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ABSTRACT 

 

Mapping Athletic Performance Related Genes in the Equine Genome and a Genome 

Scan for Superior Athletic Performance in the Thoroughbred. (May 2009) 

Keith William Durkin, B.S., University of Limerick 

Chair of Advisory Committee: Dr. Bhanu Chowdhary 

 

 The primary goal of the Thoroughbred industry is to breed and train superior 

equine athletes capable of excelling on the racetrack. To date, research into the genetic 

underpinnings of athletic ability has been limited in the horse. Advances in equine 

genomics and the genetics of athletic performance in humans have opened up the 

possibility of investigating this important trait in the Thoroughbred.  

 Initially, 46 candidate genes associated with human athletic performance were 

mapped in the equine genome by radiation hybrid (RH) and fluorescent in situ 

hybridization (FISH) mapping. RH data and later the draft equine genomic sequence 

allowed us to identify microsatellites adjacent to these and other candidate genes (95 in 

total). Additional microsatellites were added to increase genome coverage, producing a 

final panel of 186 markers. All the potential markers were initially screened on a pool of 

DNA for 16 Thoroughbreds to ensure they were polymorphic. The panel was genotyped 

on 162 Thoroughbreds in total; Centimorgans (cM) between microsatellites were 

determined with CRI-MAP. The animal’s athletic ability was estimated using career 

winnings loge transformed to create a linear trait; unraced animals were treated as 
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missing data. Linkage analysis was carried out using the MERLIN program, and 

association analysis was carried out using the QTDT program. Appropriate thresholds 

for statistical significance were determined by carrying out 1000 simulated genome 

scans based on the structure of the original data. LOD scores above 1.54 met the criteria 

of statistical significance (with a 5% chance of type I error). In the actual genome scan, 

the marker L12.2 had the highest observed LOD score of 1.16 and p-value of 0.01 and 

consequently was not significant; the association analysis also did not detect significant 

association with performance on the track.  

 Given the complexity of the phenotype under investigation and the modest 

sample size, the lack of linkage/association was not unexpected. Nevertheless, this study 

has contributed to the RH and FISH maps of the equine genome. Additionally, the 

development of the genome scanning panel for this study has provided useful 

information on the most informative microsatellites for linkage or association studies in 

the Thoroughbred.  
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CHAPTER I 

INTRODUCTION 

 

Rationale of the study 

 Thoroughbred racing is an important industry in both the United States and 

throughout the world. In 2004 alone, it was estimated that Thoroughbred racing had a 

20,271 million dollar impact (includes direct, indirect and induced effects) on the gross 

domestic product of the United States economy (http://www.jockeyclub.com/-

factbook.asp?section=18). The primary goal of this global industry is to produce, train 

and race animals capable of excelling on the racetrack. Consequently athletic 

ability/performance is of paramount importance to those involved in the Thoroughbred 

industry. Despite the central role athletic ability/performance plays in the Thoroughbred, 

investigations into the genetic underpinnings of this trait have been largely confined to 

estimating the heritability of race winnings or handicap ratings using race and pedigree 

records (Ricard et al. 2000). Unlike other domestic species such as cattle, pig and 

chicken where numerous studies have been conducted to identify regions of the genome 

associated with complex and economically important phenotypes, no systematic studies 

have as yet been undertaken to discover regions of the equine genome contributing to 

athletic performance.  

 Within the Thoroughbred industry there is a firm belief that performance on the 

track is heritable, a fact reflected in the multimillion dollar sales prices routinely paid for  

___________ 
This dissertation follows the style of Animal Genetics. 



 

 

2 

2 

 

untested yearlings from successful bloodlines. Research into the heritability of racing 

performance and performance over different distances and track surfaces has shown a 

moderate heritability for these traits (Tolley et al. 1985; Williamson & Beilharz 1998; 

Ricard et al. 2000). As a consequence it is reasonable to assume that there are genes 

influencing athletic performance segregating within the Thoroughbred population. 

 Athletic performance is obviously a complex trait influenced by both 

environmental (nutrition, training, management etc) and genetic factors. This genetic 

contribution is most likely controlled by a number of genes, each with differing levels of 

influence on the phenotype. Identifying the underlying polymorphisms that affect such a 

trait is more challenging than locating polymorphisms affecting simple Mendelian traits 

as the correlation between polymorphism and phenotype is often substantially weaker 

(Andersson & Georges 2004). However despite this caveat, research in humans 

(Rankinen et al. 2006) and model organisms (Ways et al. 2007; Lightfoot et al. 2008), 

has shown that it is possible to identify regions of the genome harboring genes 

influencing athletic performance, using whole genome scanning panels of microsatellite 

markers and the candidate gene approach. Work in these species has also produced an 

extensive list of candidate genes that may also influence athletic performance in the 

Thoroughbred.  

 At the present time breeding and the prediction of racing potential in the 

Thoroughbred remains a largely subjective process, mainly based on pedigree records. 

The identification of genomic polymorphisms influencing athletic performance has the 
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potential to place the selection for, and the identification of superior athletic performance 

on a more objective footing. Such polymorphism when identified will be valuable in 

recognizing animals with a genotype conducive to superior performance on the track, 

determining better crosses between stallions and mares and identifying which 

distance/track surface are best suited to the animal. While such goals remain aspirational 

at the moment, this study is a preliminary attempt to identify regions of the equine 

genome containing polymorphisms that influence athletic ability in the Thoroughbred. 

 Compared to the other economically important domestic species, genomics in the 

horse had a late start (Chowdhary & Bailey 2003). The early development of gene and 

genetic maps in cattle and pig combined with the availability of experiential populations 

allowed researchers in these species to identify a large numbers of Quantitative Trait 

Loci (QTLs) over the past decade (http://www.animalgenome.org/cgi-

bin/QTLdb/SS/summary, http://www.animalgenome.org/QTLdb/cattle.html). However 

in the horse progress on this front has been limited. While it remains problematic to 

produce experimental populations in the horses, especially for a trait such as athletic 

performance, it is possible (although often difficult) to collect large half-sib families for 

analysis. Additionally, in the Thoroughbred, pedigree and phenotypic data is often 

available going back many generations, a fact that makes the Thoroughbred an attractive 

model for studying the genetics of athletic performance, provided the necessary genomic 

tools are available.  

 The last number of years has seen remarkable progress in equine genomics. 

Initial work using ZOO-FISH revealed the remarkable conservation between the horse 
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and human genomes (Raudsepp et al. 1996). While linkage (Guerin et al. 1999; 

Swinburne et al. 2000a; Guérin et al. 2003; Penedo et al. 2005; Swinburne et al. 2006) 

and radiation hybrid (RH) maps (Chowdhary et al. 2003; Perrocheau et al. 2006; 

Raudsepp et al. 2008a) have provided a wealth of microsatellite markers suitable for 

genome scanning and the mapping information to identify which candidate genes are 

located beside these microsatellites. The CHORI-241 equine BAC library has also been 

an invaluable tool for constructing BAC based contigs (Gustafson et al. 2003; 

Brinkmeyer-Langford et al. 2008), providing FISH probes to anchor RH and linkage 

groups to specific chromosomes and producing BAC based physical maps of the equine 

genome (Leeb et al. 2006; Woehlke et al. 2008). Finally, the recent sequencing of the 

equine genome at the Broad Institute of MIT and Harvard, and the release of a draft 

assembly of the sequence is a major milestone in the rapid development of equine 

genomics (http://www.broad.mit.edu/mammals/horse/). These developments have for 

the first time made investigations into the genetic underpinning of complex traits in the 

horse practical. The application of these resources is already beginning to bear fruit as 

can be seen from the increasing number of monogenic and even complex traits 

mapped/studied in the horse (Dierks et al. 2007; Diesterbeck et al. 2007; Chowdhary & 

Raudsepp 2008).  

 As has been pointed out already athletic performance is the primary trait of 

importance in the Thoroughbred. Research has demonstrated its heritability and 

investigations in other species have shown the feasibility of identifying genes and other 

polymorphisms associated with this phenotype. As a consequence it appears prudent to 
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begin investigations into the genetic underpinnings of this important phenotype in the 

horse. This initial chapter will provide a review of the available literature relevant to this 

project. It is hoped this will give an overview of the progress in the field and provide an 

insight into the rationale behind the approaches taken in this study. The chapter covers a 

number of areas, beginning with the origins of the Thoroughbred, its remarkable athletic 

abilities and the significant literature devoted to the measurement and heritability of 

athletic performance. This information is important for deciding how to measure the 

phenotype and gives an indication of the likelihood of identifying genes associated with 

this phenotype. 

 In addition to developments in the field of equine genomics an equally important 

impetus that spurred us to begin this investigation was the rapid growth of studies 

examining athletic performance and exercise related phenotypes in humans and model 

organisms. These studies have provided a wealth of candidate genes to investigate for 

association with performance in the horse. The most promising candidates are discussed 

along with some of the whole genome studies carried out in humans and rodents.  

 While it is possible to point to a number of success stories, attempting to map 

complex traits such as athletic performance remains a difficult task. In complex traits the 

correlation between phenotype and genotype is often weak making the identification of 

regions of the genome contributing to the phenotype difficult. Additional complications 

such as epistasis and imprinting can conspire to further obscure the picture. These 

potential pitfalls are outlined. Finally some of the recent examples of QTL mapping in 

the horse are discussed and the status of equine genomics outlined. It is hoped that this 
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review will show that the approach taken in this project was not arrived at arbitrarily and 

was reasonable given the resources and tools at our disposal. 

 The second chapter will deal with the initial mapping of candidate genes 

previously associated with athletic performance in humans, a brief discussion of the 

approach taken is given along with some of the salient mapping results. Chapter III 

covers the development of the genome scanning panel of microsatellites, outlining the 

process of marker identification and genotyping of the sample population. Chapter IV 

details the analysis of the genotypes using linkage and association analysis, in an attempt 

to identify regions of the genome containing polymorphisms contributing to superior 

athletic performance. Chapter V briefly discusses the prospects for mapping complex 

traits in the horse given some of the recent developments in other species and outlines 

some brief conclusions.  

 

Origins of the Thoroughbred 

 The Thoroughbred is one of the oldest and best documented domestic breeds 

with pedigree records dating back to 1791 and the establishment of the studbook by 

James Weatherby. The breed was originally developed in England from a small number 

of stallions of Middle Eastern and North African origin that were crossed with native 

English mares to produce a breed of horse specifically for racing (Willett 1981; 

Cunningham 1991). Pedigree records indicate that only 31 animals (12 mares and 19 

stallions) are responsible for 80% of the genetic make up of the Thoroughbred, with four 

of these stallions responsible for one third of the alleles in the current population 
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(Cunningham 1991; Cunningham et al. 2001). A small amount of additional genetic 

variability may have been introduced in the 1800s when the Thoroughbred spread to 

Australia and the United States and was crossed with local Australian and American 

mares (Bailey 1998). Recent molecular data shows a similar pattern, using 13 

microsatellite markers genotyped in 211 Thoroughbred horses Cunningham et al. (2001) 

demonstrated that 78% of alleles in the population can be traced to just 30 founding 

animals. From this limited number of founders, the Thoroughbred population has 

expanded dramatically over the subsequent centuries to the point where the current 

annual foal crop exceeds 100,000 registered animals worldwide 

(http://www.jockeyclub.com/factbook.asp?-section=17). 

 

Athletic ability in the Thoroughbred  

 The horse is a born athlete. As a prey animal natural selection has shaped its 

physiology to facilitate rapid escape from predators. In the case of the Thoroughbred, 

humans have further enhanced these traits through selective breeding for improved 

performance on the racetrack. Athletic ability is a complex trait, arising from the 

interplay of both environmental and genetic factors. In more specific terms, athletic 

ability is the result of interactions between a number of physiological and psychological 

factors, including:  

1) Aerobic capacity, influenced by: 

a) Heart rate 

b) Stroke volume 
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c) Gas exchange in lungs/muscle  

d) Hemoglobin concentration  

e) Percent Type I muscle fibers  

2) Anaerobic capacity, influenced by:  

a) Percent Type II muscle fibers 

b) Substrate availability  

3) Biomechanics (efficiency of the animals stride). 

4) Psychological make up or “the will to win.” 

5) Training state or response to training (Rose & Hodgson 1994). 

Research in the field of equine sports medicine has highlighted the remarkable athletic 

abilities of the different breeds. At one extreme the Quarter horse is capable of reaching 

almost 70 km/h in races over 400m, while at the other extreme Arabians can complete 

endurance races that cover between 80 and 160 km in a day at speeds of 16 km/h 

(Ridgway 1994). Much of the horses, and especially the Thoroughbreds, remarkable 

athletic ability can be attributed to its prodigious aerobic capacity. In order to highlight 

this it is useful to get a point of reference by comparing some physiological parameters 

between the Thoroughbred and human athletes.  

• VO2max (maximal amount of oxygen an athlete is capable of transporting and 

utilizing, expressed per Kg of bodyweight): Thoroughbreds have a VO2max 

(160ml O2/Kg/min) twice that of the élite human athlete (69-85ml O2/Kg/min). 

In other words when the disparity in body weight is factored in, the 

Thoroughbred is capable of delivering and utilizing double the volume of oxygen 
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an élite human athlete is capable of (untrained human males have a VO2max of 

45ml O2/Kg/mim) (Derman & Noakes 1994). 

• The Thoroughbred can increase its heart rate almost tenfold from a resting rate in 

the low 20s to almost 250 beats per min; while the human counterpart can only 

manage a four-fold increase, from a resting rate of between 40 and 60 beats per 

min to a rate in the range of 180 to 200 beats per min (Derman & Noakes 1994). 

• The resting stroke index (stroke volume/body weight) for the Thoroughbred is 

1.3 to 2.3 ml/kg; this can increase to between 2.5 and 2.7 ml/kg during maximal 

exercise. In humans the index is 1.1 to 1.4 ml/kg, and it increases to 1.5 ml/kg 

during maximal exercise (Derman & Noakes 1994). 

• In humans resting hematocrit is 40% to 50%, and it rises on average by 4% 

during exercise, mainly due to fluid loss from the circulation (Laub et al. 1993). 

Compared to this resting hematocrit in the Thoroughbred is 32% to 46%; during 

maximal exercise this can rise to between 60% and 70%. (Derman & Noakes 

1994). 

From the figures above it can be seen that the Thoroughbred has a remarkable ability to 

take in and transport oxygen and this capacity obviously plays a large role in the 

Thoroughbreds remarkable athletic abilities. 

  

Energy demands of racing and genetic contribution 

 Thoroughbred races are generally run between five furlongs (1006 m) and two 

miles (3219 m). Consequently the metabolic demands are likely to be different over a 
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five furlong sprint in comparison to a two mile race (Evans 1994). Over shorter distances 

it was initially expected that Thoroughbreds would show a greater reliance on anaerobic 

pathways for energy production, with aerobic respiration coming to dominate as the 

length of race increases. Surprisingly, even over short five-furlong races, 70% of the 

required energy is supplied aerobically, while in longer races the vast majority of energy 

requirements are met by aerobic pathways (Eaton et al. 1995). Only in Quarter Horse 

races over 400m, that last for ~22s, do we see anaerobic pathways provide more than 

50% of the required energy (Eaton et al. 1995). The surprisingly large role of aerobic 

respiration over short distances compared to humans competing over equivalent 

distances is mainly attributable to the remarkable oxygen carrying capacity of the horse 

(Derman & Noakes 1994). However while anaerobic capacity may not play as large a 

role in Thoroughbred racing as initially assumed, it is still likely to play a significant role 

in shorter races where small differences in performance can make the difference between 

first and second.  

 Muscular contraction during exercise is fueled primarily by glucose metabolism 

(stored in the muscles as glycogen) producing Adenosine-5'-triphosphate (ATP, the 

“currency” of molecular energy in the cell) in two ways. During the initial stages of a 

race when O2 is limited, anaerobic pathways rapidly produce energy from glucose and 

glycogen, by producing two and three molecules of ATP per molecule of 

glucose/glycogen respectively along with lactic acid as a byproduct (Eaton 1994; Snow 

& Valberg 1994). As the cardiovascular system begins delivering increased supplies of 

O2 the more efficient aerobic metabolic pathways predominate. If exercise intensity 
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exceeds the aerobic capacity, anaerobic metabolism attempts to make up the difference. 

During a race the Thoroughbred exercises at an intensity that requires a contribution 

from both aerobic and anaerobic metabolism (Eaton 1994; Snow & Valberg 1994). 

 As has been pointed out previously a number of physiological and psychological 

factors contribute to athletic performance, as a consequence a considerable number of 

genes have the potential to play a role in this trait. Most of these genes are thought to 

exert only a small effect on the phenotype and as a consequence it is not possible to 

detect their influence without very large sample populations (Falconer & Mackay 

1996b). Additionally such minor effects would provide little additional information to 

the breeder or trainer of the Thoroughbred, only becoming meaningful at the population 

level. However in complex traits in addition to the many genes exerting a minor effect, 

there are often a small number of genes that play a major role in the phenotype 

(Andersson & Georges 2004). Given the central role physiological factors such as 

aerobic/anaerobic capacity play in performance it is the genes controlling these traits that 

represent some of the best potential candidates for explaining performance variability 

seen in the Thoroughbred. 

 

Measurement of athletic performance 

 When mapping any genetic trait, accurately measuring the phenotype under 

examination is vital to identifying linkage or association between the phenotype and the 

polymorphic markers employed in the study (Carlson et al. 2004). In the Thoroughbred 

the ultimate test of athletic ability has always been performance on the racetrack. 
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However deciding on how to measure race performance to facilitate comparison of 

athletic ability between horses can be a difficult task. Over the years attempts to quantify 

athletic performance in the Thoroughbred have fallen into three main categories based 

on: 

 1. Race time  

 2. Handicap rating  

 3. Earnings/race rank  

 

1. Race time While speed against the clock may at first glance seem the most 

logical measurement of performance it must be remembered that races are not run 

against the clock but against other horses. Race times for classic races such as the 

Belmont, English Oaks and Derby have shown little improvement in winning time over 

the last number of decades despite continued selection for athletic ability (Gaffney & 

Cunningham 1988; Cunningham 1991). Additionally, as will be outlined in grater detail 

below, heritability for race time in some studies is close to zero (Chico 1994; Langlois 

1996), arguing that speed alone does not equate with success on the track. 

 

2. Handicap rating In Thoroughbred racing, horses that perform well on the track 

are assigned heavier weights to carry in subsequent races. Therefore in a handicapped 

race, such as the Melbourne cup, all animals should, in theory, have an equal chance of 

winning. These handicap weights can be expressed as a rating to reflect the past 

performance of the horse and can be used to compare the athletic ability of different 
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animals (Tolley et al. 1985). While the handicap rating of an animal has a large 

subjective component, it probably more accurately reflects athletic ability than race 

times, especially over longer racing distances (Langlois 1980).  

 

3. Earnings/race rank As mentioned earlier the goal of Thoroughbred racing is to 

be first past the post. As a consequence the most appropriate measurement of 

performance in the Thoroughbred is race ranking or winnings. Langlois (1996) favored 

using race ranking as a measure of performance but also points to the usefulness of 

earnings once they have been log transformed to create a linear rather than exponential 

trait. In racing, as the prize money increases better quality horses tend to enter the race, 

thus increasing the difficulty of winning. As a result lifetime earnings can be seen as a 

reflection of the horses ability to perform well on the track against its peers. While far 

from a perfect measurement of performance, information on earnings are readily 

accessible for the majority of Thoroughbreds and is probably the most commonly used 

indicator of athletic performance at the present time (Langlois & Blouin 2004). 

 

Heritability (2h) of athletic ability in the Thoroughbred  

 “The most effective way to become a champion athlete is to be selective when 

choosing ones parents” (Derman & Noakes 1994). While this approach is not practical 

(or ethical) in humans, the large stud fees and exorbitant prices paid for well bred horses 

demonstrates that the Thoroughbred industry places a very real price on “good genes”. 

Despite the extensive pedigree and performance records available for the Thoroughbred 
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there has been a paucity of research into the genetics of athletic performance. This 

research is strikingly limited, particularly when compared to research devoted to the 

identification of complex and economically important traits in other livestock species 

(Ricard et al. 2000). To date the majority of investigations into the genetics of athletic 

performance in the Thoroughbred have concentrated on examining the heritability of 

racing performance, using measurements such as race time, handicap rating and 

earnings. Examining the heritability of a trait is an important step in determining if it is 

feasible to identify associated genes. A trait with little or no heritability is a poor 

candidate for genetic analysis as the alleles passed down the generations would have 

little or no effect on the variation observed in the population under examination 

(Falconer & Mackay 1996a). 

 

Heritability of race time 

 Tolley et al. (1985) in an extensive review of the literature dealing with the 

heritability of racing performance in horses identified ten studies that examined the 

heritability of racing time, with estimates ranging from 0.09 to 0.78. Richard et al. 

(2000) pointed out that many of these early studies were based on relatively small 

numbers of animals, in the studies with reasonable sample sizes most estimates fell 

between 0.1 and 0.2. 

Chico (1994) analyzed Spanish Thoroughbreds competing in Grand-Prix races 

(élite races, where competitors carry equal weight) and found heritability to be zero for 

racing time. Looking at over 25,000 Thoroughbreds in Japan, Oki et al. (1995) examined 
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the heritability of racing time over a variety of distances on turf and dirt tracks. 

Heritability was broadly similar on both racing surfaces, however a clear decrease in 

racing time heritability was seen as the length of race increased, heritability at 1000 m 

was 0.25 and this dropped to 0.08 at 2000 m. 

In order to provide some context for the above figures it is worth mentioning the 

heritability for some other economically important traits in livestock species. In cattle 

heritability for milk yield is 0.35, and for bodyweight is 0.65, in pigs back-fat thickness 

is 0.7, weight gain per day 0.4 and litter size 0.05 (Falconer & Mackay 1996a). The low 

heritability seen for race time in the more recent studies indicates that measuring race 

time is a poor way to quantify performance on the track, especially in longer races 

(Langlois 1996). However it is interesting to note that over shorter races a higher 

heritability is observed indicating that raw speed is more important over these distances. 

As anaerobic metabolism plays a greater role over shorter distances genes affecting this 

system may be good candidates for influencing performance in sprinters. 

 

Heritability of handicap rating 

 Tolley et al. (1985) provides an excellent review of the earlier studies examining 

heritability of handicap rating. In total eight studies were discussed. Heritability for this 

indicator of performance showed a good deal of variability with estimates based on 

regression to the sire and paternal half sib showing very large values. These values were 

generally discounted due to a correlation between phenotype of the sire and the 

environment of the offspring as breeders that can afford stallions with high stud fees are 
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likely to provide higher quality early care and training (Ricard et al. 2000). For 

regression based on the dam, the majority of these studies showed heritability between 

0.3 and 0.4 (Tolley et al. 1985). Gaffney and Cunningham (1988) using the Timeform 

handicap ratings over the period 1961 to 1985 for 31,263 three year olds, the offspring of 

2,087 sires, found heritability to be 0.39 ± 0.013 when regressed on the mare. As seen in 

previous studies, regression on the stallion showed very high heritability (0.76 ± 0.023) 

indicating that an environmental bias was inflating the heritability estimate. 

 

Heritability of earnings/race rank 

 A good overview of the literature prior to 1985 is again provided by Tolley et al. 

(1985), with five studies examining the heritability of race earnings reviewed. The 

earnings were log transformed to normalize the distribution and heritability estimates fell 

between 0.23 and 0.56, with the majority of the estimates towards the lower end of the 

series. Recent studies have produced more modest estimates. Chico (1994) looked at 

Thoroughbreds in Spain and found heritability for earnings to be 0.1. In Poland 

Sobczynska and Lukaszewicz (2004) found heritability for earnings to be 0.12, while 

Svobodova et al. (2005) looking at Thoroughbreds in the Czech Republic found 

heritability for career earnings to be 0.32. Finally, in a study likely to upset the owners of 

stallions with high stud fees, Wilson and Rambaut (2008) looked at stallions in the U.K. 

and U.S.A. and estimated that while lifetime earnings were 0.095 heritable, there was no 

genetic correlation between a stallions stud fee and the lifetime earnings of the animals 

offspring.  
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 From these studies on handicap rating and earnings it can be concluded that 

performance on the track is moderately heritable in the Thoroughbred population.  

The modest heritability of the trait does make the process of mapping genes associated 

with the phenotype more difficult. Any major QTL segregating within the population is 

likely to explain a relatively modest portion of the phenotypic variation, making it 

difficult to observe the signal of linkage among the noise generated by other variables. 

Nevertheless QTLs for complex traits with a similar heritability, such as milk yield in 

the cow (Boichard et al. 2003; Ashwell et al. 2004) and osteochondrosis in the horse 

(Dierks et al. 2007; Wittwer et al. 2007) have been successfully mapped to specific 

genomic regions using panels of microsatellite markers.  

 

Specific genes associated with athletic performance in the horse 

 While a number of studies have shown that athletic performance has a modest 

heritable component in the horse, to date only one study has shown an association 

between specific genomic polymorphisms and athletic performance. Harrison and 

Turrion-Gomez (2006) showed that different mitochondrial haplotypes were correlated 

with performance at different racing distances in English Thoroughbreds competing in 

classic races. Suggesting that the mitochondrial genome also plays a role in athletic 

performance in the Thoroughbred.  
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Breeding for superior athletic ability and effect of selection  

 Since the foundation of the breed, the Thoroughbred has been bred with the 

primary goal of producing an animal capable of excelling on the track. This has 

traditionally been achieved by selectively breeding animals that have succeeded on the 

racetrack. Also considered in the selection process is the pedigree of the animal, taking 

into account the performance of ancestors and relatives. In addition to performance on 

the racetrack other traits such as conformation and temperament are evaluated to ensure 

that the offspring are capable of standing up to the physical and psychological rigors of 

training and racing. 

With such extensive pedigree/performance records and selection for a single 

(although complex) trait it might be assumed that the Thoroughbred industry would be 

well positioned to exploit modern breeding methods. However unlike other domestic 

species such as cattle, pig and chicken, to date the Thoroughbred industry has been 

largely recalcitrant to selection using specific breeding values based on the past athletic 

performance of the individual animal and relatives (Cunningham 1991; Langlois 1996). 

Despite the apathy of the Thoroughbred industry, the Best Linear Unbiased Predictor 

(BLUP) animal model (Tavernier 1988) has been adapted to estimate breeding values in 

the Thoroughbred and other sport horses (Tavernier 1988; Langlois et al. 1996; Langlois 

& Blouin 2004). The application of such a model has the potential to improve the 

efficiency of selection for superior athletic performance in the Thoroughbred over 

traditional methods. However, the conservative and fragmented nature of the industry 
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make widespread application of such a model unlikely in the near future (Langlois & 

Blouin 2004). 

Artificial selection in agricultural important species based on the observable 

quantitative phenotypes has been extremely successful over the last 50 years in 

increasing productivity in both plants and animals (Dekkers & Hospital 2002). The past 

twenty years have also seen the increasing application of molecular genetics to dissect 

the molecular underpinnings of economically important traits in agriculturally important 

species. Efforts have also been made to utilize this information in marker assisted 

selection for superior productivity and disease resistance (Andersson 2001; Dekkers 

2004). If specific alleles affecting athletic ability can be located in the horse the 

information could be utilized in selecting for superior athletic performance and in 

identifying promising animals before they have been tested on the track. Additionally, 

unlike other livestock species where the individual animals monetary value is low and 

genotyping costs can quickly erode a tight profit margin. In the Thoroughbred 

identifying important alleles via genotyping would only represent a tiny fraction of the 

animal’s value. 

 

Cunningham’s Paradox- Static race times and genetic progress 

 Studies examining heritability of racing performance while far from perfect, do 

at least show a consistent if often modest heritability for performance on the racetrack. 

Selection intensities in the Thoroughbred are at around 50% in the mare and 5% in the 

stallion and generation intervals average 10 years (Langlois 1980; Gaffney & 
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Cunningham 1988). As a consequence one would expect genetic gain in the 

Thoroughbred population for performance on the track. Using Timeform handicap rating 

gathered for 11,328 animals that raced as three year olds between 1961 and 1985 

Gaffney and Cunningham (1988) used a sire model best linear unbiased prediction 

(BLUP) analysis to estimate a genetic gain in Timeform rating of 0.94  0.13 a year. 

More recently Wilson and Rambaut (2008) looked at stallion’s in the U.K. and U.S.A. 

and estimated that while lifetime earnings were 0.095 heritable, there was no genetic 

correlation between a stallions stud fee and the lifetime earnings of the animals 

offspring. Similar results have also been observed in the Quarter Horse that races over 

much shorter distances (320m) than the Thoroughbred. Wilson et al. (1988) after 

examining over 1 million race records between 1960 and 1983 found that that finish 

times were decreasing by 0.0088, 0.0090 and 0.0037 seconds per year for the 320, 366 

and 402 m races, respectively, due to effect of selective breeding. 

Despite the apparent heritability of performance on the track and selection for the 

phenotype, over the last number of decades it has been observed that Thoroughbreds do 

not appear to be getting appreciably. Winning time for the Classic English races the St 

Ledger, the Derby and the Oaks, and the longer leg of the American triple crown the 

Belmont have improved little in modern times. It is worth mentioning that some 

improvement has been observed in the two shorter legs of the American triple crown, the 

Kentucky Derby and the Preakness (Gaffney & Cunningham 1988; Cunningham 1991). 

This apparent discrepancy between heritability and response to selection was christened 

by Prof Alan Robertson in 1975 as “Cunningham’s paradox” (Langlois 1980). 
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A number of suggestions have been put forward to explain this discrepancy. 

Firstly, many of the early investigations into heritability produced large heritability 

estimates that have since been discounted as they used regression on the sire methods 

that tend to inflate the estimates, due to the environmental correlations between offspring 

and the phenotype of the sire (Ricard et al. 2000). As a result in many cases, calculated 

rates of genetic improvement based on these inflated heritabilities were overestimated. 

However more carefully controlled estimations of genetic gain still point towards an 

expected improvement in performance on the track. 

Operating under the assumption that the reported heritabilities for performance 

are based on some genetic contribution to superior performance, Dr Cunningham 

himself speculated in 1975 that the observed heritability is the result of a depletion of the 

additive genetic variation in the Thoroughbred population (Tolley et al. 1985). A similar 

point was again made by Gaffney and Cunningham (1988) when they pointed out that 

while race times in some élite races have remained static, these times are posted by the 

top performers in the population. They believe that the observed genetic gain is 

occurring in the overall population, not in élite animals competing in the top races. As a 

result the average horse is getting better while the élite remain static. 

Langlois (1980) highlighted the point that speed and racing ability are not the 

same thing. In the Thoroughbred what counts most is which horse wins, not which 

animal is capable of the fastest race time. He speculated that during the foundation 

stages of the breed raw speed was of greater importance. However, as the level of 

athletic ability in the population improved due to the influence of selection, a number of 
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different and subtler factors (such as temperament) increased in importance. This may be 

an especially important point in herd animals such as the horse. Many Thoroughbreds 

may have similar athletic abilities, but it is the animal that is most willing to break away 

from the field that wins. Therefore in the modern Thoroughbred it may be variation in 

less obvious genes affecting traits such as temperament, which are mainly contributing 

to performance on the track. As a consequence while it is important to first examine 

more conventional candidate genes it is prudent to also consider a genome wide 

approach to identify less obvious genes affecting performance on the racetrack.  

  

Genetics of athletic ability in humans and candidate genes 

 It has long been realized that athletic ability in humans has a large genetic 

component. Even with the best training and the will to succeed, relatively few 

individuals are capable of achieving élite athlete status. Initial studies in humans 

investigated the extent to which genetics affects the physiological systems (such as: 

VO2max, anaerobic capacity, stroke volume, etc) considered important in athletic 

performance. In the case of VO2max, heritability estimates have ranged from 0.4 to 0.6 

(Bouchard et al. 1992; Bouchard et al. 2000; Feitosa et al. 2002; Rupert 2003). While 

studies into the heritability of anaerobic capacity have also shown high estimates, 

ranging from 0.31 to 0.86 (Bouchard et al. 1992). As regards identifying specific genes 

associated with athletic performance in humans, a good deal of work has been carried 

out over the last ten years, with a number of groups investigating athletic performance 

using both whole genome scans and candidate gene approaches. The interest in this field 
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is highlighted by the rapid increase in the number of articles being published on the 

subject. The initial human gene map of performance and health related phenotypes 

published in 2001 contained 42 autosomal genes and quantitative trait loci (QTL) 

(Rankinen et al. 2002b) while the 2005 update contained 165 autosomal genes and QTLs 

(Rankinen et al. 2006). The weight of evidence supporting the association between 

athletic performance and many of these genes is often confined to a single small-scale 

study (Rankinen et al. 2006). In other complex phenotypes such as schizophrenia, 

reports of linkage between the phenotype and region of the genome have often been 

difficult to replicate (Glazier et al. 2002). As a consequence it is likely that many of 

these candidate genes will fail to show statistically significant linkage/association with 

athletic performance in different populations. However, a few genes such as the ACE I/D 

polymorphism have repeatedly shown association with superior athletic performance in 

different populations (Rankinen et al. 2006). This and other promising candidate genes 

are discussed in greater detail below. 

 

The Angiotensin-Converting Enzyme (ACE) 

 To date the most extensively studied gene associated with athletic 

ability/performance phenotype in humans is the angiotensin I converting enzyme (ACE) 

gene. The ACE gene is involved in the conversion of angiotensin I to angiotensin II and 

the degradation of vasodilator kinins. As a result the ACE enzyme is an important 

component of the endocrine rennin-angiotensin system that helps regulate blood pressure 

(Myerson et al. 1999; Bray 2000). In humans there are two major variants of the ACE 
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gene, the first variant the insertion (I) allele, contains an extra 287 base pair fragment, 

while the second known as the deletion (D) allele lacks this insertion. The D allele is 

associated with relatively higher ACE activity (Myerson et al. 1999). 

There have been conflicting reports in the literature as regards this I/D 

polymorphism. A number of studies have associated the I allele with increased 

endurance performance in different groups, including but not limited to: British high-

altitude mountaineers (Montgomery et al. 1998), British distance runners (Myerson et al. 

1999), Australian rowers (Gayagay et al. 1998) and Russian middle distance athletes 

(Nazarov et al. 2001). Additionally, in patients with congestive stable heart failure, 

individuals that are homozygous for the D allele have decreased exercise capacity 

(Abraham et al. 2002). However other studies did not find such an association. For 

example, Taylor et al. (1999) looking at 120 Australian athletes competing in highly 

aerobic sports, Rankinen et al. (2000b) looking at 192 endurance athletes from Canada, 

Germany, Finland and the United States and Scott et al. (2005) looking at 291 Kenyan 

endurance athletes, failed to find an association between the ACE I/D polymorphism and 

performance (Taylor et al. 1999). Finally in the HERITAGE family study (Gagnon et al. 

1996) with a sample population of 724 individuals, undergoing 20 weeks of endurance 

training, no association between ACE I/D polymorphism and cardiorespiratory 

performance was found (Rankinen et al. 2000a). 

As regards the D allele, there is some evidence that this allele may be associated 

with performance in events that require a large contribution from anaerobic respiration. 

An excess of the D allele has been seen among Russian athletes competing in power 
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orientated events (Nazarov et al. 2001). In addition, an excess of the D allele was seen in 

British swimmers and runners competing over short distances (Myerson et al. 1999). 

The ACE I/D polymorphism has also been investigated in relation to its effect on 

response to training. In a study using British army recruits an association was found 

between the I allele and increased duration of performance of elbow flexions when 

holding a 15 kg barbell following a 10 week training program (Montgomery et al. 1998). 

Another study also using Army recruits found an association between the I allele and 

improvements in delta efficiency (% ratio of change in work performed per min to the 

change in energy expanded per min) when exercising on a cycle ergometer following an 

11 week physical training program (Williams et al. 2000). As regards the D allele, 

carriers showed a greater response to quadriceps strength training than I homozygous 

individuals (Rankinen et al. 2001). However in a study using 147 U.S. army recruits, no 

association was found between ACE genotype and improvements in aerobic performance 

and performance in sit-ups and push-ups following 8 weeks of basic training (Sonna et 

al. 2001). Finally Myerson et al. (2001) using 141 British Army recruits found 

individuals homozygous for the D allele had a greater increase in left ventricular mass 

when compared to subjects with the II genotype after completing a 10 week exercise 

training program. 

The literature cites a number of conflicting opinions in relation to the ACE gene. 

The problem has also been exacerbated by the lack of clarity in how exactly differing 

levels of the angiotensin converting enzyme could affect performance. Some authors 

have cast doubt on the relationship between the ACE I/D polymorphism and endurance 
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performance. Rankinen et al. (2000b) pointed out that studies showing a positive 

correlation with endurance tend to have a small sample size and less rigorous phenotypic 

measurement, while larger studies with controlled phenotypic measurement show no 

correlation with superior endurance performance. On the other hand Nazarov (2001) 

points out that examining a large number of athletes from an array of disciplines without 

proper stratification according to standard of athlete and duration of event results in a 

masking of the association between the ACE I/D polymorphism and superior endurance 

performance. It has also been suggested that the ACE genotype exerts its effect through a 

local muscle effect and as a consequence is independent of VO2max and this may 

account for the findings in some of the negative studies (Woods et al. 2000; Perusse et 

al. 2003). Another factor that may account for the conflicting results observed is the 

strong linkage disequilibrium between the ACE I/D polymorphism and many potentially 

important functional polymorphisms in the ACE gene in European populations (Scott et 

al. 2005). In other populations this strong linkage disequilibrium is absent (Scott et al. 

2005). Finally it has also been suggested that the effect of the ACE I/D polymorphism 

could be the result of linkage disequilibrium with other genes, such as the adjacent 

human growth hormone gene (hGH) (Rankinen et al. 2000a; Rupert 2003). On balance, 

it appears that the ACE I/D polymorphism is pointing to some underlying genomic 

polymorphism contributing to athletic performance in humans. However, better 

controlled and larger scale studies that account for ethnic background are required to 

make definitive conclusions about the role of this gene.  
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Skeletal Muscle-Specific Creatine Kinase (CKMM) 

 CKMM is an enzyme found in vertebrates and is responsible for catalyzing the 

transfer of a high-energy phosphate from phosphocreatine to ADP, with the resultant 

formation of ATP and creatine. In horses, the CKMM enzyme activity in fast twitch type 

II muscle fibers is twice that seen in slow twitch type I muscle fibers (Snow & Valberg 

1994). Genetically modified mice deficient for the CKMM enzyme show improved 

endurance but lose the ability to perform short bursts of high intensity activity (van 

Deursen et al. 1993). While in humans Rivera et al. (1997) in the HERITAGE family 

study found an association between a polymorphism in the 3’ untranslated region of 

CKMM recognized by the Ncol restriction enzyme and VO2max response to a 20 week 

regime of endurance training. In this study CKMM genotype accounted for at least 9% of 

the variation seen in VO2max. 

 

α-Actinin-3 (ACTN3) 

 The sarcomere is the basic unit of the myofibril (a cylindrical organelle within 

muscle cells) and consequently of contraction in muscles. α-actinin filaments are an 

important component of the sarcomere, making α-actinin an important structural 

component of muscle (Snow & Valberg 1994). In humans two genes encode the skeletal 

α-actinins; ACTN2 is expressed in all muscle fiber types while ACTN3 is confined to 

type II fast twitch fibers. In the human population up to 18% of individuals are 

homozygous for a premature stop codon (577XX) in ACTN3. As a consequence, these 
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individuals lack the ACTN3 protein (Yang et al. 2003), however a lack of the protein 

has no apparent detrimental effect.  

 In a study examining the frequency of the allele among a population of 

Australian athletes it was observed that sprinters showed a significantly higher frequency 

of the normal gene, while endurance athletes showed a higher frequency for the 577XX 

genotype (Yang et al. 2003). Similarly, Niemi and Majamaa (2005) looked at élite 

endurance and sprint athletes and found the 577XX genotype underrepresented in 

sprinters and absent in élite sprinters. However there was no apparent correlation 

between ACTN3 genotype and endurance performance. Moran et al. (2007) found a 

negative association between the 577XX genotype and performance in a 40m sprint in 

992 Greek adolescents. Finally, Druzhevskaya et al. (2008) also found the 577XX 

genotype underrepresented in power orientated Russian athletes. In addition to human 

studies, MacArthur et al. (2007) showed ACTN3 knockout mice displayed a shift in 

muscle metabolism towards greater reliance on aerobic pathways. Skeletal muscle in the 

ACTN3 -/- mice showed increased activity for NADH-tetrazolium reductase (NADH-

TR) and succinate dehydrogenase (SDH), both markers of aerobic metabolism. 

Additionally mitochondria density increased in the skeletal muscle of ACTN3 -/- mice. 

In the same study analysis of the genomic region surrounding the 577X allele in humans 

included in the HapMap project showed evidence of recent positive selection in 

individuals of European and Asian descent. As a consequence it is plausible that the 

577XX genotype may have been selected for due to a positive effect on endurance 

capacity in carriers. 
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Ciliary Neurotrophic Factor (CNTF) 

 CNTF is a polypeptide protein hormone originally named for its role in 

promoting survival of chick ciliary neurons (DeChiara et al. 1995). Subsequent research 

showed the CNTF protein has a role in the survival of a number of neuronal cell types, 

with most research in the gene focusing on its role in the maintenance of motor neurons 

(DeChiara et al. 1995). The CNTF receptor is composed of three subunits, one of these 

subunits, the CNTF receptor-α is abundantly expressed in skeletal muscles suggesting a 

role for the CNTF protein in muscle function (Roth et al. 2001). Research in rats has 

shown that levels of the protein are associated with muscular fiber area and strength 

(Guillet et al. 1999). Within the human population there is a CNTF gene variant (known 

as the A allele) that produces a nonfunctional protein due to the alteration of a splice site. 

Surprisingly given, its influence on a number of neuronal cell types, individuals 

homozygous for the A/A allele do not demonstrate increased rates of neuromuscular 

disease (Takahashi et al. 1994). As a consequence it appears that the CNTF protein is 

not vital for development, but may play a role in responding to injury (DeChiara et al. 

1995). Roth et al. (2001) examined the effect of the CNTF G/A allele and muscular 

strength in 494 healthy men and women. Subjects exhibiting the G/A genotype 

possessed significantly greater muscle quality and muscular strength at fast contraction 

speeds when compared to individuals homozygous for either allele. The A/A individuals 

showed the lowest muscular strength and contraction speed (Roth et al. 2001). 
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Uncoupling Protein 2 and 3 (UCP2/3) 

 Uncoupling proteins (UCP) are a closely related group of proteins that are 

thought to be involved in thermogenesis, fatty acid regulation and are also implicated in 

obesity (Buemann et al. 2001). UCP2 is expressed in a variety of tissues including 

adipose tissue and skeletal muscle, while UCP3 is primarily expressed in skeletal muscle 

(Lanouette et al. 2002). Astrup et al. (1999) investigated 24 hour energy expenditure and 

substrate oxidation in 60 healthy subjects. The authors reported subjects with the val/val-

55 UCP2 genotype had greater metabolic activity when compared to subjects with the 

ala/ala-55 UCP2 genotype. Buemann et al. (2001) carried out a sub-maximal exercise 

test comparing 8 subjects of the val/val genotype and 8 subjects of the ala/ala genotype 

and found that exercise efficiency at a range of work levels was significantly higher in 

the val/val subjects. The authors speculated that different exercise efficiencies observed 

between the two genotypes are the result of linkage disequilibrium with unidentified 

polymorphisms in a neighboring region. The val/ala-55 domain of the protein does not 

have a known function and the adjacent UCP3 gene is considered as a likely location for 

the polymorphism. Interestingly, polymorphisms in UCP3 have been implicated in body 

composition changes (body mass index, % fat, etc) in response to regular exercise 

(Lanouette et al. 2002). 

 

α2A-adrenic receptor (ADRA2A) 

 α2A-adrenic receptors are found throughout the peripheral and central nervous 

system. These receptors play a role in the regulation of adipose tissue lipolysis, an 
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important contributor to the energy demands of endurance exercise. Wolfarth et al. 

(2000) reported a weak association between a restriction site in the ADRA2A gene 

recognized by the DraI enzyme and élite endurance athletes when compared to sedentary 

controls. 

 

β2-adrenergic receptor (ADRB2) 

 β2-adrenergic receptors are involved in the regulation of glycogenlysis and 

gluconeogenesis in the liver, relaxation of smooth muscle and cell metabolism in skeletal 

muscle. Moore et al. (2001) looked at a polymorphism in codon 27 (Glu27Gln) of the 

gene in 63 postmenopausal women. Individuals homozygous for a Glu27 variant had a 

significantly lower VO2max when compared to heterozygotes and Gln27 homozygotes. 

 

β1-adrenergic receptor (ADRB1) 

 The β1-adrenergic receptor is a G-protein coupled receptor involved in the 

mediation of the hormones epinephrine and the neurotransmitter norepinephrine. 

Polymorphisms in the ADRB1 gene have been implicated in regulating heart rate and 

obesity (Dionne et al. 2002). Wagoner et al. (2002) examined the effect of two common 

polymorphisms (codon 49 Ser/Gly and codon 389 Gly/Arg) in the β1-adrenergic 

receptor gene in 263 patients with idiopathic or ischemic cardiomyopathy. Individuals 

homozygous for the Gly389 allele showed significantly lower peak VO2max compared 

with Arg389 homozygotes (14.5  0.6 vs. 17.7  0.4 ml/kg/min), heterozygotes 

showed a VO2max between the two homozygotes. When the Ser/Gly49 polymorphism 
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was also considered it was found that individuals homozygous for Ser49 and Gly 389 

had the lowest peak VO2max (14.4  0.5 ml/kg/min), while individuals homozygous for 

Gly49 and Arg389 had the highest peak VO2max (18.2  0.8 ml/kg/min). 

 

G protein ß3 (GNB3) 

 G proteins are heterotrimers composed of α, β and γ subunits, and are involved in 

signal transduction. Polymorphisms in the GNB3 subunit have been associated with 

hypertension and obesity (Downes & Gautam 1999). Rankinen et al. (2002c) 

investigated the impact of a splice variant created by a C to T transition in exon 10 of the 

GNB3 gene on hemodynamic and body composition phenotypes before and after 20 

weeks of training. They found that individuals homozygous for the C/C allele showed a 

significant reduction in heart rate during submaximal exercise following training (an 

indicator of improved aerobic capacity). Interestingly the greatest effect was observed in 

blacks highlighting the importance of taking the ethnic background of the subjects into 

account.  

 

Peroxisome proliferators-activated receptor α (PPARα) 

 PPARα is a transcription factor that regulates genes involved in inflammation, 

fatty acid uptake and oxidation. Jamshidi et al. (2002) looked at 144 British Army 

recruits participating in a 10-week physical training program, it was observed that 

subjects homozygous for the C allele of a G/C polymorphism in intron 7 had a three fold 

greater increase in left ventricular mass when compared to individual with the GG 
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genotype. The mechanism of action for this allele remains unclear as the change in 

nucleotide does not alter the amino acid inserted. The authors speculate that this allele is 

in linkage disequilibrium with some unidentified polymorphism in the regulatory regions 

of the PPARα gene that is affecting transcriptional activity.  

 

Vitamin D receptor (VDR) 

 VDR is involved in regulating bone homeostasis through the vitamin D endocrine 

system (Rabon-Stith et al. 2005). Grundberg et al. (2004) investigated the relationship 

between the size of a poly A repeat in the 3’ UTR and a BsmI restriction site with 

muscle strength and body mass index (BMI). The shorter allele of the repeat was 

associated with higher hamstring strength and BMI. Lorentzon et al. (2001) examined 

several polymorphisms in VDR and their effect on bone mineral density in 99 Caucasian 

girls. They found that individuals heterozygous for an ApaI restriction site within the 

gene had increased bone mineral density. The authors also postulated that levels of 

physical activity might interact with these polymorphisms leading to alterations in bone 

mineral density. More recently Rabon-Stith et al. (2005) found an association between a 

FokI restriction site in exon 2 and bone mineral density response to strength training. 

 

Myostatin (MSTN) and the myostatin pathway  

 Myostatin (also known as growth differentiation factor 8, GDF8) is a member of 

the transforming growth factor-β super family and a potent negative regulator of skeletal 

muscle growth. Myostatin is highly conserved in mammals and mutations in the gene 
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cause dramatic phenotypes in a number of species. Mice lacking the myostatin gene 

show muscle weight twice that of wild-type animals (McPherron et al. 1997). In cattle 

some breeds such as the Belgian Blue show a “double muscling” phenotype that has 

been attributed to a 11bp deletion in the third exon of the gene (Grobet et al. 1997; 

McPherron & Lee 1997). In the dog, the whippet is a breed used for racing, with a slight 

build resembling a small greyhound. In contrast to the normal phenotype, “bully” 

whippets are heavily muscled with well-developed leg and neck muscles. The animals 

do not experience any apparent health problems apart from muscle cramping but are 

often euthanized as they do not conform to the breed standard (Mosher et al. 2007). It 

was recently reported that “bully” whippets are homozygous for a 2bp deletion in the 

third exon of the myostatin gene, creating a premature stop codon. Additionally animals 

heterozygous for this deletion have increased muscle mass and superior racing 

performance (Mosher et al. 2007). 

 In humans there has been one report of a child homozygous for a loss of function 

mutation in the myostatin gene. As observed in other mammals the child displayed 

muscle hypertrophy, but was otherwise normal (Schuelke et al. 2004). Interestingly the 

mother was a former professional athlete and a number of family members were 

unusually strong. Huygens et al. (2004), using 329 young Caucasian male sibs carried 

out linkage analysis examining estimated muscle cross-sectional area and 11 

polymorphic markers adjacent to 10 candidate genes in the myostatin pathway. They 

found suggestive linkage with the markers adjacent to the GDF8 (HSA2q32), CDKN1A 

(HSA6p21) and MYOD1 (HSA11p15) genes. A follow up study was carried out by the 
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same group using a different population of 367 male siblings from Belgium (Huygens et 

al. 2005). In total 9 candidate genes from the myostatin pathway were examined using 

29 microsatellites; in this instance linkage was observed between markers flanking 

CDK2 (12q13), RB1 (13q14) and IGF1 (12q23) and knee muscle strength. The lack of 

significant association between markers adjacent to the myostatin gene indicates that it 

plays a minor role in explaining the variation in muscle strength in humans (Huygens et 

al. 2005). A final point worth mentioning is the lack of overlap in genes showing 

significant linkage for the two studies. This highlights the difficulty of reproducing 

signals of linkage for complex phenotypes, particularly when different methods of 

measurement are used (muscle cross-sectional area vs. knee muscle strength) and 

different populations examined.  

 

Applicability to the horse  

 There is no guarantee that genes affecting athletic performance in humans will 

play a similar role in the horse. As has been mentioned previously, given the apparent 

lack of heritability for raw speed and static race times in longer races, genes affecting 

aerobic capacity (the major supplier of energy over these distances) may have a minor 

role in explaining race performance variation in the Thoroughbred. However the 

continued improvement in race times and modest heritability for speed over shorter 

distances suggests that genes affecting sprinting ability (e.g. genes affecting anaerobic 

capacity) are under selection in the Thoroughbred population. Rational arguments can be 

made as to why a particular candidate gene has the potential to affect performance in the 
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Thoroughbred. However, given the availability of polymorphic markers adjacent to the 

majority of these genes it is prudent to examine as many as possible for evidence of 

linkage or association with performance. While many of these genes are unlikely to 

show similar effects in horse and human the example of the myostatin gene vividly 

demonstrates how different species can produce remarkably similar phenotypes when 

the same gene is mutated. 

 

Current commercial applications  

 One of the goals of studying the genetic component of athletic performance in 

humans and horses is that by identifying the genes associated with superior athletic 

performance it might be possible to identify individuals endowed with a genotype 

conducive to superior athletic performance. Given the complexity of the genetics of 

athletic performance, such a goal is not yet feasible. However, it is likely that 

information on an individual’s genotype for a number of genes could be used in the near 

future to determine whether they are more suited to events that rely heavily on aerobic or 

anaerobic respiration. As has been outlined above, alleles located near or within a 

number of genes have been associated with superior performance in endurance or 

strength orientated events. Some companies are already offering genetic tests based on 

some of these polymorphisms. In humans, ACTN3 testing is being offered 

(http://www.gtg.-com.au/humandnatesting/index.asp?menuid=070.110.020) while in the 

horse tests are being offered to identify haplotypes associated with superior performance 

in longer races (http://Thoroughbredgenetics.com/standard_services.htm). Offering such 
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tests to the general public appears premature because these single gene tests only explain 

a small fraction of the individuals athletic potential. Given the publics often misguided 

belief in genetic determinism results from such tests may lead individuals or trainers to 

discount events or training regimes that when all factors are considered are actually 

suitable for the athlete (human or equine). Therefore, while such genetic information 

could potentially be useful for athletes and trainers, a greater number of alleles need to 

be considered to reach a level where such tests would be meaningful for the individual 

athlete.  

 

Genome wide linkage scans in humans  

 In addition to the numerous candidate gene studies, a small number of genome 

scans have been carried out in humans to identify regions of the genome linked to 

performance related phenotypes. Bouchard et al. (2000) carried out a genome scan for 

VO2max before and after a 20 week endurance training program in 481 individuals from 

the HERITAGE family study using 289 microsatellites. A number of suggestive linkages 

were identified for both VO2max pre and post training. Interestingly, the region of the 

genome harboring the ACE I/D polymorphism failed to show any linkage to VO2max. 

However the region containing the CKMM gene did show suggestive linkage with 

VO2max response to 20 weeks of training. In a follow up to Bouchard et al. (2000), 

Rico-Sanz et al. (2003) again looked at VO2max and maximal power output but added 

an additional 220 markers to the genome scanning panel for a total of 509 microsatellite 

markers. The sample size was 351 and 102 sibling pairs for whites and blacks 
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respectively for the sedentary state measurements and 329 and 90 respectively, for the 

training response. The most significant linkage for baseline VO2max was seen at 

HSA11p15 (P < 0.023) in whites, in blacks suggestive linkage (0.01 > P > 0.0023) was 

seen at HSA1p31, HSA7q32 and HSA7q36. As regards post training VO2max response 

to training, blacks showed promising linkage at HSA1p31, while whites showed 

suggestive linkage at HSA4q27, 7q34 and 13q12. Finally a region at HSA5p23 showed 

promising linkage to maximal power output post training in whites, while blacks showed 

promising linkage at HSA1q22 and 13q11.  

Rankinen et al. (2002a) carried out a genome scan for exercise stroke volume 

and cardiac output before and after a 20 week endurance training program in the 

HERITAGE family study. It was interesting to note that some regions of linkage were 

not the same in blacks and whites. Whites showed promising linkage at HSA14q31.1 

and 10p11.2 for stroke volume at baseline and post training, while blacks showed 

linkage for baseline stroke volume at HSA1p21.3, 3q13.2 and 12p13.2.  

The findings from this and the previous studies highlight the importance of 

taking into account the genetic background of the sample population given the different 

linkage signals seen in blacks and whites. Additionally CKMM was highlighted as a 

candidate gene in the Bouchard et al.(2000) paper because of suggestive linkage to the 

gene and a previous study (Rivera et al. 1999) linking it to VO2max. The lack of linkage 

between VO2max and the region of the genome harboring CKMM in the Rico-Sanz et al. 

(2003) study again highlights the difficulty of replicating results in complex phenotypes.  
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Athletic performance in model organisms  

The rat and athletic performance related phenotypes 

 Epidemiology studies in humans have made it increasingly evident that many 

exercise related phenotypes such as maximal aerobic capacity and exercise endurance 

are linked with positive health outcomes in a number of chronic diseases, such as 

coronary heart disease and diabetes (Booth et al. 2000; Lightfoot 2006). However given, 

the complexity of the phenotypes and inherent limitations of human subjects (inability to 

selectively breed for a phenotype, control diet and environment closely, etc) efforts have 

been made to produce rodent models to assist in the study of exercise related 

phenotypes. Initial investigations to determine the genetic component of endurance 

phenotypes in rats used 11 inbred strains (6 males and 6 females from each strain) that 

were run on a treadmill to estimate aerobic performance. The strains showed a range of 

aerobic capacities, as regards the extremes, it was found that COP rats covered 298  

30 m when run to exhaustion, while DA rats covered 840  64 m (Barbato et al. 1998).  

 In an attempt to create a strain of rat with both high and low aerobic capacity, 

Koch & Britton (2001) began with a genetically heterogeneous rat population of 168 

individuals (N:NIH stock). Overall the founding population covered 355  11 m on a 

treadmill before exhaustion. Following six generations of divergent artificial selection 

the high capacity line could cover 839  21 m while the low line could cover 310  8 

m. Comparison between the lines revealed the differences in aerobic capacity were 

mainly attributable to changes in peripheral skeletal muscle, showing increased capillary 

density and increased citrate synthase and β-hydroxyacyl-CoA dehydrogenase 
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concentration in the high aerobic capacity rats (Henderson et al. 2002; Howlett et al. 

2003). After 15 generations of selection continued divergence was observed between the 

strains, with improvement in VO2max in the high capacity strain and reduction in 

VO2max in the low capacity strain. The divergence was attributable to an increased 

ability to deliver O2 to the exercising muscles in the high capacity strain and decline in 

O2 delivery in the low capacity strain (Gonzalez et al. 2006). 

 Ways et al. (2002) performed a genome scan for loci associated with aerobic 

running capacity in rats. In the study three significant quantitative trait loci were 

identified, with the strongest linkage observed on chromosome 16 (RNO16). The authors 

point to a number of candidate genes within the region that could contribute to aerobic 

performance, including lipoprotein lipase (LPL) enzyme, the β-3 adrenergic receptor 

(ADRB3) and the neuropeptide Y5 receptor (Npy5r). A tentative linkage was also located 

on the p-terminus of chromosome 3 (RNO3). A subsequent study created congenic 

strains by introducing RNO16 and a portion of RNO3 from a high performance strain of 

rat into a low performance stain. Recipients of the RNO16 chromosome showed 

increased aerobic running capacity while recipients of the portion of RNO3 showed 

increased but not statistically significant aerobic running capacity (Ways et al. 2007). 

 

The mouse and athletic performance related phenotypes 

 Not to be outdone by its larger rodent cousin the mouse has also been recruited in 

the study of performance related phenotypes. Lightfoot et al. (2001) examined ten inbred 

strains of mouse to estimate aerobic capacity. Strains were not selected based on 
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exercise related phenotypes but based on their availability and the widespread use of the 

strain in the genetics literature. A significant difference in maximal duration of exercise 

accomplished was observed between strains, with 58% to 73% of the variability 

observed in aerobic capacity attributable to the genetic background of the animal. 

Lightfoot et al. (2007) carried out a genome scan for QTLs associated with maximal 

endurance in intercrosses between two strains of mice previously selectively bred to 

have either high or low endurance capacity. Significant linkage was observed on the X 

chromosome and suggestive linkage observed on chromosome 8.  

 Lightfoot et al. (2008), using an interval mapping approach, identified a number 

of QTLs affecting distance, duration and speed voluntarily run by the mice. The 

observed QTLs explained 11% to 34% of the variation seen for these traits. These QTLs 

were further investigated to identify evidence of epistatic interactions. The authors found 

evidence for a number of interactions between the QTLs and calculated that these 

interactions accounted for 26% of the total variation among the 3 traits examined 

(Leamy et al. 2008).  

In addition to attempting to identify genes associated with exercise related 

phenotypes in the mouse a number of groups have also sought to investigate the function 

of candidate genes by creating genetically modified strains, either by removing or 

altering the expression of the gene of interest. Wang et al. (2004) engendered a mouse 

that over-expressed an activated form of the peroxisome proliferator-activated receptor δ 

(PPARGδ) in skeletal muscle. The resultant mouse was capable of continuous running 

for up to twice the distance of its wild type littermates and showed an increased number 
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of type I muscle fibers in skeletal muscle. Hanson and Hakimi (2008) created a 

transgenic mouse with a cDNA for the PEPCK-C enzyme attached to a human α-skeletal 

actin gene promoter. The animals showed increased physical activity and longevity 

(living almost 2 years longer than controls), had elevated numbers of mitochondria in 

skeletal muscle, produced lower concentrations of lactate during exercise and showed a 

remarkable ability to exercise at high intensity for extended periods of time. 

 

Mapping QTLs in livestock species and potential difficulties  

 Athletic performance, like many traits of economic importance in livestock 

species, is a complex quantitative trait influenced by a number of environmental and 

genetic factors. Originally it was assumed that quantitative traits were controlled by a 

large number (perhaps hundreds) of genes each exerting a small effect on the observed 

phenotype and as a consequence the prospects of identifying the molecular 

underpinnings of QTLs appeared poor (Flint & Mott 2001). Research in inbred model 

organisms provided some hope, showing that in many cases quantitative traits were 

influenced by a relatively small number of QTLs with large effect. However, attempts to 

replicate these findings in more outbred species have often been disappointing (Flint & 

Mott 2001). 

 Over the last 25 years literally thousands of Mendelian traits have been dissected 

at the molecular level in humans, however in comparison, relatively few genes 

contributing to complex traits have been identified (Glazier et al. 2002). In animals the 

number of genes identified that underlie Mendelian traits is more modest. The Online 
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Mendelian Inheritance in Animals (OMIA) database includes 135 animal species and 

lists 241 phenotypes characterized at the molecular level (http://omia.angis.org.au/). As 

regards more complex quantitative traits there has been no shortage of mapped QTLs in 

domestic species. In the pig over 1,800 QTL have been identified 

(http://www.animalgenome.org/cgi-bin/QTLdb/SS/summary) but only a very small 

portion (<10) of these QTLs have been investigated to the point where the underlying 

molecular cause (the quantitative trait nucleotide, QTN) has been identified (Rothschild 

et al. 2007). In the cow a similar pattern is observed with over 1100 QTLs identified 

(http://www.animalgenome.org/QTLdb/cattle.html). However, again only a handful of 

causative mutations (<5) have been identified at the molecular level (Womack 2005; 

Ron & Weller 2007). 

 

Difficulties associated with mapping QTLs and QTNs 

 There are a number of factors that complicate the task of mapping QTLs and the 

especially enigmatic QTN. Firstly the ability to detect a QTL is primarily based on the 

size of the population the QTL is segregating in and the proportion of the phenotype that 

is explained by the QTL (Andersson 2001). As many QTLs exert a modest influence on 

the phenotype, the population size necessary to ensure they are identified can be 

substantial (generally over 1000); (Darvasi & Pisanté-Shalom 2002). However, provided 

a sufficient sample size is available, sufficient marker density achieved across the 

genome and the phenotype correctly defined, identifying QTLs for a trait of interest has 

become relatively routine as is highlighted by the large number of QTLs identified in the 
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pig and cattle. Nevertheless, going from a multi centimorgan linkage peak to the QTN 

remains a major stumbling block.  

One of the features of QTLs contributing to this problem is the lack of a clear 

relationship between genotype and phenotype. Each QTL is generally only responsible 

for a fraction of the observed phenotypic variability. As a consequence it is difficult to 

fine map and identify the actual QTN among the numerous polymorphisms under a 

linkage peak (Andersson & Georges 2004). A further complicating factor is that many of 

the mutations underlying QTLs may be in regulatory regions that have not been fully 

annotated. Due to this it can be difficult to differentiate between potentially important 

polymorphisms and neutral variation in the regions between the more fully annotated 

coding regions (Andersson & Georges 2004). Finally some QTLs initially identified 

with a major effect on the phenotype can actually be a number of QTLs of small effect in 

loose linkage (Andersson & Georges 2004). 

 

Epistatic interactions and imprinting 

 In addition to the difficulties mentioned above, the parent from which a QTL is 

inherited and the genotypes of other QTLs in the individual can influence the effect a 

particular QTL has on the phenotype. In general, QTL mapping experiments make no 

attempt to detect epistatic interactions and as a consequence may be ignoring a 

substantial component of the observed phenotypic variation (Carlborg & Haley 2004). 

Epistatic interactions have been identified in the chicken (Carlborg et al. 2003), mouse 

(Leamy et al. 2008) and other model organisms (Carlborg & Haley 2004). However, 
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while undoubtedly an important factor in many complex traits, attempting to take 

epistatic interactions into account increases the complexity of data analysis significantly 

and requires larger sample sizes, thus making it difficult to test for epitasis at present 

(Andersson & Georges 2004; Carlborg & Haley 2004; Georges 2007). An additional 

complication not always considered is the role imprinting can play in QTL expression. 

Genomic imprinting is parent of origin specific silencing of a gene (Morison et al. 

2005). Therefore imprinted QTLs show different effects depending on the contributing 

parent. The number of imprinted genes in the genome is believed to be relatively 

modest, 56 human genes are currently listed as imprinted in the Geneimprint database 

(www.geneimprint.com) and this figure increases to just over 180 when predicted and 

genes with conflicting/provisional data are included. Imprinted genes are often involved 

in growth and development and as a result may play a role in many economically 

important traits in livestock species. Work in pigs has already identified a number of 

imprinted QTLs (de Koning et al. 2000; Rothschild et al. 2007) highlighting the need to 

take this phenomenon into consideration.  

 

Copy number variation  

 One of the surprising findings to emerge over the last number of years is the 

remarkable amount of submicroscopic structural variation observed in the human 

genome. Recent work has shown that these copy number variations (CNV) are an 

important source of inter-individual genetic variation (Feuk et al. 2006). While much of 

this variation is benign it is becoming increasingly apparent that structural variations 
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also play a role in complex disorders such as autism and schizophrenia (Abrahams & 

Geschwind 2008; Stefansson et al. 2008). Preliminary results from cattle (Liu et al. 

2007) and pigs (Fadista et al. 2008) show that a significant number of CNVs are present 

in these species and as a consequence are expected to be present in the horse. It is safe to 

assume that this variability at the genome level is likely to contribute to the phenotypic 

variability in domestic species. 

Unfortunately at the present time the genomic sequences of many of the domestic 

species are not of the same quality as the human assembly. Due to this, identification and 

cataloging of CNV in domestic species may be more difficult than in humans. However 

at the same time work in humans is producing new single nucleotide polymorphism 

(SNP) chip designs and computational approaches that are capable of identifying CNV 

while performing genotyping experiments (McCarroll et al. 2008). Additionally, the 

increasing availability of next generation sequencing technologies (Mardis 2008) will 

hopefully improve the quality of genomic sequences of domestic species and assist in the 

identification and investigation of CNVs. Hence, future QTL mapping experiments 

should also be capable of considering the potential contribution of CNV to phenotypic 

variability. 

 

Equine QTLs and genomics 

 In the horse a modest number of Mendelian traits have been characterized at the 

molecular level, with 15 phenotypes listed in the OMIA, the majority of which are coat 

color variants (http://omia.angis.org.au/). As regards QTLs, relatively few studies have 



 

 

47 

47 

been reported in the horse when compared to other domestic species. Some of this can 

be attributed to an initial lack of genomic resources such as linkage and physical maps of 

the equine genome. However the major contributing factor is probably inadequate 

population sizes and the impracticality of setting up experimental populations in order to 

examine the segregation of QTLs of interest, as has been done in many of the other 

domestic species. 

 The few QTL studies that have been carried out in the horse have concentrated 

on diseases of the locomotory system. Wittwer et al. (2007) searched for QTLs 

associated with osteochondrosis (OC) and palmar/plantar osseous fragments (POF) in 

219 South German Coldblood horses using 250 microsatellites and found 17 suggestive 

regions of linkage with one or both of the phenotypes. In a follow up study by the same 

group, one of the regions on chromosome 4 that showed linkage with osteochondrosis 

disease (OCD) was investigated in greater detail. Using a total of 22 SNPs and one 

microsatellite in the region of linkage it was found that three SNPs in the AQAH gene 

were significantly associated with OCD in the fetlock (Wittwer et al. 2008). Dierks et al. 

(2007) also carried out a genome scan for osteochondrosis using 260 microsatellites in 

211 Hanoverian Warmblood horses. The authors reported genome wide significant 

QTLs on equine chromosomes 2, 4, 5 and 16 while chromosome wide significant QTLs 

were observed on equine chromosomes 2, 3, 4, 5, 15, 16, 19 and 21. There was very 

little overlap between the QTLs identified in the genome scans for osteochondrosis in 

Hanoverian Warmbloods and South German Coldblood horses. It may be that many of 

these putative QTLs were cases of spurious linkage or examples of population specific 
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QTLs. Diesterbeck et al. (2007) carried out a genome scan looking at pathological 

changes in the navicular bone in 192 animals using 214 microsatellites. Chromosome 

wide significant QTLs were located on equine chromosome 2, 3, 4, 10 and 26, while 

genome wide significant QTLs were seen on equine chromosomes 2 and 10.  

 The lack of concordance between QTLs for osteochondrosis in Hanoverian 

Warmbloods and South German Coldblood reflects a pattern often seen in linkage 

studies investigating complex phenotypes in humans. Altmüller et al. (2001) created a 

database of 101 studies that examined 31 complex disease. They noted that the majority 

(66.3%) of the studies failed to show significant linkage using the criteria of Lander & 

Kruglyak (1995) (LOD score >3.6). Additionally, different studies examining the same 

disease generally failed to show similar patterns of linkage. The authors pointed to many 

of the problems associated with QTL mapping outlined previously in this chapter and 

noted that successful studies had large population sizes, well defined phenotype and 

were confined to a single ethnic group.  

 

Status of equine genomics 

 Despite a late start, over the last number of years great strides have been made in 

our understanding of the structure of the equine genome (Chowdhary & Bailey 2003; 

Chowdhary & Raudsepp 2008). A number of complementary approaches have been 

employed producing low to medium resolution synteny (Shiue et al. 1999), linkage 

(Guerin et al. 1999; Swinburne et al. 2000a; Guérin et al. 2003; Penedo et al. 2005; 

Swinburne et al. 2006) cytogenetic (Raudsepp et al. 1996; Lear et al. 2001; Mariat et al. 
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2001; Milenkovic et al. 2002; Raudsepp et al. 2002) and radiation hybrid (Chowdhary et 

al. 2003; Perrocheau et al. 2006; Raudsepp et al. 2008a) maps of the equine genome. 

High-resolution radiation hybrid maps of individual equine chromosomes have also been 

produced (Lee et al. 2004; Raudsepp et al. 2004a; Brinkmeyer-Langford et al. 2005; 

Gustafson-Seabury et al. 2005; Wagner et al. 2006; Goh et al. 2007). These radiation 

hybrid maps also integrated available cytogenetic, linkage and comparative mapping 

data from other vertebrates to improve the accuracy of the map and identify 

evolutionally conserved regions of synteny and chromosome breakpoints. In addition, 

over 1800 microsatellite markers have been identified and mapped in the equine genome 

(http://dga.jouy.inra.fr/cgi-bin/lgbc/loci_micro.operl?BASE=horse).  

 The combined availability of linkage and radiation hybrid maps, with the wealth 

of comparative data from species with better characterized genomes has been a powerful 

tool for investigating traits of interest in the horse. Microsatellites from the linkage maps 

opened up the possibility of using linkage analysis to identify regions of the genome 

contributing to phenotypes of interest. RH maps showed what genes were in the vicinity 

of linkage peaks, while comparative data expanded the list of candidate genes in the 

region and provided functional information about the genes. The development of these 

tools has made it possible to map and identify the underlying molecular causes for a 

number of Mendelian traits in the horse (Chowdhary & Raudsepp 2008). The recent 

sequencing of the equine genome has supplanted these maps to a certain extent. 

However these maps will still play an important role in helping to correctly assemble the 
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equine genome sequence and provide information about regions not fully assembled in 

the current horse sequence map.  

 The three equine BAC libraries (INRA, TAMU, and CHORI-241) have played a 

vital role in the development of the aforementioned maps by providing the many FISH 

probes required to anchor linkage and RH groups to specific chromosomes. BAC based 

contigs have also been developed to cover important regions of the genome (Gustafson 

et al. 2003; Raudsepp et al. 2004b; Brinkmeyer-Langford et al. 2008; Raudsepp & 

Chowdhary 2008; Raudsepp et al. 2008b). Whole genome physical maps based on the 

CHORI-241 library have also been developed. Leeb et al. (2006) published a human-

horse comparative map constructed using BAC end sequences from the CHORI-241 

library. While a BAC map based on end sequences and fluorescent fingerprints of the 

CHORI-241 library is also under development and will be an important tool in 

determining the accuracy of the equine genomic sequence assembly (Woehlke et al. 

2008).  

 Despite its diminutive size and small number of genes, the equine Y chromosome 

has been the subject of a concerted and long running effort to map and characterize the 

euchromatic part of the chromosome. Raudsepp et al. (2004b) produced an initial 

physical map covering about 20-25% of the euchromatic region. Continued work has 

greatly expanded the map with only about 2 Mb of the estimated 13 Mb of euchromatic 

DNA missing in the new map (Raudsepp et al. 2008b). Efforts are currently underway to 

characterize the gene content of the equine Y chromosome and apply these finding to 

stallion fertility (Chowdhary & Raudsepp 2008).  
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 One of the most exciting developments in the field of horse genomics in recent 

years has been the sequencing of the equine genome. A female Thoroughbred (Twilight) 

provided the DNA and was sequenced to 6.8X coverage at the Broad Institute of MIT 

and Harvard. The initial assembly of the sequence was released in January 2007, with a 

second assembly made available in September 2007 

(http://www.broad.mit.edu/ftp/pub/assemblies/mammals/horse/Equus2/). The 

sequencing of the equine genome will greatly simplify identifying regions of the genome 

harboring polymorphisms with an impact on health, reproduction and performance. 

Candidate genes and adjacent genomic markers suitable for association analysis can now 

be easily identified. While regions showing association or linkage to a trait of interest in 

whole genome approaches can be rapidly investigated for genes or regulatory regions 

likely to harbor important polymorphisms. 

 In addition to Twilight’s DNA, 100,000 paired-end shotgun sequence reads from 

randomly distributed regions of the genome were generated from seven modern and 

ancient horse breeds (Arabian, Andalusian, Akhal-teke, Icelandic, Standardbred, Quarter 

Horse and Thoroughbred) for the purpose of SNP detection. The SNPs generated from 

this comparison in combination with those identified by comparing Twilight’s reads 

resulted in the identification of 948,609 SNPs 

(http://www.broad.mit.edu/mammals/horse/). The identification of these SNPs has paved 

the way for the construction of a genotyping beadchip with over 54,000 SNPs spread 

throughout the equine genome (http://www.illumina.com/pages.ilmn?ID=285). This 

technology opens up the possibility of carrying out whole genome association mapping 
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experiments to identify regions of the genome associated with both Mendelian and 

complex traits. In addition to the SNP chip, new technologies are becoming available to 

investigate the expression of genes from the equine genome. Further equine cDNA and 

oligonucleotide arrays have also been developed, with the latest being a 22,000 element 

70-mer oligoarray developed at Texas A&M (Chowdhary & Raudsepp 2008). This 

development makes it possible to track the changes in gene expression in tissues at 

different time points during growth and development, over the progression of a disease 

or in cases and controls. Consequently it will be possible to identify which genes play a 

central role in the phenotype under investigation. These new technologies open up a 

large number of new opportunities to investigate traits that affect equine health, 

reproduction and performance, creating exciting opportunities for the equine genetics 

community. 

 

Study objectives  

 Given the important role athletic performance plays in the Thoroughbred, 

information on the genetic underpinnings of this trait would find application in breeding, 

identifying and training equine athletes. As has been pointed out previously, it has been 

shown that athletic ability/performance has a heritable component and research in other 

species has demonstrated the feasibility of identifying genes associated with the trait. In 

order to build on and expand our understanding of the athletic ability/performance in the 

horse it is necessary to begin in-depth investigations into the genetic component of this 

phenotype. The recent work in the field of equine genomics has provided the necessary 
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tools to identify genetic markers associated with athletic performance in the horse. The 

availability of a large number of published microsatellites and the draft sequence 

assembly of the equine genome allowed for the identification of polymorphic markers 

adjacent to candidate genes. These resources facilitated the mapping of candidate genes 

and allowed for the construction of a genome scanning panel of microsatellites to search 

for regions of the genome linked or associated with athletic performance in the 

Thoroughbred.  

 Research in humans and other livestock species has demonstrated the many 

difficulties associated with attempting to map complex traits like athletic performance. 

As a consequence the likelihood of identifying regions of the genome linked or 

associated with athletic performance in the Thoroughbred was modest. However by 

setting up clear and achievable objectives it was possible to maximize our chances of 

success given the recourses available, additionally the fulfillment of these objectives 

would have a utility beyond the primary goal of this project.  

  In summary the project had three main objectives: 

a) Map genes associated with human exercise and athletic performance in the 

equine genome.  

b) Develop a genome scanning panel of microsatellite markers covering the 

euchromatic portion of the equine genome, with an emphasis on markers 

adjacent to candidate performance genes.  
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c) Conduct a genome wide scan on a pedigreed population of Thoroughbreds to 

search for genomic regions linked or associated with superior athletic 

performance.  

It was hoped that by carrying out this study new insights into the genetics of athletic 

performance would be gained. Additionally, mapping the candidate genes would add to 

the list of genes mapped in the equine genome, while the construction of the genome 

scanning panel would provide an important resource for mapping traits of economic 

importance in the Thoroughbred.  
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CHAPTER II 

RADIATION HYBRID AND FLUORESCENT IN SITU HYBRID MAPPING OF 

46 HUMAN GENES ASSOCIATED WITH ATHLETIC PERFORMANCE IN 

THE EQUINE GENOME 

 

Introduction  

 Research in the field of human sports medicine has highlighted the significant 

role genetic factors play in athletic performance (MacArthur & North 2005; Brutsaert & 

Parra 2006; Rankinen et al. 2006). Initial studies highlighted the substantial influence 

genetics plays in traits such as VO2max (heritability estimates range from 0.4 to 0.6) and 

anaerobic capacity (estimates range from 0.31 to 0.86) (Bouchard et al. 1992; Bouchard 

et al. 2000; Feitosa et al. 2002; Rupert 2003). Encouraged by these findings researchers 

began to search for the specific genes influencing athletic performance in humans. Two 

main approaches have been taken in this endeavor. Some have taken the whole genome 

approach and carried out genome scans looking for regions of the genome linked to 

specific phenotypes affecting athletic performance, such as maximal oxygen uptake 

(Bouchard et al. 2000) and exercise stroke volume (Rankinen et al. 2002a). However 

most investigators have taken the candidate gene approach. Candidate genes have been 

investigated because of their role in biological processes likely to influence athletic 

performance (e.g. CKMM, involved in metabolism in the muscle, ACTN3 structural 

protein found in skeletal muscle). These genes are tested for association with athletic 

performance using polymorphic marker (SNPs, microsatellites etc) in or around the gene 
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of interest using a suitable sample population. These two approaches have generated a 

large list of genes associated with athletic performance over the last 10 years, a fact 

highlighted in the 2005 update of the human performance gene map that lists 165 genes 

and QTLs (Rankinen et al. 2006). Many of these genes represent excellent candidates for 

influencing athletic performance in the horse. The genes ACE and ACTN3 have the 

potential to affect aerobic capacity, CKMM and MSTN may play a role in sprinting 

ability, while VDR could play a role in keeping the horse sound during the rigors of 

training and racing.  

 Research in the horse has also demonstrated that success on the track has a 

genetic component. Investigations into the heritability of race winnings and handicap 

ratings have shown consistent (although modest) heritabilities for both measurements of 

performance (Ricard et al. 2000). The last number of years have seen remarkable 

progress in the filed of equine genomics with the development of linkage and radiation 

hybrid maps and the recent sequencing of the equine genome (Chowdhary & Raudsepp 

2008). These developments finally provide the tools necessary to utilize the wealth of 

information gathered in humans and rodent models to investigate athletic performance in 

the horse. In order to test these candidate genes for association/linkage with athletic 

performance polymorphic markers must be identified close to these genes.  

 Prior to the availability of the draft genome sequence of the horse, two 

approaches were practical for identifying such markers. Firstly, single nucleotide 

polymorphisms (SNPs) could be identified within individual genes (by sequencing gene 

specific PCR products in a number of individuals and searching for SNPs) and tested for 
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association with athletic performance. Secondly, previously published microsatellite 

markers could be identified adjacent to these genes and tested for linkage or association 

with athletic performance. The second option was chosen as the recent development of a 

number of equine genetic maps had produced a large number of potentially useful 

microsatellite markers (Penedo et al. 2005; Swinburne et al. 2006). However, at the 

initiation of this project many of the candidate genes had not been mapped in the equine 

genome and as a consequence it was not possible to identify adjacent microsatellites. In 

order to rectify this situation it was decided to localize all unmapped genes from the 

most recent update (when the project was initiated this was the 2004 update) of the 

“human gene map for performance and health related phenotypes” (Wolfarth et al. 

2005). By doing this it would be possible to identify the nearest previously published 

microsatellite marker for each candidate gene. These microsatellite markers could then 

be genotyped in a suitable population and tested for linkage/association with superior 

athletic performance.  

 At the time this work was undertaken, our lab was working towards producing 

the second-generation radiation hybrid (RH) map of the equine genome. As a result, the 

candidate genes mapped by RH analysis and fluorescent in situ hybridization (FISH) 

were included in this map. The inclusion of these genes added to the RH portion of the 

map and made a particularly significant contribution to the cytogenetic portion of the 

integrated map eventually produced (Raudsepp et al. 2008a). 
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Materials and methods 

Primer design 

 The human exonic sequence of each candidate gene was obtained from the 

Ensembl genome browser (http://www.ensembl.org/index.html) and entered into the 

BLASTN, NR and EST_OTHERS search engines 

(http://www.ncbi.nlm.nih.gov/BLAST) to obtain sequence for the orthologs in other 

mammals. When an expressed sequence tag (EST) was available for the equine ortholog 

of the gene, it was used for primer design utilizing the Primer3 software 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). For the remainder of the 

genes, a multiple alignment method of primer design was used. Briefly, the sequence of 

the gene was obtained from as many mammals as possible (generally included human, 

rat, mouse, cow, pig, sheep, dog) and aligned using the Clustal program 

(http://www.ebi.ac.uk/Tools/clustalw2/index.html). The aligned sequence was searched 

for regions that showed high conservation and were therefore likely to have the same 

sequence in the equine ortholog. Primers were designed within a single exon and with a 

PCR product of less than 1 kb. The primers were designed with two to three mismatches 

between the mouse/rat consensus sequences and the remainder of the species to produce 

equine specific amplification in the rodent DNA background of the radiation hybrid 

(RH) panel. 
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Primer optimization 

 Primer pairs were optimized on horse and hamster genomic DNA to ensure horse 

specific amplification. Each PCR reaction contained 50 ng of DNA as template, 0.2 mM 

dNTPs, 1X buffer (Sigma Aldrich, MO), 0.3 pmol of each primer 1.5, 2, 3, or 4 mM 

MgCl2 and 0.25 U JumpStart REDTaq DNA polymerase (Sigma Aldrich, MO). 

Reactions were carried out with an initial 30 second denaturation at 94oC, 1 cycle at 

94oC for 30 sec, 60oC for 30 sec, and 72oC for 30 sec. This was followed by 30 cycles at 

94oC for 30 sec, annealing temperature ranging from 50oC to 66oC for 30 sec, and 72oC 

for 30 sec, with a final extension of 72oC for 5 min. All reactions were carried out using 

either a 96-well Touchgene Gradient thermal cycler (Techne Inc., NJ) or a DNA Engine 

Dyad (MJ Research Inc., MA). PCR amplification products were resolved on 2.0% 

agarose gels containing 0.25 ug/ml ethidium bromide. Primers were initially tested with 

an annealing temperature of 58oC and 1.5 mM MgCl2. If a single amplified band was 

observed with horse DNA and no amplification was seen with the hamster DNA, no 

further optimization was carried out. However, if no amplification was observed, 

annealing temperature was decreased and MgCl2 concentration was increased to reduce 

the stringency of the PCR reaction. If amplification was observed with hamster template 

DNA, annealing temperature was increased in order to increase the specificity of the 

reaction. Only primers that showed equine specific amplification were used for further 

analysis. 
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PCR product sequencing 

 To ensure that the correct gene was being amplified, all primers designed using 

the multiple alignment method were sequenced to confirm the origin of the PCR 

product. PCR reactions with a volume of 50ul were performed for each primer and 

excess nucleotides and primer removed using the QIAquick PCR Purification Kit 

(Qiagen, CA) following the manufactures instructions. Size and quality of the amplified 

DNA was tested by electrophoresis on a 2% agarose gel and further quantified with a 

SmartSpec Plus spectrophotometer (BioRad, CA) at 260nm wavelength.  

Final concentration of DNA required in the 10ul sequencing reaction was 

determined using the following formula: (ng/ul) = 9 x fragment size (kb). (For example 

if a PCR product was 450bp the final concentration of DNA in the sequencing reaction is 

9 x 0.450 = 4ng/ul, therefore the reaction required a total of 40ng template DNA). In 

addition to the appropriate volume of template DNA, the reaction contained 1.5ul of the 

forward or reverse primer (concentration 5uM), 0.5ul MasterAmp™ (Epicentre, WI) and 

2ul of BigDye® Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, CA), the 

volume of the reaction was brought up to 10 ul using ddH2O The reactions were carried 

out with an initial denaturation at 94oC of 3 min and then cycled at 95oC 30 sec, 50oC 20 

sec, 60oC 4 min for 35 cycles with a final extension of 60oC 10 min.  

Unincorporated nucleotides were removed from the sequencing reactions using 

Sephadex G-50 columns (Biomax Inc., MD) following the manufacturer’s instructions. 

Purified products were dried down and stored at -20 oC until loaded into an ABI3730 

automated capillary DNA sequencer (Applied Biosystems, CA). The resultant sequence 
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of the PCR products were confirmed using BLAST 

(http://www.ncbi.nlm.nih.gov/BLAST) and BLAT (http://www.genome.ucsc.edu/cgi-

bin/hgBlat) as described earlier (Chowdhary et al. 2003).  

 

Radiation hybrid mapping 

 The 5000-rad horse x hamster radiation hybrid (RH) panel was genotyped in 

duplicate for each primer pair by PCR as described in Chowdhary et al. (2003). 

Genotypes were scored manually by first resolving the PCR products on a 2% agarose 

gel and inspecting each clone in the panel for the presence or absence of PCR 

amplification. Scoring data was initially analyzed by two-point analysis using 

RHMAPPER-1.22 at http://equine.cvm.tamu.edu/cgi-bin/ecarhmapper.cgi to identify the 

closest framework marker from the equine first generation whole genome radiation 

hybrid map as described in Chowdhary et al. (2003). This data was also included in the 

second generation radiation hybrid map of the equine genome (Raudsepp et al. 2008a). 

In the second generation map the analysis was carried out using rh_tsp_map (Agarwala 

et al. 2000; Schaffer et al. 2007) CONCORDE (Applegate 2006) and Qsopt 

(http://www.isye.gatech.edu/~wcook/qsopt) as described in Brinkmeyer-Langford et al. 

(2005) and Murphy et al. (2007). Briefly, markers were initially assigned to linkage 

groups using two-point analysis with a threshold LOD score of 7.6 to create an initial 

robust “MLE-consensus map” (Agarwala et al. 2000). This cutoff point ensured that few 

markers would be dropped from analysis with inter-chromosomal scores above threshold 

and allowed more linkage groups to be combined. When a marker did not have a LOD 
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score above 7.6 with another marker it was dropped from analysis. Markers that were 

dropped from the initial consensus map were placed in between consecutive markers 

when the best placement was at least 0.1 LOD units better than the next best placement. 

Centi-Ray (cR) distances between markers were assigned by solving instances of a 

restricted traveling salesman problem. The remaining markers were binned where they 

spanned at most three consensus intervals in the consensus map. Orientation and order of 

linkage groups were conformed using FISH, with previously published linkage maps 

providing additional conformation (Penedo et al. 2005; Swinburne et al. 2006).  

 

Fluorescent in Situ Hybridization (FISH) 

 PCR primers for all the genes mapped by RH analysis were used to isolate 

bacterial artificial chromosome (BAC) clones containing the gene of interest from the 

CHORI-241 equine BAC library using available pools and super pools. Individual 

clones were initially cultured (cultures were grown overnight at 37 oC, with constant 

agitation) in 1ml of 2YT media containing 30ul/ml chloramphenicol. The culture was 

plated on LB agar plates containing 30ul/ml chloramphenicol to obtain single colonies. 

Presence of the gene of interest was conformed by PCR and the positive single colonies 

used to inoculate 100ml of 2YT media containing 30ul/ml chloramphenicol. DNA was 

extracted using the Qiagen midiprep kit (Qiagen, Chatsworth, CA) according to the 

manufactures instructions. For each BAC 1ug of the resultant DNA was labeled with 

either biotin or digoxigenin following the manufacturers instructions using the BioNick. 

Labeling System (Invitrogen, Carlsbad, CA) and DIG-Nick Translation Mix (Roche, 
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Indianapolis, IN). Labeled clones were hybridized in pairs (one labeled with biotin, the 

other with digoxigenin) to horse metaphase spreads to identify their chromosomal 

location. Clone isolation, labeling of DNA, in situ hybridization, signal detection and 

image analysis were performed as previously reported (Raudsepp et al. 1999; 

Chowdhary et al. 2003; Raudsepp et al. 2008).  

 

Results 

 In total 55 genes from the “human gene map for performance and health related 

phenotypes” (Wolfarth et al. 2005) had not been mapped in the equine genome when 

this project was initiated (Chowdhary et al. 2003). Equine specific PCR primers were 

developed for 46 of these genes. These PCR primers were then used to genotype the 

5000-rad RH panel for the purposes of RH mapping and to isolate BACs from the 

CHORI-241 BAC library for use in FISH. The gene symbol, chromosomal location as 

determined by FISH and closest mapped marker in the radiation hybrid map are detailed 

in Table 2-1, primer information is detailed in Table A-1. (Tables with the A prefix can 

be found in the appendix). The genes ADRB1, ADRA2A, ANG, CETP, LIPG, APOE, 

ACADVL, IL15RA, and KCNQ1 could not be mapped despite at least four attempts to 

design equine specific primers for these genes. 

Representative images of FISH hybridizations on equine metaphase spreads 

using some of the isolated BAC clones are shown in Figure 2-1. The location of the 

mapped genes in the equine genome and the candidate genes mapped by others is 

depicted in Figure 2-2. All cytogenetic localizations are in agreement with their location 
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determined by RH mapping. The BAC clone containing the gene CASQ2 (CHORI clone 

178D1) showed strong hybridization to all centromeres. Despite 40X excess of genomic 

blocking DNA, this nonspecific hybridization to the centromeres could not be prevented. 

RH mapping puts CASQ2 close to the centromere of ECA1 suggesting that the BAC 

clone containing this gene also contains centromeric repeats, resulting in the 

hybridization to the centromeres. 

When these genes were mapped all except one were localized to a region 

previously identified as homologous between the horse and the human genomes 

(Chowdhary et al. 2003; Perrocheau et al. 2006). The sole exception was RYR2. Initial 

two-point analysis with the genotyping data for RYR2 showed no linkage to the 

framework markers in the first generation equine RH map. However, FISH mapping 

placed the gene at ECA1q13. When the genotyping data for RYR2 was analyzed in 

conjunction with additional RH mapping data from Wagner et al. (2004c) using 

RHMAPPER-1.22 (Slonim et al. 1997), RYR2 was placed 12.8 cR from UMNe196. The 

microsatellite UMNe196 had been previously linked by RH mapping to the marker RET, 

this marker is located at ECA1q13 according to the first generation RH map of the horse 

(Chowdhary et al. 2003; Wagner et al. 2004c). The second generation RH map of the 

horse has since conformed this finding with additional genes from the same region of 

HAS1 mapping to ECA1 (Raudsepp et al. 2008a). 
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Table 2-1 Human candidate genes mapped in the equine genome in this study, published in Raudsepp et al. (2008a).
 

 

Gene 
Symbol 

Chr 
No. FISH EquCab2 

Map 
Position 

(cR) 
Placement 

LOD Assignment Nearest 
marker by RH Human Human 

Mar. 2006 

GPR10 (aka 
PRLHR) 1 1p15-16 13.7 40.79 1.51 frame 1CA30 (0 cR) 10q26.13 120.3 

AGT 1 1q12-13 67.1 97.2 3.13 placed 
ASB12ms 
(29.66 cR) 

1q42-
q43 228.9 

RYR2 1 1q13 74.1 12.87 3.29 frame 
UMNe196 
(12.87 cR) 1q43 235.2 

LIPC 1 
1q21.3-

22 132.9 363.33 1.9 placed RORA (25 cR) 
15q21-

q23 56.5 

CYP19A1 1 1q22 139.1 472.92 1.89 placed 
SPPL2A (7.71 

cR) 15q21.1 49.2 

CPT2 2 2p17-18 6.1 --- 
[PPAP2B - 
OSBPL9] binned 

PPAP2B - 
OSBPL9 1p32.3 53.3 

FGA 2 
2q14.3-

21.2 79.3 419.62 4.07 frame FGG (0 cR) 4q31.3 155.7 

FGB 2 
2q14.3-

21.2 79.3 --- 
[TKY645 - 
TKY850] binned 

TKY645 - 
TKY850 4q31.3 155.8 

UCP1 2 2q22 90.9 629.65 2.9 frame 
TKY335 (3.94 

cR) 4q31.21 141.7 

FABP2 2 2q22-24 108.2 68.38 4.14 frame 
UMNe336 
(5.92 cR) 

4q28-
q31 120.4 

HP 3 3p13 21.8 392.54 1.83 frame 
AHT022 (0 

cR) 16q22.1 70.6 

PPARGC1A 3 3q23 100.7 714.02 3.98 frame 
DHX15 (14.67 

cR) 4p15.2 23.4 

PGAM2 4 4p12-13 14.8 413.34 0.95 frame GCK (8.34 cR) 7p13 43.8 

IGFBP1 4 4p12 16.2 435.96 6.03 frame 
UMNe404 

(5.27) 
7p13-
p12 45.8 

PON1 4 4q13-14 38.6 261.44 1.45 frame 
TKY210 (0 

cR) 7q21.3 94.7 

PON2 4 4q13-14 38.6 261.44 1.45 frame 
TKY210 (0 

cR) 7q21.3 94.8 

NPY 4 
4q21.1-

21.3 55.7 551.86 1.84 frame 
CBX3 (3.31 

cR) 7p15.3 24.2 

ATP1B1 5 5p17-18 5.5 106.53 3.51 frame F5 (14.72 cR) 1q24.2 167.3 

APOA2 5 5p13-14 35.8 487.98 2.01 placed 
DEDD (9.5 

cR) 1q23.3 159.45 
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Table 2-1 (continued)  
Gene 

Symbol 
Chr 
No. FISH EquCab2 

Map 
Position 

(cR) 

Placement 
LOD Assignment Nearest 

marker by RH Human Human 
Mar. 2006 

ATP1A2 5 5p12-13 37.4 0 0.57 frame 
 COPA (15.41 

cR) 1q23.2 156.8 

S100A1 5 5p12 43.9 134.89 2.4 placed 
 S100A9 (3.57 

cR) 1q21.3 151.86 

CASQ2 5 cen 53.1 129.62 4.25 frame 
COR023 (17 

cR) 1p13.1 116 

AMPD1 5 5q12-13 54 93.57 2.27 frame TSHB (3 cR) 1p13.1 115 

LEPR 5 5q17 95 350.75 5.89 frame 
5STS03 (4.16 

cR) 1p31 65.65 

GNB3 6 6q13 34.3 211.62 3.33 frame TKY377 (0 cR) 12p13.31 6.8 

VDR 6 
6q21.3-

22 65.5 557.47 2.38 placed 
COL2A1 (4.13 

cR) 12q13.11 46.5 

UCP2 7 7q14-15 69.8 101.3 6.19 frame 
TKY690 

(13.32 cR) 11q13.4 73.3 

UCP3 7 7q14-15 69.8 101.3 6.19 frame 
TKY690 

(13.32 cR) 11q13.4 73.3 

LDHA 7 7q16-18 86.6 4.79 0.8 placed 
SOX6 (4.79 

cR) 11p15.1 18.3 

PNMT 11 11p12 22.7 1134.32 2.04 frame 
CACNB1 (7.04 

cR) 17q12 35 

SGCA 11 11q13 25.8 --- 
[TKY304 - 
TKY988] binned 

TKY304 - 
TKY988 17q21.33 45.5 

CNTF 12 12q13 18.9 0 5.55 frame 
UMNe331 
(22.99 cR) 11p12.1 58.1 

SCGB1A1 12 
12p13-

14 22.2 113.66 2.7 frame 
EEF1G (7.91 

cR) 11q12.3 61.9 

PYGM 12 12q14 24.9 160.65 6.74 frame 
COR030 (2.6 

cR) 11q13.1 64.2 

ACTN3 12 
12p13-

14 26.5 204.32 2.13 frame 
LRFN4 (18.67 

cR) 
11q13-

q14 66.07 

SERPINE1 13 
13p14-

15 9 155.62 4.78 frame 
UMNe217 (0 

cR) 
7q21.3-

q22 100.55 

PPARG 16 
16q12-

13 4.8 176.53 1.6 frame 
RAF1 (19.09 

cR) 3p25.2 12.3 

SGCG 17 17q13 3.8 48.46 0.24 placed TKY373 (0 cR) 13q12.12 22.65 

CASR 19 
19q21-

22 37.1 791.69 0.35 placed TKY686 (0 cR) 
3q21-
q24 123.3 
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Table 2-1 (continued)  
Gene 

Symbol 
Chr 
No. FISH EquCab2 

Map 
Position 

(cR) 

Placement 
LOD Assignment Nearest 

marker by RH Human Human 
Mar. 2006 

TNF 20 
20q16-

21.1 31.3 605.17 2.1 frame 
UMNe214 (0 

cR) 6p21.33 31.6 

PLCG1 22 
22q16-

17 30.9 --- 
[SRC - 
SFRS6] binned 

[SRC - 
SFRS6] 

20q12-
q13.1 39.19 

CNTFR 23 
23q18-

19 50.4 --- 
[NDUFB6 - 
UMNe560] binned 

NDUFB6 - 
UMNe560 9p13.3 34.5 

BDKRB2 24 
24q16.2-

16.3 38.6 487.15 4.92 frame 
SERPINA1 
(15.63 cR) 14q32.2 95.7 

ADRB3 27 
27q12-

13 7.6 0 0 frame TKY764 (0 cR) 8p12 37.9 

PPARA 28 28q18 42 420.03 3.51 frame 
UMNe345 (0 

cR) 22q13.31 44.9 

GK X Xp21 23.9 -- 
[UMNe058 

- DMD] binned 
UMNe058 - 

DMD Xp21.3 30.58 

EquCab2 Refers to megabase position in the Sep. 2007 Equus caballus draft assembly  
produced by The Broad Institute (http://www.broad.mit.edu/mammals/horse)  
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Figure 2-1 Representative images of double color FISH hybridizations on partial equine metaphase using BAC clones 
containing the following loci: a. UCP1 (red) + UCP3 (green), b. SUR (red) + TNF (green), c. SGCB1A1 (red) + SGCA 
(green), d. RYR2 (red) + S100A1 (green), e. HP (red) + TGFB1 (green), f. FABP2 (red) + FGA (green), g. CPT2 (red) + 
ENO3 (green), h. ADRB3 (red) + AMPD1 (green), i. ADRB3 (red), j. CNTF (red) + CNTFR (green), k. FGB (red) + GNB3 
(green) and l. GPR10 (red) + PLCG1 (green) 
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Figure 2-2 Location of the 95 human candidate genes (Rankinen et al. 2006) in the 
equine genome. Those in red (46) were mapped in this study (see Tables 2-1 & A-1), in 
black (49) mapped by others (see Table A-2). 
 



 

 

70 

70 

Discussion  

Candidate performance genes  

 The aim of this portion of the overall project was to map human nuclear genes 

associated with athletic performance in the equine genome. These candidate genes were 

identified in the 2004 update of “The human gene map for performance and health-

related fitness phenotypes” (Wolfarth et al. 2005). Of the 85 nuclear genes identified in 

this paper 30 had been previously mapped in the equine genome (Chowdhary et al. 

2003). These 85 candidate genes are likely to have similar biological roles in the horse 

and human, making them obvious candidates for influencing athletic performance in the 

horse. In order to test for linkage/association with performance we had to first identify 

polymorphic markers in or near to these candidate genes (Evans & Cardon 2004). As a 

consequence the primary rationale behind carrying out this work was to assist in 

identifying which of the over 1800 published equine microsatellites 

(http://dga.jouy.inra.fr/cgi-bin/lgbc/loci_micro.operl?BASE=horse) are located near these 

candidate genes. Once identified these markers could then be genotyped on a population 

of Thoroughbreds and tested for association/linkage with superior athletic performance. 

 A recent example of the utility of the candidate gene approach in dissecting the 

underlying genetics of a phenotype is provided by the Myostatin (MSTN) gene that plays 

a key role in muscle mass regulation in mice (McPherron et al. 1997), cattle (Grobet et 

al. 1997; McPherron & Lee 1997), humans (Schuelke et al. 2004) and sheep (Clop et al. 

2006). Information from other species made MSTN an obvious candidate gene in 

whippets displaying the “bully” phenotype. As was pointed out in the initial chapter 



 

 

71 

71 

whippets heterozygous for a mutation in this gene show increased muscle mass and 

superior racing performance (Mosher et al. 2007). Myostatin also has the potential to 

play a role in equine athletic performance. It is unlikely that a loss of function mutation 

similar to the one seen in the whippet is segregating in the Thoroughbred, given the 

absence of the double muscle phenotype generally associated with mutations in this gene. 

It is possible that polymorphisms in and around the gene are affecting expression or 

function of the gene in more subtle ways. These changes in expression may not be 

sufficient to cause the double muscle phenotype but they could still affect muscle mass 

and race performance.  

 Of the 95 genes depicted in Figure 2-2, the likes of CKMM, ACTN3 and MSTN 

are obvious candidate genes for athletic performance, given their intimate role in 

metabolism and muscle growth. Other genes included in the map, at first sight do not 

appear to be especially strong candidates. One such gene is VDR, a gene involved in 

regulating bone homeostasis. Some authors have speculated since the Thoroughbred has 

been subject to selective breeding for performance over a large number of generations the 

relative importance of genes affecting speed has declined. Conversely the genes affecting 

other factors such as temperament and the ability to stay sound in the face of the rigors of 

racing and training became more important (Langlois 1996; Bailey 1998). 

Polymorphisms in VDR have been linked to variability in bone mineral density and it has 

been speculated that polymorphisms in this gene may interact with levels of physical 

activity (Lorentzon et al. 2001; Rabon-Stith et al. 2005). As a consequence VDR could 
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potentially influence bone homeostasis during growth and training and as a consequence 

may assist in keeping the horse sound and capable of performing on the track.  

 At the moment, discussion of the potential role different candidate genes could 

play in athletic performance in the Thoroughbred is mainly speculation. While the 

candidate gene approach has been successful in the past in humans and other species, 

there is no guarantee that these genes are contributing to athletic performance in the 

horse. However with this caveat in mind, these genes represent the best candidates for 

athletic performance in the Thoroughbred at the moment. This is especially true given the 

lack of any published investigations linking polymorphisms in nuclear genes to athletic 

performance in the horse. As a consequence, mapping these genes was an important first 

step in investigating athletic performance in the Thoroughbred. 

 

Contribution to the equine RH and cytogenetic map  

 The RH and FISH mapping of these 46 genes has also contributed to the 

increasing list of genes mapped in the equine genome. The FISH mapping is particularly 

useful as this data provides valuable anchors for RH linkage groups on the chromosomes. 

Additionally, where marker order is ambiguous and where discrepancies exist between 

linkage and RH maps, FISH data in combination with comparative data can be helpful in 

determining the most likely position of the markers in question. 

When the genotyping data for the 46 mapped candidate genes was initially 

analyzed in combination with genotyping data from first generation RH map using 

RHMAPPER-1.22 it was found that nine of the genes showed no evidence of linkage. 
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Following the addition of genotyping data for all the markers included in the second 

generation RH map, all 46 genes showed linkage to a marker. Of the nine genes that 

initially failed to show linkage, FISH localizations with BAC clones containing the genes 

all hybridized to previously identified regions of homology between the equine and 

human genomes, giving us confidence about the accuracy of the RH mapping data. The 

one exception was the marker RYR2 located on human chromosome 1. This marker 

showed linkage by RH to markers on ECA1 and FISH localized it at 1q13, a region not 

previously identified as homologous between the equine and human genomes in the first 

generation RH map (Chowdhary et al. 2003). RYR2 showed linkage to the microsatellite 

UMNe196 previously RH mapped to a region overlapping the FISH localization of RYR2 

(Wagner et al. 2004c). This finding mirrors the observations of Faber & Wedrano (2004) 

and Tozaki et al. (2007) that flanking sequence of 1CA01, TKY3232, and TKY1924 

(microsatellites mapped to ECA1 by linkage analysis) share homology to HSA1. Cross-

species chromosome painting also identified this region of homology between HSA1 and 

ECA1 (Yang et al. 2004) and this homology was further confirmed by the second 

generation map (Raudsepp et al. 2008a) and the draft assembly of the equine genome 

sequence (UCSC EquCab1, http://genome.ucsc.edu/). 

 

Genes that were not mapped 

 The majority of this mapping work was carried out prior to the availability of the 

draft assembly of the equine genome sequence (http://genome.ucsc.edu/cgi-

bin/hgGateway). Additionally at this time there was limited equine sequence data 
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available in the various online DNA databases such as NCBI 

(http://www.ncbi.nlm.nih.gov/). As a consequence primer design had to depend on 

inferring the sequence of the equine ortholog by comparing the gene in species with more 

abundant sequence information such as human, cattle, rat and mouse. The fact that it was 

possible to accurately map 46 of the 55 genes highlights the usefulness of this approach 

for designing gene specific primers for RH mapping. The availability of a draft sequence 

of the equine genome has largely negated the necessity of this approach in the horse. 

However, this technique will still be useful in species lacking the type of genomic tools 

now available for the horse.  

While this approach to designing primers is robust in certain cases it does not 

always prove successful. Designing primers for RH genotyping without sequence for the 

target species can be difficult. Primers must be designed in regions of the gene that are 

sufficiently conserved to allow amplification in the species of interest. However there 

must also be some differences between the target species and the rodent to prevent 

amplification of the rodent ortholog.  

The release of the draft equine sequence allowed us to identify the location of the 

unmapped genes in the equine genome along with the position of 10 additional candidate 

genes reported in the latest update of the human performance gene map (Rankinen et al. 

2006). As regards the genes that were not mapped three main problems were identified 

that prevented successful primers design. First, when few comparative sequences were 

available it was not possible to design primers to amplify either the horse or hamster 

ortholog. This was the case with CETP. Secondly despite a number of attempts we failed 



 

 

75 

75 

to design primers that produced horse specific amplification (without associated hamster 

amplification). Most likely this is the result of high conservation between horse and 

rodent in the regions the primers were designed. This problem was encountered with 

LIPG. Finally in some cases equine specific amplification was achieved, however the 

sequence of the PCR product was found to be from a closely related member of the same 

gene family. In the case of ADRA2A all the primers designed amplified the closely related 

ADRA2B.  

 

Conclusion  

 This portion of the study provided a starting point for identifying specific 

genomic polymorphisms that are associated with athletic performance in the horse. 

Mapping these human candidate genes makes it possible to identify microsatellite 

markers adjacent to the genes. This in turn allowed us to test for association and linkage 

between these microsatellite markers and athletic performance in our sample population. 

Finally the mapping of these genes has contributed significantly to the second-generation 

radiation hybrid map of the equine genome and especially to the equine cytogenetic map. 
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CHAPTER III 

CONSTRUCTING A GENOME SCANNING PANEL FOR USE IN THE 

THOROUGHBRED 

 

Introduction  

 The primary goal of this project was to identify regions of the genome influencing 

athletic performance in the Thoroughbred. Given the complexity of athletic performance 

this phenotype is likely to be influenced by a number of genes (referred to as a 

quantitative trait loci or QTLs). Most of these loci will probably have a minor impact on 

the phenotype, however as was pointed out in the initial chapter, many complex 

quantitative phenotypes are influenced to a large extent by a relatively small number of 

QTLs (Andersson 2001; Andersson & Georges 2004). The basic strategy for identifying a 

QTL is essentially the same as that used in mapping polymorphisms responsible for a 

simple Mendelian trait. Fundamentally both are based on a search for linkage between an 

allele at a marker locus and an allele at a linked QTL/gene. As a consequence the major 

requirements for identifying the location of a QTL is, i) a population that shows variation 

for the trait of interest, and ii) a set of mapped polymorphic markers uniformly 

distributed across the genome (Falconer & Mackay 1996b). It is the goal of this chapter 

to outline the rationale and approach taken to develop a whole genome scanning panel of 

microsatellites for use in the Thoroughbred.   

 Markers suitable for mapping a gene/QTL must meet a number of requirements. 

They should be: i) polymorphic, ii) plentiful and located throughout the genome, iii) have 
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no effect on the phenotype and iv) be co-dominant, so that all genotypes can be identified 

(Falconer & Mackay 1996b). Prior to the development of DNA based markers, mapping 

genes/QTLs was very difficult, with neutral protein variations such as blood antigens 

being the only available polymorphic markers. Interestingly one of the earliest attempts 

to identify genes associated with athletic performance involved examining blood antigens 

in athletes competing in the 1968 Mexico Olympics (Rankinen et al. 2001). Subsequent 

advances in molecular biology have provided a wealth of DNA based markers such as: 

restriction fragment length polymorphisms, microsatellites and single nucleotide 

polymorphisms, all of which fulfill the requirements outlined above. Genome scanning 

panels constructed from such markers can be used to map both simple Mendelian traits 

(e.g. grey coat color in horses) and more complex phenotypes (e.g. % milk fat in dairy 

cattle) in domestic species.  

 In theory genome scanning is deceptively simple. A typical genome scan involves 

genotyping a pedigreed population with a set of genomic markers distributed at regular 

intervals throughout the genome. The genotypes are then analyzed for each marker 

individually or more commonly now in combination with adjacent markers. Genotyped 

individuals are assigned to different groups based on the alleles they carry at each 

marker. The average phenotype for the animals in each group is then examined to see if it 

differs significantly from the population mean. This process is repeated across the 

genome and as a result it is possible to identify regions of the genome contributing to the 

phenotype under examination (Mackay 2001; Georges 2007). 
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 Genome scanning panels of microsatellites have been used extensively in humans 

to search for genes influencing complex traits such as asthma, autism, osteoarthritis and 

schizophrenia (Altmüller et al. 2001; Stefánsson et al. 2003; Yonan et al. 2003; Maziade 

et al. 2005; Pillai et al. 2006). They have also been used extensively in livestock species 

such as cattle, pig and chicken to identify a large number of QTLs affecting a range of 

economically important traits such as milk production, back fat thickness and egg 

production (Abasht et al. 2006; Ron & Weller 2007; Rothschild et al. 2007). In the horse, 

genome scanning panels have been utilized in mapping both simple Mendelian traits, 

such as the appaloosa and grey coat colors (Locke et al. 2002; Terry et al. 2004), and in 

dissecting the genetic causes of more complex phenotypes affecting the locomotory 

system such as osteochondrosis (Dierks et al. 2007; Diesterbeck et al. 2007; Wittwer et 

al. 2007). 

 In human studies, genome scanning panels are generally composed of 300-400 

microsatellite markers with an average of 10 cM between each marker (Altmüller et al. 

2001). In livestock species, panels of microsatellites generally range between 100-300 

markers, with an average distance of 5-20 cM between markers (Georges 2007). In the 

horse a genome scanning panel containing 101 markers has been available for a number 

of years (http://www.uky.edu/Ag/Horsemap/Resources/HorseScan.htm). This resource 

has been successfully employed to identify regions of the genome harboring alleles 

influencing a number of simple Mendelian phenotypes such as the grey coat color (Locke 

et al. 2002). However, the large cM distances between markers increases the chances that 

a causative mutation may not be strongly linked (and as a consequence fail to show 
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evidence of linkage) with one of the markers in the genome scanning panel. In some 

instances the large distance between markers also reduces the information available from 

adjacent markers to assist in tracking the segregation of markers through a pedigree. 

Furthermore where linkage is observed, linkage peaks will cover very large regions of the 

genome, making identification of the causative mutation relatively difficult. As a 

consequence more recent investigations have drawn from the increased number of 

microsatellites available in the horse, to produce panels of microsatellites containing in 

the region of 200 markers (Dierks et al. 2007; Diesterbeck et al. 2007; Wittwer et al. 

2007). The limited number of markers included in the previously developed horse 

genome scanning panel, combined with the lack of information on the level of 

polymorphism for these markers in the Thoroughbred, spurred us to develop a new panel 

of microsatellites, specifically for genome scanning in the Thoroughbred. 

 

Information content of genome scanning panel 

 The ability of a genome scanning panel of mapped genetic markers to detect 

linkage is closely related to its information content. Information content is a measure of 

the fraction of inheritance information extracted by a panel of markers relative to that 

extracted by an infinitely dense panel of mapped markers. Information content of 1 

reflects complete information, information content of 0 represents no information 

(Kruglyak 1997). Information content is affected by the degree of polymorphism at each 

locus and by the density of markers in the panel (Kruglyak 1997; Evans & Cardon 2004). 

Markers with a higher numbers of alleles are more likely to be heterozygous in each 
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individual genotyped. In heterozygous individuals each homologue will obviously have a 

different allele, simplifying the task of tracking the segregation of each homologue 

through the pedigree. Additionally as the density of markers increases, information from 

closely linked markers can also be utilized. Simulation studies have shown that a genome 

scanning panel of microsatellite markers (with 5 equally abundant alleles) placed every 2 

cM is required to extract 100% of the inheritance information from a pedigree (Evans & 

Cardon 2004). Such a dense panel was not possible for practical and cost based reasons in 

the current study. However the availability of mapping information that provided the 

location of human candidate genes in the equine genome (outlined in the previous 

chapter) afforded us the opportunity to strategically select and develop our 

microsatellites. By placing microsatellites adjacent to these genes, if one or more shows a 

similar influence on athletic performance in Thoroughbreds, the adjacent microsatellite 

would be in a better position to track the segregation of this gene through the pedigree. At 

the present time the genes described in Chapter II are the best candidates, however there 

is no guarantee that they are contributing to athletic performance in the Thoroughbred. As 

a consequence it was decided to expand beyond the microsatellites adjacent to the 

candidate genes to create a panel of microsatellites that provide more complete coverage 

of the genome. Additionally, as has been mentioned earlier, by increasing the density of 

markers information from adjacent markers can be utilized to increase the power to detect 

putative linkage with a QTL. The original goal of this work was to develop a panel of 

microsatellites with one marker per 10 cM. While this marker density is not capable of 

extracting all the inheritance information from a pedigree, when both parents are 
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genotyped and the markers sufficiently polymorphic (5 alleles), at the marker itself the 

percent information content (PIC) is 80%. In other words, at this location 80% of the time 

it will be possible to tell if the same allele in two sibs is identical by state (IBS) or 

identical by decent (IBD). Alleles IBD are inherited from the same ancestor, alleles IBS 

are not. Distinguishing between the two states in turn allows us to identify regions of the 

genome that tend to segregate with the trait of interest. In the case of the midpoint 

between the two markers the PIC falls to 70% (Evans & Cardon 2004). As a consequence 

such a panel is still more than capable of identifying a QTL segregating within a 

pedigreed population.  

 

Developments in equine genomics 

 In order to make our panel as informative as possible and therefore retrieve as 

much information as possible from the genotyped family material it is important that we 

increase marker density and utilize markers that are polymorphic as possible in the 

Thoroughbred. Earlier studies investigating the origins of the Thoroughbred and 

examining microsatellites polymorphism have observed that many microsatellites have 

fewer alleles in the Thoroughbred when compared to other breeds (Cunningham 1991; 

Cunningham et al. 2001; Tozaki et al. 2003). This reduced polymorphism in the 

Thoroughbred is a legacy of the limited founding population of the breed (Cunningham et 

al. 2001). Therefore many of the published equine microsatellites will provide little 

information if included in the genome scanning panel because of a lack of polymorphism. 
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As a consequence markers must be first examined for polymorphism in the Thoroughbred 

prior to inclusion in the panel, hence ensuring their usefulness.  

 The rapid pace of development in the field of equine genomics has greatly 

simplified the search for new polymorphic markers and thus the creation of a new 

genome scanning panel. The availability of over 1800 published equine microsatellites 

and their utilization in two recent linkage maps (Penedo et al. 2005; Swinburne et al. 

2006) has proven useful in creating a larger panel of markers for the Thoroughbred and 

other breeds. Additionally the development of new physical maps of the equine genome 

based on radiation hybrid analysis (Chowdhary et al. 2003; Raudsepp et al. 2008a), BAC 

based comparative mapping (Leeb et al. 2006) and the draft assembly of the equine 

genome sequence (UCSC EquCab2, http://genome.ucsc.edu/), greatly simplifying 

locating previously published markers and candidate genes as well as establishing their 

relative distribution and proximity to one another. Finally the availability of the whole 

genome sequence in conjunction with bioinformatic tools such as sputnik 

(http://cbi.labri.fr/outils/Pise/sputnik.html) makes the identification of new microsatellite 

markers a straightforward process. 

 As this project was primarily concerned with athletic performance the selection of 

markers for the genome scanning panel prioritized the inclusion of microsatellites 

adjacent to candidate genes considered to be associated with athletic performance in 

humans. Subsequent efforts then focused on identifying markers from the rest of the 

genome, with the goal of producing a panel of microsatellites that has markers distributed 

on average at 10 cM intervals. The development of this resource will also provide 
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invaluable information to any equine research group wishing to undertake genome 

scanning in the Thoroughbred.   

 

Materials and methods 

Marker selection and primer design  

 The initial set of microsatellite markers were selected based on their proximity to 

candidate genes that influence performance and health-related phenotypes in humans 

(Wolfarth et al. 2005). Scoring data for each candidate gene was initially analyzed by 

two-point analysis using RHMAPPER-1.22 at http://equine.cvm.tamu.edu/cgi-

bin/ecarhmapper.cgi. This analysis identified the closest framework marker from the 

equine first generation whole genome radiation hybrid map (Chowdhary et al. 2003) and 

consequently the chromosome the candidate genes were located on. Radiation hybrid 

scoring data for microsatellites on the same chromosome, generated during the 

construction of the second generation equine RH map, was then obtained. The 

microsatellite and candidate gene radiation hybrid scoring data was then analyzed 

together using two-point analysis in the RHMAPPER software, as described in 

Chowdhary et al. (2003). As a result it was possible to identify which microsatellite 

markers were closest to the candidate gene. The subsequent release of the draft assembly 

of the equine genome sequence (UCSC EquCab1, http://genome.ucsc.edu/) allowed us to 

identify the location of previously unmapped genes and select adjacent previously 

published microsatellites. 
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 The release of the draft assembly of the equine genome sequence (UCSC 

EquCab1, http://genome.ucsc.edu/) also allowed the determination of megabase distance 

between the published microsatellites and the candidate genes. Additionally, previously 

published microsatellite primers could be checked in the draft assembly to ensure they 

had not been designed within a repetitive element. This was achieved by using the in-

silico PCR utility in the UCSC genome browser (http://genome.ucsc.edu/cgi-

bin/hgPcr?command=start) to identify the location of the microsatellite. The surrounding 

DNA sequence (generally 2000bp) was then exported to the RepeatMasker web server 

(http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker). Around 2000 bp of sequence 

surrounding each previously published microsatellite was also imported into the primer3 

program (http://frodo.wi.mit.edu/) and the published primers checked for mismatches 

with the reference sequence. The primers were also examined to ensure they matched the 

default primer design guidelines implemented in the Primer3 software 

(http://fokker.wi.mit.edu/primer3/input-help-040.htm#PRIMER_SELF_ANY). When the 

original primers produced genotypes that were difficult to interpret, e.g. due to excessive 

stutter bands or poor peak morphology, the primers were redesigned using the draft 

genome sequence adjacent to the original microsatellite repeat. 

 Where previously published microsatellites were not adjacent to a candidate gene 

the relevant gene was located in EquCab1 using the UCSC genome browser 

(http://genome.ucsc.edu/). Generally 125 kb of DNA sequence from either side of the 

candidate gene was exported and analyzed for repeats using Sputnik 

(http://cbi.labri.fr/outils/Pise/sputnik.html) to eventually identify new microsatellites. 
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Sputnik locates microsatellites by identifying repeated patters of nucleotides between 2 

and 5 bp in length. A score is assigned to each repeat based on the number of times the 

pattern of nucleotides is repeated, higher number of repeats give a higher score. The 

number of insertions or deletions interrupting the repeat reduces the score. The repeat 

with the highest score determined by sputnik were then located in EquCab1 

(http://genome.ucsc.edu/). The microsatellite and the 1000 bp of sequence surrounding 

the microsatellite (500 bp either side) were initially exported to RepeatMasker 

(http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker) to mask common repetitive 

elements in the sequence. The resultant sequence was then used to design primers using 

the Primer3 software (http://frodo.wi.mit.edu/). 

Using the microsatellites adjacent to the candidate genes as a starting point, we 

sought to identify additional microsatellites in the regions between these markers to 

provide more complete genome coverage. Existing equine linkage maps (Swinburne et 

al. 2006; Penedo et al. 2005) and the integrated map of the equine genome (Raudsepp et 

al. 2008a) were used to identify microsatellite that could potentially fill these gaps in the 

panel.  

 The previously published markers considered for inclusion in the panel and the 

newly identified microsatellites, were initially used to genotype a pool of DNA from 16 

Thoroughbreds to ensure they were polymorphic (these animals were all sourced from a 

single farm in Kentucky). The horses included in the pool were randomly selected from 

our sample population, as the identities and sex of the animals was not divulged at first 

the sex and relationships between these animals was not initially known. After the release 
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of the names of the animals it was found that there were 11 females and 5 males in the 

pool. It was also observed that 2 animals were half sibs by one stallion, while an 

additional 3 animals were half sibs by a different stallion. Two animals were half sibs 

with the same mother; finally there was one mother and son pair. DNA concentration for 

each horse was diluted to 25 ng/ul and then mixed in equal proportions for use in 

genotyping. This ensured that each animal contributed an equal amount of template DNA 

to the pool and allowed us to get a rough approximation of the copy number for each 

allele based on the relative peak height (see the figure on p.91). Markers with more that 

three apparent alleles were subsequently genotyped by PCR with DNA from the 

individual animals to ensure that peaks observed after genotyping the pooled DNA were 

actually alleles and not stutter bands.  

 

Genotyping 

 Genotyping was carried out using the three primer method outlined by Oetting et 

al. (1995). In this approach, the forward primer has a 19-bp extension identical to the 

M13 sequencing primer attached to its 5’end (5’-TTTCCCAGTCACGACGTTG-3’). The 

reverse primer remains unmodified. This modified forward primer is added to the 

reaction in much smaller quantities (see below) than the reverse primer and is exhausted 

in the initial rounds of PCR replication. However, an additional fluorescently labeled 

primer with a sequence identical to the M13 tail on the forward primer is also included in 

the reaction at the same concentration as the reverse primer. In subsequent rounds of PCR 

amplification this fluorescently labeled primer replaces the exhausted M13 tailed forward 
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primer. Consequently the newly amplified DNA fragments will include the attached 

fluorochrome (either 6-FAM, VIC, NED, or PET). This approach allowed us to evaluate 

a large number of microsatellites for their level of polymorphism in the horse, without 

incurring the expense of obtaining directly labeled fluorescent primers. An important 

consideration, as many of the markers would not be used in the eventual genome 

scanning panel due to a lack of polymorphism in the Thoroughbred or poor amplification. 

 Each PCR reaction contained 50 ng of DNA as template, 0.1 mM dNTPs, 1X 

buffer (Sigma Aldrich, MO), 1.0 ul of MasterAmp™ (Epicentre, WI), 1 pmol of 

universal fluorescently labeled M13 primer, 1 pmol of the reverse primer and 0.06 pmol 

of the M13 tailed forward primer. Additionally 1.5 or 2.0 mM MgCl2 and 0.25 U 

JumpStart REDTaq (without dye) DNA polymerase (Sigma Aldrich, MO) were added to 

the mix. Reactions were carried out with an initial 30 sec denaturation at 94oC, 1 cycle at 

94oC for 30 sec, 60oC for 30 sec, and 72oC for 30 sec, followed by 35 cycles at 94oC for 

30 sec, annealing temperature ranged from 50oC to 66oC for 30 sec, and extension at 

72oC for 30 sec, with a final extension of 72oC for 5 min. All reactions were carried out 

on either a 96-well Touchgene Gradient thermal cycler (Techne Inc., NJ) or a DNA 

Engine Dyad (MJ Research Inc., MA). PCR amplification products were resolved on 

2.0% agarose gels containing 0.25 ug/ml ethidium bromide. The fluorescently labeled 

PCR products were stored at -20 oC prior to analysis. After PCR the resultant samples 

were pooled where possible to reduce the number of genotyping injections necessary on 

the ABI 3730 (Applied Biosystems, Foster City, CA, USA). Care was taken when 

pooling samples to ensure that size ranges did not overlap and markers tagged with the 
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same fluorochrome had product sizes that differed by at least 100 bp. Typically eight 

samples were pooled, taking 0.25 ul of the PCR product for each sample. The pooled 

samples were then added to 7.5 ul Hi-Di™ Formamide (Applied Biosystems, Foster City, 

CA, USA) and 0.5ul GeneScan™ –500 LIZ® Size Standard. The volume of PCR product 

added was adjusted empirically based on the intensity of the band observed when 

resolved on the 2% agarose gel and based on peak height after genotyping. The pooled 

samples were all genotyped on a ABI 3730 (Applied Biosystems, Foster City, CA, USA) 

following the manufactures instructions.  

 

Sample population  

 Our sample population mainly consisted of a 137 Thoroughbreds from a single 

farm in Kentucky. An additional 25 Thoroughbreds, (mainly stallions standing in 

Kentucky) obtained as part of previous work in our lab were also included in the sample 

population. This gave a total of 162 animals. The genotypes for the 16 animals included 

in the DNA pool were obtained during the initial screening of the markers for 

polymorphism. The markers eventually included in the final genome scanning panel were 

then genotyped on the remaining 146 Thoroughbreds. The 162 animals (16+146) 

genotyped could be divided into 59 families based on their pedigree going back three 

generations. 
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Data analysis  

 The resultant genotyping data was analyzed using the GeneMapper® software 

version 3.5 (Applied Biosystems). Pedigree relationships were confirmed using the 

PEDSTATS program (Wigginton & Abecasis 2005). The markers were also examined 

for deviations from Hardy-Weinberg equilibrium using this program. As the markers 

included in this panel were sourced from more than one linkage map and also included a 

number of newly identified microsatellites it was necessary to estimate cM distances 

between the markers. This was achieved using CRI-MAP v2.4 (Green et al. 1990) with 

the BUILD option. Location of the markers in relation to one another was identified by 

consulting both the integrated map of the horse genome (Raudsepp et al. 2008a) and the 

draft assembly of the equine genome (UCSC EquCab2, http://genome.ucsc.edu/). 

Accuracy of the approximate cM distances obtained from CRI-MAP was evaluated, 

where possible, by examining the cM distances between the same microsatellites in 

existing linkage and physical maps.  

 Percent information content and multipoint information content for the final set of 

markers was calculated as descried by Rijsdijk & Sham (2002), using the online genetic 

power calculator (http://ibgwww.colorado.edu/~pshaun/gpc/mpic.html). The information 

content of the panel, when genotyped on the available sample population (162 animals) 

was estimated with the MERLIN program using the “--information” option (Abecasis et 

al. 2001).  
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Results  

Marker selection 

 In total 454 microsatellites were considered for inclusion in the genome scanning 

panel. During the initial genotyping of the DNA pool of 16 randomly selected 

Thoroughbreds it was observed that 51 microsatellites showed no amplification when the 

M13 tail was added to the forward primer (listed in Table A-3). An additional 28 had 

poor genotype peak morphology and excessive stutter bands (listed in Table A-4). Hence 

these 79 (28+51) microsatellites were excluded from the panel. The remaining 375 

markers showed satisfactory amplification. An example of the typical genotypes 

observed during the initial phase of testing is shown in Figure 3-1. The figure shows the 

genotypes for the markers COR033 and COR025 with the pooled DNA at the top and the 

genotypes of the individual animals used in the pool below. As is evident from the figure, 

the approach used in this study successfully identified all the alleles possessed by the 16 

animals in the pool.  
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Figure 3-1 Genotypes for pooled DNA and the individuals making up the pool for the 
microsatellites COR033 (six alleles) and COR025 (one allele). 
 
 
 
 Of the 375 markers, 94 microsatellites were not included in the panel, because 

they had only one or two alleles. These markers are listed in Table A-5. An additional 62 

microsatellites were not used, because they were adjacent to an already available and 

more polymorphic marker. The majority of these 62 markers possessed three alleles in 

our 16 Thoroughbreds (listed in Table A-6), however they are likely to be more 

polymorphic in other breeds. This left a panel of 219 markers that were eventually used 

to genotype the remaining 146 Thoroughbreds in our sample population. In this panel 192 

of the microsatellites had been selected from the pool of previously published equine 
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microsatellites (http://dga.jouy.inra.fr/cgi-bin/lgbc/main.pl?BASE=horse). The remaining 

27 microsatellites were identified from the draft equine genome sequence and chosen 

because of their proximity to a candidate gene. For the 219 markers selected the mean 

number of alleles identified after genotyping the 16 animals in the DNA pool was 3.6 

(range 2 to 7). When the remaining animals were genotyped this increased to 4.2 (range 2 

to 10). The pool of 16 animals used for initial polymorphism analysis tended to 

underestimate the number of segregating alleles in the population. The latest linkage map 

of the equine genome produced by Swinburne et al. (2006) has a length of 2772 cM. 

Based on this figure the markers in the panel are distributed on average, at 12.7 cM 

intervals.  

 After genotyping the 162 animals in the sample population the markers were 

checked for deviations from Hardy-Weinberg equilibrium. It was observed that 15 

markers showed a significant (<0.05) deviation and were therefore excluded from further 

analysis (listed in Table A-7). Next, during the estimation of cM distances between the 

markers it was observed that 18 markers showed unrealistic cM distances based on the 

cM/Mb distances observed for these markers in other linkage/physical/sequence maps. 

These markers were also eliminated from further analysis (listed in Table A-8).  

 

Quality of final marker set 

 After the removal of the markers with questionable integrity a total 186 markers 

remained in the final panel. Based on the cM distances estimated using CRI-MAP v2.4 

the markers in this panel span 2875.5 cM. Consequently the average distance between the 
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markers is 16.4 cM. For the final panel of 186 markers, the mean number of segregating 

alleles per marker was 4.2, with a range between 2 to 10 alleles. Further, mean 

heterozygosity among the markers was 56% with a low of 3.7% for COR032 and a high 

of 87% for TKY936. The potential single point information content (PIC) for each marker 

(based on having genotypes for offspring and parents) closely mirrored the figures for 

heterozygosity. COR032 showed the lowest PIC at 3.7% while COR070 showed the 

highest PIC at 79.8%. As a result if a QTL was located adjacent to COR032 it is unlikely 

that this marker would display evidence of linkage to the phenotype. On the other hand 

the high PIC for COR070 indicates that it should be capable of showing evidence of 

linkage to an adjacent QTL. The average single point information content for the panel 

was 51.7%. (This figure only considers the individual markers; it does not take into 

account information that can be extracted from adjacent markers, and the ability of the 

panel to track regions of the genome between the markers.)  

 The mean multi point information content (MPIC), measured at 1cM intervals, for 

the genome as a whole was 43.8%. This figure takes into account the ability of the 

markers to track regions of the genome between markers and also takes into account 

information that can be extracted from adjacent markers. The mean MPIC for the 

individual chromosomes ranged between 16.8% for ECA30 and 63.2% for ECA12 and 

ECA17. Consequently a QTL on ECA30 has a poor chance of being identified, while a 

QTL on ECA12 and ECA17 had a reasonably good chance of being detected when using 

this panel.  
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 The PIC calculated by MERLIN for each marker takes into account information 

from adjacent markers and is based on the actual sample population used in this study. 

The mean PIC for the genome as whole was 28.2%. Given this low figure, it suggests that 

we are unlikely to identify a QTL segregating in this population. However regions 

adjacent to the more polymorphic markers have the potential to show evidence of linkage 

if a QTL of large effect is present. Mirroring the results for the MPIC, the lowest mean 

PIC of 8.3% was observed for ECA30, while the highest of the range, 39.9% was seen for 

ECA12. As regards the individual markers, the lowest PIC observed (calculated by 

MERLIN) was for HMS18 (6.7%) and highest observed for GKms (51.33%).  

 A total of 22 of the 27 newly identified markers were included in the final panel 

(3 were dropped during estimation of cM distances, 2 were dropped as they showed a 

significant deviation from Hardy-Weinberg equilibrium). These new markers showed a 

similar range for a number of alleles (4.2), level of heterozygosity (51.8%), potential PIC 

(44.2%) and actual PIC (28.5%). A summary of the total cM distances, marker 

information and information content for each chromosome is provided in Table 3-1. 

Information on allele number, heterozygosity, location in the genome and information 

content for each marker is detailed in Table A-9. Figure B-1 (Figures with the B prefix 

can be found in appendix) shows the location of the candidate genes and the markers 

used in the final panel. A representative selection of chromosomes is shown in Figure 3-

2. The blue line represents the MPIC for the respective chromosome, while the actual PIC 

for each marker is represented by a red square. The location of candidate genes and 

microsatellite markers on the chromosomes are also depicted. 
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Table 3-1 Summary of marker information, cM distances and information content for 
markers on each equine chromosome 

Chr 
No. 

Map 
distance 

in cM 

No. of  
markers 

Average 
cM 

distance 
 

Average 
No. of 
alleles 

HET 
(%) 

Potential 
Individual 

PIC 
MPIC Actual 

PIC 

1 235.9 17 13.9 3.4 46 39.3 42.4 23.3 
2 147.8 9 16.4 4.1 54 45.6 43.7 23.8 
3 101 9 11.2 4.7 60 52.7 59.6 30 
4 120.8 11 11 4 53 44.3 52.7 22.1 
5 158.2 10 15.8 3.9 55 46.6 43.8 26.6 
6 101 7 14.4 5.4 58 53.2 50.2 31.4 
7 69.6 6 11.6 4 57 48 50.4 28.1 
8 93.5 5 18.7 3.8 54 50.2 38.8 27.5 
9 66.8 5 13.4 5.2 62 56 50.1 34 

10 77.4 8 9.7 3.6 56 47.7 57.5 30.4 
11 98.4 7 14.1 4.1 53 49 47.1 29.3 
12 71.9 7 10.3 5.3 65 59.5 63.2 39.9 
13 95.1 4 23.8 3.8 58 52.5 35.0 25.6 
14 136.7 5 27.3 3.8 55 49.2 29.4 24 
15 109 6 18.2 4.2 54 47.8 39.0 23.3 
16 85.2 4 21.3 4.8 67 59.4 41.4 33.9 
17 62.1 7 8.9 4.3 55 52.8 63.2 32.5 
18 111.4 7 15.9 3.6 54 54.4 43.2 22.7 
19 38.8 3 12.9 4.3 64 57.4 48.7 32.8 
20 122.7 5 24.5 4.6 63 55.8 29.9 36.3 
21 29.6 3 9.9 5 71 64.5 62.4 32.2 
22 93.1 4 23.3 4.25 58 51 30.4 28.1 
23 66.5 4 16.6 2.5 49 39.5 36.4 17.2 
24 33.7 3 11.2 5.7 51 62.2 52.3 33.2 
25 46.1 2 23.1 4 50 43.7 22.9 17.2 
26 74.7 3 24.9 3.7 52 47.8 30.2 25.5 
27 65.8 6 11 4.3 59 52.6 52.6 35.8 
28 17.9 3 6 4.7 47 48.8 57.4 24.9 
29 52.6 3 17.5 4 67 61 41.6 37 
30 51 2 25.5 4 42 56.6 16.8 8.3 
31 55.4 3 18.5 5 59 54.4 32.9 31.6 
X 185.8 8 23.2 8 55 49.7 37.5 34 
 2875.5 186 16.4 4.4 56 51.7 43.8 28.2 

HET % = percent heterozygosity; PIC = percent information content  
MPIC = Multipoint information content  
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Figure 3-2 Representative figures showing location of candidate genes (genes in red 
mapped in this study) and microsatellites. Blue line represents the multipoint information 
content (MPIC) calculated based on marker density and level of polymorphism for each 
marker. Red boxes represents the actual percent information content calculated in 
MERLIN and based on the sample population used in the study.  
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Distance of markers from candidate genes  

 The draft equine genome sequence (UCSC EquCab2, http://genome.ucsc.edu/) 

allowed us to determine the distance (in Mb) between candidate genes and the nearest 

microsatellite included in the genome scanning panel (see Table A-1 & A-2). It was 

observed that the mean distance between a candidate gene and the nearest microsatellite 

was 1.18 Mb. In the case of the newly identified markers (derived from the draft genome 

sequence) the mean distance reduced to 77 kb. Location of the candidate genes and 

markers used in the panel are shown in Figure B-1. A total of seven candidate genes did 

not have any adjacent microsatellite. Four of these genes did have an adjacent marker in 

the original panel of 219 markers, however these markers were subsequently eliminated 

from the panel during data analysis. For the remaining three genes attempts had been 

made to identify new microsatellites adjacent to these genes. However no suitable 

microsatellite could be identified within 250 kb of the respective gene (125 kb each side).  

 
Published primer quality  

 The majority of the markers used in the panel were evaluated and selected for 

inclusion in the panel prior to the release of the draft assembly of the equine genome. 

However, following the release of the assembly, we examined the location of the primer 

pair used to amplify each microsatellite. It was observed that around one third of the 

primers had been designed within a repetitive element such as SINE or LINE. 
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 In most cases this had no apparent detrimental effect as determined by the 

morphology of the peaks produced during genotyping or based on segregation of the 

alleles. However, it was invariably found that when a microsatellite showed very poor 

peak morphology and a large number of stutter bands the primers were designed in a 

repetitive element (see Table A-4). When genotyped some of the published primers had 

poor peak morphology and excessive stutter making the identification of the individual 

alleles difficult. This was exacerbated by the fact that the identities of the animals were 

kept anonymous when the samples were submitted and were divulged only after 

genotyping had been completed. As a consequence we could not use information from 

relatives when trying to identify alleles in individuals with ambiguous genotype peaks. In 

such cases, attempts were made to redesign the primers around the microsatellite. An 

example of the peak pre- and post-primer redesign is shown in Figure 3-3. In total 54 

markers were redesigned, 40 of which we included in the final panel. Markers where 

primers were redesigned are denoted with an asterisk in Tables A-7, A-8 and A-9. 
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Figure 3-3 Peak morphology before and after primer redesign. 
 
 
 
Discussion  

Rationale for developing a new genome scanning panel 

 One of the basic requirements for identifying the underlying genomic variation 

contributing to a phenotype of interest using linkage analysis is a panel of mapped 

polymorphic markers. The utility of a panel is influenced to a large extent by two 

variables. i) The level of polymorphism and consequently the heterozygosity of the 

markers used. High levels of heterozygosity improve the ability of the panel to identify 

regions of the genome overrepresented in individuals that deviate significantly from the 

mean for the trait studied. ii) The density of markers used in the panel. As the density or 
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markers increases information from adjacent markers can be exploited to track the 

segregation of a region of the genome. For example despite the biallelic nature and often 

low level of heterozygosity for SNPs, a panel spaced every 1 cM can extract the same 

amount of inheritance information as a panel of microsatellites spaced every 2 cM 

(Kruglyak 1997; Evans & Cardon 2004).  

 As has been pointed out previously, at the initiation of this project there was a 

genome scanning panel of just over 100 microsatellite markers available for use in the 

horse. While this panel had been successfully utilized in the past to identify regions of the 

equine genome involved in a number of simple Mendelian phenotypes, it had a number 

of weaknesses. The first was the paucity of markers used in the panel. Based on the 

length of latest linkage map (Swinburne et al. 2006), there is on average over 27 cM 

between each marker. As a consequence, QTLs between markers are likely to be missed 

and the extra information that can be extracted by considering adjacent markers together 

is reduced.  

 Simulation studies have demonstrated that in order to extract 100% of the 

inheritance information from a pedigree, microsatellites are required at intervals of 2 cM 

(Kruglyak 1997; Evans & Cardon 2004). Such a marker density was not feasible because 

of the cost and effort required to genotype such a large number of markers. Typical 

genome scanning panels with markers placed every 10 cM are not capable of extracting 

all of the inheritance information from a pedigree (Kruglyak 1997; Evans & Cardon 

2004). At the mid point between two markers the PIC can fall below 60% (Evans & 

Cardon 2004). However provided the marker has sufficient, equally abundant alleles (>3) 
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the PIC in the markers immediate vicinity (within a few cM) remains close to 80% 

(Evans & Cardon 2004). In this study we have tried to find a balance by strategically 

placed markers adjacent to candidate genes. By doing this we have sought to extract the 

most inheritance information possible in the regions of the genome most likely to harbor 

a QTL. 

 

Intermarker distances and cM total 

 In our genome scanning panel the average distance between a candidate gene and 

the nearest marker was 1.18 Mb. Thus, if the candidate gene was contributing to athletic 

performance the close proximity of a marker would increase the likelihood that linkage 

would be observed. While we were reasonably successful in placing markers adjacent to 

candidate genes our second goal of producing a panel with one marker per 10 cM was not 

realized. The actual final intermarker distance in the panel was 16.4 cM. While this was 

below our target, genome scanning panels with similar numbers of markers have been 

successfully employed in the past to identify genomic regions harboring QTLs in the 

horse (Dierks et al. 2007; Diesterbeck et al. 2007) and other domestic species (Georges 

2007). The total cM distance for the panel (2,877.5 cM) is slightly above that seen in the 

most recent equine linkage map, which spans 2,772 cM (Swinburne et al. 2006), but 

below that seen in the Penedo et al. (2005) linkage map, which spans 3,740 cM. The cM 

distances calculated between the markers included in the panel generally corresponded 

well with the physical distances between the markers in existing physical maps and the 

cM distances when the two markers were found in one of the existing linkage maps. 
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However, these cM distances should still be treated with some caution. The sample 

population utilized in estimating the cM distances was not optimized for this task. Many 

of the families used had incomplete genotyping information and as a result cM distances 

are generally based on a limited number of meiosis. 

 Our initial panel of markers, genotyped on the 162 animals making up the sample 

population contained 219 markers. However 33 of these markers had to be excluded from 

the analysis due to deviation from Hardy-Weinberg equilibrium and unlikely cM distance 

between markers. The problems observed for these markers were most likely caused by 

genotyping error rather than any inherent problem with the markers. Many of these 

markers have been previously used for linkage mapping in the horse (Penedo et al. 2005; 

Swinburne et al. 2006). Additionally as these markers are polymorphic in the 

Thoroughbred, any future attempts to carry out genome scanning in the Thoroughbred 

should consider including these markers.  

 

Microsatellite polymorphism  

 The majority of modern Thoroughbreds can trace their ancestry back to a handful 

of animals (<80 animals) and this narrow genetic base is reflected in the overall low 

levels of polymorphism observed for microsatellites in the Thoroughbred (Cunningham 

et al. 2001). As has been pointed out previously, fewer alleles generally equates to lower 

heterozygosity, this in turn reduces the PIC and makes it more difficult to identify QTLs 

segregating in the population. For example, in the existing 101 microsatellite genome 

scanning panel (http://www.uky.edu/Ag/Horsemap/Resources/HorseScan.htm), the mean 
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number of alleles per marker is 7.5 (generally based on genotyping a small number of 

individuals from a variety of breeds). When these markers were used to genotype our 

pool of 16 Thoroughbreds it was observed that the mean number of alleles fell to 3.3. 

Some reduction in the number of alleles is expected as we are using a small number of 

animals, from a single breed. However the difference in the number of alleles observed 

was quite striking in some cases. For example the markers LEX071 and VHL209 are both 

listed as possessing seven alleles, however, in our pool of sixteen Thoroughbreds only a 

single allele was observed. The microsatellite COR100 is reported to have thirteen alleles 

and LEX073 is reported to have fourteen alleles; however in our pool of 16 

Thoroughbreds only two alleles were observed for both markers. In general our pool 

identified only about half of the reported alleles for each marker. However some markers 

did defy this trend. For example COR070 is listed as having nine alleles; seven of these 

alleles were identified in the sixteen animals. Subsequent genotyping for the remaining 

animals in the sample population identified an additional two alleles. 

 The final genome scanning panel of markers has an average of 4.2 alleles per 

microsatellite after genotyping with the sample population of 162 animals. This number 

of alleles per microsatellite was comparable or slightly lower than that seen in previous 

studies examining the level of microsatellite polymorphism in the Thoroughbred. 

Cunningham et al. (2001) genotyped 13 microsatellites on 211 Thoroughbred and saw an 

average of 4.7 alleles per marker. Tozaki et al. (2003) genotyped 20 microsatellites on 25 

Thoroughbreds and observed on average 4.2 alleles per marker. Finally Glowatzki-Mullis 

et al. (2006) genotyped 50 microsatellites on 31 thoroughbreds and observed an average 



 

 

104 

104 

of 4.7 alleles per marker. The slightly lower level of polymorphism observed, is most 

likely the result of including a number of microsatellites in our panel that were not as 

polymorphic as desired. These markers were included as they were located adjacent to a 

candidate gene or a region of the genome that lacked another suitable marker.  

 

Overall information content of the panel 

 The two variables discussed above (marker density and level of 

polymorphism/heterozygosity) are the major factors affecting the utility of a genome 

scanning panel. A vivid demonstration of the ability of the panel to extract inheritance 

information is provided in Figure 3-2 that shows a selection of chromosome with the 

multipoint information content for each chromosome (for the rest of the chromosomes 

see Figure B-1). It is noteworthy that the line representing multi point information 

content (blue) generally fluctuates around the 50% point showing that this panel of 

markers is constrained in its ability to extract inheritance information from the genome. 

This is partly attributable to the relatively low level of polymorphism observed in the 

markers and partly to the low marker density of the panel. In the blue line the location of 

microsatellites can be identified by the peaks, with more polymorphic markers eliciting 

higher peaks. As these peaks represent higher MPIC values, these are the regions of the 

genome the panel is best equipped to track through the pedigree. Consequently QTLs in 

such regions have the best chance of being identified. This figure also clearly 

demonstrates the effect of large cM distances between markers. In the case of ECA14 the 
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75.4 cM gap between ADRB2ms and TKY491 creates a large region of the genome where 

our ability to identify a QTL is severely constrained.  

 The figure also demonstrates the impact of marker density and heterozygosity on 

information content. In the case of the short arm of ECA1 there are six microsatellites 

with an average of just under 10 cM between each marker. Despite the relatively close 

proximity of the markers the blue line generally remains below 50%. This low MPIC can 

be partially explained by the low average number of alleles (2.8) and heterozygosity 

(46.6%) seen for these markers. This observation highlights the need for highly 

polymorphic markers in genome scanning panels with relatively large intermarker cM 

distances. However, the low number of alleles generally observed for microsatellites in 

the Thoroughbred poses a major challenge when assembling a genome scanning panel of 

microsatellite markers in this breed. 

 Conversely on ECA27, the markers COR031 and ADRB3ms are located 2.2 cM 

apart. COR031 has 4 alleles, heterozygosity of 75.5% and a PIC of 66.8% while 

ADRB3ms had 5 alleles, 54.9 % heterozygosity and a PIC of 54.7%. In Figure 3-2 the 

MPIC in the region where these two markers are located actually exceeds 80%, 

demonstrating that when adjacent markers are analyzed together they are better able to 

extract inheritance information from that region of the genome. This region also 

demonstrates that the number of alleles possessed by a microsatellite is not always the 

best indicator of its utility. Despite having 5 alleles, ADRB3ms only has a heterozygosity 

of 54.9% as many of the alleles were not very common in the population.  
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 Figure B-1 provides an overview of the panel and helps identify what regions 

have a dearth of markers. ECA19 appears to have a reasonable MPIC at 48.7% (see Table 

3-1). However this number is based on only three markers that are all concentrated 

towards the distal part of the chromosome. MPIC is only calculated for 10 cM beyond the 

last marker. As a consequence the MPIC observed for this chromosome is somewhat 

misleading because it does not take into account the location of the markers in the context 

of the overall size of the chromosome.  

 The MPIC diagramed in Figures 3-2 and A-1 is calculated assuming that 

genotyping information will be available for both parents and offspring. However, the 

majority of the families included herein lacked genotyping information for one of the 

parents. The effect of these missing genotypes is clearly apparent when the PIC was 

calculated in MERLIN. The small red boxes in Figure 3-2 and A-1 represent the actual 

PIC for each marker. From these figures and Table 3-1 (which gives a summary for 

MPIC, and PIC calculated by MERLIN) it is obvious that the actual amount of 

information extracted by the markers in the panel is consistently below their actual 

potential. This observation highlights the importance of obtaining genotyping data from 

all family members.  

 

 

 

 

 



 

 

107 

107 

Association analysis  

 By selecting markers in close proximity to the candidate genes we also opened up 

the possibility of carrying out association analysis using a portion of the microsatellites in 

our panel. Association analysis is based on linkage disequilibrium present in the 

population, linkage analysis is based on linkage present within a family (Georges 2007). 

In association analysis the marker being tested must be in linkage disequilibrium with the 

underlying causative allele if it is to show evidence of association. As a consequence this 

method is only useful if the polymorphic marker has been placed adjacent to a candidate 

gene (within 30-500 kb depending on the species and breed) or if a dense map of markers 

is used (one marker every 30-500 kb, again depending on the species and breed). The 

extent of linkage disequilibrium in the horse falls between that seen in the dog (0.5-1 Mb 

in some breeds) and humans (10-30 kb) (Ardlie et al. 2002; Lindblad-Toh et al. 2005; 

Wade et al. 2008). This would suggest that only markers within ~250kb of a gene are 

useful for this approach. However as we are examining athletic performance, a trait that 

is under positive selection in the Thoroughbred, a candidate gene under selection should 

show an increased region of linkage disequilibrium in the area surrounding the allele due 

to the “hitch-hiking” effect (Maynard Smith & Haigh 1974; Andersson & Georges 2004). 

Consequently linkage disequilibrium may slightly extend beyond its usual limits in areas 

of the genome surrounding an allele under positive selection.  
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New technologies vs. microsatellite panel 

 When this project to study athletic performance in Thoroughbreds was initiated, 

the only logical way to take a whole genome approach was the use of a panel of 

microsatellites distributed throughout the genome. However, the last couple of years have 

seen remarkable developments within the field of equine genomics, salient among which 

are the sequencing of the equine genome and the development of whole genome 

expression and genotyping arrays (see Chowdhary & Raudsepp 2008). Providing new 

platforms and methodologies to in investigate phenotypes of interest. 

 While the new SNP array based technologies do possess a great deal of potential, 

they have only recently become available through commercial vendors and their cost may 

be prohibitive for many laboratories. Moreover, because labs will already have primers 

for a number of equine microsatellites their use in genome scanning, especially in 

phenotypes controlled by single genes, is likely to continue for some time. The 

information on polymorphism/heterozygosity for the markers evaluated during the 

construction of this panel will be useful for those choosing markers for a specific region 

of the genome. Finally, despite the uneven distribution of markers and the presence of 

some large gaps, this new panel of markers will be valuable for linkage analysis in the 

Thoroughbred. Especially as additional markers can be readily developed in these gaps 

using the draft equine genome sequence.  
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CHAPTER IV 

A GENOME SCAN FOR ATHLETIC PERFORMANCE IN THE 

THOROUGHBRED 

 

Introduction 

 The main goal of the Thoroughbred industry is to breed and train superior equine 

athletes, capable of excelling on the racetrack. Despite the obvious importance of athletic 

ability in the Thoroughbred, there has been little progress in identifying the specific 

differences on the DNA level that distinguish a classic winner from an “also ran” (Ricard 

et al. 2000). Most studies investigating the genetic component of athletic ability in the 

Thoroughbred have concentrated on determining the heritability of different 

measurements of racing performance, such as race winnings, handicap rating and race 

time. These estimates provide an indication of the level of genetic variation available in 

the population for this composite trait and indirectly give a glimpse of what is required to 

study this trait at the molecular or sequence level. Such studies have consistently 

demonstrated a modest heritability for race winnings and handicap ratings, with 

heritability estimates for these traits generally ranging between a low of 0.1 and a high of 

0.5. As regards race times, lower heritability estimates are observed, generally ranging 

between a low of 0.1 and a high of 0.2. (Tolley et al. 1985; Ricard et al. 2000).

 Despite the detection of heritability for athletic performance in Thoroughbreds by 

various researchers, to date only one study has demonstrated an association between 

specific genomic polymorphisms and athletic performance. Using mitochondrial 
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haplotypes Harrison and Turrion-Gomez (2006) showed that certain mitochondrial 

haplotypes were correlated with performance at different racing distances in English 

Thoroughbreds. Given the importance of athletic performance to the Thoroughbred 

industry the lack of published research investigating how nuclear genes affect athletic 

performance appears surprising. However, it must be remembered that many of genomic 

tools (linkage and physical maps) required for investigating a complex phenotype like 

athletic performance have only recently become available in the horse. This study is one 

of the first attempts to investigate the contribution of nuclear genes to athletic 

performance in the Thoroughbred.  

 

Athletic performance in humans  

 The field of human sports science has become increasingly interested in the 

genetic component of athletic performance. This has been reflected in a rapidly growing 

literature reporting a large number of genes and QTLs associated with athletic 

performance (Rankinen et al. 2006). Two main approaches have been employed to 

investigate athletic performance in the humans: association studies and linkage analysis. 

 Association studies attempt to identify significant differences in the distribution of 

alleles for a polymorphism (SNPs, insertions, deletions, etc) between two sample 

populations. The polymorphisms selected are typically in or adjacent to a gene that has 

the potential to influence athletic performance (muscle enzyme, growth hormone, etc). 

While the sample populations used usually consist of elite athletes and non-elite controls, 

or a population of individuals that display a range of values for the phenotype under 
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examination. (For example in the case of the ACE I/D polymorphism described in 

Chapter I, it has been reported that the insertion (I) allele tends to occur at higher 

frequency in a populations of athletes competing in events requiring a high aerobic 

capacity). The majority of the studies listed in the human performance gene map have 

employed this type of approach (Rankinen et al. 2006).  

 In comparison to association analysis, linkage studies typically employ panels of 

highly polymorphic microsatellites markers located at regular intervals (generally 10 cM 

apart) throughout the genome (Altmüller et al. 2001). These markers are used to 

genotype a population of related individuals in which the phenotype of interest has been 

measured. The resultant data is then examined for evidence of linkage between the 

markers and the phenotype of interest. As the markers must be tracked through the 

generations, pedigreed families are essential in this approach.  

 One prominent example of the use of this approach in humans was a number of 

genome scans carried out as part of the HERITAGE family study (Gagnon et al. 1996). 

Over the course of this study exercise related phenotypes such as: maximal exercise 

capacity, exercise stroke volume, cardiac output and maximal oxygen uptake were 

investigated. (The panels of microsatellites used contained between 289 and 509 markers 

and their distribution over the genome ranged from 11 cM per marker to 6.2 cM per 

marker.) As a result a large number of QTLs influencing these phenotypes were 

identified throughout the genome (Bouchard et al. 2000; Rankinen et al. 2002a; Rico-

Sanz et al. 2003).  
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 In addition to whole genome scans, some researchers have employed a targeted 

approach by carrying out linkage analysis using microsatellites adjacent to candidate 

genes. In humans a number of genes involved in the myostatin pathway were investigated 

using this approach, successfully identifying suggestive evidence of linkage to muscle 

strength for several genes in the pathway including RB1 (13q14) and IGF1 (12q23) 

(Huygens et al. 2004; Huygens et al. 2005). Investigations into the genetics of athletic 

performance in the mouse and rat have also taken advantage of genome scanning panels 

to identify QTLs affecting endurance capacity (Ways et al. 2002; Lightfoot et al. 2007). 

 

Sample population 

 Linkage or association studies require a suitable sample population. In a best-case 

scenario different breeds are crossed to facilitate mapping the trait of interest in the 

resultant offspring. Alternately, the large commercial herds and the widespread use of 

artificial insemination in cattle, pigs and chicken make it possible to collect large half-sib 

families (Andersson 2001). As a consequence sample populations in some livestock 

species often exceed 1000 animals for QTL mapping experiments. In the Thoroughbred, 

breeding operations are more fragmented, with a large number of small farms breeding 

mares to a variety of different stallions by natural coverings, thus making it much more 

difficult to obtain large sample populations in this breed. Moreover, these farms tend to 

be quite insular making the possibility of enrolling several farms in a combined study 

difficult. Consequently, the smaller sample sizes generally obtainable in the horse will 

hamper the chances of identifying a QTL. Nevertheless, as was discussed in Chapter I 
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previous studies in the horse examining multifactorial phenotypes such as 

osteochondrosis disease and radiological changes in the navicular bone, have been 

successful in identifying QTLs affecting these phenotypes when using modest sample 

sizes (<200 animals) (Diesterbeck et al. 2007; Wittwer et al. 2007). As a consequence it 

was not unprecedented to attempt to investigate a complex phenotype such as athletic 

performance using a sample population of modest size.  

 

Materials and methods 

Sample population  

 The majority of the sample population (137) was from a single Thoroughbred 

farm in Kentucky. Samples were primarily collected in 2004 and mainly consisted of 

mares and their offspring from the two previous years. Names and relationship between 

the animals were kept anonymous at the time of sample collection and genotyping by 

giving each animal a unique identifier. Names were only divulged after all the foals had 

reached four years of age and had the opportunity to race. An additional 25 

Thoroughbreds were also included in the analysis, these were mainly stallions standing in 

Kentucky that had been obtained as part of previous work in our lab, giving a total of 162 

animals. Once the names of the animals were divulged, pedigree information was 

obtained from the Thoroughbred Database (http://www.pedigreequery.com/) and a 

pedigree going back two generations was constructed for each genotyped animal.  
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Phenotype  

 Track winnings were treated as a quantitative measurement of athletic 

performance. Winnings have been previously shown to be a reliable indicator of 

performance on the track and are easily obtained (Tolley et al. 1985; Langlois 1996; 

Langlois & Blouin 2004). Lifetime race winnings for each animal were obtained from the 

Thoroughbred Database (http://www.pedigreequery.com/). When reported in currencies 

other than U.S. dollars (USD) winnings were converted into USD based on the exchange 

rate at the time the winnings were earned. Earnings were loge transformed to convert 

winnings from an exponential to linear trait (Wilson & Rambaut 2008) and the resultant 

data was treated as a quantitative trait. 

 

Marker selection and genome scanning panel 

 Isolation, polymorphism content analysis and mapping by genotyping, of the 186 

markers are discussed in chapter III and details regarding the markers are provided in 

Table A-9. For each of the 95 candidate genes associated with athletic performance in 

humans (Rankinen et al. 2006) the closest microsatellite marker included in the panel was 

identified using the draft equine genome sequence (EquCab2, http://genome.ucsc.edu/). 

These markers are listed Table A-1 and A-2 and also presented as underlined markers in 

Table A-9. A total of seven candidate genes have no adjacent microsatellite (within 5 

Mb) in the panel. Four of these candidate genes did have an adjacent marker in the 

original panel of 219 markers. However, during the process of data analysis some 

markers was eliminated due to a deviation from Hardy-Weinberg equilibrium or because 
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their inclusion produced inconsistent cM distances between adjacent markers. The 

nearest microsatellite to each candidate gene (66 markers in total, some markers were in 

close proximity to more than one candidate gene) was also utilized for family based 

association analysis using the QTDT program (Abecasis et al. 2000). 

 

Pedigree checking and linkage analysis  

 Pedigree relationships and genotyping results were checked using the PEDSTATS 

program (Wigginton & Abecasis 2005). Linkage analysis for the autosomes was carried 

out with the MERLIN software package, version 1.1.2 (Abecasis et al. 2001) using the “-

-qtl” analysis option. This option carries out a non-parametric test for linkage and 

therefore does not require a specified model for the trait (dominant, recessive, etc). 

Markers on the X chromosome were analyzed using the separate executable MINX 

(MERLIN in X) (http://www.sph.umich.edu/csg/abecasis/merlin/reference.html). 

MERLIN implements a linear model described by Kong and Cox (1997) that was created 

to identify small increases in allele sharing across a large number of families, as would be 

expected in the case of a complex phenotype such as athletic performance. At a most 

basic level the “--qtl” option calculates a score for each allele by determining how much 

the phenotype of the individuals carrying the allele differs from the population mean. The 

segregation of the alleles is then tracked through the pedigree (establishes if alleles are 

identical by descent (IBD) or identical by state (IBS) in related individuals) to determine 

if a particular region of the genome is linked to the phenotype of interest 

(http://www.sph.umich.edu/csg/abecasis/Merlin/reference/qtl.html). The procedure for 
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converting the individual inheritance scores into a Z-score is described in Whittemore 

and Halpern (1994). Merlin uses the Z-score to calculate a likelihood ratio test for linkage 

and produces a LOD score statistic utilizing the method described by Kong and Cox 

(1997).  

To determine the significance of the LOD scores obtained with the current data 

set the “--simulate” option in MERLIN was used. This option replaces the input data with 

simulated data that matches the original data set for marker spacing, allele frequency and 

family structure but is unlinked with the trait of interest. As a result it is possible to get an 

estimate of the LOD scores likely to arise by chance alone. In total 1000 replicates were 

carried out, the 50 top LOD scores were identified. LOD scores below those observed for 

the 50 highest were not considered as statistically significant therefore providing the 

cutoff point for statistical significance. LOD scores observed in the top 50 are usually 

encountered only once per 20 genome scans and this corresponds to genome wide p-

value of 0.05 (Georges 2007). 

 

Association analysis  

 The markers were tested for evidence of association with track winnings using the 

Quantitative Transmission Disequilibrium Tests (QTDT) program (Abecasis et al. 2000). 

This program carries out tests for linkage disequilibrium within families (commonly 

referred to as transmission disequilibrium tests) and is capable of handling both 

quantitative and discrete traits. This method is limited by the fact that linkage 

disequilibrium does not extend beyond a few hundred kb (varies between species and 
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breeds), but it has greater power to identify modest phenotypic effects when compared to 

linkage analysis (Abecasis et al. 2000; Sham et al. 2000). For this analysis only the 66 

microsatellite markers adjacent to the candidate genes were included in the analysis to 

reduce the problem of determining statistical significance with multiple testing. Data 

from the X chromosome was not considered because the QTDT program cannot handle 

genotypes from this chromosome. 

 The QTDT program tests for association using the phenotypes of related 

individuals. As a consequence the program requires information on whether the alleles 

found in two individuals in a pedigree are identical by state or identical by descent. This 

information is required to distinguish between linkage and association. The IBD matrices 

were calculated using MERLIN with the “--ibd” command 

(http://www.sph.umich.edu/csg/abecasis/Merlin/tour/ibd.html). In order to help describe 

the similarities between individuals in the pedigree, QTDT allows variance components 

to be specified. The following variance components suggested by the QTDT tutorial were 

utilized: e (Non-shared Environment, environmental effects unique to each family 

member), g (Polygenic, effects related to degree of relatedness of individuals), and a 

(Additive Major Gene Effect) (http://www.sph.umich.edu/csg/abecasis/QTDT/tour/). 

QTDT examines each allele separately by default, for microsatellites this would result in 

a large number of tests. By using the “--multi-allelic” option a global p-value is 

calculated for each microsatellite, rare alleles (frequency <= 5%) are lumped together and 

individual effects for the other alleles are estimated to produce a final p-value for the 

marker (http://www.sph.umich.edu/csg/abecasis/QTDT/docs/multi.html). Only the 
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genotypes for the 124 animals with available race winnings information were utilized in 

the association analysis. 

 

Results  

Sample population 

 In total 162 animals were genotyped, while an additional 222 animals was 

included in the pedigrees to define the relationships between the individuals. The latter 

group of animals was not genotyped and was not available for analysis. A summary of 

the families is shown in Table 4-1. Information on race performance was available for 

324 of the animals, with 124 of the genotyped animals having race data available. The 

overall and sex specific distribution of the loge transformed winnings is outlined in Figure 

4-1.There is a clear tendency for males to have won more prize money, due mainly to the 

much stronger selection practiced by breeders for superior performance in males 

compared to females.  

 For the majority of the chromosomes analyzed only 21 of the families provided 

sufficient genotyping data to allow MERLIN to track the alleles through the pedigrees. 

Many of the families had only one or two genotyped individuals and as a result there was 

insufficient information to track the segregation of the alleles and calculate IBD. In the 

case of ECA19, ECA23 and ECA31, 20 of the families were informative; for ECA25 and 

ECA30, only 19 families were informative and for ECAX 18 families provided data that 

was useful for analysis. These chromosomes all possess a relatively small number of 

markers compared to the other chromosomes. Consequently if a family displayed a high 



 

 

119 

119 

level of homozygosity for the markers on one of these chromosomes it was not possible 

to calculate IBD, thus causing the family to be eliminated from the analysis for that 

chromosome.  

 
 
Table 4-1 Summary of family information showing number of animals in each family, 
number of animals genotyped in each family and the average loge transformed winnings 
for each family. 

Family 
ID 

No. 
animals 
in ped  

No. 
genotyped 

Mean loge 
winnings   Family 

ID 

No. 
animals 
in ped  

No. 
genotyped 

Mean loge 
winnings  

101 12 6 12.63  131 5 2 12.05 
102 7 3 12.92  132 5 2 12.33 
103 7 3 12.01  133 5 2 13.25 
104 7 3 11.14  134 5 2 13.35 
105 7 3 12.39  135 5 2 12.89 
106 9 4 11.84  136 15 7 12.26 
107 9 4 12.49  137 5 2 12.79 
108 17 8 12.21  138 5 2 11.42 
109 8 4 11.69  139 5 2 12.03 
110 11 5 12.99  140 7 3 11.8 
111 10 4 11.15  141 3 1 11.23 
112 11 5 12.97  142 3 1 13.4 
113 9 4 12.56  143 3 1 13.46 
114 15 7 10.66  144 3 1 13.77 
115 7 3 12.34  145 3 1 11.57 
116 8 4 11.42  146 3 1 11.52 
117 14 8 12.79  147 3 1 14.26 
118 11 5 11.9  148 5 1 12.61 
119 12 6 11.91  149 3 1 11.51 
120 5 2 11.21  150 3 1 11.78 
121 5 2 12.47  151 3 1 12.12 
122 7 3 11.22  152 3 1 12.53 
123 11 4 12.19  153 3 1 13.21 
124 6 2 13.53  154 3 1 11.88 
125 9 3 12.44  155 3 1 11.36 
126 7 3 12.69  156 3 1 11.66 
127 7 3 12.89  157 3 1 13.02 
128 5 2 12.41  158 3 1 14 
129 5 2 12.83  159 3 1 12.43 
130 5 2 12.72  Total 384 162 12.27 
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Figure 4-1 Distribution of lifetime winnings after loge transformation for all animals, 
including those that were not genotyped. A. Shows overall distribution of winnings for 
the population as a whole. B. Shows distribution of winnings by sex, the pronounced 
tendency for males to have higher values is the result of the much stronger selection 
exerted on males.  
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Whole-genome scan  

 Results of the linkage analysis for the autosomes are detailed in Table A-10 with 

the results for the X chromosome in Table A-11. The maximal achievable LOD score 

was 5.46 for the majority of the chromosomes. For ECAX the LOD score was 5.38, for 

ECA19, ECA23 and ECA31 it was 5.27, for ECA25 it was 5.1 and finally for ECA30 it 

was 5.06. The lower maximum LOD score for these chromosomes reflects the fact that 

fewer families provided useful genotyping data in these cases.  

 The microsatellite L12.2 located on ECA29 at 52.6 cM, showed the highest LOD 

score in the data set, with a LOD score of 1.16 and p-value of 0.01. Plots diagramming 

the highest LOD scores observed in the genome scan are shown in Figure 4-2 and the 

LOD scores and cM distance correspond to the data outlined in Table A-10.  

The empirically determined threshold for statistical significance was a LOD score of 1.54 

(following 1000 simulations). This corresponds to a genome wide p-value of 0.05. The 75 

highest LOD scores observed in the simulation are listed in Table A-12. An example of 

the highest LOD scores observed from one simulation is shown in Figure 4-2 B. The 

highest LOD score observed in our data set (1.16) is well below the threshold for whole 

genome statistical significance (1.54). As a consequence it was apparent that our set of 

markers did not show any evidence of significant linkage to prize money won in the 

current sample population. 
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Figure 4-2 Plots for the six chromosomes with the highest LOD scores calculated by the 
MERLIN program using the “--qtl” option A. The actual data set, corresponds to the 
results presented in Table A-10. B. Example from a single simulated data set. The 
simulated data set has the same maker spacing and level of polymorphism as observed in 
the original data set. However the simulated genotypes are not linked to the phenotype of 
interest.  
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Association analysis  

 In the case of the family based association analysis implemented by QTDT, no 

significant evidence of association was observed. The marker displaying the strongest 

association was the microsatellite VDRms with a p-value of 0.4047. However this value is 

not statistically significant. The output from QTDT is shown in Table A-13. These results 

were obtained using the default association model and the typical variance components 

suggested in the QTDT tutorial (http://www.sph.umich.edu/csg/abecasis/QTDT/). 

Different combinations of variance component and other association models 

implemented in QTDT were also tested using the genotype data for the 66 adjacent 

markers. However, no evidence of association with the phenotype was observed.  

 

Discussion  

Measuring the phenotype  

 A number of measurements have been suggested as indicators of performance on 

the track, including rank at finish, handicap weight, time to finish, best time, earnings, 

average earnings and log of earnings (Hintz 1980). All are essentially attempts to 

quantify the ranking of the horse in the races they have participated in and to a certain 

extent can be seen as interchangeable (Langlois 1996). Information on race winnings is 

one of the most readily available pieces of information for any Thoroughbred. As a 

consequence it is an attractive indicator to use in evaluating performance on the track and 

is one of the most commonly used measurements when determining the heritability of 

athletic performance in the Thoroughbred (Tolley et al. 1985; Langlois 1996; Langlois & 
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Blouin 2004). A review of the available literature by Tolley et al. (1985) found that 

estimates of the heritability for race winnings ranged between 0.23 and a rather high 

estimate of 0.56, with the majority of the estimates falling towards the lower end of the 

range. However when Chico (1994) examined this parameter in Spanish Thoroughbreds 

and estimated the heritability of race earnings to be a much more modest 0.1. In Poland, 

Sobczynska and Lukaszewicz (2004) found heritability for earnings to be 0.12, while 

Svobodova et al. (2005) looking at Thoroughbreds in the Czech Republic found 

heritability of race earnings to be 0.32. Overall, the ready availability of information on 

prize money and the relatively consistent heritability observed made it the most practical 

and accurate measurement of performance presently available for the sample population 

under examination. 

One of the main weaknesses of measuring performance with an indicator such as 

prize money or handicap rating is that in certain cases the indicator may not actually be 

measuring the exact same phenotype in different animals. Animals that compete over five 

furlongs (1006 m) will rely to a larger extent on anaerobic pathways than animals 

competing over two miles (3219 m) (Eaton et al. 1995). As a consequence the genes 

influencing anaerobic pathways would be more important in sprinters than in stayers. 

Williamson and Beilharz (1998) looking at Australian Thoroughbreds found a high 

heritability for the distance at which animals preformed best. Ricard et al. (2000) 

reported a similar trend, suggesting that different genetic factors are involved in 

performance, depending on the race length and racing surface the animal performs best 

at. An observation that lends some credence to the old saying “horses for courses”.  
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Unfortunately in the present study it was not possible to separate the sample 

population based on the animal’s optimal racing distance as this information was not 

available. In future studies it would be prudent to attempt to obtain information on the 

race distance and track surface favored by each animal in order to analyze animals 

separately based on their favored race distance and track conditions. 

In addition to the difficulty outlined in measuring and quantifying performance of 

the animals analyzed in this study a second issue faced was how to deal with animals that 

had not raced. It could be argued that unraced animals should be classified as poor 

performers because they were most likely judged incapable of racing due to 

conformational problems or were not considered suitable for racing after evaluation at a 

training yard. Therefore despite never being tested on a track they should be assigned a 

lifetime winnings of zero by default. However there are a large number of potential 

factors (with injury being the most prominent) that conspire to prevent an animal from 

reaching the track. As a consequence, irrespective of the underlying reason the phenotype 

of the animals that had not raced was treated as missing data.  

 

Genome scanning panel  

 One of the assumptions underlying the present investigation is that in addition to 

QTLs with small effect there are QTLs with a significant effect on the phenotype 

segregating within the Thoroughbred population. Given the modest sample size and the 

number of markers available, it was very unlikely that QTLs of small effect would be 

identifiable in the present study (Andersson & Georges 2004). We had also hoped to 
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increase our chances of identifying significant linkage by strategically selecting 

microsatellite markers adjacent to candidate genes. However despite this targeted 

approach we did not identify significant linkage with the phenotype.  

 The recent publication of an additional 2,400 microsatellites (Tozaki et al. 2007) 

and the availability of the draft equine genome sequence (UCSC EquCab2, 

http://genome.ucsc.edu/) increase the prospects of improving marker density and filling 

some of the gaps in the current panel. However as has been pointed out previously, in 

order to extract 100% of the inheritance information from a pedigree over 1000 evenly 

spaced microsatellites are required. Additionally as was outlined in the previous chapter 

microsatellites tend to have a modest number of alleles in the Thoroughbred, 

necessitating an even higher marker density to compensate for the lack of heterozygosity. 

The prospect of attempting to genotype thousands of microsatellites in a large number of 

animals is daunting. However the development of new SNP based genotyping platforms 

such as the EquineSNP50 BeadChip (http://www.illumina.com/pages.ilmn?ID=285) 

appears as an attractive alternative. Preliminary investigations using this SNP chip have 

shown the majority of the SNPs on the chip are polymorphic in the Thoroughbred. 

Additionally the chip has been successfully used to remap the chestnut (MC1R) and black 

(ASIP) coat color loci in a number of breeds (Mickelson et al. 2009). Consequently while 

it may be prudent to attempt to fill some of the gaps in the panel described in this study, 

attempting to improve the panel to a point where it is capable of extracting 100% of the 

information content is not prudent given the availability of alternate approaches.  
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Sample population 

 The largest impediment to identifying QTLs affecting athletic performance in the 

current study was the sample population utilized. The total number of animals genotyped 

was 162, as has been pointed out a number of times previously when attempting to 

investigate complex phenotypes large sample population are generally required. The 

utility of the sample population in the current study was further hampered by two factors. 

Firstly, 38 of the genotyped animals had never raced and as a result their phenotype was 

treated as missing data. Secondly, when pedigrees were constructed it was observed that 

a number of the resultant families had a large number of missing individuals, especially 

sires. Missing genotypes reduces the ability of MERLIN to track the alleles through the 

pedigree and determine if an allele is identical by descent or identical by state in two 

related individuals. This was reflected by the fact that MERLIN was only capable of 

utilizing the genotype information from 21 of the families in the majority of the 

chromosomes (see Table A-10 & A-11). MERLIN does not indicate which families are 

uninformative. Taking a best-case scenario and assuming that families with the most 

genotyped individual were the families utilized, this would mean that only 100 

individuals were actually tested for linkage with the phenotype of interest. Additionally, 

when we consider the fact that a portion of these animals would also lack race 

performance data, the actual number falls below 100. In the light of these observations 

the lack of significant linkage was unsurprising.  

 In the future, in order to have a realistic change of identifying regions of the 

genome affecting athletic performance larger sample populations will be required. 
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Additionally, if methodologies requiring pedigreed populations are utilized, attempts 

should be made to either obtain genotypes from both parents or increase the number of 

siblings genotyped to more accurately track the segregation of alleles in the pedigree.  

 

Other confounding factors  

 In the current study the marker set and sample population are the most cogent 

factors in relation to our inability to identify significant linkage or association to the trait 

of interest. However other factors such as epistatic interactions, can also influence our 

ability to identify QTLs (Carlborg & Haley 2004). Searching for such interactions 

requires large sample sizes and increases the complexity of data analysis (Andersson & 

Georges 2004; Georges 2007). Given the modest sample size of the population available 

in the current study the probability of detecting such interactions was very low. An 

additional factor that has the potential to complicate the search for QTLs affecting 

performance is imprinting. While it was not possible to take its potential influence into 

account in the non-parametric linkage analysis carried out by the MERLIN program 

(Abecasis et al. 2001) it was possible to asses its impact in the QTDT program (Abecasis 

et al. 2000) used for association analysis. However, as with the other variables/models 

tested using this program no significant association was observed between any marker 

and the phenotype while assuming imprinting.  
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Determining significance 

 A feature of many linkage studies investigating complex phenotypes is the lack of 

reproducibility of QTLs across populations (Altmüller et al. 2001; Glazier et al. 2002). 

Some of this can be attributed to the fact that different QTLs are segregating in different 

populations for the same phenotype. However, some of this discrepancy may be due to 

spurious linkage. In the current genome scan almost 200 microsatellites were used, 

producing a large number of tests for linkage with performance. Therefore by chance 

alone, some markers will show apparent linkage with the trait of interest. To compensate 

for this problem of multiple testing, permutation analysis is often employed (Georges 

2007). This approach simulates a large number of genome scans based on versions of the 

study data unlinked to the trait of interest to arrive at a threshold for significance (Es 

2003). In the current study the marker L12.2 showed a LOD score of 1.16 and a p-value 

of 0.01. At first glance one might be tempted to describe this as significant. However as 

can be seen from the 1000 simulations carried out in MERLIN (Abecasis et al. 2001) 

high LOD scores (the highest LOD score observed in the simulations was 2.09, with a p-

value of 0.001, see Table A-12) can occur by chance and LOD scores above 1.16 are 

routinely observed in simulated data sets. The simulated data in this study determined 

that only LOD scores above 1.54 met the criteria for genome wide statistically 

significance (accepting a 5% chance of a false positive). While it may be worthwhile to 

examine additional microsatellites in the region around L12.2 for linkage to performance, 

the current LOD score for this marker is at best suggestive and well below the threshold 

for genome wide significance. 
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Distance to candidate genes 

 Association analysis is better suited to analyzing complex phenotypes as this 

approach is capable of detecting QTLs of small effect (as low as 0.01%) in a suitable 

sample population (Sham et al. 2000). However in this approach the genotyped marker 

must be in strong linkage disequilibrium with the underlying QTN if this association is to 

be detected. In the present study over half of the microsatellite markers were over 1 Mb 

from their respective candidate gene and as a consequence were unlikely to be in strong 

linkage disequilibrium. As a result even if a candidate gene was contributing to athletic 

performance in the study population, the association may have been missed due to weak 

linkage disequilibrium between the candidate gene and its respective microsatellite 

marker, especially because of the small sample size. In contrast having a microsatellite 

immediately adjacent to the candidate gene is not as vital in linkage analysis, as linkage 

extends over a number of cM in families. As a consequence microsatellites within 1 or 2 

Mb of their respective candidate gene will generally remain linked to the marker as they 

pass through the pedigree. 

 

Conclusion  

 The lack of significant evidence of linkage or association with the markers 

utilized and prize money won on the track, while disappointing, was not surprising. The 

inherit limitations in the panel of markers utilized, the small sample population and the 

missing genotypes in the pedigrees all contributed to our inability to detect significant 

association/linkage. However given the pool of previously published microsatellites 
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available in the horse at the initiation of this work, it would have been difficult to produce 

a more informative panel for use in the Thoroughbred. The last number of years has seen 

rapid progress in the field of equine genomics, with the production a number of new 

technologies for genotyping and expression analysis. As a result, it seems that future 

studies investigating athletic performance in the horse may be more constrained by their 

ability to collect a robust sample population, rather than a lack of the necessary genomic 

tools. 
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CHAPTER V 

FUTURE PROSPECTS AND CONCLUSIONS 

 

Future prospects 

 Given the important role athletic performance plays in the Thoroughbred it is 

certain that future studies will also attempt to identify the molecular underpinnings of this 

phenotype in the Thoroughbred. Given what has been outlined in this manuscript it is 

evident that such investigations should include a larger and more comprehensive sample 

population than utilized in the present study. Despite the development of novel genomic 

tools and technologies, the fundamental need for a large well documented population will 

persist. However, given the dispersed and conservative nature of the industry this is likely 

to remain a major stumbling block.  

 Provided a suitable sample population can be obtained, the next question is what 

approach should be adopted for analysis of the phenotype of interest. As mentioned 

previously, even QTLs of large effect exert a relatively small influence on the overall 

phenotypic variability in complex phenotypes. Simulation studies carried out by others 

have shown that in the case of complex phenotypes where parental data is missing, the 

sample sizes required to be confident of identifying linkage or association are generally 

much smaller (Sham et al. 2000). Consequently future efforts are more likely to benefit 

from association based approaches given the smaller sample sizes required (hundreds 

rater than thousands) and the ability to identify more modest phenotypic effects when 

compared to linkage analysis (Sham et al. 2000).  
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One of the major drawbacks with association analysis is that markers must be in 

strong linkage disequilibrium with the causative mutation. As a consequence two 

approaches can be taken, either polymorphic markers can be identified adjacent to 

candidate genes or a whole genome panel of high-density markers can be employed. In 

the present study the first approach was utilized by selecting microsatellites adjacent to 

candidate genes. Future studies attempting to carry out association analysis using the 

candidate genes approach could also use microsatellites as markers. However, in the 

horse almost one million SNPs have already been identified as part of the horse genome 

sequencing effort (http://www.broad.mit.edu/mammals/horse/snp/) and the possibility 

always remains for individual investigators to re-sequence regions of the genome to 

identify additional SNPs to tag a region of interest. As a result carrying out association 

analysis using a panel of SNPs in and around a candidate gene has become a relatively 

straightforward endeavor. 

The great limitation of this candidate genes approach is that selected candidate 

genes may not be contributing to the variability observed in the population under 

examination. Even within species, different QTLs can affect the same phenotype in sub 

populations. This phenomenon has been observed in the literature dealing with athletic 

performance in humans where ethnic groups can show linkage to different regions of the 

genome when examining the same phenotype (Rankinen et al. 2006). As a consequence 

if the selected candidate genes are not influencing the variability observed in the sample 

population, obviously no association with the markers will be observed.  



 

 

134 

134 

The majority of the discussion so far in relation to candidate genes has been based 

on genes identified in other species. An attractive alternate approach is to use the recently 

developed equine oligonucleotide array (Chowdhary & Raudsepp 2008) to identify 

equine candidate gene for athletic performance. This can be achieved by looking for 

genes that show altered levels of expression during and after exercise. Investigations into 

the transcriptional response to exercise in equine muscle have already been carried out on 

cDNA arrays (McGivney et al. 2008) and hopefully these and future investigations will 

identify candidate genes that can be investigated for association with athletic 

performance in the horse. While this approach holds promise there are also drawbacks, 

only a limited number of tissues can be readily accessed to identify transcription changes 

during exercise. As a consequence only a portion of the potentially important changes in 

transcription during exercise will be identifiable.   

The second option is to go the whole genome route. As was mentioned earlier the 

equine SNP chip has been successfully used to remap the regions of the genome 

harboring the recessive loci responsible for two different coat colors (Mickelson et al. 

2009). This platform could also be utilized to investigate more complex phenotypes in the 

future, although the large sample population required may be cost prohibitive in the near 

term. However, the rapid pace of development in genotyping technologies and next 

generation sequencing will eventually make whole genome approaches more affordable 

in large sample populations. A whole genome approach may be especially important in 

examining athletic performance in the Thoroughbred. As was discussed as some length in 

the chapter I, race times in a number of élite Thoroughbred races have improved little 
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over the last number of decades, causing some to speculate that Thoroughbreds may have 

reached a physiological limit that prevents further improvements in race time (Gaffney & 

Cunningham 1988). Despite this, studies examining the heritability of performance on the 

track show that genetic variability for racing performance is still present in the 

Thoroughbred population (Ricard et al. 2000). This observation has lead some to 

speculate that it may be genetic variability in the genes influencing traits such as the will 

to win or the ability to stay sound during the rigor of training and competing that are 

important in the modern Thoroughbred rather then genes affecting anaerobic and aerobic 

respiration (Langlois 1980; Bailey 1998). As a consequence it is difficult to anticipate 

what genes are influencing performance in Thoroughbred and select plausible candidates, 

making it prudent to take a whole genome approach in order to cast as wide a net as 

possible when searching for the regions of the genome affecting performance.  

 

Insights from other species 

 The sequencing of the equine genome and the development of resources such as 

the equine SNP chip provides important new tools to assist in the identification of 

complex traits in the horse. However, as has been seen in humans where high-resolution 

SNP chips and microarrays have been available for a number of years, even with these 

technologies in place dissecting the underlying molecular causes of complex traits 

remains a difficult task. Unlike the case in humans, the underlying population structure 

and history of the horse provides a number of advantages. As in other domestic species it 

is possible (but difficult) to collect samples from large numbers of half-sibs, additionally 
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pedigree records and phenotypic data that extend back for many generations is often 

available. More importunately domestication and selective breeding will have left marks 

on the equine genome that should simplify the identification of regions undergoing 

selection and harboring disease genes (Karlsson & Lindblad-Toh 2008). 

 In the dog, domestication and subsequent breed creation produced population 

bottlenecks that reduced genetic variability in the population and created long breed 

specific haplotype blocks that are then slowly eroded by recombination (Lindblad-Toh et 

al. 2005). These long haplotype blocks can be exploited to identify regions of the genome 

harboring traits of interest using a relatively small genome wide panel of SNPs. Within 

breeds a panel containing only 15,000 SNPs is sufficient for association mapping 

(Karlsson & Lindblad-Toh 2008). However within breeds relatively large regions of the 

genome will be associated with the phenotype of interest. To narrow down the candidate 

region identified in one breed it is possible to compare the same large segment of the 

genome in different breeds exhibiting the same phenotype to identify which segment they 

have in common. This approach can reduce the candidate region to an extent that it is 

possible to begin re-sequencing to identify the underlying molecular polymorphisms and 

a similar strategy is possible in the horse (Karlsson et al. 2007). In the horse selective 

pressure is likely to have been less severe and the incidence of cross breeding higher than 

that seen in the dog. As a consequence haplotype blocks are shorter (but still considerably 

longer than seen in humans) and there is likely to be greater haplotype block sharing 

between breeds (Karlsson & Lindblad-Toh 2008; Wade et al. 2008). Nevertheless despite 

these caveats the history of domestication and breed creation in the horse are major 
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advantages for mapping single gene traits and hopefully more complex phenotypes in the 

horse.  

A second factor that may help in mapping traits of economic importance in the 

horse is the effect selection has on the region of the genome harboring the advantageous 

allele. Selection for a favorable trait will eventually drive the allele responsible to fixation 

in the population. In addition flanking loci will also become homozygous due to ‘hitch-

hiking” and as a consequence a region of homozygosity surrounding the allele under 

selection will be observed. Once the allele is fixed in the population this region of 

homozygosity will be eroded by recombination (Andersson & Georges 2004). The longer 

regions of linkage disequilibrium surrounding a polymorphism under positive selection 

may make it easier to detect these alleles when carrying out whole genome association 

analysis  

  

Conclusion 

 Equine genomics has witnessed a remarkable transformation over the last number 

of years. From an era where the equine genome was essentially a black box to the point 

where we have a sequenced equine genome. In turn, new genomic tools such as the SNP 

chip and oligonucleotide array provide powerful new ways to investigate both 

economically import and health related traits in the equine genome. As a consequence we 

can hope that the equine genetics community will utilize these tools to improve the 

efficiency of the equine industry by identifying markers associated with economically 

important traits. But most importantly it is hoped that the genetic underpinnings of 
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heritable equine diseases will be elucidated, a development that may also provide insights 

into human health.   

 The failure of this study to identify any QTLs associated with athletic 

performance in the Thoroughbred was disappointing, but not entirely surprising given the 

inherent limitations in the present study. However this work has not been a futile 

exercise, mapping candidate genes in the equine genome has contributed to the RH and 

especially to the FISH map of the equine genome. Additionally the development of a 

genome scanning panel specifically for the Thoroughbred will be useful for future 

microsatellite based linkage studies. The rapid developments in the field of equine 

genomics means that if the study were initiated today a rater different approach would be 

utilized, taking advantage of new tools such as the equine SNP chip and oligonucleotide 

array. While the development of such tools is welcome, they are no guarantee of success. 

The lack of progress in identifying the underlying causes of many complex diseases and 

phenotypes in human genetics attests to the fact that even with such tools at ones 

disposable it remains a challenge to dissect the underlying molecular causes of complex 

phenotypes. However given some of the potential advantages associated with mapping 

complex traits in a domestic species outlined above we can be hopeful that more concrete 

insights into the genetic underpinnings of athletic performance in the Thoroughbred are 

not far off.  
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APPENDIX A 
Table A-1 Human candidate genes mapped in this study, primers and closest microsatellite in genome scanning panel 

Gene 
symbol Name  Chr 

No. 
Closest 

microsatellite 
in panel 

Distance to 
microsatellite 

(EquCab2) 
Primers 5' > 3' Size 

(bp) Temp MgCl2 
(mM) 

GPR10 (aka 
PRLHR) 

G protein-coupled 
receptor 10 1 1CA30 292 kb F:GCTGATCGTGCTGCTCTACA                         

R:AGCAGGTTGAAGACGTGCAG 717 58 1.5 

AGT Angiotensinogen  1 AGTms 196 kb F:CAGGTGACCGGGTGTACATA                         
R:GGAAGTGGACGTAGGTGTTGA 759 54 1.5 

RYR2 Ryanodine receptor 2 
(cardiac) 1 No ms adjacent    F:AGCTTTGAGTGCTACAGACATGG                

R:GCTGAGCTTTGGTAAGTGAACAG 182 58 1.5 

LIPC Lipase, hepatic 1 UCDEQ440 2.8 Mb F:CCTCTTCATCGACTCCTTGCT                        
R:GAGGCTCTTGCTCTTCTTGC 169 58 1.5 

CYP19A1 Cytochrome P450, 
family 19 1 HMS15 2.3 Mb F:TGAAGGTGATGCTGGTTTCA                           

R:TGTTCGAGGCACTTTTCTGA 169 58 3 

CPT2 Carnitine 
palmitoyltransferase II 2 No ms adjacent    F:CCAGATGGCCTTTCTGAGG                             

R:CTGAAGCTCCGCAGCACT 170 58 1.5 

FGA Fibrinogen, A alpha 
polypeptide 2 TKY850 910 kb F:GACTCTGTCCTTCGGGTTGA                         

R:AGCCTCCTCCGTAGACTTCC 259 58 1.5 

FGB Fibrinogen, B beta 
polypeptide 2 TKY850 910 kb F:TCGGAAATGACAGAATTAGCC                    

R:GGTTTTCTCCCACCAGTTGA 213 50 2 

UCP1 Uncoupling protein 1  2 UCP1ms 63 kb F:AACAACAGAAGGCTTGACGG                     
R:ACCAGGGCCTCCTTCATTAG 220 58 1.5 

FABP2 Fatty acid binding 
protein 2 2 FABP2ms 60 kb F:CGGTTAGACAACGGAAATGAA                       

R:TCCAAGAACAATGCTCACTCC 572 58 1.5 

HP Haptoglobin 3 TKY1085  705 kb F:CCCATCTGCCTACCTTCAAA                         
R:TACCAGGTGTCGTCCTCCTC 320 58 1.5 

PPARGC1A 

Peroxisome proliferative 
activated receptor, 
gamma, coactivator 1, 
alpha 

3 PPARGC1Ams Intron 3 F:AGACCAGTGAACTGAGGGACA                   
R:GATTTGGGTGGTGACACAGA 229 60 1.5 

PGAM2 Phosphoglycerate 
mutase 2 (muscle) 4 TKY942  767 kb F:CAAGGACGCAAAGATGGAAT 

R:GTGGTGGGATGTCAAAGGAG 236 55 1.5 

IGFBP1 Insulin-like growth 
factor binding protein 1 4 TKY942  617 kb F:GAGCAGCTCCTGGACAGTTT 

R:CCACTTTTTGATGTCGGAGA 123 58 3 

PON1 Paraoxonase 1 4 PON1ms 82 kb F:GGTGAACCATCCAGATTTTAAG 
R:GGCAGAAGTTTGTGTCTGATG 102 55 1.5 

PON2 Paraoxonase 2 4 PON1ms 82 kb 
F:ATGGTATCAGCACTTTCATAGACA             
R:AAGCTCATGTTTGATTGTTTTTAGA 678 55 1.5 
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Table A-1 (continued) 
NPY Neuropeptide Y 4 IL6ms 1.2 Mb F:AAGCGACTGGGGTTGTCC                           

R:GTGTCGCAGCGCTGAGTAGT 150 58 1.5 

ATP1B1 
ATPase, Na+/K+ 
transporting, beta 1 
polypeptide  

5 TKY508 702 kb F:CATGCTGGTGCTGTGTCTTT                            
R:TCCATTGTTTTAACCTGACTGAA 300 58 1.5 

APOA2 Apolipoprotein A-II 5 TKY521  1.1 Mb F:GAGCTTTGGTTCGGAGACAG                          
R:TGTCAGCTGCTCCTTTGACTT 586 58 1.5 

ATP1A2 
ATPase, Na+/K+ 
transporting, alph-2 
polypeptide 

5 TKY521 417 kb F:CTGCCATCTCCTTGGCCTAT                          
R:AGGTGAAGAAGCCACCCAGT 352 60 1.5 

S100A1 S100 calcium binding 
protein A1 5 AHT050 387 kb F:GTGGACAAGGTGATGAAGGAC                   

R:TGTTACAGGCCACTGTGAGG 100 58 1.5 

CASQ2 Calsequestrin 2 5 AMPD1ms 1.0 Mb F:CCTTGAAGATGAATGAGGTTGA                     
R:GGTGCTCTTTCACAAACTCCA 111 56 1.5 

AMPD1 
Adenosine 
monophosphate 
deaminase 

5 AMPD1ms 79 kb F:CATCATGGTGCTCAACAACC                          
R:TTTTAAATTCAGGCCATGAGAGA 900 58 1.5 

LEPR Leptin receptor 5 LEPRms  11 kb F:CCGTTGTTCGTCCTGATCTT                           
R:AATGATAGGCAGTCCGAAGG 159 58 3 

GNB3 

Guanine nucleotide 
binding protein (G 
protein), beta 
polypeptide 3 

6 GNB3ms  22 kb F:CTCTGTAGCCAGGGCAGTGT                        
R:GGAGGCTGTCACAGAAAAGC 173 66 1.5 

VDR 
Vitamin D (1,25- 
dihydroxyvitamin D3) 
receptor 

6 VDRms 11 kb F:AGGACCAGATCGTACTGCTGA                    
R:AGTCTTGGTTGCCACAGGTC 108 56 1.5 

UCP2 Uncoupling protein 2 7 UCP2ms  137 kb F:GACCCCAAGCCTTCTACAAA                       
R:CCTCTTCAGCTGCTCGTAGG 464 52 1.5 

UCP3 Uncoupling protein 3 7 UCP2ms 158 kb F:GATGAGCTTCGCCTCCATC                           
R:GCCAAAATCCGGGTAATGAT 337 60 1.5 

LDHA Lactate dehydrogenase 
A 7 AHT019 942 kb F:TGCACACTCCAAGCTGGTTA                        

R:TGGATTGGAAACAACAAGCAA 160 58 1.5 

PNMT Phenylethanolamine N-
methyltransferase 11 AHT076  813 kb F:GTGTGTACAGCCAGCACGTC                       

R:AGTGTGGTGATGTGGTCCAG 355 58 1.5 

SGCA 

Sarcoglycan, alpha 
(50kDa dystrophin-
associated 
glycoprotein) 

11 AHT076  4.0 Mb F:AGGAAGTGTTGCCCTCGTC                          
R:AGGAGAAGGGTGAGGCAGAG 540 66 1.5 

CNTF Ciliary neurotrophic 
factor 12 TKY404 1.2 Mb 

F:AGCTTACCGTACCTTCCATGTTAT                
R:AGCTCTTGCAGCACCTTCAG 261 58 1.5 
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Table A-1 (continued) 
SCGB1A1 Secretoglobin, family 

1A, member 1 12 TKY404 2.0 Mb F:CTGAAGACGCTGGTGGACTT                       
R:CAGCTTCTAAATCCTAAGCACACA 450 58 1.5 

PYGM Phosphorylase, 
glycogen; muscle  12 UCDEQ411 54 kb F:CCCTGACAGACCAGGAGAAG                     

R:GCCAGCGCGAAGTAGTAGTC 160 66 1.5 

ACTN3 Actinin, alpha 3 12 ACTN3ms 27 kb F:GGAGGACTTTCGGGACTACC                         
R:GAGCAGCCAGTCCTCATAGC 308 58 1.5 

SERPINE1 Plasminogen activator 
inhibitor-1 13 TKY585 1.2 Mb F:ACATGTTCAGGCCAAACCAG                       

R:CGGTCACCTCGATCTTCACT 219 58 1.5 

PPARG 
Peroxisome proliferative 
activated receptor, 
gamma 

16 AHT037 954 kb F:GGGTGTCAGTTTCGCTCAGT                         
R:CACCAAAAGGCTTTCTCAGG 235 62 3 

SGCG Gamma sarcoglycan 17 COR105  817 kb F:AGTTGGTTCAGGGAACTTGG     
R:GATCCGTGGAAGATGCAGTT 163 58 2 

CASR Calcium-sensing 
receptor 19 TKY730  1.8 Mb F:GGCACAATTGGATTTGCTTT                            

R:CTCCCAGGTGAGCAGGTATAG 377 58 1.5 

TNF Tumor necrosis factor 20 UM011  2.2 Mb F:CTTCTCGAACCCCAAGTGAC                       
R:GAGACAGCTAAGCGGCTGAT 548 58 1.5 

PLCG1 Phospholipase C 
gamma 1 22 SGCV01 292 kb F:GCTTTGGCCACAATTTTCAT                          

R:TGCCCCTAGTGAGAAGCTGT 242 58 1.5 

CNTFR Ciliary neurotrophic 
factor receptor 23 SGCV04  1.4 Mb F:CCCAACACCTTCAATGTGACT                       

R:TGATAGCTGTGGCATTGTGG 346 58 1.5 

BDKRB2 Bradykinin receptor B2 24 COR024 2.3 Mb F:ACTTCCTCATGCTGGTGAGC                          
R:TCTGCATCTCGTTGTTACGC 336 58 1.5 

ADRB3 Beta-3-adrenergic 
receptor  27 ADRB3ms 28 kb F:GCAACCTGCTGGTAATCGTG                          

R:CTCATGATGGGCGCAAAC 364 56 1.5 

PPARA 
Peroxisome proliferative 
activated receptor, 
alpha 

28 UCDEQ425  991 kb F:AGTGCACGTCCGTAGAGACC                       
R:TCACTGTCGTCCAGTTCCAG 292 58 1.5 

GK Glycerol kinase X GKms 64 kb 
F:CTTCTTATGGCTGCTACTTCGTC                    
R:GCAATATGGCATTTATTGGTGA 613 58 4 

Data published in (Raudsepp et al. 2008a) 
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Table A-2 Human candidate genes mapped by others 
Gene 

symbol Name Chr 
No. 

Location 
EquCab2 

Mb 
Human 

Location 
Human 

Mar. 
2006 

Closest 
Microsatellite Distance Reference 

ADRB1 Adrenergic, beta-1-, receptor 1 17 10q25.3 115.7 LEX039 1.6 Mb  EquCab2 

ADRA2A Alpha-2A-adrenergic receptor 1 19.6 10q25.2 112.8 LEX020 226 kb EquCab2 

ANG Angiogenin monophosphate, Rnase A 
family,5 1 157.6 14q11.1-q11.2 20.2 1CA16 521 kb  EquCab2 

DI01  Delodinase, iodothyronine, type I  2 5.55 1p33p32 54.1 No ms 
adjacent    EquCab2 

LPL Lipoprotein lipase 2 49 8p22 19.8 No ms 
adjacent    (Chowdhary et al. 

2003) 

CETP Cholesteryl ester transfer protein, plasma 3 9.2 16q21 55.5 CETPms  197 kb EquCab2 

TK2  Thymidine kinase 2, mitochondrial  3 17 16q22q23.1 65.1 COR033* 3.54 Mb EquCab2 

IGFBP3  Insulinlike growth factor binding protein 3  4 16.3 7p13p12 45.9 TKY942 600 kb EquCab2 

IL6 Interleukin 6 4 54.4 7p21 22.7 IL6ms 2 kb  (Musilova et al. 
2005) 

CFTR 
Cystic fibrosis transmembrane 
conductance regulator, ATP-binding 
cassette (sub-family C, member 7) 

4 74.5 7q31.2 116.9 HMS19 3.9 Mb (Chowdhary et al. 
2003) 

LEP Leptin  4 83.4 7q31.3 127.6 HMS09 1 Mb  (Caetano et al. 
1999) 

NOS3 Nitric oxide synthase 3 (endothelial cell) 4 102.6 7q36 150.3 NOS3ms  117 kb  (Perrocheau et al. 
2006) 

PFKM Phosphofructokinase, muscle 6 65.77 12q13.3 46.8 COR070 80 kb (Chowdhary et al. 
2003) 

DRD2 Dopamine receptor D2 7 21.8 11q23 112.78 APOC3ms  3.0 Mb (Chowdhary et al. 
2003) 

APOC3 Apolipoprotein C-III 7 24.8 11q23.1-q23.2 116.2 APOC3ms  10 kb  (Chowdhary et al. 
2003) 

APOA1  Apolipoprotein Al  7 21.53 11q23 116.2 APOC3ms 3.3 Mb EquCab2 

SUR aka 
ABCC8 Sulfonylurea receptor 7 85.6 11p15.1 17.4 AHT019 Exon 11 (Raudsepp et al. 

2008a) 

COMT Catechol-O-methyltransferase 8 Un 22q11.21 18.3 AHT005 218 kb  (Momozawa et al. 
2005) 
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Table A-2 (continued) 
LIPG Lipase, endothelial 8 68.1 18q21.1 45.3 COR003 3.8 Mb  EquCab2 

MC4R  Melanocortin 4 receptor  8 77.1 18q22 56.1 No ms 
adjacent    EquCab2 

TGFB1 Transforming growth factor, beta 1 10 11.8 19q13.2 46.5 NVHEQ018 3.5 Mb (Perrocheau et al. 
2005) 

APOE Apolipoprotein E 10 15.5 19q13.31 50.1 NVHEQ018  145 kb  EquCab2 

CKM Creatine kinase, muscle 10 15.8 19q13.2-q13.3 50.5 NVHEQ018  515 kb  (Chowdhary et al. 
2003) 

ACE Angiotensin I converting enzyme  11 15.8 17q23 58.9 ACEms  133 kb  (Milenkovic et al. 
2002) 

BRCA1 Breast cancer 1, earley onset 11 20 17q21 38.4 SGCV24  520 kb  (Raudsepp et al. 
2008a) 

COL1A1 Collagen, type I, alpha 1 11 25.9 17q21.3-q22.1 45.6 AHT076  4.0 Mb  (Raudsepp et al. 
2008a) 

ENO3 Enolase 3 11 49.5 17pter-p11 4.7 ACADVLms   449 kb  (Chowdhary et al. 
2003) 

ACADVL Acyl coenzyme A dehydrogenase, very 
long chain 11 50.2 17p13-p11 7.06 ACADVLms  221 kb  EquCab2 

IGF2 Insulin-like growth factor 2 12 30.6 11p15.5 2.11 COR058 2.6 Mb  (Raudsepp et al. 
1997) 

KCNQ1 Potassium voltage-gated channel, KQT-
like subfamily, member 1 12 30.8 11p15.5 2.4 AHT017 230 kb EquCab2 

ADRB2 Beta-2-adrenergic receptor  14 28.9 5q31-q32 148.18 ADRB2ms  38 kb  (Chowdhary et al. 
2003) 

NR3C1 Nuclear receptor subfamily 3, group C, 
member 1  14 33.8 5p31 142.63 UM032  5.2 Mb  (Goh et al. 2007) 

AGTR1  Angiotensin II receptor, type 1  16 78.8 3q21q25 149.9 TKY936 5.1 Mb EquCab2 

BRCA2 Breast cancer 2, earley onset 17 11.5 13q12.3 31.78 COR007 4.8 Mb  (Chowdhary et al. 
2003) 

TTN Titin 18 56.9 2q31 179 HTG17 973 kb  (Chowdhary et al. 
2003) 

GDF8(MSTN) Growth differentiation factor 8 18 66.4 2q32.2 190.6 GDF8ms 6 kb (Chowdhary et al. 
2003) 

MYLK  Myosin, light polypeptide kinase  19 31.9 3q21 124.8 TKY730 3.4 Mb EquCab2 

EDN1 Endothelin 1 20 12 6p24.1 12.39 AHT018  1.9 Mb  (Caetano et al. 
1999) 

HLA-A Major histocompatibility complex, class I, 
A 20 29 6p21.3 30.01 UMNe056  28 kb (Chowdhary et al. 

2003) 
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Table A-2 (continued) 
HIF1A Hypoxia-inducible factor 1, alpha subunit 24 8.9 14q21-q24 61.23 No ms 

adjacent    (Chowdhary et al. 
2003) 

SLC25A4  
Solute carrier family 25 (mitochondrial 
carrier; adenine nucleotide translocator), 
member 4  

27 24.9 4q35 186.3 TKY480 0.5 Mb (Raudsepp et al. 
2008a) 

IGF1 Insulin-like growth factor I 28 26.1 12q22-q23 101.3 TKY872  2.4 Mb  (Chowdhary et al. 
2003) 

IL15RA Interleukin 15 receptor, alpha. 29 27.9 10p15.1 6.03 L12.2  2.6 Mb  EquCab2 
ADIPOR1  Adiponectin receptor 1  30 29.7 1q32 201.1 LEX075 2.83 Mb EquCab2 

ESR1 Estrogen receptor 1 31 15 6q25.1 152.1 TKY105 5.4 Mb  (Raudsepp et al. 
2008a) 

STS Steryl-sulfatase precursor X 3.8 Xp22.32 7.14 AHT099 729 kb  (Raudsepp et al. 
2002) 

PHKA1 Phosphorylase kinase, alpha 1 (muscle) X 54.1 Xq13.1 71.7 UMNe402  1.57 Mb (Raudsepp et al. 
2004a) 

PGK1 Phosphoglycerete kinase 1  X 58 Xq13 76.12 PGK1ms 99 kb  (Chowdhary et al. 
2003) 

LAMP2  Lysosomalassociated membrane protein 2 X un Xq24 119.4 No ms 
adjacent    (Raudsepp et al. 

2004a) 

EquCab2 refers to the Sep. 2007 Equus caballus draft genome assembly 
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Table A-3 Microsatellites that showed no amplification with the M13 primer 
Marker Chr 

No. Size Temp MgCl2 

(mM) Primers 5' > 3' Comments Reference 

1CA20 1 194 50 1.5 F:TGGACAAAATGCAAAAGTCA 
R:TCCACTACACAGGAAAACGAA 

F:In DNA 
element 

(Chowdhary et al. 2003) 

ASB012 1 171 65 3 F:TCAGCAATAGAAGCCAGCTCC 
R:TCCTATGGAGGTGACCTTCCC 

  (Breen et al. 1997) 

TKY899 1 169 58 3 F:AGCAACAGAGTAATGCCAAG 
R:TAGGCGGGTTTTAAACATGG 

  (Tozaki et al. 2004) 

UM041 1 105-115 58 2 F:TGCCCTTCCATGAACAGAC 
R:TCCCTCTCTCTCTCTCCTTCTC 

  (Swinburne et al. 2000a) 

UMNe115 1 166 58 3 F:TCCTCCTACACTGGCCATATC 
R:TTTCCTATCGGAGTGCTTGC 

  (Wagner et al. 2004c) 

TKY318 1 152-170 58 1.5 F:ACAGAAGTGGAGATGGTTTG 
R:CCACAGGTTCTACTGTCTTG 

  (Tozaki et al. 2000b) 

UMNe336 2 119 58 1.5 F:ACCTTCTCTTTGGAAGGAAATG 
R:GAGACCTAAGCATGGAGCATG 

  (Mickelson et al. 2004) 

UMNe374 2 194 50 3 F:AATTTCATATGGTTTCCATGCC 
R:TAAGCACTGCGTTAATGTTCTG 

  (Wagner et al. 2004c) 

UMNe563 2 125 55 1.5 F:CTTTCACCCCAGCACTTCTC 
R:TTCTCCATTAAACACACGCG   

  (Wagner et al. 2004b) 

AHT022 3 189-197 58 2 F:AAGCACAATGTGGOSGTTAG 
R:TCCACGTTCACACATACCTCA 

No sequence 
available 

(Swinburne et al. 2000a) 

AHT013 4 142-146 58 2 F:CTTCCTCAGGTGCATAGGTTG 
R:TCATTAAAATACAACCTGCCCC 

  (Swinburne et al. 2000a) 

TKY430 4 156 50 3 F:TTTTGGTTAGGCCTCTGTAC 
R:CCCACTCTCCTATAAACAGT 

No sequence 
available 

(Swinburne et al. 2000a) 

TKY337 4 200 53 1.5 F:AGCAGGGTTTAATTACCGAG 
R:TAGATGCTAATGCAGCACAG 

  (Tozaki et al. 2001b) 

TKY271 5 112-124 56 1.5 F:CAGTGAAGAGTGAATGGATA 
R:GCAAATGGCAGAATTTCCTT  

F & R: In LINE (Tozaki et al. 2001a) 

UMNe481 5 130 55 1.5 F:ACATTGGGCCAGTTGCTTAC 
R:ATTGTTGGGACACCAGATTACC 

  (Wagner et al. 2004b) 

TKY1113 6 206 58 2 F:GATCAGAGGGAGGAAAGAG 
R:AAGAGATGAACAGAATCAGTG 

  (Raudsepp et al. 2008a) 

TKY305 7 128-134 55 1.5 F:CCTCCCTCATCATGTAAGTC 
R:TTATTCAGGGTTCTCCAGAG 

F & R: In LTR (Tozaki et al. 2000b) 

HLM2 11 123-137 58 1.5 F:CCCACCTCCCCATCTCCCAACC 
R:AAGCCAGTTCCTCAGCCCCACC 

  (Vega-Pla et al. 1996) 
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Table A-3 (continued) 
TKY626 11 237-239 56 3 F:CCAGCTGAGCCCATTTTAGA 

R:GGGAGGAGCTGAGAAGATTTG 
R: In SINEs (Tozaki et al. 2004) 

AHT027 12 101-109 58 2 F:GAGCAAGTCTTCCTTCCACG 
R:ACGTGCACACCTGTACGTGT 

  (Swinburne et al. 2000b) 

TKY499 12 122-178 55 1.5 F:GATGCCCTCTGGCTAGTGTT 
R:TAGAGACCCACCTGCTGCTT 

  (Tozaki et al. 2004) 

UMNe331 12 158 64 1.5 F:TAGCCATGATATGGAAACAACC 
R:ACTGTCCATCCATGTTGCTG 

F & R: In LINE (Raudsepp et al. 2008a) 

HBA1 13 170 50 2 F:CTGTCGAATCTGAGCGACCT 
R:GTGGATCGAGGGAGTGTCAG 

No sequence 
available 

(Chowdhary et al. 2003) 

UMNe305 13 162 58 2 F:ACAGTTCACAGCGGCCTC 
R:GAGAGGGAGCAAGCCCTC 

  (Wagner et al. 2004c) 

VHL161 13 160-164 58 2 F:GACCCAACATTGTATGTAAGCG 
R:TGTGAATAGATATAAGTTGCTTGC 

F: In LTR  (van Haeringen et al. 1998) 

TKY267 14 97-113 50 1.5 F:CCACTGCCAAATGAAACAAA 
R:CCACACATTTCAGGAAAGAA 

  (Kakoi et al. 2000) 

VHL204 14 100 62 1.5 F:ACTGAAGTTGAGAATCATTAATGG 
R:ACTTCCTCGACATCCTTCCCT  

F & R: In LINE (van Haeringen et al. 1998) 

COR081 15 102-114 58 1.5 F:AACTTTCGTGTCACTCCTACACT 
R:GCATCTCTTCCACATCAAGG 

  (Tallmadge et al. 1999a) 

SGCV06 15 167 58 3 F:GGGCCTGGTTTTCCTTCTAA 
R:GCATTTGTGGCCTGTGTCATA 

R: In DNA 
element 

(Godard et al. 1997) 

TKY861 15 241 58 1.5 F:GACTCCAGTGTGTTTAGAGG 
R:CAGGACTGCCACAGCTTC 

  (Raudsepp et al. 2008a) 

HTG13 16 120 58 2 F:TTAGCACGGGGAGATCGGATCCTG 
R:GGTCTCCCTCTCCATTCACCCTGC 

  (Marklund et al. 1994) 

NVHEQ216 16 142-144 50 4 F:TTGGACTACTGTATTTGGTC 
R:TGATCTCTCCATAGCATAAT 

  (Penedo et al. 2005) 

COR101 18 232-272 58 2 F:CAATATAAGTGCACGCCTTC 
R:TGGACCTTGAGGGTATGATG 

F: In SINE (Swinburne et al. 2000a) 

TKY322 18 203-224 54 3 F:TGCAAACACTTGTGAACTGC 
R:AACCTAGTGTAATTGCTACC 

  (Tozaki et al. 2000b) 

UCD387 18 78-88 58 3 F:ACCCCCGCCCCAGCAC 
R:TGCCCCGTCATTCTGC 

  (Eggleston-Stott et al. 
1997) 
 

TKY538 19 151-165 58 1.5 F:TGGATGGAAGGGAAACAAGA 
R:TTGAAGAGGGTGGAGCAAAT 

  (Tozaki et al. 2004) 

TKY817 19 155 54 3 F:TATAAACAAGGGCAGAGCGA 
R:GAGTGAATTCCCTGCTTCTC 

  (Tozaki et al. 2004) 
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Table A-3 (continued) 
VHL137 20 149 57 1.5 F:CCCAAACATTTTTGACTGATGC 

R:TTATTTCTAAAGGGGTACGGCT 
  (van Haeringen et al. 1998) 

21CA001 21 295-311 58 1.5 F:TCATGCTGAAATCAATGCAAA 
R:TTCCTTATGGCAACAACACG 

F & R: In DNA 
element 

(Raudsepp et al. 2008a) 

HTG10 21 93 54 2 F:CAATTCCCGCCCCACCCCCGGCA 
R:TTTTTATTCTGATCTGTCACATTT 

  (Marklund et al. 1994) 

HTG32 21 150-160 58 3 F:CCTGAAACCTCAGTAAACAGA 
R:TGTGGCTTTGGTGTGGAAAC 

  (Lindgren 2000) 

SGCV14 21 188 58 3 F:CCCCAGTGGTTCCATTTAGATGT 
R:GGGGAGAGCATTTTGGTGA 

  (Godard et al. 1997) 

TKY306 21 266-279 56 1.5 F:GTTTGTGGTGCTTTGTTAGC 
R:CTCTGCACTTGCTGAACATC 

F: In LINE; R in 
LTR 

(Tozaki et al. 2000b) 

COR022 22 254-264 58 2 F:AAGACGTGATGGGAAATCAA 
R:AGAAAGTTTTCAAATGTGCCA 

  (Murphie et al. 1999) 

UM012 24 100-110 58 3 F:GGAATTTAGACTATGACTGAGG 
R:GCCACCTGAACACTTTTAC 

  (Meyer et al. 1997) 

UM005 26 207-222 50 1.5 F:CCCTACCTGAAATGAGAATTG 
R:GGCAAAAGATCAGGCCAT 

  (Meyer et al. 1997) 

TKY425 28 109-125 58 1.5 F:CCTGGGTGTCGTGTGTTTTA 
R:TTCCTCTCTCCTGCCTCATC 

  (Tozaki et al. 2004) 

TKY515 28 145-151 50 4 F:AGGCCAGCAGTGTTCCTCTA 
R:GGCTCAGGTACGTTCCCTTC 

F:In LTR (Tozaki et al. 2004) 

TKY715 29 224-246 58 1.5 F:CAGTTTCACAGGAGAGAGAGTCC 
R:CTGGAGTCCCACCTCCAAC 

  (Tozaki et al. 2004) 

VIAS-H39 29 154-158 56 2 F:AATGTGATTATAGCAGATAGGGTT 
R:CTATCCAATCTTCACAATCATGTA 

F & R: In LTR (Ewen & Matthews 1994b) 

UMNe060 X 146-154 55 2 F:TGTGGCAGGAAAAACACATG 
R:CCATAATCCATGAGCCTATTCC 

F & R: In LTR (Roberts et al. 2000) 
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Table A-4 Markers not used due to excessive stutter or poor amplification 
Marker Chr No. Size No. 

alleles Temp MgCl2 

(mM) Primers 5' > 3' Comments Reference 

VHL134 1 157-163 3 58 1.5 F:CTGGGAACAGAATCAAGACTTG 
R:TAATATGCATGTATCTGATAGCTC 

F & R: In LINE (van Haeringen 
et al. 1998) 

AHT009 4 ~190 3 58 4 F:TAACCATGTCCCTGCAATGA 
R:TCAGAACTGTCCTTGTGAAAGC 

  (Raudsepp et al. 
2008a) 

UMNe477 5 259-263 4 58 1.5 F:GTCAAGGAACAGCTGAAGGTG 
R:TTCCTGAGCTAGGGTAGGAGC 

  (Raudsepp et al. 
2008a) 

TKY911 5 150-166 5 54 3 F:GATCTTTAGAATCAGCTTGTTG 
R:CTCGCCACGTTAGTTGATG 

F & R: In LINE (Tozaki et al. 
2004) 

TKY028 6 276 3 58 1.5 F:TTCAGCAGGGTCTCATGCCAC 
R:TTCGGCTCTGGTTCAAGAGG 

  (Kakoi et al. 
2000) 

AHT025 8 193-199 3 50 4 F:TCCCACATGCCACAACTAGA 
R:TTCCCCCTTGCTTTTAAAAC 

F & R: In LTR (Swinburne et al. 
2000b) 

COR056 8 201 4 58 1.5 F:AGATTCCAGGCATTAGGACC 
R:TCAGGGACAATCTTCCTCAAG 

F & R: In LTR  (Ruth et al. 1999) 

UM033 8 143-159 4 54 3 F:CATTGTCCTGAGCAAGTC 
R:CTATCCGTCAAGTGTTTC 

F & R: In LTR  (George et al. 
1998) 

HTG04 9 129 3 58 1.5 F:CTATCTCAGTCTTGATTGCAGGAC 
R:CTCCCTCCCTCCCTCTGTTCTC 

  (Ellegren et al. 
1992) 

COR020 10 173-189 6 58 1.5 F:TCTCTACCGCAAGTGAAACC 
R:CTGAATTGTAGGACATCCCG 

F & R: In LTR  (Hopman et al. 
1999) 

COR045 10 150 3 58 3 F:TCTCTACCGCAAGTGAAACC 
R:CTGAGCCCTTAACTTGTGGA 

F & R: In LTR  (Ruth et al. 1999) 

UMNe217 13 172-180 4 58 2 F:CTTTGAGTTCACCAGTTCTCCC 
R:AACCAAAAGGAACTTTGGTGG 

F & R: In LTR  (Wagner et al. 
2004c) 

COR104 14 187-201 3 58 3 F:GGGAGTGTGTCCAGTTTGTC 
R:CCAGATAAAGCCCAAATCCT 

F & R: In LINE (Swinburne et al. 
2000a) 

HTG03 16 131-143 4 58 1.5 F:TAACCTGGGTGCAAAGCCACCCAT 
R:TCAGGGCCAATCTTCCTCAC 

F: In SINE (Ellegren et al. 
1992) 

I-18 16 94 3 58 1.5 F:CAACAAAGATGTTGCAAGGG 
R:TGTGCCTCTTGTCTCTTAGG 

F & R: In LINE (Marti et al. 
1998) 

LEX056 16 226-244 4 58 1.5 F:GACCTACAGGCCACTCATCAA 
R:GGCAGTTTCCTCCATCCTTA 

F & R: In LINE (Coogle & Bailey 
1997) 

TKY802 16 117-125 3 58 2 F:GGAGGAAAGAGCTGAATGGA 
R:TCATCCAGTTCACCCATCAG 

F: In LTR; R: In 
SINE  

(Tozaki et al. 
2004) 

TKY356 17 175-189 4 54 3 F:TCAATCACACGAGCCAATTC 
R:GATCATAGGATGATTAGCAC 

F & R: In LTR  (Tozaki et al. 
2001b) 
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Table A-4 (continued) 
LEX054 18 182-194 3 58 1.5 F:TGCATGAGCCAATTCCTTAT 

R:TGGACAGATGACAGCAGTTC 
F & R: In LTR  (Coogle & Bailey 

1997) 
HTG23 19 196-208 5 58 2 F:GTCCTTCAGAGTTGTCCCTG 

R:GGAGAACAACCTTGCCTGAG 
F & R: In LTR (Lindgren 2000) 

I-12 19 178-180 3 54 2 F:AACTAAGCACGTCATACAAG 
R:CTTGTAGTTTTCGTTGTATAGC 

F & R: In LTR  (Marti et al. 1998) 

LEX035 19 272-288 3 58 1.5 F:CCCAGCATATCAAAGATGTT 
R:GCTCAGTGTACTTCAAGCAG 

F & R: In LINE (Coogle et al. 
1997) 

SGCV16  21 165-175 3 55 1.5 F:AATTCTCAAATGGTTCAGTGA 
R:CTCCCTCCCTTCCTTCTA 

F & R: In LINE (Godard et al. 
1997) 

LEX063* 23 257-265 3 58 1.5 F:CGGGGTGTGCATCTCTTAGG 
R:TGGCGAATGCTGAATCTGG 

R: Tm too high (Coogle & Bailey 
1997) 

AHT007 25 139-141 3 58 3 F:CCTTAGATCCGAGAAGGAGA 
R:GAAGCCTCACTCCATCCAGG 

R: In SINE (Swinburne et al. 
2000a) 

UCD405 25 286-292 3 54 2 F:ACCTCGTCTGGCTGTTGTAAG 
R:ACTTGCTGTGCGACTCTG 

F & R: In DNA 
element 

(Eggleston-Stott 
et al. 1997) 

VHL20 30 105-114 3 58 1.5 F:CAAGTCCTCTTACTTGAAGACTAG 
R:AACTCAGGGAGAATCTTCCTCAG 

F & R: In SINE  (Lindgren et al. 
1998) 

LEX022 X 107 6 58 1.5 F:AACATATCCATCGCCTCACA 
R:TGCAAATTCACTGAGAGTGG 

F & R: In LINE (Coogle et al. 
1996b) 
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Table A-5 Microsatellites not used due to small number of alleles in the Thoroughbred 

Marker Chr 
No. Size No. 

alleles Temp MgCl2 

(mM) Primers 5' > 3' Comments Reference 

1CA18 1 140-142 2 50 2 F:AGAAAGCAAGTTCGCTAGATGG 
R:AGTTCCCAAGGAATGTGTGTG 

 (Swinburne et 
al. 2000a) 

ASB041 1 155-167 2 58 1.5 F:AAAGTTCACTTAGTCCTTGG 
R:CCACCTGTTTGCACTTGC 

 (Swinburne et 
al. 2000a) 

COR100 1 195-227 2 58 1.5 F:CCCAGAGGTTTCAGAGGG 
R:ATTCTAGGGCATATTATGACAA 

 (Tallmadge et 
al. 1999a) 

LEX030 1 173-179 2 56 2 F:GGAGGGTGCAAGGTGCTA 
R:GGCAGGTCAGAAGGGACA 

 (Coogle et al. 
1996a) 

SGCV02 1 123 2 58 2 F:CCTTGAGTTGCACTTGGAGTC 
R:CTGCTCATATACCTGGGGATT 

 (Godard et al. 
1997) 

TKY015 1 149 2 58 1.5 F:GGATTTTAGAAGTACAGAGGG 
R:CATCCTACTGAGAACAATGCG 

 (Hirota et al. 
2001) 

UMNe429 1 271 2 58 3 F:ATGTAGTTCCCCCAGCCTG 
R:TCCCTCCCTCCACTCTCC 

F: In LINE (Wagner et al. 
2004a) 

VIAS-H34 1 144-160 2 50 1.5 F:TGAGTGTTTGCGTGTGTGTG 
R:TCCCGTCTCCTCTCTTGTTC 

 (Ewen & 
Matthews 
1994a) 

NVHEQ100 1 214-230 2 58 1.5 F:CCAAAGCAGAACATGTGAAGTT 
R:TGGCATAGATGTTAGCTCAGTGA 

F & R: In 
SINE  

(Roed et al. 
1998) 

TKY1142a 2 301 2 58 2 F:CTACATTGAACATCTATTGCTC 
R:AAGAATGCCCCCTCATATAG 

 (Raudsepp et 
al. 2008a) 

UM007 2 125-159 2 58 1.5 F:GGGAATAGAGAAAGGTGAAG 
R:TTAGAGTTCCTGCTCCTCC 

 (Meyer et al. 
1997) 

UMNe205 2 187 2 58 3 F:TGGAGAAAAGGCTGATTCTAGG 
R:GCCATGGAAACCATGGAG 

F & R: In 
LINE 

(Mickelson et 
al. 2003) 

VHL123 2 151 2 58 1.5 F:CCTCCTTCACAGTGAAGTGC 
R:GAGTATATAGCTCCAGACCTC   

 (van 
Haeringen et 
al. 1998) 

COR005 3 198-200 1 58 1.5 F:CAATTCCTGGCATGCTGTAAG 
R:GATGCTCACTTCCATGAACC 

F & R: In 
LINE 

(Hopman et 
al. 1999) 

UMNe158 3 146 2 50 3 F:AATTGAGAGCCAAGATGACACC 
R:GGCACCATTTGAGGAAGATG 

 (Wagner et al. 
2004c) 

LEX050  4 112-126 2 52 3 F:ATAGTCTGGGGTTAGGTAAGG 
R:TCTAGCCCAATGTAAATGC 

 (Coogle & 
Bailey 1997) 

TKY210 4 240-280 2 52 1.5 F:CGGAAATGACCAGTTTGCTT 
R:AGGTTGCCACGGGATTAAGT 

F: In LINE; 
R: In SINE  

(Swinburne et 
al. 2000a) 
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Table A-5 (continued) 
TKY833 4 149 2 58 1.5 F:TTTTGGTTCGAGTCCTTGGA 

R:GGGAAGTGGTTGTAGACAAG 
 (Tozaki et al. 

2004) 
UMNe199 4 124 2 58 1.5 F:TCCAGCAAATGGTAAGGTAGTG 

R:GATCTCTCTCCACCCTATACCA 
F & R: In 
LINE 

(Mickelson et 
al. 2003) 

UMNe377 4 240 2 58 1.5 F:CAGACATGGCACCGCTTG 
R:AGGATATTGTGTTTCCCTCAGG 

F: In SINE (Wagner et al. 
2004b) 

UMNe404 4 166 2 58 3 F:TTGGAACTTTTAGCAAAGAACC 
R:GATCCATTCCCACATATGGC 

F: In LINE (Wagner et al. 
2004b) 

ASB029 4 138-
152 

2 56 3 F:CTGGCCCATAAAAAAACACTG 
R:TGTATGGTTGTCAGCTCAAACC 

F & R: In 
LINE 

(Raudsepp et 
al. 2008a) 

TKY774 5 92 1 58 3 F:ACCATGCTCTTTCCAAACTCAA 
R:CGAGGTGGGTTGTACATTTA 

 (Tozaki et al. 
2004) 

COR023 5 269-
275 

2 50 2 F:CGTTTAGCACCTCTCATGAAC 
R:TCTTTGCAAAATAGGGCTTG 

 (Murphie et al. 
1999) 

NVHEQ122 5 203-
207 

2 58 1.5 F:GAGGAGGGTTGGCAGCAGAT 
R:CCAAGGGGGCACAAGACATA 

F: In LINE; 
R: In SINE  

(Penedo et al. 
2005) 

TKY041 5 160 2 56 2 F:TGGACAAGTGCTCTGTAATG 
R:TTCCATGAGTCTGGAGTTGG 

 (Hirota et al. 
2001) 

TKY1120 5 106 2 54 3 F:ACCTAAGTGTCCATCAATGC 
R:TCCTTCTTTATAAAGCTGCAC 

F & R: In 
LINE 

(Raudsepp et 
al. 2008a) 

TKY1175 5 203 2 58 1.5 F:TTATCACCAGTTTCCAGAGC 
R:CTTATTCCACCCACTAATTCAC 

 (Tozaki et al. 
2004) 

TKY644 5 142 2 58 3 F:TAAGTGTCCGCAGACTTTAG 
R:TAGGACAAAGCACACTATGA  

 (Raudsepp et 
al. 2008a) 

UMNe515 5 130 2 58 3 F:TCCAGAAACTCTACTCTTAGGG 
R:TGCCTTCATTCAACATTATG 

F & R: In 
LINE 

(Wagner et al. 
2004b) 

COR088  6 283-
297 

2 58 1.5 F:GAGCCAGCTTGTCGTGTATT 
R:GCACGAAGAAGAACCAAAGA 

 (Tallmadge et 
al. 1999a) 

TKY030 6 203 2 58 1.5 F:CCAGTCCACTGCCCACCCAC 
R:GTGCATGGTGGGAGCTACTG 

 (Hirota et al. 
2001) 

TKY111 6 125 - 
131 

2 58 1.5 F:TATGGCGATTTCTGGTCTGTGTC 
R:GATGACAACACTGGGAAGAAAGAG 

 (Mashima et 
al. 2001) 

SGCV28 7 157 2 58 1.5 F:CTGTGGCAGCTGTCATCTTGG 
R:CCCAATTCCAGCCCAGCTTGC 

 (Godard et al. 
1997) 

TKY690 7 193-
199 

2 58 1.5 F:GCGGATCAGGATCAACTAGC 
R:GGGCCCTGACAAGTTCCTAT 

F: In LTR (Tozaki et al. 
2004) 

UMNe074 7 139 - 
143 

2 58 3 F:CGATGGATGTGCTGTAAACG 
R:TGCTGCCTTCTCCCTCAC 

 (Roberts et al. 
2000) 
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Table A-5 (continued) 
UMNe100 7 183 2 58 3 F:CTGATGCAGAGGCATTTCTG 

R:CGTCAGCTGAGGCAACTATG 
 (Wagner et al. 

2004c) 
COR097 8 236-

242 
2 58 1.5 F:GGGATTTCTGAGATGCTGAA 

R:ATGGCTGGCTAGAGTTTGTG 
 (Tallmadge et 

al. 1999a) 
HTG8 9 185-

197 
2 58 1.5 F:CAGGCCGTAGATGACTACCAATGA 

R:TTTTCAGAGTTAATTGGTATCACA 
 (Marklund et 

al. 1994) 
HMS23 10 95 2 58 1.5 F:GATCCAATATTGTAAACCCCGCC 

R:CCTTCATAACCCTTATTGCAGCC 
 (Godard et al. 

1997) 
LEX062/LEX066 10 209-

215 
2 54 3 F:GCTCTCAGTAACCTCGATGTT 

R:ATTAAGGAGAAGGTGGAAAAGAC 
 (Coogle & 

Bailey 1999) 
LEX068 11 162-

174 
2 58 1.5 F:AAATCCCGAGCTAAAATGTA 

R:TAGGAAGATAGGATCACAAGG 
F: In SINE (Coogle & 

Bailey 1999) 
SGCV13 11 169-

179 
2 58 1.5 F:GGACTAAAGCCCAACCATCCAGC 

R:CTCACCAGTAAGGGGTTATGGGGC 
 (Godard et al. 

1997) 
TKY424 11 158-

174 
2 58 1.5 F:ATACAGGAGTGCGCTTTTCC 

R:AAACCATCCTCCACCTTTCC 
 (Tozaki et al. 

2004) 
TKY648 11 278-

282 
2 58 2 F:ACCCATCCATGCTGAAAAGA 

R:CGAAAGGTATTTGGTGTGTCTC 
 (Tozaki et al. 

2004) 

TKY954 11 123 2 54 3 F:AGCTCCTCAGGAATCTAATG 
R:GGACATGTTAACACCTCTCC 

F & R: In 
DNA 

(Raudsepp et 
al. 2008a) 

TKY978 11 213 2 58 2 F:TGGCAGTCCAGTATCCATC 
R:GAACGTGGACACTTAACTGC 

F: In SINE; 
R: Partially 
in LINE 

(Raudsepp et 
al. 2008a) 

COR009 12 122-
130 

2 56 2 F:CGGTGTTCTTATTTCATGGA 
R:GGAACGAAACACAGTGGAAC 

F & R: In 
LINE 

(Hopman et 
al. 1999) 

UCD497 12 105-
109 

2 58 2 F:GTGGGAGGCAGCAGGAAC 
R:CCCCAGACACCGTGTGAT 

 (Eggleston-
Stott et al. 
1999) 

TKY647 14 96 1 58 2 F:CTGGGAAGCAGCAGGAATAA 
R:GCTAATGGAAAGGCCACAGA 

 (Tozaki et al. 
2004) 

VHL209 14 91-103 1 58 1.5 F:TCTTACATCCTTCCATTACAACTA 
R:TGATACATATGTACGTGAAAGGAT 

 (van 
Haeringen et 
al. 1998) 

TKY1114b 14 247 2 58 1.5 F:GTTTATTAGGTCACTGCTTCC 
R:GCAAGCTCATTGCCAAGAC 

 (Raudsepp et 
al. 2008a) 

HTG018 14 160 2 58 2 F:CTGAAACCTCATTTTATACAG 
R:TACTAGAACACAGAAAGCCTA 

 (Lindgren 
2000) 

TFb 16 399 1 58 1.5 F:CTCCAGCTCACAGAATGGAC 
R:GAAACACTGGACTGCCTGC 

F: In LINE; 
R: in SINE  

(Raudsepp et 
al. 2008a) 
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Table A-5 (continued)  
TKY445 16 298-

308 
2 58 1.5 F:CCTGGGCTAATTCCCATTTT 

R:CCAGCTCTTTGAAGGTAGCA 
 (Tozaki et al. 

2004) 
HMS41 17 113 2 58 1.5 F:AAAGTCTTCATTTGAAGTTTCCTAAG 

R:GACTAAGTAGATGAGATGTGTTTGG 
 (Godard et al. 

1997) 
NVHEQ79 17 179-

197 
2 58 1.5 F:ATTGCCTGTGCTGAGATGG 

R:GCAAATTGCCTCTGTATCACAC 
 (Bjornstad et 

al. 2000) 
TKY546 17 244-

248 
2 58 1.5 F:TAGGATGGGGCACCAAGTAG 

R:CATTCCTAAGGGTGGAGCAC 
 (Tozaki et al. 

2004) 
NVHEQ024 17 161-

163 
2 58 2 F:CCACTGTGGAAAAGACTGAAAG 

R:TGTACTTCCTTGAAACCCAACA 
 (Guerin et al. 

1999) 
UMNe384 17 251 2 58 1.5 F:AGTCAGGAGAGACAGTGTAGGC 

R:TCATGGAAGCATTTCCCTAG 
F & R: In 
LTR  

(Raudsepp et 
al. 2008a) 

AHT115 18 124-
134 

2 58 2 F:GAACCCAAGAGGAGTCCACA 
R:ACACACCTCAAGCAAAACACC 

 (Wagner et al. 
2006) 

COR096 18 314-
326 

2 58 1.5 F:CCCCTCTTTTGCTTGAGAAT 
R:GCGTGTATGTGAGGATTGAAG 

R: In SINE (Tallmadge et 
al. 1999a) 

HTG28 18 180 2 58 3 F:AATCAACTAATATTAGGCCTCCT 
R:GAATACAGTTCTAGGGGCGT 

 (Lindgren et 
al. 1999) 

TKY017 18 127 2 58 1.5 F:CAACTGTATGTTGACAGCACA 
R:CGGCCATATTAGGTTTATCTG 

F: In LINE; 
R: In LINE 

(Hirota et al. 
2001) 

UMNe180 18 148 2 58 2 F:TGGAAAATCCTCACAAACTGC 
R:TATATTTTCCTTTTGCGTGTGC 

 (Wagner et al. 
2006) 

LEX036 19 148-
172 

2 58 1.5 F:CCCAGCCTCTTCAATATCCA 
R:CCCTAAGGGGATTTAGCAGTT 

 (Coogle et al. 
1997) 

LEX073 19 241-
251 

2 58 1.5 F:CCAGCCATCCACTGGTAGAG 
R:GGGAAAAGGGGAACCTTCTA 

 (Bailey et al. 
2000) 

TKY004 19 87 2 58 3 F:TCTGTGTATGTGAGTGTATA 
R:GATCGAGGTATTCCTGAGTG 

 (Hirota et al. 
1997) 

DQA 20 260 1 50 1.5 F:CGACTCAGATGACCACATTG 
R:GGGGACACATACTGTTGGTAG 

 (Chowdhary 
et al. 2003) 

LEX071 20 192-
211 

1 55 1.5 F:CTTTATTCTACTCTTTGGTCC 
R:CCGATATTTCACTGATTATT 

R: In LINE (Bailey et al. 
2000) 

COR050 20 283-
297 

2 58 1.5 F:TCTGTTGCCTTTATCCACAA 
R:ATGAAAACCCTGGGAATAGC 

 (Ruth et al. 
1999) 

HTG05 20 79-95 2 58 1.5 F:TGCTAAGCCTCAGCACATACA 
R:TGGAAATAAGGTTAGCAGGGATGC 

 (Ellegren et 
al. 1992) 

LEX037 21 196-
199 

1 58 1.5 F:GGATTCCTCAACCTCCTAAA 
R:AGGGATAAGTGACCACCAC 

 (Coogle et al. 
1997) 
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Table A-5 (continued)  
COR016 22 184-

203 
2 58 1.5 F:CAGCTCAGTAGATGATTGTCCA 

R:GCAAAGACAAGGAGGTTAAGTT 
 (Hopman et 

al. 1999) 
HMS47 22 202-

207 
2 58 1.5 F:CCTGCTGAGGACCTTGGAAGCT 

R:ATGTATTTTCAAGTCTAATATCTGCC 
 (Godard et al. 

1997) 
HTG21 22 132-

144 
2 58 1.5 F:ATTACTTCCTCCAGGTATCTCAG 

R:AGGCAGGGCTGGGAGACGT 
 (Lindgren et 

al. 1999) 
COR001 22 123-

137 
2 58 1.5 F:GGCAGCATCCCACATAAAACAG 

R:GCTCACTATTACCACGATGATTGATTC 
F: In SINE (Hopman et 

al. 1999) 
COR055 23 240-

266 
2 58 1.5 F:TAGTGACGCCTACGGATTTC 

R:CCCAAGAGGGCTTAGAAAGAG 
 (Ruth et al. 

1999) 
TKY441 23 190-

210 
2 56 2 F:TGTCCTCCAGGAGAGGGAAG 

R:TTTTTGAACGCTGATTGCAG 
 (Tozaki et al. 

2004) 
UM027 23 235-

239 
2 58 1.5 F:TGCAAGAATTGTGAGGGAC 

R:GTGCTCAGTTAGTGGTATTC 
R: In SINE (George et al. 

1998) 
COR025 24 172 1 58 1.5 F:ACAGAGCTGACTGCCTATGG 

R:TCCTCTTCTCAGGGAGACCT 
F & R: In 
LINE  

(Murphie et al. 
1999) 

COR018 25 246-
278 

2 58 1.5 F:AGTCTGGCAATATTGAGGATGT 
R:AGCAGCTACCCTTTGAATACTG 

F: In LINE (Hopman et 
al. 1999) 

TKY275 26 144-
154 

2 54 3 F:TCTCAGTGGATATAACTAGC 
R:GAGATGGATACAGATAGAAG 

F & R: In 
LINE 

(Tozaki et al. 
2001b) 

UMNe186 27 149 1 58 1.5 F:TATAAAACCTCCCTGATTTGCC 
R:TGATAGAAGGAGCTAAGCCTGC 

 (Raudsepp et 
al. 2008a) 

COR040 27 287-
295 

2 58 1.5 F:GTGTTGGGACACGAATGAAT 
R:AGGCTGTCTCCAGAGTCCTT 

F: In SINE; 
R: In LINE  

(Murphie et al. 
1999) 

HMS45 27 215 2 58 1.5 F:TGGTAAACTGTGCATGATTGG 
R:AAAGGAAGATTGGCAAACCA 

 (Godard et al. 
1997) 

COR021 29 202 2 58 1.5 F:CTGTAGCCAGCCCTGACAGT 
R:GATGGTGGGGTATTTGTCCA 

Primers 
shows no 
match in 
draft 
sequence  

(Murphie et al. 
1999) 

LEX018 29 228-
242 

2 54 3 F:TTTCATCACTTTCTGCTTCC 
R:TTCTCTTCCTTTGCTCATCCT 

 (Coogle et al. 
1996b) 

TKY913 29 176 1 58 2 F:TAATTTTGCGATGCCAGCTG 
R:AGGTAACAACCTGAACTTGC 

F & R: In 
LTR  

(Tozaki et al. 
2004) 

COR038 31 210-
214 

2 58 1.5 F:GCTGGAAAAGAGCAGTTTCA 
R:TGACATTAACTCCCGCATCT 

F & R: In 
LINE 

(Murphie et al. 
1999) 
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Table A-5 (continued) 
TKY368a 31 251-

263 
2 58 1.5 F:TTCAAGCCAGCAAAATTATAGC 

R:GTCAGGATAATTTTCAGCCC 
 (Tozaki et al. 

2001b) 
COR091 X 205 2 58 2 F:GGTGATTCAAGGTTAATGGC 

R:TGTATCTGTCCACAGCATGG 
 (Tallmadge et 

al. 1999a) 
UMNe397a X 126 2 58 2 F:TGTGGCTCCATCTCTCCAG 

R:TTTTCATGTCCCTAGGAAATTC 
 (Wagner et al. 

2004b) 
VHL81 X 162-

174 
2 58 1.5 F:CAACTATGTACTTTGGGGAGCT 

R:GTCCATGAAATTCTAGTTGTTGC 
F: In SINE; 
R: In LINE 

(van 
Haeringen et 
al. 1998) 
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Table A-6 Microsatellites checked for polymorphism in Thoroughbred but not used in panel 

Marker Chr 
No. 

Size 
(bp) 

No. 
alleles Temp MgCl2 

(mM) Primers 5' > 3' Comments Reference 

TKY577 1 140 3 58 1.5 F:CTGATGATCTGCTGCACAAG 
R:CAGCCCCTAATCACATAAAC 

F: In LINE ; R: 
In SINE 

(Raudsepp et 
al. 2008a) 

ASB008  1 139-
163 

3 58 1.5 F:GACAACGTGGCAGCTCACTGCC 
R:GCAAGTAAGCCATATGTGCATGCG 

  (Breen et al. 
1997) 

AHT069 1 192-
194 

3 50 3 F:ACCGCTGGACCTTCCTTC 
R:ATCGTAGCATCCCTCACATACA 

  (Swinburne et 
al. 2003) 

TKY659 1 129-
141 

3 58 1.5 F:TTCAAGCAGCAGTAGCAGGA 
R:CGAGGAGGGTTTTGTTCAAG 

  (Tozaki et al. 
2004) 

COR065 2 280-
292 

4 58 1.5 F:CAAAAGCACACACAAAGTGC 
R:TCCGGAAAGTGCAAAGTTAG 

R: In LINE (Tallmadge et 
al. 1999b) 

UMNe236 2 156-
180 

3 52 4 F:CAGAACGTGCAAACTTAACTGC 
R:TTTGTTGAACTGACAAAATCCG 

R: In SINE (Mickelson et 
al. 2003) 

AHT012 2 104-
116 

3 58 3 F:ACCCAAAGTCATGGGAATCA 
R:TTGTTGCCGACAACATGC 

  (Chowdhary et 
al. 2003) 

TKY798 2 240 3 58 3 F:GAGCAGAAGGTACGAGAAGA 
R:AACTTAACCAGGCTGTTCTG 

  (Tozaki et al. 
2004) 

UMNe101 4 100 3 58 1.5 F:CATTTTAATCAACATTTTCCATCTG 
R:GCAATGCAGTGAGATGATGC 

  (Mickelson et 
al. 2003) 

COR089 4 279-
297 

3 58 1.5 F:CCTGCCATAAATTTGTTTCC 
R:TCCCTACCTCATCTCCACAC 

  (Tallmadge et 
al. 1999a) 

LEX033 4 182-
197 

3 58 1.5 F:TTTAATCAAAGGATTCAGTTG 
R:TTTCTCTTCAGGTGTCCTC 

  (Coogle et al. 
1996a) 

ASB022 4 158-
172 

4 58 1.5 F:GAGGAATGTGAAATACAGGAGG 
R:TTTGTGGTCTTCCGTGCACC 

  (Breen et al. 
1997) 

SGCV23 4 221-
233 

3 55 1.5 F:GGCTTAAGATATGGGTGAGTAAGG 
R:GCCCACCCTCTTACTTTTCTCAA 

  (Godard et al. 
1997) 

TKY698 4 250 5 58 1.5 F:TGTTGAGGCAAGGGTTCTTT 
R:CTCCATTGCCCACTCCTTAG 

  (Tozaki et al. 
2004) 

TKY223 4 170 4 52 1.5 F:GCAAGAAATCAACGCAAAAG 
R:CCGATTCAGTAGTTCAGGGATG 

R: DNA 
element  

(Raudsepp et 
al. 2008a) 

LEX004 5 282-
300 

3 58 1.5 F:AATAGCAAATCTCCCACTTCA 
R:GTCCTCACAACCTCATCATAA 

  (Coogle et al. 
1996a) 

LEX069 5 142-
170 

3 58 1.5 F:TTTCTTTTTCCCACTTAAAGC 
R:TGGGACTTAGCAGTATGAAAC 

F: In LTR (Coogle & 
Bailey 1999) 

TKY887 5 100 3 56 2 F:GAGAACTAGATGCCACCC 
R:TGTTGGAGTGTGTAGGCT 

  (Tozaki et al. 
2004) 
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Table A-6 (continued)  
TKY344 5 108 3 58 2 F:GTGTCCATCAATGGATGAAG 

R:CTTAAGGCTAAATAATATCCC 
F & R: In LINE (Tozaki et al. 

2001b) 
TKY025 6 100 3 58 1.5 F:AATCTCATGGCAGAATACCG 

R:GACTCTGGGAAGGGCTAAGG 
  (Kakoi et al. 

2000) 
NVHEQ082 6 134-

148 
3 58 1.5 F:TGTGGCAGCATCCCACAAAC 

R:CCTCCATTTTTGTCGGTTAGCG 
F: In SINE  (Bjornstad et al. 

2000) 
TKY744 6 269-

277 
4 58 2 F:CCTGCCTTTGCTCTAGAAACC 

R:GGCTCCCAAGGGACTAGAAG 
  (Tozaki et al. 

2004) 
COR004 7 297-

319 
4 58 1.5 F:GAGTGTGACGGAGGACGA 

R:AGGGAGCAAACGCAAGAC 
  (Hopman et al. 

1999) 
ASB014 8 115-

129 
3 58 1.5 F:CTCCATGAATTCTCGCAGGTTGG 

R:CCATGGGCCATATGCACACTGC 
R: In LTR  (Breen et al. 

1997) 
TKY452 9 266-

278 
3 58 1.5 F:TATTATGCCACCAGGCCAGT 

R:TGACCATGGTGAACCAGAGA 
F: In 
MER1_type; R: 
SINE 

(Tozaki et al. 
2004) 

TKY805 9 199 4 58 3 F:TGCCTTTTTCTCTCATCACC 
R:AGACTAGTCTGCAAGTTCAG 

F: In SINE (Tozaki et al. 
2004) 

TKY541 9 106-
124 

3 56 2 F:GAGGAGGGGCTTTCTCTCTC 
R:TGCAAAAAGCCAACATTTCC 

  (Tozaki et al. 
2004) 

UM037 9 114 3 55 1.5 F:TCATTTTATCCTCCACCTC 
R:AAAAGGGCGTAATATGG 

  (George et al. 
1998) 

ASB006 10 185-
212 

3 58 1.5 F:GGCACAGATGTTAGCTCAGC 
R:ATGGAACCAGCCTGGATTGC 

F: In SINE: R: In 
SINE  

(Breen et al. 
1997) 

COR048  10 178-
186 

3 58 1.5 F:GATTGGGATGCAAAGATGAG 
R:CAAGAGGATTGGGAACAAAGG 

F: In LINE L2a (Ruth et al. 
1999) 

SGCV8 12 126-
143 

4 50 1.5 F:GAGTTCATTCTTTTTCGTGGCTG 
R:GGAAACACCCTAAGTGTCCCTTG 

F & R: In LINE  (Godard et al. 
1997) 

ASB037 13 131-
145 

3 58 1.5 F:CCTGCAACTTTTTCCCAGCC 
R:GGCAGATGTTAGCTCATGGC 

F: In SINE  (Lindgren et al. 
1998) 

UM030 13 127 - 
143 

3 54 3 F:CCGTGAAGTCACAGACTTAG 
R:ACAGTTTCTACAACAAACTGA 

F: In LTR; R: In 
DNA element  

(George et al. 
1998) 

LEX047 14 237 - 
245 

3 54 3 F:TATAATAATGTGTCTTGGTGTG 
R:TGTTAATCAGGGTTCTCC 

F: In LINE ; R: In 
LTR 

(Coogle et al. 
1997) 

HTG11 14 110 3 58 4 F:CAATGATGGTACTTTGCATATTAA 
R:ATCGGCATGCACACTCATAGGTAG 

F: In low 
comlexity region  

(Marklund et al. 
1994) 

UM010 14 117-
127 

3 58 1.5 F:TACAGCCATTGGAAATCTAC 
R:CACCATTACATTTTCCCAG 

  (Meyer et al. 
1997) 

COR075 15 201-
215 

5 58 1.5 F:GCCCTAGTTAGCAACCAACA 
R:AAGATTGATTCCTCAGCACG 

  (Tallmadge et al. 
1999b) 
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Table A-6 (continued)  
HTG06 15 84-100 4 56 2 F:CCTGCTTGGAGGCTGTGATAAGAT 

R:GTTCACTGAATGTCAAATTCTGCT 
  (Ellegren et al. 

1992) 
UMNe277 16 158 3 58 1.5 F:AGGCGATGGTGACATCTTTC 

R:CTACACACGGGATAAATTCGC 
F & R: In LINE  (Wagner et al. 

2004a) 
HMS20 16 116-

140 
3 58 1.5 F:TGGGAGAGGTACCTGAAATGTAC 

R:GTTGCTATAAAAAATTGTCTCCCTAC 
  (Godard et al. 

1997) 

TKY523 16 119-
183 

3 58 2 F:TGCACACCCATTCTAGCTCA 
R:GTGGCTCACTCCTCGCTTAC 

  (Tozaki et al. 
2004) 

COR011 16 288-
298 

3 58 1.5 F:CCTTCCGGTCTTTATTCACA 
R:GGTGGCTGGAGACACAATAG 

F & R: In LINE (Hopman et al. 
1999) 

TKY1128 17 252 3 58 1.5 F:TGGACATGTCACAAGAATCC 
R:ATGTTGGTCCTCATGCCTG 

F: In MER1_type (Raudsepp et al. 
2008a) 

LEX055 17 216-
232 

5 55 1.5 F:AGGGACACACAGGTGGTAG 
R:TGGATTTCCACTGTTACTTAT 

  (Coogle & Bailey 
1997) 

TKY287 17 224-
240 

4 58 3 F:ATCAGAGAACACCAAGAAGG 
R:TCTCTGCTATAGGTAAGGTC 

F: In LINE (Tozaki et al. 
2000a) 

TKY407 18 230-
232 

5 54 3 F:TCCTGCTGTGAGTTCCATGA 
R:CATCTTGTGCTGGGGATCTT 

R: In LTR (Tozaki et al. 
2004) 

COR092 19 190-
206 

4 58 1.5 F:GGCAAGAGCCAGGTATTTTC 
R:ACTGCTTGGACGAAACTGAG 

R: In DNA 
element  

(Tallmadge et al. 
1999a) 

COR029 20 222-
228 

3 58 1.5 F:CTAGAAGGGTTTCCCAAAGG 
R:TCGAGCTCCTGAAGAACATC 

  (Murphie et al. 
1999) 

HMS42 20 132-
140 

3 58 1.5 F:TAGATTTCTTAAGTGCCAATAGTGG 
R:GAACTGCTATAGATATACCTAACTC 

  (Godard et al. 
1998) 

TKY507 20 129-
141 

3 56 2 F:CACCTGCCTACAGTCCAAGC 
R:TTTGTGCTTAATGCCTTTGTG 

  (Tozaki et al. 
2004) 

LEX052 20 208-
214 

3 58 1.5 F:GGAACGGAAGAGTGTAGTTTT 
R:CATTTATTCATCAGCGATTTG 

F: In LINE (Coogle & Bailey 
1997) 

TKY421 22 270-
292 

4 58 1.5 F:CCTTGTAGGAGGCGAGTCAG 
R:GCCACTTCCTACCAATGCTC 

  (Tozaki et al. 
2004) 

AHT030 22 181-
183 

3 58 1.5 F:TCACCGCTCACCTTTTGAC 
R:CGTGCAGGTGTACATTTACATG 

F & R: In LINE (Swinburne et al. 
2000b) 

COR061 24 200-
210 

5 58 1.5 F:TTAAGAGTGGCAGACCGACT 
R:GAACGCTTCTTAAGTGGCAGA 

F: In SINE (Tallmadge et al. 
1999b) 

A-17 26 112-
118 

3 58 1.5 F:GTGGAGAGATAAAAGAAGATCC 
R:GGCCACAAGGAATGAACACAC 

  (Marti et al. 
1998) 

UM031 26 ~200 4 58 1.5 F:GCTCAAACCAACCTTTCAAAAC 
R:TCAGGCCTTAAAACAGACACAC 

  (George et al. 
1998) 
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Table A-6 (continued) 
TKY828 27 186 3 58 3 F:CTCCTTCTGGCTCTACTATT 

R:GCATGGATTAAGGTGTATGC 
  (Tozaki et al. 

2004) 
TKY808 28 128 3 54 3 F:CCTGAGTGCTTTTGAAGTGG 

R:ATACTTTTTGCCAACTACAAAATA 
  (Tozaki et al. 

2004) 
TKY319 28 112-

118 
3 58 2 F:TATGCACGAGATTAAACGGG 

R:AAAGAAGTCAGATGAGCAGG 
  (Tozaki et al. 

2001b) 
AHT034 31 121-

142 
3 58 3 F:CTCAGGGCGAATGTTCCTC 

R:CCCCACCATGAGTCAAAAAC 
R: In SINE  (Swinburne et al. 

2000b) 
UMNe107 X 143 3 55 1.5 F:TGCATATGTAGATGTATATAGGACAGG 

R:TTTCCCTACACTGGGACTGC 
  (Mickelson et al. 

2003) 
UM038 X 120-

144 
3 58 1.5 F:CAAGACAGAACAGAAGAAGAC 

R:ATATGGCTCGCTCCTAC 
F & R: In LINE (Godard et al. 

1997) 
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Table A-7 Microsatellites dropped from panel due to deviation from Hardy-Weinberg equilibrium 

Marker Chr 
No. 

Location 
EquCab2 

Mb 
Primers 5' > 3' Size 

(bp) 
No. 

Alleles 
HET 
(%) Temp MgCl2 

(mM) Comment Reference 

TKY558 1 126.49 F:TGGCGGATGCTAGATGTAGAG 
R:GCTGTGGAAATGACCCAGTT 

232-236 3 33.8 58 1.5   (Tozaki et al. 
2004) 

CFTRms 4 74.65 F:GCATTTGGGCCACAATTTTA 
R:GCATCATGCTTTAGCTGTGG 

234-276 7 56.2 58 1.5     

LEX023* 8 25.94 F:GTGGATGAAACAGGGAAGGA 
R:TGAAGGCAAAAACTTGCTGA 

274-294 5 55.1 58 1.5 Excessive 
stutter peaks  

(Coogle et al. 
1996b) 

TGFB1ms2 10 11.81 F:CTCATTGCGTCAGTCAGCAT 
R:CCAAACACACAGTGGGACAG 

190-192 2 40.1 58 1.5     

ASB009 10 54.96 F:GTGCGCATGTATGTGCGTGCC 
R:ATTTCCACAAGGGACATGAGG 

106-118 5 67.9 58 1.5   (Breen et al. 
1997) 

TKY693 13 37.55 F:CAGAGACTGCTGTCAGCTCCT 
R:CACAAATGCAGAACCCACAA 

221-233 4 57.1 58 1.5 F: In DNA 
repeat; R: In 
SINE 

(Tozaki et al. 
2004) 

B-8 15 21.78 F:TCCTCAGTCCTTTCTCATGC 
R:AGCTGAAGGCAATCTGTACC 

96-116 7 84.5 58 1.5   (Marti et al. 
1998) 

TKY101 18 63.52 F:TCTGAAATACCGTGTGCCT 
R:TTCTGCCTCCCTCCAACTTT 

218-238 6 52.4 58 2   (Mashima et al. 
1999) 

TKY606 19 18.76 F:ACATGCCAACTCACCAACTG 
R:TTCATCCTACGAGGGCTCAG 

123-127 3 48.1 62 1.5   (Tozaki et al. 
2004) 

LEX031 21 36.12 F:CCCATTAAGAACTTTTCATCCTG 
R:GGCAAGCCCCACAAAATTAT 

271-273 2 28.4 58 1.5 F & R: In LINE (Coogle et al. 
1996a) 

TKY524* 24 9.79 F:AGTTGTGGCGTGCTTTCTAC 
R:TTGCACTTGAGCACTTAGTC 

252-270 6 54.8 58 3 F: Tm too low; 
R: Tm too low 

(Tozaki et al. 
2004) 

LEX032 24 36.11 F:CGTAGTAGGGTTTTGGGTCC 
R:TTGCGTTTCAATTTTTAATGAC 

273-283 6 79.5 58 2   (Coogle et al. 
1996a) 

COR080 25 8.78 F:CGTGCTGCCAGAGGTAAATA 
R:ACTGAGATGAGGTTTGCTGC 

218-222 3 43.2 58 1.5   (Tallmadge et al. 
1999b) 

HTG30 28 10.87 F:TCAAGGCAAATCTTTCCCAG 
R:GTAAAATAACAAGTTGTTCCAG 

246-264 4 44.4 58 1.5 R: In SINE (Lindgren 2000) 

LEX025* 30 2.04 F:TTCTGTCCTTGCTCCTGCTT 
R:AATGATTTGCTGGCGAGAAC 

292-296 3 59 58 1.5 F: Mismatch; R: 
Tm too low 

(Coogle et al. 
1996a) 

HET% = percent heterozygosity 
Markers in bold newly identified microsatellites from the draft equine sequence 
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Table A-8 Microsatellites dropped from panel during linkage analysis   

Marker Chr 
No. 

Location 
EquCab2 

Mb 
Primers 5' > 3' Size 

(bp) 
No. 

Alleles 
HET 
(%) Temp MgCl2 

(mM) Comment Reference 

TKY530 1 90.67 F:ACAAAGCTGTGTGACAGACCA 
R:TCGTTTCTGCATCTCTTCCA 

352-
364 

4 28.4 58 1.5 R: In LINE (Tozaki et al. 
2004) 

COR053 1 182.81 F:AATTGACTGTGGAAGCCTTG 
R:GGCTGAGGAGTAAGCTGAAAG 

195-
217 

4 74.4 58 3  (Ruth et al. 
1999) 

ASB018* 2 5.2 F:TTACATCAATGCAGGGCAAA 
R:CCTGCATTCAGTGAGGGAGT 

273-
291 

6 64.3 58 1.5 R: Tm too low/High 
end self 
complementarity 

(Breen et al. 
1997) 

TKY615* 2 14.06 F:GCTGGGGAGCACTTACAAAG 
R:CTGAAGCCTGTGGTTGGAAT 

217-
235 

6 79.8 58 1.5 Excessive stutter 
peaks 

(Tozaki et al. 
2004) 

LPLms3 2 49.3 F:GGACCCTAGTGGCAATGAAA 
R:CATGAGATGGGAGAGGAAGC 

227-
229 

2 51.8 58 1.5   

A-14* 2 74.47 F:TGCTACCCTTAAAACTGGCAAT 
R:GTCATCACTACTCCCTACAC 

152-
160 

3 65.5 58 1.5 F: Mismatch (Marti et al. 
1998) 

UMNe236* 2 92.64 F:AAGATGCAATTAAACTCACCAGT 
R:TCCTCAGGCTGACACAGTTG 

452-
474 

5 79.2 58 1.5 F: In SINE; R: High 3' 
stability 

(Mickelson et 
al. 2003) 

HTG02* 3 82.58 F:TGCATGAAGATCTCAATTACCC 
R:CCTTCCCTATGGAGGGAGTC 

454-
458 

2 14.3 58 1.5 R: In SINE (Ellegren et al. 
1992) 

CNTFms  7 18.9 F:TTCCCACTGCATATTCACCA 
R:TGTGGATGCTTTTCCATACC 

250-
254 

3 53.6 58 1.5   

TKY461 7 26.62 F:ATGGCCCATCGTAAGAAACA 
R:GAGGGAGGAAGAAAGGAAGG 

177-
183 

3 67.3 58 1.5  (Tozaki et al. 
2004) 

TKY775* 7 57.41 F:CAGTCGACAGCCAGATTTTCT 
R:TGTACAAGGGATGCACTGGA 

161-
171 

3 45.2 58 1.5 R: In SINE, Tm too 
low/High 3' stability 

(Tozaki et al. 
2004) 

ASB005* 9 71.66 F:GAGGAGCTCATGACCTGGAG 
R:CCCCATTCCTTTGTGGTAAA 

217-
223 

3 73.8 58 1.5 F: Tm too high/High 
end self 
complementarity/High 
3' stability; R: Tm too 
low 

(Breen et al. 
1997) 

UCDEQ039* 11 7.39 F:CCGGCTAGAAGGGAAGTTCT 
R:GCAGGAACCCAGCACATTAT 

289-
309 

4 45.8 58 1.5 R: High 3' stability (Chowdhary et 
al. 2003) 

TKY988* 11 26.22 F:GACTCCTGCCTGCTAACGTC 
R:TAACTGCGGTTTCCACTTCC 

231-
239 

4 54.8 58 1.5 F: Tm too low; R: Tm 
too low/High end self 
complementarity, in 
SINE 

(Tozaki et al. 
2004) 

COR014* 15 86.77 F:CCCAAGATTGATTCCTCAGC 
R:GTGGAAAGAGGGAATGAGCA 

280-
292 

6 83.9 58 1.5 F: High 3' stability; 
R:Mismatch 

(Hopman et al. 
1999) 

BRCA2ms 17 11.46 F:TGGAAAATTTCTTGGCTGCT 
R:TGGACAGGTGCCTTCAGATT 

217-
223 

4 28 58 1.5   
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Table A-8 (continued) 
TKY572 22 36.31 F:GTGTAGCGCATGATCCAGTG 

R:CCCCAGCCTGACCTTCAT 
122-128 4 72 58 1.5   (Tozaki et al. 

2004) 
VIASH-21 31 31.64 F:AAATGATAACGCCAAGTGCTCT 

R:ATGTGAGTGCCAGCTTGTGAT 
263-265 2 17.9 58 1.5   (Swinburne et al. 

2000a) 

HET% = percent heterozygosity 
Markers in bold newly identified microsatellites from the draft equine sequence 
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Table A-9 Final genome scanning panel 

Marker Chr 
No. 

Location 
EquCab

2 Mb 
cM Primers 5' > 3' Size 

(bp) 
No. 

alleles 
HET 
(%) 

PIC 
1 

PIC 
2 Temp MgCl2 

(mM) Comment Reference 

HLM5 1 1.63 0 F:GCTGAAATCCTGTGGGTCTCCA 
R:CCTGGCTCCCTTGGTGGTCTGA 

137-
151 

4 51.2 38.5 20.9 62 1.5   (Vega-Pla 
et al. 1996) 

TKY711 1 7.66 9 F:GGAGCTCATATCCGGAGGTC 
R:GGAGGGGCTGTTTGTTGTTA 

143-
147 

3 59.9 44.6 23.8 58 1.5   (Tozaki et 
al. 2004) 

1CA30 1 14.02 26.9 F:TGGGGAGGGGTTGTTCTAG 
R:GCTCTCCACTGCATGCATAA 

151-
155 

2 46.3 33.6 17.9 58 1.5   (Chowdhary 
et al. 2003) 

TKY1016 1 15.77 36.9 F:CAATTGGTCCTGAGGTCAG 
R:ATTGGCGGTGGATGCTAAC 

262-
270 

3 46.2 33.8 19.2 58 1.5 F: In SINE (Tozaki et 
al. 2004) 

LEX039 1 19.37 57.4 F:CCTCTGTCCCCACTACTCTC 
R:TTGATCTCCACTCCCAATG 

201-
207 

2 39.5 31.7 26.5 58 1.5 F: In DNA 
repeat 

(Coogle et 
al. 1997) 

LEX020 1 20.59 57.4 F:GGAATAGGTGGGGGTCTGTT 
R:AGGGTACTAGCCAAGTGACTGC 

225-
233 

3 36.4 33.3   58 1.5   (Coogle et 
al. 1996b) 

TKY706* 1 65.93 78.7 F:CCCAAGAGTTCCGTGTCATT 
R:CCATGATGCTGATGGGTGTA 

252-
260 

5 55.6 55.7 34.4 58 1.5 Excessive 
stutter 
peaks  

(Tozaki et 
al. 2004) 

AGTms  1 67.3 81.1 F:CGGCCTTAATCCACATCAGT 
R:AGCAGCTAAAGTGCCACTGC 

275-
279 

2 27.8 25.2   58 1.5     

TKY670 1 84.52 81.1 F:GTTGCTTTGGGACCAGTCAT 
R:TCCAGCCCAGTCAGGTCTAT 

169-
173 

3 11.1 10.9 32.2 58 1.5   (Tozaki et 
al. 2004) 

AHT021/
40 

1 89.89 113.
7 

F:GCAAGTTCAGCACCTCCCT 
R:TTTATGACACCTGCTGAGAACG 

241-
257 

6 77.8 68.2 35.5 58 1.5   (Chowdhary 
et al. 2003) 

1CA32 1 100.66 118.
8 

F:AGTTACCAAATGTCGCATTGC 
R:TTCATCTGTAAAATGGGCAGG 

116-
122 

3 51.2 42.6 31.3 58 2 R: In SINE (Chowdhary 
et al. 2003) 

1CA25 1 117.75 165.
2 

F:TCCAATTTTCCCCAATGGTA 
R:CTGCATTTTGACAATGGTGG 

221-
225 

3 21 21.8 40.0 58 1.5 F & R: In 
SINE 

(Chowdhary 
et al. 2003) 

UCDEQ4
40 

1 130.12 165.
3 

F:TGTTCGGACAGTGTGGAT 
R:GCAGGGTATGTGTGTGCT 

123-
129 

4 64.8 58.4   58 2   (Eggleston-
Stott et al. 
1997) 

HMS15* 1 136.85 165.
3 

F:TATCGTCCTAAGCCCGAAAA 
R:GGATGGGGAAAACTTTGGAT 

338-
352 

4 51.9 47.7 40.3 58 1.5 R: 
Mismatch  

(Godard et 
al. 1998) 

UM026 1 150.24 177.
4 

F:CCCAAAATCAATTAGGTCTC 
R:ATCAGTTGCTCTCTACTTTTC 

221-
231 

3 24.1 24.7 29.0 58 1.5   (George et 
al. 1998) 

1CA16 1 157.18 183.
2 

F:TCACTGGGGGGTATATGCAT 
R:GATCCTACTCCACCTGAAGTGG 

131-
141 

4 66.7 57.3 29.0 58 1.5   (Chowdhary 
et al. 2003) 

TKY466 1 170.12 235.
9 

F:TGGAACACATTCCTCACCAG 
R:GTTCTCCTTCCACCCCAAAT 

311-
319 

3 50.6 40.1 15.3 58 1.5   (Tozaki et 
al. 2004) 
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Table A-9 (continued)  
TKY003 2 22.73 0 F:GGTTCACACAGGAGTCAGGGA 

R:CCTTCTGGTTTGCCTCGTCTC 
179-
185 

4 55 52.9 27.5 62 1.5   (Tozaki et 
al. 1995) 

ASB017 2 30.6 28.5 F:GAGGGCGGTACCTTTGTACC 
R:ACCAGTCAGGATCTCCACCG 

113-
135 

6 78.40 71.1 35.9 60 1.5   (Breen et al. 
1997) 

TKY784 2 38.79 65.5 F:GATCAGTACTTTGCAAATGGATA
AC R:GTAACTCCAAGGCTACGTTC 

221-
231 

4 59.3 57.1 25.2 58 1.5 F:In SINE  (Tozaki et 
al. 2004) 

ASB013 2 75.64 89.4 F:CTCTGAAAGAGCAGGATTGG 
R:GTCTTCTAAGTGGTAAGAGCC 

143-
157 

4 44.4 39.4 26.1 58 1.5   (Breen et al. 
1997) 

TKY850 2 80.27 100.
7 

F:TGGTTTGCTGGTTTTGCCTC 
R:AGACATAGGTATTGACTGGG 

165-
181 

4 72.8 66.6 39.3 58 2   (Tozaki et 
al. 2004) 

UCP1ms 2 90.98 109.
9 

F:GTCTCCCTCCCTCAAACCTC 
R:GGGTTGCATACTGGATGGAC 

155-
177 

3 58.8 38.9 32.3 58 1.5     

TKY497* 2 104.82 109.
9 

F:TGTTTGCACAGTGATAGTTTGAA 
R:TAGTGGCTGACTGTGCTCCA 

453-
465 

5 57.4 39.7   58 1.5 F:In SINE  (Tozaki et 
al. 2004) 

FABP2m
s 

2 108.16 125.
8 

F:TGCAGTGATGTCCTTTGGAA 
R:CCACTCGCTGTGGGAATACT 

261-
265 

3 6.8 5.6 14.9 58 1.5     

TKY903 2 118.16 147.
8 

F:TCAAGTTCTTGCAATCCCAG 
R:CTGAGCCTCACAGATGAAC 

233-
239 

4 53.4 38.7 12.7 58 3   (Tozaki et 
al. 2004) 

AHT036* 3 2.94 0 F:TTGATCTTCCCTCCAAATGC 
R:CGAAGGCTTCCATATGTTAAAAA 

329-
339 

5 72.2 63.2 28.4 58 1.5 R: High 
end self 
compleme
ntarity/3' 
stability 

(Swinburne 
et al. 
2000b) 

CETPms 3 9.43 18.6 F:CAGCCATTGTGGTCTTGGTA 
R:CTGCTTACAGGGGGAAAGTG 

246-
256 

4 64.8 59.3 31.7 58 1.5     

COR033 3 13.46 40.8 F:GAAGGGGCCCATTATTCATT 
R:TTCAAGGATATGTCCATTGGTG 

257-
287 

7 82 75.3 42.7 58 1.5 R: in LTR (Murphie et 
al. 1999) 

TKY1085 3 22.55 47.4 F:ACCAAACTCAAGGTTAAGCTC 
R:TGAACTCTACCTTCAAGTGG 

197-
211 

4 45.7 39.2 37.9 58 2   (Raudsepp 
et al. 
2008a) 

UCDEQ4
37 

3 31.28 56.9 F:CTGTTCTGGGCAGGCTTCTCTA 
R:TTGCTGGCTTGGCTGGTC 

195-
207 

6 74.5 68.0 44.6 60 1.5   (Eggleston-
Stott et al. 
1997) 

LEX057 3 36.3 56.9 F:TGGTCCCCTAATCAAATCAGA 
R:ACGGCATCCCACATAAAATAG 

177-
187 

5 32.7 28.0   58 1.5 R: In SINE (Coogle & 
Bailey 
1997) 

ASB023* 3 79.27 75.4 F:GCAGGTGGAGGAGGTTTGTA 
R:CCCTGGTGGGTTAGATGAGA 

193-
219 

6 82 76.8 43.2 58 1.5 F: Tm too 
low; R: Tm 
too low 

(Lindgren et 
al. 1998) 
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Table A-9 (continued)  

PPARGC
1Ams 

3 100.8 88.8 F:GCGAGCTGTACCATAGCAAA 
R:GAGACAGCTCCCACCTATGC 

333-
337 

3 51.2 37.3 23.5 58 1.5     

TKY439* 3 111.28 101 F:CATTTGAAAGGATCATTCACCA 
R:CAGCCTCTTACTTGACGCTTT 

405-
407 

2 30.9 26.9 18.0 58 1.5 R: In SINE (Tozaki et 
al. 2004) 

AHT043* 4 2.91 0 F:CCATGACGGTCTTTGATCCT 
R:GGCCTTGGACTACTGCAGAC 

303-
319 

5 62.3 51.7 32.0 58 1.5 F: High 3' 
stability 

(Swinburne 
et al. 
2000b) 

TKY942 4 15.67 17 F:GAAGGGACCTTGTTCAGAAG 
R:TGACTGGAGCAGTGTGAAG 

233-
241 

3 51.9 36.7 35.4 58 1.5   (Raudsepp 
et al. 
2008a) 

COR057 4 32.74 17 F:GGAGGAGAGGAAGAGAGTGG 
R:ATCCAGGGCTCTCCATAGTC 

254-
260 

3 68.5 57.1   62 1.5 F & R: In 
LINE 

(Ruth et al. 
1999) 

PON1ms 4 38.77 34.9 F:TTCCCAAGATGGTCCTGAAG 
R:TTCCCTATGGTGGTCTTCTCA 

275-
289 

5 53.4 48.2 30.6 58 1.5     

IL6ms 4 54.41 57.3 F:AGAATTACCGAGGTGGCATC 
R:TCTGGGAGAGGTTTTCTTGG 

169-
171 

2 40.7 33.6 25.9 58 1.5     

TKY830* 4 58.76 71.1 F:TCCTGATGCTGACAGTTTGC 
R:CACCATTGCAATCAAACTGG 

396-
400 

3 60.5 55.4 35.1 58 1.5 F: Tm too 
low 

(Tozaki et 
al. 2004) 

HTG07 4 64.16 81.3 F:CCTGAAGCAGAACATCCCTCCTT
G 
R:ATAAAGTGTCTGGGCAGAGCTG
CT 

138-
146 

4 61.7 47.5 33.4 58 1.5   (Marklund 
et al. 1994) 

TKY552 4 65.14 81.3 F:CTAGAGGTGCCTTCCCAGAC 
R:ACCACCAAGACGAAAGGTGA 

144-
152 

4 63 50.4   58 1.5 F & R: In 
LINE 

(Tozaki et 
al. 2004) 

HMS19 4 70.51 81.3 F:CTAACCAGCACAGAATGAATGGC 
R:TAAAAGAACAGTGGAGAGTAAAG
TG 

99-
101 

2 8.6 7.4   58 2 F & R: In 
LINE 

(Godard et 
al. 1997) 

HMS09 4 84.42 102.
1 

F:GCAACAGATATTAGCTCAGGGCC 
R:TGCTGTTCTTTTGCTGTGAAGGG 

118-
126 

3 39.5 36.5 21.7 58 1.5 R: In SINE  (Godard et 
al. 1997) 

NOS3ms 4 102.73 120.
8 

F:TTCCCCTTTGTCCACTTTTG 
R:TGTGGCGAAAGGCTTAAGAT 

187-
223 

10 69.1 62.3 29.6 58 1.5     

TKY508 5 6.24 0 F:CAAAGCCCGCAGGATAAATA 
R:GCATTGCAAGTGCAGAAGTC 

170-
176 

3 37 31.9 22.8 58 1.5 F: In DNA 
repeat 

(Tozaki et 
al. 2004) 

AHT024 5 12.16 0 F:TCCACTAATATCCCTCCACCC 
R:CTGTACCGCATGTGCAGC 

214-
218 

3 29.6 26.2   62 1.5   (Swinburne 
et al. 
2000b) 

TKY731 5 17.26 13.9 F:GGGCACAGACCTACTCCACT 
R:GCAACAGCATCCCAGAATTT 

253-
269 

3 39.5 36.1 21.7 58 1.5 R: Im 
SINE  

(Tozaki et 
al. 2004) 
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Table A-9 (continued) 
TKY521 5 36.99 49.5 F:TCTTCTCAGGATTTGGGAGGT 

R:CCCTTCTGAACGGCTTATGA 
213-
217 

3 38.9 33.3 29.1 62 1.5   (Tozaki et 
al. 2004) 

AHT050 5 44.28 56.2 F:GTTGGCTGGTTTTTGCATTT 
R:CGTACACACATTTTCACCCA 

308-
330 

8 58.4 50.5 35.8 58 1.5   (Swinburne 
et al. 2003) 

TKY673
* 

5 52.26 62.3 F:TGTCTGGTTCCAGCTTAGGG 
R:AGCGTCACAAGGGAGCTTTA 

363-
375 

3 69.8 56.1 34.1 58 1.5 F: Tm too 
low, 
mismatch  

(Raudsepp 
et al. 
2008a) 

AMPD1
ms 

5 54.16 78 F:GAATCATTTCCCTTCCTCCA 
R:TCTCTGTGGGCCCCTTTAC 

163-
177 

5 71.4 58.6 32.6 58 1.5     

UCDEQ
304 

5 56.67 87 F:CGCTTTCCTGCTGTCACC 
R:GAGGGACTGTGGGGGAGGT 

111-
129 

4 64 50.3 30.1 58 1.5   (Eggleston-
Stott et al. 
1997) 

LEX034 5 76.17 114.
5 

F:GCGGAGGTAAGAAGTGGTAG 
R:GGCCTAAGATGAGGGTGAA 

261-
271 

4 75.3 67.9 38.3 58 2   (Coogle et 
al. 1997) 

LEPRm
s 

5 95.14 158.
2 

F:ACTTGCCCAGATGACTGCTT 
R:TGCCAACAAAATTTCTGAACC 

276-
280 

3 66.2 54.6 21.6 58 1.5     

TKY543
* 

6 6.24 0 F:AGGAAAGCGGTGTGGTACAG 
R:AGCACCTGAAATGTGGAAGG 

153-
157 

3 30.2 26.9 12.1 58 1.5 R: 
Mismatch 

(Tozaki et 
al. 2004) 

TKY100
1 

6 11.87 26 F:TCTCAGAAGCCATCTGGAG 
R:ATCGATGCAGAACACGTGG 

260-
274 

5 58 52.6 25.8 58 2   (Tozaki et 
al. 2004) 

TKY556 6 19.55 39.3 F:GCAGAGGGTGAAGCCAGTAA 
R:TAATTCCTGCTTGTCGCAAA 

195-
229 

7 52.5 51.8 31.8 58 3   (Tozaki et 
al. 2004) 

GNB3m
s 

6 34.29 46.9 F:GATGAGGTGAAGTGGGGTGT 
R:GCTGGGAAAGGGGTTTTAAG 

286-
302 

5 53.7 46.1 35.2 58 1.5     

VDRms 6 65.49 69.9 F:TCACTTCCTCAGGCTGGATT 
R:CCACCTTGTAGCTCCCTGAC 

290-
300 

4 67.9 57.7 43.2 58 1.5     

COR07
0 

6 65.85 71.5 F:CATCTGTTCCGTGGCATTA 
R:TTCAGGTGTGGGTTTTGAATC 

288-
314 

9 77.8 79.8 45.7 62 1.5   (Tallmadge 
et al. 
1999b) 

TKY952
* 

6 79.47 101 F:CCGTGTGTGTGTGTGTGTGT 
R:TTTTGTAGTTGCCTGGCTGA 

293-
305 

5 64.2 57.5 26.1 58 3 F: High 
end self 
compleme
ntarity/ 3' 
stability; 
R: Tm too 
low, in 
MER1_typ
e 

(Tozaki et 
al. 2004) 

TKY506 7 16.35 0 F:CTCCTTCATGCGTGAATCCT 
R:CAGTGACAGAAAACAGGATGG 

187-
195 

3 46.9 35.8 26.3 58 1.5   (Tozaki et 
al. 2004) 
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Table A-9 (continued) 
APOC3
ms 

7 24.88 3.5 F:AAGAGGCTGAAAGGGAAAGG 
R:TGTCACATGGCAAGTTGGTT 

240-
258 

5 67.9 60.3 32.0 58 1.5     

UCP2m
s3 

7 70.02 25.8 F:CGGTGGGTTTTAGTGTTCCA 
R:ACTTAACCATCAGGCCAAGG 

373-
389 

6 66.5 57.6 32.4 58 1.5     

TKY793 7 81.64 35.3 F:TCGACACAGATGTTAGCTCT 
R:TGCAATGCAATTTGCTTCCC 

262-
272 

5 66 60.0 33.0 62 1.5 F: In SINE (Tozaki et 
al. 2004) 

AHT019 7 85.68 37.9 F:CATTTCTCTGGTGTATCTCCCA 
R:GGAATAGTCATAGTCCACGACC 

165-
167 

2 51.2 37.5 30.8 58 1.5 F: In SINE (Swinburne 
et al. 
2000a) 

TKY380
* 

7 92.4 69.6 F:GGCTACAATGGCAAGCAAAT 
R:CAAACAACACCATGCCAGAC 

261-
283 

3 45.7 37.1 14.3 58 1.5 Excessive 
stutter 
peaks  

(Tozaki et 
al. 2001b) 

AHT005
* 

8 Un 0 F:GGGTCCAGTCCTTCTCTGCT 
R:GGGTCGTAGAGCTGCACAGT 

337-
347 

5 74.1 64.0 25.7 58 1.5 R: 
Mismatche
s; F: Tm 
too high/3' 
stability 

(Swinburne 
et al. 
2000a) 

UM034* 8 18.87 39.4 F:GTAGACGCCACCCTCATCTC 
R:CAGAGAGCAAGTGTGAG 

227-
243 

2 26.3 32.2 29.0 58 1.5 F: Tm too 
low/High 3' 
stability; 
R: Too 
short 

(George et 
al. 1998) 

COR01
2* 

8 46.41 61.6 F:ACCCATCACGTGAGTCTGGA 
R:AAAAATCTGCATGATTCTCTGGA 

299-
309 

4 57.4 49.6 24.4 58 1.5 R: In LINE (Hopman et 
al. 1999) 

COR00
3 

8 64.25 77.8 F:TAGGGAAACTCCTCAAAGCC 
R:GAAACCAAAACCTTCATCCA 

211-
225 

4 49.4 45.1 25.9 58 1.5   (Hopman et 
al. 1999) 

TKY932
* 

8 91.06 93.5 F:GGGGCCCACGTCTATATCTT 
R:GTGACCGAAGCTTGCTTTTC 

383-
389 

4 61.1 60.1 32.6 58 1.5 F: Tm too 
low; 
R:High 3' 
stability 

(Tozaki et 
al. 2004) 

TKY457 9 16.72 0 F:GCCTCAAAGTTGGGTGAAAA 
R:ACTCCCTTTCCGAGATTGGT 

272-
284 

5 56.8 54.1 37.4 58 1.5   (Tozaki et 
al. 2004) 

COR00
8 

9 18.91 5 F:TAAGTGCTGAGTCTGGGACC 
R:TGGTAGATAGCGTCTGGAGG 

261-
285 

7 56.5 52.4 41.3 58 1.5 R: In SINE (Hopman et 
al. 1999) 

TKY533 9 22.77 13.1 F:CACTCTCCAGCTGGGTTAGC 
R:AGGTGATGGGCTGGATACAC 

225-
233 

5 77.2 68.0 39.1 58 1.5   (Tozaki et 
al. 2004) 

ASB004
* 

9 61.72 43 F:CCAGTGCTTCATCATCTGGA 
R:CCCCATTGTTCAAAGCAAAT 

352-
362 

6 66 55.7 27.2 58 1.5 F: High 3' 
stability; 
R: 
Mismatch 

(Breen et al. 
1997) 

LEX019 9 75.59 66.8 F:TTCCCTTTTCCTCACATCCT 
R:TTTTAGGTTCATCTATGTTGTTGC 

177-
181 

3 54.9 50.0 25.5 60 1.5 F & R: In 
LINE 

(Coogle et 
al. 1996b) 
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Table A-9 (continued) 
NVHEQ
018 

10 15.38 0 F:GGAGGAGACAGTGGCCCCAGTC 
R:GCTGAGCTCTCCCATCCCATCG 

129-
149 

5 51.9 46.0 32.6 58 1.5   (Guerin et 
al. 1999) 

SGCV3
0 

10 19.34 8.6 F:ACTGGAGGGGTGAAACAGATTCA
GA R:GGAAGGGAGGTCATCAGAA 

174-
182 

5 77 69.6 41.6 58 1.5   (Godard et 
al. 1997) 

LEX008
* 

10 20.38 10.6 F:TGACACTGGAAGCACACACA 
R:CGAAAAAGCCACTTGAGGTC 

198-
206 

5 64.2 52.4 42.7 58 1.5 Excessive 
stutter 
peaks  

(Coogle et 
al. 1996a) 

NVHEQ
007* 

10 36.37 28.9 F:GGGAGGATGCAACTGAAAAG 
R:AGCAAAAAGGGTGTGGTTGT 

385-
391 

4 59.3 47.6 30.9 58 1.5 F: In SINE (Guerin et 
al. 1999) 

UM040 10 51.31 37.4 F:CTCTTGTACATGTCTCCTTGTC 
R:TACTTTCTCTCTTCCAAACC 

264-
272 

3 57.4 51.7 28.5 58 3 R: In LINE (George et 
al. 1998) 

SGCV1
7 

10 57.8 46.3 F:GGCCCAACGTCTATAGAAAGATG
T R:CCCCCAAATGGCTATTTTCTAA 

147-
159 

2 48.1 34.8 21.9 58 1.5   (Godard et 
al. 1997) 

LEX009
* 

10 61.88 60.6 F:CTGCATGACTGAAAGCCGTA 
R:ATGGTCCATTGTGAGGGTGT 

399-
411 

3 53.1 46.6 28.5 58 1.5 R: 
Mismatch 

(Coogle et 
al. 1996a) 

NVHEQ
067* 

10 71.4 77.4 F:GCTCCCAGCTTTTTGTTGAG 
R:GGTAGCATGTGGCTTCCATT 

392-
400 

2 38.3 33.0 16.3 58 1.5 F & R: In 
LINE 

(Bjornstad 
et al. 2000) 

TKY551
* 

11 1.82 0 F:CGTAACATACTGCCCATTCC 
R:GGGTGAGCACCTCCTCTACA 

369-
373 

3 55.6 45.8 21.8 58 1.5 F: In LTR (Tozaki et 
al. 2004) 

TKY343
* 

11 12.99 18.1 F:ATGGGTGCTTCACCAGC 
R:CCCTGAGCTTGCCAATTTTA 

366-
380 

6 67.9 65.3 37.2 58 1.5 R: In SINE (Tozaki et 
al. 2001b) 

ACEms
1 

11 15.71 27.7 F:TGTTTCCACCAGGAAACCTC 
R:ATCTTTCAGCCCACTTTGGA 

384-
412 

4 57.4 52.7 32.2 58 1.5     

SGCV2
4* 

11 19.53 38.8 F:TGTTTGCAGCTGGATCTTTG 
R:TGTGAAACGAGCAGGAAGTG 

298-
308 

6 51.6 50.4 37.3 58 1.5 F: In LTR, 
high 3' 
stability; 
R: Tm too 
high 

(Godard et 
al. 1997) 

UMNe3
78 

11 20.21 49.6 F:CTAGGGACTCTGGAAAGGGC 
R:CCACGTAACCCAAGTGTGTG 

259-
271 

4 57.4 54.7 33.4 58 2   (Wagner et 
al. 2004b) 

AHT076 11 21.92 61.1 F:ACTGAGCGGCCATGACTC 
R:GAGGATTGGTGGCAGATGTT 

182-
188 

2 37.7 31.6 23.0 58 1.5 F: In SINE (Swinburne 
et al. 2003) 

ACADV
Lms3 

11 50.02 98.4 F:AGTGATCAGGGCAGAAGGTG 
R:CCCCAAAGAACACTTGGCTA 

270-
284 

4 43.7 42.6 20.3 58 1.5     

TKY683 12 3.56 0 F:CAATGGTGAAAATCTCTTTCCAG 
R:AGGTACAGCCCTGGTGTAAAA 

179-
193 

6 69.8 63.2 27.3 58 1.5   (Tozaki et 
al. 2004) 

SGCV1
0 

12 9.5 19.5 F:CATCCATCCTTTCCAGCTCGATA
TTC 
R:CAAGACCGTAACTCAGGAGCCC 

193-
201 

4 66 65.0 41.9 58 1.5 F: In SINE (Godard et 
al. 1997) 

TKY404 12 20.14 35.8 F:TTGTCAGTGTGTGAGGAGATCA 
R:TGCAGAGCAGCAATTTCATT 

190-
198 

4 66 57.5 39.6 58 1.5 F: In LINE (Tozaki et 
al. 2004) 
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Table A-9 (continued) 
UCDEQ
411 

12 24.88 48.5 F:TGCTGCGAGTCAGTGGCT 
R:ATGCCTCACATCCCTGGGT 

94-
106 

5 60 50.5 43.8 58 1.5   (Eggleston-
Stott et al. 
1997) 

ACTN3
ms 

12 26.55 51.9 F:CCTCACAAGGAACTGCAACA 
R:CTTCCTGTGTCCAGCAGTCA 

365-
375 

3 46.9 39.1 45.6 58 1.5     

COR05
8* 

12 27.94 54.2 F:ATCACTCTGGCAGCTGTGTG 
R:CAAATCCACCCCTCTCTTCA 

240-
260 

8 80.1 79.3 47.3 58 1.5 Excessive 
stutter 
peaks  

(Ruth et al. 
1999) 

AHT017 12 31.03 71.9 F:CCCCATAACCACAAGTGAGG 
R:GAAGTGGGAGAGTCGGTAAGG 

128-
148 

7 69.1 62.2 34.0 58 1.5   (Swinburne 
et al. 
2000a) 

COR06
9 

13 6.09 0 F:AGCCACCAGTCTGTTCTCTG 
R:AATGTCCTTTGGTGGATGAAC 

292-
300 

4 45.7 42.7 20.8 58 1.5 F & R: In 
LINE 

(Tallmadge 
et al. 
1999b) 

TKY585 13 7.84 25.8 F:GCAGCCTGAGGAAATGAAGT 
R:TTATGACCCCCACTCTCCTG 

137-
151 

4 55.6 47.6 27.0 60 1.5   (Tozaki et 
al. 2004) 

VHL047
* 

13 16.89 40.8 F:GCCTCTGCTGTGTTTCTTCC 
R:GCTGTGGTTACCAGGCAGAT 

321-
339 

4 74.1 67.3 36.1 58 1.5 F & R: 
Mismathch
es 

(van 
Haeringen 
et al. 1998) 

ASB001 13 31.71 95.1 F:AGCAGAAACCCACTCAAGCC 
R:GCATAATACCCTCAAGGTC 

175-
183 

3 55.6 52.4 18.6 58 1.5 F: In SINE (Breen et al. 
1997) 

LEX043 14 16.14 0 F:CATTAAGCAACAAAAAGCATC 
R:GGAAAAGCATGACAAGACACT 

259-
263 

3 30.2 25.8 9.5 58 1.5   (Coogle et 
al. 1997) 

UM032 14 28.53 33.2 F:AAATGGTCAGCCTCTCCTC 
R:TGTCTCTCTAGTCCCACTCCTC 

165-
171 

3 55.6 45.8 23.0 58 1.5   (Swinburne 
et al. 
2000a) 

ADRB2
ms 

14 28.92 44.9 F:CTGTCTCCTCTTCCGAGTGC 
R:GACAAGCAGGAGAGGTGGAG 

205-
221 

5 52.5 46.8 20.6 58 1.5     

TKY491 14 81.17 120.
3 

F:CCTCTTGGGACAGAGGACAG 
R:TCTCTCAGGAGCCTGTGTTG 

253-
269 

5 77.8 69.4 35.7 58 2 F: In SINE (Tozaki et 
al. 2004) 

COR00
2 

14 90 136.
7 

F:CTTGAGCACCCAGTAACACC 
R:CCAGGAATCTTCTCTACCGA 

248-
252 

3 58.6 58.0 31.0 58 1.5 R: In SINE  (Hopman et 
al. 1999) 

TKY565 15 31.64 0 F:GGGGCGTTAAGGCAGTAAG 
R:ATGCGCTTCAGCATCTCTTT 

189-
203 

6 51.6 43.9 23.3 58 1.5   (Tozaki et 
al. 2004) 

LEX046 15 39.36 24.7 F:ATAAGCCAATCCACTTTTCC 
R:ATTACCACCCCATTTCCTT 

132-
144 

5 69.6 69.7 32.3 58 3   (Coogle et 
al. 1997) 

TKY795 15 45.69 51.9 F:AGAGTAATGTGGTGGAGGAG 
R:TTTTGTGGCTAGGTTTTGGG 

159-
171 

3 43.2 34.2 33.6 58 2   (Tozaki et 
al. 2004) 

ASB019 15 58.31 51.9 F:GAGTTGGAGCTCAAGTCTGTC 
R:GTTTAGCAACTACAGCGTAGG 

193-
205 

3 38.9 34.9   58 2   (Breen et al. 
1997) 
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Table A-9 (continued) 
AHT016 15 65.46 56.9 F:ATGTTGTGCAAATGGGATGA 

R:TGCCCATTGATTGATGATTG 
151-
169 

5 69.6 63.4 37.7 58 1.5 F & R: In 
LINE 

(Swinburne 
et al. 
2000a) 

15CA00
1 

15 88.65 109 F:CTCTGTGCCAGACCCTGTTC 
R:GGTCTGCTCGAACGTCATTT 

257-
261 

3 48.1 40.9 13.0 58 2 F & R: In 
LINE 

(Penedo et 
al. 2005) 

AHT037 16 3.91 0 F:ATTTCACCCACTCCCAACC 
R:TTTCGTTTGCGACAATATGG 

226-
238 

3 67.9 55.7 26.3 58 1.5 F & R: In 
LINE 

(Swinburne 
et al. 
2000b) 

AHT038 16 30.27 36.6 F:TTCATGGCCTTCAAAACTCC 
R:CCAGCTGGGGATACTTACCA 

145-
153 

5 68.5 62.7 39.1 58 1.5 F & R: In 
LINE 

(Swinburne 
et al. 
2000b) 

L15.2 16 51.93 53.3 F:GGGCAATGAAAGGTCTGACTATG
AG 
R:AACAGTTTCTGCTTGTGCTGACA
C 

161-
173 

5 46.3 40.9 28.0 58 2   (Guerin et 
al. 1999) 

TKY936 16 73.65 85.2 F:ACCACTGTACTGAATACTGG 
R:ACAAAGCATCTCCTCGAATAG 

122-
142 

6 87 78.3 42.2 58 1.5 F & R: In 
LINE 

(Tozaki et 
al. 2004) 

COR10
5 

17 4.76 0 F:TTTCCTCATTGCTTCCTGAG 
R:CCCAAGGTCTGTCTTGCTCTC 

193-
211 

5 73.5 68.7 39.0 58 1.5   (Swinburne 
et al. 
2000a) 

COR00
7 

17 6.6 11.4 F:GTGTTGGATGAAGCGAATGA 
R:GACTTGCCTGGCTTTGAGTC 

185-
195 

4 65.8 64.2 38.9 62 1.5   (Hopman et 
al. 1999) 

UCDEQ
014 

17 28.63 31.3 F:GCATTTGCTCACTGGCTAC 
R:ACTCCTCCACTCCCACCTA 

147-
153 

4 51.9 64.2 24.1 58 1.5   (Eggleston-
Stott et al. 
1996) 

COR03
2 

17 41.42 41.5 F:GCCCTCTTAGAGCATTTTCC 
R:CAGAGATGGCTGGAGTAAGG 

265-
271 

3 3.7 3.7 19.9 58 1.5   (Murphie et 
al. 1999) 

LEX067 17 59.85 51.6 F:GTTGCTAAAATTGTTCCAGAC 
R:CCAATAAAAGGAATCACTGCT 

227-
233 

5 67.9 59.5 36.9 58 3 F & R: In 
LINE 

(Coogle & 
Bailey 
1999) 

HMS25* 17 61.87 55.7 F:GCAAACATAAAATATGCATGTCC 
R:TGTAAGGCTTGAGGCCAACT 

130-
134 

3 48.8 40.5 33.4 58 3 F: High 
end self 
compleme
ntarity 

(Godard et 
al. 1997) 

TKY684 17 66.8 62.1 F:TTTGCAGGCTTTCTGTATTTTT 
R:TTCTGTTTCGTTTTCCCTGAA 

247-
257 

6 72.8 69.2 35.5 58 1.5   (Tozaki et 
al. 2004) 

TKY019 18 0.53 0 F:CTTCTGCTGATTCCTGAATG 
R:GGATCTCCTTAAATGGAACA 

164-
178 

4 72.3 72.3 26.4 58 1.5 F & R: In 
LTR 

(Kakoi et al. 
1999) 

SGCV0
7 

18 26.36 34.3 F:GAATTTGAATGTATCTATTCTGAA
TG 
R:GTGAGTTTTCAAGCTGGCATATT
C 

151-
161 

4 55.6 55.6 22.3 58 1.5   (Godard et 
al. 1997) 
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Table A-9 (continued) 
TKY545
* 

18 43.78 56.4 F:CTGCCTTGGTGGGATTTCTA 
R:CCAAAAACACAGCAGAACGA 

360-
366 

4 64.8 64.8 32.5 58 1.5 Excessive 
stutter 
peaks  

(Tozaki et 
al. 2004) 

HTG17 18 57.92 63.4 F:GCTATCCCTCCTGAGTCTTA 
R:AGGTAATTTGAAATAAAATACAC 

147-
151 

3 63 63.0 27.7 58 2   (Lindgren et 
al. 1999) 

GDF8m
s2 

18 66.5 86.4 F:CTTACCCAGCCCAGGTCATA 
R:CCATCCCAGTTTCGAGAGAA 

331-
341 

2 6.2 6.2   58 1.5     

TKY016 18 66.8 86.4 F:GGTTATGGTTTGGTATCTGTC 
R:AAAACAATGGCTTCCTGGTCA 

131-
143 

4 45.7 45.7 21.4 58 2   (Kakoi et al. 
1999) 

HLM3 18 74.94 111.
4 

F:GAAGGTAGAAAAGGAGGGCTAG
AAC 
R:TCTAGAGGACCATTCTCTGGGCT
GTG 

133-
145 

4 73.5 73.5 28.6 58 1.5 F: In LTR (Vega-Pla 
et al. 1996) 

TKY730 19 35.34 0 F:CCTCCTTGAGTAACAGTCAC 
R:GACCTTATCAGTGCCCTTG 

282-
292 

5 62.3 60.1 33.3 58 1.5   (Farber & 
Medrano 
2004) 

NVHEQ
011* 

19 44.11 11.3 F:CTGTGCAGGATACAGGGTGA 
R:TTACAAGGCCATGCCTATCC 

307-
313 

3 61.1 49.8 31.7 58 2 F: 
Mismatch 

(Guerin et 
al. 1999) 

TKY783 19 58.23 38.8 F:TAGACAACTGACCAGTGCAA 
R:CTGGTTGCTCCTGTCTTAAA 

161-
173 

5 67.3 62.2 33.5 58 1.5   (Tozaki et 
al. 2004) 

AHT018 20 10.04 0 F:TTTTCCAGTGACTCTGAGTGTG 
R:GTTGTGGGAAAACTAGTCTGGC 

187-
195 

4 45.7 38.0 22.7 58 2   (Swinburne 
et al. 
2000a) 

UMNe0
56 

20 29.28 22 F:TCTGTCTGCAGCTAAAGAGGC 
R:GCGGGGTACATAAGACTGTAGC 

204-
220 

6 69.1 69.2 48.1 58 1.5   (Roberts et 
al. 2000) 

UM011* 20 33.5 29.7 F:TTAGGGGTTTTCCCATTTCC 
R:TGAAGCTGTTGGCATCAGAC 

407-
423 

6 82.1 76.7 50.0 58 1.5 F: Tm too 
low; R: 
High 3' 
stability 

(Meyer et 
al. 1997) 

TKY547 20 40.84 35.9 F:TTGCTCAGGAAGCAAAGGAT 
R:AAAATGAGGCTTTCGCACAT 

220-
230 

3 63.6 53.5 40.7 58 1.5   (Tozaki et 
al. 2004) 

NVHEQ
021 

20 60.07 122.
7 

F:CCAGAACCTGGACTGAACAGTGT
C 
R:GAATGTGCTTGATGCAGAAGAAG
G 

173-
181 

4 51.9 41.6 20.2 58 1.5   (Bjornstad 
et al. 2000) 

COR07
3 

21 20.25 0 F:GCCAAGACATGGAAACAATC 
R:GTTCTCAAGGTGCATCCCTA 

206-
218 

6 68.3 66.9 34.9 58 1.5 F & R: In 
LINE 

(Tallmadge 
et al. 
1999b) 

TKY671 21 26.39 11.5 F:AGGCAACATGAGAAGGCACA 
R:ATAGCACCTGTTCCCTGGAG 

116-
132 

5 79.6 71.5 33.2 58 1.5 F: In LINE (Tozaki et 
al. 2004) 

TKY623 21 53.46 29.6 F:CAGTGTGGGTGGGCTTTATC 
R:ACCACTAGGGTGTGCATGTG 

291-
299 

4 63.6 55.3 28.5 58 1.5 F & R: In 
LTR 

(Tozaki et 
al. 2004) 
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Table A-9 (continued) 
TKY308
* 

22 10.87 0 F:GGGAGAAGCAAGCACACACT 
R:CTGAGCATGAAGCGTCTGAG 

260-
286 

5 50.9 46.4 30.1 58 1.5 F: High 
Tm/self 
compleme
ntarity/3' 
stability; 
R: Tm too 
low 

(Tozaki et 
al. 2001b) 

HTG14* 22 14.27 5 F:TGATGCAAATTTCCCAATGA 
R:CTATACGCCAGAGGGAGCAG 

364-
380 

5 74.7 64.7 37.0 58 1.5 R: Tm too 
high 

(Marklund 
et al. 1994) 

SGCV0
1* 

22 30.65 48.2 F:TTCCTCTTCCCAAGGGTTCT 
R:AGGATACGGATGAGCTGGTG 

165-
169 

3 46.9 38.8 17.2 58 1.5 Excessive 
stutter 
peaks  

(Godard et 
al. 1997) 

SGCV1
9 

22 47.77 93.1 F:GCCCCCACCTGCTCCACC 
R:GGGGCAAAGTGGAAATCC 

156-
162 

4 60.5 54.4 28.1 58 1.5   (Godard et 
al. 1997) 

AHT039
* 

23 4.79 0 F:CCATGCTCAGATGCTGAATG 
R:AAACAACGTTGGCTGAATCC 

161-
175 

3 63.1 53.0 23.1 58 1.5 F: High 3' 
stability 

(Swinburne 
et al. 
2000b) 

ASB039 23 20.91 27.2 F:ACAGCTGCCTGGATATGTGG 
R:GCAGAGAGAAATAGAGATGC 

183-
189 

3 65.4 51.0 16.6 58 1.5   (Swinburne 
et al. 
2000a) 

TKY542 23 42.04 55 F:GGTGCCTAACCCAGATATGC 
R:CCCCATCAATTTCTGCTTTT 

164-
168 

2 46.3 36.7 15.8 58 1.5 F: In LINE (Tozaki et 
al. 2004) 

SGCV0
4 

23 51.9 66.5 F:CGACGCCTCCTCCTAAAC 
R:CAGCTGTGTGCCTTTGATTAT 

223-
229 

2 21.6 17.4 13.4 58 1.5   (Godard et 
al. 1997) 

TKY756 24 22.56 0 F:TGAAGGGAGCATCCGTTACT 
R:GGTGGATCTGCCCTCAGTAG 

161-
175 

5 61.1 51.0 32.4 58 1.5   (Tozaki et 
al. 2004) 

LEX074 24 34.01 28.7 F:AAGAGTGCTCCCGTGTG 
R:GACAATGCAGAACTGGGTAA 

173-
191 

7 74.5 72.0 36.3 58 1.5   (Bailey et al. 
2000) 

COR02
4 

24 41 33.7 F:CAAAAGTGATTGCCTTCGAT 
R:TTGGAAGCTGGGTGATTG 

223-
231 

5 68.5 63.5 30.8 58 1.5   (Murphie et 
al. 1999) 

UCDEQ
464* 

25 1.97 0 F:TCTGGAGAGGCTCTGAGGAA 
R:GAATTTGGGCAGGTGACAAT 

440-
446 

3 30.2 26.9 10.0 58 1.5 R: Tm too 
low 

(Eggleston-
Stott et al. 
1999) 

NVHEQ
043 

25 31.06 46.1 F:TGACACAAGATAAAAGCCCCAGG 
R:GATTGGGAAAAGAGCACAGCC 

161-
175 

5 69.8 60.4 24.3 60 1.5   (Roed et al. 
1998) 

TKY794 26 8.99 0 F:CAAACGCCCAGCAGAGTG 
R:AGTCTGCAACTAACTCTCAG 

221-
223 

2 27.2 22.0 15.0 58 1.5   (Tozaki et 
al. 2004) 

NVHEQ
070 

26 30.25 34.8 F:GCTGGTCAAGTCACACTGTG 
R:AACCTCACCCCAAGTTGTAT 

206-
216 

4 63 56.9 30.1 58 2 F: In SINE (Bjornstad 
et al. 2000) 

COR07
1 

26 19.05 74.7 F:CTTGGGCTACAACAGGGAATA 
R:CTGCTATTTCAAACACTTGGA 

209-
221 

5 66 64.5 31.4 62 1.5   (Tallmadge 
et al. 
1999b) 
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Table A-9 (continued) 
COR03
1 

27 1.37 0 F:CAATTGCCATTTGTTCCAGTG 
R:GCTTAAGAAACACCAGGCAG 

222-
234 

4 75.3 66.8 42.3 58 1.5   (Murphie et 
al. 1999) 

ADRB3
ms2 

27 7.66 2.2 F:GCTGGGGAGACAGTTGTGTT 
R:AGCACTGCCCACCAGAAG 

377-
393 

5 54.9 50.8 42.5 58 1.5     

UCDEQ
005* 

27 14.04 11.3 F:CTTTGTGCTCTGAGGGGAAG 
R:TGCAGCACTTCCTCATGTTC 

346-
352 

3 51.9 47.8 36.7 58 1.5 F: 
Mismatch; 
R: High 3' 
stability 

(Eggleston-
Stott et al. 
1996) 

TKY603
* 

27 20.74 20.9 F:CTCATGGGATTGGGAGAAAA 
R:GATGCCTCGAACTAGCTTGC 

294-
298 

2 40.1 32.2 30.4 58 1.5 F: 
Mismatch  

(Tozaki et 
al. 2004) 

TKY480 27 25.42 35.2 F:CAGAGGGCAGAGGATTTGTC 
R:AGGGACGAGGACCAAATGTA 

264-
278 

6 66.7 60.3 37.8 58 2 F & R: In 
LTR 

(Tozaki et 
al. 2004) 

COR01
7 

27 35.27 65.8 F:GAAGGCCTGAAGCATTTACA 
R:CGTAATGTTGACCAAACTTCA 

263-
275 

6 65.4 57.6 25.1 62 1.5   (Hopman et 
al. 1999) 

TKY872 28 28.64 0 F:TGGGGCTTTGGGAGACAT 
R:CAAGGCCAGAATTTCTTGAAGT 

136-
142 

4 44.4 53.3 18.8 62 1.5 F: In DNA 
repeat  

(Tozaki et 
al. 2004) 

TKY299 28 33.86 11.5 F:TGAAGTTTGAGCCTGGACACC 
R:TGCAATGTCCTGGGAAATCC 

116-
132 

4 51.3 51.1 28.6 62 1.5   (Tozaki et 
al. 2000b) 

UCDEQ
425* 

28 43.08 17.9 F:AGCACAGCTGCCTCGTTAAT 
R:GACCTGGTACCCTCCTCTCC 

299-
311 

6 45.7 42.2 27.3 58 1.5 F: Tm too 
lowR: Tm 
too low 

(Eggleston-
Stott et al. 
1997) 

COR08
2 

29 4.27 0 F:GCTTTTGTTTCTCAATCCTAGC 
R:TGAAGTCAAATCCCTGCTTC 

239-
247 

4 71 69.9 38.3 58 1.5   (Tallmadge 
et al. 
1999a) 

COR02
7 

29 22.22 40 F:CAGCTCTGCAATTTCTCCTC 
R:AATGACCAAGGCATTGAAAG 

249-
263 

4 54.3 45.1 31.2 58 1.5   (Murphie et 
al. 1999) 

L12.2 29 30.57 52.6 F:TCACACGAAACCAGTCACGGGA
G 
R:ACAGACACTGCTGGAGTCTCATG
G 

149-
163 

4 75.2 68.1 41.6 58 1.5   (Guerin et 
al. 1999) 

HMS18 30 11.4 0 F:CAACAATGAAAATTTGTCCTGTG
C 
R:GTAAATGAGTAGACAATCATGAG
G 

188-
192 

3 34 45.1 6.7 58 1.5   (Godard et 
al. 1997) 

LEX075 30 26.87 51 F:TCTGAAAAGTTGCAGTTTGAGAA 
R:TACAGTGTATTGGGGGCACA 

229-
237 

5 49.4 68.1 10.0 58 1.5   (Swinburne 
et al. 
2000a) 

TKY668 31 2.86 0 F:GCTGTAATGTACCGCCTGGT 
R:TAGGCAGCTGCGATAAGACA 

180-
194 

6 70.4 65.8 39.3 58 1.5   (Tozaki et 
al. 2004) 

AHT033 31 0.6 6.1 F:CTGAGGGCGTAAGTCGAGTC 
R:GTTAATAGGAGCGGTTGTTTGG 

173-
183 

5 69.1 62.0 39.0 58 2   (Swinburne 
et al. 
2000b) 

TKY105 31 20.76 55.4 F:TCGGGACAGGAAAGGAAGCT 
R:GGTATCCAGAATGAAAGACCCC 

215-
223 

4 38.3 35.3 16.5 58 1.5   (Mashima et 
al. 2001) 
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Table A-9 (continued) 
AHT099 X 4.55 0 F:TTCTTGGGCAGGGGATTT 

R:GGGGTGAGTTGGCTGTATTC 
187-
191 

3 58.80 51.9 37.7 58 1.5   (Swinburne 
et al. 2003) 

UMNe0
58 

X 21.52 30.4 F:GATCCAAGACTTGAAGGTTAGC 
R:TTTCCTCACCATCCTCCTTGAC 

164-
186 

5 57.80 60.6 37.2 58 2   (Roberts et 
al. 2000) 

GKms X 23.9 47.6 F:GTGTGCGTCTGTGTGTGTGT 
R:TCTGTCCACCAGGAAAGACA 

315-
323 

6 64.60 52.6 51.3 58 1.5     

UMNe1
48 

X 32.57 65.7 F:GATCAAACACTAGAATGTTCACA
C R:CAGCTGTGAGGCAGAGACTG 

113-
125 

6 70.30 72.1 46.3 58 1.5   (Mickelson 
et al. 2003) 

UMNe4
02 

X 55.67 87.3 F:AAGATGTGGCCTGTTTCAGG 
R:TTGATTCCTGGAGACTGATGG 

259-
263 

3 48.00 42.0 32.3 58 1.5   (Wagner et 
al. 2004b) 

PGK1m
s 

X 57.91 134.
5 

F:ACAGGGGGTTATCTGTGTGG 
R:TCCAGACCAAATCGAAACTATG 

235-
241 

3 47.10 37.2 28.4 58 1.5     

LEX013 X 82.44 164 F:TGCTAGAGGAAGGGATAAAGG 
R:CTCTGCTCTTCCATTTCTTGC 

142-
146 

3 54.40 47.2 20.8 58 3 R: In LTR (Coogle et 
al. 1996a) 

TKY020
* 

X 119.44 185.
8 

F:TTGCCACAGCAGTCTTTCAC 
R:CAGGTAGTGGAGCAGGGAAG 

343-
346 

2 38.20 34.5 18.2 58 1.5 Excessive 
stutter 
peaks  

(Hirota et al. 
2001) 

PIC 1 Percent information content, calculated by Genetic Power Calculator, 
(http://ibgwww.colorado.edu/~pshaun/gpc/mpic.html) 
PIC 2 Percent information content calculated by MERLIN 
HET% = percent heterozygosity 
Markers in bold newly identified microsatellites from the draft equine sequence 
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Table A-10 Results of Linkage analysis for the autosomes. Location of markers rater 
than marker names given for each chromosome. 
 
MERLIN 1.1.2 - (c) 2000-2007 Goncalo Abecasis 
 
References for this version of Merlin: 
 
   Abecasis et al (2002) Nat Gen 30:97-101        [original citation] 
   Fingerlin et al (2004) AJHG 74:432-43          [case selection for association 
studies] 
   Abecasis and Wigginton (2005) AJHG 77:754-67   [ld modeling, parametric analyses] 
   Fingerlin et al (2006) Gen Epidemiol 30:384-96 [sex-specific maps] 
   Chen and Abecasis (2007) AJHG 81:913-26        [qtl association analysis, qtl 
simulation] 
 
 
The following parameters are in effect: 
                     Data File :       ped09.dat (-dname) 
                 Pedigree File :       ped09.ped (-pname) 
            Missing Value Code :         -99.999 (-xname) 
                      Map File :       ped09.map (-mname) 
            Allele Frequencies : ALL INDIVIDUALS (-f[a|e|f|m|file]) 
                   Random Seed :          123456 (-r9999) 
 
Data Analysis Options 
         General : --error, --information, --likelihood, --model [param.tbl] 
      IBD States : --ibd, --kinship, --matrices, --extended, --select 
     NPL Linkage : --npl, --pairs, --qtl [ON], --deviates, --exp 
      VC Linkage : --vc, --useCovariates, --ascertainment, --unlinked [0.00] 
     Association : --infer, --assoc, --fastAssoc, --filter, --custom [cov.tbl] 
     Haplotyping : --best, --sample, --all, --founders, --horizontal 
   Recombination : --zero, --one, --two, --three, --singlepoint 
       Positions : --steps, --maxStep, --minStep, --grid, --start, --stop 
     LD Clusters : --clusters [], --distance, --rsq, --cfreq 
          Limits : --bits [24], --megabytes, --minutes 
     Performance : --trim, --noCoupleBits, --swap, --smallSwap 
          Output : --quiet, --markerNames, --frequencies, --perFamily, --pdf, 
                   --tabulate, --prefix [merlin] 
      Simulation : --simulate, --reruns, --save, --trait [] 
 
Estimating allele frequencies... [using all genotypes] 
   ............................................................ 
Done estimating frequencies for 178 markers 
 
 
Analysing Chromosome 1 
 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.57     0.3    0.561   0.48    0.07  
          9.000    0.99     0.2    0.561   0.97    0.02  
         26.900    0.82     0.2    0.561   0.81    0.03  
         36.900    0.69     0.2    0.561   0.63    0.04  
         57.400    0.54     0.3    0.561   0.33    0.11  
         78.700    0.55     0.3    0.359   0.21     0.2  
         81.100    0.70     0.2    0.464   0.35    0.10  
        113.700    0.69     0.2    0.389   0.27    0.13  
        118.800    0.64     0.3    0.367   0.23    0.15  
        165.200   -0.06     0.5   -0.035  -0.00     0.5  
        165.300   -0.06     0.5   -0.038  -0.00     0.5  
        177.400   -0.01     0.5   -0.013  -0.00     0.5  
        183.200    0.04     0.5    0.045   0.00     0.5  
        235.900   -0.09     0.5   -0.164  -0.02     0.6  
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Table A-10 (continued) 
Analysing Chromosome 2 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000   -0.94     0.8   -0.324  -0.54     0.9  
         28.500   -0.29     0.6   -0.318  -0.09     0.7  
         65.500   -0.08     0.5   -0.129  -0.01     0.6  
         89.400    0.14     0.4    0.178   0.03     0.4  
        100.700    0.23     0.4    0.202   0.05     0.3  
        109.900    0.18     0.4    0.184   0.03     0.3  
        125.800    0.18     0.4    0.256   0.05     0.3  
        147.800    0.10     0.5    0.237   0.02     0.4  
 
Analysing Chromosome 3 
Phenotype: Prize-loge [QTL] (20 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.82     1.0   -0.324  -3.04     1.0  
            max    6.75 0.00000    0.561   5.21 0.00000  
          0.000   -0.66     0.7   -0.324  -0.30     0.9  
         18.600   -0.67     0.7   -0.324  -0.30     0.9  
         40.800   -0.10     0.5   -0.053  -0.00     0.6  
         47.400    0.68     0.2    0.397   0.26    0.14  
         56.900    0.95     0.2    0.542   0.52    0.06  
         75.400    0.78     0.2    0.420   0.34    0.11  
         88.800    0.26     0.4    0.319   0.08     0.3  
        101.000    0.51     0.3    0.561   0.34    0.11  
 
Analysing Chromosome 4 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000   -0.27     0.6   -0.324  -0.09     0.7  
         17.000   -0.18     0.6   -0.161  -0.03     0.6  
         34.900   -0.00     0.5   -0.003  -0.00     0.5  
         57.300    0.05     0.5    0.050   0.00     0.5  
         71.100    0.07     0.5    0.076   0.01     0.4  
         81.300   -0.17     0.6   -0.214  -0.04     0.7  
        102.100   -0.26     0.6   -0.324  -0.10     0.7  
        120.800    0.09     0.5    0.151   0.01     0.4  
 
Analysing Chromosome 5 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000   -0.33     0.6   -0.324  -0.12     0.8  
         13.900   -0.16     0.6   -0.160  -0.02     0.6  
         49.500   -0.25     0.6   -0.216  -0.05     0.7  
         56.200   -0.35     0.6   -0.282  -0.10     0.7  
         62.300   -0.36     0.6   -0.297  -0.10     0.8  
         78.000   -0.28     0.6   -0.267  -0.07     0.7  
         87.000   -0.29     0.6   -0.271  -0.08     0.7  
        114.500   -0.64     0.7   -0.324  -0.25     0.9  
        158.200   -0.39     0.7   -0.324  -0.17     0.8  
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Table A-10 (continued) 
Analysing Chromosome 6 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.32     0.4    0.561   0.27    0.13  
         26.000    0.38     0.4    0.421   0.16     0.2  
         39.300    0.52     0.3    0.349   0.20     0.2  
         46.900    0.26     0.4    0.197   0.05     0.3  
         69.900    0.47     0.3    0.273   0.13     0.2  
         71.500    0.47     0.3    0.269   0.13     0.2  
        101.000    0.19     0.4    0.385   0.07     0.3  
 
Analysing Chromosome 7 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.05     0.5    0.056   0.00     0.5  
          3.500    0.07     0.5    0.066   0.00     0.4  
         25.800    0.01     0.5    0.016   0.00     0.5  
         35.300    0.00     0.5    0.004   0.00     0.5  
         37.900   -0.04     0.5   -0.053  -0.00     0.5  
         69.600   -0.01     0.5   -0.036  -0.00     0.5  
 
Analysing Chromosome 8 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.11     0.5    0.109   0.01     0.4  
         39.400    0.04     0.5    0.062   0.00     0.5  
         61.600   -0.13     0.6   -0.191  -0.02     0.6  
         77.800    0.27     0.4    0.516   0.13     0.2  
         93.500   -0.22     0.6   -0.255  -0.06     0.7  
 
Analysing Chromosome 9 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.48     0.3    0.469   0.23     0.2  
          5.000    0.54     0.3    0.490   0.26    0.14  
         13.100    0.79     0.2    0.561   0.49    0.07  
         43.000    0.23     0.4    0.307   0.07     0.3  
         66.800    0.36     0.4    0.378   0.13     0.2  
 
Analysing Chromosome 10 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000   -0.02     0.5   -0.019  -0.00     0.5  
          8.600    0.19     0.4    0.129   0.02     0.4  
         10.600    0.17     0.4    0.115   0.02     0.4  
         28.900   -0.10     0.5   -0.129  -0.01     0.6  
         37.400   -0.19     0.6   -0.226  -0.04     0.7  
         46.300   -0.28     0.6   -0.324  -0.12     0.8  
         60.600   -0.39     0.7   -0.324  -0.17     0.8  
         77.400   -0.39     0.7   -0.324  -0.20     0.8  
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Table A-10 (continued) 
Analysing Chromosome 11 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000   -0.59     0.7   -0.324  -0.33     0.9  
         18.100   -0.51     0.7   -0.324  -0.22     0.8  
         27.700   -0.23     0.6   -0.227  -0.05     0.7  
         38.800   -0.16     0.6   -0.113  -0.02     0.6  
         49.600   -0.09     0.5   -0.088  -0.01     0.6  
         61.100   -0.18     0.6   -0.255  -0.05     0.7  
         98.400    0.18     0.4    0.255   0.05     0.3  
 
Analysing Chromosome 12 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000   -0.49     0.7   -0.324  -0.23     0.8  
         19.500   -0.67     0.7   -0.324  -0.30     0.9  
         35.800   -0.40     0.7   -0.318  -0.13     0.8  
         48.500   -0.72     0.8   -0.324  -0.31     0.9  
         51.900   -1.09     0.9   -0.324  -0.56     0.9  
         54.200   -1.25     0.9   -0.324  -0.67     1.0  
         71.900   -0.47     0.7   -0.213  -0.11     0.8  
 
Analysing Chromosome 13 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.91     0.2    0.561   0.80    0.03  
         25.800    1.09    0.14    0.561   0.76    0.03  
         40.800    1.04    0.15    0.561   0.67    0.04  
         95.100    0.16     0.4    0.450   0.07     0.3  
 
Analysing Chromosome 14 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.45     0.3    0.561   0.45    0.08  
         33.200    0.69     0.2    0.561   0.58    0.05  
         44.900    0.84     0.2    0.561   0.71    0.04  
        120.300    0.33     0.4    0.211   0.07     0.3  
        136.700    0.49     0.3    0.372   0.18     0.2  
 
Analysing Chromosome 15 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.07     0.5    0.130   0.01     0.4  
         24.700    0.49     0.3    0.496   0.26    0.14  
         51.900    0.27     0.4    0.307   0.08     0.3  
         56.900    0.37     0.4    0.373   0.14     0.2  
        109.000    0.24     0.4    0.333   0.08     0.3  
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Table A-10 (continued) 
Analysing Chromosome 16 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000   -0.38     0.6   -0.324  -0.16     0.8  
         36.600    0.83     0.2    0.447   0.38    0.09  
         53.300    0.87     0.2    0.561   0.59    0.05  
         85.200   -0.20     0.6   -0.175  -0.03     0.7  
 
Analysing Chromosome 17 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000   -0.07     0.5   -0.052  -0.00     0.6  
         11.400   -0.28     0.6   -0.173  -0.05     0.7  
         31.300   -0.12     0.5   -0.092  -0.01     0.6  
         41.500   -0.03     0.5   -0.024  -0.00     0.5  
         51.600    0.17     0.4    0.102   0.02     0.4  
         55.700    0.18     0.4    0.113   0.02     0.4  
         62.100    0.21     0.4    0.118   0.02     0.4  
 
Analysing Chromosome 18 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.19     0.4    0.300   0.06     0.3  
         34.300    0.15     0.4    0.211   0.03     0.4  
         56.400   -0.53     0.7   -0.324  -0.25     0.9  
         63.400   -0.51     0.7   -0.324  -0.25     0.9  
         86.400   -0.39     0.7   -0.324  -0.17     0.8  
        111.400   -0.53     0.7   -0.324  -0.26     0.9  
 
Analysing Chromosome 19 
Phenotype: Prize-loge [QTL] (20 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.90     1.0   -0.324  -3.07     1.0  
            max    6.83 0.00000    0.561   5.27 0.00000  
          0.000    0.40     0.3    0.204   0.08     0.3  
         11.300    0.38     0.4    0.270   0.10     0.3  
         38.800    0.03     0.5    0.040   0.00     0.5  
 
Analysing Chromosome 20 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.12     0.5    0.163   0.02     0.4  
         22.000    0.23     0.4    0.129   0.03     0.4  
         29.700    0.50     0.3    0.276   0.14     0.2  
         35.900    0.54     0.3    0.372   0.21     0.2  
        122.700   -0.30     0.6   -0.324  -0.15     0.8  
 
Analysing Chromosome 21 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.36     0.4    0.223   0.08     0.3  
         11.500    0.31     0.4    0.215   0.07     0.3  
         29.600    0.35     0.4    0.305   0.11     0.2  
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Table A-10 (continued) 
Analysing Chromosome 22 
 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000   -0.23     0.6   -0.197  -0.04     0.7  
          5.000   -0.34     0.6   -0.253  -0.09     0.7  
         48.200   -0.38     0.6   -0.324  -0.16     0.8  
         93.100   -0.45     0.7   -0.324  -0.17     0.8  
 
Analysing Chromosome 23 
Phenotype: Prize-loge [QTL] (20 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.90     1.0   -0.324  -3.07     1.0  
            max    6.83 0.00000    0.561   5.27 0.00000  
          0.000   -0.62     0.7   -0.324  -0.32     0.9  
         27.200   -0.17     0.6   -0.248  -0.04     0.7  
         55.000    0.01     0.5    0.022   0.00     0.5  
         66.500   -0.06     0.5   -0.089  -0.00     0.6  
 
Analysing Chromosome 24 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000   -0.11     0.5   -0.110  -0.01     0.6  
         28.700   -0.27     0.6   -0.251  -0.07     0.7  
         33.700   -0.19     0.6   -0.207  -0.04     0.7  
 
Analysing Chromosome 25 
Phenotype: Prize-loge [QTL] (19 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.66     1.0   -0.324  -2.88     1.0  
            max    6.82 0.00000    0.561   5.10 0.00000  
          0.000    0.68     0.2    0.561   0.53    0.06  
         46.100   -0.43     0.7   -0.324  -0.24     0.9  
 
Analysing Chromosome 26 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.21     0.4    0.561   0.11     0.2  
         34.800   -0.26     0.6   -0.324  -0.09     0.7  
         74.700   -0.30     0.6   -0.324  -0.11     0.8  
 
Analysing Chromosome 27 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.10     0.5    0.060   0.01     0.4  
          2.200    0.05     0.5    0.029   0.00     0.5  
         11.300   -0.28     0.6   -0.174  -0.05     0.7  
         20.900   -0.40     0.7   -0.304  -0.12     0.8  
         35.200   -0.62     0.7   -0.324  -0.25     0.9  
         65.800   -0.41     0.7   -0.324  -0.19     0.8  
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Table A-10 (continued) 
Analysing Chromosome 28 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000    0.61     0.3    0.561   0.40    0.09  
         11.500    0.52     0.3    0.352   0.20     0.2  
         17.900    0.51     0.3    0.356   0.19     0.2  
 
 
Analysing Chromosome 29 
 
 
Phenotype: Prize-loge [QTL] (21 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.98     1.0   -0.324  -3.20     1.0  
            max    6.88 0.00000    0.561   5.46 0.00000  
          0.000   -0.38     0.6   -0.324  -0.12     0.8  
         40.000    0.85     0.2    0.561   0.65    0.04  
         52.600    1.25    0.11    0.561   1.16   0.010  
 
 
Analysing Chromosome 30 
 
 
Phenotype: Prize-loge [QTL] (19 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.64     1.0   -0.324  -2.87     1.0  
            max    6.76 0.00000    0.561   5.06 0.00000  
          0.000    0.02     0.5    0.077   0.00     0.5  
         51.000    0.10     0.5    0.219   0.02     0.4  
 
 
Analysing Chromosome 31 
 
 
Phenotype: Prize-loge [QTL] (20 families) 
====================================================== 
            Pos   Zmean  pvalue    delta    LOD  pvalue 
            min   -5.90     1.0   -0.324  -3.07     1.0  
            max    6.83 0.00000    0.561   5.27 0.00000  
          0.000   -0.55     0.7   -0.324  -0.24     0.9  
          6.100   -0.25     0.6   -0.198  -0.05     0.7  
         55.400    0.53     0.3    0.561   0.44    0.08  
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Table A-11 Results of Linkage analysis for the X chromosome 
 
MERLIN 0.9.12b - (c) 2000-2003 Goncalo Abecasis 
Modifications: CHROMOSOME-X  
 
The following parameters are in effect: 
                     Data File :           x.dat (-dname) 
                 Pedigree File :           x.ped (-pname) 
            Missing Value Code :         -99.999 (-xname) 
                      Map File :           x.map (-mname) 
            Allele Frequencies : ALL INDIVIDUALS (-f[a|e|f|file]) 
                   Random Seed :          123456 (-r9999) 
 
Data Analysis Options 
         General : --error, --information, --likelihood 
      IBD States : --ibd, --kinship, --matrices 
         Linkage : --npl, --pairs, --qtl [ON], --deviates 
      VC Linkage : --vc, --useCovariates, --ascertainment, --unlinked [0.00] 
     Haplotyping : --best, --sample, --all, --founders, --horizontal 
   Recombination : --zero, --one, --two, --three, --singlepoint 
       Positions : --steps, --maxStep, --minStep, --grid, --start, --stop 
     Performance : --bits [24], --megabytes, --minutes, --trim 
          Output : --quiet, --markerNames, --frequencies, --perFamily, --pdf 
      Simulation : --simulate, --save 
      Additional : --simwalk2, --swap 
 
Estimating allele frequencies... [using all genotypes] 
   AHT099 UMNe058 GKms UMNe148 UMNe402 PGK1ms LEX013 TKY020  
 
Phenotype: Prize-loge [QTL] (18 families) 
============================================================ 
                 Pos   Zmean  pvalue    delta    LOD  pvalue 
                 min   -4.43     1.0   -0.358  -2.48     1.0 
                 max    5.91 0.00000    0.729   5.38 0.00000 
               0.000   -0.31     0.6   -0.261  -0.08     0.7 
              30.400   -0.29     0.6   -0.254  -0.07     0.7 
              47.600   -0.42     0.7   -0.230  -0.09     0.7 
              65.700   -1.10     0.9   -0.358  -0.56     0.9 
              87.300   -0.65     0.7   -0.358  -0.25     0.9 
             134.500   -1.34     0.9   -0.358  -0.79     1.0 
             164.000   -0.98     0.8   -0.358  -0.55     0.9 
             185.800   -0.18     0.6   -0.225  -0.04     0.7 
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Table A-12 The 75 most significant results from 1000 simulated data sets produced by 
simulate option in Merlin, highlighted in green are the most significant 5%, shows that 
for the given data set LOD scored under 1.54 occur by chance more than 5% of the time.  

  Zmean pvalue delta LOD pvalue    Zmean pvalue delta LOD pvalue 
1 2.32 0.01 0.561 2.09 0.001  39 1.76 0.04 0.561 1.56 0.004 

2 2.57 0.005 0.561 2.06 0.001  40 1.96 0.03 0.561 1.56 0.004 

3 2.19 0.014 0.561 2.03 0.0011  41 1.73 0.04 0.561 1.55 0.004 

4 2.17 0.015 0.561 1.92 0.0015  42 1.78 0.04 0.561 1.55 0.004 

5 2.14 0.02 0.561 1.85 0.002  43 1.72 0.04 0.561 1.55 0.004 

6 2.41 0.008 0.561 1.85 0.002  44 1.74 0.04 0.561 1.55 0.004 

7 2.03 0.02 0.561 1.83 0.002  45 1.77 0.04 0.561 1.55 0.004 

8 2 0.02 0.561 1.83 0.002  46 1.79 0.04 0.561 1.55 0.004 

9 1.94 0.03 0.561 1.8 0.002  47 1.87 0.03 0.561 1.54 0.004 

10 2.01 0.02 0.561 1.79 0.002  48 1.75 0.04 0.561 1.54 0.004 

11 2.18 0.015 0.561 1.78 0.002  49 1.86 0.03 0.561 1.54 0.004 

12 2.01 0.02 0.561 1.75 0.002  50 1.96 0.03 0.561 1.54 0.004 

13 2.03 0.02 0.561 1.75 0.002  51 1.75 0.04 0.561 1.53 0.004 

14 1.99 0.02 0.561 1.73 0.002  52 1.84 0.03 0.561 1.52 0.004 

15 1.96 0.02 0.561 1.71 0.003  53 1.68 0.05 0.561 1.52 0.004 

16 2.05 0.02 0.561 1.71 0.003  54 1.73 0.04 0.561 1.52 0.004 

17 1.86 0.03 0.561 1.7 0.003  55 1.75 0.04 0.561 1.52 0.004 

18 1.93 0.03 0.561 1.68 0.003  56 1.91 0.03 0.561 1.52 0.004 

19 1.86 0.03 0.561 1.67 0.003  57 1.68 0.05 0.561 1.52 0.004 

20 1.87 0.03 0.561 1.67 0.003  58 1.61 0.05 0.561 1.51 0.004 

21 1.98 0.02 0.561 1.66 0.003  59 1.69 0.05 0.561 1.51 0.004 

22 1.93 0.03 0.561 1.65 0.003  60 1.92 0.03 0.561 1.51 0.004 

23 1.85 0.03 0.561 1.65 0.003  61 1.64 0.05 0.561 1.51 0.004 

24 1.74 0.04 0.561 1.65 0.003  62 1.61 0.05 0.561 1.5 0.004 

25 1.97 0.02 0.561 1.63 0.003  63 1.76 0.04 0.561 1.5 0.004 

26 1.96 0.02 0.561 1.62 0.003  64 1.96 0.02 0.561 1.5 0.004 

27 1.97 0.02 0.561 1.62 0.003  65 1.84 0.03 0.561 1.5 0.004 

28 1.85 0.03 0.561 1.62 0.003  66 1.77 0.04 0.561 1.49 0.004 

29 1.96 0.03 0.561 1.62 0.003  67 1.7 0.04 0.561 1.49 0.004 

30 1.96 0.03 0.561 1.62 0.003  68 1.63 0.05 0.561 1.49 0.004 

31 1.91 0.03 0.561 1.61 0.003  69 1.81 0.04 0.561 1.49 0.004 

32 2.2 0.014 0.561 1.6 0.003  70 1.65 0.05 0.561 1.48 0.005 

33 1.74 0.04 0.561 1.6 0.003  71 1.84 0.03 0.561 1.48 0.005 

34 1.77 0.04 0.561 1.59 0.003  72 1.6 0.05 0.561 1.48 0.005 

35 1.92 0.03 0.561 1.58 0.004  73 1.69 0.05 0.561 1.48 0.004 

36 1.87 0.03 0.561 1.58 0.003  74 1.83 0.03 0.561 1.47 0.005 

37 1.88 0.03 0.561 1.57 0.004  75 1.66 0.05 0.561 1.47 0.005 

38 1.83 0.03 0.561 1.57 0.004        
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Table A-13 Results for family based association analysis carried out in QTDT using 66 
microsatellites adjacent to candidate genes. P values are not displayed as no marker 
achieved statistical significance. 
 
QTDT - Quantitative TDT 2.6.0 
(c) 1998-2007 Goncalo Abecasis (goncalo@umich.edu) 
 
This program implements tests described by 
Abecasis et al, Am J Hum Genet 66:279-292 (2000) 
Abecasis et al, Eur J Hum Genet 8:545-551 (2000) 
and others 
 
The following parameters are in effect: 
           QTDT Data File :              adj.dat -dname 
       QTDT Pedigree File :              adj.ped -pname 
     QTDT IBD Status File :              adj.ibd -iname 
       Missing Value Code :              -99.999 -xname 
               Covariates :       USER SPECIFIED –c p|s|u|-}) 
        Association Model :           ORTHOGONAL –a a|d|f|m|o|p|r|t|w|-] 
     Full Model Variances :         NOT MODELLED –v e|c|g|n|t|a|d|-}) 
     Null Model Variances :           NON SHARED –w e|c|g|n|t|a|d|-} 
                          &            POLYGENIC 
                          &             ADDITIVE 
 Parent of Origin Effects :                 NONE -o[f|t|m|p|-] 
 Monte-Carlo Permutations :                    0 -m9999 
              Random Seed :               123456 -r9999 
        Numeric Minimizer :      NELDER AND MEAD -n[f|n|p] 
     Transmission Scoring :        FULL PEDIGREE -t[n|p] 
 
Additional Options 
 --dominance, --snp, --multi-allelic [ON], --deviates, --references, 
 --exclude-founder-phenotypes, --p-values, --no-regress-tbl 
 
Online documentation http://www.sph.umich.edu/csg/abecasis/QTDT 
Comments, bugs: goncalo@umich.edu 
 
The following models will be evaluated... 
  NULL MODEL 
     Means = Mu + B 
 Variances = Ve + Vg + Va 
 
  FULL MODEL 
     Means = Mu + B + W 
 Variances = Ve + Vg + Va 
 
  Likelihood ratio statistic from Abecasis et al (AJHG, 2000) 
 
Lumping alleles with frequencies of 0.05 or less... 
 
Testing trait:                     Prize-loge 
============================================= 
 
Testing marker:                         1CA30 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     119   270.48     118   270.40    0.18          ( 123/124 probands) 
 
Testing marker:                        LEX039 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     119   270.86     118   270.82    0.08          ( 123/124 probands) 
 
Testing marker:                        LEX020 
--------------------------------------------- 
 
Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   268.41     117   268.22    0.36          ( 123/124 probands) 
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Table A-13 (continued)  
Testing marker:                         AGTms 
--------------------------------------------- 
 
Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
All     119   270.71     118   270.51    0.40          ( 123/124 probands) 
 
Testing marker:                        UCD440 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   269.84     115   269.33    1.03          ( 123/124 probands) 
 
Testing marker:                         HMS15 
--------------------------------------------- 
 
  
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     116   267.27     113   266.54    1.46          ( 123/124 probands) 
 
Testing marker:                         1CA16 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   269.51     116   269.51    0.00          ( 123/124 probands) 
 
Testing marker:                        TKY850 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   270.43     116   270.42    0.03          ( 123/124 probands) 
 
Testing marker:                        UCP1ms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   267.55     116   267.55    0.00          ( 122/123 probands) 
 
Testing marker:                       FABP2ms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     119   270.57     119   270.57    0.00          ( 123/124 probands) 
 
Testing marker:                        CETPms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     114   262.89     112   262.49    0.81          ( 120/121 probands) 
 
Testing marker:                        COR033 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     111   262.18     107   261.68    1.00          ( 119/120 probands) 
 
Testing marker:                       TKY1085 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     114   264.56     112   264.43    0.26          ( 120/121 probands) 
 
Testing marker:                    PPARGC1Ams 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     115   264.24     114   264.01    0.46          ( 120/121 probands) 
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Table A-13 (continued)  
Testing marker:                        TKY942 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   270.56     117   270.22    0.68          ( 123/124 probands) 
 
Testing marker:                        PON1ms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     116   264.65     115   264.56    0.20          ( 122/123 probands) 
 
Testing marker:                         IL6ms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     119   270.30     118   270.22    0.15          ( 123/124 probands) 
 
Testing marker:                         HMS19 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     119   270.84     119   270.84    0.00          ( 123/124 probands) 
 
Testing marker:                         HMS09 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   270.16     117   270.13    0.06          ( 123/124 probands) 
 
Testing marker:                        NOS3ms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     116   269.23     113   268.84    0.78          ( 123/124 probands) 
 
Testing marker:                        TKY508 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   270.26     117   270.13    0.26          ( 123/124 probands) 
 
Testing marker:                        TKY521 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   269.19     117   269.14    0.10          ( 123/124 probands) 
 
Testing marker:                        AHT050 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   270.33     115   270.16    0.35          ( 123/124 probands) 
 
Testing marker:                       AMPD1ms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     114   264.89     112   264.79    0.21          ( 121/122 probands) 
 
Testing marker:                        LEPRms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     111   253.54     109   253.10    0.88          ( 116/117 probands) 
 
Testing marker:                        GNB3ms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   270.46     114   269.92    1.08          ( 123/124 probands) 
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Table A-13 (continued)  
Testing marker:                         VDRms 
--------------------------------------------- 
 
Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   268.17     116   267.82    0.69          ( 123/124 probands) 
 
Testing marker:                        COR070 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     114   266.13     112   265.77    0.72          ( 123/124 probands) 
 
Testing marker:                       APOC3ms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     116   270.69     113   269.97    1.44          ( 123/124 probands) 
 
Testing marker:                       UCP2ms3 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     115   267.41     114   267.21    0.38          ( 122/123 probands) 
 
Testing marker:                        AHT019 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     119   268.68     118   268.50    0.36          ( 123/124 probands) 
 
Testing marker:                        AHT005 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     116   268.94     115   268.61    0.65          ( 123/124 probands) 
 
Testing marker:                        COR003 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   270.14     114   269.87    0.53          ( 123/124 probands) 
 
Testing marker:                       NVHEQ18 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   270.15     116   269.56    1.17          ( 123/124 probands) 
 
Testing marker:                        ACEms1 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   270.83     115   270.45    0.77          ( 123/124 probands) 
 
Testing marker:                        SGCV24 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     112   257.13     109   256.61    1.04          ( 120/121 probands) 
 
Testing marker:                        AHT076 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     119   270.83     118   270.63    0.41          ( 123/124 probands) 
 
Testing marker:                     ACADVLms3 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     115   265.49     114   265.46    0.06          ( 121/122 probands) 
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Table A-13 (continued)  
Testing marker:                        TKY404 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   270.69     115   270.54    0.30          ( 123/124 probands) 
 
Testing marker:                        UCD411 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     116   267.41     114   267.21    0.39          ( 122/123 probands) 
 
Testing marker:                       ACTN3ms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   271.00     117   270.71    0.57          ( 123/124 probands) 
 
Testing marker:                        COR058 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     115   269.58     113   269.22    0.72          ( 123/124 probands) 
 
Testing marker:                        AHT017 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     115   269.90     112   269.44    0.93          ( 123/124 probands) 
 
Testing marker:                        TKY585 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   270.60     116   270.55    0.11          ( 123/124 probands) 
 
Testing marker:                         UM032 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   266.81     116   266.56    0.49          ( 123/124 probands) 
 
Testing marker:                       ADRB2ms 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   265.48     115   265.48    0.00          ( 123/124 probands) 
 
Testing marker:                        TKY480 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   270.30     116   270.07    0.47          ( 123/124 probands) 
 
Testing marker:                        AHT037 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     115   270.28     111   269.66    1.25          ( 123/124 probands) 
 
Testing marker:                        TKY936 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     116   269.03     113   268.60    0.87          ( 123/124 probands) 
 
Testing marker:                        COR105 
--------------------------------------------- 
 
Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   269.62     114   269.41    0.41          ( 123/124 probands) 
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Table A-13 (continued)  
Testing marker:                        COR007 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
 
    All     118   269.90     116   269.54    0.72          ( 123/124 probands) 
Testing marker:                         HTG17 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     119   270.68     118   270.53    0.31          ( 123/124 probands) 
 
Testing marker:                       GDF8ms2 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   269.58     114   269.39    0.37          ( 123/124 probands) 
 
Testing marker:                        TKY730 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   270.49     117   270.26    0.47          ( 123/124 probands) 
 
Testing marker:                        AHT018 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     116   270.22     114   269.98    0.48          ( 123/124 probands) 
 
Testing marker:                       UMNe056 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     115   264.41     113   264.09    0.65          ( 123/124 probands) 
 
Testing marker:                         UM011 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   268.96     117   268.81    0.29          ( 123/124 probands) 
 
Testing marker:                        SGCV01 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     119   270.82     118   270.55    0.55          ( 123/124 probands) 
 
Testing marker:                        SGCV04 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     116   268.57     114   268.03    1.08          ( 123/124 probands) 
 
Testing marker:                        COR024 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   269.66     115   269.65    0.03          ( 123/124 probands) 
 
Testing marker:                      ADRB3ms2 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     116   270.19     113   269.61    1.17          ( 123/124 probands) 
 
Testing marker:                        TKY872 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   269.77     117   269.54    0.47          ( 123/124 probands) 
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Table A-13 (continued)  
Testing marker:                      UCDEQ425 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   261.90     115   261.70    0.40          ( 123/124 probands) 
Testing marker:                         L12.2 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     115   265.82     112   265.51    0.63          ( 122/123 probands) 
 
Testing marker:                        LEX075 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     118   270.83     117   270.68    0.30          ( 123/124 probands) 
 
Testing marker:                        TKY105 
--------------------------------------------- 
 
 Allele   df(0) -LnLk(0)   df(T) -LnLk(T)   ChiSq       p 
    All     117   267.52     115   267.23    0.58          ( 123/124 probands) 
 
 
Run completed on Fri Jan 23 09:06:21 2009 
66 tests carried out 
 
The most significant result refers to: 
    Trait: Prize-loge 
   Marker: VDRms 
    ChiSq: 0.694 
  p-value: 0.4047 
 
Overall Bonferroni significance level: 1.0000 
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APPENDIX B 
 

 

 
Figure B-1 Location of candidate genes and microsatellites used in the genome scanning 
panel. Blue line represents the multipoint information content (MPIC) calculation based 
on marker density and level of polymorphism for each marker (assumes genotypes for 
parents and offspring available). Red boxes represents the actual percent information 
content calculated in MERLIN and based on the sample population used in the study. 
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Figure B-1 (continued) 
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 Figure B-1 (continued) 
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