
our analysis than does rate of convergence, we used the Bisection Method [19] to find
this # = ;. Now having established the interval [, 6], called the tolerable range, we
can carry on with your procedure by equally parsing [0, 0] into 1000 theta values,
implying the existence of 999 intervals.

One may wonder why we only choose the [f;, 6] region for weighting the slopes?
Our main motivation comes from the fact that this specific fragment contains the
most commonly found 6 values in conjunction with the uppermost slope values. In
other words, this region contains the utmost changes of  leading to the worst case
robustness scenarios of our detector.

Our next step is to divide the vertical axis from Slope(6;) to the maximum slope
value, Slope,q.(0), into 100 equally sized bins. As will become more apparent later,
100 bins have been chosen in order to provide us with an average ratio of 10 theta
values per bin, creating a sufficient environment for analysis.

Keeping Fig. 14 in the back of our mind, lets now focus our attention to Fig. 15,
which is an exact replica of Fig. 13. As expected, we observe Fig. 15 to contain the
same interval [0y, 6p] as Fig. 14, where the arc length of the curve [20], such as the arc
length of [0,,,0,,], are used for computing the equalizing factor. In our case, the arc

length can be written as:
ds = /(df)? + (dA)? db (4.1)
where \/(df)? + (dA)? represents the equalizer. Factoring out (df)? from the equal-

izer, we obtain:

dA\’
lizer = 4/ 1 — 4.2
equalizer + (d@) (4.2)
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Fig. 15. Weighting procedure illustrated with respect to (6, A) curvature for [0, 0]

Referring back to (3.1), we can rewrite K = A?/0 as:
A= VK0 (4.3)

Taking the derivative of A with respect to 6, gives us:

A _ E (4.4)
N

Squaring (4.4) and substituting it into (4.1), we obtain:

VK ) ’
equalizer = |1+ | —= 4.5
! (2\/9 4

K

=1/14+— (4.6)
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Fig. 16. Weighting procedure illustrated with respect to (9, Slope(@)) curvature

Thus, the weight for the line segment on interval [0, 6,,], as illustrated in Fig. 15,

Opg K
weight,p, = /9 \/1+ 0 do (4.7)
ps

This weighting procedure is performed for each of the 1000 points on the interval

can be written as:

[0, 00 + (69 — 6;)/999]. Note that the weight for point 6, corresponds to the interval
.01

The final step of our weighting procedure involves the categorization of all the the
weighted line segments into 1 of the 100 bins. This can be achieved by first searching
which of the 1000 theta values on [6;, 6] of the Slope(#) curvature can be associated

to bin 1 (Fig. 16). Once this has been accomplished, we proceed by placing their
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corresponding weighted line segments into the first bin, where for example, the value
of 0, corresponds to the weighted line segment [6,,, 6,,]. Repeating this procedure 99

more times for the remaining 99 bins, we obtain Likelihood as a function of Slope(9).

C. Slope Likelihood Analysis

The Slope Likelihood (SL) curves in histogram format for n = 1 - 20, containing
signal strength K = {0.1, 1,4} with unit nominal variance are shown in Figs. 17, 18,
and 19. Additional curves for n = 1 - 20, containing signal strength K = {0.1,1,4}
with nominal variance 6y = {0.1,0.5,2, 5,10} are located in Appendix B.

Note that this procedure did not consider analyzing K = 10 as it resulted in
numerous empty bins. Hence, creating a difficult situation for analysis. These empty
bins are caused by the fact that a small increase in € resulted in a large increase in
Slope(0), larger than the width of one bin. Therefore, a total of 100 bins is insufficient
for analyzing the case where K = 10. We decided to perform our analysis for the case
where K = 4 simply because it does not result in empty bins for all 6y, n < 20. In

addition, the validity of the analysis remains identical for both K = 4 and K = 10.
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At first, let’s focus our attention to the horizontal axis Slope(f) of the SL curves.
A close look reveals the existence of an increasing slope range width as n increases,
given a fixed K and 6. This result is directly related to the robustness quantification
curves given in Figs. 3, 4, 5, and Appendix A, where we recognized the Slope,,qz
value to increase for an increasing n. However, the exception is once again made for
the n = 3 case, where the width of the slope range decreases slightly when compared
to the slope range of n = 2, but yet again increases monotonically for n > 3.

For K = 0.1, all n and 6, considered, the curves show a steady Likelihood in-
crease for up to the first 75% of the Slope () interval, followed by a strongly increasing
Likelihood for the remaining 25%, resulting in a high peak at the end of the interval.
Hence, when having a weak signal, the curves suggest there is a high likelihood for a
high slope, making the detector unrobust.

For K =1, all n and 6y considered, the curves again show a strong increase of
the Likelihood near the end of the Slope(6) interval. However, as n increases, the
Likelihood of having a small Slope(f) steadily increases as well. This phenomenon
seems to become more apparent for smaller n as 6y increases. Hence, when having
moderate signal strength, the curves suggest that the likelihood of obtaining greater
robustness increases according to its sample size n, where this occurrence becomes
more apparent for smaller n as , increases.

For K = 4 and all 6, considered, the curves show an increasing likelihood of
having smaller slope values as n becomes greater. Generally, when n > 6, smaller
slope values are more likely to occur. Hence, when dealing with a strong signal,
the curves suggest that when the primary aim is to achieve greater robustness, more

samples taken will be preferred to less.
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CHAPTER V

QUANTITATIVE ROBUSTNESS ANALYSIS TECHNIQUES
In the preceding chapter we implemented a weighting method to insure all points on
the (9, S lope(@)) curvature are equally probable. We presented a basic analysis and
made some general intuitive statements based upon the graphic results. However,
the study lacks the quantitative component of the analysis. For that reason, this
chapter will examine as to how likely we are to encounter the extreme slope values.
Additionally, we will take a different approach that utilizes slope values to compute a

confidence level of being robust based on some nominal delta performance constraint

Af.

A. Measuring Robustness in Terms of Likelihood

Based upon Figs. 17 - 19 and Figs. 39 - 53 located in Appendix B, we can generally
see a pattern where the Likelihood fluctuates most at the first and final quarter of the
tolerable range. The remaining 50% located around the center does not provide us
with any additional relevant information, since the Likelihood on this interval remains
approximately constant. We are therefore interested in analyzing the behavior of the
SL at both of these outermost sections. Consequently, we can compute as to how
likely the detector is to being robust by taking the ratio of these outermost areas A;
and Az as illustrated in Fig. 20. Note that each rectangle represents a bin as discussed
in Chapter IV. Therefore, given the fact that these bins of the SL curves are displayed
in histogram format, we can easily compute the total area of an interval by adding
up the areas of each individual rectangle. The likelihood ratio (LR) of the areas
Ay /As have been computed for the usual K = {0.1,1,4}, 6, = {0.1,0.5,1,2,5,10},
n =1 — 20, and are shown in Tables IV - VL.
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Table IV. Likelihood ratio of areas A;/As at K = 0.1

n|0=01]60=05|0=10=2|0=5]|06=10
1 0.282 0.294 0.295 | 0.297 | 0.294 | 0.295
2 0.295 0.307 0.310 | 0.309 | 0.311 | 0.312
3 0.288 0.297 0.304 | 0.305 | 0.303 | 0.307
4 0.295 0.307 0.310 | 0.309 | 0.311 | 0.312
5 0.299 0.316 0.322 | 0.320 | 0.323 | 0.325
6 0.310 0.323 0.327 | 0.332 | 0.332 | 0.330
7 0.310 0.334 0.336 | 0.339 | 0.339 | 0.335
8 0.321 0.339 0.343 | 0.344 | 0.348 | 0.349
9 0.327 0.346 0.352 | 0.353 | 0.354 | 0.357
10 | 0.330 0.355 0.361 | 0.365 | 0.366 | 0.361
111 0.336 0.364 0.369 | 0.372 | 0.370 | 0.371
12 | 0.343 0.368 0.376 | 0.381 | 0.380 | 0.381
131 0.350 0.376 0.388 | 0.387 | 0.388 | 0.390
14| 0.357 0.383 0.393 | 0.397 | 0.398 | 0.400
15| 0.361 0.395 0.402 | 0.407 | 0.407 | 0.405
16 | 0.367 0.402 0.409 | 0.417 | 0.413 | 0.418
171 0.373 0.412 0.421 | 0.422 | 0.424 | 0.424
18 | 0.380 0.424 0.426 | 0.429 | 0.435 | 0.435
19 1 0.389 0.426 0.436 | 0.443 | 0.441 | 0.447
20 | 0.392 0.435 0.444 | 0.451 | 0.450 | 0.453

02



Table V. Likelihood ratio of areas A; /A3 at K =1

n |6 =0106=050=160=2|60=5]|60=10
1| 0319 | 0366 | 0.392 | 0.415 | 0.437 | 0.444
2 | 0407 | 0493 | 0.541 | 0.592 | 0.629 | 0.648
3| 0357 | 0424 | 0.465 | 0497 | 0.525 | 0.538
4| 0407 | 0493 | 0.541 | 0.592 | 0.629 | 0.648
5| 0461 | 0567 | 0.634 | 0.687 | 0.745 | 0.772
6 | 0515 | 0.650 | 0.732 | 0.807 | 0.873 | 0.902
7| 0585 | 0.737 | 0.837 | 0.933 | 1.016 | 1.058
8 | 0656 | 0838 | 0961 | 1.065 | 1.164 | 1.213
9 | 0745 | 0948 | 1.086 | 1.214 | 1.335 | 1.396
10| 0.827 | 1.072 | 1.226 | 1.376 | 1.526 | 1.595
11| 0925 | 1.199 | 1.370 | 1.541 | 1.724 | 1.804
12| 1.042 | 1.334 | 1.539 | 1.733 | 1.934 | 2.032
13| 1.152 | 1.492 | 1.706 | 1.938 | 2.160 | 2.267
14| 1.275 | 1.629 | 1.897 | 2.147 | 2.391 | 2.519
15| 1.386 | 1.803 | 2.082 | 2.367 | 2.675 | 2.797
16| 1.534 | 1.963 | 2.296 | 2.591 | 2.929 | 3.068
17| 1.668 | 2.155 | 2.483 | 2.817 | 3.193 | 3.362
18| 1.825 | 2.329 | 2.694 | 3.078 | 3.464 | 3.647
19| 1.966 | 2.528 | 2.921 | 3.318 | 3.763 | 3.984
20 | 2.131 | 2.737 | 3.127 | 3.602 | 4.056 | 4.292

23



Table VI. Likelihood ratio of areas A;/A; at K = 4

n |0h=0110=05|60=1|0=2|60=5]|0 =10
1 0.614 0.674 0.749 | 0.845 | 0.993 1.091
2 1.414 1.570 1.737 | 1.970 | 2.396 | 2.687
3 0.951 1.056 1.183 | 1.334 | 1.604 | 1.798
4 1.414 1.570 1.737 | 1.970 | 2.396 | 2.687
d 1.975 2.197 2404 | 2.746 | 3.286 | 3.736
6 2.605 2.884 3.172 | 3.584 | 4.269 | 4.900
7 3.328 3.614 3.942 | 4.446 | 5.359 | 6.022
8 4.051 4.425 4.737 | 5336 | 6.379 | 7.310
9 4.803 5.221 5.609 | 6.282 | 7.522 | 8.580
10 | 5.568 6.007 6.510 | 7.234 | 8.674 | 10.002
11| 6.318 6.726 7311 | 8.206 | 9.714 | 11.262
12 | 7.047 7.709 8.195 | 9.057 | 10.97 | 12.593
13| 7.832 8.414 9.111 | 10.063 | 12.022 | 13.887
14 | 8.595 9.197 9.866 | 11.066 | 13.341 | 15.459
151 9.380 10.022 | 10.678 | 12.028 | 14.155 | 16.491
16 | 10.258 10.914 | 11.678 | 13.146 | 15.581 | 18.232
171 10.946 11.722 | 12.475 | 13.742 | 16.724 | 19.168
18 | 11.816 12.653 | 13.506 | 14.851 | 18.127 | 20.863
19 | 12.928 13.805 | 14.664 | 16.165 | 19.266 | 22.848
20| 13.110 14.029 | 15.528 | 17.138 | 20.402 | 23.445

o4
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As a rule of thumb, we consider the detector to be rather robust if LR > 2, i.e.,
if you are twice as likely to reside in the robust portion (area A;) of the SL curve as
opposed to the non-robust portion (area As). Conversely, we consider the detector
to be non-robust if LR < 0.5. However, when 0.5 < LR < 2, we are uncertain about
the state of robustness and no conclusion can be drawn from the data. Note that we
should not strictly adhere to these defined boundaries as they are not absolute.

Observing the results for K = 0.1, we perceive there exists an overall low LR for
all 6y, despite the existence of an increasing LR for greater n. However, for K = 1,
the LR increases considerably faster as n increases, where this occurrence becomes
more evident for larger ;. When K = 10, the same conclusion can be drawn in a
more extreme fashion, i.e., the LR increases significantly faster for an increasing n,
where this again becomes more apparent for larger 6.

Conclusively, the data from Tables IV - VI suggests the detector becomes more

robust for larger K, 6y, and n.

B. Measuring Robustness in Terms of Confidence Level Given Constraint A3(6)

1. Implementation Details

In general applications, a detector or algorithm is considered robust if the performance
change Af does not deviate by more than 5% from the expected performance, i.e.,
we do not want the performance to change by more than 5% from (3,. Hence, we

need:

Afy < (0.05)5 (5.1)

— (0.05)8(60) (5.2)

In Chapter III, we formulated a direct relationship between the performance
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change of the detector and the (9, Slope(Q)) curvatures. Fig. 21 illustrates this fact
where («9, S lope(@)) is plotted on the horizontal plane and the performance [ is plotted

on the vertical axis. As a consequence of this direct relationship, we can upper bound

0 05

Slope(6) 9

Fig. 21. Relationship between (0, Slope(@)) and [ illustrated

the performance change A in terms of 6 and Slope(6) by:

Ap < (maximum variation in 6) (maximum variation in Slope(6)) (5.3)

= (00 - Qc)SlOpe(‘gc) (54)

V6. € R*. Subsequently, given the fact that we do not want to allow 3 to change by

more than 5% from the nominal, we require:

(60 — 0.)Slope(6.) < (0.05)3(6o) (5.5)
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Thus in order calculate the maximum distance 6 is allowed to travel from the nominal,

we need to find 6 = 6., such that:

(69 — 6.) Slope(6.) = (0.05)3(6) (5.6)

In the previous chapters we identified the least robust range of 6 to be for 6 € [6;, 6.
Therefore, as illustrated in Fig. 22, we are only interested in finding § = 6. for

0. € [0,60]. Note that when 6, < 0,,, where Slope(6,,) = Slopema.(6), we let

I
Slopemax(e)

0.25

0.2

Slope(0)
o
=
[¢a)

0.1

0.05

|
N v ! ! ! !
g 6 7 8 9 10

Fig. 22. Example of 0. € [0, 0] satisfying the (5%)03(6y) constraint

Slope(0..) = Slope(b,,), 0. < O,,.

Once we obtain 6§ = 0. for 0 € [0;,0y], we can express a confidence level percent-
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age, %C, as a measure of robustness to be:

‘90 _Qc
Oy — 0,

%C = - 100% (5.7)

where we assume 6 to travel uniformly over the region [0;, 6y]. Notice that a smaller
6. will provide us with a greater level of confidence since it is allowed to travel further
away from the nominal, without violating the (5%)3(6y) constraint.

As previously stated, the method for computing the confidence level given by
(5.7) assumes 6 travels uniformly over the region [6:,6y]. However, since we have
knowledge of a nominal value, it would be more realistic for . to reside in the neigh-
borhood of 6,. We should therefore view 6 as traveling from 6, to be probabilistic
rather than direct. Hence, we need to apply a weighting factor that puts more em-
phasis on values closer to the nominal as opposed to values far away. Fig. 23 provides
an illustration of such a weighting method as it weights according to the ratio of
the areas under the triangle. More specifically, we first draw a straight line from
the points (6;,0) to («90, Slope(&o)), creating a triangular shape. Next, we obtain the
value 6. by applying the same approach previously described. Subsequently, we use
this value to partition the triangle into two parts and take the ratio of the area to
the right side of 6. over the area of the complete triangle. Hence, we can write the

weighted confidence percentage, %WC, as:

Am’(90 - 90)

gwe = it = Ve)
’ Api(0 — 6,)

- 100% (5.8)

where Ay.;(A, B) denotes the area under the triangle from point A to point B located

on the horizontal axis 6.
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I
Slopemax(e)

Slope(0)

Fig. 23. Measuring weighted confidence illustrated

2. Results

The confidence (%C) and weighted confidence (%WC) computational results for n = 1
- 20, containing signal strength K = {0.1, 1, 10} with unit nominal variance are given
in Tables VII, VIII, and IX. Additional tables for n = 1 - 20, containing signal
strength K = {0.1,1, 10} with nominal variance 6y = {0.1,0.5,2,5, 10} are located in
Appendix C.

As expected, the results confirm the weighted confidence values for all K, 6, and
n to be greater as the non-weighted confidence values. Moreover, we would expect
the confidence level to increase when more samples are taken. The data confirms our

intuition for moderate (K = 1) and strong (K = 10) signal strengths. However, for



Table VII. Confidence procedure results for K = 0.1 and 6y = 1

n | B(6) | (5%)5(6) 0, 6, Slope(8.) | %C %WC

1 10.0920 | 4.5981e-3 | 0.5902 | 0.9664 | 0.1358 | 8.2082 | 15.7427
2 | 0.1155 | 5.7750e-3 | 0.5156 | 0.9646 | 0.1609 | 7.3073 | 14.0806
3 10.1042 | 5.2125e-3 | 0.5482 | 0.9652 | 0.1492 | 7.7077 | 14.8213
4 | 0.1155 | 5.7750e-3 | 0.5156 | 0.9646 | 0.1609 | 7.3073 | 14.0806
5 | 0.1261 | 6.3052e-3 | 0.4888 | 0.9637 | 0.1716 | 7.1071 | 13.7091
6 | 0.1363 | 6.8130e-3 | 0.4660 | 0.9626 | 0.1814 | 7.0070 | 13.5230
7 10.1461 | 7.3040e-3 | 0.4462 | 0.9617 | 0.1905 | 6.9069 | 13.3368
8 | 0.1556 | 7.7819e-3 | 0.4287 | 0.9611 | 0.1990 | 6.8068 | 13.1503
9 10.1650 | 8.2492¢-3 | 0.4130 | 0.9606 | 0.2071 | 6.7067 | 12.9636
10 | 0.1741 | 8.7075e-3 | 0.3988 | 0.9597 | 0.2148 | 6.7067 | 12.9636
11 | 0.1832 | 9.1581e-3 | 0.3859 | 0.9588 | 0.2222 | 6.7067 | 12.9636
121 0.1920 | 9.6020e-3 | 0.3740 | 0.9586 | 0.2290 | 6.6066 | 12.7767
13 | 0.2008 | 1.0040e-2 | 0.3631 | 0.9579 | 0.2357 | 6.6066 | 12.7767
14 | 0.2094 | 1.0472e-2 | 0.3529 | 0.9572 | 0.2421 | 6.6066 | 12.7767
15| 0.2180 | 1.0900e-2 | 0.3434 | 0.9566 | 0.2482 | 6.6066 | 12.7767
16 | 0.2265 | 1.1323e-2 | 0.3346 | 0.9560 | 0.2540 | 6.6066 | 12.7767
171 0.2348 | 1.1741e-2 | 0.3262 | 0.9548 | 0.2598 | 6.7067 | 12.9636
18 1 0.2431 | 1.2156e-2 | 0.3184 | 0.9543 | 0.2652 | 6.7067 | 12.9636
19 |1 0.2513 | 1.2566e-2 | 0.3110 | 0.9538 | 0.2703 | 6.7067 | 12.9636
20 | 0.2595 | 1.2973e-2 | 0.3040 | 0.9533 | 0.2753 | 6.7067 | 12.9636

60



Table VIII. Confidence procedure results for K =1 and 6§, = 1

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 10.2595 | 1.2973e-2 | 0.3390 | 0.9484 | 0.2492 7.8078 | 15.0060
2 | 0.4087 | 2.0437e-2 | 0.2362 | 0.9342 | 0.3097 8.6086 | 16.4761
3 103371 | 1.6857e-2 | 0.2774 | 0.9414 | 0.2858 8.1081 | 15.5588
4 104087 | 2.0437e-2 | 0.2362 | 0.9342 | 0.3097 8.6086 | 16.4761
5 04745 | 2.3727e-2 | 0.2061 | 0.9269 | 0.3237 9.2092 | 17.5703
6 | 0.5347 | 2.6734e-2 | 0.1831 | 0.9190 | 0.3302 9.9099 | 18.8378
7 1 0.5893 | 2.9467e-2 | 0.1648 | 0.9114 | 0.3305 | 10.6106 | 20.0954
8 | 0.6387 | 3.1935e-2 | 0.1498 | 0.9030 | 0.3264 | 11.4114 | 21.5206
9 | 0.6831 | 3.4154e-2 | 0.1374 | 0.8938 | 0.3192 | 12.3123 | 23.1087
10 | 0.7228 | 3.6138e-2 | 0.1268 | 0.8838 | 0.3098 | 13.3133 | 24.8542
11| 0.7581 | 3.7905e-2 | 0.1178 | 0.8737 | 0.2985 | 14.3143 | 26.5796
12 1 0.7894 | 3.9472e¢-2 | 0.1100 | 0.8628 | 0.2864 15.4154 | 28.4545
13 ] 0.8171 | 4.0857e-2 | 0.1031 | 0.8510 | 0.2740 | 16.6166 | 30.4721
14 1 0.8415 | 4.2076e-2 | 0.0970 | 0.8391 | 0.2611 17.8178 | 32.4609
151 0.8629 | 4.3147e-2 | 0.0916 | 0.8272 | 0.2480 | 19.0190 | 34.4208
16 | 0.8817 | 4.4084e-2 | 0.0867 | 0.8135 | 0.2361 | 20.4204 | 36.6709
17 1 0.8980 | 4.4902e-2 | 0.0824 | 0.8007 | 0.2238 | 21.7217 | 38.7251
18 1 0.9123 | 4.5615e-2 | 0.0784 | 0.7860 | 0.2131 | 23.2232 | 41.0533
19 | 0.9247 | 4.6234e-2 | 0.0748 | 0.7722 | 0.2021 24.6246 | 43.1855
20 | 0.9354 | 4.6770e-2 | 0.0715 | 0.7574 | 0.1922 | 26.1261 | 45.4265

61



Table IX. Confidence procedure results for K = 10 and 6, = 1

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 10.9354 | 4.6770e-2 | 0.0765 | 0.6700 | 0.1416 | 35.7357 | 58.7010
2 109977 | 4.9883e-2 | 0.0391 | 0.4008 | 0.0831 | 62.3624 | 85.8341
3 109871 | 4.9353e-2 | 0.0519 | 0.5198 | 0.1024 | 50.6507 | 75.6464
4 109977 | 4.9883e-2 | 0.0391 | 0.4008 | 0.0831 | 62.3624 | 85.8341
5 109996 | 4.9980e-2 | 0.0313 | 0.3154 | 0.0726 | 70.6707 | 91.3979
6 | 0.9999 | 4.9997e-2 | 0.0260 | 0.2551 | 0.0659 | 76.4765 | 94.4664
7 | 1.0000 | 5.0000e-2 | 0.0222 | 0.2102 | 0.0632 | 80.7808 | 96.3062
8 | 1.0000 | 5.0000e-2 | 0.0194 | 0.1774 | 0.0606 | 83.8839 | 97.4027
9 | 1.0000 | 5.0000e-2 | 0.0172 | 0.1530 | 0.0576 | 86.1862 | 98.0918
10 | 1.0000 | 5.0000e-2 | 0.0154 | 0.1337 | 0.0553 | 87.9880 | 98.5571
11 | 1.0000 | 5.0000e-2 | 0.0140 | 0.1176 | 0.0558 | 89.4895 | 98.8953
12 1 1.0000 | 5.0000e-2 | 0.0128 | 0.1057 | 0.0522 | 90.5906 | 99.1146
13 | 1.0000 | 5.0000e-2 | 0.0118 | 0.0949 | 0.0529 | 91.5916 | 99.2930
14 | 1.0000 | 5.0000e-2 | 0.0109 | 0.0862 | 0.0522 | 92.3924 | 99.4212
15 | 1.0000 | 5.0000e-2 | 0.0102 | 0.0785 | 0.0531 | 93.0931 | 99.5229
16 | 1.0000 | 5.0000e-2 | 0.0095 | 0.0730 | 0.0478 | 93.5936 | 99.5896
17 | 1.0000 | 5.0000e-2 | 0.0089 | 0.0675 | 0.0472 | 94.0941 | 99.6512
18 | 1.0000 | 5.0000e-2 | 0.0084 | 0.0620 | 0.0521 | 94.5946 | 99.7078
19 | 1.0000 | 5.0000e-2 | 0.0080 | 0.0586 | 0.0449 | 94.8949 | 99.7394
20 | 1.0000 | 5.0000e-2 | 0.0075 | 0.0542 | 0.0508 | 95.2953 | 99.7787
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a weak signal (K = 0.1), we observe the confidence levels to actually decrease with
greater n. This interesting development is caused by the fact that for all n, 6. remains
close to the nominal, while the tolerable range [6;, 6] increases with a rising n. On
the contrary, 6. is more flexible to travel for moderate and strong signal strengths,
resulting in larger confidence levels for greater n. Note that for larger SNRs, the
confidence levels elevate more rapid as n increases.

For all K and 6, considered, we perceive all the values for n = 2 and n = 4 to
be identical, including the confidence levels. Additionally, an exceptional decrease
in the confidence level can be found for n = 3 when compared to n = 2. However,
this is conversely true for K = 0.1 where there actually exists an increase in the
confidence level for n = 3 over n = 4. The cause of this phenomenon carries the same
argument as stated in chapter III, namely, the time instance ¢; at which the samples
are obtained. Essentially, this phenomenon would not have happened if different time
instances within the designated period T" would have been chosen for obtaining the
samples. However, once again note that this does not appear to be the case when

samples are taken at all other time instances within the designated period T
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CHAPTER VI

SUMMARY AND CONCLUSION

A. Summary

This thesis performed a quantitative analysis on the robustness of the matched fil-
ter detector corrupted by zero mean, independent and identically distributed white
Gaussian noise. The notion of slope was used to analyze the robustness under dif-
ferent signal-to-noise ratios, nominals and sample sizes. The analysis of these slopes
were divided into two parts, namely, slope for common signal variances and slope for
extraordinary signal variances. Next, we proceeded with our research by applying
a weighting method to the slope range of interest, the so called tolerable range, in
order to measure the likelihood of these slopes to occur. Subsequently, we used the
area residing in the first and last quarter section of this tolerable range to analyze the
likelihood of achieving low slope values. Lastly, we developed a method that uses con-
fidence as a measure of robustness. Both weighted and non-weighted procedures were
applied over the tolerable range, where the weighted procedure assigned a heavier

bias for values located near the nominal.

B. Conclusion

1. Weak Signal Strength

Lets first focus on the most common type of signal variances. In this case, larger
data samples are detrimental as the value of the peak slope rises with larger n. Addi-
tionally, greater sample sizes reduces the confidence of residing within the maximum
performance change bounds AB(6y). Choosing a larger nominal on the other hand,

does decrease the peak slope given any fixed sample size n. Unfortunately, this does
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not provide us with a helpful solution as the sacrifice of performance has to be taken
into consideration. Although larger data samples does somewhat increase the likeli-
hood ratio of residing in the lower slope range, it is not nearly enough to consider the
detector robust, regardless of which nominal is chosen.

With regard to the extraordinary signal variances, we observe larger data samples
to actually increase the robustness due to the exponential decay rate. This result is
also dependent on which nominal is chosen; a smaller nominal results in a greater
exponential decay rate. Since the decision surfaces greatly overlap in this case, taking
more samples is trivial as it further separates the decision surfaces.

Overall, we conclude the matched detector to be non-robust in situations that
deal with weak signal strengths. The most accurate results can be achieved by choos-
ing the nominal to the best of your knowledge and by taking a moderate amount of

samples in order to find a balance between detector performance and robustness.

2. Moderate Signal Strength

Lets again first put our attention to the most common type of signal variances. In
this case, larger data samples causes the peak of the slopes to increase. On the other
hand, larger sample sizes does induce greater confidence and likelihood ratios. The
most noticeable effect of a greater nominal value in conjunction with larger sample
sizes is the incremental rate at which the likelihood ratio increases.

Regarding extraordinary signal variances, the exponential decay rate becomes
greater for larger sample sizes and nominals. However, nothing particularly interesting
occurs concerning the exponential decay rate for low nominal values.

In general, we conclude the matched detector to be robust for moderate signal
strengths if the nominal is not largely overestimated and when a reasonable amount

of samples are taken. However, note that sample size should be adjusted according



66

to the practitioner’s certainty of having chosen the correct nominal value.

3. Strong Signal Strength

Even for strong signals, a high peak narrow band slope exists. However, the confidence
levels and the likelihood ratios show there exists a slim chance of residing in these
respective areas. In addition, few samples are needed for achieving high probability
of detection. Generally, 6 samples will be sufficient for achieving good performance
and robustness. For extremely strong signal, even fewer samples will suffice. When
the case arises that the practitioner is not certain about the chosen nominal value, it
would be of best interest to take some extra samples as to decrease the likelihood of
residing in the non-robust high slope region. However, if this solution is too costly, it
would be best to slightly underestimate the nominal in order to gain some confidence

and performance despite the contradictory results shown by the likelihood ratio test.

C. Recommendations for Future Research

The most intuitive continuation of the above performed analysis is to somewhat relax
the Gaussian assumption while retaining independence and stationarity. If such anal-
ysis proves to be successful, then further extension to dependence and non-stationarity

could be pursued.
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APPENDIX A

ROBUSTNESS QUANTIFICATION CURVES

Robustness quantification curves characterized by Slope(f) for n = 1 - 20, K =
{0.1,1,10}, and 6, = {0.1,0.5,2, 5,10} are given in Figs. 24 - 38.
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APPENDIX B

SLOPE LIKELIHOOD CURVES

Likelihood of Slope(#) for n =1 - 20, K = {0.1,1,4}, and 6, = {0.1,0.5,2,5,10} are

given in Figs. 39 - 53.
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Fig. 41. SL curve for K = 0.1, ) = 2
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Fig. 51. SL curve for K =4, 6, = 2
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Fig. 52. SL curve for K =4, 6, =5
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Fig. 53. SL curve for K =4, 6, = 10
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APPENDIX C

CONFIDENCE PROCEDURE RESULTS

The confidence (%C) and weighted confidence (%WC) computational results for n = 1

- 20, K ={0.1,1,10}, and 6y = {0.1,0.5,2,5,10} are given in Tables X - XXIV.



Table X. Confidence procedure results for K = 0.1 and 6, = 0.1

n | B(6) | (5%)5(6) 0, 6, Slope(6.) |  %C %WC

1 10.0920 | 4.5981e-3 | 0.0665 | 0.0963 | 1.2270 | 11.1111 | 20.9877
2 |1 0.1155 | 5.7750e-3 | 0.0580 | 0.0960 | 1.4550 9.4094 | 17.9334
3 10.1042 | 5.2125e-3 | 0.0617 | 0.0962 | 1.3486 | 10.0100 | 19.0180
4 | 0.1155 | 5.7750e-3 | 0.0580 | 0.0960 | 1.4550 9.4094 | 17.9334
5 | 0.1261 | 6.3052e-3 | 0.0549 | 0.0959 | 1.5513 9.0090 | 17.2064
6 | 0.1363 | 6.8130e-3 | 0.0524 | 0.0959 | 1.6399 8.7087 | 16.6590
7 10.1461 | 7.3040e-3 | 0.0501 | 0.0958 | 1.7222 8.4084 | 16.1098
8 | 0.1556 | 7.7819e-3 | 0.0481 | 0.0957 | 1.8002 8.3083 | 15.9263
9 10.1650 | 8.2492¢-3 | 0.0463 | 0.0956 | 1.8732 8.1081 | 15.5588
10 | 0.1741 | 8.7075e-3 | 0.0447 | 0.0956 | 1.9428 8.0080 | 15.3747
11 1 0.1832 | 9.1581e-3 | 0.0432 | 0.0955 | 2.0096 8.0080 | 15.3747
12 1 0.1920 | 9.6020e-3 | 0.0419 | 0.0954 | 2.0726 7.9079 | 15.1905
13 1 0.2008 | 1.0040e-2 | 0.0406 | 0.0953 | 2.1335 7.9079 | 15.1905
14 1 0.2094 | 1.0472e-2 | 0.0395 | 0.0953 | 2.1908 7.8078 | 15.0060
151 0.2180 | 1.0900e-2 | 0.0384 | 0.0952 | 2.2465 7.8078 | 15.0060
16 | 0.2265 | 1.1323e-2 | 0.0374 | 0.0951 | 2.2999 7.8078 | 15.0060
17 1 0.2348 | 1.1741e-2 | 0.0364 | 0.0950 | 2.3511 7.8078 | 15.0060
18 1 0.2431 | 1.2156e-2 | 0.0355 | 0.0950 | 2.4002 7.8078 | 15.0060
19 1 0.2513 | 1.2566e-2 | 0.0347 | 0.0949 | 2.4473 7.8078 | 15.0060
20 | 0.2595 | 1.2973e-2 | 0.0339 | 0.0948 | 2.4925 7.8078 | 15.0060
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Table XI. Confidence procedure results for K = 0.1 and 6y = 0.5

n | B(6) | (5%)B(00) 0, 0. Slope(0.) | %C %WC
1 10.0920 | 4.5981e-3 | 0.3000 | 0.4830 | 0.2682 | 8.5085 | 16.2931
2 1 0.1155 | 5.7750e-3 | 0.2621 | 0.4819 | 0.3180 | 7.6076 | 14.6365
3 10.1042 | 5.2125e-3 | 0.2787 | 0.4825 | 0.2948 | 7.9079 | 15.1905
4 | 0.1155 | 5.7750e-3 | 0.2621 | 0.4819 | 0.3180 | 7.6076 | 14.6365
5 | 0.1261 | 6.3052e-3 | 0.2485 | 0.4816 | 0.3389 | 7.3073 | 14.0806
6 | 0.1363 | 6.8130e-3 | 0.2369 | 0.4810 | 0.3583 | 7.2072 | 13.8950
7 10.1461 | 7.3040e-3 | 0.2268 | 0.4809 | 0.3763 | 7.0070 | 13.5230
8 10.1556 | 7.7819e-3 | 0.2179 | 0.4802 | 0.3933 | 7.0070 | 13.5230
9 10.1650 | 8.2492e-3 | 0.2100 | 0.4800 | 0.4092 | 6.9069 | 13.3368
10 | 0.1741 | 8.7075e-3 | 0.2027 | 0.4798 | 0.4243 | 6.8068 | 13.1503
11| 0.1832 | 9.1581e-3 | 0.1962 | 0.4793 | 0.4388 | 6.8068 | 13.1503
12 1 0.1920 | 9.6020e-3 | 0.1901 | 0.4789 | 0.4527 | 6.8068 | 13.1503
13 | 0.2008 | 1.0040e-2 | 0.1846 | 0.4785 | 0.4659 | 6.8068 | 13.1503
14 1 0.2094 | 1.0472e-2 | 0.1794 | 0.4782 | 0.4785 | 6.8068 | 13.1503
151 0.2180 | 1.0900e-2 | 0.1746 | 0.4778 | 0.4906 | 6.8068 | 13.1503
16 | 0.2265 | 1.1323e-2 | 0.1701 | 0.4775 | 0.5021 6.8068 | 13.1503
171 0.2348 | 1.1741e-2 | 0.1658 | 0.4773 | 0.5132 | 6.8068 | 13.1503
18 | 0.2431 | 1.2156e-2 | 0.1618 | 0.4770 | 0.5238 | 6.8068 | 13.1503
19 | 0.2513 | 1.2566e-2 | 0.1581 | 0.4767 | 0.5340 | 6.8068 | 13.1503
20 | 0.2595 | 1.2973e-2 | 0.1545 | 0.4765 | 0.5438 | 6.8068 | 13.1503
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Table XII. Confidence procedure results for K = 0.1 and 6, = 2

n | B(6) | (5%)B(00) 0, 0. Slope(0.) | %C %WC

1 10.0920 | 4.5981e-3 | 1.1701 | 1.9327 | 0.0683 | 8.1081 | 15.5588
2 1 0.1155 | 5.7750e-3 | 1.0221 | 1.9295 | 0.0810 | 7.2072 | 13.8950
3 10.1042 | 5.2125e-3 | 1.0868 | 1.9314 | 0.0751 7.5075 | 14.4514
4 | 0.1155 | 5.7750e-3 | 1.0221 | 1.9295 | 0.0810 | 7.2072 | 13.8950
5 | 0.1261 | 6.3052e-3 | 0.9690 | 1.9278 | 0.0863 | 7.0070 | 13.5230
6 | 0.1363 | 6.8130e-3 | 0.9238 | 1.9257 | 0.0913 | 6.9069 | 13.3368
7 10.1461 | 7.3040e-3 | 0.8846 | 1.9241 0.0958 | 6.8068 | 13.1503
8 1 0.1556 | 7.7819e-3 | 0.8498 | 1.9229 | 0.1001 6.7067 | 12.9636
9 10.1650 | 8.2492e-3 | 0.8188 | 1.9220 | 0.1042 | 6.6066 | 12.7767
10 | 0.1741 | 8.7075e-3 | 0.7906 | 1.9201 0.1081 6.6066 | 12.7767
11 0.1832 | 9.1581e-3 | 0.7650 | 1.9184 | 0.1118 | 6.6066 | 12.7767
12 1 0.1920 | 9.6020e-3 | 0.7415 | 1.9169 | 0.1153 | 6.6066 | 12.7767
13 | 0.2008 | 1.0040e-2 | 0.7197 | 1.9154 | 0.1186 | 6.6066 | 12.7767
14 1 0.2094 | 1.0472e-2 | 0.6996 | 1.9141 0.1218 | 6.6066 | 12.7767
15| 0.2180 | 1.0900e-2 | 0.6808 | 1.9128 | 0.1249 | 6.6066 | 12.7767
16 | 0.2265 | 1.1323e-2 | 0.6632 | 1.9117 | 0.1279 6.6066 | 12.7767
171 0.2348 | 1.1741e-2 | 0.6467 | 1.9106 | 0.1307 | 6.6066 | 12.7767
18 | 0.2431 | 1.2156e-2 | 0.6312 | 1.9096 | 0.1334 | 6.6066 | 12.7767
19 | 0.2513 | 1.2566e-2 | 0.6166 | 1.9086 | 0.1360 | 6.6066 | 12.7767
20 | 0.2595 | 1.2973e-2 | 0.6027 | 1.9077 | 0.1384 | 6.6066 | 12.7767
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Table XIII. Confidence procedure results for K = 0.1 and 6y = 5

n | B(6) | (5%)5(6) 0, 6, Slope(8.) | %C %WC

1 10.0920 | 4.5981e-3 | 2.9096 | 4.8326 | 0.0274 | 8.0080 | 15.3747
2 | 0.1155 | 5.7750e-3 | 2.5415 | 4.8228 | 0.0325 | 7.2072 | 13.8950
3 1 0.1042 | 5.2125e-3 | 2.7024 | 4.8275 | 0.0301 7.5075 | 14.4514
4 | 0.1155 | 5.7750e-3 | 2.5415 | 4.8228 | 0.0325 | 7.2072 | 13.8950
5 | 0.1261 | 6.3052e-3 | 2.4094 | 4.8185 | 0.0347 | 7.0070 | 13.5230
6 | 0.1363 | 6.8130e-3 | 2.2970 | 4.8160 | 0.0366 | 6.8068 | 13.1503
7 10.1461 | 7.3040e-3 | 2.1993 | 4.8122 | 0.0385 | 6.7067 | 12.9636
8 | 0.1556 | 7.7819e-3 | 2.1130 | 4.8093 | 0.0402 | 6.6066 | 12.7767
9 10.1650 | 8.2492e-3 | 2.0357 | 4.8042 | 0.0418 | 6.6066 | 12.7767
10 | 0.1741 | 8.7075e-3 | 1.9658 | 4.7995 | 0.0434 | 6.6066 | 12.7767
11 | 0.1832 | 9.1581e-3 | 1.9020 | 4.7984 | 0.0449 | 6.5065 | 12.5897
121 0.1920 | 9.6020e-3 | 1.8435 | 4.7946 | 0.0463 | 6.5065 | 12.5897
13 | 0.2008 | 1.0040e-2 | 1.7894 | 4.7911 | 0.0476 | 6.5065 | 12.5897
14 | 0.2094 | 1.0472e-2 | 1.7393 | 4.7878 | 0.0489 | 6.5065 | 12.5897
15| 0.2180 | 1.0900e-2 | 1.6926 | 4.7848 | 0.0501 | 6.5065 | 12.5897
16 | 0.2265 | 1.1323e-2 | 1.6489 | 4.7820 | 0.0513 | 6.5065 | 12.5897
171 0.2348 | 1.1741e-2 | 1.6079 | 4.7793 | 0.0524 | 6.5065 | 12.5897
18 | 0.2431 | 1.2156e-2 | 1.5693 | 4.7734 | 0.0536 | 6.6066 | 12.7767
19 | 0.2513 | 1.2566e-2 | 1.5329 | 4.7709 | 0.0546 | 6.6066 | 12.7767
20 | 0.2595 | 1.2973e-2 | 1.4985 | 4.7687 | 0.0556 | 6.6066 | 12.7767
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Table XIV. Confidence procedure results for K = 0.1 and 6, = 10

n | B(6) | (5%)5(6) 0, 6, Slope(8.) | %C %WC

1 10.0920 | 4.5981e-3 | 5.8086 | 9.6685 | 0.0137 | 7.9079 | 15.1905
2 | 0.1155 | 5.7750e-3 | 5.0737 | 9.6499 | 0.0163 | 7.1071 | 13.7091
3 10.1042 | 5.2125e-3 | 5.3950 | 9.6589 | 0.0151 | 7.4074 | 14.2661
4 | 0.1155 | 5.7750e-3 | 5.0737 | 9.6499 | 0.0163 | 7.1071 | 13.7091
5 | 0.1261 | 6.3052e-3 | 4.8098 | 9.6415 | 0.0174 | 6.9069 | 13.3368
6 | 0.1363 | 6.8130e-3 | 4.5856 | 9.6314 | 0.0183 | 6.8068 | 13.1503
7 10.1461 | 7.3040e-3 | 4.3905 | 9.6238 | 0.0193 | 6.7067 | 12.9636
8 | 0.1556 | 7.7819e-3 | 4.2181 | 9.6180 | 0.0201 | 6.6066 | 12.7767
9 10.1650 | 8.2492e-3 | 4.0638 | 9.6078 | 0.0209 | 6.6066 | 12.7767
10 | 0.1741 | 8.7075e-3 | 3.9242 | 9.6047 | 0.0217 | 6.5065 | 12.5897
11 | 0.1832 | 9.1581e-3 | 3.7969 | 9.5964 | 0.0225 | 6.5065 | 12.5897
121 0.1920 | 9.6020e-3 | 3.6801 | 9.5888 | 0.0232 | 6.5065 | 12.5897
13 | 0.2008 | 1.0040e-2 | 3.5722 | 9.5818 | 0.0238 | 6.5065 | 12.5897
14 | 0.2094 | 1.0472e-2 | 3.4721 | 9.5753 | 0.0245 | 6.5065 | 12.5897
15| 0.2180 | 1.0900e-2 | 3.3788 | 9.5692 | 0.0251 | 6.5065 | 12.5897
16 | 0.2265 | 1.1323e-2 | 3.2916 | 9.5635 | 0.0257 | 6.5065 | 12.5897
171 0.2348 | 1.1741e-2 | 3.2098 | 9.5582 | 0.0263 | 6.5065 | 12.5897
18 1 0.2431 | 1.2156e-2 | 3.1328 | 9.5532 | 0.0268 | 6.5065 | 12.5897
19 | 0.2513 | 1.2566e-2 | 3.0601 | 9.5415 | 0.0273 | 6.6066 | 12.7767
20 | 0.2595 | 1.2973e-2 | 2.9914 | 9.5370 | 0.0278 | 6.6066 | 12.7767
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Table XV. Confidence procedure results for K =1 and 6y = 0.1

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 10.2595 | 1.2973e-2 | 0.0428 | 0.0914 1.4990 15.1151 | 27.9456
2 | 0.4087 | 2.0437e-2 | 0.0284 | 0.0892 | 1.8922 | 15.0150 | 27.7755
3 103371 | 1.6857e-2 | 0.0341 | 0.0903 | 1.7328 | 14.7147 | 27.2642
4 104087 | 2.0437e-2 | 0.0284 | 0.0892 | 1.8922 | 15.0150 | 27.7755
5 | 04745 | 2.3727e-2 | 0.0243 | 0.0882 | 1.9941 15.6156 | 28.7928
6 | 0.5347 | 2.6734e-2 | 0.0213 | 0.0870 | 2.0534 | 16.5165 | 30.3051
7 1 0.5893 | 2.9467e-2 | 0.0189 | 0.0859 | 2.0752 | 17.4174 | 31.8012
8 | 0.6387 | 3.1935e-2 | 0.0171 | 0.0846 | 2.0722 | 18.5185 | 33.6077
9 | 0.6831 | 3.4154e-2 | 0.0155 | 0.0833 | 2.0494 | 19.7197 | 35.5508
10 | 0.7228 | 3.6138e-2 | 0.0142 | 0.0820 | 2.0094 | 20.9209 | 37.4650
11| 0.7581 | 3.7905e-2 | 0.0131 | 0.0807 | 1.9597 | 22.2222 | 39.5062
12 1 0.7894 | 3.9472e-2 | 0.0122 | 0.0793 | 1.9007 | 23.5235 | 41.5135
13 1 0.8171 | 4.0857e-2 | 0.0113 | 0.0779 | 1.8388 | 24.9249 | 43.6373
14 1 0.8415 | 4.2076e-2 | 0.0106 | 0.0764 | 1.7769 | 26.4264 | 45.8693
151 0.8629 | 4.3147e-2 | 0.0100 | 0.0749 | 1.7129 | 27.9279 | 48.0562
16 | 0.8817 | 4.4084e-2 | 0.0094 | 0.0733 | 1.6483 | 29.4294 | 50.1979
171 0.8980 | 4.4902e-2 | 0.0089 | 0.0717 | 1.5883 | 31.0310 | 52.4328
18 1 0.9123 | 4.5615e-2 | 0.0084 | 0.0702 | 1.5257 | 32.5325 | 54.4814
191 0.9247 | 4.6234e-2 | 0.0080 | 0.0686 | 1.4693 | 34.1341 | 56.6169
20 | 0.9354 | 4.6770e-2 | 0.0077 | 0.0670 | 1.4157 | 35.7357 | 58.7010
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Table XVI. Confidence procedure results for K = 1 and 6y = 0.5

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 10.2595 | 1.2973e-2 | 0.1814 | 0.4716 | 0.4553 8.9089 | 17.0241
2 | 0.4087 | 2.0437e-2 | 0.1250 | 0.4640 | 0.5669 9.6096 | 18.2958
3 103371 | 1.6857e-2 | 0.1476 | 0.4679 | 0.5226 9.1091 | 17.3885
4 104087 | 2.0437e-2 | 0.1250 | 0.4640 | 0.5669 9.6096 | 18.2958
5 04745 | 2.3727e-2 | 0.1086 | 0.4600 | 0.5932 | 10.2102 | 19.3779
6 | 0.5347 | 2.6734e-2 | 0.0961 | 0.4559 | 0.6057 | 10.9109 | 20.6313
7 1 0.5893 | 2.9467e-2 | 0.0862 | 0.4515 | 0.6075 | 11.7117 | 22.0518
8 | 0.6387 | 3.1935e-2 | 0.0782 | 0.4472 | 0.6006 | 12.5125 | 23.4594
9 | 0.6831 | 3.4154e-2 | 0.0715 | 0.4421 | 0.5887 | 13.5135 | 25.2009
10 | 0.7228 | 3.6138e-2 | 0.0659 | 0.4370 | 0.5719 | 14.5145 | 26.9223
11| 0.7581 | 3.7905e-2 | 0.0611 | 0.4315 | 0.5524 | 15.6156 | 28.7928
12 1 0.7894 | 3.9472e-2 | 0.0569 | 0.4259 | 0.5304 | 16.7167 | 30.6389
13 1 0.8171 | 4.0857e-2 | 0.0533 | 0.4200 | 0.5078 | 17.9179 | 32.6253
14 | 0.8415 | 4.2076e-2 | 0.0501 | 0.4135 | 0.4853 19.2192 | 34.7447
151 0.8629 | 4.3147e-2 | 0.0472 | 0.4071 | 0.4624 | 20.5205 | 36.8301
16 | 0.8817 | 4.4084e-2 | 0.0446 | 0.4002 | 0.4406 | 21.9219 | 39.0381
171 0.8980 | 4.4902e-2 | 0.0423 | 0.3933 | 0.4192 | 23.3233 | 41.2069
18 1 0.9123 | 4.5615e-2 | 0.0403 | 0.3859 | 0.3994 | 24.8248 | 43.4869
191 0.9247 | 4.6234e-2 | 0.0384 | 0.3785 | 0.3803 | 26.3263 | 45.7219
20 | 0.9354 | 4.6770e-2 | 0.0366 | 0.3711 | 0.3620 | 27.8278 | 47.9118
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Table XVII. Confidence procedure results for K =1 and 6y = 2

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 10.2595 | 1.2973e-2 | 0.6441 | 1.9023 | 0.1314 7.2072 | 13.8950
2 | 0.4087 | 2.0437e-2 | 0.4514 | 1.8760 | 0.1629 8.0080 | 15.3747
3 103371 | 1.6857e-2 | 0.5288 | 1.8896 | 0.1505 7.5075 | 14.4514
4 104087 | 2.0437e-2 | 0.4514 | 1.8760 | 0.1629 8.0080 | 15.3747
5 04745 | 2.3727e-2 | 0.3949 | 1.8618 | 0.1702 8.6086 | 16.4761
6 | 0.5347 | 2.6734e-2 | 0.3515 | 1.8465 | 0.1735 9.3093 | 17.7520
7 1 0.5893 | 2.9467e-2 | 0.3170 | 1.8315 | 0.1736 | 10.0100 | 19.0180
8 | 0.6387 | 3.1935e-2 | 0.2887 | 1.8150 | 0.1714 | 10.8108 | 20.4529
9 10.6831 | 3.4154e-2 | 0.2652 | 1.7968 | 0.1676 11.7117 | 22.0518
10 | 0.7228 | 3.6138e-2 | 0.2452 | 1.7787 | 0.1623 12.6126 | 23.6344
11| 0.7581 | 3.7905e-2 | 0.2281 | 1.7588 | 0.1563 | 13.6136 | 25.3739
12 1 0.7894 | 3.9472e-2 | 0.2131 | 1.7371 0.1499 14.7147 | 27.2642
13 1 0.8171 | 4.0857e-2 | 0.2000 | 1.7153 | 0.1431 15.8158 | 29.1302
14 |1 0.8415 | 4.2076e-2 | 0.1885 | 1.6917 | 0.1363 | 17.0170 | 31.1382
15| 0.8629 | 4.3147e-2 | 0.1781 | 1.6681 0.1295 18.2182 | 33.1174
16 | 0.8817 | 4.4084e-2 | 0.1689 | 1.6426 | 0.1229 19.5195 | 35.2289
171 0.8980 | 4.4902e-2 | 0.1605 | 1.6170 | 0.1165 | 20.8208 | 37.3066
18 1 0.9123 | 4.5615e-2 | 0.1529 | 1.5895 | 0.1105 | 22.2222 | 39.5062
19 | 0.9247 | 4.6234e-2 | 0.1460 | 1.5602 | 0.1051 23.7237 | 41.8193
20 | 0.9354 | 4.6770e-2 | 0.1397 | 1.5326 | 0.0996 | 25.1251 | 43.9375
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Table XVIII. Confidence procedure results for K =1 and 6, =5

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 102595 | 1.2973e-2 | 1.5454 | 4.7649 | 0.0544 6.8068 | 13.1503
2 | 0.4087 | 2.0437e-2 | 1.0859 | 4.6983 | 0.0675 7.7077 | 14.8213
3 103371 | 1.6857e-2 | 1.2705 | 4.7312 | 0.0623 7.2072 | 13.8950
4 104087 | 2.0437e-2 | 1.0859 | 4.6983 | 0.0675 7.7077 | 14.8213
5 04745 | 2.3727e-2 | 0.9512 | 4.6636 | 0.0704 8.3083 | 15.9263
6 | 0.5347 | 2.6734e-2 | 0.8476 | 4.6301 | 0.0717 8.9089 | 17.0241
7 1 0.5893 | 2.9467e-2 | 0.7652 | 4.5931 | 0.0717 9.6096 | 18.2958
8 | 0.6387 | 3.1935e-2 | 0.6978 | 4.5521 | 0.0708 | 10.4104 | 19.7371
9 10.6831 | 3.4154e-2 | 0.6415 | 4.5070 | 0.0692 11.3113 | 21.3432
10 | 0.7228 | 3.6138e-2 | 0.5938 | 4.4619 | 0.0670 | 12.2122 | 22.9330
11| 0.7581 | 3.7905e-2 | 0.5527 | 4.4168 | 0.0644 | 13.1131 | 24.5067
12 1 0.7894 | 3.9472e-2 | 0.5170 | 4.3628 | 0.0618 14.2142 | 26.4080
13 1 0.8171 | 4.0857e-2 | 0.4856 | 4.3086 | 0.0590 | 15.3153 | 28.2850
14 |1 0.8415 | 4.2076e-2 | 0.4578 | 4.2543 | 0.0560 | 16.4164 | 30.1378
151 0.8629 | 4.3147e-2 | 0.4331 | 4.1908 | 0.0533 | 17.7177 | 32.2963
16 | 0.8817 | 4.4084e-2 | 0.4108 | 4.1318 | 0.0505 | 18.9189 | 34.2586
17 1 0.8980 | 4.4902e-2 | 0.3907 | 4.0680 | 0.0478 | 20.2202 | 36.3519
18 1 0.9123 | 4.5615e-2 | 0.3725 | 3.9995 | 0.0454 | 21.6216 | 38.5683
191 0.9247 | 4.6234e-2 | 0.3559 | 3.9308 | 0.0430 | 23.0230 | 40.7455
20 | 0.9354 | 4.6770e-2 | 0.3406 | 3.8573 | 0.0409 | 24.5245 | 43.0345
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Table XIX. Confidence procedure results for K =1 and 6y = 10

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 10.2595 | 1.2973e-2 | 3.0405 | 9.5332 | 0.0275 6.7067 | 12.9636
2 | 0.4087 | 2.0437e-2 | 2.1374 | 9.4018 | 0.0341 7.6076 | 14.6365
3 103371 | 1.6857e-2 | 2.5003 | 9.4670 | 0.0315 7.1071 | 13.7091
4 104087 | 2.0437e-2 | 2.1374 | 9.4018 | 0.0341 7.6076 | 14.6365
5 | 04745 | 2.3727e-2 | 1.8727 | 9.3410 | 0.0356 8.1081 | 15.5588
6 | 0.5347 | 2.6734e-2 | 1.6693 | 9.2662 | 0.0363 8.8088 | 16.8417
7 1 0.5893 | 2.9467e-2 | 1.5073 | 9.1924 | 0.0363 9.5095 | 18.1147
8 | 0.6387 | 3.1935e-2 | 1.3749 | 9.1107 | 0.0358 | 10.3103 | 19.5576
9 10.6831 | 3.4154e-2 | 1.2643 | 9.0294 | 0.0350 11.1111 | 20.9877
10 | 0.7228 | 3.6138e-2 | 1.1705 | 8.9394 | 0.0339 | 12.0120 | 22.5811
11| 0.7581 | 3.7905e-2 | 1.0898 | 8.8405 | 0.0326 | 13.0130 | 24.3326
12 1 0.7894 | 3.9472e-2 | 1.0196 | 8.7415 | 0.0312 14.0140 | 26.0641
13 1 0.8171 | 4.0857e-2 | 0.9579 | 8.6333 | 0.0298 | 15.1151 | 27.9456
14 1 0.8415 | 4.2076e-2 | 0.9033 | 8.5249 | 0.0283 | 16.2162 | 29.8028
151 0.8629 | 4.3147e-2 | 0.8546 | 8.3980 | 0.0269 | 17.5175 | 31.9664
16 | 0.8817 | 4.4084e-2 | 0.8109 | 8.2799 | 0.0255 | 18.7187 | 33.9335
171 0.8980 | 4.4902e-2 | 0.7714 | 8.1524 | 0.0241 | 20.0200 | 36.0320
18 1 0.9123 | 4.5615e-2 | 0.7355 | 8.0154 | 0.0229 | 21.4214 | 38.2541
19 | 0.9247 | 4.6234e-2 | 0.7028 | 7.8781 0.0217 | 22.8228 | 40.4368
20 | 0.9354 | 4.6770e-2 | 0.6729 | 7.7406 | 0.0206 | 24.2242 | 42.5803
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Table XX. Confidence procedure results for K = 10 and 6, = 0.1

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 10.9354 | 4.6770e-2 | 0.0078 | 0.0497 | 0.9273 | 54.5546 | 79.3471
2 109977 | 4.9883e-2 | 0.0039 | 0.0304 | 0.7094 | 72.4725 | 92.4224
3 109871 | 4.9353e-2 | 0.0053 | 0.0385 | 0.7994 | 64.8649 | 87.6552
4 109977 | 4.9883e-2 | 0.0039 | 0.0304 | 0.7094 | 72.4725 | 92.4224
5 109996 | 4.9980e-2 | 0.0032 | 0.0245 | 0.6559 | 77.9780 | 95.1503
6 | 0.9999 | 4.9997e-2 | 0.0026 | 0.0202 | 0.6257 | 81.9820 | 96.7535
7 | 1.0000 | 5.0000e-2 | 0.0022 | 0.0170 | 0.5996 | 84.8849 | 97.7153
8 | 1.0000 | 5.0000e-2 | 0.0019 | 0.0146 | 0.5813 | 87.0871 | 98.3326
9 | 1.0000 | 5.0000e-2 | 0.0017 | 0.0127 | 0.5662 | 88.7888 | 98.7431
10 | 1.0000 | 5.0000e-2 | 0.0015 | 0.0113 | 0.5399 | 90.0901 | 99.0179
11 | 1.0000 | 5.0000e-2 | 0.0014 | 0.0101 | 0.5317 | 91.1912 | 99.2240
12 1 1.0000 | 5.0000e-2 | 0.0013 | 0.0091 | 0.5242 | 92.0921 | 99.3746
13 | 1.0000 | 5.0000e-2 | 0.0012 | 0.0082 | 0.5428 | 92.8929 | 99.4949
14 |1 1.0000 | 5.0000e-2 | 0.0011 | 0.0075 | 0.5231 | 93.4935 | 99.5767
15 | 1.0000 | 5.0000e-2 | 0.0010 | 0.0070 | 0.4960 | 93.9940 | 99.6393
16 | 1.0000 | 5.0000e-2 | 0.0010 | 0.0064 | 0.5157 | 94.4945 | 99.6969
17 1 1.0000 | 5.0000e-2 | 0.0009 | 0.0060 | 0.5112 | 94.8949 | 99.7394
18 | 1.0000 | 5.0000e-2 | 0.0008 | 0.0056 | 0.4646 | 95.1952 | 99.7691
19 | 1.0000 | 5.0000e-2 | 0.0008 | 0.0053 | 0.4487 | 95.4955 | 99.7971
20 | 1.0000 | 5.0000e-2 | 0.0008 | 0.0049 | 0.4650 | 95.7958 | 99.8232
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Table XXI. Confidence procedure results for K = 10 and 6, = 0.5

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 10.9354 | 4.6770e-2 | 0.0386 | 0.3120 | 0.2475 | 40.7407 | 64.8834
2 109977 | 4.9883e-2 | 0.0196 | 0.1860 | 0.1575 | 65.3654 | 88.0044
3 109871 | 4.9353e-2 | 0.0261 | 0.2405 | 0.1888 | 54.7548 | 79.5287
4 109977 | 4.9883e-2 | 0.0196 | 0.1860 | 0.1575 | 65.3654 | 88.0044
5 10.9996 | 4.9980e-2 | 0.0157 | 0.1471 | 0.1401 | 72.8729 | 92.6412
6 | 0.9999 | 4.9997e-2 | 0.0130 | 0.1193 | 0.1298 | 78.1782 | 95.2381
7 | 1.0000 | 5.0000e-2 | 0.0111 | 0.0992 | 0.1224 | 81.9820 | 96.7535
8 | 1.0000 | 5.0000e-2 | 0.0097 | 0.0843 | 0.1164 | 84.7848 | 97.6850
9 | 1.0000 | 5.0000e-2 | 0.0086 | 0.0726 | 0.1147 | 86.9870 | 98.3066
10 | 1.0000 | 5.0000e-2 | 0.0077 | 0.0634 | 0.1131 | 88.6887 | 98.7205
11 | 1.0000 | 5.0000e-2 | 0.0070 | 0.0564 | 0.1086 | 89.9900 | 98.9980
12 | 1.0000 | 5.0000e-2 | 0.0064 | 0.0504 | 0.1079 | 91.0911 | 99.2063
13 | 1.0000 | 5.0000e-2 | 0.0059 | 0.0455 | 0.1070 | 91.9920 | 99.3587
14 | 1.0000 | 5.0000e-2 | 0.0055 | 0.0416 | 0.1008 | 92.6927 | 99.4660
15 | 1.0000 | 5.0000e-2 | 0.0051 | 0.0378 | 0.1074 | 93.3934 | 99.5635
16 | 1.0000 | 5.0000e-2 | 0.0048 | 0.0350 | 0.1013 | 93.8939 | 99.6272
17 | 1.0000 | 5.0000e-2 | 0.0045 | 0.0322 | 0.1054 | 94.3944 | 99.6858
18 | 1.0000 | 5.0000e-2 | 0.0042 | 0.0300 | 0.1039 | 94.7948 | 99.7291
19 | 1.0000 | 5.0000e-2 | 0.0040 | 0.0283 | 0.0930 | 95.0951 | 99.7594
20 | 1.0000 | 5.0000e-2 | 0.0038 | 0.0266 | 0.0889 | 95.3954 | 99.7880
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Table XXII. Confidence procedure results for K = 10 and 6y = 2

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 10.9354 | 4.6770e-2 | 0.1508 | 1.4169 | 0.0798 | 31.5315 | 53.1207
2 109977 | 4.9883e-2 | 0.0776 | 0.8569 | 0.0434 | 59.4595 | 83.5646
3 109871 | 4.9353e-2 | 0.1028 | 1.1093 | 0.0551 | 46.9469 | 71.8537
4 109977 | 4.9883e-2 | 0.0776 | 0.8569 | 0.0434 | 59.4595 | 83.5646
5 109996 | 4.9980e-2 | 0.0622 | 0.6732 | 0.0372 | 68.4685 | 90.0576
6 | 0.9999 | 4.9997e-2 | 0.0517 | 0.5412 | 0.0337 | 74.8749 | 93.6873
7 | 1.0000 | 5.0000e-2 | 0.0443 | 0.4456 | 0.0316 | 79.4795 | 95.7891
8 | 1.0000 | 5.0000e-2 | 0.0386 | 0.3744 | 0.0304 | 82.8829 | 97.0700
9 | 1.0000 | 5.0000e-2 | 0.0343 | 0.3215 | 0.0288 | 85.3854 | 97.8641
10 | 1.0000 | 5.0000e-2 | 0.0308 | 0.2791 | 0.0284 | 87.3874 | 98.4092
11 | 1.0000 | 5.0000e-2 | 0.0279 | 0.2470 | 0.0269 | 88.8889 | 98.7654
12 | 1.0000 | 5.0000e-2 | 0.0255 | 0.2192 | 0.0272 | 90.1902 | 99.0377
13 | 1.0000 | 5.0000e-2 | 0.0235 | 0.1976 | 0.0262 | 91.1912 | 99.2240
14 | 1.0000 | 5.0000e-2 | 0.0218 | 0.1782 | 0.0270 | 92.0921 | 99.3746
15 | 1.0000 | 5.0000e-2 | 0.0203 | 0.1630 | 0.0262 | 92.7928 | 99.4806
16 | 1.0000 | 5.0000e-2 | 0.0190 | 0.1498 | 0.0257 | 93.3934 | 99.5635
17 | 1.0000 | 5.0000e-2 | 0.0178 | 0.1389 | 0.0245 | 93.8939 | 99.6272
18 | 1.0000 | 5.0000e-2 | 0.0168 | 0.1280 | 0.0261 | 94.3944 | 99.6858
19 | 1.0000 | 5.0000e-2 | 0.0159 | 0.1192 | 0.0261 | 94.7948 | 99.7291
20 | 1.0000 | 5.0000e-2 | 0.0151 | 0.1124 | 0.0235 | 95.0951 | 99.7594
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Table XXIII. Confidence procedure results for K = 10 and 6y = 5

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 10.9354 | 4.6770e-2 | 0.3665 | 3.7106 | 0.0362 | 27.8278 | 47.9118
2 109977 | 4.9883e-2 | 0.1911 | 2.2850 | 0.0184 | 56.4565 | 81.0396
3 109871 | 4.9353e-2 | 0.2519 | 2.9468 | 0.0239 | 43.2432 | 67.7867
4 109977 | 4.9883e-2 | 0.1911 | 2.2850 | 0.0184 | 56.4565 | 81.0396
5 10.9996 | 4.9980e-2 | 0.1535 | 1.7981 | 0.0154 | 66.0661 | 88.4849
6 | 0.9999 | 4.9997e-2 | 0.1280 | 1.4399 | 0.0140 | 73.0731 | 92.7494
7 | 1.0000 | 5.0000e-2 | 0.1097 | 1.1866 | 0.0128 | 77.9780 | 95.1503
8 | 1.0000 | 5.0000e-2 | 0.0959 | 0.9942 | 0.0122 | 81.6817 | 96.6444
9 | 1.0000 | 5.0000e-2 | 0.0851 | 0.8476 | 0.0119 | 84.4845 | 97.5927
10 | 1.0000 | 5.0000e-2 | 0.0764 | 0.7368 | 0.0114 | 86.5866 | 98.2008
11 | 1.0000 | 5.0000e-2 | 0.0693 | 0.6468 | 0.0113 | 88.2883 | 98.6284
12 1 1.0000 | 5.0000e-2 | 0.0634 | 0.5774 | 0.0107 | 89.5896 | 98.9162
13 | 1.0000 | 5.0000e-2 | 0.0585 | 0.5185 | 0.0104 | 90.6907 | 99.1334
14 | 1.0000 | 5.0000e-2 | 0.0542 | 0.4700 | 0.0100 | 91.5916 | 99.2930
15 | 1.0000 | 5.0000e-2 | 0.0505 | 0.4270 | 0.0102 | 92.3924 | 99.4212
16 | 1.0000 | 5.0000e-2 | 0.0472 | 0.3893 | 0.0106 | 93.0931 | 99.5229
17 | 1.0000 | 5.0000e-2 | 0.0444 | 0.3619 | 0.0097 | 93.5936 | 99.5896
18 | 1.0000 | 5.0000e-2 | 0.0419 | 0.3347 | 0.0098 | 94.0941 | 99.6512
19 | 1.0000 | 5.0000e-2 | 0.0396 | 0.3127 | 0.0092 | 94.4945 | 99.6969
20 | 1.0000 | 5.0000e-2 | 0.0376 | 0.2909 | 0.0096 | 94.8949 | 99.7394
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Table XXIV. Confidence procedure results for K = 10 and 6y = 10

n | B(6y) | (5%)B(0) 0, 0. Slope(0.) |  %C %WC

1 109354 | 4.6770e-2 | 0.7151 | 7.5742 | 0.0192 | 26.1261 | 45.4265
2 109977 | 4.9883e-2 | 0.3768 | 4.7212 | 0.0094 | 54.8549 | 79.6192
3 109871 | 4.9353e-2 | 0.4948 | 6.0514 | 0.0125 | 41.5415 | 65.8261
4 109977 | 4.9883e-2 | 0.3768 | 4.7212 | 0.0094 | 54.8549 | 79.6192
5 109996 | 4.9980e-2 | 0.3035 | 3.7201 | 0.0079 | 64.7648 | 87.5848
6 | 0.9999 | 4.9997e-2 | 0.2536 | 2.9853 | 0.0071 | 71.9720 | 92.1443
7 | 1.0000 | 5.0000e-2 | 0.2175 | 2.4502 | 0.0066 | 77.1772 | 94.7912
8 | 1.0000 | 5.0000e-2 | 0.1903 | 2.0560 | 0.0062 | 80.9810 | 96.3828
9 | 1.0000 | 5.0000e-2 | 0.1690 | 1.7534 | 0.0060 | 83.8839 | 97.4027
10 | 1.0000 | 5.0000e-2 | 0.1519 | 1.5222 | 0.0058 | 86.0861 | 98.0640
11 | 1.0000 | 5.0000e-2 | 0.1379 | 1.3423 | 0.0055 | 87.7878 | 98.5086
12 | 1.0000 | 5.0000e-2 | 0.1263 | 1.1838 | 0.0056 | 89.2893 | 98.8528
13 | 1.0000 | 5.0000e-2 | 0.1164 | 1.0661 | 0.0053 | 90.3904 | 99.0766
14 | 1.0000 | 5.0000e-2 | 0.1079 | 0.9595 | 0.0055 | 91.3914 | 99.2589
15 | 1.0000 | 5.0000e-2 | 0.1005 | 0.8735 | 0.0054 | 92.1922 | 99.3904
16 | 1.0000 | 5.0000e-2 | 0.0941 | 0.8081 | 0.0048 | 92.7928 | 99.4806
17 | 1.0000 | 5.0000e-2 | 0.0885 | 0.7433 | 0.0048 | 93.3934 | 99.5635
18 | 1.0000 | 5.0000e-2 | 0.0834 | 0.6889 | 0.0047 | 93.8939 | 99.6272
19 | 1.0000 | 5.0000e-2 | 0.0789 | 0.6351 | 0.0052 | 94.3944 | 99.6858
20 | 1.0000 | 5.0000e-2 | 0.0749 | 0.5915 | 0.0053 | 94.7948 | 99.7291
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APPENDIX D

MATLAB PROGRAM - SLOPE

% Jeroen Stedehouder

% May 2009

% MS Texas A&M University

% Assume alpha = 0.05, where erfinv(0.5-alpha) = 1.645
clear all;

orient portrait;

set (0, ’defaultaxesfontsize’,8);

k=0.1; % SNR
theta_0 = 0.1; % Nominal
sum = O;

theta = 0.000000000000000000000000000000000000000000000000000001 ;

for n=1:20
for i=1:n
= sum + (cos((2*pi*i)/n))"~2;
end

for j=1:20001
slope = sqrt((((theta_0)*(1.645)72)/(2xpi))*...
(exp(-(((sqrt(theta_0/theta))*(1.645))-...
(sqrt (k) *sqrt(sum))) "2)/ ((4*theta+k)*(theta”2))));

X(j)= theta;
Y(j)= slope;
theta = theta + 0.001;

end

subplot(5,4,n);

plot(X,Y);

axis square;

xlabel (’\theta’);

ylabel (’Slope(\theta)’);

title([’n = ’,int2str(n)]);

sum = 0;

theta = 0.000000000000000000000000000000000000000000000000000001 ;
end
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APPENDIX E

MATLAB PROGRAM - DECISION SURFACE

% Jeroen Stedehouder

% May 2009

% MS Texas A&M University

% Assume alpha = 0.05, where erfinv(0.5-alpha) = 1.645
clear all;

orient portrait;

set(gcf, ’PaperPositionMode’, ’auto’);
k=1; % SNR

theta_0 = 5; % Nominal

theta = b; % Theta equal to nominal
sum = O;

x = -60;

y = -50;

for n=1:1

sum + (cos((2xpix*i)/n))"2;

for j=1:25000
A(j) = (1/(sqrt(2xpixk*(theta_0) "2*sum)))*exp(-(x~2)/...
(2*k* (theta_0) "2*sum)) ;
B(j) = (1/(sqrt(2xpixk*(theta_0)*theta*sum)))*. ..
exp (- ((y-k*sqrt ((theta_0)*theta)*sum)~2)/...
(2%k* (theta_0)*theta*sum)) ;

U@j) = x;
V(i) =v;
x =x + 0.01;
y =y + 0.01;
end
end

plot(U,A,’r’ ,V,B,’g’);
axis([-25 25 0 0.1]);
xlabel(’x’);

ylabel (’p(N, S+N)’);



APPENDIX F

MATLAB PROGRAM - SLOPE ANALYSIS FOR LARGE VARIANCE

% Jeroen Stedehouder

% May 2009

% MS Texas A&M University

% Assume alpha = 0.05, where erfinv(0.5-alpha) = 1.645
clear all;

format long g;

k=0.1; % SNR

sum = 0;

theta = 0.000000000000000000000000000000000000000000000000000001 ;
fid = fopen(’SlopeTail.txt’, ’w’);

fprintf(fid, ’k = %3.1g, theta: 10-15\n’,k);

theta_0 = 0.1; % Nominal

fprintf(fid, ’theta_0 = %3.1g\n’,theta_0);

for n=1:20
for i=1:n
sum = sum + (cos((2xpix*i)/n))"2;

end

for j=1:15001
1nslope = log(sqrt((((theta_0)*(1.645)72)/(2*pi))*...
(exp(-(((sqrt(theta_0/theta))*(1.645))-...
(sqrt (k) *sqrt(sum))) "2) / ((4xtheta+k) * (theta"2)))));
X(j)= theta;
Y(j)= 1lnslope;
theta = theta + 0.001;
end
delta_theta = 5;
delta_lnslope = Y(15001)-Y(10001);
dtheta_dlnslope = delta_lnslope/delta_theta;
fprintf(fid, ’%9.7f\n’, dtheta_dlnslope);
sum = 0;
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theta = 0.000000000000000000000000000000000000000000000000000001 ;

end

fclose(fid);
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APPENDIX G

MATLAB PROGRAM - SLOPE LIKELIHOOD

% Jeroen Stedehouder

% May 2009

% MS Texas A&M University

% Assume alpha = 0.05, where erfinv(0.5-alpha) = 1.645
clear all;

format long g;

k=0.1; % SNR

theta_0 = 0.1; % Nominal

theta = 0.1; % Theta equal to nominal

sum = 0;
sol_theta
c=0;

e=0;
f=theta_0-0.01;
count = 0;
weighted_points = 0;

0;

for n=1:20
for i=1:n

um = sum + (cos((2*pix*i)/n))"2;

&3]

end
% Calculating slope at theta = theta_0
slope = sqrt((((theta_0)*(1.645)72)/(2xpi))*. ..
(exp(-(((sqrt(theta_0/theta))*(1.645))-...
(sqrt (k) *sqrt(sum))) “2) / ((4xtheta+k) *(theta~2))));
slope_ans(n) = slope;

% Using bisection method in order to find the theta with the same
% slope as theta_0
[c]=bisect(e,f,0.00000001,theta_0,k,sum,slope);

theta_t(n) = c;

% Calculating the 1000 thetas and their corresponding
% slope values
theta_range = theta_t(n);
theta_diff = (theta_0 - theta_t(n))/999;
for p=1:1000
slope_repeat(p)= sqrt((((theta_0)*(1.645)"2)/(2*pi))*...
(exp(-(((sqrt(theta_0/theta_range))*(1.645))-...
(sqrt (k) *sqrt(sum))) "2)/((4xtheta_range+k)*. ..
(theta_range~2))));
theta_range = theta_range + theta_diff;
end
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% Calculating the weight factor for each theta interval between
% theta_range and theta_range + theta_diff
theta_range = theta_t(n); % Resetting theta_range
for m=1:1000
weight_factor(m) = (1/16%((4*(theta_range + theta_diff)...
+k) /(theta_range + theta_diff))~(1/2)*(theta_range + ...
theta_diff)*(8%(4*x(theta_range + theta_diff) 2+...
(theta_range + theta_diff)*k)~(1/2)+...
kxlog(1/8%4~ (1/2)*k+4" (1/2)*(theta_range + ...
theta_diff)+(4*(theta_range + theta_diff) 2+...
(theta_range + theta_diff)xk)~(1/2))*...
4°(1/2))/((theta_range + theta_diff)=*(4*(theta_range +...
theta_diff)+k))~(1/2))- (1/16*%((4*theta_range+k)/...
theta_range) " (1/2)*theta_range* (8 (4*theta_range”2+. ..
theta_rangexk) " (1/2)+kx1log(1/8%4~(1/2)*k+4~(1/2)*. ..
theta_range+(4*theta_range”2+theta_rangexk) ~(1/2))*. ..
47 (1/2))/(theta_range*(4*theta_range+k) )~ (1/2));
theta_range = theta_range + theta_diff;
end

% Calculating the maximum slope value for n
slope_max(n) = max(slope_repeat);

% Creating bins
slope_diff(1) = slope_ans(n);
for s=2:101
slope_diff(s) = slope_ans(n) +...
((slope_max(n) - slope_ans(n))*((s-1)/100));
end

/» Search procedure for finding which previously calulated slope
% points fall into a bin interval, then putting the slope’s
/» corresponding weight into this bin
for j=1:100
for p=1:1000
if ((slope_repeat(p) >= slope_diff(j)) &&...
(slope_repeat(p) < (slope_diff(j+1))) && ...
(J <=99));
count = count + 1;
weighted_points = weighted_points + weight_factor(p);

elseif ((slope_repeat(p) >= slope_diff(j)) &&%...
(slope_repeat (p)<= (slope_diff(j+1))) &&...
(j == 100));
count = count + 1;
weighted_points = weighted_points + weight_factor(p);
end
end
X(j)=slope_diff (j+1);
num_points(j) = count;
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w_sum(j) = weighted_points;
count = 0;
weighted_points = O;

end

% Plot results
subplot(5,4,n);
baril=bar(X,w_sum, ’histc’);
set(barl, ’FaceColor’,’b’, ’EdgeColor’,’b’)
axis square;
axis tight;
v = axis;
%11=floor(v(1)*100) ;
%11=11/100;
%hl2=ceil (v(2)*100) ;
%$12=12/100;
haxis([11 12 0 v(4)1);
xlabel(’Slope(\theta)’);
ylabel (’Likelihood’);
title([’n = ’,int2str(n)]);
sum = 0;
slope = 0;

end

% Function for bisection method

function [c]=bisect(a,b,delta,theta_0_1,k_1,sum_1,slope_1)

ya=sqrt ((((theta_0_1)*(1.645)"2)/(2xpi))*...
(exp(-(((sqrt(theta_0_1/a))*(1.645))-(sqrt(k_1)*...
sqrt(sum_1)))"2)/((4*a+k_1)*(a"2)))) - slope_1;

yb=sqrt ((((theta_0_1)*(1.645)72)/(2%pi))*. ..
(exp(-(((sqrt(theta_0_1/b))*(1.645))-(sqrt(k_1)*. ..
sqrt(sum_1)))"2)/((4*b+k_1)*(b"2)))) - slope_1;

if yaxyb > 0O
return
end
max1=1+round((log(b-a)-log(delta))/log(2));
for k=1:maxl
c=(a+b)/2; % a and b are the left and right endpoints
% respectively
yc=sqrt ((((theta_0_1)*(1.645)72)/(2*pi))*...
(exp(-(((sqrt(theta_0_1/c))*(1.645))-(sqrt(k_1)*...
sqrt (sum_1)))"2)/((4*c+k_1)*(c~2)))) -slope_1;
if yc==0
a=c;
b=c;
elseif yb*yc>0
b=c;
yb=yc;
else
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a=c;
ya=yc;
end
if b-a < delta % Tolerance
return
end
end
c=(a+b)/2;
hyc=sqrt ((((theta_0_1)*(1.645)2)/(2%pi))*. ..
yA (exp(-(((sqrt(theta_0_1/c))*(1.645))-(sqrt(k_1)*...
A sqrt (sum_1)))"2)/((4*c+k_1)*(c~2)))) - slope_1;
Y%err=abs(b-a); % Error estimate
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APPENDIX H

MATLAB PROGRAM - SLOPE LIKELIHOOD RATIO

% Jeroen Stedehouder

%, May 2009

% MS Texas A&M University

% Assume alpha = 0.05, where erfinv(0.5-alpha) = 1.645
clear all
format lon
k=0.1; % SNR

% Nominal

g
0.
.1; % Theta equal to nominal

f= theta 0-0.01;

A_1=0;

A_3=O;

count = O;

weighted_points = O;

fid = fopen(’SLRatio.txt’, ’w’);
fprintf(fid, ’SLRatio:\n’);

for n=1:20

for i=1:n
sum = sum + (cos((2xpix*i)/n))"2;

end

% Calculating slope at theta = theta_0

slope = sqrt((((theta_0)*(1.645)72)/(2xpi))*. ..
(exp(-(((sqrt(theta_0/theta))*(1.645))-(sqrt(k)*. ..
sqrt (sum))) "2)/((4xtheta+k)*(theta"2))));

slope_ans(n) = slope;

% Using bisection method in order to find the theta with the same
% slope as theta_0
[c]=bisect(e,f,0.00000001,theta_0,k,sum,slope);

theta_t(n) =

% Calculating the 1000 thetas and their corresponding

% slope values

theta_range = theta_t(n);

theta_diff = (theta_0 - theta_t(n))/999;

for p=1:1000

slope_repeat (p)= sqrt((((theta_0)*(1.645)72)/(2*pi))*...

(exp(-(((sqrt(theta_0/theta_range))*(1.645))-...
(sqrt (k) *sqrt(sum))) ~"2)/((4*theta_range+k)*. ..
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(theta_range~2))));
theta_range = theta_range + theta_diff;
end

% Calculating the weight factor for each theta interval between
/» theta_range and theta_range + theta_diff
theta_range = theta_t(n); % Resetting theta_range
for m=1:1000
weight_factor(m) = (1/16%((4x(theta_range + theta_diff)...
+k)/(theta_range + theta_diff))~(1/2)*(theta_range + ...
theta_diff)*(8*(4*(theta_range + theta_diff) 2+...
(theta_range + theta_diff)xk)~(1/2)+...
kxlog(1/8%4~ (1/2)*k+4" (1/2)*(theta_range + ...
theta_diff)+(4*x(theta_range + theta_diff) ~2+...
(theta_range + theta_diff)x*xk)~(1/2))*...
4°(1/2))/((theta_range + theta_diff)*(4*(theta_range +...
theta_diff)+k))~(1/2))- (1/16%((4*theta_range+k)/...
theta_range) " (1/2)*theta_range* (8% (4*theta_range”2+. ..
theta_rangexk) "~ (1/2)+k*log(1/8%4~(1/2)*k+4~(1/2)*. ..
theta_range+(4*xtheta_range”2+theta_rangexk) ~(1/2))*. ..
4~ (1/2))/(theta_range* (4*theta_range+k) )~ (1/2));
theta_range = theta_range + theta_diff;
end

% Calculating the maximum slope value for n
slope_max(n) = max(slope_repeat);

i Creating bins
slope_diff(1) = slope_ans(n);
for s=2:101
slope_diff(s) = slope_ans(n) + ...
((slope_max(n) - slope_ans(n))*((s-1)/100));
end

% Search procedure for finding which previously calulated slope
% points fall into a bin interval, then putting the slope’s
/» corresponding weight into this bin
for j=1:100
for p=1:1000
if ((slope_repeat(p) >= slope_diff(j)) &&...
(slope_repeat(p) < (slope_diff(j+1))) && ...
(G <= 99));
count = count + 1;
weighted_points = weighted_points + weight_factor(p);

elseif ((slope_repeat(p) >= slope_diff(j)) &&...
(slope_repeat(p) <= (slope_diff(j+1))) &&...
(j == 100));
count = count + 1;
weighted_points = weighted_points + weight_factor(p);
end
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end

X(3)=j3;

Y(j)=slope_diff (j+1);
num_points(j) = count;
w_sum(j) = weighted_points;

count = O;
weighted_points = O;
end
cutoff_min = 25;
cutoff_max = 75;

% Calculating area A_1

for w=1l:cutoff_min
width(w) = slope_diff (w+1)-slope_diff (w);
A1 =A 1+ (width(w)*w_sum(w));

end

% Calculating area A_3

for w=(cutoff_max+1):100
width(w) = slope_diff (w+1)-slope_diff (w);
A_3 = A_3 + (width(w)*w_sum(w));

end

A_ratio=A_1/A_3;
fprintf(fid, ’%g %6.3f\n’,n, A_ratio);
sum = 0;
slope = 0;
A_1=0;
A_3=0;
A_ratio=0;
end
fclose(fid);
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APPENDIX I

MATLAB PROGRAM - CONFIDENCE LEVEL

% Jeroen Stedehouder

%, May 2009

% MS Texas A&M University

% Assume alpha = 0.05, where erfinv(0.5-alpha) = 1.645
clear all;

format long g;

k=20.1; % SNR

theta_0 = 0.1; % Nominal

theta = 0.1; % Theta equal to nominal

sum = 0;

e=0;

f=theta_0-0.01;

theta_c=0;

slope_c=0;

fid = fopen(’Conf.txt’, ’w’)

fprintf(fid, ’For k = %g and theta = %g:\n\n’, k, theta)

for n=1:20

for i=1:n
sum = sum + (cos((2xpix*i)/n))"2;

end

slope = sqrt((((theta_0)*(1.645)72)/(2xpi))*. ..
(exp(-(((sqrt(theta_0/theta))*(1.645))-(sqrt(k)*. ..
sqrt (sum))) “2) / ((4xtheta+k)*(theta~2))));

slope_min(n) = slope;

% Using bisection method in order to find the theta with the
% same slope as theta_0
[c]=bisect(e,f,0.00000001,theta_0,k,sum,slope);

theta_t(n) = c;

% Calculating the 1000 thetas and their corresponding

% slope values

theta_range(1) = theta_t(n);

theta_diff = (theta_0 - theta_t(n))/999;

for p=1:1000
slope_repeat (p)= sqrt((((theta_0)*(1.645)"2)/(2*pi))*...

(exp(-(((sqrt(theta_0/theta_range(p)))*(1.645))-...

(sqrt (k) *sqrt(sum))) ~2)/ ((4xtheta_range(p)+k)*. ..
(theta_range(p)~2))));
theta_range(p+1) = theta_range(p) + theta_diff;
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end
theta_range (1001)=[];

% Calculating the maximum slope and delta value for n
slope_max(n) = max(slope_repeat);
slope_range(n) = slope_max(n) - slope_min(n);

% Calculating performance

a = (sqrt(theta_O/theta)*1.645)-(sqrt(k)*sqrt(sum));

syms Xx;

beta(n) = double(int((1/sqrt(2xpi))*exp((-(x72))/2), x, a,...
inf));

delta_betab(n) = 0.05 * beta(n);

% Flip the vectors in order to calculate values from
% theta_0 to theta_t(n)
slope_repeat=slope_repeat(end:-1:1);
theta_range=theta_range(end:-1:1);
for p=1:999
% Making sure that when theta_range goes beyond maximum
% slope, then dSdT can not change more than the maximum
% slope
if (slope_repeat(p) <= slope_repeat(p+1))
dSdT (p)=(theta_O-theta_range (p))*slope_repeat (p);
else
dSdT (p)=(theta_0O-theta_range (p))*slope_max(n) ;
end
end
%For p=1000, this equation is always satisfied
dSdT(1000)=(theta_0-theta_range(1000))*slope_max(n);

for p=1:999
if ((dSdT(p) <= delta_betab5(n)) && (dSAT(p+1) >= ...
delta_beta5(n)))
theta_c=theta_range(p);
slope_c=slope_repeat(p);
end
end
conf (n)=((theta_O-theta_c)/(theta_0O-theta_t(n)))*100;

% Calculating the ratio of the areas under triangle
slope_triangle(n)=(slope_min(n))/(theta_O-theta_t(n));
constant_triangle(n)=-(slope_triangle(n)*theta_t(n));
thetahat_height_triangle(n)=slope_triangle(n)*theta_c+. ..
constant_triangle(n);
sq_area_triangle(n)=(theta_O-theta_c)*...
thetahat_height_triangle(n);
tr_area_triangle(n)=0.5%((slope_min(n)-...
thetahat_height_triangle(n))*(theta_O-theta_c));
tot_area(n)=sq_area_triangle(n)+tr_area_triangle(n);
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tot_area_triangle(n)=0.5%(slope_min(n)*(theta_O-theta_t(n)));
weighted_conf (n)=(tot_area(n)/tot_area_triangle(n))*100;

% Outputting the minimum, maximum and delta(min,max) to a

% file

fprintf (fid, ...
g &h6.4f &%6.4e &.6.4f &7.6.4f &.6.4f &6.4f \n’,n,...
beta(n), delta_betab(n),theta_c,slope_c,conf(n),...
weighted_conf (n));

sum = 0;
slope = 0;
a=0;
theta_c=0;
slope_c=0
end
fclose(fid);
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